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ASYMPTOTICS FOR SELFDUAL VORTICES ON THE TORUS
AND ON THE PLANE: A GLUING TECHNIQUE∗

MARTA MACRÌ†, MARGHERITA NOLASCO‡, AND TONIA RICCIARDI†

Abstract. We consider multivortex solutions for the selfdual Abelian Higgs model, as the ratio
of the vortex core size to the separation distance between vortex points (the scaling parameter)
tends to zero. To this end, we use a gluing technique (a shadowing lemma) for solutions to the
corresponding semilinear elliptic equation on the plane, allowing any number (finite or countable)
of arbitrarily prescribed singular sources. Our approach is particularly convenient and natural for
the study of the asymptotics. In particular, in the physically relevant cases where the vortex points
are either finite or periodically arranged in the plane, we prove that a frequently used factorization
ansatz for multivortex solutions is rigorously satisfied, up to an error which is exponentially small.
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1. Introduction. We consider the energy density for the static, two-dimensional
selfdual Abelian Higgs model in the following form:

Eδ(A, φ) = δ2|dA|2 + |Dφ|2 +
1

4δ2

(
|φ|2 − 1

)2
,

where A = A1dx1 + A2dx2, A1(x), A2(x) ∈ R is a gauge potential (a connection
over a principal U(1) bundle), φ, φ(x) ∈ C is a Higgs matter field (a section over an
associated complex line bundle), D = d − iA is the covariant derivative, and δ > 0
is the scaling parameter. Eδ is a rescaling of E1 = Eδ|δ=1, which coincides with the
two-dimensional Ginzburg–Landau energy density in the so-called Bogomol’nyi limit.
Such a limit describes the borderline between type I and type II superconductors; see,
e.g., Jaffe and Taubes [12]. By the selfdual structure, solutions to the Euler–Lagrange
equations of Eδ may be obtained from solutions to the first order system:

(D1 ± iD2)φ = 0,(1.1)

F12 = ∂1A2 − ∂2A1 = ± 1

2δ2
(1 − |φ|2).(1.2)

The vortex-type critical points for the energy associated with Eδ, namely, the so-
lutions of (1.1)–(1.2), have received considerable attention in recent years, in view of
both their physical and geometrical interest; see, e.g., Garćia-Prada [8], Hong, Jost,
and Struwe [10], Stuart [17], Taubes [19], Wang and Yang [20], and the references
therein. In particular, Hong, Jost, and Struwe [10] consider (1.1)–(1.2) on a compact
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Riemannian surface and perform a detailed analysis of the asymptotics as δ → 0+. In-
deed, the small δ > 0 regime, corresponding to the limit of small vortex core size with
respect to the separation distance between vortices, is an appropriate approximation
for the analysis near the vortex points of solutions of (1.1)–(1.2) with δ = 1. This
type of asymptotics is also relevant in the context of Ginzburg–Landau vortices; see,
e.g., Aftalion, Sandier, and Serfaty [2], Alama and Bronsard [3], André, Bauman, and
Phillips [4], Bethuel, Brezis, and Hélein [6], Lin [13], Rubinstein and Sternberg [16],
just to mention a few. It has also been widely investigated in the context of other
selfdual gauge theories; see the monographs of Tarantello [18] and Yang [22].

The fundamental results concerning finite energy solutions of (1.1)–(1.2) on R
2

were obtained by Taubes [12, 19]. In particular, Taubes showed that such solutions
are completely determined by solutions to the singular elliptic problem{

−Δu = δ−2(1 − eu) − 4π
∑s

j=1 mjδpj
on R

2,

u(x) → 0 as |x| → +∞.
(1.3)

Here s ∈ N, and for j = 1, 2, . . . , s, pj ∈ R
2 are the vortex points, mj ∈ N is

the multiplicity of pj , and δpj
is the Dirac measure at pj . By variational methods,

Taubes proved that, for any δ > 0, there exists a unique solution of (1.3) such that
the configuration (A, φ) defined in complex notation by{

φ(z) = exp{ 1
2u(z) ± i

∑s
j=1 mj arg(z − pj)},

A1 ∓ iA2 = −i(∂1 ± i∂2) lnφ
(1.4)

is a smooth, finite energy solution of (1.1)–(1.2) on R
2, satisfying φ(pj) = 0 (with the

corresponding multiplicity mj ∈ N) and E =
∫

R2 Eδ(A, φ) = ±
∫

R2 F12 = 2π
∑s

j=1 mj =
2πN , where F12 = ∂1A2 − ∂2A1 is the magnetic field (the curvature of A).

In connection with Abrikosov’s mixed states in superconductivity [1], it is also of
physical interest to analyze (1.1)–(1.2) on the flat torus T

2 ≡ R
2/(aZ × bZ), where

a, b > 0. Such a case has been considered by Wang and Yang in [20]. It is shown in [20]
that solutions of (1.1)–(1.2) with δ = 1 exist for any given set of vortex points pj ∈ T

2,
j = 1, 2, . . . , s, with multiplicity mj ∈ N, if and only if N =

∑s
j=1 mj < |T2|/(4π). In

particular, on T
2 the total number of vortices N cannot be arbitrarily large. Similarly

as on R
2, denoting Ω = (0, a) × (0, b), solutions of (1.1)–(1.2) on T

2 correspond to
solutions for the singular elliptic problem{

−Δu = δ−2(1 − eu) − 4π
∑s

j=1 mjδpj in Ω,

u doubly periodic on ∂Ω.
(1.5)

The periodic boundary conditions are justified by certain more general gauge invariant
conditions on the configuration (A, φ) introduced by ’t Hooft [11]. Such conditions
force the magnetic flux through a lattice cell to be a “quantized” value proportional
to the number of vortices confined. Namely, the ’t Hooft boundary conditions imply
the topological constraint ±

∫
Ω
F12 = 2π

∑s
j=1 mj = 2πN on the solutions of (1.5),

exactly as for finite energy solutions on R
2. Integrating (1.5) on the periodic cell Ω,

we obtain that a necessary condition to the solvability of (1.5) is δ2 < |Ω|/(4πN).
This is obviously satisfied for any finite vortex number N provided δ > 0 is sufficiently
small.

Our aim in this note is to show that a “shadowing-type lemma” as introduced in
the context of elliptic PDEs by Angenent [5] (see also Nolasco [15]) may be adapted to
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elliptic equations with singular sources in order to construct solutions for the following
more general equation:

−Δu = δ−2(1 − eu) − 4π
∑
j∈P

mjδpj
in R

2,(1.6)

where the set of indices P may be either finite or countable, and the vortex points pj ,
j ∈ N, are arbitrarily distributed in the plane with the only constraint that

d := inf
k �=j

|pj − pk| > 0 and m := sup
j∈P

mj < +∞.(1.7)

The solution we obtain for (1.6) coincides with the solution obtained by Taubes for
problem (1.3) when P is finite and with the solution obtained by Wang and Yang for
problem (1.5) when P is infinite and the vortex points are periodically arranged in
R

2. In fact, unlike the previous approaches, our method provides a unified analysis
of (1.3) and (1.5). It should be mentioned that suitable modifications to the method
described in [5] are necessary due to the singular sources appearing in (1.6). The
case where P is countable and the vortex points are arbitrarily arranged in R

2 does
not seem to have been considered before. Of course, if P is countable, the energy
of such a solution is infinite and only locally bounded. On the other hand, our
“gluing” technique is, particularly, convenient and natural to analyze the asymptotics
as δ → 0+. In particular, as a by-product of our construction, we derive a rigorous
proof of the following approximate product formula:

φ(x) =
∏
j∈P

Φmj

(
x− pj

δ

)
+ ηδ,(1.8)

where ‖ηδ‖L∞(R2) ≤ Ce−c/δ with C, c > 0 independent of δ. Here (Amj
,Φmj

) is
the unique, up to gauge transformation, single vortex (or antivortex) solution with
multiplicity mj to (1.1)–(1.2) with δ = 1 on R

2. We note that in the small δ > 0
regime, a product formula of the form (1.8) is a widely used ansatz in the physics
literature, in particular in the study of the dynamics of vortices in the Ginzburg–
Landau model; see, e.g., E [7], Neu [14], and Weinstein and Xin [21]. However, we
have found a rigorous proof of (1.8) only for the case N = 2 on R

2 in Stuart [17].
The asymptotic behavior of solutions of (1.1)–(1.2) as δ → 0+ is readily derived
from formula (1.8) as well as the convergence rates. In fact, in the case of T

2, our
asymptotic description improves the previous result obtained (for general compact
Riemann surfaces) by Hong, Jost, and Struwe [10] (see Corollary 2.1).

Although we have chosen to consider the Abelian Higgs model for the sake of
simplicity, we will show in a forthcoming note that our method may be adapted to
other selfdual gauge theories as considered, e.g., in the monographs [18, 22].

2. Main results and outline of the proof. In order to state precisely our
results, we denote by UN the unique radial solution for the problem (see [12]){

−ΔUN = 1 − eUN − 4πNδ0 in R
2,

UN (x) → 0 as |x| → +∞.
(2.1)

Our main result is the following theorem.
Theorem 2.1. Let pj ∈ R

2, mj ∈ N, j ∈ P ⊆ N, and assume that conditions
(1.7) hold. Then there exists a constant δ1 > 0 (depending on d and m only) such
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that for every δ ∈ (0, δ1) there exists a solution uδ for (1.6). Furthermore, uδ satisfies
the approximate superposition rule

uδ(x) =
∑
j∈P

Umj

(
|x− pj |

δ

)
+ ωδ,(2.2)

where the error term ωδ satisfies ‖ωδ‖∞ ≤ Ce−c/δ for some C, c > 0 independent of
δ. In particular, uδ satisfies the following properties:

(i) 0 ≤ euδ < 1, euδ vanishes exactly at pj, j ∈ P;
(ii) for every compact subset K of R

2 \ ∪j∈P{pj}, there exist C, c > 0 such that
supK(1 − euδ) ≤ Ce−c/δ as δ → 0+;

(iii) ±F12 = 1
2δ2 (1 − euδ) → 2π

∑
j∈P mjδpj in the sense of distributions as

δ → 0+.
In the case that P is countable, we say that the vortex points pj , j ∈ P, are

doubly periodically arranged in R
2 if there exists s ∈ N such that

{pk}k∈P = {pj + me1 + ne2 : j = 1, . . . , s; m,n ∈ Z},(2.3)

where e1 and e2 are the unit vectors in R
2 defining the periodic cell domain Ω (for

simplicity, we assume a = b = 1). Under this condition, solving (1.6) is equivalent
to solving (1.5). Namely, we deal with the physically relevant case of a finite number
of vortex points p1, . . . , ps ∈ Ω, with the corresponding multiplicity mj , j = 1, . . . , s,
such that

∑s
j=1 mj = N , where N is the vortex number and Ω is the periodic cell

domain. As a consequence of Theorem 2.1, and proving in addition that if (2.3) is
satisfied, then the solution uδ for (1.6) is in fact doubly periodic with periodic cell
domain Ω, we derive the following result.

Corollary 2.1. If the pj’s are doubly periodically arranged in R
2, there exists a

constant δ1 > 0 (depending on N only) such that for every δ ∈ (0, δ1) the solution uδ,
given in Theorem 2.1, is a solution for (1.5). Furthermore, the corresponding vortex
configurations (Aδ, φδ) satisfy the approximate factorization rule

φδ(x) =

s∏
j=1

Φmj

(
x− pj

δ

)
+ ηδ, x ∈ Ω,

where the error term ηδ satisfies ‖ηδ‖∞ ≤ Ce−c/δ for some C, c > 0 independent
of δ, and (Amj ,Φmj ) is the unique, up to gauge transformation, single vortex (or
antivortex) solution with multiplicity mj, to (1.1)–(1.2) with δ = 1 on R

2. In parti-
cular, we have the following:

(i) 0 ≤ |φδ|2 < 1, φδ vanishes exactly at pj, j = 1, . . . , s;
(ii) for every compact subset K of Ω \ {p1, . . . , ps}, there exist C, c > 0 such that

0 ≤ supK(1 − |φδ|2) ≤ Ce−c/δ as δ → 0+;
(iii) ±F12(Aδ, φδ) = 1

2δ2 (1− |φδ|2) → 2π
∑s

j=1 mjδpj in the sense of distributions

(on Ω) as δ → 0+;
(iv)

∫
Ω
Eδ(Aδ, φδ) = ±

∫
Ω
F12(Aδ, φδ) = 2πN .

An outline of the proof is as follows. Our starting point in proving Theorem 2.1
is to consider δ > 0 as a scaling parameter. Setting û(x) = u(δx), we have that û
satisfies

−Δû = 1 − eû − 4π
∑
j∈P

mjδp̂j in R
2,(2.4)
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where p̂j = pj/δ. Note that the vortex points p̂j “separate” as δ → 0+. Section 3
contains some properties of the radial solutions UN to (2.1). We rely on the results of
Taubes [19] for the existence and uniqueness of UN as well as for the exponential decay
properties at infinity. We also prove a nondegeneracy property of UN . The exponential
decay of solutions justifies the following approximate superposition picture for small
values of δ, i.e., for vortex points p̂j which are “far apart”:

û(x) ≈
∑
j∈P

Umj (|x− p̂j |) .

In fact, we take the following preliminary form of the superposition rule:

û =
∑
j∈P

ϕ̂jUmj (x− p̂j) + z(2.5)

as an ansatz for ûδ. Here, radial solutions centered at p̂j are “glued” together by
the functions ϕ̂j , which belong to a suitable locally finite partition of unity. Sec-
tion 4 contains the definition and the main properties of the partition as well as of
the appropriate functional spaces X̂δ, Ŷδ, which are also obtained by “gluing” H2(R2)
and L2(R2), respectively. Hence, we are reduced to show that for small values of
δ > 0, there exists an exponentially small “error” z such that û defined by (2.5)
is a solution of (2.4). The existence of such a z ∈ X̂δ is the aim of section 5 (see
Proposition 5.1). To this end, we use the shadowing lemma. We characterize z
by the property Fδ(z) = 0, where Fδ : X̂δ → Ŷδ is suitably defined. The non-
degeneracy property of UN is essential in order to prove that the operator DFδ(0)
is invertible, and that its inverse is bounded independently of δ > 0 (Lemma 5.3).
At this point, the Banach fixed point argument applied to I − (DFδ(0))−1 Fδ yields
the existence of the desired error term z. In section 6 we show that (2.5) implies
(2.2) and we derive the asymptotic behavior of solutions, thus concluding the proof of
Theorem 2.1. Finally, we derive Corollary 2.1 by showing that periodically arranged
vortex points lead to periodic solutions.

Henceforth, unless otherwise stated, we denote by C, c > 0 general constants
independent of δ > 0 and of j ∈ P.

3. Single vortex point solutions. In this section, we consider the solution
UN to the radially symmetric equation (2.1). For every r > 0, we denote Br = {x ∈
R

2 : |x| < r}. The following lemma contains some properties of UN that will be
needed in the following. The proof is a consequence of the results of Taubes [12, 19]
on the existence, uniqueness, and the exponential decay of UN together with standard
elliptic theory as in, e.g., [9]. Therefore, it is omitted.

Lemma 3.1. The following properties hold:
(i) eUN (x) < 1 for any x ∈ R

2;
(ii) for every r > 0 there exist constants CN > 0 and αN > 0, depending on r

and N only, such that

|1 − eUN (x)| + |∇UN (x)| + |UN (x)| ≤ CNe−αN |x|

for all x ∈ R
2 \Br.

We consider the bounded linear operator

LN = −Δ + eUN : H2(R2) → L2(R2).
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In order to apply the shadowing lemma, we also need the following nondegeneracy
property of UN .

Lemma 3.2. The operator LN is invertible and for every N > 0 there exists
CN > 0 such that ‖L−1

N ‖ ≤ CN .
Proof. It is readily seen that LN is injective. Indeed, suppose LNu = 0 for some

u ∈ H2(R2). Multiplying by u and integrating on R
2, we have∫

|∇u|2 +

∫
eUNu2 = 0.

Therefore, u = 0. Now, we claim that LN is a Fredholm operator. Indeed, we write

LN = (−Δ + 1)(I − T )

with T = (−Δ + 1)−1(1 − eUN ) : H2(R2) → H2(R2). Clearly, T is continuous. Let
us check that T is compact. To this end, let un ∈ H2(R2), ‖un‖H2 = 1. We have to
show that T un has a convergent subsequence. Note that by the Sobolev embedding

‖u‖L∞(R2) ≤ CS‖u‖H2(R2),(3.1)

for all u ∈ H2(R2), we have ‖un‖∞ ≤ C ′, for some C ′ > 0 independent of n, and
there exists u∞, ‖u∞‖H2 ≤ 1, such that unk

→ u∞ strongly in L2
loc for a subse-

quence unk
. Now, by Lemma 3.1, for any fixed ε > 0, there exists R > 0 such that

‖1 − eUN ‖L2(R2\BR) ≤ ε. Consequently, ‖(1 − eUN )(unk
− u∞)‖L2(R2\BR) ≤ 2C ′ε. On

the other hand, ‖(1−eUN )(unk
−u∞)‖L2(BR) → 0. We conclude that (1−eUN )(unk

−
u∞) → 0 in L2. In turn, we have T (unk

−u∞) = (−Δ+1)−1(1−eUN )(unk
−u∞) → 0

in H2, which implies that T is compact. It follows that LN is a Fredholm operator.
Consequently, LN is also surjective. At this point, the open mapping theorem con-
cludes the proof.

4. A partition of unity. In this section, we introduce a partition of unity and
we prove some technical results which will be needed in the following. Let pj ∈ R

2

(j ∈ P ⊆ N) be the vortex points. By assumption (1.7), r0 = d/8 = infj �=k |pj −
pk|/8 > 0. We consider the set K = (− 3

4r0,
3
4r0)× (− 3

4r0,
3
4r0). Then, for any n ∈ Z

2,
we introduce Kn = K + nr0. The collection of sets {Kn}n∈Z2 is a locally finite
covering of R

2. We consider an associated partition of unity defined as follows: let
0 ≤ ζ ∈ C∞

c (K) be such that
∑

n∈Z2 ζn = 1 pointwise on R
2, where ζn(x) = ζ(x−nr0)

for all x ∈ R
2. Then, for any j ∈ P, we introduce the set

Pj =

{
n ∈ Z

2 : d(pj ,Kn) <
r0
4

}
.

Note that the cardinality of Pj is uniformly bounded, namely, |Pj | ≤ 4 for any j ∈ P.
We set

Pj =
⋃

n∈Pj

Kn, ϕj =
∑
n∈Pj

ζn

for any j ∈ P. Since, by choice of r0, Z
2 \

⋃
j∈P Pj is a countable set (even in the case

that P is countable), there exists a bijection I : N → Z
2 \

⋃
j∈P Pj . For convenience

of notation, we denote by Q the countable set of indices defined by

Q = I−1

(
Z

2 \
⋃
j∈P

Pj

)
.
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We set

Qk = KI(k), ψk = ζI(k) ∀k ∈ Q.

Then, {Pj , Qk}(j,k)∈P×Q is a locally finite open covering of R
2 with the property that

Pj ∩ Pj′ = ∅ for every j′ �= j. Moreover, {ϕj , ψk}(j,k)∈P×Q is a partition of unity
associated with {Pj , Qk}(j,k)∈P×Q such that

suppϕj ⊂ Pj , suppψk ⊂ Qk

and such that

sup
j∈P

{‖∇ϕj‖∞, ‖D2ϕj‖∞} < +∞, sup
k∈Q

{‖∇ψk‖∞, ‖D2ψk‖∞} < +∞.

In particular,

0 ≤ ϕj , ψk ≤ 1 and
∑
j∈P

ϕj +
∑
k∈Q

ψk =
∑
n∈Z2

ζn = 1.

We define a rescaled covering

P̂j = Pj/δ, Q̂k = Qk/δ.

Then, {ϕ̂j , ψ̂k}(j,k)∈P×Q defined by

ϕ̂j(x) = ϕj(δx), ψ̂k(x) = ψk(δx)

is a partition of unity associated with {P̂j , Q̂k}(j,k)∈P×Q. It will also be convenient
to define the sets

Ĉj = {x ∈ P̂j : ϕ̂j(x) = 1}, j ∈ P.

Note that

supp{∇ϕ̂j , D
2ϕ̂j} ⊂ P̂j \ Ĉj

and

sup
(j,k)∈P×Q

{‖∇ϕ̂j‖∞ + ‖∇ψ̂k‖∞} ≤ Cδ, sup
(j,k)∈P×Q

{‖D2ϕ̂j‖∞ + ‖D2ψ̂k‖∞} ≤ Cδ2.

(4.1)

For every fixed x ∈ R
2, we define the following subsets of indices:

J(x) = {j ∈ P : ϕ̂j(x) �= 0}, K(x) = {k ∈ Q : ψ̂k(x) �= 0}.

Note that, for every x ∈ R
2,

|J(x)| ≤ 1, |K(x)| ≤ 4,(4.2)

where |J(x)| and |K(x)| denote the cardinality of J(x) and K(x), respectively. We
shall use the following Banach spaces:

X̂δ =

{
u ∈ H2

loc(R
2) : sup

(j,k)∈P×Q

{
‖ϕ̂ju‖H2(R2), ‖ψ̂ku‖H2(R2)

}
< +∞

}
,

Ŷδ =

{
f ∈ L2

loc(R
2) : sup

(j,k)∈P×Q

{
‖ϕ̂jf‖L2(R2), ‖ψ̂kf‖L2(R2)

}
< +∞

}
.

We collect in the following lemma some estimates that will be used in what follows.
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Lemma 4.1. There exists a constant C > 0 such that for any u ∈ X̂δ and j ∈ P,
we have

(i) ‖u‖H2(P̂j)
≤ C‖u‖X̂δ

,

(ii) ‖u‖L∞(R2) ≤ C‖u‖X̂δ
.

Proof. (i) For every fixed j ∈ P, let J (j) = {k ∈ Q : supp ϕ̂j ∩ supp ψ̂k �= ∅}.
Then, supj∈P |J (j)| < +∞, and we estimate

‖u‖H2(P̂j)
=

∥∥∥∥∥ϕ̂ju +
∑

k∈J (j)

ψ̂ku

∥∥∥∥∥
H2(P̂j)

≤ ‖ϕ̂ju‖H2(P̂j)
+

∑
k∈J (j)

‖ψ̂ku‖H2(P̂j)

≤ (1 + |J (j)|) ‖u‖X̂δ
≤ C‖u‖X̂δ

.

(ii) For any fixed x ∈ R
2, we have in view of (3.1) and (4.2)

|u(x)| =
∑
j∈P

ϕ̂j(x)|u(x)| +
∑
k∈Q

ψ̂k(x)|u(x)|

=
∑

j∈J(x)

ϕ̂j(x)|u(x)| +
∑

k∈K(x)

ψ̂k(x)|u(x)|

≤
∑

j∈J(x)

CS‖ϕ̂ju‖H2(R2) +
∑

k∈K(x)

CS‖ψ̂ku‖H2(R2)

≤ sup
x∈R2

(|J(x)| + |K(x)|)CS‖u‖X̂δ
= C‖u‖X̂δ

.

Hence, (ii) is established.
We shall also need the following family of functions:

ĝj(x) =
ϕ̂j(x)(∑

k∈P ϕ̂2
k +

∑
k∈Q ψ̂2

k

)1/2
, ĥk(x) =

ψ̂k(x)(∑
j∈P ϕ̂2

j +
∑

j∈Q ψ̂2
j

)1/2
.

In view of (4.1), it is readily checked that the following lemma follows.

Lemma 4.2. The family {ĝj , ĥk}(j,k)∈P×Q satisfies supp ĝj ⊂ P̂j, supp ĥk ⊂ Q̂k

and furthermore,
(i)

∑
j∈P ĝ2

j (x) +
∑

k∈Q ĥ2
k(x) = 1 ∀x ∈ R

2;

(ii) C−1ϕ̂j(x) ≤ ĝj(x) ≤ Cϕ̂j(x) and C−1ψ̂k(x) ≤ ĥk(x) ≤ Cψ̂k(x) ∀x ∈ R
2;

(iii) sup(j,k)∈P×Q{‖∇ĝj‖∞ + ‖∇ĥk‖∞} ≤ Cδ and sup(j,k)∈P×Q{‖D2ĝj‖∞ +

‖D2ĥk‖∞} ≤ Cδ2.

5. The shadowing lemma. Recall from the introduction that p̂j = pj/δ, j ∈ P.
For every j ∈ P we define

Ûj(x) = Umj (x− p̂j).

We make the following ansatz for solutions û to (2.4):

û =
∑
j∈P

ϕ̂jÛj + z.(5.1)

Our aim in this section is to prove the following.
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Proposition 5.1. There exists δ1 > 0 such that for all δ ∈ (0, δ1) there exists
zδ ∈ X̂δ such that ûδ defined by ûδ =

∑
j∈P ϕ̂jÛj + zδ is a solution of (2.4). Moreover,

‖zδ‖X̂δ
≤ Ce−c/δ.

We note that the functional Fδ : X̂δ → Ŷδ given by

Fδ(z) = −Δz +
∑
j∈P

ϕ̂j(1 − eÛj ) − (1 − e
∑

j∈P ϕ̂jÛj+z) −
∑
j∈P

[ϕ̂j ,Δ]Ûj

is well defined as well as C1. Here [Δ, ϕ̂j ] = Δϕ̂j + 2∇ϕ̂j∇. Moreover, if z ∈ X̂δ

satisfies Fδ(z) = 0, then û defined by (5.1) is a solution of (2.4).
Lemma 5.1. For δ > 0 sufficiently small, we have

‖Fδ(0)‖Ŷδ
≤ Ce−c/δ as δ → 0+(5.2)

for some constants C, c > 0 independent of δ.
Proof. Let

R =
∑
j∈P

ϕ̂j(1 − eÛj ) − (1 − e
∑

j∈P ϕ̂jÛj ),

C =
∑
j∈P

[ϕ̂j ,Δ]Ûj .

Note that {suppR, supp C} ⊂ ∪j∈P P̂j \ Ĉj . We fix x ∈ ∪j∈P P̂j . We estimate

|R(x)| ≤ sup
j∈P

‖ϕ̂j(1 − eÛj )‖L∞(P̂j\Ĉj)
+ sup

j∈P
‖1 − eϕ̂jÛj‖L∞(P̂j\Ĉj)

≤C sup
j∈P

‖Ûj‖L∞(P̂j\Ĉj)
≤ C1e

−c1/δ.

On the other hand, in view of (4.1) and Lemma 3.1, for x ∈ ∪j∈P P̂j , we have

|C(x)| ≤ sup
j∈P

‖ [Δ, ϕ̂j ]Ûj‖L∞(P̂j\Ĉj)

≤C

(
sup
j∈P

‖Ûj Δϕ̂j‖L∞(P̂j\Ĉj)
+ sup

j∈P
‖ |∇Ûj | |∇ϕ̂j | ‖L∞(P̂j\Ĉj)

)
≤ C2e

−c2/δ.

Here and above, c1, C1, c2, C2 > 0 are positive constants independent of δ > 0. Hence,
we conclude that, as δ → 0+,

‖Fδ(0)‖Ŷδ
≤ C sup

j∈P

(
‖R‖L2(P̂j)

+ ‖C‖L2(P̂j)

)
≤ Ce−c/δ

for some constants C, c > 0 independent of δ > 0.
Now, we consider the operator Lδ ≡ DFδ(0) : X̂δ → Ŷδ given by

Lδ = −Δ + e
∑

j∈P ϕ̂jÛj .

For every j ∈ P, we define the operators

L̂j = −Δ + eÛj .
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It will also be convenient to define

L̂0 = −Δ + 1.

The following lemma holds.
Lemma 5.2. There exist C, c > 0 such that for any u ∈ X̂δ, we have

‖(Lδ − L̂j)ϕ̂ju‖L2 ≤ Ce−c/δ‖ϕ̂ju‖L2 , j ∈ P,

‖(Lδ − L̂0)ψ̂ku‖L2 ≤ Ce−c/δ‖ψ̂ku‖L2 , k ∈ Q.

Proof. For any j ∈ P, by Lemma 3.1, we have, as δ → 0+,

‖(Lδ − L̂j)ϕ̂ju‖L2 ≤
(
‖1 − eÛj‖L∞(P̂j\Ĉj)

+ ‖1 − eϕ̂jÛj‖L∞(P̂j\Ĉj)

)
‖ϕ̂ju‖L2

≤ C‖1 − eÛj‖L∞(P̂j\Ĉj)
‖ϕ̂ju‖L2 ≤ Ce−c/δ‖ϕ̂ju‖L2 .

Similarly, as δ → 0+,

‖(Lδ − L̂0)ψ̂ku‖L2 ≤‖(1 − e
∑

j∈P ϕ̂jÛj )ψ̂ku‖L2

≤ sup
j∈P

‖1 − eϕ̂jÛj‖L∞(P̂j\Ĉj)
‖ψ̂ku‖L2 ≤ Ce−c/δ‖ψ̂ku‖L2 .

Now, we prove an essential nondegeneracy property of Lδ.
Lemma 5.3. There exists δ0 > 0 such that for any δ ∈ (0, δ0), the operator Lδ is

invertible. Moreover, L−1
δ : Ŷδ → X̂δ is uniformly bounded with respect to δ ∈ (0, δ0).

Proof. Following a gluing technique introduced in [5], we construct an “approxi-
mate inverse” Sδ : Ŷδ → X̂δ for L−1

δ as follows:

Sδ =
∑
j∈P

ĝjL̂
−1
j ĝj +

∑
k∈Q

ĥkL̂
−1
0 ĥk,

where ĝj and ĥk are the functions introduced in section 4. We claim that the operator
Sδ is well defined and uniformly bounded with respect to δ. That is, we claim that

‖Sδf‖X̂δ
≤ C‖f‖Ŷδ

(5.3)

for some C > 0 independent of f ∈ X̂δ and of δ > 0.
Indeed, for any f ∈ Ŷδ, we have

‖Sδf‖X̂δ
= sup

(j,k)∈P×Q
{ ‖ϕ̂jSδf‖H2 , ‖ψ̂kSδf‖H2}

and

‖ϕ̂jSδf‖H2 ≤ ‖ϕ̂j ĝjL̂
−1
j ĝjf‖H2 +

∥∥∥∥ϕ̂j

∑
k∈Q

ĥkL̂
−1
0 ĥkf

∥∥∥∥
H2

,

‖ψ̂kSδf‖H2 ≤
∥∥∥∥ψ̂k

∑
j∈P

ĝjL̂
−1
j ĝjf

∥∥∥∥
H2

+

∥∥∥∥ψ̂k

∑
j∈Q

ĥjL̂
−1
0 ĥjf

∥∥∥∥
H2

.
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We estimate, recalling the properties of ϕ̂j and ĝj as in Lemma 4.2, and in view of
Lemma 3.2

‖ϕ̂j ĝjL̂
−1
j ĝjf‖H2 ≤ C‖L̂−1

j ĝjf‖H2 ≤ C‖ĝjf‖L2 ≤ C‖ϕ̂jf‖L2 ≤ C‖f‖Ŷδ
.

We have∥∥∥∥ϕ̂j

∑
k∈Q

ĥkL̂
−1
0 ĥkf

∥∥∥∥
H2

≤
∥∥∥∥ϕ̂j

∑
k∈J (j)

ĥkL̂
−1
0 ĥkf

∥∥∥∥
H2

≤
∑

k∈J (j)

‖ϕ̂j ĥkL̂
−1
0 ĥkf‖H2 ,

where J (j) = {k ∈ Q : supp ψ̂k ∩ supp ϕ̂j �= ∅} satisfies supj∈P |J (j)| < +∞. In
view of Lemmas 4.2 and 3.2, we estimate∑

k∈J (j)

‖ϕ̂j ĥkL̂
−1
0 ĥkf‖H2 ≤ C

∑
k∈J (j)

‖L̂−1
0 ĥkf‖H2 ≤ C

∑
k∈J (j)

‖ĥkf‖L2

≤C
∑

k∈J (j)

‖ψ̂kf‖L2 ≤ C|J (j)| sup
k∈Q

‖ψ̂kf‖L2 ≤ C‖f‖Ŷδ
.

Therefore,

sup
j∈P

∥∥∥∥ϕ̂j

∑
k∈Q

ĥkL̂
−1
0 ĥkf

∥∥∥∥
H2

≤ C‖f‖Ŷδ
.

Similarly, we obtain that

sup
k∈Q

∥∥∥∥ψ̂k

∑
j∈P

ĝjL̂
−1
j ĝjf

∥∥∥∥
H2

≤ C‖f‖Ŷδ
, sup

k∈Q

∥∥∥∥ψ̂k

∑
j∈Q

ĥjL̂
−1
0 ĥjf

∥∥∥∥
H2

≤ C‖f‖Ŷδ
,

and (5.3) follows.
Now, we claim that there exists δ0 such that for any δ ∈ (0, δ0), the operator SδLδ :

X̂δ → X̂δ is invertible, and furthermore, ‖SδLδ‖ ≤ C for some C > 0 independent

of δ > 0. We note that (Lδ − L̂j)ĝj : X̂δ → Ŷδ and (Lδ − L̂0)ĥk : X̂δ → Ŷδ are
well-defined bounded linear operators. Thus, we decompose

SδLδ = IX̂δ
+

∑
j∈P

ĝjL̂
−1
j (ĝjLδ − L̂j ĝj) +

∑
k∈Q

ĥkL̂
−1
0 (ĥkLδ − L̂0ĥk)

= IX̂δ
+

∑
j∈P

ĝjL̂
−1
j (Lδ − L̂j)ĝj +

∑
k∈Q

ĥkL̂
−1
0 (Lδ − L̂0)ĥk

+
∑
j∈P

ĝjL̂
−1
j [Δ, ĝj ] +

∑
k∈Q

ĥkL̂
−1
0 [Δ, ĥk].

(5.4)

Hence, it suffices to prove that the last four terms in (5.4) are sufficiently small, in
the operator norm, provided δ > 0 is sufficiently small. By Lemmas 5.2 and 4.2, we
have, for any u ∈ X̂δ,∥∥∥∥∑

j∈P
ĝjL̂

−1
j (Lδ − L̂j)ĝju

∥∥∥∥
X̂δ

≤C sup
j∈P

‖L̂−1
j (Lδ − L̂j)ĝju‖H2

≤C sup
j∈P

‖(Lδ − L̂j)ĝju‖L2

≤Ce−c/δ sup
j∈P

‖ϕ̂ju‖L2 ≤ Ce−c/δ‖u‖X̂δ
.
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Similarly, for u ∈ X̂δ, we have∥∥∥∥∑
j∈P

ĝjL̂
−1
j [Δ, ĝj ]u

∥∥∥∥
X̂δ

≤ C sup
j∈P

‖L̂−1
j [Δ, ĝj ]u‖H2 ≤ C sup

j∈P
‖[Δ, ĝj ]u‖L2 .

Recalling that [Δ, ĝj ]u = 2∇u∇ĝj + uΔĝj , by Lemmas 4.2 and 4.1(i) we derive that

‖[Δ, ĝj ]u‖L2 ≤ Cδ‖u‖H1(P̂j)
≤ Cδ‖u‖X̂δ

.

The remaining terms are estimated similarly. Hence, ‖SδLδ − IX̂δ
‖ → 0 as δ → 0+.

Now, we observe that L−1
δ = (SδLδ)

−1Sδ. It follows that for any f ∈ Ŷδ, we have

‖L−1
δ f‖X̂δ

= ‖(SδLδ)
−1Sδf‖X̂δ

≤ C‖Sδf‖Ŷδ
≤ C‖f‖Ŷδ

with C > 0 independent of δ. Hence, Lδ is invertible and its inverse is bounded
independently of δ, as asserted.

Now we can provide the following proof.
Proof of Proposition 5.1. We use the Banach fixed point argument. For any

δ ∈ (0, δ0), with δ0 > 0 given by Lemma 5.3, we introduce the nonlinear map Gδ ∈
C1(X̂δ, X̂δ) defined by

Gδ(z) = z − L−1
δ Fδ(z).

Then, fixed points of Gδ correspond to solutions of the functional equation Fδ(z) = 0.
First, note that DGδ(0) = 0 and that

DF (z) = −Δ + e
∑

j∈P ϕ̂jÛj+z.

By Lemma 5.3, for any z ∈ X̂δ and u ∈ X̂δ, we have

‖DGδ(z)u‖X̂δ
= ‖(DGδ(z) −DGδ(0))u‖X̂δ

= ‖L−1
δ (DFδ(z) − Lδ)u‖X̂δ

≤ C‖(DFδ(z)−Lδ)u‖Ŷδ
=C‖e

∑
j∈P ϕ̂jÛj (ez − 1)u‖Ŷδ

≤C‖(ez − 1)u‖Ŷδ
.

By the elementary inequality et − 1 ≤ Ctet, for all t > 0, where C > 0 does not
depend on t, and in view of Lemma 4.1, we have

‖ez − 1‖∞ ≤ e‖z‖∞ − 1 ≤ C‖z‖∞e‖z‖∞ ≤ C‖z‖X̂δ
e
‖z‖X̂δ .

Hence,

‖DGδ(z)u‖X̂δ
≤ C‖(ez − 1)u‖Ŷδ

≤ C‖z‖X̂δ
e
‖z‖X̂δ ‖u‖Ŷδ

≤ C‖z‖X̂δ
e
‖z‖X̂δ ‖u‖X̂δ

.

Consequently, there exists R0 > 0 such that for every R ∈ (0, R0), we have

‖DGδ(z)‖ <
1

2
∀z ∈ BR

for all δ > 0, where

BR = {u ∈ X̂δ : ‖u‖X̂δ
< R}.
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Now, for every R ∈ (0, R0),

‖Gδ(z)‖X̂δ
≤ ‖Gδ(z) −Gδ(0)‖X̂δ

+ ‖Gδ(0)‖X̂δ

≤ 1

2
‖z‖X̂δ

+ ‖L−1
δ Fδ(0)‖X̂δ

.

By Lemmas 5.3 and 5.1, there exist C0, c0 > 0 independent of δ > 0 such that

‖L−1
δ Fδ(0)‖X̂δ

≤ C‖Fδ(0)‖Ŷδ
≤ C0e

−c0/δ.

Choosing R = Rδ = 2C0e
−c0/δ, we obtain that Gδ(BRδ

) ⊂ BRδ
. Hence, Gδ is a strict

contraction in BRδ
, for any δ ∈ (0, δ1), with δ1 = c0/(ln(2C0/R0)). By the Banach

fixed-point theorem, for any δ ∈ (0, δ1), there exists a unique zδ ∈ BRδ
such that

Fδ(zδ) = 0.

6. Proof of the main results. In this section, we finally provide the proof of
Theorem 2.1 and derive Corollary 2.1. In view of Proposition 5.1, the function ûδ

defined by

ûδ =
∑
j∈P

ϕ̂jÛj + zδ

is a solution of (2.4). Consequently, uδ defined by

uδ(x) = ûδ

(x
δ

)
=

∑
j∈P

ϕj(x)Umj

(
x− pj

δ

)
+ zδ

(x
δ

)
(6.1)

is a solution of (1.6).
Lemma 6.1. The solution uδ defined in (6.1) satisfies the approximate superpo-

sition rule

uδ(x) =
∑
j∈P

Umj

(
x− pj

δ

)
+ ωδ(x)

with ‖ωδ‖∞ ≤ Ce−c/δ.
Proof. In view of (6.1) and of the definition of J(x) in section 4, we have

uδ(x) =
∑

j∈J(x)

Umj

(
x− pj

δ

)
+ ω̃δ(x),

where

ω̃δ(x) = −
∑

j∈J(x)

(1 − ϕj(x))Umj

(
x− pj

δ

)
+ zδ

(x
δ

)
.

In view of Lemma 3.1, we estimate∥∥∥∥∥∥
∑

j∈J(x)

(1 − ϕj(x))Umj

(
x− pj

δ

)∥∥∥∥∥∥
∞

≤
∑

j∈J(x)

sup
R2\Cj

∣∣∣∣Umj

(
x− pj

δ

)∣∣∣∣ ≤ Ce−c/δ.
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On the other hand, by Proposition 5.1 and Lemma 4.1(ii), we have∥∥∥∥zδ ( ·
δ

)∥∥∥∥
∞

= ‖zδ‖∞ ≤ Ce−c/δ.

Therefore, ‖ω̃δ‖∞ ≤ Ce−c/δ. We have to show that∥∥∥∥∥∥
∑

j∈P\J(x)

Umj

(
x− pj

δ

)∥∥∥∥∥∥
∞

≤ Ce−c/δ.

To this end, we fix x ∈ R
2 and for every M ∈ N we define BM = {y ∈ R

2 : |y − x| <
dM}. Then,

∑
j∈P\J(x)

Umj

(
x− pj

δ

)
=

∑
M∈N

∑
pj∈BM+1\BM

Umj

(
x− pj

δ

)
.

Since infj �=k |pj−pk| = d > 0, there exists C > 0 independent of M ∈ N and of x ∈ R
2

such that

|{pj ∈ BM+1 \BM}| ≤ CM.

Hence, we estimate∣∣∣∣∣∣
∑

j∈P\J(x)

Umj

(
x− pj

δ

)∣∣∣∣∣∣ ≤ C
∑
M∈N

Me−cM/δ ≤ Ce−c/δ.

This implies the statement of the lemma.
We are left to analyze the asymptotic behavior of uδ as δ → 0+. Such behavior

is a direct consequence of (6.1).
Lemma 6.2. Let uδ be given by (6.1). The following properties hold:
(i) euδ < 1 on R

2 and vanishes exactly at pj with multiplicity 2mj, j ∈ P;
(ii) for every compact subset K of R

2 \ ∪j∈P{pj}, there exist C, c > 0 such that
1 − euδ ≤ Ce−c/δ as δ → 0+;

(iii) δ−2(1 − euδ) → 4π
∑

j∈P mjδpj in the sense of distributions as δ → 0+.
Proof. (i) Since uδ is a solution of (1.6), euδ < 1 follows by the maximum principle.

Moreover, since

Umj

(
x− pj

δ

)
= ln |x− pj |2mj + vj(6.2)

with vj a continuous function (see [12]), we have near pj that euδ = |x−pj |2mjfj,δ(x)
with fj,δ(x) a continuous strictly positive function. Hence, (i) is established.

(ii) Let K be a compact subset of R
2 \ ∪j∈P{pj}. In view of Lemma 3.1 and

Proposition 5.1, we have as δ → 0+

sup
x∈K∩Pj

1 − eϕj(x)Umj
((x−pj)/δ) ≤ Ce−c/δ

∥∥∥zδ ( ·
δ

)∥∥∥
∞

≤ C‖zδ‖X̂δ
≤ CRδ ≤ Ce−c/δ.
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Therefore, we have that for any compact set K ⊂ R
2 \ ∪j∈P{pj},

0 ≤ sup
x∈K

(1 − euδ) ≤ C sup
j∈P

sup
x∈K∩Pj

(1 − euδ) ≤ Ce−c/δ.

(iii) Let ϕ ∈ C∞
c (R2). Then,

−
∫

R2

uδΔϕ = δ−2

∫
R2

(1 − eu)ϕ− 4π
∑
j∈P

mjϕ(pj).

We claim that ∫
R2

uδΔϕ → 0 as δ → 0.(6.3)

Indeed, let jk ∈ P, k = 1, . . . , n, be such that suppϕ ⊂ ∪n
k=1Pjk ∪ K with K a

compact subset of R
2 \ ∪j∈P{pj}. Since supK |uδ| ≤ Ce−c/δ, we have∣∣∣∣

∫
K

uδΔϕ

∣∣∣∣ ≤ C‖Δϕ‖∞e−c/δ → 0.

On the other hand, in view of Lemma 6.1, in Pjk we have uδ(x) = Umjk
(|x−pjk |/δ)+

O(e−c/δ). Note that Umjk
∈ L1(R2) in view of (6.2) and Lemma 3.1. Therefore,

sup
1≤k≤n

∣∣∣∣∣
∫
Pjk

uδΔϕ

∣∣∣∣∣ ≤ sup
1≤k≤n

∣∣∣∣∣
∫
Pjk

Umjk

(
x− pjk

δ

)
Δϕ

∣∣∣∣∣ + O(e−c/δ)

≤ δ2 sup
1≤k≤n

‖Δϕ‖∞‖Umjk
‖L1 + O(e−c/δ) ≤ Cδ2 → 0.

Hence, (6.3) follows, and (iii) is established.
Proof of Theorem 2.1. For every δ ∈ (0, δ1), where δ1 is given in Proposition 5.1,

we obtain a solution uδ of (1.6). Furthermore, uδ satisfies (2.2) in view of Lemma 6.1.
Finally, uδ satisfies the asymptotic behavior as in (i)–(iii) in view of Lemma 6.2.
Hence, Theorem 2.1 is completely established.

Proof of Corollary 2.1. To begin, we want to prove that if pj ’s are doubly periodi-
cally arranged in R

2, then uδ is in fact a doubly periodic solution of (1.5). Recall that
the pj ’s are doubly periodically arranged in R

2 if (2.3) holds. We define êk = ek/δ,
k = 1, 2. Equivalently, we show ûδ(x + êk) = ûδ(x) for any x ∈ R

2 and for k = 1, 2.

Indeed, we may assume that ϕ̂j(x + êk) = ϕ̂j(x), ψ̂j(x + êk) = ψ̂j(x) for any j ∈ N,
x ∈ R

2, k = 1, 2. Then,

ûδ(x + êk) =
∑
j∈N

ϕ̂j(x)Ûj(x) + zδ(x + êk).

Hence, it is sufficient to prove that zδ(x + êk) = zδ(x) for every x ∈ R
2 and for

k = 1, 2. First, we claim that zδ( · + êk) ∈ BRδ
. Indeed, for every j ∈ N there exists

exactly one j′ ∈ N such that

‖ϕ̂jzδ( · + êk)‖H2 = ‖ϕ̂j′zδ‖H2 .(6.4)

Hence, we obtain

‖zδ( · + êk)‖X̂δ
= ‖zδ‖X̂δ

≤ Rδ.(6.5)
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Moreover, if Fδ(zδ) = 0 we also have Fδ(zδ( · + êk)) = 0. Therefore, zδ( · + êk) is a
fixed point of Gδ in BRδ

. By uniqueness, we conclude that zδ( · + êk) = zδ, k = 1, 2, as
asserted. At this point, the remaining statements follow recalling that in the periodic
cell domain Ω, (Aδ, φδ) is given, up to gauge transformations, by (1.4).
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Equations Appl., Birkhäuser, Boston, MA, in preparation.
[19] C. Taubes, Arbitrary n-vortex solutions to the first order Ginzburg-Landau equations, Comm.

Math. Phys., 72 (1980), pp. 277–292.
[20] S. Wang and Y. Yang, Abrikosov’s vortices in the critical coupling, SIAM J. Math. Anal., 23

(1992), pp. 1125–1140.
[21] M.I. Weinstein and J. Xin, Dynamic stability of vortex solutions of Ginzburg-Landau and

nonlinear Schrödinger equations, Comm. Math. Phys., 180 (1996), pp. 389–428.
[22] Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monogr. Math., Springer,

New York, 2001.



SIAM J. MATH. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 37, No. 1, pp. 17–59

LOCAL GEOMETRY OF DEFORMABLE TEMPLATES∗

ALAIN TROUVÉ† AND LAURENT YOUNES‡

Abstract. In this paper, we discuss a geometrical model of a space of deformable images or
shapes, in which infinitesimal variations are combinations of elastic deformations (warping) and of
photometric variations. Geodesics in this space are related to velocity-based image warping methods,
which have proved to yield efficient and robust estimations of diffeomorphisms in the case of large
deformation. Here, we provide a rigorous and general construction of this infinite dimensional “shape
manifold” on which we place a Riemannian metric. We then obtain the geodesic equations, for which
we show the existence and uniqueness of solutions for all times. We finally use this to provide a
geometrically founded linear approximation of the deformations of shapes in the neighborhood of a
given template.

Key words. infinite dimensional Riemannian manifolds, deformable templates, shape represen-
tation and recognition, warping
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1. Introduction. The theoretical developments which are addressed in this pa-
per are motivated by the theory of deformable templates, as it emerged from the work
of Grenander and his collaborators in the 1980’s [19, 21, 22, 20], to handle image pro-
cessing problems. This theory has an abstract formulation, in which the purpose is
to represent the variability within an object class by the variations in shape, or color,
etc., of a single object, submitted to the action of “deformations.” For instance, a
model designed to describe a picture of a human face should be able to explain inter-
individual variations but also variations caused by the change of expression of a given
individual, and by the changing of imaging conditions, such as lighting, occultations,
etc. The interesting feature in Grenander’s construction is that it assigns a large part,
sometimes all, of the variations to a fixed structure, describing the deformation, which
is independent of the particular instance of the observed image. This structure most
of the time belongs to a group, the group of deformations, which is acting on the set of
objects. The specific choice of the group depends on the application and on the type
of visual features which are modeled, like pixelized images [18] and discretized shapes
[20, 29, 23]. In such discrete settings, the group action is used to generate variations of
the constituting generators of the object (pixels for an image, segments for polygons)
and therefore are modeled as finite dimensional groups, generally products of linear
or affine groups. In the simple example of labeled collections of points (landmarks),
the deformation may simply correspond to independent translations of each point,
but when the question is raised of the similarity of two collections of landmarks, one
would like to figure out the amount of deformation which is required to transform
one of them into the other. When evaluating this deformation, it is clear that the
lengths of the induced translations should have some impact, but that this is not the
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only factor and often not even the main factor. One would also like to draw conclu-
sions on the smoothness of the deformation, based on the fact that, in the context
of large deformations of shapes, a lower similarity must be associated to a collection
of translations which point to erratic directions, compared to a more homogeneous
displacement. We see, in this case, that a global point of view on the displacements
is needed. Spline-based landmark matching [9, 26] specifically addresses this issue by
seeking the smoothest function which interpolates the considered displacements.

When dealing with image deformation, the need to pass to the continuum is
even more obvious. In this case, deformations, which should provide nonambiguous
point displacements, must be diffeomorphisms on the image support. This nonam-
biguity constraint, however, has been relaxed in most of the early attempts to deal
with this issue, working preferably with linear spaces of deformations [6, 7, 8, 2, 1, 14],
which can be seen as first order approximations. Dealing explicitly with true deforma-
tions, i.e., diffeomorphisms acting on the support of images, was rigorously formalized
by Riemannian metric arguments on the groups of diffeomorphisms in [32] for one-
dimensional problems, and in [31] in full generality (see also [30]). Stemming from the
simple representation of right invariant metrics on groups of diffeomorphisms along a
path in this space, i.e., time-dependent deformations, in terms of the Eulerian velocity,
this last reference built diffeomorphisms as flows associated to ODEs (a construction
which was already present in [3]) and transferred the modeling effort to the linear
space of velocities, i.e., of vector fields defined on the image support. Under suitable
Banach space structures on these linear spaces, the extension of the ODE solutions for
infinite time and the existence of minimizers to general variational problems in this
space can be ensured, providing rigorous sufficient conditions for the well-posedness
of many practical problems in template matching. This analysis rejoined the line of
work of Miller and his collaborators on the estimation of large deformation diffeomor-
phisms [13, 26], in which velocity-based models have been introduced, and variational
properties studied in [16]. In [27], the interest in considering a lifted group action,
on the cross product of the group itself and of the image space, was demonstrated in
a wide variety of applications. The final metric on the image space was obtained by
projecting a right-invariant Riemannian distance designed on the product space.

The approach we follow in this paper addresses the same kind of construction
as in [27], which focused on the metric aspects, but from a different point of view.
Our purpose is to start from the infinitesimal analysis of small deformations of im-
ages in order to model and measure image variations and define differentiable and
geodesic curves in the image space. We shall accept conditions which ensure enough
smoothness on the diffeomorphisms but try whenever possible to avoid placing such
smoothness assumptions on the images themselves. Such a choice, which is very im-
portant given the discontinuous nature of images, is made at the cost of increasing
technicalities and notation, as will be seen in section 3, in which the basic geometry of
the model is presented. Here, we define the tangent space at a given square integrable
image i as an equivalent class for all possible variations resulting from an infinitesimal
combination of a deformation (geometry) and of the addition of a square integrable
function (photometry), yielding what can be called a morphometrical variation. We
then equip it with an inner product and define from it lengths and energies of curves.
This metric is based on the best tradeoff between geometrical and photometrical vari-
ations. Still, in this general setting, we show the existence of minimizing geodesics
(curves of minimal energy) between any two images.

The rest of the paper is devoted to the study of geodesics and their generation
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from initial conditions. The motivation in this study is the possibilities it offers for
prototype-based image representation and the generation of image variations and de-
formations from initial conditions belonging to a vector space. In this context, the
geodesic equations are derived under the assumption that the deformed prototype is
smooth (H1), but with no restriction on the other endpoint. This is done in sec-
tion 5.2.2. The obtained evolution equations are then generalized to a form which
does not require the smoothness of the initial position and that we conjecture to rep-
resent a comprehensive class of image evolutions. The equations, under this form, are
studied in section 7, where we prove that they have a unique solution over arbitrary
finite time intervals. Our last result shows the local nonambiguity of this represen-
tation, at least in the smooth case: from a smooth prototype, the solutions of the
geodesic equations in small time cannot coincide if they have been generated from
distinct smooth initial conditions. This is done in section 9. The last section, 10,
presents numerical experiments, which illustrate the feasibility of retrieving a target
from the initial conditions associated to the minimizing geodesic starting from the
template.

2. Notation. For further reference, we present in a single definition some of the
main functional spaces we use throughout the paper.

Definition 1. Let k, p ∈ N∗, l ∈ N, and Ω be a bounded domain of R
k with C1

boundary.
(1) We denote C∞

c (Ω,Rp) the space of smooth compactly supported R
p-valued

functions on Ω.
(2) We denote Cl(Ω,Rp) the set of the restrictions to Ω of the l times continuously

differentiable R
p-valued functions on R

k.
Let f ∈ Cl(Ω,Rp). We define the norm |f |l,∞ by

|f |l,∞ �
∑

α, 0≤|α|≤l

sup
x∈Ω

| ∂|α|f

∂xα1
1 · · · ∂xαd

d

,

where for any α � (α1, . . . , αd) ∈ N
d
∗ we denote |α| �

∑
αi.

(3) We denote Cl
0(Ω,Rp) the completion of C∞

c (Ω,Rp) for the norm | |l,∞.
(4) We denote L2(Ω,Rp) the Hilbert space of square integrable functions in R

p

with dot product defined for f, g ∈ L2(Ω,Rp) by

〈f, g〉2 �
∫

Ω

〈f(x), g(x)〉Rpdx.

(5) We denote H1(Ω,Rp) the Hilbert space of square integrable R
p-valued func-

tions with square integrable first partial (generalized) derivatives. The dot
product is defined for any f, g ∈ H1(Ω,Rp) by

〈f, g〉H1 � 〈f, g〉2 +

k∑
i=1

〈
∂f

∂xi
,
∂g

∂xi

〉
2

.

3. Measuring distances on the image space.

3.1. Infinitesimal transformations. Let us consider a space JW of functions
defined on Ω̄, and taking values on R

d, which will be explicitly defined later. To
somewhat fix the ideas, we shall speak of elements of JW as “images” and use the
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corresponding photometric vocabulary, although our constructions apply to generic
graphs of vector-valued functions.

We want to build a distance, denoted hereafter dJW
, on JW through a Riemannian

analysis. Let j ∈ JW and h ∈ R, and consider a small perturbation jh of j such that

jh(x) = j(x− hv(x)) + hσ2z(x) + o(h),

where v is a displacement field and z is an R
d-valued function on Ω. Here and in

the following, σ2 is a fixed positive parameter. The transformation from j to jh
is therefore divided in two complementary processes. The first, which we call the
“geometric transformation,” is a pure deformation of the support for which a point
located at x in the first image is pushed to location x + hv(x). The second process,
called the “photometric transformation,” is the residual, obtained by the addition
of σ2hz. Both transformations are the main ingredients of any morphing process
between two images. When j is smooth, we have

∂j

∂h |h=0
� lim

h→0

jh − j

h
= σ2z − dj(v).(1)

The usual geometric interpretation is that γ � ∂j
∂h |h=0

is an element of the tangent

space TjJW , and, given our representation, it is sensible to let the length |γ|j depend

on w � (z, v) and to let w vary in some chosen vector space W . The solution cannot
merely be to set |γ|j = |w|W , where | |W is a norm on W , because the representation
(z, v) �→ γ is not one-to-one: if w′ = (v′, z′) is such that

σ2(z′ − z) − dj(v′ − v) = 0,(2)

then the transformations along w and w′ of j are infinitesimally equivalent. Hence,
looking for the best tradeoff between geometric and photometric transformations, we
can choose for the metric on the tangent space TjJW

|γ|j = inf
{
|w|W | w = (v, z), γ = σ2z − dj(v)

}
.(3)

Now, we can define formally

dJW
(j0, j1) � inf

{∫ 1

0

∣∣∣∣∂j

∂t

∣∣∣∣
jt

, j path from j0 to j1

}
.(4)

3.2. Differentiable structure. The previous construction is now made rigor-
ous for JW � L2(Ω,Rd).

Remark 1. Since L2(Ω,Rd) is a Hilbert space, it has a natural structure of smooth
infinite dimensional manifold. However, the differential structure we need to consider
here is different from the standard L2 structure. To see this, consider the following
example: Ω =]0, 1[k, and jh(x) � j0(x− hv(x)), where

• j0(x) � 1x1≥1/2,

• v ∈ C∞
c (Ω,Rk) is such that the first coordinate, v1, of v is strictly positive at

the center c � (1/2, . . . , 1/2) of Ω.
Then, |jh − j0|2/h → +∞ so that jh is not differentiable at h = 0 for the usual L2

differentiable structure, whereas, by the construction above, it will be so for the dif-
ferential structure on JW (this is a justification for keeping the nonstandard notation
JW for the image space).

Our construction starts with the definition of C1 paths on JW . We first need to
specify the allowed geometric as well as grey-level infinitesimal transformations.
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3.2.1. Infinitesimal transformation spaces.

Geometric transformation. We denote B the space of the displacement fields
underlying the infinitesimal geometric transformation. We assume that B is a Hilbert
space with dot product denoted by 〈, 〉B and norm denoted by | |B. We assume
throughout this paper that B is continuously embedded in Cp

0 (Ω,Rk), where p = 1 at
least but may be larger if specified. As a reminder, we recall that B is continuously
embedded in some Banach space B′ (with norm | |B′) of functions if and only if each
element v of B can be considered as an element of B′ and there exists a constant C
such that, for all v ∈ B,

|v|B′ ≤ C |v|B .

Moreover, B is compactly embedded in B′ if it is continuously embedded and any
bounded set for the norm on B is relatively compact in the B′-topology.

We shall also assume that C∞
c (Ω,Rk) is dense in B.

Photometric transformation. Grey-level transformations are assumed to be-
long to the space L2(Ω,Rd).

Finally, we denote W � B×L2(Ω,Rd) on which we place the dot product defined
for w = (v, z) and w′ = (v′, z′) by

〈w,w′〉W � 〈v, v′〉B + σ2〈z, z′〉2.

3.2.2. Differentiable curves and tangent space. For any smooth image j,
we have, for any u ∈ C∞

c (Ω,Rd) and any w = (v, z) ∈ W ,

〈σ2z − dj(v), u〉2 = σ2〈z, u〉2 + 〈j,div(u⊗ v)〉2,(5)

where div(u⊗v) ∈ C0(Ω,Rd) is defined by div(u⊗v)i = div(uiv). The right-hand side
of the equality is well defined for arbitrary j ∈ JW , which leads us to the following
definition.

Definition 2 (C1 curves in JW ). Let I be an interval in R. We say that
j : I → JW is a continuously differentiable curve if there exists w � (v, z) ∈ C(I,W )
such that

(1) j ∈ C(I, L2(Ω,Rd)) for the usual L2-topology,
(2) for any u ∈ C∞

c (Ω,Rd), t → 〈jt, u〉2 is a continuously differentiable real-valued
function and ∂

∂t 〈jt, u〉2 = σ2〈zt, u〉2 + 〈jt,div(u⊗ vt)〉2.
If we define as usual tangent vectors via classes of first order equivalent curves,

we can identify the tangent bundle of JW from the definition of C1 path on JW as
follows.

Definition 3.

(1) For any j ∈ JW and any u ∈ C∞
c (Ω,Rd), we denote lj,u the continuous linear

form on W (the continuity stems from the continuous embedding of B in
C1

0 (Ω,Rk)) defined for any w = (v, z) ∈ W by

lj,u(w) � σ2〈z, u〉2 + 〈j,div(u⊗ v)〉2.(6)

(2) We define

Ej � { w ∈ W | lj,u(w) = 0, ∀u ∈ C∞
c (Ω,Rd) },(7)

and

TjJW � {j} ×W/Ej ,(8)

where W/Ej is the quotient space, the elements of which are denoted w.



22 ALAIN TROUVÉ AND LAURENT YOUNES

Remark 2. The use of a quotient space is a consequence of the nonuniqueness of
the representation of the derivative by an element w ∈ W as explained by (2).

We consider TjJW as a vector space where for any γ = (j, w) and γ′ = (j′, w′) ∈
TjJW , we have γ + λ′γ′ � (j, w + λw′). Now, if we define

TJW �
⋃

j∈JW

TjJW ,

TJW plays the role of the tangent bundle of the manifold JW .
Definition 4.

(1) We denote π : TJW → JW the canonical projection defined by π(γ) = j for
any γ � (j, w) ∈ TjJW .

(2) Let γ � (j, w) ∈ TJW and w = (z, v) ∈ w. For any u ∈ C∞
c (Ω,Rd), we

denote

〈γ , u〉 � σ2〈z, u〉2 + 〈j,div(u⊗ v)〉2.

(Note that the right-hand side does not depend on the choice of w ∈ w).
(3) For any function γ : I → TJW where I is a real interval, we say that γ is

measurable if π ◦ γ is measurable from I to JW and for any u ∈ C∞
c (Ω,Rd),

〈γt , u〉 is measurable from I to R.
Returning to Definition 2, we see that C1 curves j admit a lifting t �→ γt = (jt, wt)

to TJW such that for all u ∈ C∞
c (Ω,Rd)

d

dt
〈jt , u〉2 = 〈γt , u〉

so that it is natural to define djt
dt � γt ∈ TjtJW leading to the formula

d

dt
〈jt , u〉2 =

〈
djt
dt

, u

〉
.(9)

The next step, for our Riemannian construction, is to place a metric on TjJW for all
j ∈ JW .

3.3. Riemannian structure.
Definition 5. For any j ∈ JW , we define on TjJW the norm

|γ|j � inf{ |w|W | (j, w) ∈ γ }.

The infimum is attained at a unique point, as stated in the following proposition.
Proposition 1. For any j ∈ JW and any γ = (j, w) ∈ TjJW , since w is a closed

subspace of W , there exists a unique w ∈ W denoted p(γ) such that

p(γ) � Argmin
w∈w

|w|W .

Hence, |γ|j � |p(γ)|W . Moreover, p is linear from TjJW to W .
Proof. Since w is a close subspace of W , it is sufficient to note that if p is the

orthogonal projection from W to E⊥
j , then p(w) = 0 for any w ∈ Ej so that p can be

factorized as a linear map p from W/Ej to E⊥
j . Now, one easily checks that p(γ) ∈ w

and that p(γ) minimizes the norm.
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We can now define the geodesic distance between arbitrary points j0, j1 in JW by

dJW
(j0, j1) � inf

{ ∫ 1

0

∣∣∣∣djdt
∣∣∣∣
jt

dt | j ∈ C1
pw([0, 1], JW ), j0 = j0, j1 = j1

}
,(10)

where C1
pw([0, 1], JW ) is the set of piecewise C1 curves in JW which are straightfor-

wardly defined from the definition of C1 curves. This definition is the usual definition
for finite dimensional Riemannian manifolds. There is, however, a measurability is-
sue, since it is not obvious from our definition of a measurable path in TJW that
t �→ |γt|π(γt) is measurable. This issue is addressed in Proposition 2, the proof of
which is provided in Appendix A.

Proposition 2. Let γ : [0, 1] → TJW be a measurable path in TJW . Then, p ◦ γ
is a measurable path in W and |γ|π◦γ is a measurable real-valued function.

4. Groups of diffeomorphisms. Curves in W naturally generate diffeomor-
phisms on Ω by integration of their first component, which is a time-dependent vector
field on Ω which vanishes at ∂Ω. The relations between the Hilbert structure on B

and the class of diffeomorphisms which can be generated in that way have been in-
vestigated, in particular, in [30] and [16], in which sufficient smoothness conditions
on the vector field are derived to ensure existence, uniqueness, and smoothness of the
flow for all time.

For T > 0, define the set L1([0, T ],B) as the Banach space of measurable functions
v : [0, T ] → B such that

|v|1,T �
∫ T

0

|v|B dt < ∞.

Similarly, L2([0, T ],B) denotes the Hilbert space of square integrable functions
defined on [0, T ] and taking values in B, with the norm

|v|2,T �
(∫ T

0

|v|2B dt

)1/2

.

For v ∈ L1([0, T ],B), consider the ODE

dy

dt
= vt(y).(11)

A global flow solution of this equation is a time-dependent family of functions t → ϕt

such that, for all x ∈ Ω, ϕ0(x) = x and

ϕt =

∫ t

0

vs ◦ ϕs ds.

When the dependence of this flow on v must be emphasized, it is denoted by ϕv.
Results in [30, 16] essentially relate the existence and smoothness of such flows

to embedding conditions of B into standard sets of continuous functions. We quote
these results in the following theorem.

Theorem 1 (Trouvé). If B is continuously embedded in C1
0 (Ω,Rk), then for all

T > 0 and all v ∈ L1([0, T ],B), the ODE (11) can be integrated over [0, T ], and its
associated flow ϕv is such that at all times x → ϕv

t is a homeomorphism of Ω.
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Notation 1. Assume that B is continuously embedded in C1
0 (Ω,Rk), and intro-

duce the map

AT : L1([0, T ],B) → C(Ω,Rk),
v �→ ϕv

T .

Then, the set A1(L
1([0, 1],B)) will be denoted GB.

The fact that GB is a group is proved in [30]. Further results on these groups
and on AT can be found in Appendix C.

The relation between algebraic and metric properties of groups of diffeomorphisms
and some of the fundamental equations of fluid mechanics has been the subject of
several studies, starting with [5], in which the Euler equation is related to the geodesic
equations of groups of diffeomorphisms with an L2 metric on its Lie algebra (see also
[3, 4, 24]). Another important equation, the Camassa–Holm equation, which describes
the motion of the waves in shallow water, can be interpreted along the same lines with
an H1

α metric on the Lie algebra [11, 17]. Here, since the energy derives from both
geometric and photometric variations, the geodesic equations that we derive can be
formally interpreted as conservation of momentum on a semidirect product of the
group of diffeomorphisms and the space of images, as studied in [25]. However, our
point of view of smooth deformations acting on nonsmooth images requires a specific
approach. This is also related to developments in optimal design [28].

5. Geodesics on JW .

5.1. Minimizing geodesics. The space of C1 curves is not well suited to deal
with proofs of the existence of curves of minimal length between two images j0 and
j1, i.e., minimizing geodesics. We introduce below the more tractable space of curves
with square integrable speed.

We need first a preliminary proposition saying that square integrable paths in
TJW are uniquely identified by their trace on smooth space-time vector fields in R

d.
The proof of this proposition is postponed to Appendix A.

Proposition 3. Let γ : [0, 1] → TJW be a measurable path in TJW . Then, if∫ 1

0
|γt|2π(γt)

dt < +∞ and, for any u ∈ C∞
c (Ω×]0, 1[,Rd), we have

∫ 1

0
〈γt , ut〉dt = 0,

then γ = 0 a.e.
We can now introduce the space H1([0, 1], JW ) of regular curves.
Definition 6. We say that a path j ∈ C([0, 1], L2(Ω,Rd)) is regular if there exists

a measurable path γ : [0, 1] → TJW such that π(γ) = j,
∫ 1

0
|γt|2dt < ∞, and, for any

u ∈ C∞
c (]0, 1[×Ω,Rd), we have −

∫ 1

0
〈jt, ∂u

∂t 〉2dt =
∫ 1

0
〈γt , ut〉dt. From Proposition 3,

the path γ is uniquely defined; using the notation ∂j
∂t � γt, we get the integration by

parts formula ∫ 1

0

〈
jt,

∂u

∂t

〉
2

dt = −
∫ 1

0

〈
∂j

∂t
, ut

〉
dt.(12)

We denote H1([0, 1], JW ) as the set of all the regular paths in C([0, 1], L2(Ω,Rd)).
Proposition 4. We have C1([0, 1], JW ) ⊂ H1([0, 1], JW ) and both definitions of

∂j
∂t coincide.

Proof. Let j ∈ C1([0, 1], JW ). There exists w = (v, z) ∈ C([0, 1],W ) such that for
any u ∈ C∞

c (Ω,Rd), t → 〈jt, u〉2 is C1 and

∂

∂t
〈jt,u〉2 = σ2〈zt,u〉2 + 〈jt,div(u ⊗ vt)〉2.
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Certainly, w ∈ L2([0, 1],W ). Moreover, for any u ∈ C∞
c (Ω,Rd) and any f ∈ C∞

c (]0, 1[,R),
we have by integration by parts (we denote f ′(t) � df

dt )∫ 1

0

〈jt, f ′(t)u〉2 =

∫ 1

0

f ′(t)〈jt,u〉2dt = −
∫ 1

0

f(t)
d

dt
〈jt,u〉2dt

so that (12) is true for u⊗f ∈ C∞
c (]0, 1[×Ω,Rd). The complete proof follows by usual

density arguments.
We carry on with an important result which characterizes regular paths in JW .

For a path v in L1([0, 1],B), we define for any s, t ∈ [0, 1]

ϕv
t,s � ϕv

s ◦ (ϕv
t )

−1.

Theorem 2. A path j : [0, 1] → JW is regular (resp., is in C1([0, 1], JW )) if and
only if there exists w = (v, z) ∈ L2([0, 1],W ) (resp., ∈ C([0, 1],W )) such that

jt = j0 ◦ ϕv
t,0 + σ2

∫ t

0

zs ◦ ϕv
t,sds.

Proof. The proof is postponed to Appendix B.
Theorem 3. Let j0 and j1 be in JW . Then we have

dJW
(j0, j1) = inf

{ ∫ 1

0

∣∣∣∣∂j

∂t

∣∣∣∣
jt

dt | j ∈ H1([0, 1], JW ), j0 = j0, j1 = j1

}
.(13)

Proof. Let j ∈ H1([0, 1], JW ) be a regular path from j0 to j1 and let w ∈
L2([0, 1],W ) such that wt = pjt(

∂j
∂t ) for any t. There exists a sequence (wn =

(vn, zn) ∈ C([0, 1],W ), n ∈ N) such that
∫ 1

0
|wt − wn

t |2W dt → 0. Define

jnt = j0 ◦ ϕvn

t,0 + σ2

∫ t

0

zns ◦ ϕvn

t,sds.

We get from Theorem 2 that jn ∈ C1([0, 1], JW ). Now, considering w̃n � (ṽn, z̃n)
with z̃nt � znt + (j1 − jn1 ) ◦ϕvn

s,1 and ṽn � vn we get from Theorem 9 (see Appendix C)
that w̃n ∈ C([0, 1],W ). Using Theorem 2, we deduce that if j̃n is defined by

j̃nt = j0 ◦ ϕvn

t,0 + σ2

∫ t

0

z̃ns ◦ ϕvn

t,sds,

then j̃n ∈ C1([0, 1], JW ) and j̃n1 = j1. However,∫ 1

0

∣∣∣∣∂ j̃n

∂t

∣∣∣∣̃
jnt

dt ≤
∫ 1

0

|w̃n
t |W dt →

∫ 1

0

|wt|W dt

when n → ∞. Therefore, we deduce that dJW
(j0, j1) ≤

∫ 1

0
| ∂j
∂t |jtdt for any regular path

from j0 to j1. Finally, since C1([0, 1], JW ) ⊂ H1([0, 1], JW ), we get the result.
Definition 7. Let j0, j1 ∈ JW . We say that j ∈ C([0, 1], L2(Ω,Rd)) is a mini-

mizing geodesic path from j0 to j1 if j is regular and(∫ 1

0

∣∣∣∣∂j

∂t

∣∣∣∣
2

jt

dt

) 1
2

= dJW
(j0, j1).

We denote GJW
(j0, j1) as the set of the minimizing geodesic paths from j0 to j1.
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5.2. Characterization of geodesics.

5.2.1. Photometric optimality.

Theorem 4. Let j0, j1 ∈ JW and j ∈ GJW
(j0, j1) be a minimizing geodesic path

from j0 to j1. Let w = (v, z) ∈ L2([0, 1],W ) be defined by wt � p(∂j∂t ) for any t ∈ [0, 1].
Then z ∈ C([0, 1], L2(Ω,Rd)) and for any t ∈ [0, 1] we have

zt = z0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ .(14)

Proof. Let j ∈ H1([0, 1], JW ) be a minimizing geodesic from j0 to j1, and let
w = (v, z) ∈ L2([0, 1],W ) such that for any t ∈ [0, 1], wt = p( dj

dt ). For any u ∈
C∞

c (]0, 1[×Ω,Rd) and any ε ∈ R, define

j̃t = j0 ◦ ϕv
t,0 + σ2

∫ t

0

(
zs + ε

∂us

∂s
◦ ϕv

s,1

)
◦ ϕt,sds.

Since t → (vt, zt + ε∂ut

∂t ◦ ϕv
t,1) ∈ L2([0, 1],W ), we get from Theorem 2 that j̃ ∈

H1([0, 1], JW ). Moreover, j̃0 = j0 and j̃1 = j1 so that

∫ 1

0

∣∣∣∣djtdt
∣∣∣∣
2

jt

dt =

∫ 1

0

(
|vt|2B + σ2 |zt|22

)
dt ≤

∫ 1

0

∣∣∣∣ d̃jtdt
∣∣∣∣
2

j̃t

dt

≤
∫ 1

0

(
|vt|2B + σ2

∣∣∣∣zt + ε
∂ut

∂t
◦ ϕv

t,1

∣∣∣∣
2

2

)
dt.

Since ε is arbitrary, we get

0 =

∫ 1

0

〈
zt,

∂ut

∂t
◦ ϕv

t,1

〉
2

dt =

∫ 1

0

〈
zt ◦ ϕv

1,t

∣∣dϕv
1,t

∣∣ , ∂ut

∂t

〉
2

dt.

Choosing arbitrary u ∈ C∞
c (]0, 1[×Ω,Rd), we get that there exists z̃1 ∈ L2(Ω,Rd)

such that t-a.e. we have zt ◦ ϕv
1,t

∣∣dϕv
1,t

∣∣ = z̃1. Hence, if z̃t = z̃1 ◦ ϕv
t,1

∣∣dϕv
t,1

∣∣, we have

z̃ ∈ C([0, 1), L2([0, 1],Rd)) and zt = z̃t t-a.e. Note that z̃0 ◦ ϕv
1,0

∣∣dϕv
1,0

∣∣ = z̃1 so that

z̃t =
(
z̃0 ◦ ϕv

1,0

∣∣dϕv
1,0

∣∣) ◦ ϕv
t,1

∣∣dϕv
t,1

∣∣ = z̃0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ ,
and the proof is ended.

This leads to the following definition.

Definition 8. A regular path j ∈ H1([0, 1], JW ) is called a pregeodesic path if
and only if the following equations are satisfied almost everywhere in t:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

jt = j0 ◦ ϕv
t,0 + σ2

∫ t

0

zs ◦ ϕv
t,sds,

zt = z0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ ,
(vt, zt) = p

(
dj

dt

)
.

(15)
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5.2.2. Study of the geodesic equation.

Directional derivatives in L2. In this section, we try to clarify the last equa-
tion of system (15), at least in some situations of interest. The difficulty comes from
the fact that, unless jt is smooth enough, this equation does not, in general, specify a
unique correspondence zt �→ vt.

To be more precise, let us analyze the condition that, for all t,

(vt, zt) = p

(
dj

dt

)
.

For this purpose, we first introduce a weak version of the directional derivative dj.v
when j ∈ JW and v ∈ B.

Definition 9. Let j ∈ JW .
(1) We define the operator Dj : Dj → L2(Ω,Rd) by

Dj � { v ∈ B | ∃C, s.t. ∀u ∈ C∞
c (Ω,Rd), |〈j , div(u⊗ v)〉2| ≤ C |u|2 },

and for any v ∈ Dj, Dj.v is the unique element in L2(Ω,Rd) such that

〈Dj.v , u〉2 = −〈j , div(u⊗ v)〉2
for any u ∈ C∞

c (Ω,Rd).
(2) We define the adjoint operator Dj∗ : D∗

j → B, where

D∗
j � { u ∈ L2(Ω,Rd) | ∃C, s.t. ∀v ∈ Dj |〈Dj.v , u〉2| ≤ C |v|B },

and, for any u ∈ D∗
j , Dj∗ is the unique element in Dj (closure of Dj) such

that

〈Dj∗.u , v〉B = 〈u , Dj.v〉2(16)

for any v ∈ Dj.
Remark 3. The existence of Dj.v comes from the extension of the linear form

u → 〈j , div(u⊗ v)〉 for smooth u into a continuous linear form on L2(Ω,Rd) for
v ∈ Dj . For the definition of the adjoint Dj∗, the adjoint is uniquely defined as an
element of Dj by (16) (Dj is not necessarily dense in B).

Fix j ∈ JW . We may characterize elements v ∈ Dj as follows. (We denote
hereafter ϕv

. as the flow associated with the constant speed vt ≡ v for any t ∈ [0, 1].)
Theorem 5. The vector field v ∈ B belongs to Dj if and only if there exists a

square integrable function ξ : Ω → R
d such that

j ◦ ϕv
0,t(x) = j(x)

∣∣dxϕv
0,t

∣∣−1
+

∫ t

0

ξ ◦ ϕv
0,s(x)

∣∣∣dϕv
0,s(x)ϕ

v
s,t

∣∣∣−1

ds.(17)

We have in such a case Djv = ξ − jdiv(v).
Proof. We first notice that, if v ∈ B,

−〈j , div(u⊗ v)〉2 =
d

dε

∫
Ω

〈
j(x) , u ◦ ϕv

ε,0(x)
〉 ∣∣dxϕv

ε,0

∣∣ dx =
d

dε

∫
Ω

〈
j ◦ ϕv

0,ε(x) , u(x)
〉
dx.

Assuming that (17) holds, the last expression yields

d

dε

∫
Ω

〈j(x) , u(x)〉
∣∣dxϕv

0,ε

∣∣−1
dx +

d

dε

∫
Ω

∫ ε

0

〈
ξ ◦ ϕv

0,s , u(x)
〉 ∣∣∣dϕv

0,s(x)ϕ
v
s,ε

∣∣∣−1

dx

= −
∫

Ω

〈j(x) , u(x)〉div(v)dx +

∫
Ω

〈ξ(x) , u(x)〉dx = 〈ξ − jdiv(v) , u〉2,
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which implies that v ∈ Dj and Djv = ξ − jdiv(v).
Conversely, let v ∈ Dj and ξ = Djv + jdiv(v). Fix u ∈ C1(Ω,Rd). Consider

the function f , defined on [0, 1] by f(t) =
〈
j ◦ ϕv

0,t , u
〉
2
. Denote by j̃(t) the left-hand

term of (17), and g(t) = 〈̃jt , u〉2. We have

g′(t) = −
〈
j , udivϕv

0,t(x)v
∣∣dxϕv

0,t

∣∣−1
〉

2
+
〈
ξ ◦ ϕv

0,t , u
〉
2

−
∫ t

0

〈
ξ ◦ ϕv

0,s

∣∣∣dϕv
0,s

ϕv
s,t

∣∣∣−1

, udivϕv
0,t
v

〉
2

ds

=
〈
ξ ◦ ϕv

0,t − j̃tdivϕv
0,t
v , u

〉
2
.

Since f(t + ε) =
〈
j ◦ ϕv

t,t+ε , u ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣〉
2
, we have

f ′(t) =
〈
Djv , u ◦ ϕv

t,0

∣∣dϕv
t,0

∣∣〉
2

=
〈
(Djv) ◦ ϕv

0,t , u
〉
2
.

Therefore, computing the integral of the difference and using the definition of ξ,

〈
j ◦ ϕv

0,t − j̃t , u
〉
2

=

∫ t

0

〈
j ◦ ϕv

0,s − j̃s , udivϕv
0,t
v
〉

2
ds ≤ |u|2 |v|B

∫ t

0

∣∣j ◦ ϕv
0,s − j̃s

∣∣
2
ds.

Taking the supremum of the left-hand term over continuously differentiable u with
L2-norm equal to 1 yields

∣∣j ◦ ϕv
0,t − j̃t

∣∣
2
≤ |v|B

∫ t

0

∣∣j ◦ ϕv
0,s − j̃s

∣∣
2
ds,

which implies
∣∣j ◦ ϕv

0,t − j̃t
∣∣
2

= 0 for all t.
An interesting consequence of this is the following lemma.
Lemma 1. For any j ∈ L2(Ω,Rd), one has j ∈ D∗

j and, for v ∈ Dj,

〈Djv , j〉2 = −1

2

〈
|j|2 , divv

〉
2
.

Proof. Indeed, let v ∈ Dj . Consider the function

f(t) =

∫
Ω

∣∣j ◦ ϕv
0,t(x)

∣∣2 dx.
Since f(t) =

〈
|j|2 , |dϕt,0|

〉
2
, we have f ′(0) = −〈|j|2 , divv〉2. Using, on the other

hand, expression (17) yields f ′(0) = 2〈Djv , j〉2.

Interpretation of the pregeodesic equations. The property that w = (v, z) ∈
W belongs to Ej , which states that, for all u ∈ C∞

c (Ω,Rd),

σ2〈z, u〉2 + 〈j,div(u⊗ v)〉2 = 0

is equivalent to v ∈ Dj and σ2z − Dj.v = 0. Consider now some tangent vector
γ ∈ TjJW , and study the property that, for some w = (v, z) ∈ W , one has p(γ) = w.
This implies, in particular, that, for all (v′, z′) ∈ Ej ,

|v + v′|2B + σ2 |z + z′|22 ≥ |v|2B + σ2 |z|22 ,
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which is in turn equivalent to the following: for all v′ ∈ Dj , 〈v , v′〉B+〈z , Dj.v′〉2 = 0.
This implies that z ∈ D∗

j and that 〈v , v′〉B+〈Dj∗z , v′〉B = 0, so that v = −Dj∗z+γ⊥,

where γ⊥ is the projection of v onto D⊥
j . Note that this orthogonal component does

not depend on the choice of (v, z) from the equivalence class defining γ (hence the
notation). We thus may conclude that (v, z) = p(γ) if and only if z ∈ D∗

j and

v = −Dj∗z + γ⊥.

The first conclusion we may draw from this is that, whenever Dj is dense in B,

vt is uniquely determined by zt and the condition (vt, zt) = p( dj
dt ). It is given by

vt = −Dj∗t zt. This is true, for example, when jt ∈ H1(Ω,Rd) at all times, since, in
this case Djt = B (notice that, by Theorem 4, this is true along a geodesic as soon as
j0 and j1 belong to H1(Ω,Rd)).

However, this is not the general situation. As an example, consider the case when
j is the indicator function of a subdomain Ω1 of Ω with smooth boundary. If v is a
vector field on Ω and u is a smooth function on Ω, we have

〈j , divuv〉 =

∫
∂Ω1

u〈v , ν1〉Rkdσ1,

where ν1 is the outward normal to ∂Ω1 and σ1 is the surface measure on ∂Ω1. This
implies that djv may be identified to a singular measure supported to ∂Ω1, which
does not belong to L2 unless it vanishes. Thus, Dj consists exactly of vector fields on
Ω which belong to B and have vanishing normal components on ∂Ω1. For a ∈ R

k and
x ∈ R, denote by Kxa the element of B such that 〈Kxa , u〉B = 〈u(x) , a〉

Rk . Then,
Kxν(x) belongs to D⊥

j for any x ∈ ∂Ω, and so does any linear combination of these

vector fields. We see that in this case D⊥
j is nontrivial.

This discussion implies that the pregeodesic condition for a path may be written

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

jt = j0 ◦ ϕv
t,0 + σ2

∫ t

0

zs ◦ ϕv
t,sds,

zt = z0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ ,
zt ∈ D∗

j , and vt −Dj∗t zt ∈ D⊥
jt
.

(18)

These equations are not complete yet (in the sense that they cannot be solved
from the initial values (j0, v0, z0)) since they provide no information on the choice of
vt − Dj∗t zt at time t (unless of course D⊥

jt
= {0}). We need to specify the mode of

propagation of this singular component along a geodesic. The following computation
provides a hint on possible ways to achieve this. Assume that j is pregeodesic and
(vt, zt) = p( dj

dt ). In such a case, we have

|zs|22 =

∫
Ω

|z0 ◦ ϕv
s,0|2|dϕv

s,0|2dx =

∫
Ω

|z0|2|dϕv
0,s|−1dy

and

z0(x) =
1

σ2
(j1 ◦ ϕv

0,1(x) − j0(x))

∫ 1

0

|dϕv
0,s|−1ds.
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Thus

∫ 1

0

|zs|22 ds =
1

σ4

∫
Ω

∣∣j1 ◦ ϕv
0,1 − j0

∣∣2∫ 1

0
|dϕv

0,s|−1ds
.

Making the change of variables y = ϕv
0,1(x) yields

∫ 1

0

|zs|22 ds =
1

σ4

∫
Ω

∣∣j1 − j0 ◦ ϕv
1,0

∣∣2∫ 1

0
|dϕv

1,0(x)ϕ
v
0,s|−1|dϕv

1,0(x)|−1ds
,

i.e.,

∫ 1

0

|zs|22 ds =
1

σ4

∫
Ω

∣∣j1 − j0 ◦ ϕv
1,0

∣∣2∫ 1

0
|dϕv

1s|−1ds
,

and the geodesic energy is given by

∫ 1

0

|vs|2B ds +
1

σ2

∫
Ω

∣∣j1 − j0 ◦ ϕv
1,0

∣∣2∫ 1

0
|dϕv

1,s|−1ds
.(19)

We can obtain more precise information on the geodesic by studying variations of
this expression with respect to v. This will be handled below, under a smoothness
assumption on j0. Before this, we need some notation for the reproducing kernel on
B. They will be useful throughout the paper.

Kernels for the inner-product on B.

Proposition 5. There exists a continuous operator K (resp., K∇) on L1(Ω,Rk)
(resp., L1(Ω,R)) with values in B such that, for all u ∈ L1(Ω,Rk) (resp., u ∈
L1(Ω,R)), for all v ∈ B,

〈Ku , v〉B = 〈u, v〉2,

and

〈K∇u , v〉B = −〈u, divv〉2.

Proof of Proposition 5. Let u ∈ L1(Ω,Rk). Since we assume that B is continuously
embedded in C1

0 , the linear form defined on B by v �→ 〈u, v〉2 is continuous because
|〈u, v〉2| ≤ |u|1 |v|∞ . Therefore, there exists a unique element in B, denoted Ku, such
that, for all v ∈ B, 〈Ku , v〉B = 〈u, v〉2 and continuity comes from the inequality
〈Ku , v〉B ≤ |u|1 |v|∞ ≤ cst |u|1 |v|B.

The same proof holds for K∇, since |divv|∞ is also controlled by |v|B.

It can be remarked that, for smooth u, K∇u = K(∇u).

Remark 4. When j is smooth (e.g., j ∈ H1(Ω,Rd)), the operator Dj∗ introduced
in the previous paragraph is given by Dj∗z = K(dj∗.z), in which dj∗ is the standard
matrix adjoint of dj. Indeed, we have in this case

〈z , Dj.v〉2 = 〈z , dj.v〉2 = 〈dj∗.z , v〉2 = 〈K(dj∗.z) , v〉B.
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Characterization with a smooth endpoint. We study the effect of small
variations in v on the geodesic energy (19), under the additional hypothesis that
j0 ∈ H1(Ω,Rd). Thus, fix h ∈ L2([0, 1],B), and consider a perturbation v + εh of v.
We compute the corresponding variation of the geodesic energy. The variation of the

first term being 2
∫ 1

0
〈vt , ht〉Bdt, we can focus on the second term, namely,

Uε � 1

σ2

∫
Ω

∣∣j0 ◦ ϕv+εh
1,0 − j1

∣∣2∫ 1

0
|dϕv+εh

1s |−1ds
dx.

The variations of Uε are given in Lemma 2, which is proved in Appendix E.
Lemma 2. We have, at ε = 0,

dUε

dε
= σ2

∫ 1

0

〈(
K∇(qv

t |zt|
2
) + K(|zt|2 ∇qv

t )
)

+ 2K([dϕv
t,0]

∗dϕv
t,0
j∗0zt), ht

〉
B
dt,

(20)

with qv
t =

∫ t

0
|dϕv

t,s|−1ds.
We can deduce from this our additional condition for a regular path to be a

minimizing geodesic: for almost all t ∈ [0, 1],

vt +
1

2
(KDv

t + K∇Cv
t )B = 0,

where

Dv
t � σ2 |zt|2 ∇qv

t + 2[dϕv
t,0]

∗dϕv
t,0
j∗0zt,

and

Cv
t � σ2qv

t |zt|
2
.

It may be interesting to check that this condition boils down to the one we have
obtained before for smooth trajectories, namely,

vt + K(dj∗t zt) = 0.

It suffices to notice that, for pregeodesic trajectories, jt = j0 ◦ϕv
t,0 + σ2ztq

v
t and that,

when zt is smooth,

KDv
t + K∇Cv

t = K(Dv
t + ∇Cv

t ).

We now define geodesic paths (not necessarily minimizing).
Definition 10. Let j0 ∈ H1(Ω,Rd). A regular path j ∈ H1([0, 1], JW ) starting

at j0 is called a geodesic path if and only if there exists w = (v, z) ∈ L2([0, 1],W ) such
that the following equations are satisfied almost everywhere in t:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

jt = j0 ◦ ϕv
t,0 + σ2

∫ t

0

zs ◦ ϕv
t,sds,

zt = z0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ ,
vt + K([dϕv

t,0]
∗dϕv

t,0
j∗0zt) +

σ2

2

(
K∇(qv

t |zt|
2
) + K(|zt|2 ∇qv

t )
)

= 0,

(21)
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with qv
t =

∫ t

0
|dϕv

t,s|−1ds.

These equations are complete; it will be shown in section 7 that initial conditions
(j0, z0) uniquely specify the solutions. It is interesting to check that geodesics as
defined in (21) also are pregeodesics. For this, we first show that, for all times t,
zt ∈ D∗

jt
. Noting that the first equation in (21) may also be written

jt = j0 ◦ ϕv
t,0 + σ2ztqt

it is clear that Djt = Dzt , and zt ∈ D∗
zt is proved in Lemma 1. The same lemma also

provides the fact that, for w ∈ Dzt ,

〈zt , Djtw〉2 =
〈
zt , d(j0 ◦ ϕv

t,0)w
〉
2

+ σ2
〈
|zt|2 ∇qt , w

〉
2
− σ2

2

〈
|zt|2 , div(qv

t w)
〉
,

and this is equal to −〈vt , w〉B by definition of K and K∇. We thus obtain the fact
that vt + Dj∗t zt ∈ D⊥

jt
as required.

We shall prove existence of solutions for a broader class of evolution equations,
extending the range of initial values v0. Consider the term ut = K([dϕv

t,0]
∗dϕv

t,0
j∗0z0 ◦

ϕv
t,0

∣∣dϕv
t,0

∣∣) which appears in the third equation of (21). We have, letting ω0 =
−dj∗0z0, and, for w ∈ B,

〈ut , w〉B =
〈
[dϕv

t,0]
∗dϕv

t,0
j0z0 ◦ ϕv

t,0

∣∣dϕv
t,0

∣∣ , w〉
L2

=
〈
dϕv

t,0
j0z0 ◦ ϕv

t,0

∣∣dϕv
t,0

∣∣ , dϕv
t,0w
〉
L2

=
〈
ω0 , (dϕv

0,t)
−1w ◦ ϕv

0,t

〉
L2 .

We know, by Appendix C, that ϕv
0,t belongs to Cp(Ω) as soon as B is continuously

embedded in Cp
0 (Ω,Rk), which implies in this case (with p ≥ 1) that

∣∣(dϕv
0,t)

−1w ◦ ϕv
0,t

∣∣
p−1,∞ ≤ Const |w|B ,

the constant depending on |v|1,B. But this implies in turn that, if the L2 inner product

is replaced by the action of any continuous functional, ω0, on Cp−1
0 (Ω,Rk), which will

be denoted

(
ω0, (dϕ

v
0,t)

−1w ◦ ϕv
0,t

)
,

there exists an element of B that we shall still denote ut such that

〈ut , w〉B =
(
ω0, (dϕ

v
0,t)

−1w ◦ ϕv
0,t

)
.

With this notation, we may formulate the following definition.

Definition 11. Let j0 ∈ L2(Ω,Rd). Let ω0 be a continuous linear functional on
Cp−1(Ω,Rk) and z0 ∈ L2(Ω,Rd). A regular path j ∈ H1([0, 1], JW ) starting at j0 with
initial direction (ω0, z0) is called a generalized geodesic if and only if, for all u ∈ Dj0 ,
one has

(ω0, u) + 〈z0 , Dj0u〉 = 0,
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and there exists w = (v, z) ∈ L2([0, 1],W ) such that the following equations are satis-
fied almost everywhere in t:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jt = j0 ◦ ϕv
t,0 + σ2

∫ t

0

zs ◦ ϕv
t,sds,

zt = z0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ ,
vt − uv

t +
σ2

2

(
K∇(qv

t |zt|
2
) + K(|zt|2 ∇qv

t )
)

= 0,

∀w ∈ B 〈uv
t , w〉B =

(
ω0, (dϕ

v
0,t)

−1w ◦ ϕv
0,t

)

(22)

with qv
t =

∫ t

0
|dϕv

t,s|−1ds.
Recall that when j0 is smooth, the only choice is ω0 = dj∗0z0, and if z0 is also

smooth, the system may be written under the simple form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

jt = j0 ◦ ϕv
t,0 + σ2

∫ t

0

zs ◦ ϕv
t,sds,

zt = z0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ ,
vt + σ2K(dj∗t zt) = 0.

(23)

As an example of the nonsmooth applications we have in mind, assume that j0 is a
binary, plane image, which is the indicator function of the interior of a connected open
subset Ω1 of Ω with smooth boundary ∂Ω1. We have seen that any element w ∈ Dj0

should be tangent to ∂Ω1 and that in this case Dj0w = 0 and D∗
j0

= L2(Ω,R). We

therefore may choose z0 arbitrarily in L2, and (ω0, w) should vanish for w ∈ Dj0 ,
which is true, for example, when ω0 is defined by

(ω0, w) =

∫
∂Ω1

〈w , ν1〉dσ1,

where ν1 is the outward normal to ∂Ω1 and σ1 is the surface measure on ∂Ω1.

6. Existence of minimizing geodesics. The next theorem states that mini-
mizing geodesics always exist between two elements of JW .

Theorem 6. Assume that B is compactly embedded in C1
0 (Ω,Rd), and let j0, j1 ∈

JW . Then GJW
(j0, j1) is nonempty.

Proof. Let (jn)n∈N be a minimizing family of paths in H1([0, 1], JW ) from j0 to j1;

for any n ∈ N, let wn
t � p(dj

n

dt ) so that (wn)n∈N is a bounded sequence in L2([0, 1],W ).
Up to the extraction of a subsequence, we can assume that wn converges weakly to a
w∞ in L2([0, 1],W ). By lower semicontinuity, we have∫ 1

0

|w∞
t |2W dt ≤ dJW

(j0, j1).

By a time change argument, which is classical in the proof that minimizing
geodesics travel at constant speed (see [12]), we may furthermore assume that |wn

t |W
is uniformly bounded by, say, dJW

(j0, j1) + 1. Denoting wn = (vn, zn), consider

j′t � j0 ◦ ϕ∞
t,0 + σ2

∫ t

0
z∞s ◦ ϕ∞

t,sds, where ϕ∞ is the flow associated to v∞. Since j′
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is a regular path, it is sufficient to prove that j′1 = j1. However, if ϕn denotes the
flow associated with vn, we know, from Theorem 9, that ϕn

1,0 converges uniformly

to ϕ∞
1,0 so that j0 ◦ ϕn

t,0 → j0 ◦ ϕ∞
t,0 in L2(Ω,Rd). Now, let u ∈ C∞

c (Ω,Rd). We

have
∫ 1

0
〈zns ◦ϕn

1,s, u〉2ds =
∫ 1

0
〈zns , u◦ϕn

s,1

∣∣dϕn
s,1

∣∣〉2ds. Since u has bounded derivatives
and using Theorem 9 implies the uniform convergence of ϕn

s1 to ϕ∞
s1 and the pointwise

convergence of the derivatives (because of the uniform boundedness of |vns |B), we have

∫ 1

0

〈zns , u ◦ ϕn
s,1

∣∣dϕn
s,1

∣∣〉2ds−
∫ 1

0

〈zns , u ◦ ϕ∞
s,1

∣∣dϕ∞
s,1

∣∣〉2ds → 0.(24)

Moreover, from the weak convergence of zn to z∞, we get

∫ 1

0

〈zns , u ◦ ϕ∞
s,1

∣∣dϕ∞
s,1

∣∣〉2ds →
∫ 1

0

〈z∞s , u ◦ ϕ∞
s,1

∣∣dϕ∞
s,1

∣∣〉2ds,(25)

so that finally 〈j1 − j′1, u〉2 = 0 for any u ∈ C∞
c (Ω,Rd). Hence j′ ∈ H1([0, 1], JW ) and

the result is proved.

7. Initial value problem for the geodesic equation. We have the following
theorem.

Theorem 7. Assume that B is continuously embedded in Cp
0 (Ω,Rp) for p ≥ 3.

Then, for all T > 0, there exists a unique solution (v, j, z) of (21) over [0, T ], with
initial values j0 ∈ H1(Ω,Rd), z0 ∈ L2(Ω,Rd), and ω0 ∈ Cp−1([0, 1],Rk)′ (where
Cp−1([0, 1],Rk)′ denotes the topological dual of Cp−1([0, 1],Rk) with the norm |ω| �
sup|v|p−1,∞≤1(ω, v)) which continuously depends on these initial conditions.

Continuity of the solution (v, j, z) as a function of (j0, z0) is meant according to
H1(Ω,Rd)×L2(Ω,Rd)-norms for the initial conditions, L2([0, T ],W )-norm for (v, z),
and C([0, 1], L2(Ω,Rd))-norm for j.

8. Proof of Theorem 7. To prove Theorem 7, we show the existence of so-
lutions for short time and then extend them to all time. Fix T > 0. For a given
v ∈ L2([0, T ],B), let Ψ(v) ∈ L2([0, T ],B) be defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ψ(v)t = uv
t −

σ2

2

(
K∇(qv

t |zv
t |

2
) + K(|zv

t |
2 ∇qv

t )
)
,

zv
t = z0 ◦ ϕv

t,0

∣∣dϕv
t,0

∣∣ ,
〈uv

t , w〉B =
(
ω0, (dϕ

v
0,t)

−1w ◦ ϕv
0,t

)
.

(26)

To estimate the Lipschitz coefficient of Ψ, we introduce v, v′ ∈ L1([0, T ],B) and
compute the variation of each term in Ψ(v)t − Ψ(v′)t. Fix w ∈ B with |w|B = 1. We
have

〈Ψ(v)t , w〉B =
σ2

2

〈
|zvt |

2
, qv

t div(w)
〉

2
− σ2

2

〈
|zvt |

2
, dqv

t w
〉

2
+
(
ω0, (dϕ

v
0,t)

−1w ◦ ϕv
0,t

)
=
(
ω0, (dϕ

v
0,t)

−1w ◦ ϕv
0,t

)
+

σ2

2

〈
|z0|2 ,

∣∣dϕv
0,t

∣∣−1
qv
t ◦ ϕv

0,tdiv(w) ◦ ϕv
0,t

〉
2

(27)

− σ2

2

〈
|z0|2 ,

∣∣dϕv
0,t

∣∣−1
dϕv

0,t
qv
t w ◦ ϕv

0,t

〉
2
.
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We have

qv
t ◦ ϕv

0,t(x) =

∫ t

0

∣∣∣dϕv
0,t(x)ϕ

v
t,s

∣∣∣−1

ds =

∫ t

0

∣∣∣dϕv
0,s(x)ϕ

v
s,t

∣∣∣ ds =

∫ t

0

∣∣dxϕv
0,t

∣∣∣∣dxϕv
0,s

∣∣ds,
and letting ξv

s,t =
|dxϕ

v
0,t|

|dxϕv
0,s|

and λv
t (w) = (dϕv

0,t)
−1w ◦ ϕv

0,t,

〈Ψ(v)t , w〉B =
σ2

2

∫ t

0

〈
|z0|2 , (

∣∣dϕv
0,s

∣∣−1
div(w) ◦ ϕv

0,t −
∣∣dϕv

0,t

∣∣−1 〈∇ξv
s,t , λ

v
t (w)

〉
)
〉
ds

+(ω0, λ
v
t (w)).

(28)

This implies

|Ψ(v′)t − Ψ(v)t|B ≤ σ2

2
|z0|22 sup

{∫ t

0

( ∣∣dϕv
0,s

∣∣−1
div(w) ◦ ϕv

0,t

−
∣∣∣dϕv′

0,s

∣∣∣−1

div(w) ◦ ϕv′

0,t

)
ds : |w|B = 1

}

+
σ2

2
|z0|22 sup

{∫ t

0

( ∣∣dϕv
0,t

∣∣−1 〈∇ξv
s,t , λ

v
t (w)

〉
−
∣∣∣dϕv′

0,t

∣∣∣−1 〈
∇ξv′

s,t , λ
v′

t (w)
〉)

ds : |w|B = 1

}

+ |ω0| sup

{∣∣∣λv
t (w) − λv′

t (w)
∣∣∣
p−1,∞

: |w|B = 1

}
.

The problem is thus reduced to the estimation of variations, with respect to v, of

λv
t (w), ∇ξv

s,t and of
∣∣dϕv

0,s

∣∣−1
div(w) ◦ ϕv

0,t. They involve differentials of ϕv, ϕv′
, and

w up to the second degree. The inclusion of B in C3([0, 1],Rk) and an application of
Lemmas 7 and 11 in the appendix directly lead to the estimate

|Ψ(v)t − Ψ(v′)t|B ≤ C
(
σ2 |z0|22 + |ω0|

)
|v − v′|1,T e

C′ max(|v|1,T ,|v′|
1,T

)
,(29)

and finally

|Ψ(v) − Ψ(v′)|2,T ≤ C
√
T
(
σ2 |z0|22 + |ω0|

)
|v − v′|1,T e

C′ max(|v|1,T ,|v′|
1,T

)

≤ CT
(
σ2 |z0|22 + |ω0|

)
|v − v′|2,T e

C′√T max(|v|2,T ,|v′|
2,T

)
.(30)

Therefore, Ψ is q-Lipschitz with q < 1 for T small enough, and its unique fixed
point yields a unique solution of (21). This is stated below.

Lemma 3. There exists a time T > 0 depending only on |z0|2 and |j0|H1 such
that a unique solution of (21) exists on [0, T ].

We now show that this solution can be extended to all times. For this, we prove
that there exists a unique fixed point for Ψ at all times. Denote by ΨT this mapping
when defined on L2([0, T ],B). Clearly, if v is a fixed point of ΨT , its restriction to
[0, S] is a fixed point of ΨS . Thus, if T0 is the largest T such that ΨS has a unique
fixed point vS in L2([0, S],B) for any S < T , then each vT for T < T0 is an extension
of vS whenever S ≤ T . We can show that T0 = ∞ by showing that, if T0 < ∞, then
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there exists ε > 0 (depending only on T0 and the initial conditions) such that, for all
T < T0, there exists a unique extension of vT to [T, T + ε]. Fix such a T ; the issue of
extending a fixed point of ΨT on [T, T + ε] can be rephrased as a fixed point problem
for small time with the following notation. For v ∈ L2([0, T ],B) and v′ ∈ L2([0, ε],B),
define v ∨ v′ ∈ L2([0, T + ε],B), equal to v on [0, T ] and equal to (t �→ v′(t− T )) on
[T, T + ε]. Introduce the function Ψε : L2([0, ε],B) → L2([0, ε],B) defined by

Ψε(v)(t) = ΨT+ε(v
T ∨ v)(t− T ).

For t > T ,

qvT∨v
t = qvT

1 + qv
t−T ,

zt = zT ◦ ϕv
Tt|dϕv

Tt|−1, and

〈uv
t , w〉B =

(
ω0, (dϕ

v
0,t)

−1w ◦ ϕv
0,t

)
=
(
ω0, (dϕ

v
0,T )−1(dϕv

0,T
ϕv
Tt)

−1w ◦ ϕv
Tt ◦ ϕv

0,T

)
=
(
ωT , dϕ

v
Tt)

−1w ◦ ϕv
Tt

)
with (ωT , w) =

(
ω0, (dϕ

v
0,T )−1w ◦ ϕv

0,T

)
. It is clear that the study of Ψε can follow

exactly the lines of the study of ΨT , yielding a unique fixed point if ε is small enough,
the size of admissible ε being controlled by the L2-norms of zT and the norm of ωT

as a linear form on Cp−1
0 (Ω,Rk). These norms can in turn be bounded by the L2-

norms of z0 and the norm of ω0, respectively, multiplied by a continuous function

of max(|ϕvT

0,T |1,∞, |ϕvT

T,0|1,∞). Proving that this is uniformly bounded for T < T0 is
therefore sufficient to get the contradiction we aim for, that is, that the solution can
be uniquely extended beyond T0.

So, everything relies on proving the uniform boundedness of ϕvT

0,T , ϕvT

T,0, and their
derivatives over Ω. By Lemmas 7 and 9, these quantities are bounded by functions of
|vT |1,T so that we have to prove that these can be bounded uniformly in T . However,
it suffices to use the facts that vT satisfies a geodesic equation and that geodesics
travel at constant speed. More precisely, defining, for t ≤ T < T0,

ψt =
∣∣vT

t

∣∣2
B

+ σ2 |zt|22 ,

we have (recall that this does not depend on T as soon as T ≥ t) ψt ≡ ψ(0) so that∣∣vT
∣∣
1,T

≤ Tψ(0)

for all T . It is well known that minimizing geodesics have constant speed, but we must
check that this property remains true for all the solutions of (22). This is proved in
the appendix and is stated, for further reference, in the next lemma.

Lemma 4. If (j, v, z) is a solution of system (22) on [0, T [, then |vt|2B + σ2 |zt|22
is constant with respect to time.

To prove the continuity of the solution, let (v, j, z) and (v′, j′, z′) be two solutions
of system (22) with initial conditions (ω0, z0) and (ω′

0, z
′
0), respectively. Using, in

particular, the computation leading from (28) to (29), it is not to difficult to obtain
the estimate

|vt − v′t|B ≤ C

(
|ω0 − ω′

0| +
σ2

2

∣∣∣|z0|2 − |z′0|
2
∣∣∣) eC|v|1,T

+ C
(
σ2 |z′0|

2
2 + |ω′

0|
)
|v − v′|1,T e

C|v′|
1,T .
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As we just have shown, |v|1,T = T |v0|B, and this is smaller (up to a universal multi-
plicative constant) than |ω0| so that

|vt − v′t|B ≤ C

(
|ω0 − ω′

0| +
σ2

2

∣∣∣|z0|2 − |z′0|
2
∣∣∣) eCT |ω0|

+ C
(
σ2 |z′0|

2
2 + |ω′

0|
)
|v − v′|1,T eCT |ω′

0|.

Gronwall’s lemma now allows us to conclude that, for some constant C which may
now depend on T, |ω0| , |ω′

0| , |z0|2, and |z′0|2,

|vt − v′t|B ≤ C

(
|ω0 − ω′

0| +
σ2

2

∣∣∣|z0|2 − |z′0|
2
∣∣∣) .(31)

9. Normal coordinates in H1. We now consider the question, which moti-
vated this paper, of whether the previous construction could be used as an indexing
device for characterizing the deformations and variations of an object relative to a
prototype.

Fix an image j0 ∈ H1(Ω,Rd). The computationally simplest way to describe an
image j in a neighborhood of j0 is by the difference j − j0. However, one cannot
be satisfied with this representation which takes no account of the metric we have
placed on JW . Among local charts related to the metric, normal coordinates on a
Riemannian manifold are radial flattenings of this manifold onto its tangent space
in the sense that radial lines in this space correspond to geodesics on the manifold.
They provide a very efficient linear representation of the manifold and of its metric.
Existence of such coordinates is a standard theorem in finite dimensions, and our
purpose is to check how much of this result remains valid in our infinite dimensional
framework.

In the previous sections, another candidate for local coordinates has emerged,
which turns out to be closely related (it is in fact dual) to normal coordinates. We
have proved that, for a fixed j0 ∈ H1(Ω,Rd), one can associate to any z0 ∈ L2(Ω,Rd)
a unique solution of system (21). We introduce the function Mj0 : L2 → L2, which
assigns to z0 ∈ L2 the “image” j1, where jt is the solution of (21) at time t.

The following theorem shows that Mj0 shares some features of local coordinates
on JW .

Theorem 8. Let BH1(0, ε) denote the open ball in H1(Ω,Rd) containing all
z0 ∈ H1(Ω,Rd) such that |z0|H1 < ε. Then, for all j0 ∈ H1(Ω,Rd), there exists ε > 0
such that Mj0 restricted to BH1(0, ε) is continuous and one-to-one onto its image,
equipped with the L2-topology.

Proof of Theorem 8. Continuity of Mj0 : L2(Ω,Rd) → L2(Ω,Rd) is a con-
sequence of Theorem 7, and it trivially implies the continuity of the restriction
Mj0 : H1(Ω,Rd) → L2(Ω,Rd) for the H1(Ω,Rd)-topology. We show that this map is
one-to-one in a neighborhood of 0. We first have the following lemma.

Lemma 5. Let j0, z0, z̃0 ∈ H1(Ω,Rd), with max(|z0|H1 , |z̃0|H1) ≤ 1. Denote ṽ the
time-dependent vector field along the solution of (21) with initial condition (j0, z̃0).
Then, there exist a constant C and a function ε which depend only on j0 such that,
for t > 0,∣∣(Mj0(tz̃0) −Mj0(tz0)) ◦ ϕṽ

0,t − t[σ2(z̃0 − z0) + dj0K(dj∗0 (z̃0 − z0))]
∣∣
2

≤ Ct |z̃0 − z0|2 ε(t),
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and limt→0 ε(t) = 0.
The proof of Lemma 5 is given in Appendix G. To prove Theorem 8, we first

remark that ∣∣σ2(z̃0 − z0) + dj0K(dj∗0 (z̃0 − z0))
∣∣
2
≥ σ2 |z̃0 − z0|2

so that ∣∣(Mj0(tz̃0) −Mj0(tz0)) ◦ ϕṽ
0,t

∣∣
2
≥ tσ2 |z̃0 − z0|2

(
1 − C

σ2
ε(j0, t)

)
,

and the lower bound is nonvanishing as soon as t is small enough.
Remark that we have, for j1, j2 ∈ H1(Ω,Rd), the inequality

d(j1, j2) ≤
1

σ
|j1 − j2|2

since the right-hand side is an upper bound of the length of the curve jt = (1−t)j1+tj2
(since choosing v ≡ 0 and σ2z ≡ j2 − j1, we have wt � (vt, zt) ∈ ∂jt

∂t and σ2
∫ 1

0
|zt|22 =

|j2 − j1|22 /σ2). So continuity of Mj0 for the d-topology on its image is also true.
According to Lemma 5, normal coordinates (which are time derivatives at t = 0 of

geodesics) are related to M by the relation (we use the standard exponential notation)

expj0(Sz0) = Mj0(z0),

where S is defined by

Sz � σ2z + Dj0K(Dj∗0z).

This indicates that a good approximation of the metric in terms of the z-coordinate
would be

|z1 − z2|2j0 = 〈z1 − z2 , S(z1 − z2)〉2,

which satisfies

|z1|j0 = d(j0,Mj0(z1))

in a neighborhood of 0.

10. Experiments. In this section, we propose a preliminary set of experiments
to illustrate the information contained in the z-coordinate described above. Experi-
ments in Figures 1, 2, and 3 were conducted in two steps: given two images j0 and
j1, we first computed the minimizing geodesic between them, yielding a trajectory
(jt, zt, vt) and the corresponding flow ϕv

t . Then, using j0 again, and the obtained
value z0 on the minimizing geodesic, we computed the solution of (21) until time
t = 1. The obtained values (j′t, z

′
t, v

′
t) could then be compared with those which have

been computed along the geodesics. In Figure 4, the initial j0 is the same as in Fig-
ures 2 and 3, but the z0 is the average of the two so that it does not correspond to
any precomputed geodesic in the image space. The result is quite interesting, because
it still possesses characteristics of a human face and can be compared to the result of
a simple linear combination of the target images in Figures 2 and 3.

The numerical implementation of both operations (minimization of the geodesic
energy and integration of (21)) must be done with some care in order, in particular, to
avoid instabilities due to the conservation part of the energy. Details will be provided
in a forthcoming paper.
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Fig. 1. From top to bottom and from left to right: Initial image, target image, z-coordinate,
reconstructed target image.

Appendix A. Proofs of Propositions 2 and 3.

A.1. Proof of Proposition 2. The proof relies on a sequence of standard mea-
surability arguments, of which we sketch only the main steps. First let (wn)n∈N be a
Hilbert basis of W . Since, for any u ∈ C∞

c (Ω,Rd) and w = (v, z) ∈ W , j → lj,u(w)
(which has been defined in (6) by σ2〈z, u〉2 + 〈j,div(u ⊗ v)〉2) is continuous from
L2(Ω,Rd) to R, the map

j �→ wj,u �
∑
n≥0

lj,u(wn)wn

is measurable from L2(Ω,Rd) to W . By construction, we have, for w ∈ W ,

〈w , wju〉W =
∑
n≥0

lj,u(wn)〈w , wn〉W = lj,u(w).

Thus, for γ ∈ TjJW , we have

p(γ) = Argmin
{
|w|W : 〈w , wj,u〉 = 〈γ , u〉 for all u ∈ C∞

c (Ω,Rd)
}
.

Introducing a family (un)n∈N in C∞
c (Ω,Rd) which is dense in H1

0 (Ω,Rd), the previous
expression may be replaced by

p(γ) = Argmin {|w|W : 〈w , wj,un〉 = 〈γ , un〉 for all n ≥ 0} .
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Fig. 2. From top to bottom and from left to right: Initial image, target image, z-coordinate,
reconstructed target image.

For N ∈ N and λ > 0, we define

pN,λ(γ) = Argmin

{
|w|2W + λ

N∑
n=0

(
〈w , wj,un〉W − 〈γ , un〉

)2}
.(32)

Clearly, we must have pN,λ(γ) =
∑N

i=1 xiwj,ui , where

x = Argmin
x′∈RN+1

⎧⎨
⎩
∣∣∣∣∣

N∑
n=0

x′
nwj,un

∣∣∣∣∣
2

W

+ λ

N∑
n=0

(
N∑

n′=1

x′
n′
〈
wj,un′ , wj,un

〉
W

− 〈γ , ui〉
)2

+
1

λ
|x′|2

⎫⎬
⎭ .

For λ > 0, the optimal x is given by x = (A + I/λ)−1y, where y ∈ R
N+1 is such

that yi = 〈γ , ui〉 and A is an (N + 1) × (N + 1) matrix with coefficients given
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Fig. 3. From top to bottom and from left to right: Initial image, target image, z-coordinate,
reconstructed target image.

by an,n′ =
〈
wj,un′ , wj,un

〉
W

. This implies that, if γt is a measurable path, the

function t �→ pN,λ(γt) is measurable. The measurability of p(γt) is a consequence
of the pointwise convergence of pN,N (γt) to p(γt), which comes from the following
argument: for all N and λ, we have

∣∣pN,λ(γ)
∣∣
W

≤ |p(γ)|W , since the last term in (32)
vanishes for w = p(γ). For the same reason,

N∑
n=0

(〈
pN,λ(γ) , wj,un

〉
− 〈γ , un〉

)2 ≤ 1

λ
|p(γ)|W ,

which implies that for all n,
〈
pN,N (γ) , wj,un

〉
→ 〈γ , un〉 when N tends to in-

finity. Moreover, for any weakly converging subsequence extracted from pN,N (γ)
(which forms a weakly compact set in W ), we have, and denoting w∗ its limit,
|w∗|W ≤ lim inf

∣∣pN,N (γ)
∣∣
W

≤ |p(γ)|W , and, for all n, 〈w∗ , wj,un〉 = 〈γ , un〉 by
weak convergence, which is only possible when w∗ = p(γ).

Hence t �→ p(γt) is measurable if γt is measurable, and the proof of Proposition 2
is ended.
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Fig. 4. From top to bottom and from left to right: Initial image, target image, z-coordinate,
obtained by averaging the z-coordinate in Figures 2 and 3, and obtained target image.

A.2. Proof of Proposition 3. We deduce from Proposition 2 that it is sufficient
to prove the next proposition.

Proposition 6. Let w ∈ L2([0, 1],W ) such that for any u ∈ C∞
c (Ω×]0, 1[,Rd)

we have

∫ 1

0

(
σ2〈zt, ut〉2 + 〈jt,div(ut ⊗ vt)〉2

)
dt = 0.(33)

Then almost everywhere in t, wt ∈ Ejt .

Proof. Let (un)n∈N be a family in C∞
c (Ω,Rd) dense in C∞

c (Ω,Rd) for the H1(Ω,Rd)-
norm. If we prove that for any n ∈ N, the function cn defined by cn(t) � σ2〈zt, un〉2 +
〈jt,div(un ⊗ vt)〉2 is vanishing almost everywhere, then by density, there exists a
negligible set N such that for any t ∈ [0, 1] \ N and any u ∈ C∞

c (Ω,Rd)

σ2〈zt, u〉2 + 〈jt,div(u⊗ vt)〉2 = 0,
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which implies Proposition 6. Hence, let us consider n ∈ N. For any f ∈ C∞
c ([0, 1],R),

if u(t, x) � f(t)un(x), we have from (33) that∫ 1

0

cn(t)f(t)dt = 0

so that, by standard arguments, we get cn = 0 almost everywhere.

Appendix B. Proof of Theorem 2. We start the (⇐) part in the case
L2([0, 1],W ).

Lemma 6. Let w = (z, v) ∈ L2([0, 1],W ). Let us define for any t ∈ [0, 1]

jt � j0 ◦ ϕt,0 + σ2

∫ t

0

zs ◦ ϕt,sds,

where ϕt is the flow at time t associated with v. Then j is regular.
Proof. Let us notice first that

jt+h = jt ◦ ϕt+h,t + σ2

∫ t+h

t

zs ◦ ϕt+h,sdt.(34)

From equality (34), the continuity in JW of j is straightforward.
It is sufficient to prove that for any u ∈ C∞

c (Ω×]0, 1[,Rd), we have

−
∫ 1

0

〈
jt,

∂u

∂t

〉
2

dt =

∫ 1

0

(
σ2〈zt, ut〉2 + 〈jt,div(ut ⊗ vt)〉2

)
dt.(35)

Indeed, if (35) is proved, if for any t ∈ [0, 1] we denote γt � (jt,wt), we have for
any u ∈ C∞

c (Ω,Rd), t → 〈γt , u〉 = σ2〈zt, u〉2 + 〈jt,div(u ⊗ vt)〉2 measurable, and

|γt|jt ≤ |wt|W so that
∫ 1

0
|γt|2tdt ≤

∫ 1

0
|wt|2W dt < +∞, and the lemma is proved.

We have

−
∫ 1

0

〈
jt,

∂u

∂t

〉
2

dt = − lim
h→0

∫ 1

0

〈
jt,

ut − ut−h

h

〉
2

dt = lim
h→0

∫ 1

0

〈
jt+h − jt

h
, ut

〉
2

dt

so that

−
∫ 1

0

〈
jt,

∂u

∂t

〉
2

= lim
h→0

1

h

∫ 1

0

(
〈jt ◦ ϕt+h,t − jt, ut〉2dt + σ2

∫ t+h

t

〈zs ◦ ϕt+h,s, ut〉2ds
)
dt.

However, 〈jt ◦ ϕt+h,t − jt, ut〉2 =
∫ t+h

t
〈jt ◦ ϕs,t,div(ut ⊗ vs)〉2ds so that

−
∫ 1

0

〈
jt,

∂u

∂t

〉
2

dt = lim
h→0

∫ 1

0

1

h

(∫ t+h

t

〈jt ◦ ϕs,t,div(ut ⊗ vs)〉2 + σ2〈zs ◦ ϕt+h,s, ut〉2ds
)
dt

= lim
h→0

∫ 1

0

1

h

(∫ t+h

t

〈jt,div(ut ⊗ vs) ◦ ϕt,s|dϕt,s|〉2 + σ2〈zs, ut ◦ ϕs,t+h|dϕs,t+h|〉2ds
)
dt.

Since jt is uniformly bounded on L2 and |ϕt,s − I|1,∞ = ε(|t− s|) (since B is contin-

uously embedded in C1(Ω,Rk)), there exists C > 0 such that

∣∣∣∣∣
∫ 1

0

1

h

∫ t+h

t

〈jt,div(ut ⊗ vs) ◦ (ϕt,s|dϕt,s| − I)〉2dsdt
∣∣∣∣∣ ≤ Cε(h)

∫ 1

0

|vt|1,∞ dt

(36)

≤ C ′ε(h)

(∫ 1

0

|wt|2W dt

)1/2

.(37)
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Now, using again the fact that jt is uniformly bounded in L2 and fact that C([0, 1], L2(Ω,Rk))
is dense in L2([0, 1], L2(Ω,Rk)), we get

(38)

∣∣∣∣∣
∫ 1

0

1

h

∫ t+h

t

〈jt,div(ut ⊗ vs) − div(ut ⊗ vt)〉2dsdt
∣∣∣∣∣

≤ C

∫ 1

0

1

h

∫ t+h

t

|div(ut ⊗ vs) − div(ut ⊗ vt)|2dsdt

→ 0 when h → 0.

At this point we have proved that

lim
h→0

1

h

∫ 1

0

〈jt ◦ ϕt+h,t − jt, ut〉2dt =

∫ 1

0

〈jt,div(ut ⊗ vt)〉2dt.(39)

Still using the fact that |ϕt,s − I|1,∞ = ε(|t−s|) and the fact that |ut|1,∞ is uniformly
bounded, we have

σ2

∫ 1

0

1

h

∫ t+h

t

〈zs, ut ◦ (ϕs,t+h|dϕs,t+h| − I)〉2 dsdt ≤ Cσ2ε(h)

∫ 1

0

|zs|2ds(40)

≤ Cσε(h)

(∫ 1

0

|wt|22
)1/2

.(41)

Finally, since |ut|∞ is uniformly bounded, we get

lim
h→0

∣∣∣∣∣
∫ 1

0

1

h

∫ t+h

t

〈zs − zt, ut〉2dsdt
∣∣∣∣∣ ≤ lim

h→0
C

∫ 1

0

∫ t+h

t

|zs − zt|2 dsdt = 0.

Hence the proof of the lemma is ended.
Let us consider the (⇒) part of Theorem 2 for H1([0, 1], JW ). Let j ∈ H1([0, 1], JW )

be a regular path, and let wt = p(∂j∂t ) for any t ∈ [0, 1]. We get from Proposition 2
that w ∈ L2([0, 1],W ). Hence, let us define the new path j′ by

j′t = j0 ◦ ϕt,0 + σ2

∫ t

0

zs ◦ ϕt,sds,

where ϕ is the flow associated with v. From the (⇐) part, we get that j′ is regular

and that ∂j′

∂t = ∂j
∂t . Now let u0 ∈ C∞

c (Ω,Rd). For any f ∈ C∞
c (]0, 1[,R) if u(t, x) =

u0(x)f(t) for any x ∈ Ω and t ∈ [0, 1], we have from the integration by parts formula
for a regular path ∫ 1

0

r(t)f ′(t)dt = 0,

where r(t) = 〈jt, u〉2 − 〈j′t, u〉2. Since r is continuous and r(0) = 0, we get r ≡ 0.
Considering arbitrary u0, we get finally jt = j′t for any t ∈ [0, 1].

Since the (⇒) part for C1([0, 1], JW ) is a straightforward consequence of the
definition of C1 curves and of the (⇒) part for H1([0, 1], JW ), we consider the (⇐)
part for w ∈ C([0, 1],W ). We get from the corresponding part for L2([0, 1],W ) that
(35) is still true. For any f ∈ C∞

c ([0, 1],R) and any u ∈ C∞
c (Ω,Rd) we have

−
∫ t

0

f ′(t)〈jt, u〉2dt =

∫ 1

0

f(t)
(
σ2〈zt, ut〉2 + 〈jt,div(u⊗ vt)〉2

)
dt.
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One easily checks that t → σ2〈zt, ut〉2 + 〈jt,div(u ⊗ vt)〉2 is continuous as well as
t → 〈jt, u〉2 so that, considering smooth approximates of step functions, we deduce
that

〈js, u〉2 = 〈j0, u〉2 +

∫ s

0

(
σ2〈zt, ut〉2 + 〈jt,div(u⊗ vt)〉2

)
dt,

and the result is proved.

Appendix C. Regularity results for AT . In this section, we collect a few
useful results on how the regularity of the diffeomorphism AT (v) = ϕv

T may be
related to the norm on B, provided this norm can in turn control a sufficient number
of derivatives; the first result deals with boundedness. In the following, we assume at
least that B is continuously embedded in C1

0 (Ω,Rk) so that AT is well defined for all
T . In this case,

ϕv
T (x) = x +

∫ T

0

vs(ϕ
v
s(x))ds.

If vs had p space derivatives for all s, a formal differentiation of this equality
yields

dpϕv
T = dpid +

∫ T

0

dp(vs ◦ ϕv
s)ds.(42)

This can be proved rigorously from rather standard arguments in the study of ODEs
and is stated in the next lemma, for which we provide a proof for completeness,
because of the small complication due to the fact that we have only an L1 control
with respect to the t variable, instead of the usual uniform one.

Lemma 7. If p ≥ 1 and B is embedded in Cp
0 (Ω,Rk), then, for all v ∈ L1([0, T ],Ω),

ϕv is p times differentiable and, for all q ≤ p,

∂

∂t
dqϕv

t = dq(vt ◦ ϕv
t ).

Moreover, there exist constants C,C ′ such that, for all v ∈ L1([0, T ],Ω),

sup
s∈[0,T ]

|ϕv
s |p,∞ ≤ CeC

′|v|1,T .(43)

Proof. For further reference, we first state Gronwall’s lemma.

Lemma 8 (Gronwall). Asume that α and β are two positive, continuous functions
on the interval [0, c] and that

w(t) ≤ α(t) +

∫ t

0

β(s)w(s)ds.

Then,

w(t) ≤ α(t) +

∫ t

0

α(s)β(s)e

∫ t

s
β(u)du

ds.
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The continuity of x �→ ϕv
0,t(x) is a direct consequence of this lemma since, for

x, y ∈ Ω,

|ϕv
0,t(x) − ϕv

0,t(y)| =

∣∣∣∣x− y +

∫ t

0

(
vs(ϕ

v
0,s(x)) − vs(ϕ

v
0,s(y))

)
ds

∣∣∣∣
≤ |x− y| +

∫ t

0

‖vs‖1,∞|ϕv
0,s(x) − ϕv

0,s(y)|ds,

and Gronwall’s lemma implies

|ϕv
0,t(x) − ϕv

0,t(y)| ≤ |x− y| exp(C |v|1,T ).(44)

Assume p = 1 and pass now to the differential of ϕv
0,t. Fix x ∈ Ω and introduce the

linear differential equation, formally obtained in (42) for p = 1,

∂Wt

∂t
= dϕv

0,t(x)vtWt(45)

with initial condition W (0) = δ ∈ R
k. We skip the argument ensuring the existence

and uniqueness of a solution of this equation on [0, 1] and proceed to identifying it as
Wt = dxϕ

v
0,tδ. Denote

aε(t) =
(
ϕv

0,t(x + εδ) − ϕv
0,t(x)

)
/ε−Wt.

For α > 0, introduce

μt(α) = max {|dxvt − dyvt| : x, y ∈ Ω, |x− y| ≤ α} .

The function dxvt ∈ C1
0 (Ω) being uniformly continuous on the compact set Ω, we

have limα→0 μt(α) = 0. We may write

aε(t) =
1

ε

∫ t

0

(
vs(ϕ

v
0,s(x + εδ)) − vs(ϕ

v
0,s(x))

)
ds−

∫ t

0

dϕv
0,s(x)vsWsds

=

∫ t

0

dϕv
0,s(x)vsaε(s)ds

+
1

ε

∫ t

0

(vs(ϕ
v
0,s(x + εδ)) − vs(ϕ

v
0,s(x)) − εdϕv

0,s(x)vs(ϕ
v
0,s(x + εδ) − ϕv

0,s(x)))ds.

Since for all y, y′ ∈ Ω

|vt(y
′) − vt(y) − dyvt(y

′ − y)| ≤ μs(|y′ − y|) |y′ − y| ,

we may write

|aε(t)| ≤
∫ t

0

|vs|1,∞ |aε(s)| ds + C(v) |δ|
∫ 1

0

μs(εC(v) |δ|)ds

for some constant C(v) which depends only on v. The fact that aε(t) tends to 0 when
ε → 0 now is a direct consequence of Gronwall’s lemma and of the fact that

lim
α→0

∫ 1

0

μs(α)ds = 0,
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which is true by the dominated convergence theorem, since μs pointwise converges to
0 and μs(α) ≤ 2 |v|1,∞. This proves Lemma 7 in the case p = 1. The rest of the proof
is by induction: let q0 ≤ p, q0 > 1, and assume that the result is proved for all q < q0:

∂

∂t
dqϕv

t = dq(vt ◦ ϕv
t ).

This implies that for δ1, . . . , δq ∈ R
k, we may write

∂

∂t
dqϕv

t (δ1, . . . , δq) = dϕv
0,t

vtd
qϕv

t (δ1, . . . , δq) +

q∑
l=2

dlvt(δ
(l)
1 , . . . , δ

(l)
l ),

each vector δ
(l)
k being a linear combination (with universal coefficients) of terms of

the kind dl
′
ϕv

0,t(δi1 , . . . , δil′ ) with l′ ≤ q + 1 − l (this result on the differentials of
the composition of two functions can be easily proved by induction). This is a linear
equation in dqϕv

t (δ1, . . . , δq), which is valid for q = q0 −1, and the proof of its validity
for q0 follows exactly the same lines as for p = 1.

This expression also shows (using Gronwall’s lemma) that |dqϕv
t |∞ may be bounded

by an expression of the kind

|v|1,T C̃
(
|dϕv

t |∞ , . . . ,
∣∣dq−1ϕv

t

∣∣
∞
)
exp
(
C |v|1,T

)
,

where C̃ is a polynomial, which in turn implies (43).
The same estimate is true for (ϕv)−1.
Lemma 9. If p ≥ 1 and B is continuously embedded in Cp

0 (Ω,Rk), there exist
constants C,C ′ such that, for all v ∈ L1([0, T ],Ω),

sup
s∈[0,T ]

∣∣(ϕv
s)

−1
∣∣
p,∞ ≤ CeC

′|v|1,T .

Lemma 9 is a consequence of Lemma 7 and of the fact that (ϕv
t )

−1 = ϕw
t with

ws = −vt−s on [0, t].
We now pass to sufficient conditions for Lipschitz continuity of AT . For this, let

v, v′ ∈ L1([0, T ],B). For ξ ∈ [0, 1], denote vξ = (1 − ξ)v + ξv′ and ϕξ = ϕvξ

.
Lemma 10.

∂

∂ξ
ϕvξ

s,t(x) =

∫ t

s

d
ϕvξ

s,u(x)
ϕvξ

ut(v
′
u − vu) ◦ ϕvξ

s,u(x)du.(46)

Proof. Let us first start with a formal differentiation of

∂ϕvξ

s,t

∂t
= vξt ◦ ϕvξ

s,t

with respect to ξ, which yields

∂

∂t

∂

∂ξ
ϕvξ

s,t = (v′t − vt) ◦ ϕvξ

t + d
ϕvξ

s,t
vξt

d

dξ
ϕvξ

s,t,

which naturally leads us to introduce the solution of the differential equation

∂

∂t
Wt = (v′t − vt) ◦ ϕvξ

t + d
ϕvξ

s,t
vξtWt(47)
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with initial condition Ws = 0. Noting that we have already encountered this equation

without the constant term in (45), the solution of which is of the form dxϕ
vξ

0,tδ, a
standard argument by variation of the constant shows that the solution of (47) is
given by the right-hand term of (46). Therefore, the proof boils down to show that
the interversion of derivatives underlying the formal argument above can be made
rigorous.

For this, it clearly suffices to consider the problem in the vicinity of ξ = 0. The
proof in fact follows the same lines as the proof of Lemma 7: letting Wt be the solution
of (47), we let

aξ(t) =
(
ϕvξ

s,t(x) − ϕv
s,t(x)

)
/ξ −Wt

and express it under the form, letting hu = v′u − vu,

aξ(t) =

∫ t

s

dϕv
s,u

vuaξ(u)du +

∫ t

s

(hu(ϕvξ

s,u(x)) − hu(ϕv
s,u(x)))du

+
1

ξ

∫ t

s

(
vu(ϕvξ

s,u(x)) − vu(ϕv
s,u(x)) − ξdϕv

s,u(x)vu

(
ϕvξ

s,u(x) − ϕv
s,u(x)

))
du.

The proof can proceed exactly as that of Lemma 7, provided it has been shown that

|ϕvξ

s,u(x)−ϕv
s,u(x)| tends to 0 with ξ, which is again a direct consequence of Gronwall’s

lemma and of the inequality

∣∣∣ϕvξ

s,t(x) − ϕv
s,t(x)

∣∣∣ ≤ ∫ t

s

|vu|1,∞
∣∣∣ϕvξ

s,u(x) − ϕv
s,u(x)

∣∣∣ du + ξ

∫ t

s

|hu|∞ du.

This lemma implies, in particular, that

ϕv′

s,t(x) − ϕv
s,t(x) =

∫ 1

0

∫ t

s

d
ϕvξ

s,u(x)
ϕvξ

ut(v
′
u − vu) ◦ ϕvξ

s,u(x)dudξ,(48)

which almost immediately leads to the following result (by computing differentials
and applying Lemma 7).

Lemma 11. Assume that B is continuously embedded in Cp
0 (Ω). If v, v′ ∈

L1([0, T ],B), we have, for t ≤ T ,

∣∣∣ϕv
t − ϕv′

t

∣∣∣
p−1,∞

≤ Cp |v − v′|1,t e
Cp(|v|1,t+|v′|

1,t
)

for some constant Cp which depends only on p.

The same results apply on L2([0, 1],B), since |v|1,T ≤
√
T |v|2,T , but, in this

space, weak continuity is true under more general conditions.
Theorem 9 (Trouvé, Dupuis, et al). Assume that B is continuously embedded

in Cp
0 (Ω,Rk). Then the map

ÃT : L2([0, T ],B) → Cp([0, T ] × Ω,Rk),
v �→ ϕv

. (.)

is continuous for the weak topology on L2([0, 1],B) and the norm |.|T,p−1,∞ on Cp([0, T ]×
Ω,Rk) defined by |ϕ|T,p−1,∞ = ess.sup(|ϕt|p−1,∞ , t ∈ [0, T ]).
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Moreover, assume that the embedding is compact, that vn converges weakly to
v, and that there exists a constant A such that, for all n and almost all s ∈ [0, 1],
|vns |B ≤ A. Then, for all x ∈ Ω and t ∈ [0, T ],

dpxϕ
vn

t → dpxϕ
v
t .

Recall that vn converges to v in the weak topology on L2([0, 1],B) if and only if,
for all w ∈ L2([0, 1],B),

lim
n→∞

∫ 1

0

∫
Ω

〈vn(t) , w(t)〉Bdt =

∫ 1

0

∫
Ω

〈v(t) , w(t)〉Bdt.

Proof. The proof of this theorem, which is sketched here for completeness, relies
on the remark that, since vn weakly converges, it is bounded in L2([0, 1],B), and
Lemma 7 readily implies that (ϕvn) and their space derivatives up to order p − 1
are equicontinuous sequences in space. Equicontinuity in time comes by applying the
Cauchy–Schwarz inequality to

dqϕv
t − dqϕv

s =

∫ t

s

dq(vu ◦ ϕv
u)du.

Ascoli’s theorem implies compactness of (ϕvn) for the |.|T,p−1,∞-topology, and it re-
mains to identify a limit of any converging subsequence as ϕv. Denoting this limit by
ψ, one deduces from

ϕvn

0,t(x) =

∫ t

0

vn
s (ϕvn

0,s(x))ds

and the convergence of ϕvn

0,t to ϕt the fact that

ψt(x) =

∫ t

0

vn
s (ψs(x))ds + o(n),

and the conclusion comes after the remark that w �→
∫ t

0
ws(ψs(x))ds is a continuous

linear functional on L2([0, 1],B) so that the weak convergence of vn to v implies that

ψt(x) =

∫ t

0

vs(ψs(x))ds

and ψt = ϕv
0,t.

We now prove the pointwise convergence of the pth derivative. We know that

d

dt
dpxϕ

v
t = dϕv

t
vdpxϕ

v
t + Qv

t (x),

where Qv
t (x) depends on the derivatives of v evaluated at ϕv

t (x) and on the p− 1 first
space derivatives of ϕv

t . We may therefore write

dpxϕ
v
t − dpxϕ

vn

t =

∫ t

0

dϕvn
s

v(dpxϕ
v
s − dpxϕ

vn

s )ds +

∫ t

0

(dϕv
s
v − dϕvn

s
vn)dpxϕ

v
sds

+

∫ t

0

(Qv
s(x) −Qvn

s (x))ds.
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The first integral may be bounded by C(|vn|1,T )
∫ t

0

∣∣dpxϕv
s − dpxϕ

vn

s

∣∣ ds, and the result
will be a consequence of Gronwall’s lemma, provided we show that the remaining
terms tend to 0. Consider the second integral, which may be written∫ t

0

(dϕv
s
v − dϕv

s
vn)dpxϕ

v
sds +

∫ t

0

(dϕvs vn − dϕvn
s

vn)dpxϕ
v
sds.

The first term tends to 0 because

w �→
∫ t

0

dϕv
s(x)wd

p
xϕ

v
sds

is a continuous linear functional on L2([0, t],B) and vn weakly converges to v in this
space. To estimate the second one, introduce, for A, ε > 0, the number

C(A, ε) = max {|dxw − dyw| : x, , y ∈ Ω, |x− y| ≤ ε, |w|B ≤ A} .

The compact embedding assumption implies that, A being fixed, C(A, ε) tends to 0
when ε tends to 0. Using this notation, we have∫ t

0

(dϕvs vn − dϕvn
s

vn)dpxϕ
v
sds ≤

∫ t

0

C (|vn
s |B , |ϕv

s − ϕvn
s |∞) |dpxϕv

s |∞ ds

≤
∫ t

0

C (A, |ϕv
s − ϕvn

s |∞) |v|B ds,

where A = ess.sup {|vn
s |B , n ≥ 0, s ∈ [0, 1]}. The last upper bound now tends to 0, by

dominated convergence.
Finally, a generic term of Qv

t being

dkϕv
t (x)vt(d

i1ϕv
t , . . . , d

ikϕv
t ),

we can use the same argument to prove its pointwise convergence.

Appendix D. Action of diffeomorphisms on images. The next theorem pro-
vides results concerning the regularity of the action of diffeomorphisms on L2(Ω,Rd)
and H1(Ω,Rd).

Theorem 10.

(i) Let ϕ be a diffeomorphism of Ω such that ϕ and ϕ−1 have uniformly bounded
first derivatives on Ω. Then, if i ∈ L2(Ω,Rd) (resp., i ∈ H1(Ω,Rd)), also
i ◦ ϕ ∈ L2(Ω,Rd) (resp., i ◦ ϕ ∈ H1(Ω,Rd) and dx(i ◦ ϕ) = dϕ(x)i.dxϕ).

(ii) Moreover, for all M > 0 and for all i ∈ L2(Ω,Rd), there exists a function
εM (i, η) such that, for all ϕ,ϕ′ such that

max

(
|ϕ|1,∞ ,

∣∣ϕ−1
∣∣
1,∞ , |ϕ′|1,∞ ,

∣∣∣ϕ′−1
∣∣∣
1,∞

)
≤ M,

we have

|i ◦ ϕ′ − i ◦ ϕ|2 ≤ εM (i, |ϕ− ϕ′|1,∞),

and εM (i, η) → 0 when η → 0. The same statement is true for i ∈ H1(Ω,Rd),
the L2(Ω,Rd)-norm being replaced by the H1(Ω,Rd)-norm.
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Proof. We start with (i) and give the proof for H1(Ω,Rd), since it contains
exactly the arguments which are valid for L2(Ω,Rd). Fix ϕ and let Lϕ be defined by
Lϕ(i) = i ◦ ϕ. The vector space C∞

d = C∞(Ω,Rd) of restrictions to Ω of infinitely
differentiable functions on R

k taking values in R
d is dense in H1(Ω,Rd) [10]. The

linear map Lϕ is continuous from C∞
d (with the topology induced by H1(Ω,Rd)) to

H1(Ω,Rd); indeed, for i ∈ C∞
d ,

|Lϕ(i)|2H1 = |i ◦ ϕ|22 + |dϕi dϕ|22 ≤ |i|22
∣∣dϕ−1

∣∣
∞ + |di|22|dϕ|2∞|dϕ−1|∞ ≤ C |i|2H1

since the first derivatives of ϕ and ϕ−1 are bounded. Thus, Lϕ restricted to C∞
d

can be extended to a continuous function L̃ϕ on H1(Ω,Rd). If i ∈ H1(Ω,Rd) and in
is a sequence of elements of C∞

d which converges to i when n tends to infinity (so

that in ◦ ϕ → L̃ϕ(i) in H1(Ω,Rd)), then, because convergence in H1(Ω,Rd) implies
convergence in L2(Ω,Rd), a subsequence of in can be extracted which converges almost
everywhere to i and such that in ◦ϕ converges almost everywhere to L̃n(i). If N ⊂ Ω
has null Lebesgue measure, then it is also the case for ϕ−1(N) (by boundedness of∣∣dϕ−1

∣∣), so that in ◦ ϕ also converges almost everywhere to i ◦ ϕ, yielding L̃ϕ = Lϕ.
Now, since the map i → di is obviously continuous from H1 to L2, so is i → d(Lϕ(i)).
But, since this map coincides with i → dϕi dϕ on C∞

d , and this last map is also
continuous on H1(Ω,Rd) (by the previous computation), we get equality over all
H1(Ω,Rd), again by density of C∞

d .

For (ii), we first consider the L2(Ω,Rd) case. Let i, ϕ′, ϕ, and M be as in the
theorem, and fix s ∈ C∞(Ω,Rd); we have

|i ◦ ϕ′ − i ◦ ϕ|2 ≤ |i ◦ ϕ′ − s ◦ ϕ′|2 + |s ◦ ϕ− s ◦ ϕ′|2 + |i ◦ ϕ− s ◦ ϕ|2 .

First notice that

|i ◦ ϕ′ − s ◦ ϕ′|22 =

∫
Ω

∣∣∣dϕ′−1
∣∣∣ |i− s|2dx ≤ C

∣∣∣ϕ′−1
∣∣∣
1,∞

|i− s|22

for some constant C. For the middle term, we have

|s ◦ ϕ− s ◦ ϕ′|2 ≤
∫ 1

0

∣∣dϕ+t(ϕ′−ϕ)s(ϕ
′ − ϕ)

∣∣
2
dt

≤ |ϕ′ − ϕ|∞
∫ 1

0

∣∣dϕ+t(ϕ′−ϕ)s

∣∣
2
dt

≤ C(M) |ds|2 |ϕ′ − ϕ|∞ .

We thus get

|i ◦ ϕ′ − i ◦ ϕ|2 ≤ C(M) (|i− s|2 + |ds|2 |ϕ′ − ϕ|∞) .

Letting

εM (i, η) � C(M) inf
s∈C∞(Ω)

(|i− s|2 + |ds|2 η)

yields the conclusion of the theorem in the L2(Ω,Rd) case, the H1(Ω,Rd) case being
handled similarly.
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Appendix E. Proof of Lemma 2. We must compute the derivative at ε = 0
of

Uε =
1

σ2

∫
Ω

∣∣j0 ◦ ϕv+εh
1,0 − j1

∣∣2∫ 1

0
|dϕv+εh

1,s |−1ds
dx.

First, we notice the equation

σ2zt(x) =
j1 ◦ ϕv

t,1 − j0 ◦ ϕv
t,0∫ 1

0
|dϕv

t,s|−1ds
,(49)

which implies that (differentiating at ε = 0)

dUε

dε
= −2

〈
z1 , dϕv

1,0
j0

d

dε
ϕv+εh

1,0

〉
2

− σ2

∫ 1

0

〈
|z1|2 ,

d

dε

∣∣dϕv+εh
1,s

∣∣−1
〉

2

ds.

Starting with the first term and using Lemma 10, we have〈
z1 , dϕv

1,0
j0

d

dε
ϕv+εh

1,0

〉
2

= −
∫ 1

0

〈
dϕv

1,0
j∗0z1 , dϕv

1t
ϕv
t,0ht ◦ ϕv

1t

〉
2
dt

= −
∫ 1

0

〈
dϕv

t,0
j∗0z1 ◦ ϕv

t1 |dϕv
t1| , dϕv

t,0ht

〉
2
dt

= −
∫ 1

0

〈
(dϕv

t,0)
∗dϕv

t,0
j∗0zt , ht

〉
2
dt

= −
∫ 1

0

〈
K
(
(dϕv

t,0)
∗dϕv

t,0
j∗0zt

)
, ht

〉
B
dt

because of the identity zt = z1 ◦ ϕv
t1 |dϕv

t1|.
We now pass to the second term, for which we use the equality

∣∣dϕv+εh
t,s

∣∣−1
= exp

[∫ t

s

div(vu + εhu) ◦ ϕv+εh
t,u du

]
,

which is a consequence of Lemma 7 and standard computations on the derivative of
the determinant. This implies that

d

dε

(∣∣dϕv+εh
t,s

∣∣−1
)

=
∣∣dϕv

t,s

∣∣−1
∫ t

s

div(hu) ◦ ϕv
t,udu

+
∣∣dϕv

t,s

∣∣−1
∫ t

s

dϕv
t,u

div(vu)

∫ u

t

dϕv
tτ
ϕv
τuhτ ◦ ϕv

tτdτdu

=
∣∣dϕv

t,s

∣∣−1
∫ t

s

div(hu) ◦ ϕv
t,udu

−
∣∣dϕv

t,s

∣∣−1
∫ t

s

∫ τ

s

dϕv
t,u

div(vu)dϕv
tτ
ϕv
τuhτ ◦ ϕv

tτdudτ.

We may notice that

〈
∇ |dϕv

τs|
−1

, ξ
〉

= |dϕv
τs|

−1
∫ τ

s

dϕv
τu

(divvu)dϕv
τu(ξ)du
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to identify the last term as

∣∣dϕv
t,s

∣∣−1
∫ t

s

∣∣dϕv
tτ
ϕv
τs

∣∣ 〈∇ϕv
tτ
|dϕv

τs|
−1

, hτ ◦ ϕv
tτ

〉
dτ

so that

d

dε

(∣∣dϕv+εh
t,s

∣∣−1
)

=
∣∣dϕv

t,s

∣∣−1
∫ t

s

div(hu) ◦ ϕv
t,udu

−
∫ t

s

|dϕv
tτ |

−1
〈
∇ϕv

tτ
|dϕv

τs|
−1

, hτ ◦ ϕv
tτ

〉
dτ.

Therefore,∫ 1

0

〈
|z1|2 ,

d

dε

∣∣dϕv+εh
1,s

∣∣−1
〉

2

ds =

∫ 1

0

∫ 1

s

〈
|z1|2 , |dϕv

1s|
−1

div(hu) ◦ ϕv
1u

〉
2
duds

−
∫ 1

0

∫ 1

s

〈
|z1|2 , |dϕv

1u|
−1
〈
∇ϕv

1u
|dϕv

us|
−1

, hu ◦ ϕv
1u

〉〉
2
duds

=

∫ 1

0

∫ 1

s

〈
|zu|2 , |dϕv

u1|
−1 ∣∣dϕv

u1
ϕv

1s

∣∣−1
div(hu)

〉
2
duds

−
∫ 1

0

∫ 1

s

〈
|zu|2 ,

〈
∇ |dϕv

us|
−1

, hu

〉〉
2
duds.

Introducing

qv
u �

∫ u

0

|dϕv
us|−1ds,

this may be written∫ 1

0

〈
|z1|2 ,

d

dε

∣∣dϕv+εh
1,s

∣∣−1
〉

2

ds =

∫ 1

0

〈
qv
u |zu|

2
, div(hu)

〉
2
du

−
∫ 1

0

〈
|zu|2 , 〈∇qv

u , hu〉
〉

2
du

= −
∫ 1

0

〈
K∇(qv

u |zu|
2
) , hu

〉
B
du

−
∫ 1

0

〈
K(|zu|2 ∇qv

u) , hu

〉
B
du.

Now, defining functions

Cv
t � σ2qv

t |zt|
2

(50)

and

Dv
t � σ2 |zt|2 ∇qv

t + 2[dϕv
t,0]

∗dϕv
t,0
j∗0zt,(51)

Proposition 5 implies

dUε

dε
=

∫ 1

0

〈ht , K.Dv
t + K∇Cv

t 〉Bdt,
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which is the conclusion of Lemma 2.

Appendix F. Proof of Lemma 4. We prove that solutions of system (22)

travel at constant speed and therefore compute the derivative of |vt|2B + σ2 |zt|22 for
such a solution. Starting with the second term, we have zt = z0 ◦ ϕv

t,0

∣∣dϕv
t,0

∣∣, which
implies, after a change of variables,

|zt|22 =

∫
Ω

|z0|22
∣∣dϕv

0,t

∣∣−1
dx.

Using the identity

∣∣dϕv
s,t

∣∣ = exp

(∫ t

s

div(vu) ◦ ϕv
s,udu

)
,(52)

we obtain

d

dt
|zt|22 = −

∫
Ω

|z0|22
∣∣dϕv

0,t

∣∣−1
div(vt) ◦ ϕv

0,tdx.(53)

To study the variation of |vt|2B, we start with the computation of the derivative
of 〈vt , w〉 for a fixed w ∈ B. Applying formula (28) for a solution of (22) yields

〈vt , w〉B =
σ2

2

∫ 1

0

〈
|z0|2 , (

∣∣dϕv
0,s

∣∣−1
div(w) ◦ ϕv

0,t −
∣∣dϕv

0,t

∣∣−1 〈∇ξv
s,t , λ

v
t (w)

〉
)
〉
ds

+ (ω0, λ
v
t (w))

with ξv
s,t =

∣∣dϕv
0,t

∣∣ / ∣∣dϕv
0,s

∣∣ and λv
t (w) = (dϕv

0,t)
−1w ◦ ϕv

0,t. From formula (52), we
have

ξv
s,t = exp

(∫ t

s

(divvu) ◦ ϕv
0udu

)
,

which implies that

dξv
s,t = ξv

s,t

∫ t

s

dϕv
0u

(divvu)dϕv
0udu

so that

〈vt , w〉B = (ω0, λ
v
t (w)) +

σ2

2

∫ t

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
div(w) ◦ ϕv

0,t

〉
ds

− σ2

2

∫ t

0

∫ t

s

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0u
(divvu)dϕv

0uλ
v
t (w)

〉
duds

= (ω0, λ
v
t (w)) +

σ2

2

∫ t

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
div(w) ◦ ϕv

0,t

〉
ds

− σ2

2

∫ t

0

∫ u

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0u
(divvu)dϕv

0uλ
v
t (w)

〉
dsdu.

We now compute the time differential of each term which appears in this expres-
sion. Denote λ

v

t (w) = d
dtλ

v
t (w). We have

λ
v

t (w) =
d

dt

(
(dϕv

0,t)
−1w ◦ ϕ0,t

)
= −(dϕv

0,t)
−1dϕv

0,t
vtw ◦ ϕ0,t + (dϕv

0,t)
−1dϕv

0,t
wvt ◦ ϕ0,t.
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Next, we have

d

dt

∫ t

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
div(w) ◦ ϕv

0,t

〉
ds =

〈
|z0|2 ,

∣∣dϕv
0,t

∣∣−1
div(w) ◦ ϕv

0,t

〉

+

∫ t

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1 ∇ϕv
0,t

(div(w))vt ◦ ϕv
0,t

〉
ds

and

d

dt

∫ t

0

∫ u

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0u
(divvu)dϕv

0uλ
v
t (w)

〉
dsdu

=

∫ t

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0,t
(divvt)dϕ

v
0,tλ

v
t (w)

〉
dsdu

+

∫ t

0

∫ u

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0u
(divvu)dϕv

0uλ
v

t (w)
〉
dsdu.

Putting everything together, we have

d

dt
〈vt , w〉B =

(
ω0, λ

v

t (w)
)

+
σ2

2

〈
|z0|2 ,

∣∣dϕv
0,t

∣∣−1
div(w) ◦ ϕv

0,t

〉
+

σ2

2

∫ t

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0,t
(divw)vt ◦ ϕv

0,t

〉
dsdu

− σ2

2

∫ t

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0,t
(divvt)dϕ

v
0,tλ

v
t (w)

〉
dsdu

− σ2

2

∫ t

0

∫ u

0

〈
|z0|2 ,

∣∣dϕv
0,s

∣∣−1
dϕv

0u
(divvu)dϕv

0uλ
v

t (w)
〉
dsdu.

A little care must be taken in writing, as we did above, d
dt (ω0, λ

v
t (w)) = (ω0λ

v

t (w)),

since this requires proving that (λv
t+ε(w) − λv

t (w))/ε converges to λ
v

t (w) for the (p−
1,∞)-norm. This is indeed true in our case, because of the fact that w ∈ B allows us
to control the uniform norm of its differentials up to order p, and the differentials of
ϕv
t up to the same order are solutions of a linear differential equation which ensures

their uniform continuity.
We now use the identity (which is justified below)

d

dt
|vt|2B = 2 lim

ε→0
〈vt+ε − vt , vt〉B/ε,(54)

which implies that, to compute the time differential of |vt|2B, it suffices to use the
obtained expression for the derivative of 〈vt , w〉B with w = vt and multiply it by

2. Since λ
v

t (vt) = 0, and because of (53), we see that all terms cancel, yielding
d
dt (|vt|2B + σ2 |zt|22) = 0.

To show (54), one writes

(|vt|2B − |vt|2B − 〈vt+ε − vt , vt〉B)/ε = |vt+ε − vt|2B /ε,

and the result is obtained by proving that, for w ∈ B,

|〈vt+ε − vt , w〉B| = O(ε) |w|B ,

which can be done by a direct estimation of d
dt 〈vt , w〉B.
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Appendix G. Proof of Lemma 5. It suffices to prove this result for smooth
z0, z̃0, j0. It is straightforward that Mj0(tz0) = jt, where j is the solution of (21) with
initial conditions (j0, z0). Let j̃t = Mj0(tz̃0). Introduce also the corresponding (vt, zt)
and (ṽt, z̃t).

Introduce the notation η = j̃− j, ζ = z̃− z, and α = ṽ−v. Since we have assumed
smooth trajectories, we may write

∂jt
∂t

= σ2zt − djtvt

and

∂zt
∂t

= −div(zt ⊗ vt)

and similar equations for the trajectory with initial condition (j0, z̃0). Computing the
differences along both trajectories yields⎧⎨

⎩
∂ηt

∂t + dηtṽt = σ2ζt − djtαt,

∂ζt
∂t + div(ζt ⊗ ṽt) = −div(zt ⊗ αt).

(55)

Since

∂

∂t

[∣∣dϕṽ
0,t

∣∣ ζt ◦ ϕṽ
0,t

]
=
∣∣dϕṽ

0,t

∣∣ (∂ζt
∂t

+ div(ζt ⊗ ṽt)

)
◦ ϕṽ

0,t

= −
∣∣dϕṽ

0,t

∣∣ div(zt ⊗ αt) ◦ ϕṽ
0,t,

the second term yields

ζs ◦ ϕṽ
0,s =

∣∣dϕṽ
0,s

∣∣−1
(z̃0 − z0) −

(∫ s

0

∣∣dϕṽ
s,u

∣∣ div(zu ⊗ αu) ◦ ϕṽ
s,udu

)
◦ ϕṽ

0,s,

and the first one implies

ηt ◦ ϕṽ
0,t = σ2

∫ t

0

ζs ◦ ϕṽ
0,sds−

∫ t

0

[djsαs] ◦ ϕṽ
0,sds.

Replacing ζ in the last equation gives

ηt ◦ ϕṽ
0,t = t[σ2(z̃0(.) − z0(.)) − dj0(ṽ0 − v0)]

−σ2

∫ t

0

(∫ s

0

∣∣dϕṽ
s,u

∣∣ div(zu ⊗ αu) ◦ ϕṽ
s,udu

)
◦ ϕṽ

0,sds

−
∫ t

0

{
[djsαs] ◦ ϕṽ

0,s − dj0(ṽ0 − v0)
}
ds +

∫ t

0

(∣∣dϕṽ
0,s

∣∣−1 − 1
)

(z̃0 − z0)ds

(56)

so that Lemma 5 reduces to evaluating the L2-norm of the last three integrals. We
shall use the fact that, for a function f ∈ L2([0, 1] × Ω,Rd),∣∣∣∣

∫ t

0

fsds

∣∣∣∣
2

≤
∫ t

0

|fs|2 ds.
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For t ∈ [0, 1], we also have, from (31), with ω0 = dj∗0z0 and ω′
0 = dj∗0z

′
0 (here and in

the following, we denote by const any quantity which depends only on j0, z0 and z̃0),

|αt|B ≤ const |z0 − z̃0|2 .(57)

This implies that∣∣∣∣
∫ t

0

(∫ s

0

∣∣dϕṽ
s,u

∣∣ div(zu ⊗ αu) ◦ ϕṽ
s,udu

)
◦ ϕṽ

0,sds

∣∣∣∣
2

≤
∫ t

0

∫ s

0

∣∣∣∣∣∣dϕṽ
0,s

ϕṽ
s,u

∣∣∣ div(zu ⊗ αu) ◦ ϕṽ
0,u

∣∣∣
2
duds

=

∫ t

0

∫ s

0

∣∣∣∣∣dϕṽ
0,s

∣∣−1
div(zu ⊗ αu)

∣∣∣
2
ds

≤ const

∫ t

0

∫ s

0

|div(zu ⊗ αu)|2 duds

≤ const

∫ t

0

∫ s

0

|zu|H1 |αu|B duds.

The relation zt = z0 ◦ ϕv
t,0

∣∣dϕv
t,0

∣∣ implies that |zu|H1 ≤ const |z0|H1 so that∣∣∣∣
∫ t

0

(∫ s

0

∣∣dϕṽ
s,u

∣∣ div(zu ⊗ αu) ◦ ϕṽ
s,udu

)
◦ ϕṽ

0,sds

∣∣∣∣
2

≤ const t2 |z̃0 − z0|2 .

A similar estimate is valid for the last integral in (56), since ||dϕv
0,s|−1−1|∞ ≤ const s.

We finally consider the second integral in this equation.
Since

js = j0 ◦ ϕv
s,0 + σ2z0 ◦ ϕv

s,0

∫ s

0

|dϕv
u0| ◦ ϕv

s,udu,

we have, letting γs = ϕv
s,0 ◦ ϕṽ

0,s,

dϕṽ
0,s

js α ◦ ϕṽ
0,s = dγs

j0 dϕṽ
0,s

ϕv
s,0 α ◦ ϕṽ

0,s + Rs,

and it is easy to check that |Rt|2 ≤ const t |z0|H1 |z̃0 − z0|2. We need to estimate

(58)

∫ t

0

(
dγsj0 dϕṽ

0,s
ϕv
s,0 αs ◦ ϕṽ

0,s − dj0α0

)
ds

=

∫ t

0

(
dγsj0(dϕṽ

0,s
ϕv
s,0 αs ◦ ϕṽ

0,s − α0)
)
ds +

∫ t

0

(dγsj0 α0 − dj0 α0) ds.

Start with the first term, for which we must bound, for the L∞-norm, the difference
dϕṽ

0,s
ϕv
s,0 α ◦ ϕṽ

0,s − α0 or, equivalently,

dϕv
s,0αs − α0 ◦ ϕṽ

s,0.

It is simple to check, from (57) and estimates we have used several times on the
variations of the diffeomorphisms, that (dϕv

s,0 − I)αs and α0 ◦ ϕṽ
s,0 − α0 are bounded

by const s |z̃0 − z0|2. We now proceed to an upper bound for αs − α0, for which we
need to return to the expression obtained in (28), which yields

〈vs − v0, w〉B =
σ2

2

∫ s

0

〈
|z0|2 , (|dϕv

0u|
−1

div(w) ◦ ϕv
0,s

−
∣∣dϕv

0,s

∣∣−1 〈∇ξv
us , λ

v
s(w)〉)

〉
du + 〈z0 , dj0(λ

v
s(w) − w)〉2
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so that

〈αs − α0 , w〉B =
σ2

2

∫ s

0

〈
|z̃0|2 , (

∣∣dϕṽ
0u

∣∣−1
div(w) ◦ ϕṽ

0,s −
∣∣dϕṽ

0,s

∣∣−1 〈∇ξṽ
us , λ

ṽ
s(w)

〉
)
〉
du

− σ2

2

∫ s

0

〈
|z0|2 , (|dϕv

0u|
−1

div(w) ◦ ϕv
0,s −

∣∣dϕv
0,s

∣∣−1 〈∇ξv
us , λ

v
s(w)〉)

〉
du

+
〈
z̃0 , dj0(λ

ṽ
s(w) − w)

〉
2
− 〈z0 , dj0(λ

v
s(w) − w)〉2.

The difference of the first two integrals takes the form

σ2

2

∫ s

0

(〈
z̃0 , Q

ṽ
us(w)

〉
− 〈z0 , Q

v
us(w)〉

)
du(59)

with Qv
us(w) = |dϕv

0u|
−1

div(w) ◦ ϕv
0,s −

∣∣dϕv
0,s

∣∣−1 〈∇ξv
us , λ

v
s(w)〉. From Lemmas 7

and 11, and from (57), we obtain the fact that
∣∣Qṽ

us(w) −Qv
us(w)

∣∣ ≤ const |z̃0 − z0|2 |w|B
so that the quantity in (59) is bounded by const s |z̃0 − z0|2. Writing〈

z̃0 , dj0(λ
ṽ
s(w) − w)

〉
2
− 〈z0 , dj0(λ

v
s(w) − w)〉2 =

〈
z̃0 − z0 , dj0(λ

ṽ
s(w) − w)

〉
2

+
〈
z0 , dj0(λ

ṽ
s(w) − λv

s(w))
〉
2

and using
∣∣λṽ

s(w) − w
∣∣
∞ ≤ const s (which is deduced from Lemma 7 and a com-

putation of the differential of λṽ
s(w) with respect to s) and

∣∣λṽ
s(w) − λv

s(w)
∣∣
∞ ≤

const s |z̃0 − z0|2 (from Lemma 11 and (57)), we finally conclude that∣∣∣dϕṽ
0,s

ϕv
s,0 α ◦ ϕṽ

0,s − α0

∣∣∣
∞

≤ const s |z̃0 − z0|2 ,

which implies that the first integral in the right-hand term of (58) is bounded by
const t2 |z̃0 − z0|2.

Consider now the last term of (58), namely,∫ t

0

(dj0 ◦ γs − dj0)α0ds.

Since |α0|∞ ≤ C |z̃0 − z0|2, we must estimate |dγs
j0 − dj0|2. By Theorem 10, this is

a function of the kind

εM (dj0, |γs − Id|∞) = εM (dj0,
∣∣ϕṽ(s) − ϕv(s)

∣∣
∞),

where M depends only on |j0|H1 , |z0|2 , |z̃0|2. Since |ϕṽ
0,s − ϕv

0,s|∞ = O(s), we get
(with another function ε)∫ t

0

(dj0 ◦ γs − dj0)α0ds ≤ ε(j0, t)t |z̃0 − z0|2 .

We need finally to consider the last line of (56) which can be easily bounded from
above by ε(j0, t)t |z̃0 − z0|2. We now can collect the estimates we have obtained to
conclude the proof of Lemma 5.
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plications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 1 (1966),
pp. 319–361.

[6] R. Bajcsy and C. Broit, Matching of deformed images, in Proceedings of the 6th International
Conference on Pattern Recognition, Munich, Germany, 1982, pp. 351–353.

[7] R. Bajcsy and S. Kovacic, Multiresolution elastic matching, Comp. Vision, Graphics, and
Image Proc., 46 (1989), pp. 1–21.

[8] F. L. Bookstein, Principal warps: Thin plate splines and the decomposition of deformations,
IEEE Trans. Pattern Anal. Mach. Intell., 11 (1989), pp. 567–585.

[9] F. L. Bookstein, Morphometric Tools for Landmark Data; Geometry and Biology, Cambridge
University Press, Cambridge, UK, 1991.

[10] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983.
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NON-NEWTONIAN FLOWS∗
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Abstract. The mathematical properties of a nonlinear parabolic equation arising in the mod-
elling of concentrated suspension flows are investigated. The peculiarity of this equation is that it
may degenerate into a hyperbolic equation (in fact, a linear advection equation). Depending on the
initial data, at least two situations can be encountered: the equation may have a unique solution in
a convenient class, or it may have infinitely many solutions. The present article is the theoretical
side of a joint project with rheologists, aiming at better understanding the flows of complex fluids.
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1. Introduction and description of the model. Complex fluids are sub-
stances that are neither really liquid nor really solid in the classical sense. They
include melt polymers, colloids, emulsions, foams, gels, liquid crystals, suspensions,
and other materials that form flowable microstructures. Modelling the flow of such
fluids is a very intricate problem which is far from being solved up to now. The
model we are interested in is an attempt to recover the rheological behavior of the
particular type of concentrated suspensions. Examples of such suspensions are nu-
merous and can be found, e.g., in food (pastes), cosmetics (tooth paste), medicine
(blood), and building industry (cement). In contrast to some complex fluids such as
polymeric liquids for which elaborate rheological models, based on fine mesoscopic
physical descriptions, are available, the modelling of concentrated suspensions is still
in its infancy.

When simple fluids are sheared, stress and shear rate are linked by a linear re-
lation. The linear response coefficients are well understood and their relation to the
microstructure of the fluid are known [7]. On the contrary, complex systems, such
as concentrated suspensions of hard or soft spheres, exhibit very nonlinear flow prop-
erties far from being understood. These nonlinear properties occur not only at high
shear rates, where one expects that linear response theory does not apply, but also at
very low shear rates. Let us for instance consider a concentrated suspension of parti-
cles. At low concentrations, thermally induced structural relaxations of the particles
positions occur. The system behaves as a Newtonian fluid at low shear rates1. But,
when the concentration is increased, the energetical cost of particles reorganizations

∗Received by the editors June 19, 2003; accepted for publication (in revised form) November 5,
2004; published electronically August 17, 2005.
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1At higher shear rates, due to hydrodynamics interactions, the relation between the stress and

the shear rate may be sublinear, and the system is said to be shear-thinning. We neglect all hydro-
dynamics interactions in the following description.
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is much higher than thermal energy, and structural relaxations are arrested. This
implies that, once at rest, the system is not at thermal equilibrium, and exhibits gen-
eral properties of glasses [1, 11, 13, 14]. This property has a striking consequence on
the low shear rate flow of these systems: the stress σ tends to a finite nonzero value
σc when shear rate goes to zero. This discontinuity of the shear stress versus shear
rate is an experimental very common feature, but is very poorly understood. One of
the most common physical explanations relies on the hypothesis that the system may
locally store deformation. It relies on observations of the structures of concentrated
dispersions that appear to be frozen in nonequilibrium positions: particular config-
urations of the dynamically arrested suspension store deformation energy. They do
not correspond to configurations of minimal energy, and may thus store finite values
of stress and strain. The system may thus be described as an heterogeneous field of
stress and strain. Microscopic description of these fields does not exist, and, besides
studies which aim at improving phenomenological models (such as the celebrated
Herschel–Bulkley model [9]), a few attempts have been made to recover the rheo-
logical behavior of complex fluids from elementary physical processes. We consider
here the model proposed by Hébraud and Lequeux, in which the system is divided
in mesoscopic blocks whose size is large enough so that stress and strain tensors may
be defined for each block, but small compared to the characteristic length scale of
the stress field. A mesoscopic evolution equation of the stress of each block is then
written as:

(i) At low shear, each particle keeps the same neighbors, and a block behaves
as an Einstein elastic solid, in which the elasticity arises from interactions between
neighboring particles.

(ii) Then, deformation induces local reorganization of the particles, at a given
stress threshold σc. Above this threshold, the block flows as an Eyring fluid: the
configuration reached by shearing the suspension relaxes with a characteristic time
T0 towards a completely relaxed state, where no stress is stored.

(iii) Lastly, coupling between the flow of neighboring blocks must be included.
This is taken into account by the introduction of a diffusion term in the evolution
equation, where it is assumed that the diffusion coefficient is proportional to the
number of reorganizations per unit time.

In the model, each block carries a given shear stress σ (σ is a real number;
it is in fact an extra-diagonal term of the stress tensor in convenient coordinates).
The evolution of the blocks is described through a probability density p(t, σ) which
represents the distribution of stress in the assembly of blocks at time t. The equation
for the probability density p(t, σ) for a block to be under stress σ at time t is written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tp = −b(t)∂σp + D(p(t))∂2
σσp−

1lR\[−σc,σc](σ)

T0
p +

D(p(t))

α
δ0(σ),

t ∈ (0;T ), σ ∈ R,

p ≥ 0,

p(0, σ) = p0(σ),

(1.1)

where for f ∈ L1(R), we denote

D(f) =
α

T0

∫
|σ|>σc

f(σ)dσ.(1.2)
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The equation satisfied by p in (1.1) is referred to as the SP equation in the following.
In this equation, 1lR\[−σc,σc] denotes the characteristic function of the open set R \
[−σc, σc] and δ0 the Dirac delta function on R. The three terms arising from the
right-hand side of the HL equation model the three physical features described above.
When a block is submitted to a shear rate γ̇(t), the stress of this block evolves with
a variation rate b(t) = G0γ̇(t), where G0 is an elasticity constant. (In this study,
the shear rate γ̇(t), and therefore the function b(t), are assumed to be in L2

loc(R
+).)

When the modulus of the stress overcomes the critical value σc, the block becomes
unstable and may relax into a state with zero stress after a characteristic relaxation
time T0. This property is expressed by the last two terms in (1.1). This relaxation
phenomenon induces a rearrangement of the other blocks and this is finally modelled
through the diffusion term D(p(t))∂2

σσp. The diffusion coefficient D(p(t)) as given
by (1.2) is assumed to be proportional to the density of blocks that rearrange during
time T0, by a proportional parameter α which depends on the microscopic properties
of the sample and which is supposed to represent the “mechanical fragility” of the
material. This nonlinear diffusion term is introduced to display the importance of
collective effects in this kind of samples. For more details on the physical meaning of
the model, we refer to the original article by Hébraud and Lequeux [8].

In all that follows, the parameters α, T0 and σc are positive, and the initial data
p0 in (1.1) is a given probability density; that is,

p0 ≥ 0, p0 ∈ L1(R),

∫
R

p0 = 1.(1.3)

We will be looking for solutions p = p(t, σ) in C0
t (L1

σ ∩ L2
σ) such that σp belongs to

L∞
t (L1

σ) of the nonlinear parabolic partial differential equation (1.1). The subscript
σ refers to integration over R with respect to σ, whereas the subscript t refers to time
integration on [0, T ] for any T > 0. Note that under a mean-field assumption the
macroscopic stress in the material is given by

τ(t) =

∫
R

σp(t, σ)dσ,(1.4)

and therefore the above condition on σp ensures that the average stress is an essentially
bounded function of time.

Actually in practice, the shear rate is not uniform in the flow (the shear creates
elastic waves in the fluid), and in order to better describe the coupling between the
macroscopic flow and the evolution of the microstructure we introduce and study in
a second paper [2] a micro-macro model where the shear rate is a function of the
velocity of the macroscopic flow. In this model p is also a function of the macroscopic
space variables and the average stress defined by (1.4) is inserted into the macroscopic
equation governing the velocity of the macroscopic flow (see also section 6 below).

In order to lighten the notation and without loss of generality we assume from
now on that σc = 1 and T0 = 1. This amounts to changing the time and stress scales.

The main difficulties one encounters in the mathematical analysis come from the
nonlinearity in the diffusion term and even more from the fact that the parabolic
equation may degenerate when the viscosity coefficient D(p) vanishes, and this will
be shown to appear only when D(p0) = 0. This difficulty is illustrated on a simplified
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example just below and also in section 5 where we discuss the existence of stationary
solutions in the case when the shear rate b is a constant.

Let us first of all look at the following simplified model which already includes
the difficulties we are going to face to in the study of (1.1). We consider the equation{

∂tu = D(u(t))∂2
σσu,

u(0, σ) = 1
21l]−1,1[(σ),

(1.5)

where 1l]−1,1[ is the characteristic function of the interval ]−1, 1[. The initial condition

is purposely chosen in such a way that D(u(t = 0)) = 0. The function u = 1
21l]−1,1[(σ)

is a stationary solution to this equation and for this solution D(u(t)) is identically
zero. But it is not the unique solution to (1.5) in C0

t (L2
σ) ∩ L∞

t (L1
σ). It is indeed

possible to construct a so-called vanishing viscosity solution for which D(u(t)) > 0
for all t > 0, and there are actually infinitely many solutions to this equation. (This
statement is obtained as a corollary of Lemma 4.3 in section 4 below.)

As far as (1.1) is concerned, we show that, in the case when D(p0) = 0 and b ≡ 0,
we may have either a unique or infinitely many solutions, depending on the initial
data (see Proposition 4.1 in section 4).

On the other hand, we are able to prove the following existence and uniqueness
result in the nondegenerate case when D(p0) > 0.

Theorem 1.1. Let the initial data p0 satisfy the conditions

p0 ∈ L1(R) ∩ L∞(R), p0 ≥ 0,

∫
R

p0 = 1, and

∫
R

|σ|p0 < +∞,(1.6)

and assume that

D(p0) > 0.

Then, for every T > 0, there exists a unique solution p to (1.1) in L∞
t (L1

σ ∩ L2
σ) ∩

L2
t (H

1
σ). Moreover, p ∈ L∞

t,σ ∩C0
t (L1

σ ∩L2
σ),
∫

R
p(t, σ)dσ = 1 for all t > 0, D(p) ∈ C0

t

and for every T > 0 there exists a positive constant ν(T ) such that

min
0≤t≤T

D(p(t)) ≥ ν(T ).

Besides σp ∈ L∞
t (L1

σ) so that the average stress τ(t) is well-defined by (1.4) in L∞
t .

The first step towards the existence proof of solutions to (1.1) will consist of the
study of so-called vanishing viscosity approximations, which are the unique solutions
to the following family of equations:⎧⎪⎪⎨

⎪⎪⎩
∂tpε = −b(t)∂σpε + (D(pε(t)) + ε)∂2

σσpε − 1lR\[−1,1]pε +
D(pε(t))

α
δ0(σ),

pε ≥ 0,

pε(0, ·) = p0.

(1.7)

(Recall that we have rescaled the time and stress units to get T0 = 1 and σc = 1.)
Section 2 below is devoted to the proof of the following proposition.

Proposition 1.2 (existence and uniqueness of vanishing viscosity approxima-
tions). Let T > 0 be given. We assume that the initial data satisfies the same
conditions (1.6) as in the statement of the theorem. Then, for every T > 0 and
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0 < ε ≤ 1, there exists a unique solution pε to (1.7) in L∞
t (L1

σ ∩ L2
σ) ∩ L2

t (H
1
σ).

Moreover, pε ∈ L∞
t,σ ∩ C0

t (L1
σ ∩ L2

σ), D(pε) ∈ C0
t ,∫

R

pε = 1,(1.8)

0 ≤ pε ≤ ‖p0‖L∞
σ

+

√
α

π

√
T ,(1.9)

and for every T > 0, there exist positive constants C1(T, p0), C2(T, p0), and C3(T, p0)
which are independent of ε such that

sup
0≤t≤T

∫
R

|σ|pε ≤ C1(T, p0),(1.10)

sup
0≤t≤T

∫
R

p2
ε ≤ C2(T, p0),(1.11)

and ∫ T

0

(
ε + D(pε)

) ∫
R

|∂σpε|2 ≤ C3(T, p0).(1.12)

Theorem 1.1 is then proved in section 3 while the degenerate case is investigated
in section 4. Lastly, the description of stationary solutions in the constant shear rate
case is carried out in section 5.

2. The vanishing viscosity approximation. This section is devoted to the
proof of Proposition 1.2. We begin with the following lemma.

Lemma 2.1 (uniqueness). Let p0 satisfy (1.3). Then for every T > 0 and 0 < ε,
there exists at most one solution pε to (1.7) in L∞

t (L1
σ ∩ L2

σ) ∩ L2
t (H

1
σ). Moreover,

pε ∈ C0
t (L2

σ) (thus, the initial condition makes sense) and∫
R

pε = 1,(2.1)

for almost every t in [0, T ].
Proof. We begin by proving that every solution to (1.7) in L∞

t (L1
σ ∩L2

σ)∩L2
t (H

1
σ)

satisfies (2.1). We fix R > 1 and we consider a cut-off C2 function φR = φR(σ) with
compact support which is equal to 1 when 0 ≤ |σ| ≤ R and to 0 when |σ| ≥ 2R and
such that

|φ′
R| ≤

C

R
,(2.2)

where here and below C denotes a positive constant that is independent of R. Notice
that φ′ is equal to 0 on ] −∞,−2R], on [−R,R] and on [2R,+∞[.

Now, we multiply (1.7) by φR and integrate over [0, t] × R to obtain∫
R

pε(t)φR −
∫

R

p0φR

= −
∫ t

0

b(s)

∫
R

∂σpε(s)φR −
∫ t

0

(D(pε(s)) + ε)

∫
R

∂σpε(s)φ
′
R

−
∫ t

0

∫
|σ|>1

pε(s)φR +
1

α

∫ t

0

D(pε(s))φR(0).
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We bound the terms on the right-hand side from above as follows. First, we have∣∣∣∣
∫ t

0

b(s)

∫
R

∂σpε(s)φR

∣∣∣∣ ≤
∫ t

0

|b(s)|
∫

R

pε(s)|φ′
R|

≤ C

R

∫ t

0

|b(s)|
∫
R≤|σ|≤2R

pε(s) ≤
C

R
,

thanks to (2.2) and using that pε ∈ L∞
t (L1

σ) and b ∈ L1
t . Next,

∫ t

0

(D(pε) + ε)

∣∣∣∣
∫

R

∂σpεφ
′
∣∣∣∣ ≤ (ε + α‖pε‖L∞

t (L1
σ))

∫ t

0

‖∂σpε‖L2
σ
‖φ′

R‖L2
σ

≤ C
√
t

R1/2
‖∂σpε‖L2

t,σ
≤ C

R1/2
,

thanks again to (2.2), the Cauchy–Schwarz inequality and since ∂σpε is in L2
t,σ. Fi-

nally,

0 ≤ 1

α

∫ t

0

D(pε) −
∫ t

0

∫
|σ|>1

pεφR =

∫ t

0

∫
|σ|>1

pε(1 − φR)

≤
∫ t

0

∫
|σ|>R

pε,

and the right-hand side goes to 0 as R goes to infinity since pε is in L∞
t (L1

σ). All this
together yields∫

R

pε(t) = lim
R→+∞

∫
R

pε(t)φR = lim
R→+∞

∫
R

p0φR =

∫
R

p0 = 1,

for almost every t in [0, T ]. In particular, this implies that D(pε) ≤ α.
Let us now argue by contradiction by assuming that there exist two solutions

p1 and p2 to (1.7) corresponding to the same initial data p0. By subtracting the
equations satisfied by p1 and p2, respectively, we obtain⎧⎪⎨

⎪⎩
∂tq = −b(t)∂σq + D(q)∂2

σσp1 + (D(p2) + ε)∂2
σσq

−1lR\[−1,1]q +
D(q)

α
δ0(σ),

q(0, σ) = 0,

(2.3)

where q = p1 − p2. We multiply (2.3) by q and integrate over R with respect to σ to
obtain, after integrations by parts,

1

2

d

dt

∫
R

q2 + (D(p2) + ε)

∫
R

|∂σq|2 +

∫
|σ|>1

q2

(2.4)

=
D(q)

α
q(t, 0) −D(q)

∫
R

∂σp1∂σq.

We first remark that since
∫

R
p1 =

∫
R
p2 = 1 thanks to (2.1), we get

|D(q)| = α

∣∣∣∣
∫
|σ|<1

q

∣∣∣∣ ≤ α
√

2‖q‖L2
σ
,



66 ERIC CANCÈS, ISABELLE CATTO, AND YOUSRA GATI

with the help of the Cauchy–Schwarz inequality. Next, using the Sobolev embedding
of H1(R) into L∞(R), we bound the terms on the right-hand side from above in the
following way:∣∣∣∣D(q)

α
q(t, 0) −D(q)

∫
R

∂σp1∂σq

∣∣∣∣
≤

√
2‖q‖L2

σ
‖q‖L∞

σ
+
√

2α‖q‖L2
σ

∫
R

|∂σp1∂σq|

≤
√

2‖q‖L2
σ

(
‖q‖2

L2
σ

+ ‖∂σq‖2
L2

σ

) 1
2 +

√
2α‖q‖L2

σ
‖∂σp1‖L2

σ
‖∂σq‖L2

σ

≤ 1

ε
‖q‖2

L2
σ

+
α2

ε
‖q‖2

L2
σ
‖∂σp1‖2

L2
σ

+
ε

2
‖q‖2

L2
σ

+ ε‖∂σq‖2
L2

σ
.

Therefore, comparing with (2.4) we deduce that

1

2

d

dt
‖q‖2

L2
σ
≤
(

1

ε
+

α2

ε
‖∂σp1‖2

L2
σ

+
ε

2

)
‖q‖2

L2
σ
.

Finally, by applying the Gronwall lemma, we prove that ‖q‖2
L2

σ
≤ 0, thus q = 0. The

uniqueness of the solution follows.
Remark 2.2. The same proof shows that if there exists a solution to (1.1) in

L∞
t (L1

σ ∩ L2
σ) ∩ L2

t (H
1
σ) such that inf0≤t≤T D(p(t)) > 0, then it is unique in this

space.
We now turn to the existence part in the statement of Proposition 1.2. From now

on we fix a positive constant ε ≤ 1. The proof of Proposition 1.2 will be carried out
by the Schauder fixed point theorem. For given positive constants M(≥ ε) and R,
we introduce Dε,M and YR two closed convex subsets of, respectively, L2

t and L2
t,σ as

follows:

Dε,M =
{
a ∈L2

t ; ε ≤ a ≤ M
}

YR =

{
p ∈L2

t,σ; p ≥ 0, sup
0≤t≤T

∫
R

|σ|p ≤ R

}
.

To simplify notation we denote⎧⎨
⎩ϕη(x) =

1√
2πη

exp

(
− x2

2η2

)
if η > 0,

ϕ0 = δ0.

We first prove the following proposition.
Proposition 2.3. Let T > 0 and let p0 ∈ L2(R) such that p0 ≥ 0. Then, for

every a in Dε,M and q in YR, there exists a unique solution p in L∞
t (L2

σ)∩L2
t (H

1
σ) to

⎧⎪⎨
⎪⎩
∂tp(t, σ) = −b(t)∂σp(t, σ) + a(t)∂2

σσp(t, σ)

−1lR\[−1,1](σ)p(t, σ) +
D(q)

α
δ0(σ),

p(0, σ) = p0(σ).

(2.5)

Moreover, p ∈ C0
t (L2

σ), p is nonnegative and

p− ≤ p ≤ p+,(2.6)
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with

p−(t, σ) = e−t

∫ +∞

−∞
p0(σ

′)ϕ√
2
∫ t

0
a
(σ − σ′ − χ(t))dσ′(2.7)

and

p+(t, σ) =

∫ +∞

−∞
p0(σ

′)ϕ√
2
∫ t

0
a
(σ − σ′ − χ(t))dσ′

(2.8)

+
1

α

∫ t

0

D(q(s))ϕ√
2
∫ t

s
a
(σ − χ(t) + χ(s))ds,

where χ(t) =
∫ t

0
b(s)ds. In addition,

(i) If p0 ∈ L∞(R), then p is in L∞
t,σ and

0 ≤ p ≤ ‖p0‖L∞ +
R

√
T√

π
√
ε
.(2.9)

(ii) If
∫

R
|σ|p0 < +∞ (thus p0 ∈ L1(R)), then |σ|p ∈ L∞

t (L1
σ). More precisely,

we have

sup
0≤t≤T

∫
R

|σ|p ≤
∫

R

|σ|p0 +
√
T‖b‖L2(0,T )‖p0‖L1 +

2R

3
T 3/2‖b‖L2(0,T )

(2.10)

+
2√
π

(MT
)1/2‖p0‖L1 +

4R
√
M

3
√
π

T 3/2.

Moreover, p ∈ C0
t (L1

σ) and D(p) ∈ C0
t .

Proof. Let us first observe that for every q in YR, D(q) ∈ L∞
t since

0 ≤ D(q(t)) ≤ α

∫
|σ|>1

|σ|q ≤ αR,(2.11)

for almost every t in [0, T ]. Therefore the source term D(q(t))δ0(σ) in (2.5) is in
L∞
t (H−1

σ ) and the existence and uniqueness of a solution p ∈ C0
t (L2

σ)∩L2
t (H

1
σ) to the

system (2.5) is well known (see, for example, [4]). In particular, the initial condition
makes sense. Owing to the fact that the source term is nonnegative, the proof that
p ≥ 0 is also standard (see again [4]).

We now check the pointwise inequality (2.6).
This is ensured by the maximum principle with observing that p− and p+ given,

respectively, by (2.7) and (2.8), are the unique solutions to the systems⎧⎨
⎩
∂tp− = −b∂σp− + a∂2

σσp− − p−,

p−(0, σ) = p0(σ),

and ⎧⎪⎪⎨
⎪⎪⎩
∂tp+ = −b∂σp+ + a∂2

σσp+ +
D(q)

α
δ0(σ),

p+(0, σ) = p0(σ),
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respectively. We now turn to the proof of statement (i), and assume that p0 belongs
to L∞(R). Then, using the two facts that for every ν > 0,

∫
R
ϕν = 1 and ϕν ≤ 1√

2πν
,

(2.9) is easily deduced from p ≤ p+ with the help of (2.11) and since a ≥ ε.
Suppose now that

∫
R
|σ|p0 < +∞. This together with the assumption p0 ∈ L2(R),

guarantees that p0 ∈ L1(R) (see also below). Using (2.6) again, we now have

∫
R

|σ|p ≤
∫

R

|σ|p+

≤
∫

R

∫
R

p0(σ
′)|σ|ϕ√

2
∫ t

0
a
(σ − χ(t) − σ′)dσdσ′

+
1

α

∫ t

0

D(q(s))

(∫
R

|σ|ϕ√
2
∫ t

s
a
(σ − χ(t) + χ(s))dσ

)
ds

=

∫
R

∫
R

p0(σ
′)|σ + σ′ + χ(t)|ϕ√

2
∫ t

0
a
(σ)dσdσ′(2.12)

+
1

α

∫ t

0

D(q(s))

(∫
R

|σ + (χ(t) − χ(s))|ϕ√
2
∫ t

s
a
(σ)dσ

)
ds

≤
∫

R

|σ|p0(σ)dσ + |χ(t)|‖p0‖L1 +
1

α

∫ t

0

|χ(t) − χ(s)|D(q(s))ds

+
2√
π

(∫ t

0

a

)1/2

‖p0‖L1 +
2

α
√
π

∫ t

0

D(q(s))

(∫ t

s

a

)1/2

ds,

since
∫

R
|σ|ϕν(σ)dσ = (2/π)1/2ν and

∫
R
ϕν = 1. With the help of (2.11), and observing

that |χ(t) − χ(s)| ≤
√
t− s‖b‖L2(0,T ), we then deduce (2.10).

We now use this bound to check that p ∈ C0
t (L1

σ) and D(p) ∈ C0
t . Indeed, for

any t in [0, T ], any A > 1, and any sequence tn in [0, T ] which converges to t, we have

∫
R

∣∣p(tn) − p(t)
∣∣ = ∫

|σ|≤A

∣∣p(tn) − p(t)
∣∣+ ∫

|σ|≥A

∣∣p(tn) − p(t)
∣∣

≤
√

2A

(∫
R

∣∣p(tn) − p(t)
∣∣2)1/2

+
1

A

∫
R

|σ|
(
|p(tn)| + |p(t)|

)
(2.13)

≤
√

2A

(∫
R

∣∣p(tn) − p(t)
∣∣2)1/2

+
2

A
sup

0≤t≤T

∫
R

|σ||p(t)|.

For any fixed A, the first term on the right-hand side goes to 0 as n goes to infinity
since p ∈ C0

t (L2
σ) and then the second term is arbitrarily small as A goes to infinity.

The same argument yields the continuity of D(p(t)) with respect to t.
The following proposition aims at checking the required assumptions to apply the

Schauder fixed point theorem.
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Proposition 2.4. Let Tf > 0 be given. We assume that

p0 ∈ L1(R) ∩ L∞(R), p0 ≥ 0,

∫
R

p0 = 1, and

∫
R

|σ|p0 < +∞.(2.14)

Let 0 < ε ≤ 1, R = 1 +
∫

R
|σ|p0, and M = 1 + 2α. We define

Tc =
9

25

[
‖b‖L2(0,Tf ) +

2
√

1 + 2α√
π

]−2

.(2.15)

Then, for every T ≤ min( 1
R ;Tc), the function T : (a; q) 
→ (D(p) + ε; p), with p

being the solution to the system (2.5), maps Dε,M × YR into itself. Moreover, T is
continuous and T (Dε,M × YR) is relatively compact in L2(0, T ) × L2

t,σ.
Proof. Step 1. T is well-defined. According to Proposition 2.3, p is in C0

t (L1
σ)

and D(p) ∈ C0
t . We now prove that with our choice for M (which ensures that

ε + D(p0) ≤ 1 + α ≤ M), D(p) + ε ∈ Dε,M . For this, we again use the inequality
p ≤ p+, the definition (2.8) of p+, the rough estimate

∫
|σ|>1

ϕν ≤
∫

R
ϕν = 1 and

(2.11) to obtain

sup
0≤t≤T

D(p(t)) ≤ sup
0≤t≤T

D(p+(t)) ≤ α + αRT ≤ 2α,

for T ≤ 1
R . It only remains now to check that sup0≤t≤T

∫
R
|σ|p ≤ R. We thus go back

to (2.10) and observe that this condition holds provided

T ≤ max

{
t > 0; ‖b‖L2(0,Tf )

√
t

(
1 +

2R

3
t

)
+

2
√
Mt√
π

+
4R

√
Mt3/2

3
√
π

≤ 1

}
.

Since we have already demanded that t ≤ T ≤ 1
R , a sufficient condition is then

√
T

[
5

3
‖b‖L2(0,Tf ) +

10
√

1 + 2α

3
√
π

]
≤ 1,

which reduces to T ≤ Tc with Tc given by (2.15).
Our next step will consist of establishing a priori bounds on p in L∞

t (L2
σ)∩ L2

t (H
1
σ).

Step 2. A priori bounds. If we multiply (2.5) by p and integrate by parts over R

with respect to σ we easily obtain

1

2

d

dt

∫
R

p2 + a

∫
R

|∂σp|2 ≤ D(q)

α
p(t, 0).

Since from the Sobolev embedding of H1(R) into L∞(R) and the bound (2.11) on
D(q), we get ∣∣∣∣D(q)

α
p(t, 0)

∣∣∣∣ ≤ R‖p‖L∞
σ

≤ R
(
‖p‖2

L2
σ

+ ‖∂σp‖2
L2

σ

) 1
2

≤ R2

2ε
+

ε

2
‖p‖2

L2
σ

+
ε

2
‖∂σp‖2

L2
σ
,

we may write

1

2

d

dt
‖p‖2

L2
σ

+
(
a− ε

2

)
‖∂σp‖2

L2
σ
≤ R2

2ε
+

ε

2
‖p‖2

L2
σ
.(2.16)
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We recall that a ≥ ε and we apply the Gronwall lemma to obtain

sup
0≤t≤T

‖p‖2
L2

σ
≤ eεT

(
‖p0‖2

L2
σ

+
TR2

ε

)
.(2.17)

We now return to (2.16) and integrate it over [0;T ] to obtain

ε‖∂σp‖2
L2

t,σ
≤ ‖p0‖2

L2
σ
(1 + εTeεT ) +

TR2

ε
(1 + εTeεT ).(2.18)

Step 3. The function T is continuous. We consider a sequence (an; qn) in
Dε,M × YR such that an converges to a strongly in L2

t and qn converges to q strongly
in L2

t,σ, and we denote T (an; qn) = (D(pn) + ε; pn). We have to prove that pn
converges strongly to p in L2

t,σ and D(pn) converges to D(p) strongly in L2
t , with

(D(p) + ε; p) = T (a; q).
In virtue of (2.17) and (2.18), the sequence pn is bounded in L∞

t (L2
σ) ∩ L2

t (H
1
σ).

Then, ∂σpn is bounded in L∞
t (H−1

σ ) and ∂2
σσpn is bounded in L2

t (H
−1
σ ). Since an∂

2
σσpn

is bounded in L2
t (H

−1
σ ), b ∈ L2

t and D(qn)δ0 is bounded in L2
t (H

−1
σ ), ∂tpn is bounded

in L2
t (H

−1
σ ). This together with the fact that pn is bounded in L2

t (H
1
σ) implies that,

up to a subsequence, pn converges strongly towards p in L2
t (L

2
loc,σ) (the convergence

being weak in L2
t (H

1
σ)) thanks to a well-known compactness result [10]. In particular,

pn converges to p almost everywhere. Thus p ≥ 0 and by Fatou’s lemma,
∫

R
|σ|p ≤ R

almost everywhere on [0;T ]. Hence p belongs to YR. We are going to show that the
convergence is actually strong in L2

t,σ.
In virtue of (2.9) in Proposition 2.3, we dispose of a uniform a priori bound on pn

in L∞
t,σ (hence also on p). For the strong convergence in L2

t,σ we then argue as follows.
For any fixed positive real number K, we have∫ T

0

∫
R

|pn − p|2 ≤
∫ T

0

∫
|σ|≤K

|pn − p|2 +

∫ T

0

∫
|σ|>K

|pn − p|2

≤
∫ T

0

∫
|σ|≤K

|pn − p|2 + (‖pn‖L∞
t,σ

+ ‖p‖L∞
t,σ

)
2RT

K
,

owing to the fact that pn and p belong to a bounded subset of YR ∩ L∞
t,σ. We then

conclude by letting n, then K, go to infinity.
We now prove that D(pn) converges to D(p) strongly in L2

t . We shall actually
prove that D(pn) converges to D(p) strongly in L1

t and then use the fact that D(pn)
is bounded in L∞

t , in virtue of (2.11) and because pn lies in YR. Let us fix K > 1.
Then, we have

1

α

∫ T

0

|D(pn) −D(p)| =

∫ T

0

∣∣∣∣∣
∫
|σ|>1

(pn − p)

∣∣∣∣∣
≤
∫ T

0

∫
1<|σ|<K

|pn − p| + 1

K

∫ T

0

∫
|σ|>K

|σ|(|pn| + |p|)(2.19)

≤
∫ T

0

∫
1<|σ|<K

|pn − p| + 2RT

K
,

because p and pn belong to YR. Since pn converges to p strongly in L1
t (L

1
loc,σ), we

conclude that D(pn) converges to D(p) in L1
t by letting n, then K, go to infinity

in (2.19).
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In order to pass to the limit in the equation satisfied by pn (thereby proving that
(D(p) + ε; p) = T (a; q)), we now observe that the strong convergence of qn to q in
L2
t,σ, together with the argument in (2.19) above shows that D(qn) converges to D(q)

strongly in L2
t . It is then easily proved that p is a weak solution to (1.7) and since p

is in L2
t (H

1
σ) it is the unique solution to (2.5) corresponding to a and q. In particular,

the whole sequence pn converges and not only a subsequence.
Step 4. T (Dε × YR) is relatively compact. Let (D(pn) + ε; pn) = T (an; qn) be

a sequence in T (Dε,M × YR). We have to prove that we may extract a subsequence
which converges strongly in L2

t × L2
t,σ. Exactly as for the proof of the continuity,

the a priori estimates (2.17) and (2.18) ensure that the sequence pn is bounded in
L∞
t (L2

σ) ∩ L2
t (H

1
σ). Since |σ|pn is bounded L∞

t (L1
σ), we can mimic the argument in

Step 3 above to deduce that up to a subsequence the sequence pn converges to some
p in YR strongly in L2

t,σ and that D(pn) converges to D(p) strongly in L2
t .

We are now in position to conclude the proof of Proposition 1.2.
Let Tf > 0 and 0 < ε ≤ 1 being given. We are going to prove the existence of a

unique solution on [0;Tf ].
Being given an initial data p0 which satisfies (1.6), existence of a solution pε is

ensured from Proposition 2.4 by applying the Schauder fixed point theorem on “short”
time interval [0;T1] with T1 = min( 1

R1
, Tc) and where R1 = 1+

∫
R
|σ|p0. This solution

is uniquely defined in virtue of Lemma 2.1 and we know from (2.1) that
∫

R
pε(T1) = 1.

Moreover, from Proposition 2.3 pε(T1) ∈ L∞
σ and by construction

∫
R
|σ|pε(T1) ≤ R1.

Therefore pε(T1) satisfies the same conditions (2.14) as p0. Then, repeating the same
argument we may build a solution to (1.7) with initial data pε(T1) on [T1;T2] with
T2 = min( 1

R2
, Tc), where R2 = R1 + 1 =

∫
R
|σ|p0 + 2. Thanks to the uniqueness

result (Lemma 2.1), if we now glue this solution to pε at t = T1 we obtain the unique
solution to (1.7) on [0;T1 + T2]. It is now clearly seen that for any integer n ≥ 1 we
may build a solution to (1.7) on [0;

∑
1≤k≤n Tk] with Tk = min((k +

∫
R
|σ|p0)

−1;Tc).
Since

∑
1≤k≤n Tk obviously goes to +∞ together with n, existence (and uniqueness)

of the solution pε to (1.7) is obtained on every time interval.
For the proof of (1.9) we argue as for the proof of (2.9) in Proposition 2.3. Defining

p+
ε as in (2.8) with a replaced by D(pε) + ε and D(q) by D(pε), we obtain

0 ≤ pε ≤ p+
ε

≤ ‖p0‖L∞ +
1

α
√
π

∫ t

0

D(pε(s))

2
√
ε +
∫ t

s
D(pε)

ds

≤ ‖p0‖L∞ +
1

α
√
π

⎡
⎣
√
ε +

∫ t

0

D(pε) −
√
ε

⎤
⎦

≤ ‖p0‖L∞ +
1

α
√
π

√∫ t

0

D(pε)

≤ ‖p0‖L∞ +

√
α
√
T√

π
.

Then ∫
R

p2
ε ≤ ‖pε‖L∞

σ

∫
R

pε,

from which (1.11) follows gathering together (2.1) and (1.9) and, with the notation
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of the proposition,

C2(T, p0) = ‖p0‖L∞ +

√
α
√
T√

π
.

The proof of (1.10) follows the same lines as the proof of (2.12). Indeed, we again
use the pointwise inequality pε ≤ p+

ε and replace D(q) by D(pε)(≤ α) and a by
D(pε) + ε(≤ α + 1) in (2.12) and use (2.14) to deduce

sup
0≤t≤T

∫
R

|σ|pε ≤
∫

R

|σ|p0 +
√
T

(
2
√

1 + α√
π

+ ‖b‖L2(0,T )

)
+

2

3
T 3/2

(
1 +

2
√

1 + α√
π

)
,

whence (1.10) with C1(T, p0) being the quantity in the right-hand side of the above
inequality.

In order to prove (1.12), we apply pε to (1.7) and we integrate by parts over R

with respect to σ to obtain

1

2

d

dt

∫
R

p2
ε + (D(pε) + ε)

∫
R

|∂σpε|2 +

∫
|σ|>1

p2
ε =

D(pε)

α
pε(t, 0).(2.20)

We use the L∞ bound (1.9) to bound the right-hand side and we integrate (2.20) with
respect to t over [0;T ] to deduce (1.12) with

C3(T, p0) = ‖p0‖L∞

(
1

2
+ T

)
+

√
α√
π
T 3/2,

using ‖p0‖2
L2

σ
≤ ‖p0‖L∞

∫
R
p0.

3. The nondegenerate case: D(p0) > 0. The main result of this section
corresponds to the statement of Theorem 1.1 and fully describes the issue of existence
and uniqueness of solutions to the HL equation (1.1) in the nondegenerate case. It is
summarized in the following proposition.

Proposition 3.1. Let p0 satisfy (1.6). We assume that D(p0) > 0. Then, the
HL equation (1.1) has a unique solution p in C0

t (L2
σ) ∩ L2

t (H
1
σ) and p is the limit (in

L2
t,loc(L

2
σ) ∩ C0

t,loc(L
2
σ)) of (pε) when ε goes to 0 where pε is the vanishing viscosity

solution whose existence and uniqueness is ensured by Proposition 1.2. Moreover,
p ∈ L∞

t,σ ∩ C0
t (L1

σ), σp ∈ L∞
t (L1

σ) and
∫

R
p = 1. Furthermore, D(p) ∈ C0

t and for
every T > 0 there exists a positive constant ν(T ) such that

min
0≤t≤T

D(p(t)) ≥ ν(T ).(3.1)

We begin by proving the following lemma.
Lemma 3.2. We assume that p0 satisfies (1.6). Then, if D(p0) > 0, D(pε)(t) > 0

for every t ∈ [0, T ], with pε being the unique solution to (1.7) provided by Proposi-
tion 1.2 and, actually, for every T > 0 there exists a positive constant ν(T ) such that

min
0≤t≤T

D(pε(t)) ≥ ν(T ),(3.2)

for every 0 < ε ≤ 1.
Remark 3.3. Note that this bound from below is independent of ε, but it comes

out from the proof that it depends on p0 and on the shear b.
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Proof. The proof relies on the bound from below in (2.6) that we integrate over
|σ| > 1 to obtain

D(pε(t)) ≥ α

∫
|σ|>1

p−ε

(3.3)

≥ αe−t

∫
R

p0(σ
′)

⎛
⎝∫

|σ|>1

ϕ√
2
∫ t

0
(D(pε)+ε)

(σ − σ′ − χ(t))dσ

⎞
⎠ dσ′.

Let us define Kχ = [−1 − χ(t), 1 − χ(t)]. The function σ 
→ ϕ√
2
∫ t

0
(D(pε)+ε)

(σ −

σ′ − χ(t)) is a Gaussian probability density with mean σ′ + χ(t) and squared width

2
∫ t

0
(D(pε) + ε). Therefore, for every σ′ ∈ R \Kχ, we have

∫
|σ|>1

ϕ√
2
∫ t

0
(D(pε)+ε)

(σ − σ′ − χ(t))dσ ≥ 1

2
,

which implies (3.3) is

≥ α

2
e−T

∫
R\Kχ

p0 =
α

2
e−T

∫
|σ+χ(t)|>1

p0.

In the zero shear case (b ≡ 0, thus χ ≡ 0) the proof is over and

min
0≤t≤T

D(p(t)) ≥ 1

2
e−TD(p0).

In the general case, a strictly positive bound from below is available as long as the
support of p0 is not contained in Kχ. We thus define

t∗ = inf

{
t > 0;

∫
|σ+χ(t)|>1

p0 = 0

}
.(3.4)

Then 0 < t∗ (t∗ possibly even infinite), the support of p0 is contained in [−1−χ(t∗), 1−
χ(t∗)[, and for every T < t∗

2 , (3.2) holds for some positive constant ν1(T ) defined by

ν1(T ) =
α

2
e−T min

0≤t≤T

∫
|σ+χ(t)|>1

p0.(3.5)

It is worth emphasizing that this quantity is independent of ε. If t∗ = +∞, the proof
is over and ν(T ) = ν1(T ) fits. Let us now examine the case when t∗ < +∞ and
T ≥ t∗

2 .

We go back to (3.3), take t in [ t
∗

2 ;T ], and denote x =
∫ t

0
(D(pε)+ ε) for shortness.
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Then

D(pε(t)) ≥ αe−T

∫ 1−χ(t∗)

−1−χ(t∗)

p0(σ
′)

(∫
|σ|>1

ϕ√
2x(σ − σ′ − χ(t))dσ

)
dσ′

= αe−T

∫ 1−χ(t∗)

−1−χ(t∗)

p0(σ
′)

(∫
|σ|>1

e−(σ−σ′−χ(t))2/4x

2
√
π
√
x

dσ

)
dσ′

=
α√
π
e−T

∫ 1−χ(t∗)

−1−χ(t∗)

p0(σ
′)

(∫ −1+σ′+χ(t)

−∞

e−σ2/4x

2
√
x

dσ

+

∫ +∞

1+σ′+χ(t)

e−σ2/4x

2
√
x

dσ

)
dσ′

=
α√
π
e−T

∫ 1−χ(t∗)

−1−χ(t∗)

p0(σ
′)

(∫ +∞

1+σ′+χ(t)

2
√

x

e−t2dt +

∫ +∞

1−σ′−χ(t)

2
√

x

e−t2dt

)
dσ′

≥ α√
π
e−T

(∫ 1−χ(t∗)

−1−χ(t∗)

p0(σ
′)dσ′

)(∫ +∞

2−χ(t∗)+χ(t)√
2t∗ν1(t∗/2)

e−t2dt

+

∫ +∞

2+χ(t∗)−χ(t)√
2t∗ν1(t∗/2)

e−t2dt

)
;

hence

D(pε(t)) ≥
α√
π
e−T min

t∗/2≤t≤T

⎛
⎝∫ +∞

2−χ(t∗)+χ(t)√
2t∗ν1(t∗/2)

e−t2dt +

∫ +∞

2+χ(t∗)−χ(t)√
2t∗ν1(t∗/2)

e−t2dt

⎞
⎠ ,(3.6)

since
∫ 1−χ(t∗)

−1−χ(t∗)
p0 = 1 and x ≥

∫ t∗/2

0
D(pε) ≥ t∗ν1(t

∗/2)/2 thanks to (3.5). The proof

of Lemma 3.2 then follows by defining

ν(T ) = min(ν1(T ); ν2(T )),

with ν1(T ) given by (3.5) and ν2(T ) being the positive quantity on the right-hand
side of (3.6), that is

ν2(T ) =
α√
π
e−T min

t∗/2≤t≤T

⎛
⎝∫ +∞

2−χ(t∗)+χ(t)√
2t∗ν1(t∗/2)

e−t2dt +

∫ +∞

2+χ(t∗)−χ(t)

2
√

2t∗ν1(t∗/2)

e−t2dt

⎞
⎠ .

Proof of Proposition 3.1. We first go back to the proof of the bound (1.12) on
∂σpε, and more precisely we look at (2.20), and observe that in virtue of (3.1)

ν(T )

∫ T

0

∫
R

|∂σpε|2 ≤ C3(T, p0).(3.7)

Now let εn denote any sequence in [0, 1] which goes to 0 as n goes to infinity. To
shorten the notation we denote by pn instead of pεn the corresponding sequence of
solutions to (1.7). With the above bound (3.7) on pn and (1.11), we know that pn
is bounded in L2

t (H
1
σ) independently of n. Moreover, thanks to (2.1) and (1.9), pn

is bounded in L∞
t (L1

σ ∩ L∞
σ ) and we also dispose of a uniform bound on

∫
R
|σ|pn in
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virtue of (1.10). Therefore arguing exactly as in the proof of Proposition 2.4 (Step
4) where we have proved that the mapping T is relatively compact in L2

t × L2
t,σ we

show that pn converges to some p strongly in L2
t,σ and D(pn) converges to D(p) in

L2
t . Therefore, the nonlinear term D(pn)∂2

σσpn converges to D(p)∂2
σσp strongly in

L1
t (H

−2
σ ) (for instance). Then p is a weak solution to the initial problem (1.1) in

L2
t (H

1
σ) ∩ L∞

t (L1
σ ∩ L∞

σ ),
∫

R
p = 1 and

∫
R
|σ|p < +∞. Moreover,

inf
0≤t≤T

D(p(t)) ≥ ν(T ).

This nondegeneracy condition on the viscosity coefficient ensures that there is at most
one solution to (1.1) in L2

t (H
1
σ) ∩ L∞

t (L2
σ) (this follows by an obvious adaptation of

the proof of Lemma 2.1 to this case). Therefore the limiting function p is uniquely
defined and does not depend on the sequence εn. Moreover, the whole sequence pn
converges to this unique limit and not only a subsequence.

As a conclusion of this subsection let us make the following comment which is a
by product of Proposition 3.1. If p is a solution to (1.1) in C0

t (L1
σ ∩L2

σ), then as soon
as D(p(t)) is positive for some time t it remains so afterwards since the solution can
be continued in a unique way starting at time t.

4. The degenerate case: D(p0) = 0. Throughout this section we assume
that p0 satisfies (1.3) and that D(p0) = 0. Therefore the support of p0 is included
in [−1; +1]. Assume that we dispose of a solution to (1.1) in C0

t (L1
σ ∩ L2

σ). We may
define t∗ ∈ R

+ ∪ {+∞} by

t∗ = max

{
t > 0;

∫ t

0

D(p) = 0

}
.(4.1)

According to the comment at the end of the previous section for every t > t∗,
D(p(t)) > 0 while D(p(t)) = 0 for all t in [0; t∗]. On [0; t∗[, the HL equation (1.1) reads⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tp = −b(t)∂σp,

p ≥ 0,

p(0, ·) = p0,

D(p(t)) = 0.

The above system reduces to{
p(t, σ) = p0(σ − χ(t)),

D(p(t)) = 0 for all t in [0; t∗].
(4.2)

The second equation in (4.2) is compatible with the first one as long as∫
|σ+χ(t)|>1

p0 = 0 for all t in [0; t∗].

Therefore there exists a maximal time interval [0;Tc] on which the HL equation may
reduce to a mere transport equation and this is for an intrinsic time Tc (possibly
infinite) defined by

Tc = inf

{
t > 0;

∫
|σ+χ(t)|>1

p0 > 0

}
.(4.3)
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Note that Tc is completely determined by the data p0 and b. If Tc = +∞, the steady
state p(t, σ) = p0(σ−χ(t)) is a solution of the HL equation for all time. We shall now
exhibit circumstances under which it is not the unique solution. For convenience, we
restrict ourselves to the case when b ≡ 0 (we then have obviously Tc = +∞).

For p0 ∈ L1(R)∩L∞(R) such that p0 ≥ 0, let us denote by Fp0 the function from
R

+ to R
+ defined by Fp0

(0) = D(p0) and by

for all x > 0, Fp0(x) = α

∫
|σ|>1

(∫
R

p0(σ
′)ϕ√

2x(σ − σ′)dσ′
)
dσ.

Proposition 4.1. Let p0 satisfy (1.6) and be such that D(p0) = 0, then
(i) If Fp0 satisfies

∫ 1

0

dx

Fp0(x)
= +∞,(4.4)

then p(t, σ) = p0(σ) is the unique solution to (1.1) in C0
t (L2

σ).
(ii) Otherwise, (1.1) has an infinite number of solutions in C0

t (L2
σ). The set

of solutions to (1.1) is made of the steady state p(t, σ) = p0(σ) and of the functions
(qt0)t0≥0 defined by

qt0(t, σ) =

∣∣∣∣ p0(σ), if t ≤ t0
q(t− t0, σ), if t > t0,

where q is the unique solution to (1.1) in C0
t (L2

σ) such that D(q) > 0 on ]0,+∞[.
Besides,

pε −→
ε→0

q strongly in L2
t,loc(L

2
σ).(4.5)

Lemma 4.2. Let p0 ∈ L1(R) ∩ L∞(R) such that

p0 ≥ 0,

∫
R

p0 = 1, D(p0) = 0.

The function Fp0 is in C0([0,+∞[) ∩ C∞(]0,+∞[), and is positive on ]0,+∞[. In
addition, F ′

p0
> 0 on ]0,+∞[.

Proof. It is easy to check that Fp0 ∈ C0([0,+∞[) ∩ C∞(]0,+∞[), and that
Fp0 > 0 on ]0,+∞[. Since D(p0) = 0, the function p0 is supported in [−1, 1]. Thus,
for any x > 0,

Fp0(x) = α

∫
|σ|>1

(∫
R

p0(σ
′)ϕ√

2x(σ − σ′)dσ′
)
dσ

= α

∫ 1

−1

p0(σ
′)

(∫
|σ|>1

e−(σ−σ′)2/4x

2
√
π
√
x

dσ

)
dσ′

(4.6)

= α

∫ 1

−1

p0(σ
′)

(∫ −1+σ′

−∞

e−σ2/4x

2
√
π
√
x
dσ +

∫ +∞

1+σ′

e−σ2/4x

2
√
π
√
x
dσ

)
dσ′

= α
1√
π

∫ 1

−1

p0(σ
′)

(∫ +∞

1+σ′
2
√

x

e−t2dt +

∫ +∞

1−σ′
2
√

x

e−t2dt

)
dσ′.
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It follows that for any x > 0,

F ′
p0

(x) = α
1√
π

∫ 1

−1

p0(σ
′)

(
1 + σ′

4x3/2
e−

(1+σ′)2
4x +

1 − σ′

4x3/2
e−

(1−σ′)2
4x

)
dσ′ > 0.

Lemma 4.3. Let γ ≥ 0 and p0 ∈ L1(R) ∩ L∞(R) such that

p0 ≥ 0,

∫
R

p0 = 1,

∫
R

|σ|p0 < +∞, D(p0) = 0.

Let us consider the problem{
∂tw = D(w(t))∂2

σσw − γw,
w(0, σ) = p0(σ).

(4.7)

(i) If Fp0 satisfies (4.4), then p(t, σ) = p0(σ) is the unique solution to (4.7) in
C0

t (L2
σ).
(ii) Otherwise, (4.7) has an infinite number of solutions in C0

t (L2
σ). The set of

solutions to (4.7) is made of the steady state w(t, σ) = p0(σ) and of the functions
(vt0)t0≥0 defined by

vt0(t, σ) =

∣∣∣∣ p0(σ), if t ≤ t0,
v(t− t0, σ), if t > t0,

where v is the unique solution to (4.7) in C0
t (L2

σ) such that D(v) > 0 on ]0,+∞[.
Corollary 4.4. The initial data p0 = 1

21l]−1,1[ fulfills the assumptions of the

above lemma and
∫ 1

0
dx

Fp0
(x) < +∞. Therefore there are infinitely many solutions

to (1.5) in the introduction.

Proof of Corollary 4.4. The only point to be checked is that
∫ 1

0
dx

Fp0
(x) < +∞.

With the standard notation erfc(z) ≡
∫ +∞
z

e−t2dt, and by using (4.6) and symmetry
considerations, simple calculations yield

Fp0
(x) =

2α
√
x√

π

∫ 1√
x

0

erfc(σ)dσ

=
2α√
π

[
erfc

(
1√
x

)
− 1

2

√
xe−

1
x +

1

2

√
x

]
.

Since erfc(z) ∼ 1
2e

−z2

/z for z going to +∞, Fp0(x) ∼ α√
π

√
x near 0 and the integra-

bility of 1/Fp0 on [0; 1] follows.
Proof of Lemma 4.3. Let us consider a nonnegative continuous function D on R

+.
The unique solution in C0

t (L2
σ) to the problem{
∂twD = D(t)∂2

σσwD − γwD,

wD(0, σ) = p0(σ),
(4.8)

is given by

wD(t, σ) =

∣∣∣∣∣∣∣∣
e−γtp0(σ), if t ≤ t∗,

e−γt

∫
R

p0(σ
′)ϕ√

2
∫ t

0
D(s)ds

(σ − σ′)dσ′, if t > t∗,
(4.9)
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where t∗ = inf{t > 0;
∫ t

0
D > 0}. Any solution to (4.7) thus satisfies w = wD(w) and

therefore

D(w(t)) = D(wD(w)(t))

= α

∫
|σ|>1

wD(w)(t, σ)dσ

= αe−γt

∫
|σ|>1

⎛
⎝∫

R

p0(σ
′)ϕ√

2
∫ t

0
D(w(s))ds

(σ − σ′)dσ′

⎞
⎠ dσ

= e−γtFp0

(∫ t

0

D(w(s))ds

)
.

It follows that the function D(w) is the solution in C0([0,+∞[) to the nonlinear
integral equation

y(t) = e−γtFp0

(∫ t

0

y(s)ds

)
.(4.10)

On the other hand, if D ∈ C0([0,+∞[) is solution to (4.10) it is easy to check that
the function wD defined by (4.9) is solution to (4.8).

If condition (4.4) is fulfilled, (4.10) has a unique solution in C0([0,+∞[) (the
constant function equal to zero) and the steady state w(t, ·) = p0 is therefore the
unique solution to (4.7) in C0

t (L2
σ); otherwise, the set of solutions to (4.10) is made

of the steady state w(t, ·) = p0 and of the family (yt0)t0≥0 with

yt0(t) =

∣∣∣∣ 0, if t ≤ t0,
z(t− t0), if t > t0,

where the function z is defined on [0,+∞[ by

∫ z(t)

0

dx

F (x)
=

⎧⎨
⎩

1 − e−γt

γ
, if γ > 0,

t, otherwise.

Statement (ii) is obtained by denoting by v the solution to (4.8) associated with the
function z(t).

Proof of Proposition 4.1. The solution pε to (1.7) satisfies the inequalities

p−ε (t, σ) ≤ pε(t, σ) ≤ p+
ε (t, σ) almost everywhere,

where p−ε and p+
ε are defined in C0

t (L2
σ) by{

∂tp
−
ε = (D(pε(t)) + ε) ∂2

σσp
−
ε − p−ε ,

p−ε (0, σ) = p0(σ),

and {
∂tp

+
ε = (D(pε(t)) + ε)∂2

σσp
+
ε +

D(pε)

α
δ0,

p+
ε (0, σ) = p0(σ).
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Therefore, on the one hand,

D(pε(t)) ≥ D(p−ε (t)) = e−tFp0

(∫ t

0

(D(pε) + ε)

)
(4.11)

and, on the other hand,

D(pε(t)) ≤ D(p+
ε (t))

= Fp0

(∫ t

0

(D(pε) + ε)

)
+

∫ t

0

D(pε)(s)

α

⎛
⎝∫

|σ|>1

ϕ√
2
∫ t

s
(D(pε)+ε)

⎞
⎠ ds

≤ Fp0

(∫ t

0

(D(pε) + ε)

)
+

1

α

∫ t

0

D(pε)(s)ds.

If (4.4) is not fulfilled, using (4.11) and the property that Fp0 is strictly increasing on
[0,+∞[, we obtain that

D(pε) ≥ z(t),

where z(t) is the function defined in the proof of Lemma 4.3. As for any 0 < t0 ≤ T
there exists η > 0 such that z(t) ≥ η on [t0, T ] the same reasoning as in the non-
degenerate case leads to the conclusion that (pε) converges up to an extraction to p in
D′(]0,+∞[×R) and in L2([t0, T ], L2(R)) for any 0 < t0 < T < +∞, p being a solution
to (1.1) in C0(]0,+∞[, L2

σ) such that D(p) > 0 on ]0,+∞[.

5. Steady states. Throughout this section the shear rate b is assumed to be a
given constant and we are looking for solutions in L1(R) to the following system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−b∂σp + D(p)∂2
σσp− 1lR\[−1,1]p +

D(p)

α
δ0(σ) = 0 on (0;T ) × R,

p ≥ 0,

∫
R

p = 1,

D(p) = α

∫
|σ|>1

p(σ)dσ.

(5.1)

Our main results are summarized in the following proposition.
Proposition 5.1 (existence of steady states).

(i) If b ≡ 0, any probability density which is compactly supported in [−1; +1] is
a solution to (5.1) which satisfies D(p) = 0. If α ≤ 1

2 , these are the only stationary
solutions (and there are infinitely many), whereas when α > 1

2 there exists a unique
stationary solution corresponding to a positive value of D, which is explicitly given
in (5.2) and (5.4) below. This solution is even and with exponential decay at infinity.

(ii) If b �≡ 0, for any α > 0, there exists a unique stationary solution to (5.1),
and it corresponds to a positive value for D, which is implicitly given in (5.5) and
(5.6) below. This solution has exponential decay at infinity.

Remark 5.2. The statement in the above proposition was already pointed out by
Hébraud and Lequeux [8].

Proof. The case when b ≡ 0. We first observe that any nonnegative function
p which is normalized in L1(R) and with support in [−1; +1] is a solution to the
system (5.1) since in that case all terms in the equation satisfied by p in (5.1) cancel.
We now examine the issue of existence of solutions of (5.1) such that D(p) > 0. For
simplicity we denote D = D(p). For given constant D > 0, it is very easy to calculate
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explicitly the solutions to (5.1) on each of the three regions σ < −1, σ ∈ [−1; +1] and
σ > 1. Using compatibility conditions on R and the fact that p has to be in L1(R),
one obtains

p(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
D

2α
e(1+σ)/

√
D, if σ ≤ −1,

1

2α
σ +

√
D + 1

2α
, if − 1 ≤ σ ≤ 0,

− 1

2α
σ +

√
D + 1

2α
, if 0 ≤ σ ≤ 1,

√
D

2α
e(1−σ)/

√
D, if 1 ≤ σ.

(5.2)

The compatibility condition D = D(p) happens to then be automatically satisfied
and the normalization constraint

∫
R
p = 1 imposes that D solves

D +
√
D = α− 1

2
.(5.3)

Since D ≥ 0, we immediately reach a contradiction when α < 1
2 , whereas when α > 1

2
(5.3) admits a unique positive solution; namely

D = −1

2
+

√
4α− 1

2
.(5.4)

The case when b �≡ 0. First of all, we observe that if D = 0 all terms in the
equation satisfied by p in (5.1) but b∂σp vanish. Thus p has to be a nonzero constant
which is in contradiction with p ∈ L1(R). So necessarily D > 0. For given positive
constant D, we then solve (5.1) as above and obtain

p(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1e
β+σ, if σ ≤ −1,

a2e
b
Dσ + a2 −

D

bα
, if − 1 ≤ σ ≤ 0,(

a2 −
D

bα

)
e

b
Dσ + a2, if 0 ≤ σ ≤ 1,

a1e
β−σ, if 1 ≤ σ,

(5.5)

with

β± =
b

2D
± 1

2

√
b2 + 4D

D2
,

a1 =
e

1
2

√
b2

D2 + 4
D

α
(
β+eb/2D − β−e−b/2D

) ,
and

a2 =
Dβ+eb/2D

αb(β+eb/2D − β−e−b/2D)
.

It is tedious but easy to check that this function always fulfills the self-consistency
condition D = D(p) and that the normalization condition

∫
R
p = 1 reads

D

b

(1 + β+) + (β− − 1)e−b/D

β+ − β−e−b/D
+ D = α.(5.6)
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y=0
x

y=L

y
V(t)

u(y,t)

Fig. 1. Planar Couette flow.

For any b > 0 (the negative values of b are dealt with by replacing σ by −σ), the
left-hand side of (5.6) is a continuous function which goes to +∞ when D goes to
infinity and goes to zero when D goes to 0. This already ensures the existence of at
least one steady state for any α > 0. Moreover, setting z = b2/D (for example) we
may rewrite the left-hand side of (5.6) as

f(z) =
b2

z
+

2b2

z

[
1 + 1

2bz coth(z/2b) + 1
2b (z

2 + 4z)1/2

z + (z2 + 4z)1/2 coth(z/2b)

]
.

Next we check that the function f is monotone decreasing (thus, the left-hand side
of (5.6) is increasing with respect to D), whence the uniqueness result.

6. Conclusion and future trends. Theorem 1.1 shows that the Hébraud–
Lequeux model (1.1) is well-posed when the initial data p0 is such that D(p0) > 0.
On the other hand, Proposition 4.1 claims that the model may have infinitely many
solutions for certain p0 such that D(p0) = 0. This pathological behavior might be a
flaw of the model but we think that is not the case. Indeed, our interpretation is that
an initial data p0 such that D(p0) = 0 can be considered as admissible only if it is the
long-time limit of a solution p > 0 of (1.1) with zero shear rate (b = 0); in view of both
numerical simulations and heuristic arguments, we suspect that such a p0 necessarily
fulfills condition (4.4). We are currently studying the long-time asymptotics of the
HL equation [3] and hope to be able to provide mathematical justifications of this
statement in the near future.

To conclude, let us mention that the present article is the theoretical side of a joint
project with rheologists aiming at better understanding the flows of complex fluids.

We are currently working on a multiscale model for planar Couette flows of con-
centrated suspensions (see Figure 1), in which the mesoscopic behavior of the sus-
pension is described by the HL equation. It is indeed experimentally observed that
the shear rate b(t) is not homogeneous in space (in particular, the term −b(t)∂σp
generates elastic waves in the fluid). In order to better describe the coupling between
the macroscopic flow and the evolution of the mesostructure, we propose the following
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multiscale model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tu(t, y) = ∂yτ(t, y) + μ∂yyu(t, y),

∂tp(t, y, σ) = −G0∂yu(t, y)∂σp(t, y, σ) + D(p(t, y))∂2
σσp(t, y, σ)

−
1lR\[−σc,σc](σ)

T0
p(t, y, σ) +

1

T0

(∫
|σ′|>σc

p(t, σ′, y)dσ′

)
δ0(σ),

τ(t, y) =

∫
R

σp(t, y, σ)dσ.

(6.1)

In the above equations, u(t, y) denotes the component along ex of the velocity field (the
flow being laminar and incompressible, the velocity field is of the form �u = u(t, y)ex
and the pressure does not play any role), ρ is the volumic mass of the fluid and μ
some nonnegative viscosity coefficient. This system is complemented by the no-slip
boundary conditions {

u(t, 0) = 0 for almost all t,
u(t, L) = V (t) for almost all t.

The theoretical study of this multiscale model will be the matter of another article.
Numerical simulations of (6.1) have already been performed by one of us [6]. The
results of these simulations will be compared in the near future with experimental
data obtained with a NMR rheometer [12] (this very modern equipment allows mea-
surements of local velocities in opaque fluids).

Acknowledgments. We would like to thank Philippe Coussot for pointing out
the Hébraud–Lequeux equation to us. We also warmly thank Pascal Hébraud and
Claude Le Bris for helpful discussions.
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[5] R.S. Fall, J.R. Melrose, and R.C. Ball, Kinetic theory of jamming in hard-sphere startup

flows, Phys. Rev. E, 55 (1997), pp. 7203–7211.
[6] Y. Gati, Numerical simulation of micro-macro model of concentrated suspensions, Internat. J.

Numer. Methods Fluids, Special Issue: ICFD Conference on Numerical Methods for Fluid
Dynamics, 47 (2005), pp. 1019–1025.

[7] J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press, London, 1976.
[8] P. Hébraud and F. Lequeux, Mode coupling theory for the pasty rheology of soft glassy

materials, Phys. Rev. Lett., 81 (1998), pp. 2934–2937.
[9] R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, Lon-

don, 1998.
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Abstract. In this paper we give an extension of the Birkhoff–Lewis theorem to some semilinear
PDEs. Accordingly we prove existence of infinitely many periodic orbits with large period accumu-
lating at the origin. Such periodic orbits bifurcate from resonant finite dimensional invariant tori
of the fourth order normal form of the system. Besides standard nonresonance and nondegeneracy
assumptions, our main result is obtained assuming a regularizing property of the nonlinearity. We
apply our main theorem to a semilinear beam equation and to a nonlinear Schrödinger equation with
smoothing nonlinearity.
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variational methods, perturbation theory
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1. Introduction. In 1933, Birkhoff and Lewis [9] (see also [16], [17]) proved their
celebrated theorem on existence of periodic orbits with large period close to elliptic
equilibria of Hamiltonian systems.1 Here we give a generalization of their result to
some semilinear Hamiltonian PDEs.

The Birkhoff–Lewis procedure consists in putting the system in fourth order
(Birkhoff) normal form, namely in the form

H = H0 + G4 + R5, H0 :=

n∑
j=1

ωj

p2
j + q2

j

2
,(1)

where G4 is a homogeneous polynomial of degree 2 in the actions Ij := (p2
j + q2

j )/2
and R5 is a remainder having a zero of fifth order at the origin. Then system (1) is a
perturbation of the integrable system H0+G4. Under a nondegeneracy condition (that
also plays a fundamental role in KAM theory) the action-to-frequency map of this
integrable system is one-to-one, and therefore there exist infinitely many resonant
tori on which the motion is periodic. The question is: Do some of these periodic
orbits persist under the perturbation due to the term R5? Birkhoff and Lewis used
the implicit function theorem and a topological argument to prove that there exists a
sequence of resonant tori accumulating at the origin with the property that at least
two periodic orbits bifurcate from each one of them.

In order to extend this result to infinite dimensional systems describing Hamilto-
nian PDEs one meets two difficulties: the first is the generalization of Birkhoff normal
form to PDEs and the second is the appearance of a small denominator problem.

∗Received by the editors October 13, 2003; accepted for publication (in revised form) July 23,
2004; published electronically August 17, 2005.
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1Actually [9] considers the neighborhood of an elliptic, nonconstant, periodic orbit, but the

scheme is essentially the same for elliptic equilibria.
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Here we work in a way which is as straightforward as possible, so, instead of
considering the standard Birkhoff normal form of the system, whose extension to PDEs
is not completely understood at present,2 we consider its “seminormal form,” namely
the kind of normal form employed to construct lower dimensional tori. Precisely,
having fixed a positive n, we split the phase variables into two groups, namely the
variables with index smaller than n and the variables with index larger than n. We
will denote by ẑ the whole set of variables with index larger than n. We construct a
canonical transformation putting the system in the form

H0 + G + Ĝ + K,(2)

where G depends only on the actions, Ĝ is at least cubic in the variables ẑ with
index larger than n, and K has a zero of sixth order at the origin. The interest of
such a seminormal form is that the normalized system H0 + G + Ĝ has the invariant
2n-dimensional manifold ẑ = 0 which is filled by n-dimensional invariant tori.

Under a nondegeneracy condition, the frequencies of the flow in such tori cover an
open subset of Rn. We concentrate on the resonant tori filled by periodic orbits, and
we prove that at least n geometrically distinct periodic orbits of each torus survive the
perturbation due to the term K. Since the orbits bifurcate from lower dimensional
tori, we have to impose a further nondegeneracy condition in order to avoid resonances
between the frequency of the periodic orbit and the frequencies of the transversal
oscillations.

The proof is based on a variational Lyapunov–Schmidt reduction similar to that
employed in [6] and inspired by [1]. It turns out that in the present case the range
equation involves small denominators. To solve the corresponding problem we use an
approach similar to that of [2]. In particular we impose a strong condition on the small
denominators and we show that, if the vector field of the nonlinearity is smoothing,
then the range equation can be solved by the contraction mapping principle. Next, the
kernel equation is solved by noting that it is the Euler–Lagrange equation of the action
functional restricted to the solutions of the range equation. The restricted functional
turns out to be defined on Tn, and so existence and multiplicity of solutions (critical
points) follows by the classical Lusternik–Schnirelmann theory.

Finally, we apply the general theorem to the nonlinear beam equation

utt + uxxxx + mu = f(u),(3)

with Dirichlet boundary conditions on a segment. We consider m as a parameter
varying in the segment [0, L], and we show that the assumptions of the abstract
theorem are fulfilled provided one excludes from the interval a finite number of values
of m. As a second application we will deal with a nonlinear Schrödinger equation
with a smoothing nonlinearity of the type considered in [20].

We recall that families of periodic solutions to Hamiltonian PDEs have been
constructed by many authors (see, e.g., [14], [21], [19], [12], [10], [2]). The main
difference is that the periodic orbits of the above quoted papers are a continuation of
the linear normal modes to the nonlinear system. In particular their period is close
to one of the periods of the linearized system. Moreover (except in the resonant case;
see [5], [7], [8]) each periodic solution involves only one of the linear oscillators.3

On the contrary, the periodic orbits constructed in the present paper are the
shadows of resonant tori; they are a purely nonlinear phenomenon, have long period,

2See, however, the recent works [3], [4].
3In the sense that all the other ones have a much smaller amplitude of oscillation.
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and moreover each periodic motion involves n linear oscillators that oscillate with
amplitudes of the same order of magnitude.

2. Main result. Consider a real Hamiltonian system with real4 Hamiltonian
function

H(z, z) =
∑
j≥1

ωjzjzj + P (z, z) ≡ H0 + P,(4)

where P has a zero of third order at the origin and the symplectic structure is given
by i

∑
j dzj∧dzj . Here z and z̄ are considered as independent variables. Often we will

write only the equation for z since the equation for z̄ is obtained by complex conjuga-
tion. The formal Hamiltonian vector field of the system is XH(z, z) := (i ∂H∂zj

,−i ∂H∂zj ),

and therefore the equations of motion have the form

żj = iωjzj + i
∂P

∂zj
, żj = −iωjzj − i

∂P

∂zj
.(5)

Define the complex Hilbert space

Ha,s(C) :=
{
w = (w1, w2, . . .) ∈ C∞

∣∣∣ ||w||2a,s :=
∑
j≥1

|wj |2j2se2ja < ∞
}
.

We fix s ≥ 0 and a ≥ 0 and will study the system in the phase space

Pa,s := Ha,s(C) ×Ha,s(C) � (z, z̄).

Fix any finite integer n ≥ 2 and denote ω := (ω1, . . . , ωn), Ω := (ωn+1, ωn+2, . . .).
We assume that

(A) The frequencies grow at least linearly at infinity; namely there exist a > 0
and d1 ≥ 1 such that

ωj ∼ ajd1 .

(NR) For any k ∈ Zn, l ∈ Z∞ with |l| ≤ 2 and 0 < |k| + |l| ≤ 5, one has

ω · k + Ω · l 
= 0.(6)

(S) There exist a neighborhood of the origin U ⊂ Pa,s and d ≥ 0 such that
XP ∈ Cω(U ,Pa,s+d); namely it is analytic.

Remark 2.1. In applications to PDEs, property (S) is usually a consequence of the
smoothness of the Nemitsky operator defined by the nonlinear part of the equation.
In order to ensure (S) one has usually to restrict to the case where the functions with
Fourier coefficients in Pa,s form an algebra (with the product of convolution between
sequences). This imposes some limitations on the choice of the indexes a, s.

Proposition 2.1. Assume (A), (NR), (S). There exists a real analytic, sym-
plectic change of variables T defined in some neighborhood U ′ ⊂ Pa,s of the origin,
transforming the Hamiltonian H in seminormal form up to order six, namely into

H ◦ T ≡ H = H0 + G + Ĝ + K(7)

4i.e., if z is actually the complex conjugate to z, then the Hamiltonian H takes real values.
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with

G =
1

2

∑
min(i,j)≤n

Gij |zi|2|zj |2,

Gij = Gji, Ĝ = O(||ẑ||3a,s), where ẑ := (zn+1, zn+2, . . .) and K = O(||z||6a,s). More-
over

XG, XĜ, XK ∈ Cω(U ′,Pa,s+d), ‖z − T (z)‖a,s+d ≤ C‖z‖2
a,s.(8)

We defer the proof of this proposition to the appendix where we also give a formula
for Ḡ (see (69)).

The interest of such a seminormal form is that the system obtained by neglecting
the reminder K has the invariant manifold ẑ = 0 on which the system is integrable.

As a variant with respect to the standard finite dimensional procedure we have
left the third order term Ĝ but normalized the system up to order six (instead of five).
This is needed in Lemma 3.2.

We also remark that, assuming just the nonresonance condition (NR), one can
not hope (in general) to transform the Hamiltonian H into the infinite dimensional
analogue of the standard Birkhoff normal form.

We rewrite the Hamiltonian H in the form

H := ω · I + Ω · Z +
1

2
AI · I + (BI,Z) + Ĝ + K,(9)

where I := (|z1|2, . . . , |zn|2), Z := (|zn+1|2, |zn+2|2, . . .) are the actions, A is the n×n
matrix

A = (Gij)1≤i,j≤n,(10)

and B is the ∞× n matrix

B = (Gij)1≤j≤n<i.(11)

Remark 2.2. Due to (8), (9), one has |(BI)j | ≤ C|I|j−d for a suitable C. Indeed,
since XG maps Pa,s to Pa,s+d, the operator zj �→ (BI)jzj maps Pa,s to Pa,s+d, and
therefore its eigenvalues (BI)j must fulfill the above property.

Introduce action angle variables for the first n modes by zj = |zj |eiφj =
√
Ije

iφj

for j = 1, . . . , n.
Perform the rescaling Ij → η2Ij , φj → φj for j = 1, . . . , n, zj → ηzj , zj → ηzj

for j ≥ n + 1 and divide the Hamiltonian by η2. We get

H(I, φ, ẑ, ẑ) = ω · I + Ω · Z + ηĜη + η2
(1

2
AI · I + (BI,Z)

)
+ η4Kη,(12)

where Ĝη = O(||ẑ||3a,s) and Kη(z) = O(||z||6a,s). We will still denote by Pa,s ≡ Rn×
Tn× Ha,s× Ha,s the phase space.

We will find periodic solutions of the Hamiltonian system (12) close to periodic
solutions of the integrable Hamiltonian system

İ = 0, φ̇ = ω + η2(AI + BTZ), żj = i
(
Ωj + η2(BI)j

)
zj , j ≥ n + 1(13)
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in which Ĝη and Kη are neglected. The manifold {ẑ = 0} is invariant for the Hamil-
tonian system (13) and is completely filled up by the invariant tori

T (I0) := {I = I0, φ ∈ Tn, ẑ = 0}

on which the motion is linear with frequencies

ω̃ ≡ ω̃(I0) := ω + η2AI0.

Such a torus is linearly stable, and the frequencies of small oscillation about the torus
T (I0) are the “shifted elliptic frequencies,” namely

Ω̃j(I0) := (Ω + η2BI0)j .(14)

If all the ω̃’s are integer multiples of a single frequency, namely if

ω̃ := ω + η2AI0 =
1

T
2πk ∈ 1

T
2πZn,(15)

then T (I0) is a completely resonant torus, supporting the family of T -periodic motions

P :=
{
I(t) = I0, φ(t) = φ0 + ω̃t, ẑ(t) = 0

}
.(16)

The whole family P will not persist in the dynamics of the complete Hamiltonian
system (12). We will show that, under suitable assumptions, at least n geometrically
distinct T -periodic solutions persist. More precisely, we will show that this happens
for η small enough and for any choice of I0 and T with

‖I0‖ ≤ C,
1

η2
≤ T ≤ 2

η2
,(17)

where C is independent of η, fulfilling the following.
(H1) Equation (15) holds.
(H2) There exist δ > 0 and τ < d such that

|Ω̃jT − 2πl| ≥ δ

jτ
∀l ∈ Z, ∀j ≥ n + 1.(18)

Proposition 2.2. Fix τ > 1. Assume (A), detA 
= 0, and

Ω̂j :=
(
Ω −BA−1ω

)
j

= 0 ∀j ≥ n + 1;(19)

then, for any η > 0 and almost any T fulfilling (17) there exists I0 such that (H1,H2)
hold.

Proof. Fix η; we define I0 := I0(T ) as a function of T so that (15) is identically
satisfied. Then we find T so that the nonresonance property (18) holds. Fix η and
define

I0 := I0(T ) :=
2π

η2T
A−1

([ωT
2π

]
− ωT

2π

)
,(20)

k := k(T ) =
[ωT

2π

]
,(21)

where [(x1, . . . , xn)] := ([x1], . . . , [xn]) and [x] ∈ Z denotes the integer part of x ∈ R.
With the choice (20), (21), ωT + Tη2AI0 = 2πk, and I0 is of order 1 since Tη2 ≥ 1.
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We come to the nonresonance property (18). To study it, we remark that the
function T → [ωT/2π] is piecewise constant. Hence, for any T0 ∈ (η−2, 2η−2) there
exists an interval I0 = (T0 − a, T0 + b) ⊂ [η−2, 2η−2] such that [ωT/2π] := k0 is
constant for T ∈ I0. Moreover the union of such intervals covers the whole set of
values in which we are interested. We will construct a subset of full measure of I0, in
which condition (H2) is fulfilled.

So, for fixed j, l consider the set

Bjl(τ, δ) :=

{
T ∈ I0 : |Ω̃jT − 2πl| < δ

jτ

}
.(22)

Remark that

Ω̃jT = Ω̂jT +

(
2πBA−1

[
ωT

2π

])
j

,

so that, in I0

d

dT

(
Ω̃jT − 2πl

)
= Ω̂j .

By (A) and Remark 2.2, there exists C such that∣∣∣Ω̃j

∣∣∣ ≥ Cjd1 ,
∣∣∣Ω̂j

∣∣∣ ≥ Cjd1 .(23)

Then Bjl is an interval with length |Bjl| controlled by

|Bjl| < 2
δ

Cjτ+d1
.(24)

Fix j and estimate the number of l for which the set Bjl is (possibly) nonempty. First

remark that, due to (A), one has that, as T varies in I0, the quantity Ω̃jT varies in a
segment of length smaller than Cjd1 , with a suitable C. This means that there are at
most Cjd1 values of l which fall in such an interval (with redefined C). So, one has∣∣∣∣∣

⋃
l

Bjl

∣∣∣∣∣ ≤ Cδ

jτ
.(25)

Thus, provided τ > 1 as we assumed, one has that∣∣∣∣∣∣
⋃
jl

Bjl

∣∣∣∣∣∣ ≤ Cδ.(26)

By this estimate, the intersection over δ of such sets has zero measure, which is the
thesis.

Theorem 2.3. Consider the system (9); let T and I0 fulfill (17) and (H1), (H2).
Then, provided η is small enough, there exist n geometrically distinct periodic orbits
of the Hamiltonian system H (cf. (9)) with period T which are η2 close in Pa,s to the
torus T (I0).

Going back to the original system, one has the following corollary.
Corollary 2.4. Consider the Hamiltonian system (5) and fix a positive n. As-

sume that (A), (NR), (S) hold, that detA 
= 0 (cf. (10)), and that Ω̂j 
= 0 for all j ≥
n + 1 (cf. (19)). Finally assume d > 1.

Then, for any positive η � 1 there exist at least n distinct periodic orbits z(1)(t), . . . ,
z(n)(t) with the following properties:
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• ‖z(l)(t)‖a,s ≤ Cη for l = 1, . . . , n and t ∈ R;
• ‖Π>nz

(l)(t)‖a,s ≤ Cη2 for l = 1, . . . , n and t ∈ R; here Π>n is the projector
on the modes with index larger than n;

• the period T of z(l) does not depend on l and fulfills η−2 ≤ T ≤ 2η−2.
Remark 2.3. By Theorem 2.3 the results of Corollary 2.4 remain true even if

the Hamiltonian system (5) does not fulfill one of the assumptions (A), (NR) but
nevertheless one is able to transform it to the form (7).

Remark 2.4. If the integer numbers (k1, . . . , kn) = ω̃T/2π are relatively prime,
then T is the minimal period of the periodic solutions z(l). Indeed z(l) are T -periodic
functions close to the functions defined in (16) which have minimal period T .

3. Proof of Theorem 2.3. Since the problem is Hamiltonian, any periodic
solution of the system is a critical point of the action functional

S(I, φ, ẑ, ẑ) =

∫ T

0

⎛
⎝I · φ̇ + i

∑
j≥n+1

zj żj −H(I, φ, ẑ, ẑ)

⎞
⎠ dt(27)

in the space of T -periodic, Pa,s-valued functions. Here H is given by (12).
We look for a periodic solution ζ := (φ, I, ẑ, ẑ) of the form

φ(t) = φ0 + ω̃t + ψ(t), I(t) = I0 + J(t),(28)

where (ψ, J, ẑ, ẑ) are periodic functions of period T taking values in the covering space
Rn×Rn×Ha,s×Ha,s of Pa,s (that for simplicity will still be denoted by Pa,s). Hence
(ψ, J , ẑ) must satisfy (in what follows for simplicity of notation we will only consider
the equation for ẑ)

∇φS(ζ) = 0 ⇐⇒ J̇ = Rφ(ζ),(29)

∇IS(ζ) = 0 ⇐⇒ ψ̇ − η2AJ = RI(ζ),(30)

∇zj
S(ζ) = 0 ⇐⇒ żj − iΩ̃jzj = (Rz)j(ζ),(31)

where⎧⎨
⎩

Rφ(ζ) := −η4∂φKη(I0 + J, φ0 + ω̃t + ψ, ẑ) − η∂φĜη,

RI(ζ) := η2BTZ + η4∂IKη(I0 + J, φ0 + ω̃t + ψ, ẑ) + η∂IĜη,

(Rz)j(ζ) = iη2(BJ)jzj + iη∂zj
Ĝη + iη4∂zj

Kη(I0 + J, φ0 + ω̃t + ψ, ẑ).

(32)

Remark that, since one expects J, ψ, and ẑ to be small (they will turn out to be of
order η2), and by Proposition 2.1 one has ∂zĜη(ζ) = O(‖ẑ‖2

a,s), ∂φĜη(ζ) = O(‖ẑ‖3
a,s),

∂IĜη(ζ) = O(‖ẑ‖3
a,s) the r.h.s. of (29), (30), (31) remain small even when they are

multiplied by T = O(η−2) (see Lemma 3.2).
Define the Hilbert space H1

P ((0, T );Pa,s) of the T -periodic Pa,s-valued periodic
functions of class H1. In order to simplify notations we will denote this space by
H1

P,s.

Denote for ζ = (ψ, J, w) ∈ H1
P,s,

|J |2L2,T :=
1

T

∫ T

0

|J |2 dt, |ψ|2L2,T :=
1

T

∫ T

0

|ψ|2 dt,(33)

||w||2L2,T,a,s :=
1

T

∫ T

0

||w(t)||2a,s dt,(34)

‖ζ‖L2,T,a,s := |J |L2,T + |ψ|L2,T + ||w||L2,T,a,s.(35)
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We will endow H1
P ((0, T );Pa,s) ≡ H1

P,s with the norm

‖ζ‖T,a,s := ‖ζ‖L2,T,a,s + T‖ζ̇‖L2,T,a,s.(36)

Remark 3.1. With this choice one has

‖ζ(t)‖Pa,s
≤ C‖ζ‖T,a,s ∀t ∈ R

with a constant independent of T . Therefore, with this choice of the norm, the space
H1

P,s is a “Banach algebra,” and the T, a, s norm of the product of any component of
a vector ζ with any component of a vector ζ ′ is bounded by C‖ζ‖T,a,s‖ζ ′‖T,a,s with a
constant C independent of T .

We will consider the system (29), (30), (31) as a functional equation in H1
P,s.

Remark 3.2. As a consequence of (8) and Remark 3.1, the map ζ �→ R(ζ) :=
(Rφ(ζ), RI(ζ), Rz(ζ)) is a C∞ map from H1

P,s to H1
P,s+d.

We are going to use the method of Lyapunov–Schmidt decomposition in order to
solve (29), (30), (31). To this end remark that the kernel of the linear operator L at
the l.h.s. of (29), (30), (31) is given by (φ, 0, 0) with constant φ ∈ Tn. The range of
L is the space of the functions ζ = (ψ, J, ẑ) with ψ(t) having zero mean value. So,
there is a natural decomposition of H1

P,s into Range+Kernel. Explicitly, we write

ζ = (φ + ψ, J, ẑ) = (ψ, J, ẑ) + (φ, 0, 0) ≡ ζR + φ

with ψ having zero mean value and φ being constant. Then we fix φ, take the pro-
jection of the system (29), (30), (31) on the range, and solve it. The solution is a
function ζR(η, φ). Finally, we insert this function in the variational principle in order
to find critical points of S.

3.1. The range equation. The range equation has the form⎧⎨
⎩

J̇ = Rφ(ζ) − 〈Rφ(ζ)〉,
ψ̇ − η2AJ = RI(ζ),

żj − iΩ̃jzj = (Rz)j(ζ),

(37)

where 〈Rφ(ζ)〉 := (1/T )
∫ T

0
Rφ(ζ)dt. We look for its solution in the range, namely in

the space

H
1

P,s ⊂ H1
P,s

of the functions ζR ≡ (ψ, J, ẑ) with ψ having zero average.
First of all we analyze the linear problem defined by the l.h.s. of (37). A “small

denominator problem” appears since inverting this linear system the denominators
Ω̃jT − 2πl, j ≥ n + 1, l ∈ Z are present. So, define the linear operator

L(ψ, J, ẑ) ≡ LζR := (J̇ , ψ̇ − η2AJ, ẇj − iΩ̃jwj)

and study

LζR = (ψ̃, J̃ , w̃)(38)

with (ψ̃, J̃ , w̃) ∈ H
1

P,s+τ given.
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Lemma 3.1. Assume (H2). If

ζ̃R ≡ (ψ̃, J̃ , w̃) ∈ H
1

P,s+τ , i.e., in H1
P,s+τ with

∫ T

0

ψ̃(t) dt = 0,

then (38) has a unique solution,

ζR ≡ (ψ, J, w) ∈ H
1

P,s.

Moreover for T ∈ (η−2, 2η−2) and a constant C := C(δ)

‖ζR‖T,a,s ≤
C

η2
‖ζ̃R‖T,a,s+τ .

Proof. Since A is symmetric and invertible it has an orthonormal basis of eigenvec-
tors e1, . . . , en with eigenvalues λ1, . . . , λn. In these coordinates J(t) =

∑n
k=1 Jk(t)ek,

ψ(t) =
∑n

k=1 ψk(t)ek, and the solution ζR of (38) with ψ0 = 0 has Fourier coefficients

Jkl =
T ψ̃kl

i2πl
for l 
= 0, Jk0 = − J̃k0

η2λk
,

ψkl = T
J̃kl + η2Jklλk

i2πl
for l 
= 0,

and, for j ≥ n + 1,

wjl :=
Tw̃jl

i(2πl − Ω̃jT )
.

We then find

|J |2L2,T =
∑
kl

J2
kl =

∑
k

( J̃k0

η2λk

)2

+
∑
k,l �=0

(T ψ̃kl

i2πl

)2

≤ C

η4
|J̃ |2L2,T + CT 2|ψ̃|2L2,T .(39)

A similar estimate for |ψ|L2,T holds. Moreover

|ψ̇|L2,T ≤ η2|J |L2,T + |ψ̃|L2,T ≤ C(|J̃ |L2,T + |ψ̃|L2,T ),(40)

using (39). Finally, the solution w = (wj)j≥n+1 of (38) is

wj(t) =
∑
l∈Z

Tw̃jl

i(2πl − Ω̃jT )
ei(2π/T )lt,

where w̃j(t) =
∑

l∈Z w̃jle
i(2π/T )lt. From (H2) we get

||w||L2,T,a,s ≤ C
T

δ
||w̃||L2,T,a,s+τ , ||ẇ||L2,T,a,s ≤ C

T

δ
|| ˙̃w||L2,T,a,s+τ .(41)

By (39), (40), and (41) the last estimate of the lemma follows.
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Thus L−1 defines a linear bounded operator L : H
1

P,s+τ → H
1

P,s.
In order to find a solution ζR = (ψ, J, ẑ) of the range equation it is sufficient to

find a fixed point of

ζR = Φ(ζR) := L
(
N(ζR;φ)

)
(42)

in the space H
1

P,s, where N := N(ζR;φ) denotes the r.h.s. of (37).
Lemma 3.2. Assume d > τ . Then there exists a constant C sufficiently large

such that ∀η � 1 the map Φ is a contraction of a ball of radius Cη2.

Proof. Consider a ζR ∈ H
1

P,s with ‖ζR‖T,a,s ≤ ρ with some positive (small) ρ.
Since H1

P,s is an algebra with constants independent of T (cf. Remark 3.1), one has,
by (32),

‖N(ζR)‖T,a,s+d ≤ C(η4 + ηρ2)

with a suitable C. Therefore, by Lemma 3.1 one has

‖Φ(ζR)‖T,a,s ≤ ‖Φ(ζR)‖T,a,s+d−τ ≤ C

(
η2 +

ρ2

η

)
,

which is smaller than ρ, provided C(η2+ρ2/η) < ρ, which is implied, e.g., by ρ = 2Cη2

and η small enough.
Similarly one estimates the Lipschitz constant of Φ by the norm of its differential.

Such a differential is bounded in a ball of radius ρ by C(η2 + ρ/η), from which the
thesis follows.

Corollary 3.3. There exists a unique smooth function Tn � φ �→ ζR(φ, η) ∈
H

1

P,s solving (37) and fulfilling

‖ζR(φ, η)‖T,a,s ≤ Cη2.

3.2. The kernel equation. The geometric interpretation of the construction
of the previous subsection is that we have found a submanifold T n ≡ {ζφ0

:= (φ0 +
ω̃t, I0, 0)+ ζR(φ0, η), φ0 ∈ Tn} ⊂ H1

P,s, diffeomorphic to an n-dimensional torus, on
which the partial derivatives of the action functional S with respect to the variables
ζR vanish. We claim that at a critical point of S restricted to T n, all the partial
derivatives of the complete functional S vanish and therefore that such a point is
critical also for the nonrestricted functional.

Indeed, let Sn : Tn → R be the functional defined by Sn(φ0) := S(ζφ0) ∀φ0 ∈ Tn.
Lemma 3.4. If φ0 ∈ Tn is a critical point of Sn : Tn → R, then ζφ0 is a critical

point of the nonrestricted functional S.

Proof. Since ζR(φ0, η) = (ψφ0
, Jφ0

, ẑφ0
) ∈ H

1

P,s solves (37), then ζφ0
satisfies

∀φ0 ∈ Tn,

∇φS(ζφ0) = 〈Rφ(ζφ0)〉, ∇IS(ζφ0) = 0, ∇zj
S(ζφ0) = 0(43)

(∇S denote the L2-gradients). By (43) and since
∫ T

0
∂φ0ψφ0(t) dt = 0 ∀φ0 ∈ Tn,

∂φ0Sn(φ0) := (∇φS(ζφ0), ∂φ0ζφ0)L2 = T 〈Rφ(ζφ0)〉.

Therefore, if φ0 ∈ Tn is a critical point of Sn, then 〈Rφ(ζφ0)〉 = 0, and at ζφ0 ∈ T n

all the partial derivatives of the complete functional S vanish.
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By standard Lusternik–Schnirelmann theory there exist at least n geometrically
distinct T -periodic solutions, i.e., solutions not obtained from each other simply by
time-translations. Indeed, restrict Sn to the plane E := [ω̃]⊥ orthogonal to the
periodic flow ω̃ = (1/T )2πk with k ∈ Zn. The set Zn ∩E is a lattice of E, and hence
Sn defines a functional Sn|Γ on the quotient space Γ := E/(Zn ∩ E) ∼ Tn−1.

Due to the invariance of Sn with respect to the time shift, a critical point of Sn|Γ
is also a critical point of Sn : Tn → R. By the Lusternik–Schnirelmann category
theory since catΓ = catTn−1 = n, we can define the n min-max critical values c1 ≤
c2 ≤ · · · ≤ cn for Sn|Γ. If the critical levels ci are all distinct, the corresponding
T -periodic solutions are geometrically distinct, since their actions ci are all different.
On the other hand, if some min-max critical level ci coincides, then, by the Lusternik–
Schnirelmann theory, Sn|Γ possesses infinitely many critical points. However not all
the corresponding T -periodic solutions are necessarily geometrically distinct, since two
different critical points could belong to the same orbit. Nevertheless, since a periodic
solution can cross Γ at most a finite number of times, the existence of infinitely many
geometrically distinct orbits follows. For further details, see [6].

This concludes the proof of Theorem 2.3.

4. Applications.

4.1. The nonlinear beam equation. Consider the beam equation

utt + uxxxx + mu = f(u)(44)

subject to hinged boundary conditions

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0,(45)

where the nonlinearity f(u) is a real analytic odd function of the form

f(u) = au3 +
∑
k≥5

fku
k, a 
= 0.

The beam equation (44) is a Hamiltonian PDE with associated Hamiltonian

H =

∫ π

0

u2
t

2
+

u2
xx

2
+

mu2

2
− g(u) dx,

where g(u) :=
∫ u

0
f(s) ds is a primitive of f .

Write the system in first order form{
u̇ = v,
v̇ = −uxxxx −mu + f(u).

(46)

The standard phase space5 for (46) is Fs := Hs
C × Hs−2

C � (u, v), where Hs
C is the

space of the functions which extend to skew symmetric Hs periodic functions over
[−π, π]. Note that Hs

C = {u(x) =
∑

j≥1 uj sin(jx) |
∑

j≥1 |uj |2j2s < +∞}. It is then
immediate to realize that, due to the regularity and skew symmetry of the vector field
of the nonlinear part, f defines a smoothing operator, namely a smooth map from Fs

to Fs+2, provided s ≥ 1.

5An equivalent definition makes use of the so-called compatibility conditions required for the
smoothness of solutions of second order equations with Dirichlet boundary conditions; see, e.g., [11,
Theorem X.8].
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Here we are also interested in spaces of analytic functions, namely functions whose
Fourier coefficients belong to Ha,s with some positive a. It is easy to see that the
smoothing property of the nonlinearity holds also for these spaces.

Introduce coordinates q = (q1, q2, . . .), p = (p1, p2, . . .) through the relations

u(x) =
∑
j≥1

qj√
ωj

φj(x), v(x) =
∑
j≥1

pj
√
ωjφj(x),

where φj(x) =
√

2/π sin(jx) and

ω2
j = j4 + m.(47)

Remark also that

ωj ∼ j2.

Passing to complex coordinates

zj :=
qj + ipj√

2
, zj :=

qj − ipj√
2

,

the Hamiltonian takes the form (4), and the nonlinearity fulfills (S) with s ≥ 1 a
suitable a, depending on the anayticity strip of f , and d = 2 (for more details, see
[19], [13]).

In order to verify the nonresonance property we use m as a parameter belonging
to the set [0, L] with an arbitrary L.

Lemma 4.1. There exists a finite set Δ ⊂ [0, L] such that, if m ∈ [0, L]\Δ, then
condition (NR) holds.

Proof. First remark that, due to the growth property of the frequencies, there is
at most a finite number of vectors l ∈ Z2 at which ω ·k+Ω · l is small. It follows that,
having fixed an arbitrary constant C, there is at most a finite set of k’s and l’s over
which |ω · k + Ω · l| < C. Denote by S such a set.

For (k, l) ∈ S consider

fkl(m) = ω(m) · k + Ω(m) · l;

since fkl is an analytic function, it has only isolated zeros. So at most finitely many
of them fall in [0, L]. The set Δ is the union over k, l ∈ S of such points. Fix
m ∈ [0, L]\Δ.

Then one can put the system in seminormal form. The explicit computation was
essentially done in [15] (see also [19], [13]), obtaining that the matrices A and B are
given by

A =
6

π

⎛
⎜⎜⎝

3
ω2

1

4
ω1ω2

. . . 4
ω1ωn

4
ω2ω1

3
ω2

2
. . . 4

ω2ωn

. . . . . . . . . . . .
4

ω1ωn

4
ωnω2

. . . 3
ω2

n

⎞
⎟⎟⎠ , B =

6

π

⎛
⎜⎝

4
ωn+1ω1

. . . 4
ωn+1ωn

4
ωn+2ω1

. . . 4
ωn+2ωn

...
...

...

⎞
⎟⎠ .

(48)
Remark that, defining the matrices

S1 := diag(ω1, . . . , ωn) and S2 := diag(ωn+1, ωn+2, . . .),
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one can write A = 6
πS

−1
1 ÃS−1

1 , B = 6
πS

−1
2 B̃S−1

1 with

Ã =

⎛
⎜⎝

3 4 . . . 4
4 3 . . . 4
. . . . . . . . . . . .
4 4 . . . 3

⎞
⎟⎠ , B̃ =

⎛
⎝ 4 . . . 4

4 . . . 4
...

...
...

⎞
⎠ .(49)

With these expressions at hand it is immediate to verify that det A 
= 0. For what
pertains Ω̂j (cf. (19)) by exactly the same argument in the proof of Lemma 4.1 one has
that they are different from zero except for at most finitely many values of m ∈ [0, L].

Thus, provided m does not belong to a finite subset of [0, L], Theorem 2.4 and its
Corollary 2.4 apply.

4.2. A nonlinear Schrödinger equation. Consider the space Hs
C as in the

previous section. Following Pöschel [20] we define a smoothing operator as follows.
Fix a sequence {ρj}j≥1 with the property

∀j ≥ 1, ρj 
= 0 and |ρj | ≤ Cj−d/2, d > 1.(50)

Consider the even, 2π-periodic, real function ρ(x) :=
∑

j ρj cos(jx) and define

Γ : Hs
C → H

s+d/2
C , Γu := ρ ∗ u,(51)

where the star denotes convolution (it is defined first by extending the function u to
an odd 2π-periodic function).

Remark 4.1. It is easy to see that, expanding u in Fourier series

u(x) =
∑
j≥1

zj

√
2

π
sin(jx),

the jth Fourier coefficient of Γu is proportional to ρjzj .
Consider the Hamiltonian system with Hamiltonian function

H(u, u) =

∫ π

0

|ux|2 + F
(
|Γu|2

)
dx(52)

with F an analytic function having a zero of order 2 at the origin, i.e., F ′′(0) 
= 0.
The equations of motion are

−iut = uxx + Γ
(
F ′

(
|Γu|2

)
Γu

)
.(53)

Inserting the Fourier expansion of u, the Hamiltonian H takes the form (4),

H(z, z) =
∑
j≥1

ωjzjzj + P4(z, z) + higher order terms of degree at least 6,

with ωj = j2,

P4 = a
∑

i1,i2,i3,i4∈N

Fi1i2i3i4zi1zi2zi3zi4 , a 
= 0,(54)

Fi1i2i3i4 = ρi1ρi2ρi3ρi4

∫ π

0

sin(i1x) sin(i2x) sin(i3x) sin(i4x)dx.(55)
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Then the Hamiltonian vector field fulfills (S) with d given by (50).
It results in Fi1i2i3i4 = 0 unless i1 ± i2 ± i3 ± i4 = 0 for some choice of the signs.

Thus only a codimension 1 set of coefficients Fi1i2i3i4 is actually different from zero,
and the sum in (54) extends only over i1 ± i2 ± i3 ± i4 = 0.

The nonresonance assumption (NR) is here violated. So one could expect the
seminormal form (9) of Proposition 2.1 not to hold for this system. Indeed one could
only expect to transform H into a “resonant normal form.” Nevertheless, it turns out
that such resonant normal form depends on the actions only, and so the Hamiltonian
H can still be written in the form (9). Actually, even a stronger result holds (as in
[15]): the Hamiltonian H can be brought into the infinite dimensional analogue of the
classical Birkhoff normal form. More precisely, we have the following proposition.

Proposition 4.2. There exists a real analytic, symplectic change of variables T
defined in some neighborhood U ′ ⊂ Pa,s of the origin, transforming the Hamiltonian
H into

H ◦ T ≡ H = H0 + G + K(56)

with

G =
1

2

∑
i,j≥1

Gij |zi|2|zj |2, Gij = αρ2
i ρ

2
j (4 − δij), α 
= 0,(57)

and K = O(||z||6a,s). Moreover

XG, XĜ, XK ∈ Cω(U ′,Pa,s+d), ‖z − T (z)‖a,s+d ≤ C‖z‖2
a,s.(58)

The proof follows section 3 of [15] and, for the reader’s convenience, we reproduce
it at the end of the appendix. The key ingredient is that the relevant divisors in
the normalizing transformation are uniformly bounded away from 0 since they are
nonvanishing integers.

Clearly the Birkhoff normal form Hamiltonian H given in (56) can be written
also in the seminormal form (9). By (57), also in this case the matrices A and B

(cf. (10)–(11)) have the structure A = αS1ÃS1 , B = 2αS2B̃S1 with matrices Ã and

B̃ still given by (49), S1 := diag(ρ2
1, . . . , ρ

2
n) and S2 := diag(ρ2

n+1, ρ
2
n+2, . . .). So the

determinant of A is still different from zero. The frequencies Ω̂j (cf. (19)) now have
the structure

Ω̂j(ρ) = j2 − ρ2
ja(ρ) ∀j ≥ n + 1,

where a is a function of ρ2
1, . . . , ρ

2
n. So, except for exceptional choices of {ρj}j≥n+1,

the nondegeneracy conditions are fulfilled, Theorem 2.3 applies to the Hamiltonian
system generated by H in (56), and (see Remark 2.3) Corollary 2.4 applies to (53).

5. Appendix: Proof of the normal form propositions.
Proof of Proposition. 2.1. The idea is to proceed as in the proof of the stan-

dard Birkhoff normal form theorem, i.e., by successive elimination of the nonresonant
monomials. As a variant with respect to the standard procedure one does not elim-
inate terms which are at least cubic in the variables ẑ. Remark that the estimates
involved in the proofs are much more complicated than in the finite dimensional case.

To start with, expand P in a Taylor series up to order five: P = P3 + P4 +
P5+higher order terms. Then we begin by looking for the transformation simplifying
P3. So write

P3 = P 1
3 + Ĝ3(z)
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with

Ĝ3(z) = O(‖ẑ‖3),

and P 1
3 is composed by the first three terms of the Taylor expansion of P3 in the

variables ẑ only (so it contains only terms of degree 0, 1, and 2 in such variables). We
use the Lie transform to eliminate from P 1

3 all the nonresonant terms; i.e., we make a
canonical transformation which is the time 1 flow Φ1 of an auxiliary Hamiltonian sys-
tem with a Hamiltonian function χ of degree 3. By considering the Taylor expansion
of Φ1 at zero, one has

H ◦ Φ1 = H0 + P 1
3 + {χ,H0} + O(‖z‖4) + O(‖ẑ‖3).(59)

One wants to determine χ so that

G3 := P 1
3 + {χ,H0}

is a function of the actions |zj |2 only. Since G3 has to be a function of the actions only
and moreover it is a polynomial of degree 3, it must vanish. To this end we proceed
as usual in the theory of Birkhoff normal form.

Denote by x = (x1, . . . , xn) ≡ (z1, . . . , zn) the first n variables and take χ to be a
homogeneous polynomial of degree 3. Write

χ =
∑

|j1|+|j2|+|j3|+|j4|=3

χj1j2j3j4x
j1xj2 ẑj3 ẑ

j4
(60)

with multi-indexes j1, j2, j3, j4. For a multi-index jl ≡ (jl,1, . . . , jl,n) we used the

notation |jl| := |jl,1| + · · · + |jl,n| and xjl := x
jl,1
1 , . . . , x

jl,n
n , and similarly for a multi-

index with infinitely many components. So, one has

{χ,H0} =
∑

|j1|+|j2|+|j3|+|j4|=3

i (ω · (j1 − j2) + Ω · (j3 − j4))χj1j2j3j4x
j1xj2 ẑj3 ẑ

j4
.

Write now

P 1
3 =

∑
|j1|+|j2|+|j3|+|j4|=3

Pj1j2j3j4x
j1xj2 ẑj3 ẑ

j4
(61)

and remark that the indexes are here subjected to the further limitation |j3|+|j4| ≤ 2.
So, in order to have G3 := P 1

3 + {χ,H0} = 0, one is led to the choice

χj1j2j3j4 :=
−Pj1j2j3j4

i (ω · (j1 − j2) + Ω · (j3 − j4))
, j1 − j2 + j3 − j4 
= 0,(62)

and zero otherwise.
Since |j1| + |j2| + |j3| + |j4| = 3, then 0 < |j1 − j2|+ |j3 − j4| ≤ 5 and so, due to

assumption (NR) (recall also |j3| + |j4| ≤ 2), the denominators appearing in (62) are
all different from zero. Moreover, due to the growth of the frequencies ωj (assumption
(A)), they are actually bounded away from zero. Then in order to conclude the proof
(at least for what concerns the elimination of the third order part) one has to ensure
that the function χ is well defined and that it has a smooth Hamiltonian vector field.
The terms of χ of different degree in ẑ have to be treated in a different way, so we will
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denote by χ0, χ1, χ2 the homogeneous parts of degree 0, 1, and 2, respectively, with
respect to the variables ẑ.

We need a few lemmas.
Lemma 5.1. Let Rn � x �→ f(x) ∈ �2 be a homogeneous bounded polynomial of

degree r. Write

f(x) =
∑

j∈Nn,|j|=r

∑
k≥1

fjkx
jek,

where ek is the standard basis of �2. Let {ρj,k}k≥1
j∈Nn be a sequence with the property

|ρjk| ≥ C, and define a function g by

g(x) =
∑

j∈Nn,|j|=r

∑
k≥1

fjk
ρjk

xjek.(63)

Then there exists C such that ‖g(x)‖ ≤ C‖x‖r.
Proof. Write g(x) =

∑
j gjx

j and remark that the cardinality of the set over
which the sum is carried out is finite. We estimate each of the vectors gj ’s. Therefore,
one has

‖gj‖2 =
∑
k

(
fkj
ρkj

)2

≤ 1

C2

∑
k

f2
kj =

1

C2
0

‖fj‖2.

Now the norms of the vectors fj are bounded, and therefore the thesis follows.
Remark 5.1. By the same proof, the same result holds if the space �2 is substituted

by the spaces Ha,s.
Lemma 5.2. Let Rn × �2 � (x, z) �→ f(x, z) ∈ R be a homogeneous bounded

polynomial of degree r in x, linear and bounded in z. Write

f(x, z) =
∑
k≥1

j∈Nn,|j|=r

fjkx
jzk.

Let{ρj,k}k≥1
j∈Nn be as above, and define a function g by

g(x, z) =
∑
k≥1

j∈Nn,|j|=r

fjk
ρjk

xjzk.(64)

Then there exists C such that |g(x, z)| ≤ C‖x‖r‖z‖.
Proof. Just write g(x, z) =

∑
j gj(z)x

j . Fix j and study the linear functional
gj(z); one has

|gj(z)| =

∣∣∣∣∣∣
∑
k≥1

fjk
zk
ρjk

∣∣∣∣∣∣ ≤ ‖fj‖
∥∥∥∥zρ

∥∥∥∥ ,
where fj is defined in analogy to gj , its norm is the norm as a linear functional, and
z/ρ is the vector of �2 with kth component equal to zk/ρjk. From this inequality,
summing over j, the thesis follows.

In order to estimate the vector field of χ2 we will need the following lemma.
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Lemma 5.3. [Lemma A. 1 of [18]]. If A = (Akl) is a bounded linear operator on
�2, then also B = (Bkl) with

Bkl :=
|Akl|

1 + |k − l|(65)

is a bounded linear operator on �2.
For the proof we refer to [18].
Lemma 5.4. Let Rn × �2 � (x, z) �→ f(x, z) ∈ �2 be a homogeneous bounded

polynomial of degree r in x linear and bounded in z. Write

f(x, z) =
∑
k,l≥1

j∈Nn,|j|=r

fjklx
jzkel.

Let {ρj,k,l}k,l≥1
j∈Nn be a sequence fulfilling,

|ρjkl| ≥ C1(1 + |k − l|)(66)

and define a function g by

g(x, z) =
∑
k,l≥1

j∈Nn,|j|=r

fjkl
ρjkl

xjzk.(67)

Then there exists C such that ‖g(x, z)‖ ≤ C‖x‖r‖z‖.
Proof. Write g(x, z) =

∑
j gj(z)x

j . Fix j and apply Lemma 5.3 to such operators,
obtaining the result.

Remark 5.2. An identical statement holds for functions from R×Ha,s to Ha,s+d.
To obtain the proof just remark that the boundedness of a linear operator B = (Bkl)
(gj in the proof) as an operator from Ha,s to Ha,s+d is equivalent to the boundedness

of B̃ := (vkBklsl) as an operator from �2 to itself, where vk, sl are suitable weights.
With the above lemmas at hand it easy to estimate the vector field of χ. We treat

explicitly only χ1.
Lemma 5.5. Let χ1 be the component linear in ẑ and ẑ of the function χ defined

by (62). Then there exists a constant C such that its vector field is bounded by

‖Xχ1(z, z)‖a,s+d ≤ C‖z‖2
a,s.

Proof. Write χ1 as follows:

χ1(x, x, ẑ, ẑ) = 〈χ01(x, x); ẑ〉	2 +
〈
χ10(x, x); ẑ

〉
	2
.

Consider the first term. Separating the x, x, and ẑ components, its vector field is
given by (

i

〈
∂χ01

∂x
; ẑ

〉
	2
,−i

〈
∂χ01

∂x
; ẑ

〉
	2
,−iχ01(x, x)

)
.

Explicitly χ01 is given by

∑
|j1|+|j2|=2

l≥n+1

−Pj1j2el

i(ω · (j1 − j2) + Ωl)
xj1xj2el.
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It follows that each of the x (and x) components of the vector field has the structure
considered in Lemma 5.2, which therefore gives the estimate of such part of the
vector field. Concerning the ẑ component, Lemma 5.1 applies and gives the result.
The remaining components can be treated exactly in the same way.

The estimate of the vector fields of χ0 and χ2 are obtained in a similar way. In
order to apply Lemma 5.4 to the estimate of the vector field of χ2 one has just to
remark that from (A) and (NR) one has the estimate

|ω · k + Ωj − Ωl| ≥ C(1 + |j − l|).

Thus we have the following proposition.
Proposition 5.6. The vector field of the function χ defined by (62) fulfills the

inequality

‖Xχ(z, z)‖a,s+d ≤ C‖z‖2
a,s.

Then by standard existence and uniqueness theory one has that such vector fields
define a unique smooth time 1 flow in a neighborhood of the origin both in Pa,s and
in Pa,s+d. It follows that the transformation is well defined. Transforming the vector
field of H, one gets a vector field having the same smoothness properties of the original
one. Moreover the transformed Hamiltonian will have the form

H̃ := H ◦ Φ1 = H0 + Ĝ3 + P̃4 + P̃5 + · · · ,(68)

where P̃j is a homogeneous polynomial of degree j. In particular it turns out that

P̃4 = P4 +
{
χ, P 1

3

}
+

1

2
{χ, {χ,H0}} = P4 +

1

2

{
χ, P 1

3

}
+

{
χ, Ĝ3

}

since P3 = P 1
3 + Ĝ3 and, by the definition of χ, P 1

3 + {χ,H0} = 0.
Thus one can iterate the construction and eliminate the unwanted terms of degree

4. Define P̃ 1
4 (in analogy to P 1

3 ), setting P̃4 = P̃ 1
4 +Ĝ4(z), where Ĝ4(z) = O(‖ẑ‖3) and

P̃ 1
4 is composed of the first three terms of the Taylor expansion of P̃4 in the variables

ẑ only. Next we perform a new canonical transformation which is the time 1 flow of
another auxiliary Hamiltonian χ̃ of degree 4, such that P̃ 1

4 + {χ̃,H0} is a function of
the actions |zj |2 only. Remark that in this case a nonvanishing normalized part of
the Hamiltonian exists (in general) since ω · (j1 − j2) + Ω · (j3 − j4) = 0 ∀ j1 = j2,
j3 = j4, |j1|+ |j2|+ |j3|+ |j4| = 4. Since, by (NR), ω · (j1 − j2) + Ω · (j3 − j4) 
= 0 for
all the remaining |j1|+ |j2|+ |j3|+ |j4| = 4, |j3|+ |j4| ≤ 2, the normalized part G4 is
explicitly given by

G4 :=
∑

|j1|+|j3|=2,|j3|≤1

P̃ 1
j1j1j3j3 |x|

2j1 |ẑ|2j3 ,(69)

where P̃ 1
j1j2j3j4

are the coefficients of P̃ 1
4 and |x|2 := xx, |ẑ|2 := ẑẑ. G4 is the function

G introduced in (7). The regularity and estimates for the canonical transformation
generated by χ̃ are obtained as before.

Finally, using again (NR), one iterates the construction with an auxiliary Hamil-
tonian of degree 5, eliminating all the terms of order 5 and concluding the proof of
Proposition 2.1 (getting no further contributions to the function G which is of order
4).
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Remark 5.3. If the Hamiltonian contains only monomials of even degree then
the terms of order 3 and 5 are not present in the Hamiltonian. Thus by just one
symplectic change of coordinates it is possible to eliminate the nonnormalized terms
of order 4, and the remaining higher order terms are yet of order 6.

Proof of Proposition 4.2. The proof follows Lemma 4 of [15] (and Proposition
2.1).

The Hamiltonian function H contains only monomials of even degree, and the
4th order term of the nonlinearity is given explicitly by (54). Therefore, let us define
the auxiliary Hamiltonian χ of degree 4,

χ :=
∑

i1±i2±i3±i4=0,{i1,i2}�={i3,i4}

−aFi1i2i3i4

i(i21 − i22 + i23 − i24)
zi1zi2zi3zi4 .

By Lemma 5 of [15], if i1 ± i2 ± i3 ± i4 = 0 and the nonordered pair {i1, i2} 
= {i3, i4},
then i21 − i22 + i23 − i24 
= 0, and so χ is well defined.

The fourth order term of the transformed Hamiltonian via the time 1 flow map
generated by χ is given by

P4 + {χ,H0} =
∑

i1±i2±i3±i4=0

(
aFi1i2i3i4 − i(i21 − i22 + i23 − i24)χi1i2i3i4

)

=
∑

{i1,i2}={i3,i4}
aFi1i2i3i4zi1zi2zi3zi4

=
α

2

∑
i,j≥1

ρ2
i ρ

2
j (4 − δij)|zi|2|zj |2 := G

recalling (55) and since Fijij = aρ2
i ρ

2
j

∫ π

0
sin2(ix) sin2(jx)dx = (8a/π)ρ2

i ρ
2
j (2 + δij).

The estimates for the vector field generated by χ and the corresponding time 1
flow map can be carried out as in Proposition 2.1.

Finally, note that the remaining terms, which constitute the higher order term
K, are yet of order 6 or more (see Remark 5.3).
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[15] S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a

nonlinear Schrödinger equation, Ann. of Math., 143 (1996), pp. 149–179.
[16] D. C. Lewis, Sulle oscillazioni periodiche d’un sistema dinamico, Atti Accad. Naz. Lincei Cl.

Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (1934), pp. 234–237.
[17] J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, in

Geometry and Topology (Proc. III Lat. Am. Sch. Math., Inst. Mat. Pura Aplicada CNP,
Rio de Janeiro, 1976), Lecture Notes in Math., 597, Springer-Verlag, Berlin, 1977, pp. 464–
494. .
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SCALAR CONSERVATION LAWS WITH MIXED LOCAL AND
NONLOCAL DIFFUSION-DISPERSION TERMS∗

CHRISTIAN ROHDE†

Abstract. We consider a nonlinear scalar conservation law that is regularized by a local viscous
term and a nonlocal dispersive term. This nonstandard regularization is motivated by phase transition
problems that take into account long range interactions close to the interface.

We identify a parameter regime such that this mixed-type regularization provides a new example
that is able to drive nonclassical undercompressive shock waves in the limit of vanishing regularization
parameter. In view of the applications this shows that nonlocal regularizations can be used to model
dynamical phase transition processes.

In the next step we establish the existence and uniqueness of classical solutions for the Cauchy
problem in multiple space dimensions. In the main part of the paper we then deduce appropriate
a priori estimates to analyze the sharp-interface limit for vanishing regularization parameter with
the method of compensated compactness in one space dimension and, using measure-valued solu-
tions, in multiple space dimensions. It is shown that the limits exist and are weak solutions of the
corresponding Cauchy problem for the hyperbolic conservation law.

Key words. nonlocal free energy, diffusion-dispersion, sharp-interface limit, undercompressive
shock waves

AMS subject classifications. 35L65, 35L67
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1. Introduction. In this paper we are concerned with weak solutions of the
Cauchy problem for the scalar conservation law

ut(x, t) + div(f(u(x, t))) = 0 ((x, t) ∈ R
d × R>0, d ∈ N).(1.1)

The unknown function u : R
d × R>0 → R is a function of the d-dimensional space

variable x = (x1, . . . , xd)
T and time t > 0. By f = (f1, . . . , fd)

T : R → R
d we

denote the vector of flux functions. It is well known that the Cauchy problem for
equations of type (1.1) cannot have global smooth solutions for arbitrary initial datum.
Prototype discontinuous solutions that satisfy the Cauchy problem in a weak sense
are planar shock waves. Let us consider for simplicity the one-dimensional case d = 1
with a scalar flux function. If we choose the flux function as a convex function the
only physically relevant type of shock waves are so-called Laxian (or classical) shock
waves. If the flux function is not assumed to be convex also a nonclassical type of
shock wave can arise: the undercompressive shock wave. While a Laxian shock wave
on the level of (1.1) is completely compressive, i.e., the characteristics run into the
discontinuity, for an undercompressive shock only one of the characteristics crosses the
shock line. In recent years many important examples of problems have been identified
that involve undercompressive shock waves: combustion fronts, precursors in thin
film flow, kinematic waves in suspensions, and, most notably for this paper, phase
transitions. In applications, the conservation law (1.1) is equipped with dissipative
terms that lead to a regularization of the weak solutions of (1.1). Let us denote the
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regularized problem by

uε
t (x, t) + div(f(uε(x, t))) = R[ε;uε](x, t) ((x, t) ∈ R

d × R>0),(1.2)

where ε > 0 is a small regularization parameter.
It is an interesting question to identify physically relevant spatial regularization

operators R such that

(i) the Cauchy problem for (1.2) has a global smooth solution uε in R
d × R>0,

(ii) the sequence {uε}ε>0 converges for ε → 0 almost everywhere to a limit func-
tion u ∈ L1

loc(R
d × R>0) which is a weak solution of (1.1),

(iii) the function u contains undercompressive shock waves with reasonable
physical interpretation.

For w ∈ C2(Rd) consider the simplest possible local dissipation term

R[ε;w](x) := εΔw(x), x ∈ R
d.

The fundamental work of Kruzkov shows that tasks (i) and (ii) hold true for this
choice of R ([24]). However, the regularization does rule out undercompressive shocks
in the limit ε → 0 which are known to contradict the Kruzkov entropy condition.
Another picture results if one takes into account local diffusion and dispersion. For
w ∈ C3(Rd) and γ > 0 let

R[ε;w](x) := εΔw(x) + γε2
d∑

j=1

Δwxj (x), x ∈ R
d.(1.3)

This regularization is motivated from phase transition problems like, e.g., the dynam-
ics of liquid-vapor transitions governed by the Navier–Stokes–Korteweg equations
([5, 18, 2, 11, 17, 34, 14]). There the physical density ρε takes the rôle of uε. While
the second order term in (1.3) stands for effects of viscosity, the third order term
models the effects of surface tension forces close to the phase boundary. It can be
directly referred to the free energy functional

Eε
local[ρ

ε] =

∫
Rd

W (ρε(x)) + γε2 |∇ρε(x)|2
2

dx.(1.4)

Here W is the free energy function having double well structure. Minima of Elocal

describe static equilibrium solutions.
On the level of the model problem (1.2) with R from (1.3) it has been shown that

undercompressive shock waves can occur in the limit of vanishing regularization. We
refer to the papers [4, 19, 28, 22, 21, 32, 20, 23] and moreover to the monograph [27]. A
special feature is that the limit depends on the number γ describing the ratio between
diffusion and dispersion: shock waves are regularization-sensitive. The occurrence of
undercompressive shocks has also been analyzed for local nonlinear and fourth order
regularizations ([7]).

If one looks to the derivation of the free energy functional Eε
local one observes

that it is a simplification (see even the first paper on diffuse interface theories by Van
der Waals: [36]). On a more basic level one has to consider the nonlocal energy

Eε
global[ρ

ε] =

∫
Rd

W (ρε(x)) +
γ

4

∫
Rd

φε(x − y)(ρε(x) − ρε(y))2 dydx.(1.5)
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For background on nonlocal energies in the framework of phase transition problems,
we refer to [25, 1, 15, 30, 31] and references therein. To pass to dynamical models
usually the action principle is used. This approach can be performed for local and
nonlocal energies. In the first case for Elocal equation (1.2) with choice (1.3) would be
the most basic model problem. In the nonlocal case it means that we have to choose
for w ∈ C2(Rd)

R[ε;w](x) := εΔw(x) + γ

d∑
j=1

[
[φε ∗ wxj ](x) − wxj (x)

]
, x ∈ R

d.(1.6)

Here we have used for an arbitrary function v ∈ L1
loc(R

d,R) the convolution φε ∗ v
given by

[φε ∗ v](x) =

∫
Rd

φε(x − y)v(y) dy.

The kernel function φε is defined by

φε(x) =
1

εd
φ
(x

ε

)
.(1.7)

φ is a smooth even nonnegative function with supp(φ) ⊂ [−1, 1]d. Moreover let∫
Rd φ(x) dx = 1. The kernel function φε models the long-range interaction.

To show that (1.3) is in fact a simplification of (1.6), assume for simplicity d = 1
and that w is a sufficiently smooth function. By Taylor expansion of w around x = x1

we obtain

[φε ∗ w](x) − w(x) =
1

ε

∫
R

φ

(
x− y

ε

)
(w(y) − w(x)) dy =

∞∑
i=1

c2iε
2iw(2i)(x),

where c2i =
∫

R
y2iφ(y) dy/(2i)!. Neglecting the terms with i > 1 we obtain the third

order derivative in (1.3) with d = 1.
In this paper we start the analysis of the three issues (i), (ii), (iii) for the new reg-

ularization (1.6). First we focus on planar wave solutions for (1.2), (1.6) in section 2.
We show in particular that as the local model (1.2), (1.3) also the nonlocal model
admits traveling wave solutions which correspond to undercompressive shock waves.
Nonlocal dispersion is strong enough to drive these nonclassical shocks. Physically
speaking the model is able to permit phase transitions. We observe also a striking
sensitive dependence on the ratio parameter γ as in the local case.

In section 3 we establish the existence and uniqueness of smooth solutions for
the Cauchy problem to (1.2), (1.6) in multiple space dimensions. Essentially we state
that the L2-norm is a Lyapunov functional for the flow associated with the evolution
equation (1.2). Furthermore we remark that the existence is achieved using techniques
for second order parabolic problems and not (as would be necessary in the case of the
local regularization (1.3)) with the much more complicated techniques for third order
equations. The main result is given in Theorem 3.2.

Finally in section 4 we study the limit ε → 0 for general Cauchy problems. For
the spatially one-dimensional case it turns out that one can obtain a priori estimates
with respect to the L2- and L4-norm that are uniform in the parameter ε. These
two estimates have also been identified in the local case. The dissipation estimates
on spatial derivatives which come along with the estimates on the solution itself are
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not as strong as in the local case. However, the obtained uniform bounds are strong
enough to apply the method of compensated compactness. We show in the proof of
Theorem 4.5 that the limit process can be performed in a (strong) Lp-norm and the
limit function is moreover a weak solution of (1.1). We conclude with a study of the
limit in the multidimensional case in section 5 based on measure-valued solutions.
In all sections we compare the results and used techniques with those for the local
model (1.2), (1.3).

2. Traveling-wave analysis for the scalar model problem. In this section
we seek special solutions uε of (1.2) with regularization given by (1.6): planar waves.
It suffices to consider the one-dimensional version with f := f1 ∈ C2(R) and x := x1:

uε
t + f(uε)x = αεuε

xx +
[
φε ∗ uε − uε

]
x

in R × (0,∞).(2.1)

The kernel φε is defined as in (1.7) with d = 1. Note that we have introduced the
factor α ≥ 0 in (2.1) while γ from (1.6) has been set to be 1. Shifting the weight for
the ratio between local diffusion and nonlocal dispersion to the diffusion term turns
out to be more convenient in this section. To include the purely dispersive case we
allow α = 0.

2.1. Shock waves for the limit problem. We start the investigations with
a review on different types of shock wave solutions for the limit problem which we
obtain by neglecting the terms on the right-hand side of (2.1):

ut + f(u)x = 0 in R × (0,∞).(2.2)

Let some states u− ∈ R and u+ ∈ R with u− 	= u+ be given and define the speed
s ∈ R by the ratio

s =
f(u−) − f(u+)

u− − u+
.(2.3)

Then the discontinuous function U : R × (0,∞) → R given by

U(x, t) :=

{
u− :x− st ≤ 0

u+ :x− st > 0,
(2.4)

is a weak solution of (2.2). We call it a shock wave provided f ′(u±) 	= s. If the
states u− and u+ satisfy the condition

f ′(u−) > s > f ′(u+),(2.5)

the function U is called a compressive (or Laxian) shock wave. If either

s < f ′(u−), s < f ′(u+) or s > f ′(u−), s > f ′(u+)(2.6)

holds the associated shock wave U is called undercompressive. An entropy solution
of (2.2) is a function u ∈ L∞

loc(R × (0,∞)) such that the entropy inequality

∫ T

0

∫
R

η(u(x, t))ψt(x, t) + q(u(x, t))ψx(x, t) dxdt ≥ 0(2.7)

holds for all entropy pairs (η, q) and all ψ ∈ C∞
0 (R × (0,∞)). Here an entropy pair

(η, q) consists of the entropy function η ∈ C2(R), supposed to satisfy η′′ ≥ 0, and
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the entropy flux q ∈ C2(R), supposed to satisfy η′f ′ = q′. We remark that the
discontinuous solution U is an entropy solution if and only if the inequality

D(η,q)(u−, u+) := −s(η(u+) − η(u−)) + q(u+) − q(u−) ≤ 0(2.8)

is satisfied for all entropy pairs. It is well known that for convex fluxes a shock wave
is an entropy solution of (2.2) if and only if it is compressive ([8]). However, the
condition (2.7) is quite restrictive since in the systems case often only one entropy
pair is available.

Let us now consider (2.2) for the nonconvex cubic flux f(u) = u3 and choose—for
simplicity—the state u− ∈ (0,∞) as an arbitrary but fixed number. Then we get
from (2.3) the equation

s = u2
− + u−u+ + u2

+.(2.9)

Conditions (2.5) and (2.7) are satisfied for u+ ∈ (−u−/2, u−). We neglect the charac-
teristic case u+ = u−/2 which does not correspond to a shock wave in the sense of a
strict inequality as required in (2.5) or (2.6). For u+ ∈ (−∞,−u−/2), we observe that
only one of the characteristics runs into the propagating shock wave. The first case in
(2.6) applies and the associated shock wave U is undercompressive. Straightforward
calculations reveal the following statements.

(i) Let u+ be in (−u−,−u−/2). For the entropy pair (η(u), q(u)) = (u2/2, 3u4/4)
we have

D(η,q)(u−, u+) =
1

4
(u+ − u−)2(u2

+ − u2
−) < 0.

(ii) Let u+ be in (−u−,−τu−) for τ ∈ (1/2, 1) and let l ∈ N \ {2} be even. For
the entropy pair

(ηl(u), ql(u)) =

{
(ul/l, 3ul+2/(l + 2)) :u < 0,

(0, 0) :u ≥ 0,

we have

D(ηl,ql)(u−, u+) = ηl(u+)
(
2
l − 1

l + 2
u2

+ − u−u+ − u2
−

)
> 2ηl(u+)u2

−

( l − 1

l + 2
τ2 +

1

2
τ − 1

2

)
.

Thus for each τ ∈ (1/2, 1) there is an l0 ∈ N such that for l > l0 we have

D(ηl,ql)(u−, u+) > 0.

(iii) Let u+ with u+ < −u− be given. For the entropy pair from (i) we have

D(η,q)(u−, u+) > 0.(2.10)

Thus U is for u+ < −u−/2 not an entropy solution anymore, but if u+ is not too
small, i.e., not less or equal than −u−, an entropy inequality holds for the entropy
pair with quadratic entropy. Exactly this entropy is important for our regularized
problem (cf. Theorem 3.2 and estimate (3.5) below).

These considerations can be done for any nonconvex flux function. For a more
extensive study we refer to [26]. The possible occurrence of undercompressive shock
waves is the reason why (1.1) can be seen as a simple model for phase transitions.
Note that phase transitions in realistic models can take the form of undercompressive
waves (cf. [17] for instance).
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2.2. Nonlocal diffusion-dispersion profiles. Let u−, u+ ∈ R, compute s
through (2.3), and define the shock wave U by (2.4). The function v ∈ C2(R) is
called a nonlocal diffusion-dispersion profile for the shock wave U if it solves

αv̇(ξ) + ([φ ∗ v](ξ) − v(ξ)) = f(v(ξ)) − sv(ξ) − (f(u−) − su−) (ξ ∈ R),

v(±∞) = u±.

(2.11)

If there is a nonlocal diffusion-dispersion profile for some shock wave U we can define
the traveling-wave function uε ∈ C2(R × (0,∞)) through

uε(x, t) = v

(
x− st

ε

)
((x, t) ∈ R × R>0).(2.12)

We see that uε is a classical solution of (2.1). Moreover we have for (x, t) ∈ R×(0,∞)
with x− st 	= 0

lim
ε→0

uε(x, t) = U(x, t) =

{
u− :x− st < 0,

u+ :x− st > 0.
(2.13)

It is the issue of this section to show that for our nonlocal equation there are traveling
waves such that the weak solution U represents an undercompressive shock wave.

Note 2.1. The problem (2.11) itself does not depend on ε. This is a consequence
of the scaling with respect to ε between the local diffusive and nonlocal dispersive term.
For other scalings, e.g. γ = γ(ε), the problem (2.11) can depend on ε. We shall see
below that the chosen scaling leads to nonlocal diffusion-dispersion profiles for shock
waves that are undercompressive shock waves. We conjecture that all other scalings
lead to either classical behavior excluding undercompressive waves or purely dispersive
behavior without any distinguished wave structure.

The problem (2.11) belongs to the class of ordinary but nonlocal boundary value
problems. These kinds of problems have been studied by [3, 12, 9], for instance. Our
analysis relies on the result by Bates et al. ([3]) which we recall now.

Theorem 2.2. For r ∈ N let the function φ ∈ Cr(R, [0,∞)) ∩W r,1(R) be even
and satisfy ∫

R

φ(x) dx = 1,

∫
R

φ(x)|x|dx < ∞.(2.14)

Let u−, u+ ∈ R and F ∈ Cr(R) be given. For the unknowns v : R → R and α ∈ R

consider the problem

αv̇(ξ) + ([φ ∗ v](ξ) − v(ξ)) = F (v(ξ)) (ξ ∈ R),

v(±∞) = u±.
(2.15)

We suppose that the states u± ∈ R and the function F satisfy

(i) u− > u+,

(ii) F (u±) = 0, F ′(u±) > 0,

(iii) ∃ ! u0 ∈ (u+, u−) : F (u0) = 0,

(iv) u ∈ [u+, u−] ⇒ F ′(u) + 1 > 0.

(2.16)

Then exactly one of the following statements holds true.
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(a) There is a monotonely decreasing function v ∈ Cr+1(R) and a unique α ∈
R \ {0} such that (2.15) holds.
In this case we have

α = H(u−, u+)

(∫ ∞

−∞
(v̇(ξ))2 dξ

)−1

, H(u−, u+) :=

∫ u+

u−

F (u) du.(2.17)

(b) There is a monotonely decreasing function v ∈ Cr(R) such that (2.11) holds
for α = 0.
In this case we have

H(u−, u+) = 0.

In both cases the function v is unique up to translation.
Proof. See Theorems 2.7, 3.1, and 4.1 in [3].
The differential equation in problem (2.15) should be seen as the nonlocal coun-

terpart to

αv̇(ξ) + v̈(ξ) = F (v(ξ)) (ξ ∈ R).(2.18)

Then it is clear that condition (ii) from Theorem 2.2 ensures that u− and u+ are
hyperbolic rest points of saddle type. With (iii) we just simplify the problem to
exclude having more than the (necessary) three equilibria. The local problem (2.18)
is a classical bistable equation for which the existence and bifurcation of traveling
waves (local diffusion-dispersion profiles) is completely understood. Condition (iv) is
not a necessary condition for the existence of orbits (cf. [3, Theorem 3.1]). However, if
it is violated, the relation H(u−, u+) in case (b) is substituted by a more complicated
relation. Since here we only want to show that the nonlocal regularization is strong
enough to drive nonclassical undercompressive waves, we do not pursue this issue. We
return to our problem (2.11) and define

F = F (v) := f(v) − sv − (f(u−) − su−)(2.19)

for v ∈ R. A necessary structural assumption on f to construct undercompressive
shock waves is the nonconvexity of f as we have seen in section 2.1. We choose again

f(u) = u3.(2.20)

Furthermore we require that the states u−, u+ satisfy

u− > 0 > −u−
2

> u+.(2.21)

Using (2.9) we see that s < f ′(u−) and s < f ′(u+) holds. Thus the function U defined
by (2.4) is an undercompressive shock wave. The choice u+ = −u−/2 leads to the
excluded characteristic case f ′(u+) = s. We now prove the existence of a nonlocal
diffusion-dispersion profile for U .

Proposition 2.3. We consider the problem (2.11) with cubic flux (2.20) and
choose u−, u+ ∈ R such that (2.21) holds. We suppose that the kernel function φ is
even, in the set C1(R, [0,∞)) ∩W 1,1(R), and satisfies∫

R

φ(x) dx = 1,

∫
R

φ(x)|x|dx < ∞.(2.22)
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Moreover, if the states u−, u+ fulfill

(u+ + u−)2 − u−u+ < 1,(2.23)

we have
(i) for u+ ∈ (−u−,−u−/2) that there is a function v ∈ C2(R) and a unique

α > 0 solving (2.11),
(ii) for u+ = −u− that there is a function v ∈ C1(R) solving (2.11) with α = 0.

The functions v are unique up to translation.
Proof. With the assumptions of the proposition we can apply Theorem 2.2 with

r = 1. We have to verify the conditions (i),. . . ,(iv) in (2.16). Condition (i) is satisfied
due to (2.21). The Rankine–Hugoniot relation (2.3) and (2.9) imply F (u±) = 0. For
the derivative F ′(v) = 3v2 − s we obtain with the upper bound for u+ in (2.21) the
estimates

F ′(u−) = 2u2
− − u−u+ − u2

+ > u2
− − u−u+ > 0,

F ′(u+) = 2u2
+ − u−u+ − u2

− > 1
2u

2
− + 1

2u
2
− − u2

− = 0.

Thus condition (ii) in Theorem 2.2 holds. Since F from (2.19) is cubic the condition
(iii) is a consequence of F ′(u±) > 0. The function F ′(u) + 1 has a minimum in
umin = 0 ∈ [u+, u−] with

F (umin) = 1 − (u+ + u−)2 + u−u+.

This is condition (iv) due to (2.23).
We can apply the theorem and compute in our case for H defined in (2.17) the value

H(u−, u+) =

∫ u+

u−

u3 − su− (u3
− − su−) du

= −1

4

(
u4

+ − 2u3
+u− + 2u+u

3
− − u4

−
)

= −1

4
(u+ + u−)(u+ − u−)3.

For fixed u− the function H(u−, .) vanishes in u+ = −u− and is positive in (−u−,−u−/2).
This implies the two statements of the proposition since exactly one of the two cases
(a), (b) in Theorem 2.2 must hold true.

Some remarks are in order.
Note 2.4.

(i) The condition (2.23) can be satisfied for sufficiently small values of u−. It
holds for instance in the case u− = 1. Together with the discussion in sec-
tion 2.1 on undercompressivity we have shown that nonlocal dispersive terms
can drive nonclassical shock waves of this type. We stress that condition (2.23)
is used to verify (iv) in Theorem 2.2 which is not a necessary assumption for
the existence of solutions.

(ii) Using the local term (1.3) in (1.2) leads to the study of (2.18) for traveling
waves. As long as condition (2.23) holds we get exactly the same result on
the existence of nonlocal diffusion-dispersion profile as in the case of the local
dispersion term. Moreover the coefficient α for given u− and u+ is the same
in the local and nonlocal case. We refer to [21, 19]. In the nonlocal case the
results do not rely on the form of the kernel φε as long as the assumptions
in (2.14) are satisfied. This freedom in modelling is not present for the local
regularization.
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(iii) According to Proposition 2.3 the case u+ = −u− can be solved only with α = 0
(or equivalently γ = ∞) . This is of no interest to us since we want to have a
positive parameter in front of the diffusion term in the original regularization
(1.6). However, it is interesting to see that this situation is detected by the
analysis. The choice u+ = −u− in the definition of the shock wave U is the
extreme nonclassical one. If one takes u+ strictly less than −u− the entropy
condition (2.7) does not hold for the quadratic entropy function (cf. (2.10)).
The overall importance of this entropy becomes clear in sections 3, 4, and 5.
It is a Lyapunov functional for solutions uε(., t) of the Cauchy problem to
(1.2) with (1.6).

(iv) Theorem 2.2 is applied in [3] to a Ginzburg–Landau-type problem. However,
the meaning of the parameter α is completely different. While here it is the
diffusion parameter it plays the rôle of the traveling-wave speed in [3]. In our
case the wave speed parameter is given a priori by (2.3).

3. Existence of classical solutions for the scalar model problem. In this
section we consider (1.2) for the regularization (1.6), that is,

uε
t + div(f(uε)) = εΔuε + γ

d∑
j=1

[
φε ∗ uε

xj
− uε

xj

]
in R

d × (0, T ),(3.1)

with initial condition

uε(., 0) = u0 in R
d.(3.2)

The time T > 0 is an arbitrary but fixed number and we recall the definition of φε

from (1.7). Under appropriate conditions on the initial function u0, the flux f , and
the function φ specified below, we prove the existence of classical solutions for the
Cauchy problem (3.1), (3.2).

3.1. Some notations and assumptions. For a multi-index α = (α1, . . . , αd)
T ∈

N
d
0, we define the differential operator

Dα :=
∂α1+···αd

∂α1
x1 · · · ∂αd

xd

.

For the partial derivative with respect to the space coordinate xj , j = 1, . . . , d, we
also use the symbol ∂xj . The open set ΩR, R ∈ [0, T ] is defined by ΩR = R

d × (0, R).
The following assumption on the flux functions and the function φ hold throughout the
following two sections on the scalar model problem if nothing else is stated explicitly.

Assumption 3.1.

(i) There is a number k > d/2 + 1 such that f1, . . . , fd ∈ Ck(R). Furthermore,
for each r > 0 let Lf (r) > 0 be a number such that

d∑
j=1

|f ′
j(u)| ≤ Lf (r) (|u| ≤ r).

(ii) The function φ ∈ C∞(Rd) is even, bounded, nonnegative, and satisfies∫
Rd

φ(x) dx = 1, supp(φ) ⊂ [−1, 1]d.
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We introduce the set K0(r) for r > 0 by

K0(r) = {w ∈ L∞(Rd) | ‖w‖L∞(Rd) ≤ r}.

For R > 0 we denote by C2
1 (ΩR) the set of real-valued functions on Ω̄R such that all

spatial derivatives up to order two and the first order time derivative exist and are
continuous in ΩR. A function uε ∈ C([0, R];L∞(Rd) ∩ L2(Rd)) ∩ C2

1 (ΩR) is called a
classical solution of (3.1), (3.2) in ΩR if it satisfies (3.1) in ΩR and (3.2) almost
everywhere in R

d.
For ε > 0 we also introduce the operator qε : L∞(Rd) → L∞(Rd) with

qε[w] = γ(φε ∗ w − w) (w ∈ L∞(Rd)).

We note that qε satisfies for almost all x ∈ R
d the simple estimate

|qε[w](x)| ≤ 2γ‖w‖L∞(Rd).(3.3)

3.2. The main result. The main result in this section is the following theorem.
Theorem 3.2 (global existence). Let r∞ > 0 be given and suppose that Assump-

tion 3.1 holds. Then there exists a number r2 = r2(r∞) > 0 such that for all

u0 ∈ K0(r∞) ∩ L2(Rd)(3.4)

with

‖u0‖L2(Rd) ≤ r2

there is a classical solution uε of (3.1), (3.2) in ΩT that is unique in the set of classical
solutions. We have for t ∈ [0, T ]

1

2
‖uε(., t)‖2

L2(Rd) + ε

d∑
j=1

‖∂xj
uε‖2

L2(Ωt)
=

1

2
‖u0‖2

L2(Rd).(3.5)

The proof of the theorem will be presented in section 3.4 below and relies on a
local-in-time existence result presented in section 3.3. We add some comments. The
smallness condition on the L2-norm of u0 is a consequence of the fact that (3.1) is
not equipped with a maximum principle if γ > 0 holds. This cannot be expected in
the framework of local or nonlocal dispersive regularizations.

In this section the dependence of results and estimates on ε does not play a role
so that we take ε > 0 as arbitrary but fixed. However, we note for later use that
(3.5) provides an ε-independent estimate on the L∞([0, T ];L2(Rd))-norm of uε and
for

√
ε‖∇uε‖L2(Rd×[0,T ]).

3.3. Local existence. At first we provide a local-in-time existence and unique-
ness result for (3.1), (3.2) which we then extend to arbitrary times. For both steps we
use a method which has been developed for parabolic systems that do not allow for
an a priori L∞-bound ([33, Chapter 6.2]). It is one of the advantages of regularization
(1.6) in comparison to (1.3) that the more flexible second order theory can still be
applied while the local counterpart requires dealing with a more complicated third
order differential operator.

We make use of the scaled heat kernel

Kε(x, t) = (4πεt)−d/2 exp
(
− |x|2

4πεt

)
((x, t) ∈ ΩT ).
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For t > 0 we collect the following properties for Kε:

∫
Rd

Kε(x, t) dx = 1,

∃Cε > 0 :

d∑
j=1

‖∂xj
Kε(., t) ∗ w‖Lp(Rd)

≤ Cε√
t
‖w‖Lp(Rd), w ∈ Lp(Rd), p = 2,∞.

(3.6)

Now let r∞ ∈ R and r̄ ∈ R be numbers such that

r̄ > r∞ > 0.(3.7)

Note that these numbers r̄ and r∞ are arbitrary but fixed throughout the section.
Finally we also fix a number t̄ ∈ (0, T ) such that

r∞ + 2Cε(Lf (r̄) + 2γd)r̄
√
t̄ < r̄(3.8)

and

2Cε(Lf (r̄) + 2γd)
√
t̄ < 1(3.9)

hold.
Lemma 3.3. Suppose that Assumption 3.1 holds and let u0 ∈ K0(r∞)∩L2(Rd).

Then there exists a unique fixed point uε ∈ L∞(Ωt̄)∩L∞(0, t̄;L2(Rd)) of the mapping
Lε : L∞(Ωt̄) → L∞(Ωt̄) which is defined for v ∈ L∞(Ωt̄) and ε > 0 by

(Lεv)(x, t) =
[
Kε(., t) ∗ u0

]
(x) +

∫ t

0

d∑
j=1

[
∂xj

Kε(., t− s) ∗ fj(v(., s))
]
(x) ds

−
∫ t

0

d∑
j=1

[
∂xjKε(., t− s) ∗ qε[v(., s])

]
(x) ds ((x, t) ∈ Ωt̄).

(3.10)

For the function uε there is a constant C0 > 0 such that we have

‖uε‖L∞(Ωt̄)
+ ‖uε‖L∞(0,t̄;L2(Rd)) ≤ C0.(3.11)

The number C0 depends on r∞, ε, f1, . . . , fd, φ and ‖u0‖L2(Rd).

Proof. At first we show that under condition (3.8) for t̄ the inclusion Lε(K(r̄)) ⊂
K(r̄) holds. Here we denote K(r̄) = {v ∈ L∞(Ωt̄) | ‖v‖L∞(Ωt̄)

≤ r̄} and r̄ is the

number from (3.7). Using the definition of Lε and the properties of the kernel in (3.6)
we deduce for t ∈ [0, t̄ ]

‖(Lεv)(., t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd)

+ (Lf (r̄) + 2γd)‖v‖L∞(Ωt̄)

∫ t

0

∫
Rd

d∑
j=1

∣∣∂xj
Kε(x, t− s)

∣∣ dxds.
We have used Assumption 3.1 and the estimate (3.3) and proceed with the estimate
on ∂xjKε in (3.6) and observe for t ∈ [0, t̄ ]

‖(Lεv)(., t)‖L∞(Rd) ≤ r∞ + 2Cε(Lf (r̄) + 2γd)‖v‖L∞(Ωt̄)

√
t.(3.12)
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From (3.8) we get Lε(K(r̄)) ⊂ K(r̄) since r̄ > r∞. With the same arguments we
obtain for v1, v2 ∈ L∞(Ωt̄) and t ∈ [0, t̄ ]

‖(Lεv1)(., t) − (Lεv2)(., t)‖L∞(Rd) ≤ 2Cε(Lf (r̄) + 2γd)
√
t‖v1 − v2‖L∞(Ωt̄)

.(3.13)

Since t̄ satisfies (3.9) we see that Lε is a contraction in L∞(Ωt̄) and has a unique fixed
point uε in this space. With the arguments above one obtains the similar estimates
in L∞(0, t̄;L2(Rd)):

‖(Lεv)(., t)‖L2(Rd) ≤ ‖u0‖L2(Rd) + 2Cε(Lf (r̄) + 2γd)
√
t‖v‖L∞(0,t̄;L2(Rd)),

‖(Lεv1)(., t) − (Lεv2)(., t)‖L2(Rd) ≤ 2Cε(Lf (r̄) + 2γd)
√
t‖v1 − v2‖L∞(0,t̄;L2(Rd)).

(3.14)

Consider now the sequence {uε
m}m∈N defined by

uε
m+1(x, t) := (Lεu

ε
m)(x, t), uε

1(x, t) = u0(x) ((x, t) ∈ Ωt̄).(3.15)

This sequence is a Cauchy sequence in the Banach space L∞(0, t̄;L2(Rd)) by (3.14).
A subsequence must converge also in L∞(0, t̄;L∞(Rd)) by (3.13). The limit is the
unique fixed point uε of Lε. The estimate (3.11) follows from (3.12) and (3.14) with

v = uε and taking into account 2Cε(Lf (r̄) + 2γd)
√
t̄ < 1.

The fixed point uε of Lε is a weak solution of (3.1) that satisfies (3.2). The implicit
representation formula (3.10) shows uε ∈ C2

1 (Ωt̄) (with uε(., 0) := u0, uε(., t̄) :=
lims→t̄,s<t u

ε(., s)). For p = 2,∞ we observe uε ∈ C([0, t̄ ];Lp(Rd)) by means of
(3.10), the Lp-bound for uε and the continuity of convolutions with the heat kernel.
Thus uε is a classical solution of (3.1), (3.2). We now estimate the Sobolev norms
of derivatives of uε. Due to the regularizing behavior of the heat kernel we obtain
estimates on the Sobolev norm of each order that do not depend on the regularity of
the initial function.

Lemma 3.4 (estimates for derivatives). Suppose that Assumption 3.1 holds and
let u0 ∈ K0(r∞) ∩ L2(Rd) with r∞ from (3.7) be given. Then the fixed point uε of Lε

satisfies uε ∈ L∞(0, t̄;W k,2(Rd) ∩ W k,∞(Rd)) with k ∈ N given by Assumption 3.1.
Moreover for all t∗ ∈ (0, t̄ ] there is a continuous function Cα : [0,∞) → [0,∞) such
that for all α ∈ N

d
0, |α| ∈ {1, . . . , k} and t ∈ (t∗, t̄ ] we have

‖(t− t∗)
1
2Dαuε(., t)‖Lp(Rd) ≤ Cα

(
‖u0‖L∞(Rd) + ‖u0‖L2(Rd) +

1√
t∗

)
(p = 2,∞).

(3.16)

The function C depends in particular on k and t̄ but not on u0.
Proof. For m ∈ N, we define the iterates uε

m as in (3.15). Let t∗ ∈ (0, t̄ ]. For a
continuous function Cα : [0,∞) → [0,∞) independent of m we shall prove below the
following uniform estimate:

‖(t− t∗)
1
2Dαuε

m(., t)‖Lp(Rd) ≤ Cα
(
‖u0‖L∞(Rd) + ‖u0‖L2(Rd) +

1√
t∗

)
(p = 2,∞).

(3.17)

Here α ∈ N
d
0 is a multi-index with |α| ≤ k. From Lemma 3.3 we have uε

m →
uε in L∞(Ωt̄). By (3.17) there is then for each α ∈ N

d
0, |α| ≤ k, a function

vεα ∈ L∞(Rd × (t∗, t̄)) such that (for a subsequence) Dαuε
m

∗
⇀ vεα. We conclude
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uε ∈ L∞(t∗, t̄;W k,∞(Rd)) and Dαuε = vα. Since t∗ is arbitrary we get uε ∈
L∞(0, t̄;W k,∞(Rd)). A similar argument applies to show uε ∈ L∞(0, t̄;W k,2(Rd)).
The estimate (3.16) follows from (3.17) by taking the limit m → ∞. It remains
to prove (3.17). For v ∈ W 2,k(Rd) ∩ W∞,k(Rd) and β ∈ N

d
0, |β| ∈ {1, . . . , k} we

deduce from fj ∈ Ck(Rd) that there is a continuous monotone increasing function
Aβ : [0,∞) → [0,∞) independent of v such that

d∑
j=1

‖Dβ(fj(v)) − f ′
j(v)D

βv‖
Lp(Rd)

≤

⎧⎨
⎩

Aβ
(
‖v‖W 2,|β|−1(Rd) + ‖v‖W∞,|β|−1(Rd)

)
: p = 2,

Aβ
(
‖v‖W∞,|β|−1(Rd)

)
: p = ∞.

(3.18)

Note that Dβfj(v) − f ′
j(v)D

βv contains only derivatives of v up to order |β| − 1 but
there are derivatives of the fluxes up to order |β|.

We return to the proof of (3.17). The case |α| = 0 has been proven in Lemma
3.3. We start with |α| = 1 and obtain from the iteration formula (3.10) with (3.6) for
i = 1, . . . , d, p = 2,∞, and t ∈ (0, t̄ ],

‖∂xiu
ε
m+1(., t)‖Lp(Rd)

≤ ‖∂xiKε(., t) ∗ u0‖Lp(Rd) +

d∑
j=1

∫ t

0

‖∂xjKε(., t− s) ∗ ∂xi(fj(u
ε
m(., s)))‖

Lp(Rd)
ds

+

d∑
j=1

∫ t

0

‖∂xjKε(., t− s) ∗ ∂xi(q
ε[uε

m(., s)])‖
Lp(Rd)

ds

≤ Cε√
t
‖u0‖Lp(Rd) + 2Cε(Lf (r̄) + 2γd)

√
t‖∂xi

uε
m‖Lp(0,t̄;Lp(Rd)).

Multiplication with (t − t∗)1/2 implies (3.16) for |α| = 1. We proceed by induction
with respect to α and choose p = ∞ first. For t∗ ∈ (0, t̄ ], l ∈ {1, . . . , k}, i ∈ {1, . . . , d},
α = lei, ei the ith unit vector and t ∈ (t∗, t̄ ] we can write

‖Dαuε
m+1(., t)‖L∞(Rd)

≤ ‖∂xi
Kε(., t− t∗) ∗Dα−eiuε

m+1(., t
∗)‖

L∞(Rd)

+

∫ t

t∗

d∑
j=1

‖∂xjKε(., t− s) ∗Dαfj(u
ε
m(., s))‖

L∞(Rd)
ds

+

∫ t

t∗

d∑
j=1

‖∂xj
Kε(., t− s) ∗Dαqε[uε

m(., s)])‖
L∞(Rd)

ds

≤ Cε√
t− t∗

‖Dα−eiuε
m+1(., t

∗)‖
L∞(Rd)

+ 2Cε

√
t− t∗

⎛
⎝ d∑

j=1

|f ′
j(u

ε
m)| + 2γd

⎞
⎠ ‖Dαuε

m‖L∞(Ωt∗,t̄)

+ 2Cε

√
t− t∗

d∑
j=1

‖Dα(fj(u
ε
m)) − f ′

j(u
ε
m)Dαuε

m‖
L∞(Ωt∗,t̄)

.
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Here we used Ωt∗,t̄ := R
d × (t∗, t̄ ]. The estimate (3.18) implies

‖Dαuε
m+1(., t)‖L∞(Rd)

≤ Cε√
t− t∗

‖Dα−eiuε
m+1(., t

∗)‖
L∞(Rd)

+ 2Cε

√
t− t∗(Lf (r̄) + 2γd)‖Dαuε

m‖L∞(Ωt∗,t̄)

+2Cε

√
t− t∗Aα

(
‖uε

m‖L∞(t∗,t̄;W∞,|α|−1(Rd))

)
.(3.19)

The first and third term on the right-hand side of (3.19) contain only derivatives of
lower order than |α|. Therefore we can apply the induction hypothesis (3.17). The
first term is evaluated in t∗ directly. The induction hypothesis holds for arbitrary
t∗ ∈ (0, t̄] and if we apply it for, e.g., t∗/2 at the position of t∗ in (3.17) we see that
there is a continuous function Bα

1 : [0,∞) → [0,∞) (depending on Cα−ei in (3.17))
such that

‖Dα−eiuε
m+1(., t

∗)‖
L∞(Rd)

≤ Bα
1

(
‖u0‖L∞(Rd) + ‖u0‖L2(Rd) +

1√
t∗

)

holds. For the third term we obtain directly from the hypothesis that there is a
continuous function Bα

2 : [0,∞) → [0,∞) (depending on Aα in (3.19) and Cα−ei in
(3.17)) such that

Aα
(
‖uε

m‖L∞(t∗,t̄;W∞,|α|−1(Rd))

)
≤ Bα

2

(
‖u0‖L∞(Rd) + ‖u0‖L2(Rd) +

1√
t∗

)

holds. Altogether with 2Cε

√
t− t∗(Lf (r̄)+2γd) < 1 we see that there is a continuous

function Cα : [0,∞) → [0,∞) (depending on Bα
1 , Bα

2 ) such that

‖Dαuε
m(., t)‖L∞(Rd) ≤

1√
t− t∗

Cα
(
‖u0‖L∞(Rd) +

1√
t∗

)
.

Mixed derivatives are treated in the same manner. Also the case p = 2 can be treated
analogously.

3.4. Proof of Theorem 3.2. In this section we extend the local existence results
from Lemmas 3.3 and 3.4 to time intervals [0, T ] for the arbitrary but fixed number
T > 0. The key tool is the following a priori estimate.

Lemma 3.5 (a priori estimate). Let the assumptions of Theorem 3.2 be valid.
For ε > 0 and T > 0 assume that uε ∈ C2

1 (ΩT ) is a classical solution of (3.1), (3.2)
that satisfies for t ∈ (0, T ] the decay estimates

lim
|x|→∞

|Dαuε(x, t)| = 0 (α ∈ N
d
0, |α| ≤ 1).(3.20)

Then uε satisfies for t ∈ [0, T ]

1

2
‖uε(., t)‖2

L2(Rd) + ε

d∑
j=1

‖∂xju
ε‖2

L2(Ωt)
=

1

2
‖u0‖2

L2(Rd).(3.21)
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Proof. Let w ∈ C1(Rd) be a function that tends to 0 for |x| → ∞ and j ∈
{1, . . . , d}. Since φε is even we observe∫

Rd

w(x)
[
[φε ∗ w](x)

]
xj

dx = −
∫

Rd

w(y)

∫
Rd

φε(y − x)wxj (x) dxdy

= −
∫

Rd

w(y)[φε ∗ wxj ](y) dy

= −
∫

Rd

w(y)
[
[φε ∗ w](y)

]
yj
dy.

(3.22)

Interchanging the rôles of x and y in the last term we obtain∫
Rd

w(x)
[
[φε ∗ w](x)

]
xj

dx = 0 (j = 1, . . . , d).(3.23)

To prove (3.21) we multiply (3.1) by uε, integrate with respect to space and time, and
obtain by (3.2), (3.20) the equality

1

2
‖uε(., t)‖2

L2(Rd) + ε

d∑
j=1

‖∂xju
ε‖2

L2(ΩT )

=
1

2
‖u0‖2

L2(Rd) + γ

d∑
j=1

∫ t

0

∫
Rd

uε(x, s)
[[
φε ∗ uε(., s)

]
(x) − uε(x, s)

]
xj

dxds.

Using (3.23) leads to the statement (3.21).
For the proof of Theorem 3.2 we rely on the L2-a priori estimate in Lemma 3.5

and Sobolev’s inequalities.
Proof of Theorem 3.2. Let uε be the unique fixed point of Lε which has been

determined in Lemma 3.3. From Lemma 3.4 we have uε(., s) ∈ W k,∞(Rd)∩W k,2(Rd)
for s ∈ (0, t̄ ]. Since k > d/2 we deduce by Sobolev’s inequality that there is a constant
C > 0 such that

‖uε(., s)‖L∞(Rd) ≤ C‖uε(., s)‖Wk,2(Rd)

≤ C‖uε(., s)‖1−θ
L2(Rd)

( ∑
|α|=k

‖Dαuε(., s)‖L2(Rd)

)θ

.

The last estimate follows from the interpolation theory for Sobolev spaces with θ ∈
(0, 1) (cf. [6]). Moreover the regularity of uε implies that (3.20) holds in (0, t̄ ]. Thus
the estimate (3.21) applies and we obtain with Lemma 3.4 for s ∈ (t̄/4, t̄) and t∗ = t̄/4
the estimate

‖uε(., s)‖L∞(Rd) ≤ C‖u0‖1−θ
L2(Rd)C

(
‖u0‖L∞(Rd) + ‖u0‖L2(Rd) +

2√
t̄

)θ

(s− t̄/4)−
θ
2 .

The function C is a continuous nonnegative function depending on the functions Cα,
|α| = k, in (3.16). Now we fix s, say s = t̄/2, and choose r2 so small such that
for all u0 with ‖u0‖L2(Rd) ≤ r2 the right-hand side in the last inequality is bounded

from above by ‖u0‖L∞(Rd). For the (new) initial function u0 = uε(., s) with s = t̄/2
the assumptions of Lemma 3.3 are satisfied. We can extend our local solution to
the time interval [0, 3t̄/2). Repeating all arguments we finally obtain a global unique
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solution uε for t ∈ [0, T ]. The function uε satisfies uε ∈ C2
1 (ΩT ). Since we have

(after extension of uε
m to ΩT ) uε

m ∈ C([0, T ];L2(Rd) ∩ L∞(Rd)) by construction and
uε
m → uε in L∞(0, T ;L2(Rd) ∩ L∞(Rd)) from the proof of Lemma 3.3 we have also

uε ∈ C([0, T ];L2(Rd)∩L∞(Rd)). Thus uε provides a classical solution of (3.1), (3.2).
It is unique in this class since each classical solution is a fixed point of (3.10), which
is unique.

4. Sharp-interface limits for the scalar model problem in one dimen-
sion. We let d = 1. For x = x1 and f(u) = f1(u) (1.2) with (1.6) takes the form

uε
t + f(uε)x = εuε

xx + γ
[
φε ∗ uε − uε

]
x

(4.1)

in R× (0, T ), T > 0. As before we consider the Cauchy problem for (4.1) with initial
condition

uε(x, 0) = u0(x) (x ∈ R).(4.2)

The assumptions on u0 will be specified below. We restrict ourselves to the choice

f(u) = u3.

In this section we assume that a unique classical solution of the Cauchy problem for
(4.1) with certain properties exists. Actually this can be proven using Theorem 3.2.
For a short discussion of this issue and restrictions concerning f , we refer to Note 4.6.
We study the sharp-interface limit ε → 0. Section 4.1 is devoted to the derivation
of certain a priori estimates. Using the compensated compactness framework in sec-
tion 4.2 we treat the limit problem in one space dimension with γ = O(1).

4.1. A priori estimates. For ε, γ > 0 we introduce the mapping Eε : L2(R) →
L1(R) by

Eε[w](x) =
γ

4

∫
R

φε(x− y)
(
w(y) − w(x)

)2
dy (w ∈ L2(R), x ∈ R).(4.3)

We assume that Assumption 3.1 for d = 1 is valid throughout the section. We need
the following technical lemma.

Lemma 4.1. Let w ∈ C2
1 (R × (0, T )) such that we have for all t ∈ (0, T )

w(., t), wt(., t), wx(., t), wxx(., t) ∈ L2(R).

Then we have for t ∈ (0, T )

d

dt

∫
R

Eε[w(., t)](x) dx = −γ

∫
R

[[
φε ∗ w(., t)

]
(x) − w(x, t)

]
wt(x, t) dx(4.4)

and

2

∫
R

Eε[wx(., t)](x) dx = γ

∫
R

[[
φε ∗ w(., t)

]
(x) − w(x, t)

]
wxx(x, t) dx.(4.5)
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Proof. We compute for t ∈ (0, T )

γ

4

d

dt

∫
R

∫
R

φε(x− y)(w(y, t) − w(x, t))2 dydx

=
γ

2

∫
R

∫
R

φε(x− y)(w(y, t) − w(x, t))wt(y, t) dydx

+
γ

2

∫
R

∫
R

φε(y − x)(w(x, t) − w(y, t))wt(x, t) dydx

= γ

∫
R

∫
R

φε(x− y)(w(y, t) − w(x, t))wt(y, t) dydx

= −γ

∫
R

(
[φε ∗ w(., t)](x) − w(x, t)

)
wt(x, t) dx.

This is (4.4). Note that we used the symmetry of φ. To derive (4.5) consider for
t ∈ (0, T )

∫
R

∫
R

Eε[wx(., t)](x) dx = −γ

2

∫
R

∫
R

φε(x− y)(wx(x, t)wx(y, t) − w2
x(x, t)) dydx

= − γ

2

∫
R

wx(x, t)
(
[φε ∗ wx(., t)](x) − wx(x, t)

)
dx

=
γ

2

∫
R

wxx(x, t)
(
[φε ∗ w(., t)] − w(x, t)

)
dx.

With this lemma we now prove the crucial a priori estimates on uε.

Lemma 4.2. Assume that we have u0 ∈ L2(R)∩L∞(R). Let uε ∈ C([0, T ];L2(R)∩
L∞(R))∩C2

1 (R×(0, T )) be a classical solution of (4.1), (4.2) that satisfies for t ∈ (0, T ]
the relations

uε
t (., t), u

ε
x(., t), uε

xx(., t) ∈ L2(R).(4.6)

Then we have for all t ∈ [0, T ]

1

2
‖uε(., t)‖2

L2(R) + ε‖uε
x‖

2
L2(R×(0,t)) =

1

2
‖u0‖2

L2(R)(4.7)

and

1

4
‖uε(., t)‖4

L4(R)(4.8)

+

∫
R

Eε[uε(., t)](x) dx + 3ε‖uεuε
x‖

2
L2(R×(0,t))

+ 2εγ‖Eε[uε
x]‖L1(R×(0,t)) =

1

4
‖u0‖4

L4(R) +

∫
R

Eε[u0](x) dx.

Proof. The proof of (4.7) has already been given in Lemma 3.5. We turn to prove
the second estimate (4.8). By (4.6) and Sobolev embedding we get for t ∈ (0, T ] the
limit

lim
|x|→∞

(
|uε(x, t)| + |uε

x(x, t)|
)

= 0.(4.9)
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Using (4.9) we obtain by multiplication of (4.1) with f(u) = u3

1

4
‖uε(., t)‖4

L4(R) + 3ε‖uεuε
x‖

2
L2(R×(0,t))

=
1

4
‖u0‖4

L4(R) − γ

∫ t

0

∫
R

[(uε(x, s))
3
]x
[
[φε ∗ uε(., s)](x) − uε(x, s)

]
dxds.

(4.10)

Moreover, multiplication of (4.1) with the term −γ[φε ∗ uε(., t) − uε] leads to

−γ

∫ t

0

∫
R

uε
t (x, s)

[
[φε ∗ uε(., s)](x) − uε(x, s)

]
dxds

−γ

∫ t

0

∫
R

[(uε(x, s))3]x
[
[φε ∗ uε(., s)](x) − uε(x, s)

]
dxds

= −εγ

∫ t

0

∫
R

uε
xx(., s)

[
[φε ∗ uε(., s)](x) − uε(x, s)

]
dxds.

We now apply both identities from Lemma 4.1 with w = uε. Then the last equation
simplifies to∫ t

0

d

ds

(∫
R

Eε[uε(., s)](x)dx

)
ds− γ

∫ t

0

∫
R

(uε(x, s))3x[[φε ∗ uε(., s)](x) − uε(x, s)]dxds

= −2εγ

∫ t

0

∫
R

Eε[uε
x(., s)](x)dxds.(4.11)

Adding (4.10) and (4.11) implies the estimate (4.8).
It is interesting to compare estimate (4.8) with analogous estimates that can be

obtained for the local counterpart of (4.1) where the convolution-type term [φε ∗
uε(., s)](x) − uε(x, s) is substituted by the dispersive term ε2uε

xxx (cf. (1.3)). In the
latter case one gets ([19])

1

4
‖uε(., t)‖4

L4(R) +
γε2

2

∫
R

(uε
x(x, t))2 dx + 3ε‖uεuε

x‖
2
L2(R×(0,t)) + ε3γ‖(uε

xx)2‖L1(R×(0,t))

=
1

4
‖u0‖4

L4(R) +
γε2

2

∫
R

(u0,x(x))2 dx.

The term γε2

2 (uε
x)2 takes the rôle of Eε. In the realistic models for phase transitions

like, e.g., the Navier–Stokes–Korteweg system these two expressions are exactly the
additional terms in the free energy functional that model the contributions of surface
tension ([31]).

Note moreover that the energy estimate for the nonlocal dispersion does not in-
volve the spatial derivative u0,x. It is a major advantage of nonlocal regularizations
that they come along with less restrictive assumptions on the regularity of the prob-
lem.

In the limit process one main difficulty is to deal with mixed terms which include
local and nonlocal terms. To cope with this problem we shall use the following lemma.

Lemma 4.3. Let the assumptions of Lemma 4.2 be valid. Then there exists a
constant C > 0 such that

‖φε ∗ uε − uε‖L2(R×(0,T )) ≤ C
√
ε.
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The constant C depends on T, u0 and φ but not on ε.
Proof. Let (x, t) ∈ R × (0, T ) be arbitrary but fixed. Denote Bε(x) = {y ∈

R | |x− y| ≤ ε}. We consider I : R × (0, T ) → R with

I(x, t) = [φε ∗ uε(., t)](x) − uε(x, t) =

∫
R

φε(x− y)(uε(x, t) − uε(y, t)) dy.

Assumption 3.1(ii) and the Morrey-type inequality (see [13, section 5.6.2])

|w(x) − w(y)| ≤ C1

√
ε

(∫ x+2ε

x−2ε

|wx(z)|2 dz
)1/2

(x ∈ R, y ∈ Bε(x), w ∈ C1(R))

show that the following estimate holds:

|I(x, t)| ≤
∫
Bε(x)

φε(x− y)|(uε(x, t) − uε(y, t))| dy

≤ C1

√
ε

∫
Bε(x)

φε(x− y)

(∫ x+2ε

x−2ε

|uε
x(z, t)|2 dz

)1/2

dy

= C1

√
ε

(∫ x+2ε

x−2ε

|uε
x(z, t)|2 dz

)1/2

.

Now we integrate |I(x, t)|2 with respect to space and obtain with the substitution
z = x + 4ε

π arctan(z̃),

∫
R

|I(x, t)|2 dx = C1ε

∫
R

(∫ x+2ε

x−2ε

|uε
x(z, t)|2 dz

)
dx,

= C1ε

∫
R

(∫
R

∣∣∣uε
x

(
x +

4ε

π
arctan(z̃), t

)∣∣∣2 dx) 4ε

π

1

1 + z̃2
dz̃,

= C1
4ε2

π

∫
R

(∫
R

|uε
x(x, t)|2 dx

)
1

1 + z̃2
dz̃,

≤ C2ε
2‖uε

x(., t)‖2
L2(R).

Integration with respect to time and estimate (4.7) of Lemma 4.2 yield

‖I‖L2(R×(0,T )) ≤ C3ε‖uε
x‖L2(R×(0,T )) ≤ C

√
ε.

This is the statement of the lemma.

4.2. The limit process of vanishing diffusion and dispersion. We now
prove that the classical solutions of the regularized problem (4.1), (4.2) converge in a
strong norm for vanishing ε to a limit function u which is a weak solution of

ut(x, t) + f(u(x, t))x = 0, f(u) = u3.(4.12)

We need a more general notation of an entropy pair as in section 2. The pair (η, q) ∈
C2(R) is called an entropy pair for (4.12) if and only if η ∈ C2(R) and the consistency
relation η′(w)f ′(w) = q′(w) holds for all w ∈ R. Convexity of η is not claimed in this
section. To perform the limit ε → 0 for the problem (4.1), (4.2) we make use of the
following theorem which is an adaption of the original work of Schonbek and Murat
[29, 32].
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Theorem 4.4 (Schonbek/Murat). We suppose that the family {uε}ε>0 of clas-
sical solutions of (4.1), (4.2) is uniformly bounded in Lp(R × (0, T )) for some p > 1
and satisfies

∂

∂t
η(uε) +

∂

∂x
q(uε) ⊂ compact set in W−1,2(Q) + bounded set in M(Q)(4.13)

for all entropy pairs (η, q) for (4.12) such that there is a constant C > 0 with

|η′(w)| + |η′′(w)| ≤ C (w ∈ R)(4.14)

and all open bounded sets Q ⊂ R × (0, T ).
Then the following statements are valid.

(i) There is a subsequence {uεk}k∈N of {uε}ε>0 and a function u ∈ Lp(R×(0, T ))
such that εk → 0 for k → ∞ and the subsequence converges for k → ∞ to u
in Lr

loc(R × (0, T )), r ∈ [1, p).
(ii) If moreover p > 3 and Assumption 3.1(ii) with d = 1 holds, we have that u is

a weak solution of (4.12), i.e.,

∫ T

0

∫
R

u(x, t)ψt(x, t) + f(u(x, t))ψx(x, t) dxdt = 0(4.15)

for all ψ ∈ C∞
0 (R × (0, T )).

Proof. The first statement (i) is the content of Theorem 3.2 and Corollary 3.2 in
[32]. We note that the origin of the sequence {uε}ε>0 as a solution of an initial-value
problem with nonlocal regularization is not important in order to apply these results
but only the compactness property (4.13) related to the flux f via the entropy pairs.
In this form the compactness property has been introduced in [29]. To prove (ii) we
state that the converging subsequence {uεk}k∈N is a family of classical solutions of
(4.1), (4.2) and satisfies in particular for all ψ ∈ C∞

0 (R × (0, T )),

∫ T

0

∫
R

uεk(x, t)ψt(x, t) + f(uεk(x, t))ψx(x, t) dxdt

= −
∫ T

0

∫
R

εku
εk(x, t)ψxx(x, t) dxdt

+ γ

∫ T

0

∫
R

(
[φεk ∗ uεk(., t)](x) − uεk(x, t)

)
ψx(x, t) dxdt.

(4.16)

From (i), p > 3, and f being the cubic function, we deduce that the left-hand side in
(4.16) converges to the expression on the left-hand side in (4.15) if k tends to ∞. It
remains to be seen whether the terms on the right-hand side in (4.16) converge to 0.
This is clear for the viscosity term. For the capillarity term we have

∣∣∣∣γ
∫ T

0

∫
R

(
[φεk ∗ uεk(., t)](x) − uεk(x, t)

)
ψx(x, t) dxdt

∣∣∣∣
=

∣∣∣∣γ
∫ T

0

∫
R

uεk(x, t)
(
[φεk ∗ ψx(., t)](x) − ψx(x, t)

)
dxdt

∣∣∣∣
≤ γC‖uεk‖Lp(ΩT )‖φεk ∗ ψx − ψx‖L2(ΩT )

→ 0 (k → ∞).
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The last line follows from the pointwise convergence of the convolution of a smooth
function towards the function if the convolution parameter vanishes. Note moreover
that the Lp-norm of {uεk}k∈N is uniformly bounded and that p > 2 holds; C is
an interpolation constant that depends on the support of ψx and its convolution.
Statement (ii) is now proven.

We now have all the tools to prove the main theorem of this section.

Theorem 4.5. Suppose that we have u0 ∈ L2(R)∩L∞(R) and that the function
φ ∈ C∞(Rd) is even, bounded, nonnegative, and satisfies

∫
R

φ(x) dx = 1, supp(φ) ⊂ [−1, 1].

Let uε ∈ C([0, T ];L∞(R)∩L2(R))∩C2
1 (R×(0, T )) be a classical solution of (4.1), (4.2)

that satisfies the decay estimate (4.6) for t ∈ (0, T ]. Then there exists a subsequence
{uεk}k∈N of {uε}ε>0 and a function u ∈ Lp(R × (0, T )), p ∈ [2, 4], such that

(i) the subsequence converges to u in Lr
loc(R × (0, T )), r ∈ [1, 4),

(ii) u is a weak solution of (4.12).

Proof. From Lemma 4.2 we know that {uε}ε>0 is bounded uniformly in Lp(R ×
(0, T )) for each p ∈ [2, 4]. Let (η, q) be an arbitrary but fixed entropy pair with the
property (4.14). We obtain

η(uε)t + q(uε)x = εη(uε)xx − εη′′(uε)(uε
x)2

+ γ[η′(uε)(φε ∗ uε − uε)]x − γη′′(uε)uε
x(φε ∗ uε − uε)

=: Iε1 + Iε2 + Iε3 + Iε4 .

We will now prove that we have for each bounded open subset Q of R × (0, T ) the
relations

|〈Iε1 , θ〉|
ε→0−→ 0 ∀ θ ∈ W 1,2

0 (Q),(4.17)

|〈Iε2 , ψ〉| ≤ C2‖ψ‖L∞(Q) ∀ ψ ∈ C∞
0 (Q),(4.18)

|〈Iε3 , θ〉|
ε→0−→ 0 ∀ θ ∈ W 1,2

0 (Q),(4.19)

|〈Iε4 , ψ〉| ≤ C4‖ψ‖L∞(Q) ∀ ψ ∈ C∞
0 (Q).(4.20)

The lemma of Murat ([29]) implies then that assumption (4.13) of Theorem 4.4 can
be satisfied for p ∈ (1, 4]. Thus the statement of Theorem 4.5 is proven. We start
with Iε1 and observe with (4.14), Hölder’s inequality, and Lemma 4.2 that

|〈Iε1 , θ〉| =

∣∣∣∣
∫
Q

εη(uε(x, t))xxθ(x, t) dxdt

∣∣∣∣
≤ ε‖η′(uε)uε

x‖L2(Q)‖θx‖L2(Q)

≤ εC1‖uε
x‖L2(Q)‖θ‖W 1,2(Q)

≤
√
εC1‖θ‖W 1,2(Q)

ε→0−→ 0.
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This is (4.17). To check (4.18) we use again Lemma 4.2 and consider the estimate

|〈Iε2 , ψ〉| =

∣∣∣∣
∫
Q

εη′′(uε(x, t))(uε
x(x, t))2ψ(x, t) dxdt

∣∣∣∣
≤ εC2‖uε

x‖
2
L2(Q)‖ψ‖L∞(Q)

≤ C2‖ψ‖L∞(Q).

Statement (4.19) is a consequence of

|〈Iε3 , θ〉| =

∣∣∣∣γ
∫
Q

[
η′(uε(x, t))[φε ∗ uε(., t)](x) − uε(x, t)

]
x
θ(x, t) dxdt

∣∣∣∣
≤ C3γ‖φε ∗ uε − uε‖L2(Q)‖θx‖L2(Q)

≤ C3γ
√
ε‖θ‖W 1,2(Q)

ε→0−→ 0.

For the last inequality we used Lemma 4.3. Finally we have for I4
ε

|〈Iε4 , ψ〉| =

∣∣∣∣γ
∫
Q

η′′(uε(x, t))uε
x(x, t)([φε ∗ uε(., t)](x) − uε(x, t))ψ(x, t) dxdt

∣∣∣∣
≤ C4γ‖uε

x‖L2(Q)‖φε ∗ uε − uε‖L2(Q)‖ψ‖L∞(Q)

≤ C4γ‖ψ‖L∞(Q).

For the last inequality we used Lemmas 4.2 and 4.3.

Note 4.6.

(i) In Theorem 4.5 we supposed that a classical solution uε ∈ C([0, T ];L∞(R) ∩
L2(R))∩C2

1 (R× (0, T )) of (4.1), (4.2) exists and satisfies the decay estimate
(4.6) for t ∈ (0, T ]. In view of Lemma 3.4, in particular the estimate (3.16),
we can guarantee all these properties if Theorem 3.2 applies, i.e., if ‖u0‖L2(R)

is small enough.
(ii) Theorem 4.5 is tailored to the choice f(u) = u3. To apply the Lp-theory

of Schonbek a growth condition on the flux f is necessary. However, the
restriction to cubic functions can be avoided. One can apply similar techniques
as in [23] to treat the case of arbitrary fluxes which are only assumed to have
a globally bounded derivative.

5. Sharp-interface limit in the case of multiple space dimensions. In
this section we return to multiple space dimensions and consider the Cauchy problem
for (3.1), (3.2). We do not consider a special choice for the flux functions f1, . . . , fd
as in section 4.2 but we require them to satisfy Assumption 3.1 and for some p > 1
to be specified below the following growth condition:

∃C > 0 : |fj(u)| ≤ C(1 + ur) for all u ∈ R, r ∈ [0, p), and j = 1, . . . , d.(5.1)

Throughout the section we assume that (3.1), (3.2) has a unique classical solution uε

in ΩT := R
d × (0, T ), T > 0. This is true, e.g., under the conditions of Theorem 3.2.

We study the sharp-interface limit ε → 0. A similar study for the Cauchy problem
with the local diffusion and dispersion term has been performed in [23].
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5.1. Review of the theory of Lp-measure-valued solutions. In the limit
ε → 0 we will deal with Kruzkov solutions for the first order conservation law

ut + div(f(u)) = 0 in ΩT .(5.2)

A Kruzkov solution of (5.2)

u(., 0) = u0 in R
d.

Equation [24] is a function u ∈ Lp
loc(ΩT ) such that for all k ∈ R and all ψ ∈ C∞

0 (ΩT ),
ψ ≥ 0,

∫
ΩT

|u(x, t) − k|ψt(x, t) + sgn(u(x, t) − k)

d∑
j=1

(fj(u(x, t)) − fj(k))ψxj (x, t) dxdt ≥ 0

holds and moreover the initial condition is satisfied in the sense that for all compact
subsets K of R

d,

lim
T→0+

1

T

∫ T

0

∫
K

|u(x, t) − u0(x)| dxdt = 0(5.3)

holds.
By an entropy solution of (5.2)

u(., 0) = u0 in R
d,

we mean in this section function u ∈ Lp
loc(ΩT ) such that for all smooth functions

η, q1, . . . , qd : R → R with η′ bounded and η′f ′
j = q′j , j = 1, . . . , d and all test

functions ψ ∈ C∞
0 (ΩT ), ψ ≥ 0, we have

∫
ΩT

η(x, t)ψt(x, t) +

d∑
j=1

qj(u(x, t)ψxj
(x, t) dxdt ≥ 0

and also (5.3). Let us mention that Kruzkov solutions are entropy solutions and vice
versa [16] but we need both notions in what follows. Our analysis relies on results by
Schonbek and Szepessy [32, 35] which are extensions of the concept of measure-valued
solutions initiated by DiPerna [10] for L∞-functions to the case of Lp-functions.

We need some preparatory notations. Let p ∈ (1,∞) be arbitrary but fixed.
Denote by Prob(R) the set of probability measures on R. A mapping ν = ν(x,t) from
ΩT to Prob(R) is called a p-Young measure if the function

(x, t) �→ 〈ν(x,t), g(λ)〉 :=

∫
R

g(λ) dν(x,t)(λ)

is in Lp(ΩT ) for all g ∈ C0(R) with

g(λ) = O(1 + |λ|r) (r ∈ [0, p)).(5.4)

A p-Young measure is called a measure-valued Kruzkov solution of (5.2)

u(., 0) = u0 in R
d,
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if it satisfies for all k ∈ R and ψ ∈ C∞
0 (ΩT ), ψ ≥ 0, the inequality

∫
ΩT

〈ν(x,t), |λ− k|〉ψt(x, t) +

d∑
j=1

〈ν(x,t), sgn(λ− k)(fj(λ) − fj(k))〉ψxj
(x, t) dxdt ≥ 0

(5.5)

and moreover

lim
T→0+

1

T

∫ T

0

∫
K

〈ν(x,t), |λ− u0(x)|〉 dxdt = 0(5.6)

for all compact subsets K of R
d. We recover the definition of the Kruzkov solution

if we set ν(x,t) = δu(x,t), where δu(x,t) is the Dirac-measure concentrated in u(x, t) for
almost all (x, t) ∈ ΩT .

Now we collect in a theorem results that have been proven in [32, 35].
Theorem 5.1 (Schonbek, Szepessy). For p > 1 let {uε}ε>0 ⊂ Lp(ΩT ) be a

sequence of functions that is uniformly bounded in Lp(ΩT ). Then there exists a p-
Young measure ν = ν(x,t) such that

g(uε) ⇀ 〈ν(x,t), g(λ)〉 in Lp(Ω)(5.7)

holds for all continuous functions g satisfying (5.4).
Let u0 ∈ Lp(Rd). If {uε}ε>0 is uniformly bounded in L∞(0, T ;Lp(Rd)) and ν

provides a measure-valued Kruzkov solution of (1.1) the following statements are valid:

(i) There is a function u ∈ Lp(ΩT ) such that limε→0 ‖u− uε‖Lp
loc(ΩT ) = 0.

(ii) The function u is a Kruzkov solution of (5.2), (5.3).

5.2. The main result. We conclude with the main result of the section: the
convergence of the sequence {uε}ε>0 of classical solutions of (3.1), (3.2) to a Kruzkov
solution of the corresponding first order problem (5.2), (5.3). We relax the scaling of
the nonlocal term with respect to ε and suppose that the parameter γ > 0 satisfies

γ = γ(ε) = o(
√
ε).(5.8)

Theorem 5.2. Let Assumption 3.1 and condition (5.1) with p = 2 for f1, . . . , fd
be satisfied. For u0 ∈ L2(ΩT ) assume that {uε}ε>0 is a sequence of classical solutions
for (3.1), (3.2). If we choose γ according to (5.8) then there is a Kruzkov solution u
of the Cauchy problem (5.2), (3.2) such that

lim
ε→0

‖u− uε‖L2
loc(ΩT ) = 0.

Since u in Theorem 5.2 is a Kruzkov solution it is not only an entropy solution
in the sense of this section but also in the sense of the definition in section 2 for
d = 1. Then we conjecture that the existence of undercompressive waves in the limit
is excluded.

However, the result of Theorem 5.2 shows that the new nonlocal regularization
leads also in multiple space dimensions to a well-defined limit behavior at least in the
regime governed by (5.8).

Proof of Theorem 5.2. From Lemma 3.5 we know that the sequence {uε}ε>0 is
in particular uniformly bounded in L∞(0, T ;L2(Rd)) ⊂ L2(ΩT ). Thus choose p = 2
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to apply Theorem 5.1. The first part of that theorem defines the 2-Young measure
ν = ν(x,t) associated with {uε}ε>0. We show first that ν satisfies (5.5). It suffices to
show that

∫
ΩT

〈ν(x,t)η(λ)〉ψt(x, t) +

d∑
j=1

〈ν(x,t), qj(λ)〉ψxj (x, t) dxdt ≥ 0(5.9)

holds for all nonnegative test functions ψ ∈ C∞
0 (ΩT ) and all smooth functions η, q1, . . . , qd

such that η′ is a bounded function and η′f ′
j = q′j , j = 1, . . . , d is satisfied. An approx-

imation argument for the less regular Kruzkov entropies | · −k| yields that ν satisfies
(5.9). We obtain for arbitrary nonnegative test function ψ ∈ C∞

0 (ΩT ) after multipli-
cation of (3.1) with η′(uε) and integration with respect to (x, t) ∈ ΩT ,

∫
ΩT

η(uε(x, t))ψt(x, t) +

d∑
j=1

qj(u
ε(x, t))ψxj (x, t) dxdt

= −ε

∫
ΩT

η(uε(x, t))Δψ(x, t) dxdt + ε

∫
ΩT

η′′(uε(x, t))|∇uε(x, t)|2ψ(x, t) dxdt

+ γ(ε)

∫
ΩT

η′(uε(x, t))([φε ∗ uε(., t)](x) − uε(x, t))

d∑
j=1

ψxj
(x, t) dxdt

+ γ(ε)

∫
ΩT

η′′(uε(x, t))

( d∑
j=1

uε
xj

(x, t)

)
([φε ∗ uε(., t)](x) − uε(x, t))ψ(x, t) dxdt

= Iε1 + Iε2 + Iε3 + Iε4 .

(5.10)

With Lemma 3.5 and ‖φε ∗ uε‖L2(ΩT ) ≤ ‖uε‖L2(ΩT ) we can estimate for appropriate
ε-independent constants C1, C3, C4 > 0

|Iε1 | ≤ C1ε‖η′(uε)‖L∞(ΩT )‖∇uε‖L2(ΩT )‖∇ψ‖L2(ΩT ) ≤ C1

√
ε(5.11)

and

|Iε3 | ≤ C3γ(ε)‖η′(uε)‖L∞(ΩT )‖[φε ∗ uε] − uε‖L2(ΩT )‖∇ψ‖L2(ΩT ) ≤ C3γ(ε)(5.12)

and

|Iε4 | ≤ γ(ε)‖η′′(uε)‖L∞(ΩT )‖∇uε‖L2(ΩT )‖[φε ∗ uε] − uε‖L2(ΩT )‖ψ‖L∞(ΩT ) ≤ C4o(ε).
(5.13)

If we use (5.11), (5.12), (5.13), and Iε2 ≥ 0 for the limit ε → 0 in (5.10), the weak
convergence statement (5.7) in Theorem 5.1 shows that the Young measure ν(x,t)

satisfies (5.9). Note that η, q1, . . . , qd satisfies (5.4) by construction.

It remains to be seen whether the initial condition (5.6) is valid. We follow the
argumentation in [35, Theorem 3.2] where it turns out that it is sufficient to prove
that there is a constant C5 > 0 such that

J = − 1

T

∫ T

0

∫
Rd

∫ t

0

uε
t (x, s)ρ(x) dsdxdt ≤ C5T(5.14)
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holds for all ρ ∈ C∞
0 (Rd). The constant C5 > 0 might depend on ρ but not on ε. Since

uε is a classical solution of (3.1) we can use the differential equation and estimate

J ≤ − 1

T

∫ T

0

∫ t

0

∫
Rd

d∑
j=1

fj(u
ε(x, s))ρxj

(x) + εuε(x, s)Δρ(x) dxdsdt

+
1

T

∫ T

0

∫ t

0

∫
Rd

d∑
j=1

γ(ε)
(
[φε ∗ uε(., s)](x) − uε(x, s)

)
ρxj

(x) dxdsdt

≤ C(supp(ρ), f)
(
(1 + ‖uε‖L∞(0,T ;L2(Rd)))‖∇ρ‖L∞(Rd)

+ ε‖uε‖L∞(0,T ;L2(Rd))‖Δρ‖L∞(Rd) + γ(ε)‖uε‖L∞(0,T ;L2(Rd))‖∇ρ‖L∞(Rd)

)
T.

Note that we used (5.4) to estimate the fluxes in terms of the L2-norm of uε(., t) for
t ∈ [0, T ] and (3.3). Since ‖uε‖L∞(0,T ;L2(Rd)) is bounded uniformly with respect to ε

due to Lemma 3.5 we have proven (5.14). The second part of Theorem 5.1 concludes
the proof.
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Abstract. This note addresses the mathematical study of a nonlinear model arising in the
description of the macroscopic thermomechanical behavior of shape memory materials and previ-
ously introduced in [R. Peyroux, A. Chrysochoos, Ch. Licht, and M. Löbel, J. Phys. C4 Suppl.,
6 (1996), pp. 347–356]. In particular, we discuss the model derivation and investigate a system of
PDEs coupled with a vectorial variational inequality. We develop the analysis in both the dissipative
and the nondissipative cases, providing indeed a quantitative asymptotic connection between the two
regimes. Moreover, we prove the global in time well-posedness for suitable initial and boundary value
problems. As a by-product of the well-posedness analysis, we address a variable time-step discretiza-
tion procedure, proving indeed its convergence and providing some a priori error bounds. Finally,
we deal with the asymptotic behavior of the system for large times and establish the convergence of
the trajectories to the solution of a suitable stationary problem.
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1. Introduction. The present analysis is concerned with the evolution of four
unknown fields θ, χ1, χ2, and u governed by the following system of equations and
inclusion:

∂t(csθ − �χ1) − kΔθ = r,(1.1)

divσ + b = 0,(1.2)

A(ε(u) + βχ2) = σ,(1.3)

μ∂t

(
χ1

χ2

)
+ γ

(
χ1

χ2

)
+

( �
θ∗

(θ − θ∗)

σ : β

)
+ ∂IK

(
χ1

χ2

)
�
(

0

0

)
.(1.4)

These relations are asked to be fulfilled in the space-time domain Q := Ω× (0, T ) for
some open and bounded subset Ω ⊂ R

3 with smooth boundary Γ and some reference
time T > 0. In addition cs, �, k, γ, and θ∗ are positive parameters, A and β are,
respectively, a 4-tensor and a 2-tensor, and μ is a nonnegative constant (see below).
Here, u = (u1, u2, u3) ∈ R

3 and ε(u) denotes the 2-tensor

εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
for i, j = 1, 2, 3,

while ∂IK stands for the subdifferential of the indicator function of the nonempty,
bounded, convex, and closed subset K of R

2, i.e., IK(x) = 0 if x ∈ K and
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IK(x) = +∞ elsewhere. Namely, ∂IK : R
2 → 2R

2

is defined by

y ∈ ∂IK(x) iff x ∈ K and y · (w − x) ≤ 0 ∀w ∈ K.

Moreover, σ : β := σijβij (summation convention) denotes the standard contraction
product of 2-tensors, ( divσ)i := ∂(σij)/∂xj for i = 1, 2, 3, and r : Q → R and
b : Q → R

3 are given functions.

The nonlinear system (1.1)–(1.4) arises in connection with the study of the thermo-
mechanical behavior of shape memory materials. These are metallic alloys with an
intrinsic ability of undergoing a thermoelastic solid-solid transformation between crys-
tallographic configurations with different physical and mechanical properties: austen-
ite, which is stable at higher temperatures, and variants of martensite, stable at lower
temperatures [2, 21]. At the macroscopic level such a reversible phase transformation
results in the so-called shape memory effect. Namely, shape memory alloys can be
permanently deformed (up to 8% under traction) and then be forced to recover their
original shape just by thermal means. This unusual macroscopic mechanical effect
is nowadays exploited in several innovative devices. Indeed shape memory materials
are actually used in order to realize a variety of actuators (also of microscopic size)
and structures. The field of application of shape memory technologies ranges from
bioengineering to structures-engineering and aerospace sciences [13, 16, 30]. Here we
are concerned with a macroscopic modelization previously introduced in [31] and able
to describe the shape memory effect in a small deformation realm. We refer the reader
to section 2 for a derivation of the model as well as for some discussion of its thermo-
dynamical consistency. As for the justification of this modeling perspective as well as
some experimental validation one should refer to the original paper [31] as well as to
[14, 20, 32]. For the purposes of this introductory discussion, let us remark that the
scalar field θ in (1.1)–(1.4) represents the absolute temperature of the medium while
the vector field u is its displacement. Hence, the 2-tensors σ and ε(u) stand for the
tension and the linearized strain, respectively. Finally, K is the admissible convex
and closed range for the internal variables [χ1, χ2] (see below).

The current literature on the mathematical modeling of shape memory alloys is
quite rich, and it is not our purpose to provide here an exhaustive review. Indeed,
let us just mention that the problem of describing the thermomechanical behavior
of shape memory alloys has been tackled both from the microscopic [2, 4, 5] and
the macroscopic viewpoint [1, 3, 6, 18, 19, 33]. Among the latter, we shall partic-
ularly mention the so-called Frémond model for shape memory alloys. This model
was originally presented in [19] and analyzed in [9]. Indeed both the present model
and Frémond’s model [19] are formulated in the framework of generalized standard
materials by means of analogous free-energy and dissipation considerations. In par-
ticular, the phase relation of Frémond’s model corresponds, in the present setting, to
the choices μ > 0 and γ = 0. On the contrary, the modeling considerations and the
experimental evidence of [31] suggests considering the degenerate case μ = 0 (taking
indeed γ > 0). We will refer to the situation μ > 0 as the dissipative case and μ = 0
as the nondissipative one.

From the mathematical point of view, the present situation appears to be more
delicate with respect to that of [9] because of the time-degeneracy of the phase relation
(1.4). Moreover, let us stress that the momentum balance equation of [9] includes of
a fourth order regularizing term that is actually not present in our situation.

The system (1.1)–(1.4) has to be supplied with suitable initial and boundary
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conditions. To this aim we ask for

θ(·, 0) = θ0 on Ω,(1.5)

μ
[
χ1(·, 0), χ2(·, 0)

]
= μ

[
χ0

1, χ
0
2

]
on Ω,(1.6)

k∂νθ + h(θ − θe) = f on Γ,(1.7)

σν = g on Γt,(1.8)

u = 0 on Γ0,(1.9)

where θ0, χ0
1, χ0

2 are initial values, h, θe > 0, f : Γ → R, and g : Γt → R
3 are

prescribed. Moreover, ν is the unit outward normal vector to the boundary, and
{Γ0,Γt} is a partition of Γ into two disjoint subsets of positive surface measure.

This paper addresses the mathematical study of the system (1.1)–(1.9) in both
the dissipative (μ > 0) and nondissipative (μ = 0) regimes. First of all, we shall
comment on the model derivation and its thermodynamical consistency. Then, we
investigate the dissipative situation and provide a well-posedness result for a global
variational solution (Theorem 4.1). As a by-product of this analysis we provide a
variable time-step discretization scheme which turns out to be stable and convergent.
Moreover, we are in the position of providing an a priori bound of optimal order on the
discretization error. Then, we prove an asymptotic result that connects the dissipative
and the nondissipative regimes. In particular, we prove that, as μ goes to zero, the
solution of the dissipative model converges to the solution of the nondissipative one
(Theorem 4.2). Indeed, we also achieve some estimate in terms of μ on the distance
between the latter two solutions. As a corollary of this asymptotic result, one obtains
the global variational well-posedness for the nondissipative case as well (Theorem 4.1).
Then, we focus on the long-time behavior of solutions for the nondissipative model. In
particular, we prove that the model actually converges to a unique equilibrium which
is characterized as the solution of a suitable elliptic problem (Theorem 4.3). Finally,
we turn to the proof of a suitable maximum principle which entails an essential lower
bound for the temperature in terms of data (Theorem 4.4). The latter in particular
ensures that, starting from a positive datum, the temperature θ remains positive for
all times.

The paper is outlined as follows. We shall discuss the derivation of the model in
section 2. Then, we introduce the variational formulation of the problem in section 3.
Our main results are stated in section 4, while section 5 is devoted to the study of the
dissipative case. In particular, it contains the details of the discretization method.
The nondissipative model is investigated in section 6, and section 7 focuses on the
long-time behavior of solutions. The crucial proof of the positivity of the temperature
is then given in section 8.

2. Model. We devote this section to a derivation of the thermomechanical model
in study [31]. Our aim is to possibly clarify the meaning of relations (1.1)–(1.4) and
check for the thermodynamical consistency of the model. In particular, it is beyond
our purposes to provide the reader with a full justification of this modeling perspective.
Indeed, for a comprehensive discussion on the model as well as some experimental
validation, the reader should refer to [31], where the model was introduced.

We will describe the thermomechanical evolution of a shape memory material
with respect to its smooth reference configuration Ω ⊂ R

3 by means of the absolute
temperature θ, the (small) deformation ε(u) (u is the displacement), and a pair of
internal variables [χ1, χ2] introduced below. In particular, for the purposes of this
section, θ is assumed to be strictly positive (this will turn out to be Theorem 4.4 later
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on). Let us suppose from the very beginning that only two martensitic variants are
present besides one austenite and indicate the respective local proportions as η1, η2,
and ηA, respectively. This assumption is of course extremely reductive since, in some
particular alloy, up to 24 martensitic variants have been detected. Nevertheless our
somewhat crude simplification is still suitable for describing the basic features of the
physical phenomenon [9, 31]. We, moreover, assume that the phases possibly coexist
at each point of the body, that no overlapping between different phases can occur,
and that no void appears in the mixture. Hence, the phase proportions η1, η2, and
ηA are constrained to fulfill the obvious relations

0 ≤ η1, η2, ηA ≤ 1, η1 + η2 + ηA = 1.

We exploit these relations in order to eliminate ηA by introducing the internal vari-
ables

χ1 := η1 + η2, χ2 := η1 − η2.

Of course the set {χ1 = 1} corresponds to the situation where no austenite is present,
the set {χ1 = χ2} corresponds to the set where just the first variant of martensite is
present, etc. Owing to the above discussion it is clear that [χ1, χ2] are constrained
in the triangle

K := {[x1, x2] ∈ R
2 : 0 ≤ |x2| ≤ x1 ≤ 1}.(2.1)

In order to deduce the differential relations governing the evolutions of the state
quantities above we will follow the approach via microscopic motions originally pro-
posed by Frémond. The basic novelty of this theory is to take into account the thermo-
mechanical effect of the microscopic rearrangements of the phases at the macroscales.
In particular, one admits that the microscopic movements of the substance might give
rise to some thermal macroscopic effect which influences the overall energy balance
of the body. We will not review here the full theory of thermomechanics of continua
with microscopic motions and just refer the reader to the recent monograph [20] for
both a comprehensive discussion and a specific application to the description of shape
memory materials.

To the aim of dealing with microscopic motions, let us postulate from the very
beginning that the proper quantities describing such micromovements are [χ̇1, χ̇2],
where of course the dot denotes time differentiation (as it is customary, at this stage
we assume that all the quantities occurring in the analysis are as smooth as needed
in order to go through the differentiations).

Hence, it seems convenient to regard the vector (u, [χ̇, χ̇2]) as an actual rigid
velocity vector. Moreover, let us assume that there exists a suitable linear space of
virtual rigid body velocities R (see [20] for a full discussion). Finally, we suppose
that, for all times t ∈ [0, T ], the virtual power of the internal forces of the body with
respect to the generic smooth subdomain D ⊂ Ω and virtual rigid body velocities
(v, c) ∈ R is

Pint(D, v, c) := −
∫
D

σ : ε(v) −
∫
D

B · c.

The first term above is classical while the second one describes the power of micro-
scopic internal forces. In the latter the quantity B(·) ∈ R

2 comes into play and an
obvious dimensional argument entails that it shall be regarded as an energy density.
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In particular, B represents and vector energy density per units of [χ̇1, χ̇2] (see [20,
sect. 13.3, p. 360]). We now introduce the virtual power of the external and acceler-
ation forces as

Pext(D, v, c) :=

∫
D

b · v +

∫
∂D

g · v dHn−1, Pacc(D, v, c) :=

∫
D

ρ ζ · v.

Here b represents an action density at distance (body force) while g is an action
density at contact (traction) and we use a standard notation for the Hausdorff mea-
sure. Moreover, ζ = ü is the macroscopic acceleration and ρ is the material density
(no microscopic accelerations are considered). By recalling the virtual power principle
[23], choosing arbitrarily the regular and connected domain D and the virtual rigid
body velocities (v, c) ∈ R we deduce from the relation

Pacc(D, v, c) = Pint(D, v, c) + Pext(D, v, c)

two systems of momentum balance equations, namely, [20, sect. 2.4, p. 5]

ρü = divσ + b in Ω × (0, T ),(2.2)

σν = g on Γ × (0, T ),(2.3)

which stands for the macroscopic momentum balance, and

B = 0 in Ω × (0, T ),(2.4)

which corresponds to the microscopic momentum balance. Of course, ν stands for
the unit normal vector field pointing outward Γ.

Now letting e denote the internal energy density of the system and Q the entropy
flux, we can follow [20, sect. 13.4, p. 361] and deduce that, in our situation, the energy
balance is expressed by

ė + div (θQ) − r = σ : ε(u̇) + B · [χ̇1, χ̇2] in Ω × (0, T ),(2.5)

−θQ · ν = π on Γ × (0, T ),(2.6)

where r and π denote some volume and surface heat source densities, respectively. In
particular, we note that the right-hand side of (2.5) takes into account the contribution
to the energy balance provided by both macroscopic and microscopic movements.

The next step is to define the quantities e, Q, σ, and B in terms of the state
variables in such a way that the second principle of thermodynamics, in the form
of the Clausius–Duhem inequality, is fulfilled. In particular, the latter in our case
reduces to

ṡ + divQ− r

θ
≥ 0 in Ω × (0, T ),(2.7)

where s is the entropy of the system and r/θ represents an external entropy source
density. In order to accomplish the above requirement we will exploit the Ginzburg–
Landau theory by introducing the free energy density ψ = ψ(θ, [χ1, χ2], ε(u)) and the
pseudopotential of dissipation φ = φ(∇θ, [χ̇1, χ̇2]) and defining

s := −∂ψ

∂θ
, e := ψ + θs, Q := − ∂φ

∂(∇θ)
,(2.8)

σ :=
∂ψ

∂(ε(u))
,(2.9)
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B := [B1, B2], Bj :=
∂ψ

∂χj
+

∂φ

∂(χ̇j)
, j = 1, 2.(2.10)

The above choice splits B into a nondissipative and a dissipative part, respectively,
and is inspired by thermodynamic considerations (see below and [20]). Moreover, the
latter notions of derivative are intended to be properly generalized in case ψ, φ are
nonsmooth functions. At the present stage, our only requirement on the potentials
ψ and φ is that [20, 27] φ is convex, nonnegative, and vanishes at 0.

We shall now check for the thermodynamic consistency of this class of models by
recalling (2.5) and the above definitions in order to compute that

ṡ + divQ− r

θ
=

1

θ
(θṡ + div (θQ) − r) − 1

θ
Q · ∇θ

=
1

θ

([
∂φ

∂χ̇1
,
∂φ

∂χ̇2

]
· [χ̇1, χ̇2] −Q · ∇θ

)
≥ 0,

where we used the properties of the pseudopotential φ. Hence, the Clausius–Duhem
inequality (2.7) easily follows from the positivity of θ. As a consequence, the general
positivity proof implied by Theorem 4.4 entails the thermodynamic consistency of the
whole class of models.

We now come to our actual choice of ψ [31]. In particular, we let

ψ(θ, [χ1, χ2], ε(u)) = −csθ ln θ +
1

2
(ε(u) + βχ2) : A(ε(u) + βχ2)(2.11)

+ �
θ∗ − θ∗∗

2θ∗
(χ2

1 + χ2
2) +

�

θ∗
(θ − θ∗)χ1 + IK(χ1, χ2).

In the latter expression, the first term is purely caloric and cs represents a specific
heat density. The second term corresponds to the mechanical energy. In particular
A is the elasticity tensor and the extra term βχ2 represents the mechanical effect of
the presence of the two different martensitic variants. Indeed, one assumes that the
mechanical potential of the material is

1

2
(ε(u) + β1η1 + β2η2) : A(ε(u) + β1η1 + β2η2),

where βj are transformation strain tensors encoding the mechanical effect of the
martensite-austenite phase change and are assumed to verify β1 = −β2 =: β in order
to take into account the so-called self-accommodating properties of the two martensitic
variants [20, 31]. Note that the thermal expansion of the system is neglected.

The indicator function IK forces [χ1, χ2] to take solely admissible values in K
and the term �

θ∗
(θ − θ∗)χ1 classically represents the phase–temperature interaction.

In particular, � is a latent heat density related to the martensite-austenite transfor-
mation and θ∗ > 0 is the critical martensite-to-austenite transition temperature.

The modeling novelty of this framework with respect to the original Frémond
model for shape memory alloys [9, 19] consists in including into ψ the term

�
θ∗ − θ∗∗

2θ∗
(χ2

1 + χ2
2),(2.12)

where a second critical transition temperature 0 < θ∗∗ < θ∗ is introduced for the
austenite-to-martensite transformation. By referring to the zero-stress situation, one
observes that in Frémond’s model [9] no austenite is present for temperatures θ
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below θ∗ nor martensites for θ > θ∗. This simplification is, however, fairly crude and
experiments suggest that one should consider a suitable temperature range where the
three phases may coexist in the zero-stress situation [14, 32]. The present model [31]
extends Frémond’s approach in the direction of including some description of this
effect. In particular, looking back to (2.4) in the zero-stress equilibrium ([χ̇1, χ̇2] =
0, σ = 0) the internal variables are asked to fulfill

�
θ∗ − θ∗∗

θ∗

(
χ1

χ2

)
+

( �
θ∗

(θ − θ∗)

0

)
+ ∂IK

(
χ1

χ2

)
�
(

0

0

)
,

which entails that

χ1 = min

{
max

{
θ∗ − θ

θ∗ − θ∗∗
, 0

}
, 1

}
, χ2 = 0.

Hence, no martensites are present for θ > θ∗, no austenite is allowed for θ < θ∗∗, and
possibly all the phases are admissible for intermediate temperatures [31] (see also [20,
Rem. 13.4, p. 364]).

As for the pseudopotential of dissipation we will ask for

φ(∇θ, [χ̇1, χ̇2]) :=
k

2θ
|∇θ|2 +

μ

2
χ̇2

1 +
μ

2
χ̇2

2.

Here k > 0 stands for a constant thermal conductivity coefficient and μ ≥ 0 measures
some dissipation effect on the phase variables. In particular, the heat flux q := θQ =
−k∇θ is of Fourier type.

Finally, the balance relations (2.5), (2.2), and (2.4) read as follows:

csθ̇ − �χ̇1 − kΔθ − r = − �

θ∗
(θ − θ∗)χ̇1 + μχ̇2

1 + μχ̇2
2,(2.13)

ρü = divσ + b,(2.14)

μ

(
χ̇1

χ̇2

)
+ �

θ∗ − θ∗∗
θ∗

(
χ1

χ2

)
+

( �
θ∗

(θ − θ∗)

σ : β

)
+ ∂IK

(
χ1

χ2

)
�
(

0

0

)
.(2.15)

We shall focus our attention from the very beginning on the quasi-static situation
where the inertial term ρü is negligible in (2.14). Indeed, let us stress that the latter
approximation of the momentum balance equation is rather standard in connection
with the Frémond model [9, 10, 12, 24] and translates into the belief that the mechan-
ical evolution takes place on some faster time scale when compared with the thermal
evolution. On the other hand, the reader is referred to [8], where the full momen-
tum problem is considered for Frémond’s model (see also [15, 22, 25] and the recent
monograph [26] for the analysis of mechanical evolution under different nonconvex
settings).

In order to deduce the system (1.1)–(1.4) from (2.9) and (2.13)–(2.15) we now
apply some further modification to the balance relations by means of suitable small
perturbation assumptions. At first, one supposes to be interested in a temperature
range close to the critical temperature θ∗ and neglects the first term in the right-hand
side of (2.13). By setting, for the sake of notational simplicity, γ := �(θ∗−θ∗∗)/θ∗, we
readily check that the system (1.1)–(1.4) in the nondissipative regime μ = 0 follows
directly from (2.9) and (2.13), (2.15), and (2.14) in its quasi-static form.

As for the nondissipative regime μ > 0 we shall additionally assume to be inter-
ested in a situation where the phase evolution is suitably slow, i.e., μχ̇2

j = 0 in the



SHAPE MEMORY ALLOYS 137

energy balance equation (2.13). On the other hand we retain the dissipation term
μ[χ̇1, χ̇2] in (2.15). This is of course again an assumption of small perturbation type.

Finally, as for boundary conditions (1.7)–(1.9), one assumes to know g in (2.3)
just on Γt and imposes the body to be clamped on Γ0. Moreover, we choose π :=
f +h(θe− θ), where f is a prescribed surface heat source density, h > 0 is a thermal
exchange coefficient, and θe > 0 is a given external temperature.

3. Variational formulation. We start by fixing some notation. Let

H := L2(Ω), H := H ×H ×H, V := H1(Ω),

H := {σ : Ω → R
3×3
symm measurable such that σ : σ ∈ L1(Ω)},

where R
3×3
symm denotes of course the space of 3× 3 symmetric tensors. All the above

spaces are endowed with their respective natural scalar products. In particular, we
will use the symbols (·, ·) and ‖ · ‖ for all products and norms in the above L2-type
spaces. Moreover, the notation (·, ·)Γ will stand for the scalar product in both L2(Γ)
and (L2(Γ))3, | · | denotes any Euclidean norm, ‖ · ‖E will stand for the norm in the
generic normed space E, and [·, ·] denotes the generic pair. We introduce the Hilbert
space

V := {v ∈ V 3 such that v = 0 on Γ0},

endowed with the standard norm, and set, for any u, v ∈ V,

a(u, v) := (Aε(u), ε(v)),

where ε : V → H stands for the linearized strain tensor. Following the classic linear
elasticity theory, we ask A = (aijkh) to be symmetric and positive definite on R

3×3
symm,

namely,

aijkh = aijhk = akhij ∀i, j, h, k = 1, 2, 3 and Aσ : σ > 0 ∀σ ∈ R
3×3
symm/{0}.

Namely, for all σ, τ ∈ R
3×3
symm one has that Aσ : τ = σ : Aτ = A

1
2σ : A

1
2 τ , where A

1
2

stands for the well-defined square root of A. In particular, since β �= 0, we readily
compute that A

1
2β �= 0 as well. Moreover, recalling the Γ0 has a positive surface

measure, and thanks to Korn’s inequality (see, e.g., [17, Thm. 3.3, p. 115]), there
exists a positive constant cV depending on A such that

a(v, v) = ‖A
1
2 ε(v)‖2 ≥ cV‖v‖2

V ∀v ∈ V.

Finally, let the notation 〈·, ·〉 stand for the duality pairing between V ′ and V or
V ′ and V, where the prime denotes the topological duals. Since the special trian-
gular form of K specified above is not needed for our analysis, let K be an ar-
bitrary nonempty, bounded, convex, and closed subset of R

2, and define the (con-
vex and closed) set K :=

{
[x1, x2] ∈ (L2(Ω))2 such that [x1, x2] ∈ K a.e. in Ω

}
.

For almost every t ∈ (0, T ) let us define the functionals F (t) : V → V ′ and
G(t) : V → V ′ as

〈F (t), ϕ〉 := (r(t), ϕ) + (f(t), ϕ)Γ ∀ϕ ∈ V,

〈G(t), v〉 := (b(t), v) + (g(t), v)Γ ∀v ∈ V.

We shall make precise our variational formulation of (1.1)–(1.9) by posing the following
problem.
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Problem Pμ. Find θ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ), [χ1, χ2] ∈ (H1(0, T ;H) ∩
L∞(Q))2, and u ∈ H1(0, T ;V) such that μ(χ1, χ2) ∈ (W 1,∞(0, T ;H))2 and(

(csθ − �χ1)t, ϕ
)

+ k(∇θ,∇ϕ) + h(θ − θe, ϕ)Γ = 〈F,ϕ〉(3.1)

∀ϕ ∈ V a.e. in (0, T ),

a(u, v) + (Aβχ2, ε(v)) = 〈G, v〉 ∀v ∈ V a.e. in (0, T ),(3.2)

A(ε(u) + βχ2) = σ a.e. in Q,(3.3)

μ∂t

(
χ1

χ2

)
+ γ

(
χ1

χ2

)
+ ∂IK

(
χ1

χ2

)
�
( �

θ∗
(θ∗ − θ)

−σ : β

)
a.e. in Q,(3.4)

csθ(·, 0) − �χ1(·, 0) = csθ
0 − �χ0

1 a.e. in Ω,(3.5)

μ
[
χ1(·, 0), χ2(·, 0)

]
= μ

[
χ0

1, χ
0
2

]
a.e. in Ω.(3.6)

Remark 3.1. Let us stress that the above regularity requirements and (3.3) entail,
in particular, that σ ∈ H1(0, T ; H). Namely, relation (3.4) makes sense.

4. Main results. We shall assume the following:
(A1) F ∈ L2(0, T ;H) + W 1,1(0, T ;V ′), G ∈ H1(0, T ;V ′),
(A2) θ0 ∈ V ,
(A3) [χ0

1, χ
0
2] ∈ K.

In particular, the first formula in (A1) entails that there exist F1 ∈ L2(0, T ;H)
and F2 ∈ W 1,1(0, T ;V ′) such that F = F1 + F2. We observe that whenever r ∈
L2(0, T ;H), f ∈ W 1,1(0, T ;L2(Γ)), b ∈ H1(0, T ;H), and g ∈ H1(0, T ; (L2(Γ))3) the
regularities in (A1) follow. As a consequence of (A1)–(A3), we introduce u0 ∈ V as
the unique solution to (3.2) at time t = 0, σ0 ∈ H via u0 and (3.3), and finally

μ[χ1,μ,t(0), χ2,μ,t(0)] :=

[
�

θ∗
(θ∗ − θ0) − γχ0

1,−σ0 : β − γχ0
2

]
.

In particular, we observe that the left-hand side above is bounded in H×H, uniformly
with respect to μ, and that relation (3.4) is fulfilled also for t = 0.

We are now in a position to state our results.
Theorem 4.1 (well-posedness). Let μ ≥ 0. Under the assumptions (A1)–(A3),

there exists a unique solution to Problem Pμ. Moreover, given two sets of data (Fi, Gi,
θ0
i , χ

0
1,i, χ

0
2,i) fulfilling (A1)–(A3) and two external temperatures θe,i, for i = 1, 2, the

respective solutions (θi, χ1,i, χ2,i, ui) to the corresponding problems Pμ fulfill

‖θ1 − θ2‖2
L2(0,T ;H) + sup

t∈[0,T ]

∥∥∥∥
∫ t

0

∇(θ1 − θ2)

∥∥∥∥
2

+ sup
t∈[0,T ]

∥∥∥∥
∫ t

0

(θ1 − θ2)

∥∥∥∥
2

L2(Γ)

(4.1)

+
2∑

j=1

(
μ‖χj,1 − χj,2‖2

C([0,T ];H) + ‖χj,1 − χj,2‖2
L2(0,T ;H)

)
+ ‖u1 − u2‖2

L2(0,T ;V)

≤ c0

(∫ T

0

∥∥∥∥
∫ t

0

(F1,1 − F1,2)

∥∥∥∥
2

dt + ‖F2,1 − F2,2‖2
L1(0,T ;V ′) + ‖G1 −G2‖2

L2(0,T ;V′)

+ ‖cs(θ0
1 − θ0

2) − �(χ0
1,1 − χ0

1,2)‖2 + μ‖χ0
2,1 − χ0

2,2‖2 + |θe,1 − θe,2|2
)
,

where c0 depends on cs, k, h, �, γ, Γ, A
1
2β, θ∗, and cV but is independent of μ.
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Theorem 4.2 (dissipation asymptotics). Under the assumptions (A1)–(A3),
the solution (θμ, χ1,μ, χ2,μ, uμ) to Problem Pμ converges as μ → 0 to the solution
(θ, χ1, χ2, u) of Problem P0 at least weakly in the respective natural spaces.

Moreover, we will address the study of the long-time behavior of the solution to
Problem P0. Indeed, the reader should notice that the above-stated well-posedness
result is actually independent of the choice of the reference time T . Hence, in par-
ticular, the solution (θ, χ1, χ2, u) to Problem P0 may be uniquely extended for all
times. Now let the ω-limit set be defined as

ω
(
θ, χ1, χ2, u

)
:= {

(
θ∞, χ1,∞, χ2,∞, u∞

)
∈ H ×H ×H × V such that there exists

a sequence of positive real numbers {tn} with tn −→ +∞ and(
θ(tn), χ1(tn), χ2(tn), u(tn)

)
−→

(
θ∞, χ1,∞, χ2,∞, u∞

)
in H ×H ×H × V}.

To establish a long-time behavior result, we need some further assumptions on
the data. In particular, we ask for

(A4) F ∈ L2(0,+∞;H), G ∈ H1(0,+∞,V ′).
Hence, the following holds true.

Theorem 4.3 (long-time behavior). Under assumptions (A2)–(A4), the ω-limit
set ω

(
θ, χ1, χ2, u

)
reduces to the unique solution to the problem

θ∞ = θe a.e. in Ω,(4.2)

a(u∞, v) + (Aβχ2,∞, ε(v)) = 0 ∀v ∈ V,(4.3)

A(ε(u∞) + βχ2,∞) = σ∞ a.e. in Ω,(4.4)

γ

(
χ1,∞
χ2,∞

)
+ ∂IK

(
χ1,∞
χ2,∞

)
�
( �

θ∗
(θ∗ − θe)

−σ∞ : β

)
a.e. in Ω.(4.5)

Namely, the whole trajectory converges to (θ∞, χ1,∞, χ2,∞, u∞) as t → +∞.
We close this section by stating precisely a maximum principle for the temperature

θ which entails its positivity in the frame of our concrete modeling situation. To this
aim, of course some sign assumption on the external heat sources is needed and we
will ask for

(A5) 〈F (t), v〉 ≥ 0 for a.e. t ∈ (0, T ) and all v ∈ V with v ≥ 0 a.e. in Ω.
The latter follows for instance when f, r ≥ 0 almost everywhere in their respective
domains and could clearly be weakened. One has the following.

Theorem 4.4 (lower bound). Let μ ≥ 0. Under assumptions (2.1), (A1)–(A3),
and (A5), let θd ∈ R be such that

γ +
�

θ∗
(θd − θ∗) ≤ 0.(4.6)

Then, the unique solution (θ, [χ1, χ2], u) to Problem Pμ fulfills

inf {inf θ0, θe, θ∗, θd} ≤ θ(x, t) for a.e. (x, t) ∈ Q,(4.7)

where inf θ0 stands for the essential infimum of θ0 on Ω.
Clearly, in order to deduce from the above-stated lower bound (4.7) a positivity

result for θ (and consequently a proof of the thermodynamical consistency of the
model; see section 2) one has to start from a positive initial datum θ0 and ask for
the existence of a positive constant θd fulfilling (4.6). Let us stress that this second
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requirement is compatible with our modeling situation since, owing to the discussion
of section 2,

γ +
�

θ∗
(θd − θ∗) =

�

θ∗
(θ∗ − θ∗∗) +

�

θ∗
(θd − θ∗) =

�

θ∗
(θd − θ∗∗),

and it suffices to choose 0 < θd ≤ θ∗∗ in order to achieve (4.6).

5. Dissipative problem. Throughout this section, the dissipation parameter
μ is fixed and strictly positive.

5.1. Continuous dependence. Let us denote by (θi, χ1,i, χ2,i, ui) for i = 1, 2
two solutions to Problem Pμ associated to the given two sets of data (Fi, Gi, θ

0
i , χ

0
1,i,

χ0
2,i), and θe,i for i = 1, 2. We set θ := θ1 − θ2, u := u1 − u2, and so on. Let us take

the integral on (0, t), for t ∈ (0, T ], of relation (3.1) written for (θ1, χ1,1, χ2,1, u1)
and subtract the same relation for (θ2, χ1,2, χ2,2, u2), choose ϕ := θ, and integrate on
(0, t) for t ∈ (0, T ]. We readily obtain that

cs

∫ t

0

‖θ‖2 +
k

2

∥∥∥∥
∫ t

0

∇θ

∥∥∥∥
2

+
h

2

∥∥∥∥
∫ t

0

θ

∥∥∥∥
2

L2(Γ)

(5.1)

≤
∫ t

0

(
‖csθ

0 − �χ0
1‖ +

∥∥∥∥
∫ s

0

F 1

∥∥∥∥
)
‖θ‖ ds

+

∫ t

0

〈∫ s

0

F 2, θ

〉
ds + h

∫ t

0

(sθe, θ)Γds + �

∫ t

0

(θ, χ1).

Let us now take the difference between relation (3.4) written for (θ1, χ1,1, χ2,1, u1)
and the same relation for (θ2, χ1,2, χ2,2, u2), multiply the corresponding relation by
[χ1, χ2], exploit the monotonicity of the subdifferential, and integrate on Ω × (0, t)
for t ∈ (0, T ]. We get

2∑
j=1

(
μ

2
‖χj(t)‖2 + γ

∫ t

0

‖χj‖2

)
≤

2∑
j=1

μ

2
‖χ0

j‖2 − �

θ∗

∫ t

0

(θ, χ1) −
∫ t

0

(σ : β, χ2).(5.2)

As for the last term in the right-hand side of (5.2) we take advantage of (3.2)–(3.3)
and readily compute that

−σ : β = −A
1
2 ε(u) : A

1
2β − |A 1

2β|2χ2,(5.3) ∫ t

0

‖A
1
2 ε(u)‖2 = −

∫ t

0

(A
1
2 ε(u) : A

1
2β, χ2) +

∫ t

0

〈G, u〉.(5.4)

Hence, by choosing 1 < ρ < (γ+ |A 1
2β|2)/|A 1

2β|2, we take the sum between (5.2) and
(5.4) in order to obtain

2∑
j=1

(
μ

2

(
‖χj(t)‖2 − ‖χ0

j‖2
)

+ γ

∫ t

0

‖χj‖2

)
+

∫ t

0

‖A
1
2 ε(u)‖2

≤ − �

θ∗

∫ t

0

(θ, χ1) − 2

∫ t

0

(A
1
2 ε(u) : A

1
2β, χ2) − |A 1

2β|2
∫ t

0

‖χ2‖2 +

∫ t

0

〈G, u〉

≤ − �

θ∗

∫ t

0

(θ, χ1) + (ρ− 1)|A 1
2β|2

∫ t

0

‖χ2‖2 +
1

ρ

∫ t

0

‖A
1
2 ε(u)‖2 +

∫ t

0

〈G, u〉.
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Then, multiplying (5.2) by 1/θ∗ and taking the sum with the above relation, one has

cs
θ∗

∫ t

0

‖θ‖2 +
k

2θ∗

∥∥∥∥
∫ t

0

∇θ

∥∥∥∥
2

+
h

2θ∗

∥∥∥∥
∫ t

0

θ

∥∥∥∥
2

L2(Γ)

+
μ

2

2∑
j=1

‖χj(t)‖2(5.5)

+ γ

∫ t

0

‖χ1‖2 +
(
γ + (1 − ρ)|A 1

2β|2
) ∫ t

0

‖χ2‖2 +
ρ− 1

ρ

∫ t

0

‖A
1
2 ε(u)‖2

≤ 1

θ∗

∫ t

0

(
‖csθ

0 − �χ0
1‖ +

∥∥∥∥
∫ s

0

F 1 ds

∥∥∥∥
)
‖θ‖ +

1

θ∗

∫ t

0

〈∫ s

0

F 2 ds, θ

〉

+
h

θ∗

∫ t

0

(sθe, θ)Γds +

2∑
j=1

μ

2
‖χ0

j‖2 +

∫ t

0

〈G, u〉.

Finally, the assertion follows from an integration by parts.

5.2. Discretization. Let us introduce our variable time-step discretization of
Pμ. To this aim we define the partition P :=

{
0 = t0 < t1 < · · · < tN−1 < tN =

T
}

with variable time-step τi := ti − ti−1 and let τ := max1≤i≤N τi denote the
diameter of the partition P. In the forthcoming analysis the following notation will
be extensively used: {wi}Ni=0 being a vector, we denote by wP and wP two functions
of the time interval [0, T ] which interpolate the values of the vector {wi} piecewise
linearly and backward constantly on the partition P, respectively. Namely,

wP(0) := w0, wP(t) := gi(t)wi +
(
1 − gi(t)

)
wi−1,

wP(0) := w0, wP(t) := wi for t ∈ (ti−1, ti], i = 1, . . . , N,

where gi(t) := (t− ti−1)/τi for t ∈ (ti−1, ti], i = 1, . . . , N . Moreover, given a vector
{wi}Ni=0, we define another vector {δwi}Ni=1 as δwi := (wi − wi−1)/τi.

Finally, we introduce some approximation of the data. Hence, let F = F1 + F2,
where F1 ∈ L2(0, T ;H) and F2 ∈ W 1,1(0, T ;V ′), and set

F1,i :=
1

τi

∫ ti

ti−1

F1(s) ds ∈ H for i = 1, . . . , N,(5.6)

F2,1 := F2(ti) ∈ V ′ for i = 0, 1, . . . , N,(5.7)

Gi := G(ti) ∈ V ′ for i = 0, 1, . . . , N.(5.8)

Of course, owing to (A1), the latter positions are justified. In particular, let us remark
that one has

F 1,P → F1 strongly in L2(0, T ;H),(5.9)

F2,P → F2 strongly in W 1,1(0, T ;V ′),(5.10)

GP → G strongly in H1(0, T ;V ′)(5.11)

whenever the diameter τ of partition P goes to 0.

Hence, we are interested in the following discrete problem.
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Problem Dμ. Find {θi}Ni=0 ∈ V N+1, {[χ1,i, χ2,i]}Ni=0 ∈ KN+1, and {ui}Ni=1 ∈ VN

such that, for all i = 1, . . . , N ,(
(csδθi − �δχ1,i), ϕ

)
+ k(∇θi,∇ϕ) + h(θi − θe, ϕ)Γ = 〈Fi, ϕ〉 ∀ϕ ∈ V,(5.12)

a(ui, v) + (Aβχ2,i, ε(v)) = 〈Gi, v〉 ∀v ∈ V,(5.13)

A(ε(ui) + βχ2,i) = σi a.e. in Ω,(5.14)

μ

(
δχ1,i

δχ2,i

)
+ γ

(
χ1,i

χ2,i

)
+

( �
θ∗

(θi − θ∗)

σi : β

)
+ ∂IK

(
χ1,i

χ2,i

)
�
(

0

0

)
a.e. in Ω,(5.15)

θ0 = θ0 a.e. in Ω,(5.16)

μ
[
χ1,0, χ2,0

]
= μ

[
χ0

1, χ
0
2

]
a.e. in Ω.(5.17)

5.3. Discrete well-posedness. We prove the following lemma.
Lemma 5.1. Under the assumptions (A1)–(A3), (5.6)–(5.8), and for all τ suffi-

ciently small, problem Dμ has a unique solution.
Proof. We proceed by induction. Namely, we assume to know the solution of the

problem up to level i− 1 and solve for level i. In particular, we are concerned with
the problem of finding θi ∈ V , [χ1,i, χ2,i] ∈ K, and ui ∈ V such that(

(csθi − �χ1,i), ϕ
)

+ τik(∇θi,∇ϕ) + τih(θi − θe, ϕ)Γ = 〈F ∗
i , ϕ〉 ∀ϕ ∈ V,(5.18)

a(ui, v) + (Aβχ2,i, ε(v)) = 〈Gi, v〉 ∀v ∈ V,(5.19)

A(ε(ui) + βχ2,i) = σi a.e. in Ω,(5.20)

μ

(
χ1,i

χ2,i

)
+ τi

(
γχ1,i + �

θ∗
(θi − θ∗)

γχ2,i + σi : β

)
+ ∂IK

(
χ1,i

χ2,i

)
� μ

(
χ1,i−1

χ2,i−1

)
a.e. in Ω,(5.21)

where we collected in the right-hand sides of (5.18)–(5.19) and (5.21) the quantities
known at level i and let F ∗

i := τiFi + csθi−1 − �χ1,i−1. We shall stress that the latter
scheme is of course fully implicit.

Let us now fix [χ̃1, χ̃2] ∈ K. It is then straightforward to find the unique solutions
θ ∈ V and u ∈ V to (5.18) with χ̃1 instead of χ1,i and (5.19) with χ̃2 instead of
χ2,i, respectively. Hence, we have implicitly defined a mapping T1 : K → V × V as

T1[χ̃1, χ̃2] := [θ, u]. On the other hand, for all (θ̃, ũ, χ̃2) ∈ V × V × H there exists
a unique pair [χ1, χ2] ∈ K solving relation (5.21) with (θ̃, ũ) instead of (θi, ui) and
σi is defined by (5.20) with χ̃2 instead of χ2,i. Thus, one may define a mapping

T2 : V × V ×H → K as T2(θ̃, ũ, χ̃2) = [χ1, χ2].
Our next aim is to prove that, for sufficiently small τ , the mapping T3 : K → K

defined as T3[χ̃1, χ̃2] := T2(T1[χ̃1, χ̃2], χ̃2) is a contraction in H ×H. To this end let
[χ̃1,j , χ̃2,j ] ∈ K, [θj , uj ] = T1[χ̃1,j , χ̃2,j ], [χ1,j , χ2,j ] := T3[χ̃1,j , χ̃2,j ] for j = 1, 2, and
define θ := θ1 − θ2, u := u1 − u2, etc. Hence, we readily check that

(csθ, ϕ) + τi(∇θ,∇ϕ) + τih(θ, ϕ)Γ = (�χ̃1, ϕ) ∀ϕ ∈ V,

a(u, v) + (Aβχ̃2, ε(v)) = 0 ∀v ∈ V,
σ : β = Aε(u) : β + Aβχ̃2 : β.

Namely, by choosing [ϕ, v] = [θ, u] above one gets that

‖θ‖ ≤ �

cs
‖χ̃1‖, ‖A

1
2 ε(u)‖ ≤ c1‖χ̃2‖, ‖σ : β‖ ≤ c1‖χ̃2‖,(5.22)
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where c1 depends only on A
1
2β. On the other hand, we exploit (5.21) and get that

(
χ1,j

χ2,j

)
= (1 + ∂IK)−1

(
τi

μ + τiγ

)( �
θ∗

(θ∗ − θj) + μχ1,i−1/τi

−σj : β + μχ2,i−1/τi

)
for j = 1, 2.

In particular, also using (5.22), one computes that

‖χ1‖2 + ‖χ2‖2 ≤
(

τi
μ + τiγ

)2
(∥∥∥∥ �

θ∗
θ

∥∥∥∥
2

+ ‖σ : β‖2

)

≤
(

τi
μ + τiγ

)2 (
�4

c2sθ
2
∗
‖χ̃1‖2 + c21‖χ̃2‖2

)
.

Finally it suffices to fix τ ≤ μ/max{�2/(csθ∗), c1} in order to get that T3 is actually
a contraction in H ×H. The assertion follows from the fact that T3(H) ⊂ K which
is closed in H ×H.

For the sake of later convenience, we rewrite the scheme (5.12)–(5.15) in more
compact form as

(
∂t(csθP − �χ1,P), ϕ

)
+ k(∇θP ,∇ϕ) + h(θP − θe, ϕ)Γ(5.23)

= 〈FP , ϕ〉 ∀ϕ ∈ V, a.e. in (0, T ),

a(uP , v) + (Aβχ2,P , ε(v)) = 〈GP , v〉 ∀v ∈ V, a.e. in (0, T ),(5.24)

A(ε(uP) + βχ2,P) = σP a.e. in Q,(5.25)

μ∂t

(
χ1,P
χ2,P

)
+ γ

(
χ1,P
χ2,P

)
+ ∂IK

(
χ1,P
χ2,P

)
�
( �

θ∗
(θ∗ − θP)

−σP : β

)
a.e. in Q.(5.26)

Remark 5.2. In order to completely justify the above notation one could consider,
for instance, u0 := u0 and σ0 := σ0, where u0 and σ0 are defined above.

5.4. Stability. Our approximation scheme fulfills some suitable conditional sta-
bility property. In particular, this subsection brings us to the proof of the following
lemma.

Lemma 5.3. Under the assumptions (A1)–(A3), (5.6)–(5.8), and for all τ suffi-
ciently small, let {θi}Ni=0 ∈ V N+1, {[χ1,i, χ2,i]}Ni=0 ∈ KN+1, and {ui}Ni=1 ∈ VN be the
unique solution to Problem Dμ. Then there exists a positive constant c2 depending

only on cs, k, h, θe, Γ, θ∗, γ, A
1
2β, cV , θ

0, [χ0
1, χ

0
2], ‖F1‖L2(0,T ;H), ‖F2‖W 1,1(0,T ;V ′),

and ‖G‖H1(0,T ;V′) such that

‖θP‖H1(0,T ;H)∩C0([0,T ];V ) + ‖[χ1,P , χ2,P ]‖(H1(0,T ;H))2(5.27)

+
√
μ‖[χ1,P , χ2,P ]‖(W 1,∞(0,T ;H))2 + ‖u‖H1(0,T ;V) ≤ c2.

In particular, c2 is independent of μ and τ .

Proof. Henceforth we will denote by c any positive constant, possibly depending
on data but on neither μ nor P. In particular, c may vary from line to line.

Let us take the difference between relation (5.15) written at level i and the same
relation at level i−1. By defining [δχ1,0, δχ2,0] := [χ1,μ,t(0), χ2,μ,t(0)] we are entitled
to do so for i = 1, . . . , N . Next, we multiply the resulting relation by [δχ1,i, δχ2,i],
integrate in space, and sum for i = 1, . . . ,m for some m = 1, . . . , N . By exploiting
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the monotonicity of the subdifferential, we obtain that

2∑
j=1

(
μ

2
‖δχj,m‖2 − μ

2
‖δχj(0)‖2 + γ

m∑
i=1

τi‖δχj,i‖2

)
(5.28)

≤ − �

θ∗

m∑
i=1

τi(δθi, δχ1,i) −
m∑
i=1

τi(δσi : β, δχ2,i).

We now take the difference between relation (5.13) written at level i and the same
relation at level i − 1, choose v := δui, and sum for i = 1, . . . ,m. One readily gets
that

m∑
i=1

τi‖A
1
2 ε(δui)‖2 =

m∑
i=1

τi〈δGi, δui〉 −
m∑
i=1

τi(A
1
2 ε(δui) : A

1
2β, δχ2,i).(5.29)

On the other hand, owing to (5.14), it may be easily computed that

δσi : β = A
1
2 ε(δui) : A

1
2β + |A 1

2β|2δχ2,i ∀i = 1, . . . , N.(5.30)

Hence, taking into account (5.30) and adding (5.28) to (5.29), we may again choose

a suitable ρ such that 1 < ρ < (γ + |A 1
2β|2)/|A 1

2β|2 and deduce that

2∑
j=1

(μ
2
‖δχj,m‖2 − μ

2
‖δχj(0)‖2

)
(5.31)

+

m∑
i=1

τi

(
γ‖δχ1,i‖2 + (γ + |A 1

2β|2 − ρ|A 1
2β|2)‖δχ2,i‖2

)

+
ρ− 1

ρ

m∑
i=1

τi‖A
1
2 ε(δui)‖2

≤ − �

θ∗

m∑
i=1

τi(δθi, δχ1,i) +

m∑
i=1

τi〈δGi, δui〉.

Next, we test relation (5.12) by ϕ = τiδθi and take the sum for i = 1, . . . ,m. Because
of (A2) we obtain that

cs

m∑
i=1

τi‖δθi‖2 +
k

2
‖∇θm‖2 +

h

2
‖θm‖2

L2(Γ)(5.32)

≤ c + h(θe, θm)Γ + �

m∑
i=1

τi(δθi, δχ1,i)

+

m∑
i=1

τi(F1,i, δθi) + 〈F2,m, θm〉 − 〈F2,1, θ
0〉 −

m∑
i=2

〈F2,i − F2,i−1, θi−1〉.

Finally, it suffices to take the sum between (5.31) and (5.32) multiplied by 1/θ∗,



SHAPE MEMORY ALLOYS 145

consider (A3), and perform some standard computations in order to obtain that

μ

2∑
j=1

‖δχj,m‖2 + ‖θm‖2
V +

m∑
i=1

τi

⎛
⎝ 2∑

j=1

‖δχj,i‖2 + ‖δθi‖2 + ‖δui‖2
V

⎞
⎠(5.33)

≤ c
m−1∑
i=2

τi〈δF2,i, θi−1〉

+ c

(
1 + ‖F2,m‖2

V ′ + ‖F2,1‖2
V ′ +

m∑
i=1

τi
(
‖δiG‖2

V′ + ‖F1,i‖2
))

.

Finally, from (5.6) and (5.8) and an application of the discrete Gronwall lemma we
readily obtain the bounds of (5.28).

5.5. Convergence. Let us now consider the limit as the diameter τ of partition
P goes to zero. We are actually in a position to prove the following.

Lemma 5.4. Under the assumptions (A1)–(A3), (5.6)–(5.8), and for all τ suffi-
ciently small, let {θi}Ni=0 ∈ V N+1, {[χ1,i, χ2,i]}Ni=0 ∈ KN+1, and {ui}Ni=1 ∈ VN be
the unique solution to problem Dμ. Then the following convergences hold:

θP −→ θμ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V )(5.34)

and strongly in C([0, T ];H),

θP −→ θμ weakly star in L∞(0, T ;V )(5.35)

and strongly in L∞(0, T ;H),

χj,P −→ χj,μ weakly star in W 1,∞(0, T ;H)(5.36)

and strongly in C([0, T ];H), j = 1, 2,

χj,P −→ χj,μ strongly in L∞(0, T ;H), j = 1, 2,(5.37)

uP −→ uμ weakly in H1(0, T ;V)(5.38)

and strongly in C([0, T ];V),

uP −→ uμ strongly in L∞(0, T ;V),(5.39)

where (θμ, χ1,μ, χ2,μ, uμ) is the unique solution to Problem Pμ.

In particular, let us stress that the latter lemma entails the proof of the existence
statement of Theorem 4.1.

Proof. Taking into account the estimate (5.28) and well-known compactness re-
sults, we readily find a quadruple (θμ, χ1,μ, χ2,μ, uμ) such that, possibly taking non-
relabeled subsequences, the weak and weak-star convergences of Lemma 5.4 hold true
together with the following:

θP −→ θμ strongly in C([0, T ];H),(5.40)

θP −→ θμ strongly in L∞(0, T ;H).(5.41)

We now turn to the proof of some strong convergence for χ1,P , χ2,P , and uP
by a direct Cauchy argument. To this aim, let Pm denote the extracted sequence
of partitions. We denote θm := θPm

, um := uPm
, etc. By taking the difference

between (5.26) written for Pn and the same relation for Pm , multiplying it by
[χ1,n − χ1,m, χ2,n − χ2,m], integrating on Ω, and exploiting the monotonicity of the
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subdifferential we readily obtain that

μ

2

d

dt

2∑
j=1

‖(χj,n −χj,m)(t)‖2 + γ

2∑
j=1

‖(χj,n −χj,m)(t)‖2(5.42)

≤ �

θ∗
‖(θn − θm)(t)‖ ‖(χ1,n −χ1,m)(t)‖−

(
(σn −σm)(t) : β, (χ2,n −χ2,m)(t)

)
for almost every t ∈ (0, T ). In particular, we made a crucial use of the fact that, given
any vector {wi}Ni=0 ∈ HN+1, one has that (w′

P , wP) ≥ (w′
P , wP) since of course the

residual term (w′
P , wP − wP) is nonnegative. On the other hand, by taking the

difference of the corresponding relations (5.24) with v = un − um and of (5.25) we
readily check that

‖A
1
2 ε(un − um)‖2 = −

(
A

1
2 ε(un − um) : A

1
2β, (χ2,n − χ2,m)

)
(5.43)

+
〈
Gn −Gm, un − um

〉
,

−
(
(σn − σm) : β, χ2,n − χ2,m

)
(5.44)

= − (A
1
2 ε(un −um) : A

1
2β, χ2,n −χ2,m)− |A 1

2β|2‖χ2,n − χ2,m‖2.

Hence, owing to the latter relation, taking the sum of (5.42) and (5.43) and integrating
on (0, t) for some t ∈ (0, T ] we easily infer that

2∑
j=1

(
μ

2
‖(χj,n − χj,m)(t)‖2 + γ

∫ t

0

‖χj,n − χj m‖2

)
+

∫ t

0

‖A
1
2 ε(un − um)‖2

≤ �

θ∗

∫ t

0

‖θn − θm‖ ‖χ1,n − χ1,m‖ − 2

∫ t

0

(A
1
2 ε(un − um) : A

1
2β, χ2,n − χ2,m)

− |A 1
2β|2

∫ t

0

‖χ2,n − χ2,m‖2 +

∫ t

0

〈Gn −Gm, un − um〉

≤ γ

2

∫ t

0

‖χ1,n − χ1,m‖2 + (ρ− 1)|A 1
2β|2

∫ t

0

‖χ2,n − χ2,m‖2

+
1

ρ

∫ t

0

‖A
1
2 ε(un − um)‖2 +

�2

2θ2
∗γ

∫ t

0

‖θn − θm‖2 +

∫ t

0

〈Gn −Gm, un − um〉

for some 1 < ρ < (γ + |A 1
2β|2)/|A 1

2β|2. Hence, in particular,

2∑
j=1

(
μ‖χj,n − χj,m‖2

C([0,t];H) +

∫ t

0

‖χj,n − χj m‖2

)
+

∫ t

0

‖un − um‖2
V(5.45)

≤ c

(∫ t

0

‖θn − θm‖2 +

∫ t

0

‖Gn −Gm‖2
V′

)
,

where c depends on �, θ∗, γ, and cV . Finally it suffices to exploit (5.11) and (5.41)
in order to obtain that [χ1,P , χ2,P ] is a Cauchy sequence in (C([0, T ];H))2. Namely,
we checked the strong convergences in (5.36)–(5.37). The strong convergences of
(5.38)–(5.39) are now an easy consequence of (5.11), (5.36)–(5.37), and (5.43).
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We prove that indeed the quadruple (θμ, χ1,μ, χ2,μ, uμ) solves Problem Pμ. Let
us introduce the new auxiliary variables [ξ1,P , ξ2,P ] ∈ ∂IK(χ1,P , χ2,P) almost every-
where in Q such that (5.26) reduces to the following equality:

μ∂t

(
χ1,P
χ2,P

)
+ γ

(
χ1,P
χ2,P

)
+

( �
θ∗

(θP − θ∗)

σP : β

)
+

(
ξ1,P

ξ2,P

)
=

(
0

0

)
a.e. in Q.

Hence, moving from (5.28), it is straightforward to possibly extract a further sub-
sequence such that the convergences of Lemma 5.4 hold and there exists [ξ1,μ, ξ2,μ]
such that

ξj,P → ξj,μ weakly in L2(0, T ;H) for j = 1, 2.

Owing to the convergences proved above and to (5.9)–(5.11) it is now possible to pass
to the limit as the diameter τ of partition P goes to zero and check that (θμ, χ1,μ,
χ2,μ, uμ, ξ1,μ, ξ2,μ) fulfills relations (3.1)–(3.3), (3.5)–(3.6), and

μ∂t

(
χ1,μ

χ2,μ

)
+ γ

(
χ1,μ

χ2,μ

)
+

(
ξ1,μ
ξ2,μ

)
�
( �

θ∗
(θ∗ − θμ)

−σμ : β

)
a.e. in Q.(5.46)

Moreover, it is straightforward to check that

∫ T

0

(ξj,P , χj,P) →
∫ T

0

(ξj,μ, χj,μ) for j = 1, 2.

In particular, classical results on maximal monotone operators [7, Prop. 2.5, p. 27]
entail that [ξ1,μ, ξ2,μ] ∈ ∂IK(χ1,μ, χ2,μ) almost everywhere in Q and the assertion of
the lemma follows. Before closing this proof, we observe that the convergences stated
in the lemma hold for all the sequence of partitions and not just for a subsequence
since the solution to Problem Pμ is unique.

5.6. Error estimates. For the sake of completeness, we state here a priori
bound on the discretization error. To this aim, recalling from (A1) that F := F1+F2,
we sharpen our regularity requirements by asking for

F1 ∈ BV ([0, T ];H),(5.47)

where the above notation refers to the space of real functions valued in H with
bounded variation. We have the following estimate.

Lemma 5.5. Under the assumptions (A1)–(A3), (5.6)–(5.8), and (5.47), let
(θ, [χ1, χ2], u) and {θi}Ni=0 ∈ V N+1, {[χ1,i, χ2,i]}Ni=0 ∈ KN+1, and {ui}Ni=1 ∈ VN

be the unique solutions to Problems Pμ and Dμ, respectively. Hence, there exists a
positive constant c3 depending on c2 such that, possibly taking τ small enough, one
has that

‖θ − θP‖L2(0,t;H) + sup
s∈[0,t]

∥∥∥∥
∫ s

0

∇(θ − θP)

∥∥∥∥ + sup
s∈[0,t]

∥∥∥∥
∫ s

0

(θ − θP)

∥∥∥∥
L2(Γ)

(5.48)

+μ
2∑

j=1

‖χj − χj,P‖C([0,t];H) +

2∑
j=1

‖χj − χj,P‖L2(0,t,H)

+ ‖u− uP‖C([0,t];V) ≤ c3τ ∀t ∈ [0, T ].
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We will not give here the detailed proof of the latter result. Indeed, the argument
follows closely the lines of the proof of the continuous dependence estimate (4.1). The
additional intricacy related to the fact that the continuous and the discrete solutions
do not solve the same equations may be overcome by the same techniques of the two
papers [34, 35], where indeed the abstract analysis of [28, 29] is applied in a similar
context. On the other hand, some comment is in order. We point out that the latter
estimate is optimal with respect to the order of convergence, since the backward Euler
scheme is used in order to approximate time derivatives in Problem Pμ. Moreover,
no a priori constraints between consecutive time-steps are imposed. Hence (5.48)
ensures the possibility of implementing an adaptive procedure as in [29]. Finally, let
us remark that c3 depends exponentially on T since the Gronwall lemma is used in
the proof of (5.48).

6. Nondissipative problem. We now proceed to the proof of Theorem 4.1 for
μ = 0 and Theorem 4.2. To this aim (θμ, χ1,μ, χ2,μ, uμ) will denote a sequence of
solutions to Problem Pμ as μ converges toward 0.

6.1. Continuous dependence. First of all, we address the continuous depen-
dence claim in the nondissipative situation. To this end, it suffices to follow exactly
the lines of the corresponding proof of subsection 5.1 with the choice of the parameter
μ = 0.

6.2. A priori estimates. We shall prove the following.
Lemma 6.1. Under the assumptions (A1)–(A3), let (θμ, χ1,μ, χ2,μ, uμ) be solu-

tions to Problem Pμ. Then, there exists a positive constant c4 depending only on

cs, k, h, θe, Γ, γ, A
1
2β, cV , θ∗, θ0, [χ0

1, χ
0
2], ‖F1‖L2(0,T ;H), ‖F2‖W 1,1(0,T ;V ′), and

‖G‖H1(0,T ;V′) such that

‖θμ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖[χ1,μ, χ2,μ]‖(H1(0,T ;H))2 + ‖uμ‖H1(0,T ;V) ≤ c4.(6.1)

In particular, c4 is independent of μ.
Proof. This argument is just sketched here since it is very close to that of Lemma

5.3. Indeed, the above-stated result represents the continuous version of the stability
estimates for the discrete scheme. Namely, the key a priori estimate consists in taking
the sum between (3.1) with ϕ := θt/θ∗, the time derivative of (3.4) multiplied by
[χ1,μ,t, χ2,μ,t], and the time derivative of (3.2) with v = uμ,t. We shall remark that
the latter choices of test functions are not admissible at the present stage. However,
the above calculation is to be intended at an appropriate approximation level (for
instance, that of the discrete scheme). We prefer to skip the details of this discussion
for the sake of clarity. Next, taking the integral on (0, t) for some t ∈ (0, T ] of the
upcoming relation, the assertion of Lemma 6.1 follows along the same lines as the
proof of Lemma 5.3.

6.3. Passage to the limit. Let us now finally turn to the proof of Theorem 4.2.
Precisely, we prove the following.

Lemma 6.2. Under the assumptions (A1)–(A3), let (θμ, χ1,μ, χ2,μ, uμ) be the
solution to Problem Pμ. Then the following convergences hold:

θμ −→ θ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V )(6.2)

and strongly in C([0, T ];H),

χj,μ −→ χj weakly in H1(0, T ;H)(6.3)

and strongly in C([0, T ];H), j = 1, 2,
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uμ −→ u weakly in H1(0, T ;V)(6.4)

and strongly in C([0, T ];V),

where (θ, χ1, χ2, u) is the unique solution to P0.
Proof. This argument is very close to that of Lemma 5.4. Thanks to Lemma

6.1 we are in the position of finding a quadruple (θ, χ1, χ2, u) such that, possibly
taking non-relabeled subsequences and owing to well-known compactness results, the
following convergences hold:

θμ −→ θ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V )(6.5)

and strongly in C([0, T ];H),

χj,μ −→ χj weakly in H1(0, T ;H), j = 1, 2,(6.6)

uμ −→ u weakly in H1(0, T ;V).(6.7)

We now turn to the proof of a direct Cauchy argument. To this aim, we fix two
parameters μn, μm of the extracted subsequence and denote by (θr, χ1,r, χ2,r, ur)
the solution to Problem Pμr for r = n,m (σn, σm are defined accordingly). Next,
we take the difference between (3.4) written for μ1 and the same relation for μ2 ,
multiply it by (χ1,n − χ1,m, χ2,n − χ2,m), and integrate in space. We readily obtain
that, for almost all t ∈ (0, T ),

γ

2∑
j=1

‖(χj,n −χj,m)(t)‖2 ≤ �

θ∗
‖(θn − θm)(t)‖ ‖(χ1,n − χ1,m)(t)‖(6.8)

−
(
β : (σn − σm)(t), (χ2,n − χ2,m)(t)

)
+

2∑
j=1

‖(μnχj,n,t − μmχj,m,t)(t)‖ ‖(χj,n − χj,m)(t)‖.

Once again we readily compute that

‖A
1
2 ε(un − um)‖2 = −(A

1
2 ε(un − um) : A

1
2β, χ2,n − χ2,m) a.e. in (0, T ),(6.9)

− (σn − σm) : β(χ2,n − χ2,m)(6.10)

= −A
1
2 ε(un − um) : A

1
2β(χ2,n − χ2,m) − |A 1

2β|2(χ2,n − χ2,m)2 a.e. in Q.

Finally, taking the sum between (6.8) and (6.9) and using (6.11), we readily obtain
that

γ‖(χ1,n − χ1,m)(t)‖2 +
(
γ + |A 1

2β|2 − ρ|A 1
2β|2

)
‖(χ2,n − χ2,m)(t)‖2

+
ρ− 1

ρ
‖A

1
2 ε(un − um)(t)‖2 ≤ �

θ∗
‖(θn − θm)(t)‖ ‖(χ1,n − χ1,m)(t)‖

+

2∑
j=1

‖(μnχj,n,t − μmχj,m,t)(t)‖ ‖(χj,n − χj,m)(t)‖,

where once again ρ is such that 1 < ρ < (γ + |A 1
2β|2)/|A 1

2β|2. Now, it suffices to
recall (5.28) and (6.5) in order to infer the strong convergences

χj,μ −→ χj strongly in C([0, T ];H) for j = 1, 2,

uμ −→ u strongly in C([0, T ];V).

Moving from the above positions, the proof of this lemma may be concluded exactly
as that of Lemma 5.4.
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6.4. Error control. The Cauchy argument devised in the latter subsection may
be used in order to achieve some quantitative control on the distance between the
dissipative and the nondissipative regimes. In particular, we have the following.

Lemma 6.3. Under the assumptions (A1)–(A3), let (θμ, χ1,μ, χ2,μ, uμ) and (θ, χ1,
χ2, u) denote the unique solutions to Problems Pμ and P0, respectively. Then, there
exists a constant c5 with the same dependences of c2 (in particular independent of
μ) such that

‖θ − θμ‖L2(0,T ;H) + sup
t∈[0,T ]

∥∥∥∥
∫ t

0

∇(θ − θμ)

∥∥∥∥ + sup
t∈[0,T ]

∥∥∥∥
∫ t

0

(θ − θμ)

∥∥∥∥
L2(Γ)

+

2∑
j=1

‖χj − χj,μ‖L2(0,T ;H) + ‖u− uμ‖L2(0,T ;V) ≤ c5
√
μ.

The proof of Lemma 6.3 follows along the same lines as subsections 5.1 and 6.3
and is therefore omitted.

6.5. Discretization. Let us comment here the possible discretization of Prob-
lem P0. First of all we observe that the limit procedure of section 5 is completely
independent of μ. On the other hand, the positivity of μ is exploited in order to im-
plement the contraction argument. Namely, one could choose μ = μ(τ) > 0 such that
limτ→0+ μ(τ) = 0 and prove that the resulting discrete solution exists and converges
indeed to a solution to Problem P0.

It is, however, remarkable that we would also be in the position of providing a
variable time-step discretization scheme for Problem P0 as well. Namely, we could
directly work at the nondissipative level μ = 0 and prove Lemmas 5.1, 5.3, and 5.4
(and hence Theorem 4.1) directly for Problem D0. On the other hand, we prefer to
analyze here the discretization of the dissipative problem because the well-posedness
proof for Problem D0 relies on some nonconstructive technique (Schauder fixed point)
and hence shows a merely theoretical interest (while the scheme for problem Dμ is
effectively computable). Finally, we are interested in establishing the asymptotic
connection within the dissipative and the nondissipative models at all levels, namely,
the continuous and the discrete ones.

As for the discretization error estimate (5.48) one could actually prove that an
analogous bound holds true in the case μ = 0. In particular, in the latter nondis-
sipative case we will be forced to replace τ with

√
τ , i.e., we reduce ourselves to a

suboptimal convergence rate.

7. Long-time behavior. Let us now turn to the proof of Theorem 4.3. In par-
ticular, let us recall that the dissipation parameter μ is set to be zero throughout this
section. Namely, we will carry out the long-time behavior analysis in the nondissipa-
tive regime. Owing to Theorem 4.1 it is a standard matter to check for the existence
and uniqueness of a quadruple (θ, χ1, χ2, u) such that, for each T ∈ (0,+∞), one
has that θ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ), [χ1, χ2] ∈ (H1(0, T ;H))2, u ∈ H1(0, T ;V),
fulfilling conditions (3.1)–(3.5) with μ = 0. We proceed by establishing some lemmas.

Lemma 7.1. Under the assumptions (A2)–(A4), there exists a positive con-

stant c6 depending on cs, k, h, θe, Γ, γ, A
1
2β, cV , θ∗, θ

0, [χ0
1, χ

0
2], ‖F‖L2(0,+∞;H),

and ‖G‖H1(0,+∞;V′) such that

∫ t

0

(
‖θt‖2 +

2∑
j=1

‖χj,t‖2 + ‖ut‖2
V

)
+ ‖θ(t) − θe‖2

V ≤ c6 ∀t > 0.(7.1)
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We do not provide here a detailed proof of the latter estimate. Indeed, the
argument of Lemma 6.1 (together with the long-time assumption (A4)) may be easily
adapted to ensure the validity of (7.1).

A first consequence of Lemma 7.1 is that the set{
(θ(t), χ1(t), χ2(t), u(t)), t > 0

}
is bounded in V ×H ×H × V.

Therefore, there exists a sequence tn → +∞ and a quadruple (θ∞, χ1,∞, χ2,∞, u∞)
such that

θ(tn) −→ θ∞ strongly in H,

χj(tn) −→ χj,∞ weakly in H, j = 1, 2,

u(tn) −→ u∞ weakly in V.

Indeed, by observing that relations (3.2)–(3.4) are actually fulfilled everywhere in time
and almost everywhere in Ω and arguing as in the proof of Lemma 6.2, we easily check
that the direct Cauchy argument devised above entails that the latter convergences
are strong. In particular, the set ω(θ, χ1, χ2, u) is nonempty.

Consider now any (θ∞, χ1,∞, χ2,∞, u∞) ∈ ω(θ, χ1, χ2, u). Hence, there is a se-
quence {tn} of positive real numbers such that tn → +∞ and

(θ(tn), χ1(tn), χ2(tn), u(tn)) −→ (θ∞, χ1,∞, χ2,∞, u∞) in H ×H ×H × V.(7.2)

For n and t ≥ 0, we define

θn(t) := θ(tn + t), χj,n(t) := χj(tn + t), j = 1, 2, un(t) := u(tn + t).

We can introduce a pair of auxiliary functions [ξ1,n, ξ2,n] such that the functions
θn, χ1,n, χ2,n, un, σn, ξ1,n, ξ2,n solve relations

γ

(
χ1,n

χ2,n

)
+

( �
θ∗

(θn − θ∗)

σn : β

)
+

(
ξ1,n
ξ2,n

)
=

(
0

0

)
a.e. in Ω × (0, T ),(7.3) (

ξ1,n
ξ2,n

)
∈ ∂IK(χ1, χ2) a.e. in Ω × (0, T ),(7.4)

as well as the relations (3.1)–(3.3), for all T ∈ (0,+∞). However, note that
in (3.1)–(3.2) F and G have to be replaced by Fn := F (·+ tn) and Gn := G(·+ tn),
respectively. We also point out the initial condition θn(·, 0) = θ(·, tn) almost every-
where in Ω.

Owing to Lemma 7.1 it is not difficult to prove some estimates for the functions
θn, χ1,n, χ2,n, un, ξ1,n, and ξ2,n which are uniform with respect to n. The proof of
the next result is omitted since it is analogous to the proof of Lemma 5.3.

Lemma 7.2. Let T > 0. Under the above assumptions, letting ξ1,n and ξ2,n be
as in (7.3)–(7.4), there exists a positive constant c7 with the same dependencies of
c6 such that

‖θn‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖un‖H1(0,T ;V)(7.5)

+

2∑
j=1

‖χj,n‖H1(0,T ;H) +

2∑
j=1

‖ξj,n‖H1(0,T ;H) ≤ c7.
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Another consequence of Lemma 7.1 is to allow the identification of the limit of
θn, χ1,n, χ2,n, and un as n → +∞. More precisely, we have the following.

Lemma 7.3. Under the above assumptions, for every T > 0 there holds

θn −→ θ∞ strongly in H1(0, T ;H),(7.6)

χj,n −→ χj,∞ strongly in H1(0, T ;H), j = 1, 2,(7.7)

un −→ u∞ strongly in H1(0, T ;V).(7.8)

Proof. Taking into account (7.1) it is straightforward to check that∫ T

0

‖θn,t‖2 =

∫ tn+T

tn

‖θt‖2 −→ 0 as n −→ +∞.(7.9)

An analogous computation applies to χ1,n,t, χ2,n,t, and un,t, as well. Hence, we easily
deduce that

‖θn(t) − θ∞‖ ≤ ‖θn(t) − θn(0)‖ + ‖θ(tn) − θ∞‖
≤ T 1/2‖θn,t‖L2(0,T ;H) + ‖θ(tn) − θ∞‖.

Owing to (7.2) and (7.9), the right-hand side of the latter inequality goes to zero as
n → +∞. Hence, (7.6) is proved. A similar argument ensures that (7.7)–(7.8) hold
true.

After these preliminaries, we may prove Theorem 4.3 by passing to the limit as
n → +∞ in (3.1)–(3.3) for the quadruple (θn, un, χ1,n, χ2,n) and data [Fn, Gn] and
in relations (7.3)–(7.4). Thanks to the above lemmas and well-known compactness
results we find a subsequence (not relabeled) of θn, χ1,n, χ2,n, and un and a pair
(ξ1,∞, ξ2,∞) such that, in addition to (7.6)–(7.8), the following convergences hold:

θn −→ θ∞ weakly star in L∞(0, T ;V ),(7.10)

ξj,n −→ ξj,∞ weakly in H1(0, T ;H), j = 1, 2.(7.11)

The convergences proved above and (A4) are sufficient in order to pass to the limit
in (3.1)–(3.3). In particular, it turns out that θ∞ = θe almost everywhere in Ω. As
far as relations (7.3)–(7.4) are concerned, we observe that we also have( �

θ∗
(θn − θ∗)

σn : β

)
−→

( �
θ∗

(θ∞ − θ∗)

σ∞ : β

)
strongly in (C([0, T ];H))2.

Hence, we just need to identify the limit of [ξ1,n, ξ2,n]. Indeed, from (7.7) and (7.11),
one easily infers that

(ξi,n, χi,n) −→ (ξi,∞, χi,∞) a.e. in (0, T ) for i = 1, 2.

The classical theory of maximal monotone operators (see, e.g., [7, Prop. 2.5, p. 27])
then entails that [ξ1,∞, ξ2,∞] ∈ ∂IK(χ1,∞, χ2,∞) almost everywhere in Ω, and we have
finally proved (4.2)–(4.5). In order to conclude the proof of Theorem 4.3 we provide
the following stronger result.

Lemma 7.4. Let the external temperatures θe,1, θe,2 be given and let (χ1,i, χ2,i, ui)
∈ H ×H × V fulfill

a(ui, v) +
(
Aβχ2,i, ε(v)

)
= 0 ∀v ∈ V,

A
(
ε(ui) + βχ2,i

)
= σi a.e. in Ω,

γ

(
χ1,i

χ2,i

)
+ ∂IK

(
χ1,i

χ2,i

)
�
( �

θ∗
(θ∗ − θe,i)

−σi : β

)
a.e. in Ω
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for i = 1, 2. Then, there exists a positive constant c8 depending just on �, θ∗, γ, A
1
2β,

and cV such that

2∑
j=1

‖χj,1 − χj,2‖ + ‖u1 − u2‖V ≤ c8 |θe,1 − θe,2|.(7.12)

Once again the proof of Lemma 7.4 may be easily obtained by adapting the
argument of subsection 5.1. A consequence of the above continuous dependence result
is that, since (θ∞, χ1,∞, χ2,∞, u∞) are uniquely determined, we readily check that
the ω-limit set reduces to a point and the whole trajectory (θ(t), χ1(t), χ2(t), u(t))
converges to (θ∞, χ1,∞, χ2,∞, u∞) as t → +∞. In particular, this concludes the
proof of Theorem 4.3.

8. Lower bound for the temperature. Let us now turn to the proof of Theo-
rem 4.4. This argument is very close to that of [11] and will be just sketched, referring
to the latter paper for details. We will start by checking (4.7) in the dissipative case
μ > 0. In this situation we claim that(

γχ1 +
�

θ∗
(θ − θ∗)

)+

≥ −μχ1,t a.e. in Q,(8.1)

where we used the standard notation for the positive part. Indeed, χ1,t = 0 almost
everywhere on the measurable set {χ1 = 1}. On the other hand, for almost every
(x, t) ∈ {χ1 < 1}, one readily checks from (3.4) that (see [11])(

μχ1,t + γχ1 +
�

θ∗
(θ − θ∗)

)
(x, t) ≥ 0.

Let us now consider

θ := inf { inf θ0, θe, θ∗, θd} ∈ R

(the case θ = −∞ being obvious), choose ϕ = −(θ − θ)− ∈ V in (3.1), and take the
integral on (0, t) for t ∈ (0, T ], obtaining

cs
2
‖(θ − θ)−(t)‖2 + k

∫ t

0

‖∇((θ − θ)−)‖2 − h

∫ t

0

(θ − θe, (θ − θ)−)Γ(8.2)

= −
∫ t

0

〈F, (θ − θ)−〉 − �

∫ t

0

(χ1,t, (θ − θ)−).

Owing to (A5) and (8.1) one gets that the above right-hand side may be controlled
as follows:

−
∫ t

0

〈F, (θ − θ)−〉 − �

∫ t

0

(χ1,t, (θ − θ)−)

≤ �

μ

∫ t

0

((
γχ1 +

�

θ∗
(θ − θ∗)

)+

, (θ − θ)−

)

≤ �

μ

∫ t

0

((
γ +

�

θ∗
(θ − θ∗)

)+

, (θ − θ)−

)
= 0,

since θ ≤ θd and (4.6) holds . Hence, looking back to (8.2) and considering that
θ ≤ θe as well, we readily check that θ ≥ θ almost everywhere in Q. The proof of
the lower bound for the temperature in the nondissipative case μ = 0 simply follows
by approximation owing to (6.5).
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EXISTENCE AND UNIQUENESS OF THE MILD SOLUTION FOR
THE 1D VLASOV–POISSON INITIAL-BOUNDARY VALUE

PROBLEM∗
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Abstract. We prove the existence and uniqueness of the mild solution for the 1D Vlasov–Poisson
system with initial-boundary conditions by using iterated approximations. The same arguments
yield existence and uniqueness for the free space or space periodic system. The major difficulty is
the treatment of the boundary conditions. The main idea consists of splitting the velocities range
by introducing critical velocities corresponding to each boundary. One of the crucial points is to
estimate the critical velocity change in term of relative field. A result concerning the continuity of
the mild solution upon the initial-boundary conditions is presented as well.

Key words. Vlasov–Poisson equations, Vlasov–Maxwell equations, weak/mild formulation

AMS subject classifications. 35Q99, 35L50

DOI. 10.1137/S0036141003434649

1. Introduction. Many studies in the physics of charged particles are modeled
by kinetic equations (Vlasov, Boltzmann, etc.) coupled with electromagnetic equa-
tions (Poisson, Maxwell). A few application domains are semiconductors, particle
accelerators, electron guns, etc.

Various results have been obtained for the free space systems. Weak solutions for
the Vlasov–Poisson system were constructed by Arseneev [1] and Horst and Hunze
[16]. The existence of classical solutions has been studied in two and three dimensions
by Ukai and Okabe [21], Horst [15], Batt [2], and Pfaffelmoser [18]. Classical solutions
for the Vlasov–Poisson equations with small initial data have been constructed by
Bardos and Degond [3]. The propagation of the velocity moments for the Vlasov–
Poisson system in three dimensions has been studied by Lions and Perthame in [17].
They prove also a uniqueness result under a Lipschitz continuity assumption on the
initial data. Another uniqueness result has been obtained by Robert for bounded,
compactly supported initial data, [20]. A uniqueness result for solutions with bounded
variation was obtained by Guo, Shu, and Zhou [14].

The existence of weak solutions for the Vlasov–Maxwell system in three dimen-
sions was shown by DiPerna and Lions [9]. The relativistic Vlasov–Maxwell system
was studied by Glassey and Schaeffer [10]. In one dimension, the existence and unique-
ness have been obtained by Cooper and Klimas [7].

The boundary value problem has been studied as well. The existence of weak
solutions for the Vlasov–Poisson initial-boundary value problem in three dimensions
is a result of Abdallah [4]. The existence of weak solutions for the three-dimensional
Vlasov–Maxwell initial-boundary value problem has been analyzed by Guo [12]. The
stationary one-dimensional Vlasov–Poisson system has been studied by Greengard
and Raviart [11]. An asymptotic analysis of the Vlasov–Poisson system has been
performed by Degond and Raviart [8] in the case of the plane diode. The stationary
Vlasov–Maxwell system in three dimensions was analyzed by Poupaud [19]. The
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regularity of the solutions for the Vlasov–Maxwell system in a half line has been
studied by Guo [13]. Results for the time periodic case can be found in [6] for the
Vlasov–Poisson system and in [5] for the Vlasov–Maxwell system.

In this paper we study the existence and uniqueness of the mild solution for the
Vlasov–Poisson initial-boundary value problem in one dimension:

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ ]0, T [× ]0, 1[×Rv,

f(t = 0, x, v) = f0(x, v), (x, v) ∈]0, 1[×Rv,

f(t, x, v) = g(t, x, v), (t, x, v) ∈]0, T [×Σ−,

E(t, x) = −∂xU, ∂xE = −∂2
xU = ρ(t, x) :=

∫
Rv

f(t, x, v)dv, (t, x) ∈ ]0, T [× ]0, 1[,

U(t, x = 0) = U0(t), U(t, x = 1) = U1(t), t ∈]0, T [.

The function f(t, x, v) represents the particles distribution depending on the time t,
the position x, and the velocity v. The electric field E(t, x) derives from an electro-
static potential U verifying the Poisson equation with the charge density ρ(t, x) :=∫

Rv
f(t, x, v)dv. Here Σ− is the subset of Σ = {0, 1} × Rv corresponding to the in-

coming velocities:

Σ− = {(0, v) | v > 0} ∪ {(1, v) | v < 0} = Σ−
0 ∪ Σ−

1 .

Similarly, we define also Σ+ = {(0, v) | v < 0} ∪ {(1, v) | v > 0} = Σ+
0 ∪ Σ+

1 , which
corresponds to the outgoing velocities and Σ0 = {(0, 0), (1, 0)}. With the notation
g|]0,T [×Σ−

0
= g0, g|]0,T [×Σ−

1
= g1, the boundary condition is written

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈ ]0, T [.

The existence of a weak solution for the Vlasov–Poisson initial-boundary value prob-
lem has been obtained in previous works; in [4] weak solutions of finite total (kinetic
and electric) energy are constructed in dimension d, d ≤ 3, by assuming initial-
boundary conditions of finite kinetic, respectively flux of kinetic, energy:

∫ 1

0

∫
Rv

f0(x, v)|v|2dxdv + sup
0≤t≤T

{∫
v>0

v|v|2g0(t, v)dv −
∫
v<0

v|v|2g1(t, v)dv

}
< +∞,

and |v|λf0 ∈ L∞(]0, 1[×Rv), |v|λg0 ∈ L∞(]0, T [×R
+
v ), |v|λg1 ∈ L∞(]0, T [×R

−
v ) for

some λ > d + 1. The main goal of this paper is to establish the existence and
uniqueness of the mild solution (or solution by characteristics) in one dimension under
a less restrictive hypothesis, say, for initial-boundary conditions of finite charge. As
is usual when studying coupled equations, we search the solutions as fixed points for
some nonlinear application. For the 1D Vlasov–Poisson system this application is
written, for example, as F : BR(XT ) → BR(XT ), where

FE(t, x) =

∫ x

0

ρE(t, y)dy −
∫ 1

0

(1 − y)ρE(t, y)dy − U1(t) + U0(t),

(t, x) ∈ ]0, T [× ]0, 1[,

where ρE(t, x) =
∫

Rv
fE(t, x, v)dv and fE solves the linear Vlasov problem associated

with the field E and BR(XT ) is the ball of radius R of some space XT . Naturally, in
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order to construct solutions by characteristics, which are written as

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v)),

sin(t, x, v) ≤ s ≤ sout(t, x, v),

the space XT to be considered is L∞(]0, T [;W 1,∞(]0, 1[)). Here sin/sout represent
the entry/exit time of the characteristics in the domain ]0, 1[ (see the next section
for exact definitions). Since by construction ∂xFE = ρE (conforming to the Poisson
equation), it is clear that BR(XT ) is preserved by F , provided that the charge density
remains uniformly bounded in L∞(]0, T [× ]0, 1[). Therefore the natural hypotheses
are ∫

Rv

sup
0<x<1

f0(x, v)dv +

∫
v>0

sup
0<t<T

g0(t, v)dv +

∫
v<0

sup
0<t<T

g1(t, v)dv < +∞

and

max{‖f0‖L∞(]0,1[×Rv), ‖g0‖L∞(]0,T [×R
+
v ), ‖g1‖L∞(]0,T [×R

−
v )} < +∞.

We intend to show the existence of a unique fixed point for F by using the iterated
approximations method, which requires us to estimate FA − FB in terms of A − B
for A,B different fields of XT . This can be done by using the mild formulation of
the Vlasov problem. Indeed, by using the continuity equation ∂tρE + ∂xjE = 0, FE
can be represented also in term of the current density. Or estimate

∫ t

0
jA(s, x)ds −∫ t

0
jB(s, x)ds in L∞(]0, 1[) reduces to a duality calculation by taking the product by

L1 functions ϕ:〈∫ t

0

(jA(s, ·) − jB(s, ·))ds, ϕ(·)
〉

=

∫ t

0

∫ 1

0

∫
Rv

(fA(s, x, v) − fB(s, x, v))vϕ(x)dsdxdv

=

∫ t

0

∫
v>0

vg0(τ, v)

∫ XA(s0out)

XB(s0out)

ϕ(u)dudτdv

−
∫ t

0

∫
v<0

vg1(τ, v)

∫ XA(s1out)

XB(s1out)

ϕ(u)dudτdv

+

∫ 1

0

∫
Rv

f0(x, v)

∫ XA(siout)

XB(siout)

ϕ(u)dudxdv,

where s0
out = sout(τ, 0, v), s

i
out = sout(0, x, v), s

1
out = sout(τ, 1, v) represent the exit

times of the characteristics (see the next sections for the exact definitions). Note that
for large velocities the integrand of the left boundary term vanishes since

XA(sout(τ, 0, v)) = XB(sout(τ, 0, v)) = 1.

This suggests the definition of some critical velocities v0(t; τ, 0), v1(t; τ, 0) such that

sout(τ, 0, v)<t, X(sout(τ, 0, v); τ, 0, v) = 0, 0 < v < v0(t; τ, 0),

sout(τ, 0, v)= t, 0 < X(sout(τ, 0, v); τ, 0, v) < 1, v0(t; τ, 0) < v < v1(t; τ, 0),

sout(τ, 0, v)<t, X(sout(τ, 0, v); τ, 0, v) = 1, v > v1(t; τ, 0).
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Similar definitions hold for the right boundary term. One of the key points of our
analysis consists of estimating the relative critical velocity. For nondecreasing fields
with respect to x, we have

|vkA(t; τ, k) − vkB(t; τ, k)| ≤
∫ t

τ

‖A(s) −B(s)‖L∞(]0,1[)ds, k = 0, 1,

and finally one gets

‖FA(t) −FB(t)‖L∞(]0,1[) ≤ C

∫ t

0

‖A(τ) −B(τ)‖L∞(]0,1[)dτ,

where C depends only on the L∞(]0, T [;W 1,∞(]0, 1[)) norms of A,B and the initial-
boundary conditions. We prove the following existence and uniqueness result.

Theorem. Assume that there are n0, h0, h1 : [0,+∞[→ [0,+∞[ bounded non-
increasing functions such that f0(x, v) ≤ n0(|v|) ∀(x, v) ∈ ]0, 1[×Rv, g0(t, v) ≤ h0(v)
∀(t, v) ∈ ]0, T [×R

+
v , g1(t, v) ≤ h1(−v) ∀(t, v) ∈ ]0, T [×R

−
v , and∫

Rv

n0(|v|)dv +

∫
v>0

h0(v)dv +

∫
v<0

h1(−v)dv < +∞,

max{‖n0‖L∞(R+
v ), ‖h0‖L∞(R+

v ), ‖h1‖L∞(R+
v ), ‖U1 − U0‖L∞(]0,T [)} < +∞.

Then there is a unique mild solution for the 1D Vlasov–Poisson initial-boundary value
problem.

The estimate of the relative critical velocity, which is used for the treatment
of the boundary terms, relies on some comparison results for characteristics associ-
ated with nondecreasing fields, presented in section 4. This is why, when studying
the Vlasov–Poisson initial-boundary value problem, we consider only one species of
charged particles. All the definitions concerning the weak/mild formulations for the
Vlasov or Vlasov–Poisson problem are recalled in sections 2 and 3. The main result on
the existence and uniqueness of the mild solution, as well as a continuity result upon
the initial-boundary conditions, is developed in section 5. The same method applies
when studying the free or periodic space problem. Moreover, in this cases there are
no boundary terms and thus the analysis on critical velocities not need to be used.
This time the existence and uniqueness result can be obtained for general electric
fields (not necessarily nondecreasing in space) which allows us to treat systems with
two species of charged particles (globally neutral plasma). Statements and sketches
of proofs can be found in sections 6 and 7.

2. The Vlasov equation. The equation that models the transport of charged
particles is called the Vlasov equation. In one dimension, if the particles move only
under the action of an electric field this equation is written

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ ]0, T [× ]0, 1[×Rv.(2.1)

Here E(t, x) is a given electric field which derives from a potential U(t, x):

E(t, x) = −∂xU, (t, x) ∈ ]0, T [× ]0, 1[.

The initial-boundary conditions for the particle distribution are given by

f(t = 0, x, v) = f0(x, v), (x, v) ∈ ]0, 1[×Rv,(2.2)



160 M. BOSTAN

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈ ]0, T [.(2.3)

Now let us briefly recall the definitions of weak and mild solutions for the Vlasov
problem formed by (2.1), (2.2), and (2.3).

2.1. Weak solutions for the Vlasov–Poisson problem.
Definition 2.1. Assume that E ∈ L∞(]0, T [× ]0, 1[), f0 ∈ L1

loc(]0, 1[×Rv), vg0 ∈
L1
loc(]0, T [×R

+
v ), vg1 ∈ L1

loc(]0, T [×R
−
v ). We say that f ∈ L1

loc (]0, T [× ]0, 1[×Rv) is
a weak solution for the Vlasov problem (2.1), (2.2), (2.3) iff

−
∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)·(∂tϕ + v · ∂xϕ + E(t, x) · ∂vϕ)dtdxdv

=

∫ 1

0

∫
Rv

f0(x, v)ϕ(0, x, v)dxdv +

∫ T

0

∫
v>0

vg0(t, v)ϕ(t, 0, v)dtdv

−
∫ T

0

∫
v<0

vg1(t, v)ϕ(t, 1, v)dtdv

for all test function ϕ ∈ Tw, where

Tw = {ϕ ∈ W 1,∞(]0, T [× ]0, 1[×Rv) | ϕ|]0,T [×Σ+ = ϕ(T, ·, ·) = 0,

∃R : supp(ϕ) ⊂ [0, T ] × [0, 1] ×BR}.

2.2. Mild solutions for the Vlasov problem. We need to consider also some
special solutions of (2.1), (2.2), (2.3), which are called mild solutions or solutions by
characteristics. These solutions require more regularity on the electric field and they
are particular cases of weak solutions. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)),
and for (t, x, v) ∈ {[0, T [× ]0, 1[×Rv} ∪ {]0, T [×Σ−} let us denote by (X(s; t, x, v),
V (s; t, x, v)) the unique solution of the ordinary differential system of equations

(2.4)

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v)), sin ≤ s ≤ sout,

which verify the conditions

X(s = t; t, x, v) = x, V (s = t; t, x, v) = v.

Here sin = sin(t, x, v) (resp., sout = sout(t, x, v)) represents the incoming (resp.,
outgoing) time of the characteristics in the domain ]0, 1[ defined by

sin(t, x, v) = max{0, sup{0 ≤ s ≤ t : X(s; t, x, v) ∈ {0, 1}}},(2.5)

and

sout(t, x, v) = min{T, inf{T ≥ s ≥ t : X(s; t, x, v) ∈ {0, 1}}}.(2.6)

The total travel time through the domain (lifetime) is written τ(t, x, v) = sout(t, x, v)−
sin(t, x, v) ≤ T . Now we replace in Definition 2.1 the function ∂tϕ+v·∂xϕ+E(t, x)·∂vϕ
with ψ, which gives, after integration,

ϕ(t, x, v) = −
∫ sout(t,x,v)

t

ψ(s,X(s; t, x, v), V (s; t, x, v))ds,
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and we define the mild solution as follows.
Definition 2.2. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)), f0 ∈ L1

loc(]0, 1[×Rv),
vg0 ∈ L1

loc(]0, T [×R
+
v ), vg1 ∈ L1

loc(]0, T [×R
−
v ). We say that f ∈ L1

loc(]0, T [× ]0, 1[×Rv)
is a mild solution for the Vlasov problem (2.1), (2.2), (2.3) iff

∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)ψ(t, x, v)dtdxdv

=

∫ 1

0

∫
Rv

f0(x, v)

∫ sout(0,x,v)

0

ψ(s,X(s; 0, x, v), V (s; 0, x, v))dsdxdv

+

∫ T

0

∫
v>0

vg0(t, v)

∫ sout(t,0,v)

t

ψ(s,X(s; t, 0, v), V (s; t, 0, v))dsdtdv

−
∫ T

0

∫
v<0

vg1(t, v)

∫ sout(t,1,v)

t

ψ(s,X(s; t, 1, v), V (s; t, 1, v))dsdtdv,

for all test functions ψ ∈ Tm, where

Tm = {ψ ∈ L∞(]0, T [× ]0, 1[×Rv) | ∃R > 0 : supp(ψ) ⊂ [0, T ] × [0, 1] ×BR}.

In order to simplify the formulas we shall use the following notation:

(X(s), V (s)) = (X(s; t, x, v), V (s; t, x, v)), (X0(s), V 0(s))

= (X(s; t, 0, v), V (s; t, 0, v)),

(X1(s), V 1(s)) = (X(s; t, 1, v), V (s; t, 1, v)), (Xi(s), V i(s))

= (X(s; 0, x, v), V (s; 0, x, v))

and

sin = sin(t, x, v), sout = sout(t, x, v), s0
out = sout(t, 0, v),

s1
out = sout(t, 1, v), siout = sout(0, x, v).

Remark 2.3. It is well known that the mild solution is unique and is given by
f(t, x, v) = gk(sin, V (sin)) if sin(t, x, v) > 0, X(sin(t, x, v); t, x, v) = k, k = 0, 1,
f(t, x, v) = f0(X(sin), V (sin)) if sin(t, x, v) = 0.

Note that every mild solution is also a weak solution. Moreover, the existence of a
weak solution for the Vlasov problem with bounded initial-boundary conditions f0, g0,
g1 ∈ L∞ follows by regularization of the electric field with respect to x by convolution
with ζε(·) = 1

εζ
( ·
ε

)
, ζ ∈ C∞

0 , supp(ζ) = [−1, 1], ζ ≥ 0,
∫

R
ζ(u)du = 1, and by passing

to the limit for ε ↘ 0 in the weak formulation of fε, the mild solution associated with
Eε = E 
 ζε.

3. The Vlasov–Poisson system. The self-consistent electric field solves the
Poisson equation

∂xE = −∂2
xU = ρ(t, x) :=

∫
Rv

f(t, x, v)dv, (t, x) ∈ ]0, T [× ]0, 1[(3.1)

with the boundary conditions

U(t, x = 0) = U0(t), U(t, x = 1) = U1(t), t ∈ ]0, T [.(3.2)
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The system formed by (2.1), (2.2), (2.3), (3.1), (3.2) is called the Vlasov–Poisson initial-
boundary value problem in one dimension. Obviously, the electric field is written

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1 − y)ρ(t, y)dy − U1(t)

+U0(t), (t, x) ∈ ]0, T [× ]0, 1[,(3.3)

and therefore we can give the following definitions.
Definition 3.1. Assume that f0∈L1

loc(]0, 1[×Rv), vg0∈L1
loc(]0, T [×R

+
v ), vg1∈

L1
loc(]0, T [×R

−
v ), U1−U0 ∈ L∞(]0, T [). We say that (f,E) ∈ L1(]0, T [× ]0, 1[×Rv)×

L∞(]0, T [× ]0, 1[) (resp., (f,E) ∈ L1(]0, T [× ]0, 1[×Rv)×L∞(]0, T [;W 1,∞(]0, 1[))) is
a weak (resp., mild ) solution for the Vlasov–Poisson problem iff f is a weak (resp.,
mild ) solution for the Vlasov problem (2.1), (2.2), (2.3) corresponding to the electric
field (3.3) given by the Poisson problem.

4. Characteristics. The main tool of our analysis is the mild formulation of
the Vlasov problem. In order to estimate the charge and current densities, we need
more informations about the characteristics. We present here some properties of the
characteristics associated with regular, nondecreasing with respect to x, fields.

Proposition 4.1. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is nondecreasing
with respect to x and that (X1(s), V1(s)), (X2(s), V2(s)) are two characteristics such
that there is s1 < s2 verifying X1(si) = X2(si), i = 1, 2. Then the characteristics
coincide: (X1(s), V1(s)) = (X2(s), V2(s)) ∀s.

Proof. The conclusion follows easily after multiplication of the equation d2

ds2 (X1(s)
−X2(s)) = E(s,X1(s)) − E(s,X2(s)) by X1(s) −X2(s) and integration by parts on
[s1, s2].

Proposition 4.2. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is nondecreasing
with respect to x. If v1 < v2, then we have

X(s; t, x, v1) < X(s; t, x, v2), V (s; t, x, v1) < V (s; t, x, v2)

∀s ∈]t, sout(t, x, v1)]∩ ]t, sout(t, x, v2)]

and

X(s; t, x, v1) > X(s; t, x, v2), V (s; t, x, v1) < V (s; t, x, v2)

∀s ∈ [sin(t, x, v1), t[∩ [sin(t, x, v2)[.

Proof. Suppose that there is s ∈ [sin(t, x, v1), sout(t, x, v1)] ∩ [sin(t, x, v2),
sout(t, x, v2)], s �= t, such that X(s; t, x, v1) = X(s; t, x, v2). Since X(t; t, x, v1) =
X(t; t, x, v2) = x, by Proposition 4.1 it follows that the characteristics coincide, and
thus v1 = v2, which is in contradiction with the hypothesis. Therefore X(s; t, x, v1)−
X(s; t, x, v2) has constant sign on the intervals [sin(t, x, v1), t[∩ [sin(t, x, v2), t[ and
]t, sout(t, x, v1)]∩ ]t, sout(t, x, v2)]. On the other hand, we have

d

ds
(X(s; t, x, v1) −X(s; t, x, v2))|s=t = v1 − v2 < 0,

and therefore X(s; t, x, v1) − X(s; t, x, v2) is decreasing locally in s = t. We deduce
that

X(s; t, x, v1) > X(s; t, x, v2), s ∈ [sin(t, x, v1), t[∩ [sin(t, x, v2), t[,
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and

X(s; t, x, v1) < X(s; t, x, v2), s ∈ ]t, sout(t, x, v1)]∩ ]t, sout(t, x, v2)].

By using the characteristics equations, one gets

d

ds
(V (s; t, x, v1) − V (s; t, x, v2)) = E(s,X(s; t, x, v1)) − E(s,X(s; t, x, v2)),

and thus V (s; t, x, v1)−V (s; t, x, v2) is nondecreasing on [sin(t, x, v1), t[∩ [sin(t, x, v2), t[
and nonincreasing on ]t, sout(t, x, v1)]∩ ]t, sout(t, x, v2)]. We deduce that

V (s; t, x, v1) − V (s; t, x, v2) ≤ v1 − v2 < 0,

s ∈ [sin(t, x, v1), sout(t, x, v1)] ∩ [sin(t, x, v2), sout(t, x, v2)].

When using the mild formulation of the Vlasov problem it is important to distinguish
the characteristics with respect to the exit point. This justifies the following defini-
tions: for (t, x) ∈ {[0, T [×]0, 1[}∪{]0, T [×{0, 1}} we denote by V0,V1,VT the subsets
of Rv given by

V0(T ; t, x) := {v ∈ Rv : sout(t, x, v) < T, X(sout(t, x, v); t, x, v) = 0},(4.1)

V1(T ; t, x) := {v ∈ Rv : sout(t, x, v) < T, X(sout(t, x, v); t, x, v) = 1},(4.2)

VT (T ; t, x) := {v ∈ Rv : sout(t, x, v) = T, 0 < X(T ; t, x, v) < 1}.(4.3)

Note that when E is bounded there is R large enough such that ]−∞,−R[⊂ V0(T ; t, x)
and ]R,+∞[⊂ V1(T ; t, x), and thus V0(T ; t, x) �= ∅,V1(T ; t, x) �= ∅. By the definition
V0(T ; t, x) ∩ V1(T ; t, x) = ∅ and VT (T ; t, x) ∩ {V0(T ; t, x) ∪ V1(T ; t, x)} = ∅.

Proposition 4.3. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is nondecreasing
with respect to x. Then we have that

(1) if v2 ∈ V0(T ; t, x), then v1 ∈ V0(T ; t, x) ∀v1 < v2;
(2) if v1 ∈ V1(T ; t, x), then v2 ∈ V1(T ; t, x) ∀v2 > v1;
(3) if v1 ∈ V0(T ; t, x), v2 ∈ V1(T ; t, x), then v1 < v2.
Proof. (1) Suppose that sout(t, x, v1) ≥ sout(t, x, v2). By Proposition 4.2 we

deduce that

X(s; t, x, v1) < X(s; t, x, v2) ∀s ∈ ]t, sout(t, x, v1)]∩ ]t, sout(t, x, v2)] =]t, sout(t, x, v2)].

In particular, for s = sout(t, x, v2) we find that

0 ≤ X(sout(t, x, v2); t, x, v1) < X(sout(t, x, v2); t, x, v2) = 0,

which is not possible. Finally, we have sout(t, x, v1) < sout(t, x, v2) < T and

X(sout(t, x, v1); t, x, v1) < X(sout(t, x, v1); t, x, v2) < 1.

We deduce that X(sout(t, x, v1); t, x, v1) = 0 or v1 ∈ V0(T ; t, x).
(2) Similarly, if v1 ∈V1(T ; t, x) and v1 <v2 we have sout(t, x, v2)<sout(t, x, v1)<T

(otherwise 1 =X(sout(t, x, v1); t, x, v1)<X(sout(t, x, v1); t, x, v2)) and 0<X(sout(t, x,
v2); t, x, v1)<X(sout(t, x, v2); t, x, v2). We deduce that X(sout(t, x, v2); t, x, v2) = 1
and v2 ∈ V1(T ; t, x).

(3) Suppose that v1 ≥ v2. Since v1 ∈ V0(T ; t, x), by (1) it follows that v2 ∈
V0(T ; t, x) ∩ V1(T ; t, x) = ∅. Therefore we have v1 < v2.

We introduce the critical velocities v0(T ; t, x), v1(T ; t, x) given by

v0(T ; t, x) := supV0(T ; t, x), v1(T ; t, x) := inf V1(T ; t, x).(4.4)

Obviously, we have −∞ < v0(T ; t, x) ≤ v1(T ; t, x) < +∞.
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Proposition 4.4. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is nondecreasing
with respect to x. We have

(1) ] −∞, v0(T ; t, x)[⊂ V0(T ; t, x) ⊂ ] −∞, v0(T ; t, x)];
(2) ]v1(T ; t, x),+∞[⊂ V1(T ; t, x) ⊂ [v1(T ; t, x),+∞[;
(3) ]v0(T ; t, x), v1(T ; t, x)[⊂ VT (T ; t, x) ⊂ [v0(T ; t, x), v1(T ; t, x)].
Proof. From Proposition 4.3 and the definitions of v0, v1 we deduce (1) and

(2). On the other hand, VT (T ; t, x) ⊂ Rv − {V0(T ; t, x) ∪ V1(T ; t, x)} ⊂ Rv −
{] − ∞, v0(T ; t;x)[∪ ]v1(T ; t, x),+∞[} = [v0(T ; t, x), v1(T ; t, x)]. Let us prove that
]v0, v1[⊂ VT . Consider v0 < v < v1 if v0 < v1. Suppose that sout(t, x, v) < T with
X(sout(t, x, v); t, x, v) = 0 or v ∈ V0(T ; t, x). By Proposition 4.3 we deduce that
ṽ ∈ V0(T ; t, x) ∀v0 < ṽ < v, which is in contradiction with ṽ > v0 = supV0(T ; t, x).
The same arguments apply for sout(t, x, v) < T,X(sout(t, x, v); t, x, v) = 1 by tak-
ing v < ṽ < v1. We have that sout(t, x, v) = T ∀v0 < v < v1. Suppose now
that X(T ; t, x, v) = 0. If we take v0 < ṽ < v, we deduce that sout(t, x, ṽ) = T
and by Proposition 4.2 we find that 0 ≤ X(T ; t, x, ṽ) < X(T ; t, x, v) = 0. Simi-
larly, we can show that X(T ; t, x, v) = 1 is not possible. Finally, we deduce that
X(T ; t, x, v) ∈ ]0, 1[∀v0 < v < v1, and thus ]v0, v1[⊂ VT .

Let us consider two fields A,B. In order to prove the uniqueness of the mild
solution for the Vlasov–Poisson problem, it will be useful to estimate the change of
critical velocity |vkA − vkB |, k = 0, 1, with respect to the relative field A− B. For this
we need to introduce the notion of sub-/supercharacteristics as follows.

Definition 4.5. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is nondecreasing
with respect to x. We say that (X(s), V (s)) is a subcharacteristic (resp., supercharac-
teristic) iff X is twice differentiable with respect to s and

dX

ds
= V (s),

dV

ds
≤ E(s,X(s)), sin ≤ s ≤ sout

(
resp.,

dX

ds
= V (s),

dV

ds
≥ E(s,X(s)), sin ≤ s ≤ sout

)

with the same definitions for sin, sout as before.
We have the following comparison result.
Proposition 4.6 (forward comparison). Assume that E ∈ L∞(]0, T [;W 1,∞

(]0, 1[)) is nondecreasing with respect to x. Consider (X(s), V (s)), (X(s), V (s)) to be
a subcharacteristic, resp., a supercharacteristic, such that X(t) ≤ X(t), V (t) ≤ V (t).
Then we have

X(s) ≤ X(s) V (s) ≤ V (s) ∀s ∈ [t, sout] ∩ [t, sout].

Proof. We can extend the field E to ]0, T [×Rx by Ẽ(t, x) = E(t, 0), x < 0, and
Ẽ(t, x) = E(t, 1), x > 1. We have ‖Ẽ‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ ‖E‖L∞(]0,T [;W 1,∞(]0,1[))

and Ẽ is nondecreasing with respect to x. Consider (x, v) ∈ Rx×Rv such that X(t) ≤
x ≤ X(t), V (t) ≤ v ≤ V (t). Denote by (X(s; t, x, v), V (s; t, x, v)) the characteristic
associated with the field Ẽ,

dX

ds
= V (s),

dV

ds
= Ẽ(s,X(s)),

with the conditions X(s= t; t, x, v) =x, V (s= t; t, x, v) = v. We show that X(s) ≤
X(s) ≤ X(s), V (s) ≤ V (s) ≤ V (s) ∀s ∈ [t, sout] ∩ [t, sout]. For this we can use the
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iterated approximations method. For example, in order to prove that X ≤ X,V ≤ V
we consider as first approximation X0 = X,V 0 = V and we define Xn+1(s) =
x +

∫ s

t
V n(τ)dτ , V n+1(s) = v +

∫ s

t
Ẽ(τ,Xn(τ))dτ ∀s ∈ [t, sout] ∀n ≥ 0. We check

easily that Xn(s) ≥ X(s), V n(s) ≥ V (s) ∀s ∈ [t, sout] and by passing to the limit
for n → +∞ we find that X(s) ≥ X(s), V (s) ≥ V (s) ∀s ∈ [t, sout]. In the same
way, by taking as initial approximation (X0, V 0) = (X,V ) we prove that X(s) ≤
X(s), V (s) ≤ V (s)∀s ∈ [t, sout]. Finally, we have

X(s) ≤ X(s) ≤ X(s), V (s) ≤ V (s) ≤ V (s) ∀s ∈ [t, sout] ∩ [t, sout].

Remark 4.7. In fact, since 0 ≤ X(s), X(s) ≤ 1 ∀ t ≤ s ≤ min{sout, sout} it follows
that 0 ≤ X(s) ≤ 1 ∀ t ≤ s ≤ min{sout, sout}, and therefore (X,V ) coincide with the
characteristic associated with the field E. Moreover, sout(t, x, v) ≥ min{sout, sout}.

Now we are ready to prove a result of continuous dependence of the critical
velocities with respect to the electric field. We have the following lemma.

Lemma 4.8 (critical velocity change). Assume that A,B ∈ L∞(]0, T [;W 1,∞

(]0, 1[)) are nondecreasing with respect to x. Then ∀(t, x) ∈ [0, T [× [0, 1] we have the
following inequality:

|vkA(T ; t, x) − vkB(T ; t, x)| ≤
∫ T

t

‖A(s) −B(s)‖L∞(]0,1[)ds, k = 0, 1.(4.5)

Proof. Denote m = ‖A − B‖L1(]t,T [;L∞(]0,1[)). Let us prove, for example, that
|v0

A − v0
B | ≤ m. Suppose that v0

A − v0
B > m. Therefore there is v > v0

B such that ṽ =
v+m < v0

A, and thus we deduce from Proposition 4.4 that XB(sBout(t, x, v); t, x, v) > 0,
XA(sAout(t, x, ṽ); t, x, ṽ) = 0, sAout(t, x, ṽ) < T . Consider the solution (XC , VC) of the
following system of ordinary differential equations:

dXC

ds
= VC(s),

dVC

ds
= B(s,XA(s)), t ≤ s ≤ sCout(t, x, v),

with the conditions XC(t) = x, VC(t) = v. With the notation

(XA(s), VA(s)) = (XA(s; t, x, ṽ), VA(s; t, x, ṽ)), t ≤ s ≤ sAout(t, x, ṽ),

and

(XB(s), VB(s)) = (XB(s; t, x, v), VB(s; t, x, v)), t ≤ s ≤ sBout(t, x, v),

we have also

dXA

ds
= VA(s),

dVA

ds
= A(s,XA(s)), t ≤ s ≤ sAout(t, x, ṽ),

with XA(t) = x, VA(t) = ṽ, and

dXB

ds
= VB(s),

dVB

ds
= B(s,XB(s)), t ≤ s ≤ sBout(t, x, v),

with XB(t) = x, VB(t) = v. We deduce that

d

ds
(XA −XC) = VA(s) − VC(s),

d

ds
(VA − VC)

= (A−B)(s,XA(s)), t ≤ s ≤ min{sAout, sCout},
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and XA(t) −XC(t) = 0, VA(t) − VC(t) = ṽ − v = m. We have

|VA(s) − VC(s) − VA(t) + VC(t)| ≤
∫ s

t

‖A(τ) −B(τ)‖L∞(]0,1[)dτ

≤ m, t ≤ s ≤ min{sAout, sCout},

and thus VA(s)−VC(s) ≥ VA(t)−VC(t)−m = 0, t ≤ s ≤ min{sAout, sCout}. Moreover,
since XA(t) = XC(t) = x, it follows that XA(s) ≥ XC(s), t ≤ s ≤ min{sAout, sCout}. If
we suppose that sAout < sCout, we deduce that XC(sAout; t, x, v) ≤ XA(sAout; t, x, ṽ) = 0,
and thus we have sCout ≤ sAout, which is in contradiction with the previous supposition.
Therefore we have sCout ≤ sAout < T . In particular, XC(sCout; t, x, v) ∈ {0, 1} and
XC(sCout; t, x, v) ≤ XA(sCout; t, x, ṽ). Note also that XA(sCout; t, x, ṽ) = 1 implies that
sAout ≤ sCout, and thus it follows that sAout = sCout < T , which is not possible because
XA(sAout; t, x, ṽ) = 0 and XA(sCout; t, x, ṽ) = 1. We obtain that XC(sCout; t, x, v) ≤
XA(sCout; t, x, ṽ) < 1 and we deduce that XC(sCout; t, x, v) = 0. On the other hand,

d2

ds2
XC = B(s,XA(s)) ≥ B(s,XC(s)), t ≤ s ≤ sCout,

and

d2

ds2
XB = B(s,XB(s)), t ≤ s ≤ sBout.

Note that XC(t) = XB(t) = x and VC(t) = VB(t) = v. Thus by applying the forward
comparison (see Proposition 4.6) we deduce that XC(s) ≥ XB(s), VC(s) ≥ VB(s), t ≤
s ≤ min{sBout, sCout}. If we suppose that sCout < sBout, we deduce that

0 = XC(sCout; t, x, v) ≥ XB(sCout; t, x, v),

and thus we have sBout ≤ sCout, which is in contradiction with the previous supposition.
Therefore we have sBout ≤ sCout ≤ sAout < T and

XB(s) ≤ XC(s) ≤ XA(s), VB(s) ≤ VC(s) ≤ VA(s), t ≤ s ≤ sBout.

Since v > v0
B and sBout < T we have XB(sBout; t, x, v) = 1. Now, by taking s = sBout in

the previous inequality we obtain

1 = XB(sBout; t, x, v) ≤ XA(sBout; t, x, ṽ),

which implies that XA(sBout; t, x, ṽ) = 1 and sAout ≤ sBout or sAout = sBout. As before we
obtain a contradiction because XA(sAout; t, x, ṽ) = 0 and XA(sBout; t, x, ṽ) = 1. Finally,
we have proved that the supposition v0

A − v0
B > m is false and thus v0

A − v0
B ≤ m.

By changing A to B we obtain also that v0
B − v0

A ≤ m or |v0
A − v0

B | ≤ m. The same
arguments apply for the critical velocities v1

A, v
1
B .

We end this section with some usual calculations concerning the continuity of the
characteristics with respect to the field.

Proposition 4.9. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) and consider
(t, x, v) ∈ {[0, T [×]0, 1[×Rv} ∪ {]0, T [×Σ−}. Then for s ∈ [sAin(t, x, v), sAout(t, x, v)] ∩
[sBin(t, x, v), sBout(t, x, v)] we have

|XA(s; t, x, v) −XB(s; t, x, v)| + |VA(s; t, x, v) − VB(s; t, x, v)|

≤
∣∣∣∣
∫ s

t

‖A(τ) −B(τ)‖L∞(]0,1[)dτ

∣∣∣∣ · exp

(∣∣∣∣
∫ s

t

(1 + ‖∂xB(τ)‖L∞(]0,1[))dτ

∣∣∣∣
)
.
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5. Existence and uniqueness of the mild solution. In this section we
intend to prove the existence and the uniqueness of the mild solution for the Vlasov–
Poisson initial-boundary value problem in one dimension by using the iterated
approximations method. We consider the application F defined for a regular elec-
tric field E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) as follows:

E → fE → ρE =

∫
Rv

fE(t, x, v)dv → E1 = F(E),(5.1)

where fE is the mild solution of the Vlasov problem associated with the field E
and E1 is the Poisson electric field corresponding to the charge density ρE . Before
analyzing the application F let us introduce some notation. If u : [0,+∞[→ [0,+∞[
is a bounded nonincreasing real function and R > 0, we denote by uR : [−R,+∞[→
[0,+∞[ the function given by uR(t) = u(0) if −R ≤ t ≤ R and uR(t) = u(t − R) if
t > R. If we assume that u belongs to L1(R+), and therefore,

‖uR‖L1(−R,+∞) = 2R‖u‖L∞(R+) + ‖u‖L1(R+).

5.1. Estimate of FE. We assume that the initial-boundary conditions verify
the following hypothesis denoted by (H): there are n0, h0, h1 : [0,+∞[→ [0,+∞[
bounded, nonincreasing functions such that

f0(x, v)≤ n0(|v|), (x, v) ∈ ]0, 1[×Rv,

(H) g0(t, v)≤ h0(v), (t, v) ∈ ]0, T [×R
+
v ,

g1(t, v)≤ h1(−v), (t, v) ∈ ]0, T [×R
−
v ,

and

(H0) M0 :=

∫
Rv

n0(|v|)dv +

∫
v>0

h0(v)dv +

∫
v<0

h1(−v)dv < +∞,

(H∞) M∞ := max{‖n0‖L∞(R+
v ), ‖h0‖L∞(R+

v ), ‖h1‖L∞(R+
v )} < +∞.

Under the previous hypothesis we can prove the following proposition.
Proposition 5.1. Assume that f0, g0, g1 satisfy the hypotheses (H), (H0), (H∞)

and U0 − U1 ∈ L∞(]0, T [). Then for every E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) we have
fE ∈ L∞(]0, T [;L1(]0, 1[×Rv)), ρE ∈ L∞(]0, T [;L1(]0, 1[))∩L∞(]0, T [× ]0, 1[),FE ∈
L∞(]0, T [;W 1,∞(]0, 1[)). Moreover, the following estimates hold:

‖fE‖L∞(]0,t[;L1(]0,1[×Rv)) = ‖ρE‖L∞(]0,t[;L1(]0,1[))

≤ 6 ·M∞

∫ t

0

‖E(τ)‖L∞(]0,1[)dτ + M0,

‖ρE‖L∞(]0,t[×]0,1[) = ‖∂xFE‖L∞(]0,t[×]0,1[)

≤ 6 ·M∞

∫ t

0

‖E(τ)‖L∞(]0,1[)dτ + M0,

‖FE‖L∞(]0,t[;W 1,∞(]0,1[)) ≤ 12 ·M∞

∫ t

0

‖E(s)‖L∞(]0,1[)ds

+ 2M0 + ‖U0 − U1‖L∞(]0,t[),

lim
R1→+∞

∫
|v|>R1

fE(t, x, v)dv = 0 uniformly with respect to (t, x) ∈ ]0, T [× ]0, 1[,
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and the mild formulation of the Vlasov problem holds for test functions ψ ∈ L∞

(]0, T [× ]0, 1[×Rv).
Proof. By Remark 2.3 we have

ρE(t, x) =

∫
Rv

fE(t, x, v)dv =

∫
Rv

f0(X(0; t, x, v), V (0; t, x, v))1{sin(t,x,v)=0}dv

+
1∑

k=0

∫
Rv

gk(sin(t, x, v), V (sin(t, x, v); t, x, v))1{sin(t,x,v)>0}

×1{X(sin(t,x,v);t,x,v)=k}dv

= Ii + I0 + I1.

Let us estimate the first integral Ii. For this, we consider R =
∫ t

0
‖E(τ)‖L∞(]0,1[)dτ

and remark that |V (0; t, x, v)| ≥ |v| − R, which implies that n0(|V (0; t, x, v)|) ≤
nR

0 (|v|). By using the hypothesis (H), we find

Ii≤
∫

Rv

n0(|V (0; t, x, v)|)1{sin(t,x,v)=0}dv

≤
∫

Rv

nR
0 (|v|)dv = 2R‖n0‖L∞(R+

v ) + 2 · ‖n0‖L1(R+
v ).

In the same way, by writing v ≥ V (sin(t, x, v); t, x, v) −R ≥ −R when X(sin(t, x, v);
t, x, v) = 0 and v ≤ V (sin(t, x, v); t, x, v)+R ≤ R when X(sin(t, x, v); t, x, v) = 1, one
gets

I0 + I1≤
∫
v>−R

hR
0 (v)dv +

∫
v<R

hR
1 (−v)dv

≤ 2 ·R · (‖h0‖L∞(R+
v ) + ‖h1‖L∞(R+

v )) + ‖h0‖L1(R+
v ) + ‖h1‖L1(R+

v ).

Finally, we deduce that

ρE(t, x) ≤ 6 ·M∞

∫ t

0

‖E(τ)‖L∞(]0,1[)dτ + M0, (t, x) ∈ ]0, T [× ]0, 1[,

and therefore

|FE(t, x)| =

∣∣∣∣
∫ x

0

ρE(t, y)dy −
∫ 1

0

(1 − y)ρE(t, y)dy − U1(t) + U0(t)

∣∣∣∣
≤ ‖ρE‖L∞(]0,t[;L1(]0,1[)) + ‖U0 − U1‖L∞]0,t[.

We remark that in order to estimate the charge outside a ball of radius R1, we can
write, for example,

Ii
R1

=

∫
|v|>R1

f0(X(0; t, x, v), V (0; t, x, v))1{sin(t,x,v)=0}dv

≤
∫
|v|>R1

nR
0 (|v|)dv =

∫
|v|>R1−R

n0(|v|)dv

for R1 > R. Finally, one gets that∫
|v|>R1

fE(t, x, v)dv ≤
∫
|v|>R1−R

n0(|v|)dv +

∫
v>R1−R

h0(v)dv +

∫
v<−R1+R

h1(−v)dv → 0
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as R1 → +∞ uniformly with respect to (t, x) ∈ ]0, T [× ]0, 1[. Consider now ψ ∈
L∞(]0, T [× ]0, 1[×Rv) and ψR1 = χR1(v)ψ(t, x, v), where χR1(·) = χ(·/R1) and χ ∈
C1

c (R), χ(u) = 1, |u| ≤ 1, χ(u) = 0, |u| ≥ 2, 0 ≤ χ(u) ≤ 1, 1 ≤ |u| ≤ 2. Obviously,
ψR1 ∈ Tm, and thus

∫ T

0

∫ 1

0

∫
Rv

fE(t, x, v)ψR1(t, x, v)dtdxdv

=

∫ 1

0

∫
Rv

f0(x, v)

∫ sout(0,x,v)

0

ψR1
(s,X(s; 0, x, v), V (s; 0, x, v))dsdxdv

+

∫ T

0

∫
v>0

vg0(t, v)

∫ sout(t,0,v)

t

ψR1
(s,X(s; t, 0, v), V (s; t, 0, v))dsdtdv

−
∫ T

0

∫
v<0

vg1(t, v)

∫ sout(t,1,v)

t

ψR1(s,X(s; t, 1, v), V (s; t, 1, v))dsdtdv.

We have∣∣∣∣∣
∫ T

0

∫ 1

0

∫
Rv

fEψR1
dtdxdv −

∫ T

0

∫ 1

0

∫
Rv

fEψdtdxdv

∣∣∣∣∣≤
∫ T

0

∫ 1

0

∫
Rv

fE(1 − χR1
(v))|ψ|dtdxdv

≤ ‖ψ‖L∞

∫ T

0

∫ 1

0

∫
|v|>R1

fEdtdxdv → 0

as R1 → +∞.

In order to apply the dominated convergence theorem of Lebesgue, observe that

|f0(x, v)

∫ siout

0

ψR1
(s,Xi(s), V i(s))ds| ≤ f0(x, v)‖ψ‖L∞T ∈ L1(]0, 1[×Rv).

Note also that for R = ‖E‖L1(]0,T [;L∞(]0,1[)) we have

|vg0(t, v)

∫ s0out

t

ψR1(s,X
0(s), V 0(s))ds| ≤ 2Rg0(t, v)T‖ψ‖L∞1{0<v≤2R}

+ vg0(t, v)‖ψ‖L∞
1

v −R
1{v>2R}

≤2RT‖ψ‖L∞g0(t, v)1{0<v≤2R}

+ 2‖ψ‖L∞g0(t, v)1{v>2R}∈L1(]0, T [×R
+
v )

since V 0(s) ≥ v − R and s0
out − t ≤ 1

v−R for v > R. The same arguments apply for
the right boundary term. Finally, by passing R1 → +∞ we deduce that the mild
formulation holds for every ψ ∈ L∞(]0, T [× ]0, 1[×Rv).

Remark 5.2. Consider x(t) = (M0 + ‖U0 − U1‖L∞(]0,T [)) exp(6 ·M∞t) and

XT = {E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) | ‖E‖L∞(]0,t[×]0,1[) ≤ x(t)∀ 0 ≤ t ≤ T}.

Then FXT ⊂ XT and

‖FE‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ 2 · x(T ) − ‖U0 − U1‖L∞(]0,T [).
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5.2. Estimate of FA − FB. The aim of this section is to estimate the L∞

norm of FA − FB with respect to the L∞ norm of A − B. First, we perform our
computations by introducing the current density jE(t, x) :=

∫
Rv

vfE(t, x, v)dv. This
requires an additional hypothesis on the initial-boundary conditions. For the moment
we assume also that

(H1) M1 :=

∫
Rv

n0(|v|)|v|dv +

∫
v>0

h0(v)vdv −
∫
v<0

h1(−v)vdv < +∞.

Later on we shall see that this hypothesis can be removed.

Proposition 5.3. Assume that f0, g0, g1 satisfy (H), (H1), (H∞) and U0 −
U1 ∈ L∞(]0, T [). Then for every E ∈ L∞(]0, T [;W 1,∞(]0, 1[))fE |v| ∈ L∞(]0, T [;L1

(]0, 1[×Rv)), |jE |(t, x) :=
∫

Rv
fE(t, x, v)|v|dv ∈L∞(]0, T [;L1(]0, 1[))∩L∞(]0, T [× ]0, 1[),

FE + U1 − U0 ∈ W 1,∞(]0, T [× ]0, 1[). Moreover, the following estimates hold:

max{‖ |jE | ‖L∞(]0,T [;L1(]0,1[)), ‖|jE | ‖L∞(]0,T [× ]0,1[)} ≤ 3 ·M∞

(∫ t

0

‖E(s)‖L∞(]0,1[)ds

)2

+M0

∫ t

0

‖E(s)‖L∞(]0,1[)ds+M1,

∂t{FE + U1 − U0} = −jE(t, x) +

∫ 1

0

jE(t, y)dy, (t, x) ∈ ]0, T [× ]0, 1[,

lim
R1→+∞

∫
|v|>R1

|v|fE(t, x, v)dv = 0 uniformly with respect to (t, x) ∈ ]0, T [× ]0, 1[,

and the mild formulation of the Vlasov problem holds for every function ψ such that
|ψ(t, x, v)| ≤ C(1 + |v|).

Proof. Exactly as before, we have

|jE |(t, x) =

∫
Rv

|v|fE(t, x, v)dv =

∫
Rv

|v|f0(X(0; t, x, v), V (0; t, x, v))1{sin(t,x,v)=0}

+

1∑
k=0

∫
Rv

|v|gk(sin(t, x, v), V (sin(t, x, v); t, x, v))1{sin(t,x,v)>0}

×1{X(sin(t,x,v);t,x,v)=k}dv

= J i + J 0 + J 1.

Consider R =
∫ t

0
‖E(s)‖L∞(]0,1[)ds and thus |V (0; t, x, v)| ≥ |v| − R, which implies

that

J i ≤
∫

Rv

|v|nR
0 (|v|)dv = R2n0(0) +

∫
Rv

|v|n0(|v|)dv + R

∫
Rv

n0(|v|)dv.

The terms J k, k ∈ {0, 1} can be estimated in the same manner and, finally, one gets

|jE |(t, x) ≤ 3 ·R2M∞ + RM0 + M1, (t, x) ∈ ]0, T [× ]0, 1[.

By performing the same computations on Rv−BR1
, we get that limR1→+∞

∫
|v|>R1

|v|fE
dv = 0 uniformly with respect to (t, x) ∈ ]0, T [× ]0, 1[. In order to check that the mild
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formulation holds ∀ψ such that |ψ(t, x, v)| ≤ C(1+|v|), consider ψR1
= χR1

(v)ψ ∈ Tm.
This time we have∣∣∣∣∣
∫ T

0

∫ 1

0

∫
Rv

fEψR1
dtdxdv −

∫ T

0

∫ 1

0

∫
Rv

fEψdtdxdv

∣∣∣∣∣≤
∫ T

0

∫ 1

0

∫
Rv

fE(1 − χR1
(v))|ψ(t, x, v)|dtdxdv

≤
∫ T

0

∫ 1

0

∫
|v|>R1

fE · C(1 + |v|)dtdxdv → 0,

as R1 → +∞.

In order to pass to the limit in the other terms of the mild formulation for the test
function ψR1

, take R = ‖E‖L1(]0,T [;L∞(]0,1[)) and note that∣∣∣∣∣f0(x, v)

∫ siout

0

ψR1
(s,Xi(s), V i(s))ds

∣∣∣∣∣ ≤ f0(x, v) · T · C(1 + |v| + R) ∈ L1(]0, 1[×Rv),

∣∣∣∣∣vgk(t, v)
∫ skout

t

ψR1(s,X
k(s), V k(s))ds

∣∣∣∣∣ ≤ 2Rgk(t, v) · T · C(1 + |v| + R)1{|v|≤2R}

+ |v|gk(t, v)
C(1 + |v| + R)

|v| −R
1{|v|>2R}

≤ 2R · T · C · gk(t, v)(1 + |v| + R)1{|v|≤2R}

+C

(
3 +

1

R

)
|v|gk(t, v)1{|v|>2R}

∈ L1(]0, T [×R
±
v ).

By passing to the limit in the mild formulation for R1 → +∞ and using the dominated
convergence theorem, our conclusion follows. Let us compute now the time derivative
of FE + U1 − U0. First of all, by using the mild formulation with the test function
ψ(t, x, v) = ∂tϕ + v∂xϕ, ϕ ∈ C1

c (]0, T [× ]0, 1[) (note that |ψ(t, x, v)| ≤ C(1 + |v|))
we deduce the continuity equation ∂tρE + ∂xjE = 0 in D′(]0, T [×]0, 1[). By direct
computation, the continuity equation implies that

∂t{FE + U1 − U0} = −jE(t, x) +

∫ 1

0

jE(t, y)dy ∈ L∞(]0, T [× ]0, 1[).

Obviously ∂x{FE + U1 − U0} = ρE ∈ L∞(]0, T [× ]0, 1[) and thus we obtain that
FE + U1 − U0 ∈ W 1,∞(]0, T [× ]0, 1[).

Remark 5.4. We have

FE(t, x) + U1(t) − U0(t) = −
∫ t

0

jE(s, x)ds +

∫ t

0

∫ 1

0

jE(s, y)dsdy + FE(0, x)

+U1(0) − U0(0)

= −
∫ t

0

jE(s, x)ds +

∫ t

0

∫ 1

0

jE(s, y)dsdy

+

∫ x

0

∫
Rv

f0(y, v)dydv −
∫ 1

0

∫
Rv

(1 − y)f0(y, v)dydv.

By using the formula given above we can estimate FA− FB. This will be done
in the following two propositions. One of the key points is the critical velocity change
result (see Lemma 4.8).
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Proposition 5.5. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are nondecreas-
ing with respect to x and the hypotheses (H), (H1), (H∞) hold. Then for 0 ≤ t ≤ T
we have∥∥∥∥

∫ t

0

jA(s, ·)ds−
∫ t

0

jB(s, ·)ds
∥∥∥∥
L∞(]0,1[)

≤ C ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds,

where C is a constant depending only on ‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),
T and the initial-boundary conditions.

Proof. Consider ϕ ∈ L1(]0, 1[) bounded and let us estimate
∫ 1

0

∫ t

0
(jA(s, x) −

jB(s, x))ϕ(x)dxds. By applying the mild formulation with ψ(t, x, v) = ϕ(x)v (which
is possible since |ψ(t, x, v)| ≤ ‖ϕ‖L∞ |v|) we have∫ 1

0

∫ t

0

(jA(s, x) − jB(s, x))ϕ(x)dxds

=

∫ t

0

∫ 1

0

∫
Rv

(fA(s, x, v) − fB(s, x, v))vϕ(x)dsdxdv

=

∫ 1

0

∫
Rv

f0(x, v)

[∫ siA

0

V i
A(τ)ϕ(Xi

A(τ))dτ −
∫ siB

0

V i
B(τ)ϕ(Xi

B(τ))dτ

]
dxdv

+

∫ t

0

∫
v>0

vg0(s, v)

[∫ s0A

s

V 0
A(τ)ϕ(X0

A(τ))dτ −
∫ s0B

s

V 0
B(τ)ϕ(X0

B(τ))dτ

]
dsdv

−
∫ t

0

∫
v<0

vg1(s, v)

[∫ s1A

s

V 1
A(τ)ϕ(X1

A(τ))dτ −
∫ s1B

s

V 1
B(τ)ϕ(X1

B(τ))dτ

]
dsdv

=

∫ 1

0

∫
Rv

f0(x, v)

[∫ Xi
A(siA)

x

ϕ(u)du−
∫ Xi

B(siB)

x

ϕ(u)du

]
dxdv

+

∫ t

0

∫
v>0

vg0(s, v)

[∫ X0
A(s0A)

0

ϕ(u)du−
∫ X0

B(s0B)

0

ϕ(u)du

]
dsdv

−
∫ t

0

∫
v<0

vg1(s, v)

[∫ X1
A(s1A)

1

ϕ(u)du−
∫ X1

B(s1B)

1

ϕ(u)du

]
dsdv

= Ii
AB + I0

AB + I1
AB .

We introduce the notation Φi
C =

∫Xi
C(siC)

x
ϕ(u)du, Φk

C =
∫Xk

C(skC)

k
ϕ(u)du, k ∈ {0, 1},

C ∈ {A,B}. Here siC , s
k
C represent the exit times associated with the domain ]0, t[×

]0, 1[×Rv, with k ∈ {0, 1}, C ∈ {A,B}. The term Ii
AB is written

Ii
AB =

∫ 1

0

∫
Rv

f0(x, v)[Φ
i
A1{v<v0

A} − Φi
B1{v<v0

B}]dxdv

+

∫ 1

0

∫
Rv

f0(x, v)[Φ
i
A1{v0

A<v<v1
A} − Φi

B1{v0
B<v<v1

B}]dxdv

+

∫ 1

0

∫
Rv

f0(x, v)[Φ
i
A1{v>v1

A} − Φi
B1{v>v1

B}]dxdv

= Ii
0 + Ii

t + Ii
1,
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where vkC = vkC(t; 0, x) are the critical velocities corresponding to the domain
]0, t[× ]0, 1[, the point (0, x), and the field C, with k = 0, 1, C = A,B. The first
and third integrals are easy to estimate since for v < v0

A we have Xi
A(siA) = 0 and

thus Φi
A =

∫ 0

x
ϕ(u)du; for v > v1

A we have Xi
A(siA) = 1 and Φi

A =
∫ 1

x
ϕ(u)du. By using

the critical velocity change, we obtain

|Ii
0|≤ ‖ϕ‖L1(]0,1[)‖f0‖L∞(]0,T [× ]0,1[×Rv)

∫ 1

0

|v0
A(t; 0, x) − v0

B(t; 0, x)|dx

≤ ‖ϕ‖L1(]0,1[)‖f0‖L∞(]0,T [× ]0,1[×Rv)

∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds

and also

|Ii
1| ≤ ‖ϕ‖L1(]0,1[)‖f0‖L∞(]0,T [× ]0,1[×Rv)

∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds.

Let us estimate now the second integral Ii
t . We remark that when v0

A < v < v1
A we

have sAout(0, x, v) = t and thus Φi
A =

∫XA(t)

x
ϕ(u)du. Similarly, Φi

B =
∫XB(t)

x
ϕ(u)du

when v0
B < v < v1

B . We can write

|Ii
t |≤

∣∣∣∣
∫ 1

0

∫
Rv

f0(x, v)Φ
i
A1{v0

A<v<max{v0
A,v0

B}}dxdv

∣∣∣∣
+

∣∣∣∣
∫ 1

0

∫
Rv

f0(x, v)Φ
i
A1{min{v1

A,v1
B}<v<v1

A}dxdv

∣∣∣∣
+

∣∣∣∣
∫ 1

0

∫
Rv

f0(x, v)Φ
i
B1{v0

B<v<max{v0
A,v0

B}}dxdv

∣∣∣∣
+

∣∣∣∣
∫ 1

0

∫
Rv

f0(x, v)Φ
i
B1{min{v1

A,v1
B}<v<v1

B}dxdv

∣∣∣∣
+

∣∣∣∣
∫ 1

0

∫
Rv

f0(x, v)(Φ
i
A − Φi

B)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dxdv

∣∣∣∣ .
By using Lemma 4.8 we deduce

max{|v0
A − max{v0

A, v
0
B}|, |v0

B − max{v0
A, v

0
B}|} ≤

∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds

and

max{|v1
A − min{v1

A, v
1
B}|, |v1

B − min{v1
A, v

1
B}|} ≤

∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds.

The first four terms can be estimated by 4·‖ϕ‖L1‖f0‖L∞
∫ t

0
‖A(s)−B(s)‖L∞ds. When

max{v0
A, v

0
B} < v < min{v1

A, v
1
B} we have

|Φi
A − Φi

B |=
∣∣∣∣∣
∫ XA(t)

XB(t)

ϕ(u)du

∣∣∣∣∣
≤

∫ 1

0

|ϕ(u)|1{|u−XA(t)|≤|XA(t)−XB(t)|}du.
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Therefore, by using Proposition 4.9, we write the last term of Ii
t as

|I5|=
∣∣∣∣
∫ 1

0

∫
Rv

f0(x, v)(Φ
i
A − Φi

B)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dxdv

∣∣∣∣
≤

∫ 1

0

|ϕ(u)|
∫ 1

0

∫
Rv

f0(x, v)1{v0
A<v<v1

A}1{|u−XA(t)|≤C
∫ t
0
‖A(s)−B(s)‖L∞ds}dxdvdu,

(5.2)

where C = exp(
∫ t

0
(1 + ‖∂xB(s)‖L∞(]0,1[))ds). By the change of variables y = XA

(t; 0, x, v), w = VA(t; 0, x, v) on {(x, v) ∈ ]0, 1[×Rv : v0
A(t; 0, x) < v < v1

A(t; 0, x)},
one gets

|I5|≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫
Rw

f0(XA(0; t, y, w), VA(0; t, y, w))1{|u−y|≤C
∫ t
0
‖A(s)−B(s)‖L∞ds}dydwdu

≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫
Rw

nR
0 (|w|)1{|u−y|≤C

∫ t
0
‖A(s)−B(s)‖L∞ds}dydwdu

≤2 · C ·
∫ t

0

‖A(s) −B(s)‖L∞ds(2 ·R · ‖n0‖L∞(R+
v ) + 2 · ‖n0‖L1(R+

v ))‖ϕ‖L1(]0,1[),

where as usual R =
∫ t

0
‖A(s)‖L∞(]0,1[)ds. Finally, we proved that

|Ii
AB | ≤

{
6‖f0‖L∞ + 4C

(∫ t

0

‖A(s)‖L∞ds‖n0‖L∞(R+
v ) + ‖n0‖L1(R+

v )

)}

×
∫ t

0

‖A(s) −B(s)‖L∞ds · ‖ϕ‖L1

≤ Ci ·
∫ t

0

‖A(s) −B(s)‖L∞ds · ‖ϕ‖L1(]0,1[).

Let us analyze the term I0
AB . As before, we have

I0
AB =

∫ t

0

∫
Rv

vg0(s, v)[Φ
0
A1{0<v<v0

A} − Φ0
B1{0<v<v0

B}]dsdv

+

∫ t

0

∫
Rv

vg0(s, v)[Φ
0
A1{v0

A<v<v1
A} − Φ0

B1{v0
B<v<v1

B}]dsdv

+

∫ t

0

∫
Rv

vg0(s, v)[Φ
0
A1{v>v1

A} − Φ0
B1{v>v1

B}]dsdv

= I0
0 + I0

t + I0
1 .

Taking into account that for 0 < v < v0
C(t; s, 0) we have X0

C(s0
out,C) = 0, we deduce

that Φ0
C = 0 for C = A,B and thus I0

0 = 0. By the other hand, for v > v1
C we have

X0
C(s0

out,C) = 1 and thus Φ0
C =

∫ 1

0
ϕ(u)du for C = A,B. One gets

|I0
1 | ≤

∣∣∣∣∣
∫ t

0

∫ v1
B

v1
A

vg0(s, v)

∫ 1

0

ϕ(u)dsdvdu

∣∣∣∣∣ ≤ t · ‖vg0‖L∞(]0,T [×R
+
v )|v

1
A − v1

B | · ‖ϕ‖L1(]0,1[).

By applying Lemma 4.8 we have

|v1
A(t; s, 0) − v1

B(t; s, 0)| ≤
∫ t

s

‖A(τ) −B(τ)‖L∞(]0,1[)dτ,
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and therefore

|I0
1 | ≤ t · ‖vg0‖L∞(]0,T [×R

+
v ) · ‖ϕ‖L1(]0,1[) ·

∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds.

The term I0
t is written

|I0
t | ≤

∣∣∣∣
∫ t

0

∫
Rv

vg0(s, v)Φ
0
A1{v0

A<v<max{v0
A,v0

B}}dsdv

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
Rv

vg0(s, v)Φ
0
A1{min{v1

A,v1
B}<v<v1

A}dsdv

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
Rv

vg0(s, v)Φ
0
B1{v0

B<v<max{v0
A,v0

B}}dsdv

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
Rv

vg0(s, v)Φ
0
B1{min{v1

A,v1
B}<v<v1

B}dsdv

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
Rv

vg0(s, v)(Φ
0
A − Φ0

B)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dsdv

∣∣∣∣ .
The first four terms can be estimated as before by

t · ‖vg0‖L∞(]0,T [×R
+
v ) · ‖ϕ‖L1(]0,1[) ·

∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds.

Since for max{v0
A, v

0
B} < v < min{v1

A, v
1
B} we have Φ0

A − Φ0
B =

∫XA(t)

XB(t)
ϕ(u)du, the

last term is written

|I5|≤
∣∣∣∣∣
∫ t

0

∫
v>0

vg0(s, v)

∫ XA(t)

XB(t)

ϕ(u)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dsdvdu

∣∣∣∣∣
≤
∫ 1

0

|ϕ(u)|
∫ t

0

∫
v>0

vg0(s, v)1{|u−XA(t;s,0,v)|<|XA(t;s,0,v)−XB(t;s,0,v)|}

×1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}

≤
∫ 1

0

|ϕ(u)|
∫ t

0

∫
v>0

vg0(s, v)1{|u−XA(t;s,0,v)|<C·
∫ t
0
‖A(τ)−B(τ)‖L∞dτ}1{v0

A<v<v1
A}dudsdv.

This time we perform the change of variables (y, w) = S(s, v), with y = XA(t; s, 0, v),
w = VA(t; s, 0, v) on the set D = {(s, v) ∈ ]0, t[×Rv : v0

A(t; s, 0) < v < v1
A(t; s, 0)}. By

standard computations one gets that∣∣∣∣∂(y, w)

∂(s, v)

∣∣∣∣ = |v|,

and thus

|I5| ≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫
w>−R

1{(y,w)∈S(D)}g0(sin(t, y, w),

·V (sin(t, y, w); t, y, w))1{|u−y|<C·
∫ t
0
‖A(τ)−B(τ)‖L∞dτ}

≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫
w>−R

hR
0 (w)1{|u−y|<C·

∫ t
0
‖A(τ)−B(τ)‖L∞dτ}dydwdu

≤ 2C

∫ t

0

‖A(τ) −B(τ)‖L∞dτ · (2R‖h0‖L∞(R+
v ) + ‖h0‖L1(R+

v )) · ‖ϕ‖L1(]0,1[),
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where R =
∫ t

0
‖A(τ)‖L∞dτ . Finally, one gets

|I0
AB | ≤

{
5 · t · ‖vh0‖L∞(R+

v ) + 2 exp

(∫ t

0

(1 + ‖∂xB(s)‖L∞(]0,1[))ds

)

·
(

2 · ‖h0‖L∞(R+
v ) ·

∫ t

0

‖A(s)‖L∞(]0,1[)ds + ‖h0‖L1(R+
v )

)}

·
∫ t

0

‖A(s) −B(s)‖L∞ds · ‖ϕ‖L1(]0,1[)

≤ C0 ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds · ‖ϕ‖L1(]0,1[).

The same arguments apply for I1
AB , and we deduce that∣∣∣∣

∫ 1

0

(∫ t

0

jA(s, x)ds−
∫ t

0

jB(s, x)ds

)
ϕ(x)dx

∣∣∣∣≤ |Ii
AB | + |I0

AB | + |I1
AB |

≤ (Ci + C0 + C1)

∫ t

0

‖A(s)

−B(s)‖L∞(]0,1[)ds · ‖ϕ‖L1

∀ϕ ∈ L1(]0, 1[) bounded, in particular ∀ϕ ∈ C0(]0, 1[). Since
∫ t

0
jA(s, ·)ds−

∫ t

0
jB(s, ·)ds

belongs to L∞(]0, 1[) we deduce by density that the previous inequality holds ∀ϕ ∈
L1(]0, 1[), and we have the estimate∥∥∥∥
∫ t

0

jA(s, ·)ds−
∫ t

0

jB(s, ·)ds
∥∥∥∥
L∞(]0,1[)

≤ C ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds, 0 ≤ t ≤ T,

with C = Ci + C0 + C1 a constant which depends on ‖A‖L1(]0,T [;W 1,∞(]0,1[)),
‖B‖L1(]0,T [;W 1,∞(]0,1[)), ‖n0‖L∞ , ‖h0‖L∞ , ‖h1‖L∞ , ‖n0‖L1 , ‖h0‖L1 , ‖h1‖L1 but not
on ‖vn0‖L1 , ‖vh0‖L1 , ‖vh1‖L1 (note also that since hk are nonincreasing we have
‖vhk‖L∞(R+

v ) ≤ ‖hk‖L1(R+
v ), k = 0, 1).

Proposition 5.6. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are nondecreas-
ing with respect to x and that the hypotheses (H), (H1), (H∞) hold. Then ∀ 0 ≤ t ≤ T
we have

‖FA(t) −FB(t)‖L∞(]0,1[) ≤ 2 · C ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds

with C = Ci + C0 + C1 as before.
Proof. By Remark 5.4 we have

|FA(t, x) −FB(t, x)|≤
∣∣∣∣
∫ t

0

jA(s, x)ds−
∫ t

0

jB(s, x)ds

∣∣∣∣ +

∫ 1

0

∣∣∣∣
∫ t

0

jA(s, y)ds

−
∫ t

0

jB(s, y)ds

∣∣∣∣ dy
≤ 2 ·

∥∥∥∥
∫ t

0

jA(s, ·)ds−
∫ t

0

jB(s, ·)ds
∥∥∥∥
L∞(]0,1[)

≤ 2 · C ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds, 0 ≤ t ≤ T.
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5.3. Existence and uniqueness of the mild solution.
Theorem 5.7. Assume that the hypotheses (H), (H1), (H∞) hold and U1−U0 ∈

L∞(]0, T [). Then there is a unique mild solution (f,E) for the 1D Vlasov–Poisson
initial-boundary value problem. Moreover, we have the estimates

‖ρE‖L∞(]0,T [× ]0,1[) ≤ B(exp(TA) − 1) + C,

‖|jE |‖L∞(]0,T [× ]0,1[) ≤
B2

2A
(exp(TA) − 1)2 +

BC

A
(exp(TA) − 1) + M1,

‖E‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ 2B exp(TA) + C −B,

where A = 6 ·M∞, B = M0 + ‖U1 − U0‖L∞(]0,T [), C = M0.
Proof. Consider XT = {E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) | ‖∂xE(t)‖L∞(]0,1[) ≤

B exp(tA) + C − B, ‖E(t)‖L∞(]0,1[) ≤ B exp(tA), 0 ≤ t ≤ T}. By Proposition
5.1 and Remark 5.2 we know that F : XT → XT is well defined, and by Proposition
5.6 there is a constant C1 = C1(M0,M∞, ‖U0 − U1‖L∞(]0,T [), T ) such that

‖FA(t) −FB(t)‖L∞(]0,1[) ≤ C1 ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds, A,B ∈ XT .

We deduce that F has a unique fixed point E ∈ XT , and therefore (fE , E) is the
unique mild solution of the 1D Vlasov–Poisson initial-boundary value problem. The
estimation |jE | follows by Proposition 5.3.

5.4. Existence and uniqueness of the mild solution in the general case.
In this section we study the existence and uniqueness of the mild solution when
assuming only the hypotheses (H), (H0), (H∞). In order to do this we need only
prove that Proposition 5.6 still holds under the above hypotheses. For α > 0 let us
consider the initial-boundary conditions given by

fα
0 (x, v)=

f0(x, v)

1 + α|v| , (x, v) ∈ ]0, 1[×Rv,

gα0 (t, v)=
g0(t, v)

1 + αv
, (t, v) ∈ ]0, T [×R

+
v ,

gα1 (x, v)=
g1(t, v)

1 − αv
, (t, v) ∈ ]0, T [×R

−
v .

It is easy to check that if (H), (H0), (H∞) hold, then the same hypotheses (Hα),
(Hα

0 ), (Hα
∞), corresponding to the initial-boundary conditions fα

0 , g
α
0 , g

α
1 , hold with

the functions nα
0 (v) := n0(v)

1+αv , hα
k (v) := hk(v)

1+αv , v ∈ R
+
v , k = 0, 1, and we have Mα

0 ≤
M0 < +∞, Mα

∞ ≤ M∞ < +∞. Moreover, note also that (Hα
1 ) is satisfied with

Mα
1 ≤ M0

α < +∞. Since n0, h0, h1 ∈ L1(R+
v ) are nonincreasing we check easily that

nα
0 , h

α
0 , h

α
1 are nonincreasing and

‖vhα
k‖L∞(R+

v ) ≤ ‖vhk‖L∞(R+
v ) ≤ ‖hk‖L1(R+

v ), k = 0, 1, α > 0.

Proposition 5.8. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are nondecreas-
ing with respect to x and that (H), (H0), (H∞) hold. Then ∀ 0 ≤ t ≤ T we have

‖FA(t) −FB(t)‖L∞(]0,1[) ≤ C ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds,

where C depends only on ‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),M0,M∞, T .
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Proof. By Proposition 5.6 we have

‖FαA(t) −FαB(t)‖L∞(]0,1[) ≤ Cα ·
∫ t

0

‖A(s) −B(s)‖L∞(]0,1[)ds,(5.3)

where Fα corresponds to the initial-boundary conditions fα
0 , g

α
0 , g

α
1 . (Cα)α>0 is

bounded since we have

Cα= C(‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),M
α
0 ,M

α
∞, T )

≤ C(‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),M0,M∞, T ).

The conclusion follows by passing to the limit in inequality (5.3) for α → 0 and by
using the monotone convergence theorem.

Now we can state the existence and uniqueness result in the general case.
Theorem 5.9. Assume that the hypotheses (H), (H0), (H∞) hold and U1 −U0 ∈

L∞(]0, T [). Then there is a unique mild solution of the 1D Vlasov–Poisson initial-
boundary value problem (fE , E), which verifies the estimates

‖∂xE‖L∞ = ‖ρE‖L∞ ≤ (M0 + ‖U1 − U0‖L∞) exp(6 · TM∞) − ‖U1 − U0‖L∞ ,

‖E‖L∞ ≤ (M0 + ‖U1 − U0‖L∞) exp(6 · TM∞).

5.5. Continuity upon the initial-boundary conditions. The goal of this
section is to estimate the difference between two mild solutions (fk, Ek), k = 1, 2,
with respect to the initial-boundary conditions. Consider two sets of initial-boundary
conditions fk

0 , g
k
0 , g

k
1 , U

k
0 − Uk

1 ∈ L∞ verifying the hypotheses (Hk), (Hk
0 ), (Hk

∞), k =
1, 2. We define the applications Fk as before. We have for t ∈ [0, T ]

‖∂xFkE(t)‖L∞ = ‖ρkE‖L∞ ≤ 6 ·Mk
∞

∫ t

0

‖E(s)‖L∞ds + Mk
0

and

‖FkE(t)‖L∞ ≤ 6 ·Mk
∞

∫ t

0

‖E(s)‖L∞ds + Mk
0 + |Uk

0 (t) − Uk
1 (t)|.

First of all let us assume the hypotheses (H), (H1), and (H∞). We have the following
proposition.

Proposition 5.10. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is nondecreasing
with respect to x and that the hypotheses (Hk), (Hk

1 ), (Hk
∞) hold. We suppose also

that the functions

(Hi) lk(v) = sup
0≤t≤T

|g1
k(t, (−1)kv) − g2

k(t, (−1)kv)|, k = 0, 1,

are nonincreasing with respect to v ∈ R
+
v , or

(Hii)

∫ T

0

∫
v>0

v|g1
0(t, v) − g2

0(t, v)|dtdv −
∫ T

0

∫
v<0

v|g1
1(t, v) − g2

1(t, v)|dtdv < +∞.

Then ∀ 0 ≤ t ≤ T we have

‖F1E(t) −F2E(t)‖L∞ ≤ C(‖E‖L1(]0,t[;L∞(]0,1[)))

·
(
‖f1

0 − f2
0 ‖L1(]0,1[×Rv) +

1∑
k=0

(‖lk‖L1 + ‖lk‖L∞)

)
+ |U1

1 (t) − U1
0 (t) − U2

1 (t) + U2
0 (t)|
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in case (i) or

‖F1E(t) −F2E(t)‖L∞ ≤ 2

(
‖f1

0 − f2
0 ‖L1(]0,1[×Rv) +

1∑
k=0

‖v(g1
k − g2

k)‖L1(]0,t[×R
+
v )

)

+ |U1
1 (t) − U1

0 (t) − U2
1 (t) + U2

0 (t)|

in case (ii).

Proof. Consider ϕ ∈ L1(]0, 1[) and calculate∫ 1

0

∫ t

0

(j1
E(s, x) − j2

E(s, x))ϕ(x)dxds

=

∫ t

0

∫ 1

0

∫
Rv

(f1
E − f2

E)vϕ(x)dsdxdv

=

∫ 1

0

∫
Rv

(f1
0 (x, v) − f2

0 (x, v))

∫ siout

0

V i(s)ϕ(Xi(s))dxdvds

+
1∑

k=0

(−1)k
∫ t

0

∫
(−1)kv>0

v(g1
k − g2

k)

∫ skout

s

V k(τ)ϕ(Xk(τ))dsdvdτ

=

∫ 1

0

∫
Rv

(f1
0 (x, v) − f2

0 (x, v))

∫ Xi(siout)

x

ϕ(u)dxdvdu

+
1∑

k=0

(−1)k
∫ t

0

∫
(−1)kv>0

v(g1
k(s, v) − g2

k(s, v))

∫ Xk(skout)

k

ϕ(u)dsdvdu

= Ii + Σ1
k=0Ik.

Obviously we have

|Ii| ≤ ‖f1
0 − f2

0 ‖L1(]0,1[×Rv) · ‖ϕ‖L1(]0,1[).

On the other hand, with the notation Φk =
∫Xk(skout)

k
ϕ(u)du, we have

I0 =

∫ t

0

∫
Rv

v(g1
0(s, v) − g2

0(s, v))dsdvΦ01{0<v<v0
E}

+

∫ t

0

∫
Rv

v(g1
0(s, v) − g2

0(s, v))dsdvΦ01{v0
E<v<v1

E}

+

∫ t

0

∫
Rv

v(g1
0(s, v) − g2

0(s, v))dsdvΦ01{v>v1
E}

= I0
0 + I0

t + I0
1 ,
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where vkE = vkE(t; s, k) are the critical velocities corresponding to the domain ]0, t[×]0, 1[,
the point (s, k), and the field E. Calculate now

∫ 1

0

(∫ 1

0

∫ t

0

(j1
E(s, y) − j2

E(s, y))dsdy

)
ϕ(x)dx

=

∫ t

0

∫ 1

0

∫
Rv

v(f1
E(s, y, v) − f2

E(s, y, v))dsdydv ·
∫ 1

0

ϕ(u)du

=

∫ 1

0

ϕ(u)du ·
{∫ 1

0

∫
Rv

(f1
0 − f2

0 )

∫ siout

0

V i(s)dxdvds

+
1∑

k=0

(−1)k
∫ t

0

∫
(−1)kv>0

v(g1
k − g2

k)

∫ skout

s

V k(τ)dsdvdτ

}

=

∫ 1

0

ϕ(u)du ·
{∫ 1

0

∫
Rv

(f1
0 − f2

0 )(Xi(siout) − x)dxdv

+
1∑

k=0

(−1)k
∫ t

0

∫
(−1)kv>0

v(g1
k − g2

k)(X
k(skout) − k)dsdv

}

= J i +

1∑
k=0

J k.

Obviously we have |J i| ≤ ‖f1
0 − f2

0 ‖L1(]0,1[×Rv) · ‖ϕ‖L1(]0,1[). On the other hand, we
have

J 0 =

∫ t

0

∫
Rv

v(g1
0 − g2

0)(X0(s0
out) − 0)1{0<v<v0

E}dsdv

∫ 1

0

ϕ(u)du

+

∫ t

0

∫
Rv

v(g1
0 − g2

0)(X0(s0
out) − 0)1{v0

E<v<v1
E}dsdv

∫ 1

0

ϕ(u)du

+

∫ t

0

∫
Rv

v(g1
0 − g2

0)(X0(s0
out) − 0)1{v>v1

E}dsdv

∫ 1

0

ϕ(u)du

= J 0
0 + J 0

t + J 0
1 .

For 0 < v < v0
E we have X0(s0

out) = 0 and thus I0
0 = J 0

0 . For v > v1
E we have

X0(s0
out) = 1 and thus I0

1 = J 0
1 . In order to evaluate I0

t and J 0
t we can perform the

change of variables (y, w) = S(s, v),

y = X0(t; s, 0, v), w = V 0(t; s, 0, v),

∣∣∣∣∂(y, w)

∂(s, v)

∣∣∣∣ = |v|,

on D = {(s, v) ∈ ]0, t[×R
+
v | v0

E(t; s, 0) < v < v1
E(t; s, 0)}. In case (i) one gets

|I0
t |≤

∫ 1

0

|ϕ(u)|du ·
∫ t

0

∫
Rv

v|g1
0(s, v) − g2

0(s, v)|1{v0
E<v<v1

E}dsdv

=

∫ 1

0

|ϕ(u)|du ·
∫ 1

0

∫
w>−R

|g1
0 − g2

0 |(s0
in(t, y, w), V 0(s0

in(t, y, w); t, y, w))1S(D)dydw

≤
∫
w>−R

lR0 (w)dw · ‖ϕ‖L1(]0,1[) = (2R‖l0‖L∞(R+
v ) + ‖l0‖L1(R+

v )) · ‖ϕ‖L1(]0,1[),
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where R =
∫ t

0
‖E(s)‖L∞(]0,1[)ds. In a similar manner we find that

|J 0
t |≤

∫ t

0

∫
Rv

v|g1
0 − g2

0 |1{v0
E<v<v1

E}dsdv · ‖ϕ‖L1(]0,1[)

≤
∫
w>−R

hR
0 (w)dw · ‖ϕ‖L1(]0,1[).

Finally, one gets that

|I − J |=
∣∣∣∣
∫ 1

0

(∫ t

0

(j1
E(s, x) − j2

E(s, x))ds−
∫ 1

0

∫ t

0

( j1
E(s, y) − j2

E(s, y))dyds

)
ϕ(x)dx

∣∣∣∣
= |Ii + I0 + I1 − J i − J 0 − J 1|
≤ |Ii| + |J i| + |I0

t | + |J 0
t | + |I1

t | + |J 1
t |

≤ C(R)

(
‖f1

0 − f2
0 ‖L1 +

1∑
k=0

(‖lk‖L∞ + ‖lk‖L1)

)
· ‖ϕ‖L1(]0,1[),

and the conclusion follows in case (i) by using Remark 5.4. For case (ii) it is sufficient
to remark that

max{|Ik
t |, |J k

t |} ≤
∫ t

0

∫
(−1)kv>0

(−1)kv|g1
k(s, v)−g2

k(s, v)|dsdv ·‖ϕ‖L1(]0,1[), k = 0, 1.

Remark 5.11. The conclusion of Proposition 5.10 still holds if we replace hypoth-
esis (Hk

1 ) with (Hk
0 ), k = 0, 1 (proceed as in the proof of Proposition 5.8).

Proposition 5.12. Assume that E1, E2 ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are nonde-
creasing with respect to x and that (Hk), (Hk

0 ), (Hk
∞) hold. We suppose also that (Hi)

or (Hii) is verified. Then ∀ 0 ≤ t ≤ T we have

‖F1E1(t) −F2E2(t)‖L∞(]0,1[) ≤ C1 + C2

∫ t

0

‖E1(s) − E2(s)‖L∞(]0,1[)ds,

where C2 = C2(‖Ek‖L1(]0,T [;W 1,∞(]0,1[)),M
k
0 ,M

k
∞, T ) and

C1 = C1(‖Ek‖L1(]0,T [;L∞(]0,1[)))
(
‖f1

0 − f2
0 ‖L1 + Σ1

k=0(‖lk‖L1 + ‖lk‖L∞)
)

+ |U1
1 − U1

0 − U2
1 + U2

0 |(t)

in case (i) or

C1 = 2
(
‖f1

0 − f2
0 ‖L1 + ‖v(g1

0 − g2
0)‖L1 + ‖v(g1

1 − g2
1)‖L1

)
+|U1

1 − U1
0 − U2

1 + U2
0 |(t)

in case (ii).
Proof. We can write

‖F1E1(t) −F2E2(t)‖L∞ ≤ ‖F1E1(t) −F1E2(t)‖L∞ + ‖F1E2(t) −F2E2(t)‖L∞ .

By using Proposition 5.5 we find

‖F1E1(t) −F1E2(t)‖L∞(]0,1[) ≤ C2

∫ t

0

‖E1(s) − E2(s)‖L∞(]0,1[)ds,
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where C2 depends on ‖Ek‖L1(]0,T [;W 1,∞(]0,1[)),M
1
0 ,M

1
∞, T . The conclusion follows by

Proposition 5.10 and Remark 5.11.
Theorem 5.13. Assume that fk

0 , g
k
0 , g

k
1 , U

k
1 −Uk

0 ∈ L∞(]0, T [), k = 1, 2, are two
sets of initial-boundary conditions verifying the hypotheses (Hk), (Hk

0 ), (Hk
∞), and

(Hi) or (Hii). Denote by (fk, Ek), k = 1, 2, the corresponding unique mild solutions.
Then we have ∀ 0 ≤ t ≤ T

‖E1(t) − E2(t)‖L∞(]0,1[) ≤ C

{
‖f1

0 − f2
0 ‖L1 +

1∑
k=0

(‖lk‖L1 + ‖lk‖L∞)

+ |U1
1 − U1

0 − U2
1 + U2

0 |(t)
}

in case (i) or

‖E1(t) − E2(t)‖L∞(]0,1[) ≤ C

{
‖f1

0 − f2
0 ‖L1(]0,1[×Rv) +

1∑
k=0

‖v(g1
k − g2

k)‖L1(]0,T [×R
+
v )

+ |U1
1 − U1

0 − U2
1 + U2

0 |(t)
}

in case (ii), where C is a constant depending on Mk
0 ,M

k
∞, ‖Uk

0 − Uk
1 ‖L∞ , T .

Proof. Since (fk, Ek) are mild solutions, we have FkEk = Ek, Ek are nonde-
creasing with respect to x, and we know that

‖Ek‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ C(Mk
0 ,M

k
∞, ‖Uk

1 − Uk
0 ‖L∞(]0,T [), T ).

By Proposition 5.12 we have ∀ 0 ≤ t ≤ T

‖E1(t) − E2(t)‖L∞(]0,1[) = ‖F1E1(t) −F2E2(t)‖L∞(]0,1[)

≤ C1 + C2

∫ t

0

‖E1(s) − E2(s)‖L∞(]0,1[)ds,

with C1, C2 as before. The conclusion of the theorem follows by using the Gronwall
lemma.

6. The 1D Vlasov–Maxwell system. In this section we study the 1D Vlasov–
Maxwell system with initial conditions by adapting the method used previously. Since
the proofs are quite similar we only sketch them. Moreover, as explained in the
introduction, in this case we can consider different species of particles. Recall that
results on the existence and uniqueness have already been obtained by Cooper and
Klimas [7]. Let us introduce the equations

∂tf
± + v · ∂xf± ± E · ∂vf± = 0, (t, x, v) ∈ ]0, T [×Rx × Rv,(6.1)

∂tE = −j(t, x) := −j+ + j−

= −
∫

Rv

v(f+(t, x, v) − f−(t, x, v))dv, (t, x) ∈ ]0, T [×Rx,(6.2)

with the initial conditions

f±(t = 0, x, v) = f±
0 (x, v), (x, v) ∈ Rx × Rv,(6.3)

E(t = 0, x) = E0(x) =

∫
ρ0(y)dy, x ∈ Rx,(6.4)
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where ρ0 = ρ+
0 − ρ−0 =

∫
Rv

(f+
0 − f−

0 )dv and
∫
ρ0(y)dy denotes an arbitrary primitive

of ρ0. Assume that E ∈ L∞(]0, T [;W 1,∞(Rx)), f±
0 ∈ L1

loc(Rx × Rv). We denote
by (X±(s), V ±(s)) the characteristics associated with ±E. As usual we say that
f± ∈ L1

loc(]0, T [×Rx × Rv) is a mild solution for the Vlasov problem (6.1), (6.3) iff

∫ T

0

∫
Rx

∫
Rv

f±(t, x, v)ψ(t, x, v)dtdxdv =

∫
Rx

∫
Rv

f±
0

∫ T

0

ψ(s,X±(s; 0, x, v),

×V ±(s; 0, x, v))dxdvds

for all test functions ψ ∈ L∞(]0, T [×Rx×Rv) compactly supported in [0, T ]×Rx×Rv.
Assume now that f±

0 ∈ L1(Rx × Rv). We say that (f±, E) ∈ L1(]0, T [×Rx × Rv) ×
L∞(]0, T [;W 1,∞(Rx)) is a mild solution of the 1D Vlasov–Maxwell problem iff f± is
a mild solution for the Vlasov problem (6.1), (6.3) corresponding to the electric field
±E such that

∫
Rx

E(t, x)ϕ(x)dx = −
∫

Rx

∫
Rv

f+
0 (x, v)

∫ X+(t;0,x,v)

x

ϕ(u)dudxdv

+

∫
Rx

∫
Rv

f−
0 (x, v)

∫ X−(t;0,x,v)

x

ϕ(u)dudxdv

+

∫
Rx

E0(x)ϕ(x)dx ∀ϕ ∈ L1(Rx).

Remark 6.1. Note that the previous formula defines a unique function E ∈
L∞(]0, T [×Rx). This definition can be derived formally from (6.2) by using the mild
formulation

∫
Rx

E(t, x)ϕ(x) = −
∫ t

0

∫
Rx

∫
Rv

v(f+(s, x, v) − f−(s, x, v))ϕ(x)dsdxdv +

∫
Rx

E0(x)ϕ(x)dx

= −
∫

Rx

∫
Rv

f+
0 (x, v)

∫ t

0

V +(s)ϕ(X+(s))dsdxdv +

∫
Rx

∫
Rv

f−
0 (x, v)

×
∫ t

0

V −(s)ϕ(X−(s))dsdxdv +

∫
Rx

E0(x)ϕ(x)dx

= −
∫

Rx

∫
Rv

f+
0 (x, v)

∫ X+(t;0,x,v)

x

ϕ(u)dudxdv

+

∫
Rx

∫
Rv

f−
0 (x, v)

∫ X−(t;0,x,v)

x

ϕ(u)dudxdv +

∫
Rx

E0(x)ϕ(x)dx.

As before we define the application F for E ∈ L∞(]0, T [;W 1,∞(Rx)) by

E → f±
E → E1(t) = FE(t) = E0 −

∫ t

0

∫
Rv

v(f+
E − f−

E )dsdv,

where f±
E are the mild solutions of the Vlasov problem (6.1), (6.3) associated with the

field ±E, E0 is given by (6.4), and −
∫ t

0

∫
Rv

v(f+
E −f−

E )dsdv is defined as in Remark 6.1.
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6.1. Estimate of FE. We assume that there is n±
0 : [0,+∞[→ [0,+∞[ nonin-

creasing, such that

(H±) f±
0 (x, v) ≤ n±

0 (|v|), (x, v) ∈ Rx × Rv,

(H±
0 ) M±

0 :=

∫
Rv

n±
0 (|v|)dv < +∞,

(H±
∞) M±

∞ := ‖n±
0 ‖L∞(R+

v ) < +∞,

(Hρ0) Mρ0 := sup
x∈Rx

∣∣∣∣
∫ x

0

(ρ+
0 (y) − ρ−0 (y))dy

∣∣∣∣ < +∞.

Proposition 6.2. Assume that f±
0 ∈ L1(Rx × Rv) satisfy (H±), (H±

0 ), (H±
∞).

Then for every E ∈ L∞(]0, T [;W 1,∞(Rx)) we have f±
E ∈ L∞(]0, T [;L1(Rx × Rv)),

ρ±E ∈ L∞(]0, T [×Rx), FE ∈ L∞(]0, T [;W 1,∞(Rx)). Moreover, the following esti-
mates hold:

‖f±
E ‖L∞(]0,T [;L1(Rx×Rv)) = ‖ρ±E‖L∞(]0,T [;L1(Rx)) =

∫
Rx

∫
Rv

f±
0 (x, v)dxdv,

‖ρ±E‖L∞(]0,T [×Rx) ≤ 2M±
∞

∫ t

0

‖E(s)‖L∞(Rx)ds + M±
0 ,

‖FE‖L∞(]0,T [×Rx) ≤ C + Mρ0 + ‖f+
0 ‖L1(Rx×Rv) + ‖f−

0 ‖L1(Rx×Rv),

‖∂xFE‖L∞(]0,T [×Rx) ≤ 2(M+
∞ + M−

∞)

∫ t

0

‖E(s)‖L∞(Rx)ds + M+
0 + M−

0 ,

lim
R1→+∞

∫
|v|>R1

f±
E (t, x, v)dv = 0 uniformly with respect to (t, x) ∈ ]0, T [×Rx,

and the mild formulation of the Vlasov problem holds ∀ψ ∈ L∞(]0, T [×Rx × Rv).
Proof. We have

ρ±E(t, x)=

∫
Rv

f±
E dv =

∫
Rv

f±
0 (X±(0; t, x, v), V ±(0; t, x, v))dv

≤
∫

Rv

n±
0 (|V ±(0; t, x, v)|)dv ≤

∫
Rv

n±,R
0 (|v|)dv

= 2RM±
∞ + M±

0 ,

where R =
∫ t

0
‖E(s)‖L∞(Rx)ds. By the definition of FE, taking into account that

E0(x) = C +
∫ x

0
ρ0(y)dy, we deduce that

‖FE(t)‖L∞(Rx) ≤ C + Mρ0 + ‖f+
0 ‖ofL1(Rx×Rv) + ‖f−

0 ‖L1(Rx×Rv), 0 ≤ t ≤ T.

By using the definition of FE(t) and the mild formulation we check that ∂xFE(t) =
ρ(t) in D′(Rx), 0 ≤ t ≤ T , and we deduce that ‖∂xFE‖L∞ ≤ ‖ρ+

E‖L∞ + ‖ρ−E‖L∞ ≤
2R(M+

∞ +M−
∞) +M+

0 +M−
0 . The last two assertions follow by standard calculations

as was done for the Vlasov–Poisson problem.
Remark 6.3. If we note XT = {E ∈ L∞(]0, T [;W 1,∞(Rx)) | ‖E‖L∞(]0,T [×Rx) ≤

‖E0‖L∞(Rx) + ‖f+
0 ‖L1 + ‖f−

0 ‖L1}, then F(XT ) ⊂ XT and

‖∂xFE‖L∞(]0,T [×Rx) ≤ 2(M+
∞+M−

∞) ·T · (‖E0‖L∞(Rx)+‖f+
0 ‖L1+‖f−

0 ‖L1)+M+
0 +M−

0 .
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6.2. Estimate of FA − FB.
Proposition 6.4. Assume that A,B ∈ L∞(]0, T [;W 1,∞(Rx)) and f±

0 ∈ L1(Rx×
Rv) verify the hypotheses (H±), (H±

0 ), (H±
∞). Then ∀ 0 ≤ t ≤ T we have

‖FA(t) −FB(t)‖L∞(Rx) ≤ C

∫ t

0

‖A(s) −B(s)‖L∞(Rx)ds,

with C a constant depending on ‖A‖L1(]0,T [;W 1,∞(Rx)), ‖B‖L1(]0,T [;W 1,∞(Rx)),M
±
0 ,

M±
∞, T .

Proof. Take ϕ ∈ L1(Rx) and calculate∣∣∣∣
∫

Rx

(FA(t, x) −FB(t, x))ϕ(x)dx

∣∣∣∣
=

∣∣∣∣∣−
∫

Rx

∫
Rv

f+
0

∫ X+
A (t)

X+
B (t)

ϕ(u)dudxdv +

∫
Rx

∫
Rv

f−
0

∫ X−
A (t)

X−
B (t)

ϕ(u)dudxdv

∣∣∣∣∣
≤

∑
k=±

∫
Ru

|ϕ(u)|
∫

Rx

∫
Rv

fk
0 (x, v)1{|u−Xk

A(t)|<|Xk
B(t)−Xk

A(t)|}dudxdv

≤
∑
k=±

∫
|ϕ(u)|

∫ ∫
fk
0 (Xk

A(0; t, y, w), V k
A(0; t, y, w))1{|u−y|≤C·R}

≤ ‖ϕ‖L1(Rx)2CR

(
M+

0 + M−
0 + 2

∫ t

0

‖A(s)‖L∞ds(M+
∞ + M−

∞)

)
,

where C = exp(
∫ t

0
(1 + ‖∂xB(s)‖L∞(Rx))ds) and R =

∫ t

0
‖A(s) − B(s)‖L∞(Rx)

ds.
We can prove the following theorem by using the iterated approximations method.
Theorem 6.5. Assume that f±

0 ∈ L1(Rx×Rv) verify the hypotheses (H±), (H±
0 ),

(H±
∞). Then, for a fixed choice of primitive in (6.4), there is a unique mild solution

for the 1D Vlasov–Maxwell initial value problem.
Remark 6.6. If in addition we assume that |v|pf±

0 ∈ L1(Rx × Rv) and

(H±
p ) M±

p :=

∫
Rv

|v|pn±
0 (|v|)dv < +∞,

for some integer p ≥ 1 we can prove that

|v|pf± ∈ L∞(]0, T [;L1(Rx × Rv)),

∫
Rv

|v|pf±(t, x, v)dv ∈ L∞(]0, T [×Rx).

In particular j± =
∫

Rv
vf±dv ∈ L∞(]0, T [×Rx) and ∂tE = −j, limR1→+∞

∫
|v|>R1

|v|pf±dv = 0 uniformly with respect to (t, x) ∈ ]0, T [×Rx and the mild formulation
of the Vlasov problem holds for all functions |ψ(t, x, v)| ≤ C(1 + |v|p).

Proof. Multiplying the Vlasov equation by |v|p, we get

d

dt

∫
Rx

∫
Rv

f±(t, x, v)|v|pdxdv = ±
∫

Rx

∫
Rv

Ef±p|v|p−2vdxdv.

Therefore we deduce that∫
Rx

∫
Rv

f±(t, x, v)|v|pdxdv ≤
∫

Rx

∫
Rv

f±
0 (x, v)|v|pdxdv + p‖E‖L∞(]0,T [×Rx)

·
∫ t

0

∫
Rx

∫
Rv

f±|v|p−1dxdvds,
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and the conclusion follows by induction on p. On the other hand,

∫
Rv

|v|pf±(t, x, v)dv=

∫
Rv

|v|pf±
0 (X±(0; t, x, v), V ±(0; t, x, v))dv

≤
∫

Rv

|v|pn±,R
0 (|v|)dv

≤ C(R)(‖n±
0 ‖L∞(R+

v ) + ‖|v|pn±
0 (|v|)‖L1(Rv)),

with R =
∫ t

0
‖E(s)‖L∞(Rx)ds. In order to verify that ∂tE = −j in D′(]0, T [×Rx), take

ϕ ∈ C1
0 (]0, T [×Rx) and use the mild formulation with the test function ψ(t, x, v) =

vϕ(t, x).

7. The periodic 1D Vlasov–Poisson problem. In this section we analyze
the space periodic 1D Vlasov–Poisson problem:

∂tf
± + v · ∂xf± ± E · ∂vf± = 0, (t, x, v) ∈ ]0, T [× ]0, 1[×Rv,(7.1)

∂xE = ρ(t, x) := ρ+ − ρ− =

∫
Rv

(f+(t, x, v) − f−(t, x, v))dv, (t, x) ∈ ]0, T [× ]0, 1[,

(7.2)

with the space periodic initial conditions

f±(t = 0, x, v) = f±
0 (x, v), (x, v) ∈ ]0, 1[×Rv.(7.3)

The electric field derives from a space periodic potential and thus
∫ 1

0
E(t, x)dx = 0.

In this case the Poisson field can be written as

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1 − y)ρ(t, y)dy, x ∈ [0, 1], t ∈ [0, T ].(7.4)

We introduce the mild formulation as before by taking space periodic test functions.
This time it is convenient to define the application F for 1-periodic with respect to x
fields E ∈ L∞(]0, T [×Rx) by

E → f±
E → ρ±E →

∫ x

0

ρE(t, y)dy −
∫ 1

0

(1 − y)ρE(t, y)dy = FE.

Remark 7.1. FE is 1-periodic in x iff
∫ 1

0
ρE(t, y)dy = 0, 0 ≤ t ≤ T and therefore,

by the conservation of the total charge, iff
∫ 1

0

∫
Rv

f+
0 (x, v)dxdv =

∫ 1

0

∫
Rv

f−
0 (x, v)dxdv.

7.1. Estimate of FE. We assume that f±
0 verify the hypotheses (H±), (H±

0 ),
(H±

∞). We suppose also that the neutrality condition holds:

(N)

∫ 1

0

∫
Rv

f+
0 (x, v)dxdv =

∫ 1

0

∫
Rv

f−
0 (x, v)dxdv.



UNIQUENESS FOR THE 1D VLASOV–POISSON SYSTEM 187

Proposition 7.2. Assume that f±
0 are 1-periodic in x and satisfy (H±), (H±

0 ),
(H±

∞), and (N). Then for every E ∈ L∞(]0, T [;W 1,∞(Rx)) 1-periodic in x we have

‖ρ±E‖L∞(]0,T [×Rx) ≤ 2M±
∞

∫ t

0

‖E(s)‖L∞(Rx)ds + M±
0 ,

‖FE‖L∞(]0,T [×Rx) ≤
∫ 1

0

∫
Rv

f+
0 (x, v)dxdv +

∫ 1

0

∫
Rv

f−
0 (x, v)dxdv ≤ M+

0 + M−
0 ,

‖∂xFE‖L∞(]0,T [×Rx) ≤ 2(M+
∞ + M−

∞)

∫ t

0

‖E(s)‖L∞(Rx)ds + M+
0 + M−

0 .

Moreover, limR1→+∞
∫
|v|>R1

f±
E (t, x, v)dv = 0 uniformly with respect to (t, x) ∈

]0, T [×Rx and the mild formulation of the Vlasov problem holds for all functions
ψ ∈ L∞(]0, T [×Rx × Rv) 1-periodic in x.

7.2. Estimate of FA − FB.
Proposition 7.3. Assume that A,B ∈ L∞(]0, T [;W 1,∞(Rx)) are 1-periodic in

x and the hypotheses (H±), (H±
0 ), (H±

∞), (N) hold. Then ∀ 0 ≤ t ≤ T we have

‖FA(t) −FB(t)‖L∞(Rx) ≤ C

∫ t

0

‖A(s) −B(s)‖L∞(Rx)ds,

where the constant C depends on ‖A‖L1(]0,T [;W 1,∞(Rx)), ‖B‖L1(]0,T [;W 1,∞(Rx)),M
±
0 ,

M±
∞, T .

Proof. Take ϕ ∈ L1
loc(Rx) and calculate

I±
1 =

∣∣∣∣
∫ 1

0

ϕ(x)

∫ x

0

(ρ±A(t, y) − ρ±B(t, y))dydx

∣∣∣∣
=

∣∣∣∣
∫ ∫

(f±
0 (X±

A (0; t, y, v), V ±
A (0; t, y, v)) − f±

0 (X±
B (0; t, y, v), V ±

B (0; t, y, v)))

·
∫ 1

y

ϕ(x)dxdydv

∣∣∣∣
=

∣∣∣∣∣
∫ ∫

f±
0 (ξ, η)

∫ X±
B (t;0,ξ,η)

X±
A (t;0,ξ,η)

ϕ(x)dxdξdη

∣∣∣∣∣
≤

∫ 1

0

|ϕ(u)|
∫ ∫

f±
0 (ξ, η)1{|u−X±

A (t)|<|X±
A (t)−X±

B (t)|}dξdηdu

≤
∫ 1

0

|ϕ(u)|
∫∫

f±
0 (X±

A (0; t, y, w), V ±
A (0; t, y, w))1{|u−y|<CR}dydw

≤ 2CR

(
2

∫ t

0

‖A(s)‖L∞ds ·M±
∞ + M±

0

)
· ‖ϕ‖L1(]0,1[),

where C = exp(
∫ t

0
(1 + ‖∂xB(s)‖L∞)ds) and R =

∫ t

0
‖A(s) − B(s)‖L∞ds. In order to

estimate I±
2 = |

∫ 1

0
(1 − y)(ρ±A(t, y) − ρ±B(t, y))dy| take ϕ ≡ 1 in the previous compu-

tation.
Finally we obtain the existence and uniqueness of the space periodic mild solution.
Theorem 7.4. Assume that f±

0 are 1-periodic in x and satisfy the hypotheses
(H±), (H±

0 ), (H±
∞), (N). Then there is a unique mild solution for the space periodic
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1D Vlasov–Poisson problem. Moreover, we have the estimates

‖ρ±‖L∞(]0,T [×Rx) ≤ 2M±
∞ · T · (M+

0 + M−
0 ) + M±

0 ,

‖E‖L∞(]0,T [×Rx) ≤ M+
0 + M−

0 .
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Abstract. The nonlinear Schrödinger equation with general nonlinearity of polynomial growth
and harmonic confining potential is considered. More precisely, the confining potential is strongly
anisotropic; i.e., the trap frequencies in different directions are of different orders of magnitude.
The limit as the ratio of trap frequencies tends to zero is carried out. A concentration of mass
on the ground state of the dominating harmonic oscillator is shown to be propagated, and the
lower-dimensional modulation wave function again satisfies a nonlinear Schrödinger equation. The
main tools of the analysis are energy and Strichartz estimates, as well as two anisotropic Sobolev
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1. Introduction and main result. The main goal of the present work is
the analysis of the space dimension reduction of the (n + d)-dimensional nonlinear
Schrödinger equation with external confining potential. We are interested in the case
where the external potential is anisotropic and strongly confining in d directions.
This work follows the approach used in [3] for analyzing a dimension reduction (from
dimension 3 to dimension 2) for the Schrödinger–Poisson system and where asymp-
totics for strong partial confinement was introduced. In other words, we deal with
the asymptotic behavior of solutions of the (n+ d)-dimensional Schrödinger equation

iψt = −1

2
Δψ + V ε(x, z)ψ + f(δ|ψ|)ψ ,(1)

ψI(x, z) = ψ(0, x, z) ,(2)

V ε(x, z) =
|x|2
2

+
|z|2
2ε4

, x ∈ Rn , z ∈ Rd ,
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‡Institut für Analysis und Scientific Computing, TU Wien, Wiedner Hauptstraße 8–10, 1040
Wien, Austria, and Johann Radon Institute for Computational and Applied Mathematics, Altenberg-
erstraße 69, 4040 Linz, Austria (schmeise@deana.math.tuwien.ac.at). The work of this author was
supported by the Ph.D. program “Differential Equations” funded by the Austrian Science Fund,
project W8, and through project P16174-N05, Austrian Science Fund.

§Institut für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria (rada.
weishaeupl@univie.ac.at). The work of this author was supported by the Ph.D. program “Differ-
ential Equations” funded by the Austrian Science Fund, project W, and by the “Wittgenstein 2000”
Award of P. Markowich.

189
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as ε → 0. Here V ε is the trapping harmonic potential and Δ = Δx + Δz is the
Laplacian in Rn+d and ψ satisfies the normalization condition∫

Rn+d

|ψ|2dxdz = 1 ,(3)

which is preserved by (1). Since the sign of the function f is not specified, we are deal-
ing with both focusing and defocusing nonlinearities. Performing the limit ε → 0 in
this system will enable us to write a reduced model involving a nonlinear Schrödinger
equation in dimension n. In section 4, an application to the dynamics of Bose–Einstein
condensates is presented; we justify mathematically the effective models which can
be found in the physics literature [13]. In this context, as was remarked in [1], the
use of such approximate models significantly reduces the complexity of numerical
simulations.

In order to balance the kinetic and potential energy terms in the z-direction, we
introduce the rescaling z → εz. In order to keep the wavefunction normalized we
have to rescale by ψ → ε−d/2ψε(t, x, z). As we want to balance the nonlinearity with
the terms of order 1, we choose δ = εd/2; thus we consider weak nonlinearities. The
rescaled problem reads

iψε
t = H⊥ψε +

1

ε2
Hψε + f(|ψε|)ψε ,(4)

ψε(t = 0, x, z) = ψI(x, z) ,

with H⊥ = − 1
2Δx + |x|2

2 and H = − 1
2Δz + |z|2

2 , harmonic oscillators in the x- and
z-directions, respectively.

We introduce a new time scale τ = t/ε2, so that we have the fast oscillations in
z corresponding to the fast time scale τ . If we let ε → 0, we formally obtain the
equation

iΨτ = HΨ ,

which we can solve explicitly in terms of the spectral decomposition of H:

Ψ =
∑
k≥0

φke
−iμkτωk(z) .

Here (μk, ωk(z))k≥0 are the eigenvalues and normalized (with respect to L2(Rd))
eigenfunctions of H, and (φk)(k≥0) are coefficients independent of τ and z. The

eigenvalue problem can be solved explicitly with the eigenvalues μk = k + d
2 (see

[18, Theorem 8.4]). The eigenfunctions are products of a Gaussian with Hermite
polynomials, and, in particular, the ground state eigenfunction is given by

ω0(z) =

(
1

π

)d/4

e−
|z|2
2 .

By modulation, thus introducing the slow variables x and t, we would have φk de-
pending on (t, x). This motivates us to expand ψε with respect to the eigenstates of
H:

ψε(t, x, z) =
∑
k≥0

e−iμkt/ε
2

φε
k(t, x)ωk(z) .(5)
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Actually, our aim is to determine and justify approximations of the form

ψε(t, x, z) ≈ ϕ(t, x)e−iμ0t/ε
2

ω0(z) ,(6)

i.e., modulations of the ground state, under an assumption of well-prepared initial
data (see (11) below). A formal analysis indicates that the general case, where the
transport occurs on several modes, is more complicated and might involve coupling
terms between the limiting n-dimensional Schrödinger equations (this is not the case
for the Schrödinger–Poisson system [3], where the nonlinearity is weaker).

The projection Π onto the eigenspace generated by the groundstate ω0(z) is given
by

Πψε(t, x, z) = e−iμ0t/ε
2

φε(t, x)ω0(z)

with

φε(x, t) := eiμ0t/ε
2

∫
Rd

ψε(t, x, z)ω0(z)dz .(7)

It is obvious that the projection has the following properties:

∂tΠ = Π∂t , ΠH⊥ = H⊥Π , ΠH = μ0Π .

By projecting (4) we obtain

iφε
t = H⊥φε + eiμ0t/ε

2

∫
Rd

f(|ψε|)ψεω0dz .(8)

The nonlinearity can be written as

eiμ0t/ε
2

∫
Rd

f(|ψε|)ψεω0dz = f(|φε|)φε + hε

with f(|φ|) =

∫
Rd

f(|φ|ω0)ω
2
0dz

and hε = eiμ0t/ε
2

∫
Rd

[f(|ψε|)ψεω0 − f(|φε|ω0)e
−iμ0t/ε

2

φεω2
0 ]dz .(9)

Then the formal limit of (8) as ε → 0 is the n-dimensional Schrödinger equation

iϕt = H⊥ϕ + f(|ϕ|)ϕ .(10)

When the initial data for the full problem (4) are chosen compatible with the ansatz
(6), i.e.,

ψI(x, z) = ϕI(x)ω0(z) ,(11)

then appropriate initial conditions for the solution of (10) are

ϕ(0, x) = ϕI(x) .(12)

The main result of this work is a justification of the limit problem (10), (12) under
the following assumptions on the initial data and on the nonlinearity.
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Assumption 1. The function ϕI satisfies∫
Rn

(
|∇xϕI(x)|2 + |xϕI(x)|2

)
dx < ∞,

∫
Rn

|ϕI(x)|2dx = 1 .

Assumption 2. The nonlinearity f satisfies

|f(|u|)u− f(|v|)v)| ≤ C(|u|α + |v|α)|u− v| ,

where either f ≥ 0 (defocusing case) and 0 ≤ α < 4
n+d−2 , or 0 ≤ α < min{ 4

n+d−2 ,
4
n}.

Additionally, α ≤ 2
n−2 if n > 2.

Remark. The assumptions are sufficient for proving existence and uniqueness of
local solutions of both the full problem (4), (11) and the limit problem (10), (12)
(see [6, 15, 5]). Note that the property of f required in Assumption 2 carries over to
f . In the repulsive case, global existence is a straightforward consequence of energy
conservation (see section 2). Without sign assumptions on the nonlinearity, the addi-
tional requirement α < 4/n leads to global solvability of the limit problem [15]. Here,
however, it is used for proving ε-independent estimates for the full problem on finite
time intervals.

Theorem 1. Let Assumptions 1 and 2 be satisfied and let ψε and ϕ be the unique
solutions of (4), (11) and (10), (12), respectively. Then for every T < ∞ there exists
a constant cT such that

sup
t∈(0,T )

‖ψε(t, ·, ·)) − e−iμ0t/ε
2

ϕ(t, ·)ω0‖L2(Rn+d) ≤ cT ε .

The rest of the paper is organized as follows. In the following section, conservation
of energy is used to derive uniform estimates of H1-norms of the solution of the
(n+d)-dimensional problem and its ground state contribution. Whereas for repulsive
nonlinearities these results follow directly from the energy conservation, in the general
case the nonlinearity needs to be controlled by an anisotropic generalization of the
Gagliardo–Nirenberg inequality. Also the difference between the full solution and
its projection to the ground state is shown to be small. In section 3, the difference
between the ground state contribution and its formal limit is estimated. The main
tools are Strichartz estimates [6, 10, 17] and an anisotropic Sobolev inequality.

Section 4 deals with an application, the Gross–Pitaevskii equation, which has
a cubic nonlinearity and models the dynamics of Bose–Einstein condensates. In
this case, dimension reduction means obtaining disk-shaped or cigar-shaped conden-
sates. Finally, in the appendix the anisotropic Sobolev embedding and the anisotropic
Gagliardo–Nirenberg inequality are proved.

2. Uniform estimates. In this section we derive some ε-independent estimates
from energy conservation. The energy is defined by

Eε[ψε(t)] :=
〈
H⊥ψε(t), ψε(t)

〉
+

1

ε2
〈Hψε(t), ψε(t)〉 + 2F [ψε(t)] ,

where 〈·, ·〉 denotes the scalar product in L2(Rn+d) and

F [ψ] =

∫
Rn+d

F (|ψ|)dx dz , with F (s) =

∫ s

0

f(σ)σdσ .

Note that the first two terms in the energy are nonnegative quadratic forms controlling
the H1-norms in the x- and z-directions, respectively.
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With Assumption 1, the initial data (11) satisfy Eε[ψI ] < ∞ for fixed ε. From [6]
(Theorem 9.2.5 and Remark 9.2.7) and Assumption 2 we obtain local-in-time existence
for the (n + d)-dimensional problem (4) as well as energy and mass conservation:

Eε[ψε(t)] = Eε[ψI ] , ‖ψε(t)‖2,2 = ‖ψI‖2,2 = ‖ϕI‖2 .(13)

Considering the limit of ε2Eε when ε → 0, we immediately obtain uniform bounds
for the dominant term. The main difficulty consists in finding uniform bounds on〈
H⊥ψε(t), ψε(t)

〉
. Once we have this, we can derive uniform bounds on the H1-norm

of ψε(t).
For the notation of norms we use the following conventions.
Definition 2. Let 0 < T ≤ ∞, 1 ≤ p, q, r ≤ ∞, and u(t, x), v(t, x, z) functions

of t ∈ (0, T ), x ∈ Rn, and z ∈ Rd. Then we define the norms

‖u(t)‖p := ‖u(t, ·)‖Lp(Rn) ,

‖u‖r(p) :=
∥∥∥‖u(·)‖p

∥∥∥
Lr((0,T ))

,

‖v(t)‖q,p :=
∥∥∥‖v(t, ·)‖p∥∥∥

Lq(Rd)
,

‖v‖r(q,p) :=
∥∥∥‖v(·)‖q,p∥∥∥

Lr((0,T ))
,

and the corresponding Banach spaces are denoted by Lp
x, L

r
tL

p
x, L

q
zL

p
x, and Lr

tL
q
zL

p
x.

Taking into account the expansion (5) of the (n + d)-dimensional wavefunction
ψε with respect to the orthonormal basis (ωk)k≥0 of eigenfunctions gives

‖ψε(t)‖2
2,2 =

∞∑
k=0

‖φε
k(t)‖2

2,(14)

‖∇xψ
ε(t)‖2

2,2 =

∞∑
k=0

‖∇xφ
ε
k(t)‖2

2.(15)

At first sight, the energy equation seems to be of limited use, since it is dominated
by the contributions in the z-direction. However, with the mass conservation this part
can be written as

〈Hψε(t), ψε(t)〉 =

∞∑
k=0

μk‖φε
k(t)‖2

2

=

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 + μ0‖ϕI‖2
2 ,(16)

and, on the other hand,

〈HψI , ψI〉 = μ0‖ϕI‖2
2 .(17)

By using (16) and (17) we can rewrite the energy conservation as

〈
H⊥ψε(t), ψε(t)

〉
+

1

ε2

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 + 2F [ψε(t)]

=
〈
H⊥ψI , ψI

〉
+ 2F [ψI ] .(18)
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In the case of defocusing nonlinearities all terms in this equation are nonnegative,
and we immediately obtain uniform boundedness of ψε(t) in H1(Rn+d), as well as the
statement that the mass remains concentrated to the ground state as ε → 0. The rest
of this section is devoted to proving the same results (Lemmas 3 and 4) without sign
assumption on the nonlinearity.

By applying Lemma 5 from the appendix with r = α+2, we can control the term
coming from the nonlinearity:

|F [ψε(t)]| ≤ ‖ψε(t)‖2+α
2+α,2+α ≤ c‖∇xψ

ε(t)‖nα/22,2 ‖∇zψ
ε(t)‖dα/22,2 ,(19)

where here and in the following c denotes possibly different ε-independent, positive
constants. Consequently, the energy conservation multiplied by ε2 yields

ε2‖∇xψ
ε(t)‖2

2,2 + ‖∇zψ
ε(t)‖2

2,2 ≤ c + cε2‖∇xψ
ε(t)‖nα/22,2 ‖∇zψ

ε(t)‖dα/22,2 ,

and, from the Young inequality,

ε2‖∇xψ
ε(t)‖2

2,2 + ‖∇zψ
ε(t)‖2

2,2 ≤ c + ε2η‖∇xψ
ε(t)‖2

2,2 + ε2C(η)‖∇zψ
ε(t)‖

2dα
4−nα

2,2 .

Remark. The constraint α < 4
n in Assumption 2 guarantees that the exponent

remains positive.
With the choice η = 1

2 we deduce

‖∇zψ
ε(t)‖2

2,2 ≤ c + ε2c‖∇zψ
ε(t)‖

2dα
4−nα

2,2 .

In the case θ = 2dα
4−nα < 2 we conclude that

‖∇zψ
ε‖∞(2,2) ≤ c.(20)

For θ > 2 we obtain the result by the standard bootstrap argument, since ‖∇zψI‖2,2

is independent of ε (see [4, Lemma 2.9]). Using (19) with (20) in (18), we get

‖∇xψ
ε(t)‖2

2,2 + ‖xψε(t)‖2
2,2 +

1

ε2

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 ≤ c + c‖∇xψ
ε(t)‖nα/22,2 .(21)

Since, by α < 4/n, the exponent in the last term is smaller than 2, uniform bounded-
ness of ‖∇xψ

ε(t)‖2,2 follows.
It is now easy to prove the following two results on uniform boundedness and on

the uniform smallness of the contributions from excited states.
Lemma 3. Let the assumptions of Theorem 1 be satisfied, let ψε be the solution

of (4), (11), let φε be defined by (7), and let ϕ be the solution of (10), (12). Then

ψε ∈ L∞((0,∞); H1(Rn+d)) , φε, ϕ ∈ L∞((0,∞); H1(Rn)) ,

uniformly in ε.
Proof. From (16) and (21) it is immediately clear that 〈H⊥ψε(t), ψε(t)〉 +

〈Hψε(t), ψε(t)〉 is uniformly bounded with respect to ε and t. The observation that
this term dominates the H1(Rn+d)-norm completes the proof of the first statement
of the lemma.

The representation of ψε in terms of the eigenstates shows

〈H⊥ψε(t), ψε(t)〉 ≥ 1

2
(‖∇xφ

ε‖2
2 + ‖xφε‖2

2) ,
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which proves the statement for φε. Finally, the statement for the ε-independent ϕ is
a consequence of the existence theory.

Lemma 4. With the assumptions of the previous lemma,

‖(I − Π)ψε‖∞(p,2) ≤ c ε

holds with an ε-independent constant c and with p ∈ [2, 2d
d−2 ] if d ≥ 3, p ∈ [2,∞) if

d = 2, and p ∈ [2,∞] if d = 1.
Proof. Using (21) we obtain

‖(I − Π)ψε(t)‖2
2,2 =

∞∑
k=1

‖φε
k(t)‖2

2

≤ 1

μ1 − μ0

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 ≤ cε2 ,

i.e., the statement of the lemma with p = 2. On the other hand we estimate

‖∇z(I − Π)ψε(t)‖2
2,2 ≤ 〈H(I − Π)ψε(t), (I − Π)ψε(t)〉 =

∞∑
k=1

μk‖φε
k(t)‖2

2

=

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 + μ0‖(I − Π)ψε(t)‖2
2,2 ≤ cε2 .

The result is now a consequence of the Sobolev embedding H1(Rd) ↪→ Lp(Rd) in
z-space.

3. Proof of the main result. The approximation error in Theorem 1 can be
split into two parts:

‖ψε − ϕω0e
−iμ0t/ε

2‖∞(2,2) ≤ ‖(I − Π)ψε‖∞(2,2) + ‖ω0e
−iμ0t/ε

2

(φε − ϕ)‖∞(2,2)

= ‖(I − Π)ψε‖∞(2,2) + ‖φε − ϕ‖∞(2) .

The first term is taken care of by Lemma 4. The difference χε := φε − ϕ solves the
problem

iχε
t = H⊥χε + gε + hε,(22)

χε(t = 0) = 0 ,

where

gε = f(|φε|)φε − f(|ϕ|)ϕ

and hε given by (9).
For the nonlinear Schrödinger equation (22) with harmonic potential, a local

dispersion result can be established (see [8, 9], [6, Lemma 9.2.4]). This property
allows us to use Strichartz estimates (see [6, Theorem 3.4.1], [5, 12]), and we obtain
the following for any admissible pair (q∗, q) and a bounded time interval T < ∞:

‖χε‖∞(2) ≤ cT (‖gε‖q∗(q) + ‖hε‖q∗(q)) .(23)
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A pair (q, q∗) is admissible iff

2n

n + 2
≤ q ≤ 2 for n ≥ 3 , 1 < q ≤ 2 for n = 2 , 1 ≤ q ≤ 2 for n = 1 ,(24)

q∗ =
4

4 − n(2/q − 1)
.(25)

Note that the definition of admissible pair is not the usual one.
Remark. We need a bounded time interval because the constant depends on the

length of the time interval. For more details, see [6].
Assumption 2 implies the pointwise estimate

|gε| ≤ c(|φε|α + |ϕ|α)|χε| .

Applying the Hölder inequality, we obtain

‖gε(t)‖q ≤ c(‖φε‖α2αq/(2−q) + ‖ϕ‖α2αq/(2−q))‖χε‖2 .

The assumption α ≤ 2/(n− 2) for n ≥ 3 allows us to choose q such that both (24) is

satisfied and H1(Rn) ↪→ L
2αq/(2−q)
x . Therefore we can use Lemma 3 to obtain

‖gε(t)‖q∗(q) ≤ c‖χε‖q∗(2) .(26)

For hε we also employ Assumption 2 to obtain a pointwise estimate:

|hε| ≤ c

∫
Rd

(|ψε|α + |Πψε|α)|(I − Π)ψε|ω0 dz .

Computing the Lq(Rn)-norm and applying the Hölder inequality twice (to the x- and
z-integrals, respectively) lead to

‖hε‖q ≤ c(‖ψε‖ααp′,2αq/(2−q) + ‖φε‖α2αq/(2−q))‖(I − Π)ψε‖p,2 ,

whereby p′ = p
p−1 .

Let us recall all the conditions on p and q:
(i) the assumptions of Lemma 4 for p and condition (24) for q are satisfied;

(ii) the embeddings H1(Rn) ↪→ L
2αq/(2−q)
x and H1(Rn+d) ↪→ Lαp′

z L
2αq/(2−q)
x (see

Lemma 5 in the appendix) hold.
All this is possible since α ≤ 4/(n + d − 2) and α ≤ 2/(n − 2) for n ≥ 3. As a
consequence of Lemmas 3 and 4 we obtain

‖hε‖∞(q) ≤ cε .(27)

With (26) and (27), the Strichartz estimate (23) becomes

‖χε‖∞(2) ≤ cT (‖χε‖q∗(2) + ε) .

Using this estimate on the time interval (0, t) with t ≤ T gives

‖χε(t)‖q
∗

2 ≤ c̃T

(∫ t

0

‖χε(s)‖q
∗

2 ds + εq
∗
)

.

Now, an application of the Gronwall lemma concludes the proof of Theorem 1.
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4. Application: The Gross–Pitaevskii equation. The three-dimensional
nonlinear Schrödinger equation with cubic nonlinearity and an external potential is
called the Gross–Pitaevskii equation. It models the temporal evolution of Bose–
Einstein condensates at temperatures much smaller than the critical condensation
temperature [7, 14, 16]. In dimensional form, the Gross–Pitaevskii equation reads

ih̄ψt = − h̄2

2m
Δψ +

m

2

(
ω2
x|x|2 + ω2

z |z|2
)
ψ + Ng|ψ|2ψ ,(28)

where m is the atomic mass, h̄ is the Planck constant, N is the number of atoms in the
condensate, and ωx, ωz are the trap frequencies in x- and z-directions, respectively.
The parameter g describes the interaction between the atoms in the condensate and
has the form g = h̄2a/m, where a is the scattering length, positive for repulsive
interactions and negative for attractive interactions. We consider the cases n = 1
and n = 2 with d = 3 − n. Characteristic lengths of the condensate in the x- and
z-directions are ax =

√
h̄/(mωx) and az =

√
h̄/(mωz), respectively.

Let us write (28) in dimensionless form. With the scaling

x = axx̃ , z = az z̃ , ψ =
ψ̃√

anxa
3−n
z

, t =
t̃

ωx
,

and skipping the tildes, we obtain

iψt = −1

2
Δxψ +

|x|2
2

ψ +
ωz

ωx

(
−1

2
Δzψ +

|z|2
2

ψ

)
+ N

a

a3−n
z an−2

x

|ψ|2ψ .

In experiments it is observed that in a strongly anisotropic confinement the motion
of particles is quenched in one or two directions. This means that by changing the
shape of the confining potential, lower-dimensional Bose–Einstein condensates are
obtained. They are called disk-shaped or cigar-shaped condensates, respectively. This
is the motivation to consider the Gross–Pitaevskii equation with strongly anisotropic
confining harmonic potential; thus

ε2 :=
ωx

ωz
� 1 .

Furthermore we assume the case of weak coupling, namely,

γ :=
Na

a3−n
z an−2

x

= O(1) .

We then have the equation

iψt = −1

2
Δxψ +

|x|2
2

ψ +
1

ε2

(
−1

2
Δzψ +

|z|2
2

ψ

)
+ γ|ψ|2ψ ,

where γ|ψ|2 = f(|ψ|) with γ positive, if we consider repulsive interactions, e.g., for
23Na and 87Rb, or negative for attractive interactions, e.g., for 7Li. Obviously, As-
sumption 2 on f holds with α = 2.

For repulsive interactions (γ > 0) we have global existence of the solution of the
(n+ d)-dimensional Schrödinger equation if α < 4/(n+ d− 2). Since α = 2 we obtain
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the condition n+d < 4, which includes the physically interesting case n+d = 3. The
limiting lower-dimensional Gross–Pitaevskii equation is

iϕt = H⊥ϕ + γ0|ϕ|2ϕ with γ0 = γ

∫
Rd

ω4
0(z)dz .

On the one hand, if we consider the strong confinement in one direction (d = 1),
we obtain a two-dimensional approximate equation (n = 2). In this case we speak
about a disk-shaped condensate. On the other hand, we consider a strong confinement
in 2 dimensions (d = 2). Accordingly, the approximate equation is one-dimensional
(n = 1) and we call the condensate a cigar-shaped condensate. Theorem 1 can be
applied in both cases.

In the case of attractive interactions, thus for γ < 0, we get stronger constraints
on the dimensions, namely, n = 1 and d < 3. Thus, Theorem 1 can only be applied
for the reduction from three dimensions to one (cigar-shaped condensate).

Appendix. Anisotropic Sobolev inequalities. In this section, we state
anisotropic Sobolev embeddings and a generalized Gagliardo–Nirenberg inequality.
The proof of this lemma, rather straightforward, is skipped. It uses standard Sobolev
embeddings and Gagliardo–Nirenberg inequalities, combined with interpolation es-
timates. We generalize here a result of [2] (see also [11], where a similar Sobolev
embedding is obtained). Recall that in this paper the whole dimension is n + d and
the space variable is written (x, z), where x ∈ Rn and z ∈ Rd.

Lemma 5. Let 2 ≤ p, q ≤ ∞ be such that

n

p(n + d)
+

d

q(n + d)
≥ 1

2
− 1

n + d

(with q < ∞ if d = 2; p < ∞ if n = 2; and strict inequality if n = d = 1). Then

H1(Rn+d) ↪→ Lq
z(R

d;Lp
x(Rn)).

Furthermore, for any r ∈ [2, 2(n+d)
n+d−2 ] we have

‖u‖Lr
x,z

≤ C‖u‖1−(n+d)( 1
2−

1
r )

L2
x,z

‖∇xu‖
n( 1

2−
1
r )

L2
x,z

‖∇zu‖
d( 1

2−
1
r )

L2
x,z

.
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Abstract. We deal with the problem of determining an inclusion within an electrical conductor
from electrical boundary measurements. Under mild a priori assumptions we establish an optimal
stability estimate.
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1. Introduction. In this paper we deal with an inverse boundary value problem
which is a special instance of the well-known Calderón’s inverse conductivity problem
[C]. Given a bounded domain Ω in R

n, n ≥ 2, with reasonably smooth boundary, an
open set D, compactly contained in Ω, and a constant k > 0, k �= 1, consider, for any
f ∈ H1/2(∂Ω), the weak solution u ∈ H1(Ω) to the Dirichlet problem

div((1 + (k − 1)χD)∇u) = 0 in Ω,(1.1)

u = f on ∂Ω,(1.2)

where χD denotes the characteristic function of the set D. We will denote by ΛD :
H1/2(∂Ω) → H−1/2(∂Ω) the so-called Dirichlet-to-Neumann map, that is the operator
which maps the Dirichlet data onto the corresponding Neumann data ∂u

∂ν |∂Ω
. The

inverse problem that we examine here is to determine D when ΛD is given.
In 1988 Isakov [I1] proved the uniqueness. The purpose of the present paper is

to prove a result of stability. In fact we prove that, under mild a priori assumptions
on the regularity and topology of D, there is a continuous dependence of D (in the
Hausdorff metric) from ΛD with a modulus of continuity of logarithmic type; see
Theorem 2.4. Let us stress that, indeed, this rate of continuity is the optimal one, as
it was shown by examples in the recent paper [DC-R] by the second author and Luca
Rondi.

We wish to mention here a closely related, but different, problem which attracted a
lot of attention starting with the papers of Friedman [F] and Friedman and Gustafsson
[F-G]. That is the one of determining D when, instead of full knowledge of the
Dirichlet-to-Neumann map, only one, or few, pairs of Dirichlet and Neumann data
are available; see [A-I], [I2] for extended bibliographical accounts. Unfortunately, for
such a problem, the uniqueness question, not to mention stability, remains a largely
open issue.

Let us illustrate briefly the main steps of our arguments. We must recall that
Isakov’s approach to uniqueness is essentially based on two arguments,
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(a) the Runge approximation theorem,
(b) the use of solutions with Green’s function type singularities.

Also, here we shall use singular solutions, and indeed we shall need an accurate study
of their asymptotic behavior when the singularity gets close to the set of discontinuity
∂D of the conductivity coefficient 1 + (k− 1)χD in (1.1); see Proposition 3.4. On the
other hand, it seems that Runge’s theorem, in its whole generality, is typically based
on nonconstructive arguments (Lax [L], Kohn and Vogelius [K-V]) and thus, is not
suited for stability estimates. We wish to mention here that a constructive version of
a Runge type theorem, for special geometrical configurations and for Helmholtz equa-
tion, has indeed been used by Potthast [P1, P2] for the purpose of stability estimates
in the different, but related, inverse problem of obstacle scattering. Unfortunately,
by this approach, very restrictive geometrical assumptions on the unknown obstacle
are required. In this paper we introduce a different approach based on quantitative
estimates of unique continuation (see Proposition 3.5) which avoids the use of Runge
type arguments and allows one to treat a wide generality of inclusions.

In section 2 we formulate our main hypotheses and state the stability result,
Theorem 2.4. In section 3 we prove Theorem 2.4 on the basis of some auxiliary
propositions, whose proofs are deferred to in section 4.

2. The main result. Let us introduce our regularity and topological assump-
tions on the conductor Ω and on the unknown inclusion D. To this purpose we
shall need the following definitions. In places, we shall denote a point x ∈ R

n by
x = (x′, xn), where x′ ∈ R

n−1, xn ∈ R.
Definition 2.1. Let Ω be a bounded domain in R

n. Given α, 0 < α ≤ 1, we
shall say that a portion S of ∂Ω is of class C1,α with constants r, L > 0 if, for any
P ∈ S, there exists a rigid transformation of coordinates under which we have P = 0
and

Ω ∩Br(0) = {x ∈ Br : xn > ϕ(x′)},

where ϕ is a C1,α function on Br(0) ⊂ R
n−1 satisfying ϕ(0) = |∇ϕ(0)| = 0 and

‖ϕ‖C1,α(Br(0)) ≤ Lr.
Definition 2.2. We shall say that a portion S of ∂Ω is of Lipschitz class with

constants r, L > 0 if for any P ∈ S, there exists a rigid transformation of coordinates
under which we have P = 0 and

Ω ∩Br(0) = {x ∈ Br : xn > ϕ(x′)},

where ϕ is a Lipschitz continuous function on Br(0) ⊂ R
n−1 satisfying ϕ(0) = 0 and

‖ϕ‖C0,1(Br(0)) ≤ Lr.
Remark 2.3. We have chosen to scale all norms in a such a way that they are

dimensionally equivalent to their argument. For instance, for any ϕ ∈ C1,α(Br(0))
we set

‖ϕ‖C1,α(Br(0)) = ‖ϕ‖L∞(Br(0)) + r‖∇ϕ‖L∞(Br(0)) + r1+α|∇ϕ|α,Br(0).

For given numbers r, M , δ̃, L > 0, 0 < α < 1, we shall assume
(H1) the domain Ω satisfies the following conditions:

|Ω| ≤ Mrn,(2.1)

where | · | denotes the Lebesgue measure of Ω,

∂Ω is of class C1,α with constants r, L,(2.2)
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(H2) the inclusion D satisfies the following conditions:

Ω � D is connected,(2.3)

dist(D, ∂Ω) ≥ δ̃,(2.4)

∂D is of class C1,α with constants r, L.(2.5)

In what follows, we shall refer to numbers k, n, r, M , δ̃, L, α as to the a priori
data. We shall denote by D1 and D2 two possible inclusions in Ω, both satisfying the
properties mentioned. We shall denote by ΛDi

, i = 1, 2, the Dirichlet-to-Neumann
map ΛD when D = Di. We can now state the main theorem.

Theorem 2.4. Let Ω ⊂ R
n, n ≥ 2, satisfy (H1). Let k > 0, k �= 1 be given. Let

D1 and D2 be two inclusions in Ω satisfying (H2). If, given ε > 0, we have

‖ΛD1 − ΛD2‖L(H1/2,H−1/2) ≤ ε,(2.6)

then

dH(∂D1, ∂D2) ≤ ω(ε),

where ω is an increasing function on [0,+∞), which satisfies

ω(t) ≤ C| log t|−η, for every 0 < t < 1

and C, η, C > 0, 0 < η ≤ 1, are constants only depending on the a priori data.
Here dH denotes the Hausdorff distance between bounded closed sets of R

n and
‖ · ‖L(H1/2H−1/2) denotes the operator norm on the space of bounded linear operators

between H1/2(∂Ω) and H−1/2(∂Ω).
Remark 2.5. It should be emphasized that in this statement the unknown inclu-

sion may be disconnected.
Remark 2.6. Several variations of the above results could be devised with minor

adaptations on the arguments. Just to mention one, an analogous result would be
obtained if the Neumann-to-Dirichlet maps NDi

are available instead of the Dirichlet-
to-Neumann maps ΛDi

.

3. Proof of Theorem 2.4. Before proving Theorem 2.4, we shall state some
auxiliary propositions, whose proofs are collected in section 4. Here and in what
follows, we shall deal with various sets associated to Ω, D1, and D2. We shall use the
following notation.

Definition 3.1. We denote by G the connected component of Ω � (D1 ∪ D2),
whose boundary contains ∂Ω, ΩD = Ω � G, Ωr = {x ∈ CΩ : dist(x,Ω) ≤ r} and
S2r = {x ∈ R

n : r ≤ dist(x,Ω) ≤ 2r}.
We introduce a variation of the Hausdorff distance which we call modified distance.
Definition 3.2. We shall call the modified distance between D1 and D2 the

number

dμ(D1, D2) = max

{
sup

x∈∂D1∩∂ΩD

dist(x,D2), sup
x∈∂D2∩∂ΩD

dist(x,D1)

}
.(3.1)

This notion is an adaptation of the one introduced in [A-B-R-V], which was also
called modified distance. In order to distinguish such notions, we call dμ the present



STABLE DETERMINATION OF AN INCLUSION 203

one, whereas the one in [A-B-R-V] was denoted by dm. On the other hand, we need
to stress the common peculiarities: such modified distances do not satisfy the axioms
of a metric and in general do not dominate the Hausdorff distance (see section 3
in [A-B-R-V] for related arguments). The following proposition provides sufficient
conditions under which dμ dominates dH; see [A-B-R-V, Proposition 3.6] for a related
statement.

Proposition 3.3. Let Ω be an open set in R
n satisfying (H1). Let D1, D2 be

two bounded open inclusions of Ω satisfying (H2). Then

dH(∂D1, ∂D2) ≤ cdμ(D1, D2),(3.2)

where c depends only on the a priori assumptions.
With no loss of generality, we can assume that there exists a point O of ∂D1∩∂ΩD,

where the maximum in Definition 3.1 is attained, that is

dμ = dμ(D1, D2) = dist(O,D2).(3.3)

As is well known, the Dirichlet-to-Neumann map ΛD associated to problem (1.1),
(1.2) is defined by

< ΛDu, v >=

∫
Ω

(1 + (k − 1)χD)∇u · ∇v,(3.4)

for every u ∈ H1(Ω) solution to (1.1) and for every v ∈ H1(Ω). Here < ·, · > denotes
the dual pairing between H−1/2(∂Ω) and H1/2(∂Ω). With a slight abuse of notation
we shall write

< g, f >=

∫
∂Ω

gf dσ,

for any f ∈ H1/2(∂Ω) and g ∈ H−1/2(∂Ω). Let ΓD(x, y) be the fundamental solution
for the operator div((1 + (k − 1)χD)∇·), thus

div((1 + (k − 1)χD)∇ΓD(·, y)) = −δ(· − y),(3.5)

where y, w ∈ R
n, δ denotes the Dirac distribution. We shall denote by ΓD1 , ΓD2

such fundamental solutions when D = D1, D2, respectively. Recalling the well-known
identity∫

Ω

(1 + (k− 1)χD1)∇u1 · ∇u2 −
∫

Ω

(1 + (k− 1)χD2)∇u1 · ∇u2 =

∫
∂Ω

u1[ΛD1 −ΛD2 ]u2,

which holds for every ui ∈ H1(Ω), i = 1, 2, solutions to (1.1) when D = Di, respec-
tively (see [I2] formula (5.0.4), section 5.0), we have∫

Ω
(1 + (k − 1)χD1)∇ΓD1(·, y) · ∇ΓD2(·, w)

−
∫
Ω
(1 + (k − 1)χD2)∇ΓD1(·, y) · ∇ΓD2(·, w)

=
∫
∂Ω

ΓD1
(·, y)[ΛD1

− ΛD2
](ΓD2

(·, w))dσ ∀ y, w ∈ CΩ.

(3.6)

Let us define, for y, w ∈ G ∪ CΩ

SD1(y, w) = (k − 1)

∫
D1

∇ΓD1
(·, y) · ∇ΓD2

(·, w),(3.7)

SD2(y, w) = (k − 1)

∫
D2

∇ΓD1(·, y) · ∇ΓD2(·, w),(3.8)

f(y, w) = SD1
(y, w) − SD2

(y, w).(3.9)
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Thus (3.6) can be rewritten as

f(y, w) =

∫
∂Ω

ΓD1(·, y)[ΛD1 − ΛD2 ](ΓD2(·, w))dσ ∀ y, w ∈ CΩ.(3.10)

From now on we shall consider the dimension n ≥ 3, since the case n = 2 can be
treated similarly through minor adaptations regarding the fundamental solutions. Up
to a transformation of coordinates, we can assume that O, defined in (3.3), is the
origin of the coordinate system. Let ν(O) be the outer unit normal vector to ∂ΩD

in the origin O. Such a normal is indeed well defined since we are assuming that O
realizes the modified distance between D1 and D2; therefore, in a small neighborhood
of O, ∂ΩD is made of a part of ∂D1, which is known to be C1,α. We will rotate the
coordinate system in such a way that ν(O) = (0, . . . , 0,−1). Taking y = w = hν(O),
with h > 0, we want to evaluate f(y, y) and SD1

(y, y) in term of h, for h small.
Then, evaluating SD2 in term of dμ, we will get the stability estimate for the modified
distance and thus, using Proposition 3.3, for the Hausdorff distance. An important
ingredient for evaluating f and SD1 is the behavior of the fundamental solution. We
state now a proposition that collects all the results on ΓDi , i = 1, 2, that we will
need throughout the paper. For x = (x′, xn), where x′ ∈ R

n−1 and xn ∈ R, we set
x� = (x′,−xn). We shall denote with χ+ the characteristic function of the half-space
{xn > 0} and with Γ+ the fundamental solution of the operator div((1+(k−1)χ+)∇·).
If Γ is the standard fundamental solution of the Laplace operator, we have that (see,
for instance, [A-I-P], Theorem 4)

Γ+(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
kΓ(x, y) + k−1

k(k+1)Γ(x, y�) for xn > 0, yn > 0,

2
k+1Γ(x, y) for xnyn < 0,

Γ(x, y) − k−1
k+1Γ(x, y�) for xn < 0, yn < 0.

(3.11)

The following proposition holds.
Proposition 3.4. Let D ⊂ R

n be an open set whose boundary is of class C1,α,
with constants r, L.

(i) There exists a constant c1 > 0 depending on k, n, α and L only, such that

|∇xΓD(x, y)| ≤ c1|x− y|1−n,(3.12)

for every x, y ∈ R
n,

(ii) There exist constants c2, c3 > 0 depending on k, n, α and L only, such that

∣∣ΓD(x, y) − Γ+(x, y)
∣∣ ≤ c2

rα
|x− y|2−n+α,(3.13)

∣∣∇xΓD(x, y) −∇xΓ+(x, y)
∣∣ ≤ c3

rα
2 |x− y|1−n+α2

,(3.14)

for every x ∈ D ∩ Br(O), and for every y = hν(O), with 0 < r < r0,
0 < h < r0, where r0 =

(
min

{
1
2 (8L)−1/α, 1

2

})
r
2 .

The next two propositions give us quantitative estimates on f and SD1
when we

move y towards O, along ν(O). Proposition 3.5 makes use of quantitative estimates
of unique continuation, whereas Proposition 3.6 is mainly based on the asymptotic
estimates of fundamental solutions obtained in Proposition 3.4.

Proposition 3.5. Let Ω be an open set in R
n satisfying (H1). Let D1, D2 be

two inclusions in Ω verifying (H2) and let y = hν(O), with O defined in (3.3). If,
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given ε > 0, we have

‖ΛD1
− ΛD2

‖L(H1/2,H−1/2) ≤ ε,

then for every h, 0 < h < c r, where 0 < c < 1, depends on L,

|f(y, y)| ≤ C
εBhF

hA
,(3.15)

where 0 < A < 1 and C,B, F > 0 are constants that depend only on the a priori
data.

Proposition 3.6. Let Ω be an open set in R
n satisfying (H1). Let D1, D2 be

two inclusions in Ω verifying (H2) and y = hν(O). Then for every h, 0 < h < r0/2,

|SD1
(y, y)| ≥ c1h

2−n − c2d
2−2n
μ + c3,(3.16)

where c1, c2, and c3 are positive constants depending only on the a priori data. Here
r0 is the number introduced in Proposition 3.4.

Now we have all the tools that we need to prove Theorem 2.4.
Proof of Theorem 2.4. Let O ∈ ∂D1 satisfying (3.3), that is

dμ(D1, D2) = dist(O,D2) = dμ.

Then, for y = hν(O), with 0 < h < h1, where h1 = min {dμ, c r, r0/2}, using (3.12),
we have

|SD2
(y, y)| ≤ c

∫
D2

1

(dμ − h)n−1

1

(dμ − h)n−1
dx = c

1

(dμ − h)2n−2
|D2|.(3.17)

Using Proposition 3.5, we have

|SD1(y, y)| − |SD2(y, y)| ≤ |SD1(y, y) − SD2(y, y)|

= |f(y, y)| ≤ c
εBhF

hA
.

On the other hand, by Proposition 3.6 and (3.17)

|SD1
(y, y)| − |SD2

(y, y)| ≥ c1h
2−n − c2(dμ − h)2−2n.

Thus we have

c3h
2−n − c4(dμ − h)2−2n ≤ εBhF

hA
.

That is

c4(dμ − h)2−2n ≥ c3h
2−n − εBhF

hA
= h2−n(c3 − εBhF

h
eA)

≥ c5h
2−n

(
1 − εBhF

h
eA
)
,(3.18)

where Ã = n − 2 − A, Ã > 0. Let h = h(ε) where h(ε) = min{| ln ε|− 1
2F , dμ}, for

0 < ε ≤ ε1, with ε1 ∈ (0, 1) such that exp(−B| ln ε1|1/2) = 1/2. If dμ ≤ | ln ε|− 1
2F the

theorem follows using Proposition 3.3. In the other case we have

εBh(ε)F h(ε)
eA ≤ εB| ln ε|−1/2 ≤ exp

(
−B| ln ε|1/2

)
.
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Then, for any ε, 0 < ε < ε1,

(dμ − h(ε))2−2n ≥ c6h(ε)2−n,

that is, solving for dμ, and recalling that, in this case, h(ε) = | ln ε|− 1
2F ,

dμ ≤ c7| ln ε|−δ n−2
2n−2 ,(3.19)

where δ = 1/(2F ). When ε ≥ ε1, then

dμ ≤ diam Ω

and, in particular, when ε1 ≤ ε < 1

dμ ≤ diam Ω
| ln ε|− 1

2F

| ln ε1|−
1

2F

.

Finally, using Proposition 3.3, the theorem follows.

4. Proofs of the auxiliary propositions. We premise the proof of Proposition
3.3 with one lemma.

Lemma 4.1. Let Ω be an open set in R
n satisfying (H1). Let D be a bounded open

inclusion of Ω satisfying (H2). Then for every P ∈ ∂D, there exists a continuous path
γ in Ω � D with one endpoint in P and the other on ∂Ω, such that for every z ∈ γ

|z − P | ≤ cdist(z,D),(4.1)

where c is a positive constant depending on the a priori data only.
Proof. Using Lemma 5.2 of [A-B-R-V], (which adapted arguments due to Lieber-

man [Li]), we approximate dist(·, ∂D) with a regularized distance d̃ such that d̃ ∈
C2(Ω � D) ∪ C1,α(Ω � D) and the following facts hold:

γ0 ≤ dist(x, ∂D)

d̃(x)
≤ γ1,

|∇d̃(y)| ≥ c1 for every y ∈ Ω s.t. dist(y, ∂D) < br,

‖d̃‖1,α ≤ c2r,

where γ0, γ1, b, c1 and c2 are positive constants only depending on L and α. We
define for 0 < h < ar, with a depending on L and α only,

Eh = {x ∈ Ω � D : d̃(x) > h}.

Arguing as in Lemma 5.3 of [A-B-R-V], Eh is connected with boundary of class C1

and

c̃1h ≤ dist(x, ∂D) ≤ c̃2h ∀x ∈ ∂Eh ∩ Ω,(4.2)

where c̃1, c̃2 are positive constants depending on L and α only. Let us fix P ∈ ∂D.
Let ν(P ) be the outer unit normal to ∂D in P (we recall that ∂D is C1,α). Since (4.2),
there exists a point P ′ ∈ Eh such that P ′ = h̃ν(P ), where h̃ is a positive constant
c̃1h < h̃ < c̃2h. We denote by PP ′ the segment whose endpoints are P and P ′. Since
Eh is connected, there exists a continuous path γ′ ⊂ Eh with one endpoint P ′ and the
other on ∂Ω. Since γ′ ⊂ Eh we have that for every x ∈ γ′, dist(x, ∂D) ≥ ch, where c
is a positive constant. We then define γ = γ′ ∪ PP ′ and the lemma follows.

Proof of Proposition 3.3. Let us fix P ∈ ∂D1. We distinguish the following two
cases:
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(i) P ∈ ∂D1 ∩ ∂G,
(ii) P ∈ ∂D1 � ∂G.

If case (i) occurs then,

dist(P, ∂D2) = dist(P,D2) ≤ dμ.

Let us consider case (ii). Let γ be the continuous path constructed in Lemma 4.1
from P to ∂Ω. Since P /∈ ∂G, there exists z ∈ γ ∩ ∂D2 ∩ ∂ΩD.

dist(z,D1) ≤ sup
x∈∂D2∩∂ΩD

{
dist(x,D1)

}
≤ dμ(D1, D2).

Thus

|z − P | ≤ cdμ(D1, D2),

where c > 0 is the constant appearing in (4.1). On the other hand,

dist(P, ∂D2) ≤ |z − P |.

So we obtain that for every P ∈ ∂D1,

dist(P, ∂D2) ≤ cdμ(D1, D2).

Similarly, one can show that for every Q ∈ ∂D2

dist(Q, ∂D1) ≤ cdμ(D1, D2).

Then we conclude that

dH(∂D1, ∂D2) ≤ cdμ(D1, D2).

Proof of Proposition 3.4. Let us prove (i).
Let us consider the case x ∈ D and y ∈ ∂D. The cases in which x, y ∈ D or x, y ∈ CD
are trivial. Let h = |x−y|. Let c be a positive number less than 1

1+2
√
n
. We distinguish

the following two cases:
(a) dist(x, ∂D) < ch,
(b) dist(x, ∂D) ≥ ch.

Let us consider the case (a). Let P ∈ ∂D be such that |P − x| = dist(x, ∂D). For
every r > 0, let Qr(P ) be the cube centered at P , with sides of length 2r and parallel
to the coordinates axes. We have that the ball Br(P ) is inscribed into Qr(P ); in
particular, x ∈ Qch(P ). On the other hand,

|P − y| ≥ |y − x| − |P − x| ≥ h(1 − c).

Then, due to our choice of c, |P − y| > (2ch)
√
n, that is y /∈ Q2ch(P ). Thus

divz

(
(1 + (k − 1)χD)∇zΓD(z, y)

)
= 0 in Q 3

2 ch
(P )

and for the piecewise C1,α regularity of ΓD, proved in [DB-E-F], see also [L-V], we
have

‖∇ΓD(·, y)‖L∞(Qch(P )) ≤
c1
h
‖ΓD(·, y)‖L∞(Q 3

2
ch

(P )),(4.3)
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where c1 depends on L, k, n, and α only. Using the pointwise bound of ΓD with Γ
(see [L-S-W]), we have

‖ΓD(·, y)‖
L∞

`

Q 3
2
ch

(P )

´ ≤ c2

(
ch

2

)2−n

,(4.4)

where c2 depends on n and k only. Hence, by (4.3) and (4.4) we get

|∇xΓD(x, y)| ≤ ‖∇ΓD(·, y)‖L∞(Qch(P )) ≤ c3h
1−n = c3|x− y|1−n,(4.5)

where c3 depends on L, k, n, and α only.
If case (b) occurs, then Q ch√

n
(x) ⊂ D. Hence

|∇xΓD(x, y)| ≤ ‖∇ΓD(·, y)‖
L∞

(
Q ch

2
√

n

(x)

) ≤ c4
h
‖ΓD(·, y)‖

L∞
`

Q c√
n

(P )

´

≤ c4
h

(h(1 − c))2−n = c′4h
1−n = c′4|x− y|1−n,

where c4, c
′
4 depend on L, k, n, and α only.

Let us prove (ii).
Let us fix r1 = min

{
1
2 (8L)−1/αr, r

2

}
. Recalling Definition 2.1, we have that

∂D ∩Br(0) = {x ∈ Br(0) : xn = ϕ(x′)},

where ϕ ∈ C1,α(Rn−1) satisfying ϕ(0) = |∇ϕ(0)| = 0. Let θ ∈ C∞(R) be such that
0 ≤ θ ≤ 1, θ(t) = 1, for |t| < 1, θ(t) = 0, for |t| > 2 and |dθdt | ≤ 2. We consider the
following change of variables ξ = Φ(x) defined by{

ξ′ = x′

ξn = xn − ϕ(x′)θ
( |x′|

r1

)
θ
(
xn

r1

)
.

It can be verified that, with the given choice of r1, the following properties of Φ hold:

Φ(Q2r1(0)) = Q2r1(0),(4.6)

Φ(Qr1(0) ∩D) = Q+
r1(0),(4.7)

c−1|x1 − x2| ≤ |Φ(x1) − Φ(x2)| ≤ c|x1 − x2| ∀x1, x2 ∈ R
n,(4.8)

|Φ(x) − x| ≤ c

rα
|x|1+α ∀x ∈ R

n,(4.9)

|DΦ(x) − I| ≤ c

rα
|x|α ∀x ∈ R

n,(4.10)

where Q+
r1(0) = {x ∈ Qr1(0) : xn > 0} and c ≥ 1 depends on L and α only. Φ is a

C1,α diffeomorphism from R
n into itself. Let us define the cylinder Cr1 as

Cr1 = {x ∈ R
n : |x′| < r1, |xn| < r1}.

For x, y ∈ Cr1 , we have that Γ̃D(ξ, η) = ΓD(x, y), where ξ = Φ(x), η = Φ(y), is
solution of

divξ((1 + (k − 1)χ+)B(ξ)∇ξΓ̃D(ξ, η)) = −δ(ξ − η),(4.11)
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where B = JJT

det J , with J = ∂ξ
∂x (Φ−1(ξ)). We observe that B is of class Cα and

B(0) = I. Let us consider

R̃(x, y) = Γ̃D(x, y) − Γ+(x, y),

where we keep the notation x, y to indicate ξ, η. By the properties of Γ+ and by

(4.11), R̃ satisfies

divx((1 + (k − 1)χ+)∇xR̃(x, y)) = divx((1 + (k − 1)χ+)(I −B)∇xΓ̃D(x, y)).

Let L̃ > 0, depending on the a priori data only, be such that Ω ⊂ BeL(0). Thus, using
the fundamental solution Γ+ we obtain

−R̃(x, y) =

∫
B eL(0)

(1 + (k − 1)χ+)(B − I)∇zΓ+(z, y) · ∇zΓ̃D(z, x)dz

+

∫
∂B eL(0)

(1 + (k − 1)χ+)

[
R̃(x, z)

∂Γ+

∂ν
(z, y) − Γ+(z, y)

∂R̃

∂ν
(x, z)

]
dσ(z)

=

∫
B eL(0)∩Cr1

(1 + (k − 1)χ+)(B − I)∇zΓ+(z, y) · ∇zΓ̃D(z, x)dz

+

∫
B eL(0)�Cr1

(1 + (k − 1)χ+)(B − I)∇zΓ+(z, y) · ∇zΓ̃D(z, x)dz

+

∫
∂B eL(0)

[
R̃(x, z)

∂Γ+

∂ν
(z, y) − Γ+(z, y)

∂R̃

∂ν
(x, z)

]
dσ(z).

For |x|, |y| < r1/2, the last two integrals are bounded. Using (3.12) we obtain

|R̃(x, y)| ≤ c

(
1 +

∫
Cr1

|z|α|x− z|1−n|y − z|1−ndz

)

= c

(
1 + I1 + I2

)
,

where c depends on L, α, k, and n and

I1 =

∫
{|z|<4h}∩Cr1

|z|α|x− z|1−n|y − z|1−ndz,

I2 =

∫
{|z|>4h}∩Cr1

|z|α|x− z|1−n|y − z|1−ndz.

Now

I1 ≤
∫
|w|<4

hα|w|αh1−n
∣∣x
h
− w

∣∣1−n
h1−n

∣∣y
h
− w

∣∣1−n
hndw

= hα+2−n

∫
|w|<4

|w|α
∣∣x
h
− w

∣∣1−n∣∣y
h
− w

∣∣1−n
dw

≤ hα+2−nF (ξ, η),
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where h = |x− y| and

F (ξ, η) = 4α
∫
|w|<4

|ξ − w|1−n|η − w|1−ndw

and ξ = x/h and η = y/h. From standard bounds (see, for instance, [M, Chapter 2,
section 11]) it is not difficult to see that

F (ξ, η) ≤ const. < ∞,

for all ξ, η ∈ R
n, |ξ − η| = 1. Thus

I1 ≤ c|x− y|α+2−n.

Let us now consider I2. Since |y| = −yn ≤ |x−y| = h, we can deduce and |z| ≤ 4
3 |y−z|

and |z| ≤ 2|x− z| and thus obtain that

I2 ≤ c

∫
|z|>4h

|z|α+1−n+1−ndz ≤ chα+2−n.

Then we conclude that

|R̃(x, y)| ≤ c|x− y|α+2−n,(4.12)

for every |x|, |y| < r1/2, where c depends on L, α, k, and n only. Let us go back to the
original coordinates system. We observe that if x ∈ Φ−1(B+

r1/2
(0)) and y = enyn, with

yn ∈ (−r1/2, 0), then |Φ(x)−x| is bounded by c|x−y|1+α. Namely, since Φ(x) ·y ≤ 0
and Φ(y) = y, by (4.8) we have

c−1|x| ≤ |Φ(x)| ≤ |Φ(x) − y| ≤ c|x− y|.(4.13)

On the other hand, by (4.9) and (4.13)

|Φ(x) − x| ≤ c

rα
|x|1+α ≤ c′

rα
|x− y|1+α.(4.14)

We have

R(x, y) = ΓD(x, y) − Γ+(x, y)

= ΓD(x, y) − Γ+(x, y) + Γ+(Φ(x),Φ(y)) − Γ+(Φ(x),Φ(y))

= R̃(Φ(x),Φ(y)) + Γ+(Φ(x), y) − Γ+(x, y).

Using (4.8), (4.9), (4.12), and (4.14) we obtain

|ΓD(x, y) − Γ+(x, y)|
≤ c

rα
|x− y|α+2−n +

c

rα
‖∇Γ+(·, y)‖L∞(Qr1 )|x− Φ(x)|

≤ c

rα
|x− y|α+2−n +

c′

rα
|x− y|1+αh1−n

≤ c′′

rα
|x− y|α+2−n,
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where c′′ depends on k, n, α, and L only. We estimate now the first derivative of R.
To estimate the first derivative of R̃ let us consider a cube Q ⊂ B+

r1/4
(x) of side cr1/4,

with 0 < c < 1, such that x ∈ ∂Q. The following interpolation inequality holds:

‖∇R̃(·, y)‖L∞(Q) ≤ c‖R̃(·, y)‖1−δ
L∞(Q)|∇R̃(·, y)|δα,Q,

where δ = 1
1+α , c depends on L only, and

|∇R̃|α,Q = sup
x,x′∈Q,x	=x′

|∇R̃(x, y) −∇R̃(x′, y)|
|x− x′|α .

Since, from the piecewise Hölder continuity of ∇ΓD (see (4.3)), and also of ∇Γ+, (see
(3.11)), we have that

|∇R̃(·, y)|α,Q ≤ |∇Γ̃D(·, y)|α,Q + |∇Γ+(·, y)|α,Q ≤ ch−α+1−n,

where c depends on L only, thus we conclude that

|∇xR̃(x, y)| ≤ c

rη
h(α+2−n)(1−δ)h(−α+1−n)δ =

c

rη
h1−n+η,

where η = α2

1+α . Thus

|∇xR̃(x, y)| ≤ c

rη
|x− y|η+1−n,(4.15)

where η = α2

1+α and c depends on L only. Concerning Γ+ we have

|∇xΓ+(Φ(x), y) −∇xΓ+(x, y)|

= |DΦ(x)T∇Γ+(·, y)|Φ(x) −∇xΓ+(x, y)|

≤ |(DΦ(x)T − I)∇Γ+(·, y)|Φ(x)|
+|∇Γ+(·, y)|Φ(x) −∇xΓ+(x, y)|

≤ c

rα
‖∇Γ+(·, y)‖L∞(Qr1 )|x− Φ(x)| + |∇Γ+(·, y)|α,Q|Φ(x) − x|α

≤ c′

rα
h1+αh1−n +

c

rα
2 h

−α+1−nh(1+α)α

≤ c

rα
2 h

1−n+α2

,

where c depends on k, n, α, and L only.

Proof of Proposition 3.5. Let us fix y ∈ S2r, where S2r is the set introduced in
Definition 3.1, and let us consider f(y, ·). We have that

Δwf(y, w) = 0 in CΩD.(4.16)

For w ∈ S2r, by (2.6), (3.10), and (3.12) we have

|f(y, w)| ≤ C(r, L,M)‖ΛD1
− ΛD2

‖ = ε̃.(4.17)
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Let us now estimate f(y, w) when w ∈ G. Again recalling Definition 3.1, we define
Gh = {x ∈ G : dist(x,ΩD) ≥ h}. For every w ∈ Gh, we have that

|SD1(y, w)| ≤ |k − 1|
∫
D1

|∇xΓD1(x, y)| |∇xΓD2(x,w)|dx

≤ c

∫
D1

|x− w|1−ndx ≤ ch1−n.(4.18)

Similarly, |SD2(y, w)| ≤ ch1−n. Then we conclude that

|f(y, w)| ≤ ch1−n in Gh.

At this stage we shall make use of the three spheres inequality for supremum norms
of harmonic functions v; see, for instance, [K-M], [K]. For every l1, l2, 1 < l1 < l2
and for every x ∈ G ∪ S2r ∪ Ωr there exists τ ∈ (0, 1], depending only on l1, l2 and n
such that

‖v‖L∞(Bl1r(x)) ≤ ‖v‖τL∞(Br(x))‖v‖1−τ
L∞(Bl2r(x)).

We apply it for v(·) = f(y, ·) in the ball Br(x), where x ∈ S2r be such that dist(x,Γ) =
r/2, where Γ = {x ∈ R

n : dist(x,Ω) = r} ⊂ ∂S2r, l1 = 3r = 3r/2, and l2 = 4r = 2r,
then we obtain

‖f(y, ·)‖L∞(B3r/2(x)) ≤ ‖f(y, ·)‖τL∞(Br/2(x))‖f(y, ·)‖1−τ
L∞(B2r(x)).(4.19)

For every w ∈ Gh, we denote with γ a simple arc in G ∪ Ωr ∪ S2r joining x to
w. Let us define {xi}, i = 1, . . . , s as follows x1 = x, xi+1 = γ(ti), where ti =
max{t : |γ(t) − xi| = r} if |xi − w| > r, otherwise let i = s and stop the process. By
construction, the balls Br/2(xi) are pairwise disjoint, |xi+1−xi| = r for i = 1, . . . , s−1,
|xs − w| ≤ r. For (2.1), there exists β such that s ≤ β. An iterated application of
the three spheres inequality (4.19) for f(y, ·) (see, for instance, [A-B-R-V, pg. 780],
[A-DB, Appendix E]) gives that for any r, 0 < r < r,

‖f(y, ·)‖L∞(Br/2(w)) ≤ ‖f(y, ·)‖τs

L∞(Br/2(x))‖f(y, ·)‖1−τs

L∞(G).(4.20)

We can now estimate the right-hand side of (4.20) by (4.17) and (4.18) and obtain,
for any r, 0 < r < r

‖f(y, ·)‖L∞(Br/2(w)) ≤ c(h1−n)1−τs

ετ
s ≤ c(h1−n)Aε

eβ ,(4.21)

where β̃ = τβ and A = 1 − β̃. Let O ∈ ∂D1, as defined in (3.3), that is

d(O,D2) = dμ(D1, D2).

There exists a C1,α neighborhood U of O in ∂ΩD with constants r and L. Thus there
exists a nontangential vector field ν̃, defined on U such that the truncated cone

C(O, ν̃(O), θ, r) =

{
x ∈ R

n :
(x−O) · ν̃(O)

|x−O| > cos θ, |x−O| < r

}
(4.22)

satisfies

C(O, ν̃(O), θ, r) ⊂ G,
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where θ = arctan(1/L). Let us define

λ1 = min

{
r

1 + sin θ
,

r

3 sin θ

}
,

θ1 = arcsin

(
sin θ

4

)
,

w1 = O + λ1ν,

ρ1 = λ1 sin θ1.

We have that Bρ1(w1) ⊂ C(O, ν̃(O), θ1, r), B4ρ1(w1) ⊂ C(O, ν̃(O), θ, r). Let w = w1,
since ρ1 ≤ r/2, we can use (4.21) in the ball Bρ1(w) and we can approach O ∈ ∂D1 by
constructing a sequence of balls contained in the cone C(O, ν̃(O), θ1, r). We define,
for k ≥ 2

wk = O + λkν, λk = χλk−1, ρk = χρk−1, with χ =
1 − sin θ1

1 + sin θ1
.

Hence ρk = χk−1ρ1, λk = χk−1λ1, and

Bρk+1
(wk+1) ⊂ Bρ3k

(wk) ⊂ Bρ4k
(wk) ⊂ C(O, ν, θ, r).

Denoting d(k) = |wk − O| − ρk = λk − ρk, we have d(k) = χk−1d(1), with d(1) =
λ1(1 − sin θ). For any r, 0 < r ≤ d(1), let k(r) be the smallest integer such that
d(k) ≤ r, that is ∣∣ log r

d(1)

∣∣∣∣ logχ
∣∣ ≤ k(r) − 1 ≤

∣∣ log r
d(1)

∣∣∣∣ logχ
∣∣ + 1.

By an iterated application of the three spheres inequality over the chain of balls
Bρ1(w1), . . . , Bρk(r)

(wk(r)), we have

‖f(y, ·)‖L∞(Bρk(r)
(wk(r))) ≤ c(h1−n)A(1−τk(r)−1)εβτ

k(r)−1

≤ c(h1−n)Aεβτ
k(r)−1

,(4.23)

for 0 < r < cr, where 0 < c < 1 depends on L only.

Let us now consider f(y, w) as a function of y. First observe that

Δyf(y, w) = 0 in CΩD, ∀ w ∈ CΩD.

For y, w ∈ Gh, y �= w, using (3.12), we have

|SD1(y, w)| ≤ c

∫
D1

|x− y|1−n|x− w|1−ndx ≤ ch2−n;

similarly, for SD2
. Therefore

|f(y, w)| ≤ ch2−2n with y, w ∈ Gh.

Finally, for y ∈ S2r and w ∈ Gh, using (4.23), we have

|f(y, w)| ≤ c(h1−n)Aεβτ
k(h)−1

.
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Proceeding as before, let us fix w ∈ G such that dist(w, ∂ΩD) = h and ỹ ∈ S2r such
that dist(ỹ,Γ) = r/2. Taking r = r/2, l1 = 3r, l2 = 4r, y1 = O + λ1ν, and using
iteratively the three spheres inequality, we have

‖f(y, w)‖L∞(Br/2(y1)) ≤ ‖f(y, w)‖τs

L∞(Br/2(ey))‖f(y, w)‖1−τs

L∞(G),

where τ and s are the same number established previously. Therefore

‖f(y, w)‖τs

L∞(Br/2(y1))
≤ c(h2−2n)1−τs

(h1−n)Aτs

(εβτ
k(h)−1

)τ
s

≤ c(h2−2n)1−γ(h1−n)Aτs

(εβτ
k(h)−1

)γ

≤ c(h2−2n)A
′
(εβτ

k(h)−1

)γ ,

where γ = τβ , with β as before, so 0 < γ < 1, and A′ = Aτ s + 1 − γ. Once more, let
us apply iteratively the three spheres inequality over a chain of balls contained in a
cone with vertex in O and we obtain

‖f(y, w)‖L∞(Bρk
(yk(h))) ≤ c(h2−2n)A

′(1−τk(h)−1)(εβτ
k(h)−1

)γτ
k(h)−1

.(4.24)

Now, from (4.24), choosing y = w = hν(O), where ν(O) is the exterior unit normal
to ∂ΩD in O, we obtain

|f(y, y)| ≤ chA′′
(εβτ

k(h)−1

)γτ
k(h)−1

,(4.25)

where A′′ = −(2 − 2n)βA′ > 0. We observe that, for 0 < h < cr, where 0 < c < 1
depends on L, k(h) ≤ c| log h| = −c log h, so we can write

τk(h) = e−c log h log(τ) = h−c log τ = hc| log τ | = hF ,

with F = c| log τ |. Therefore

|f(y, y)| ≤ h−A′′
εBτk(h)

= e−A′′ log heBτk(h) log ε

= e−A′′ log h+B′hF log ε.

Then in (4.25) we obtain that

|f(y, y)| ≤ e−A′ log h+B′hF log ε =
εB

′hF

hA′ .

Proof of Proposition 3.6. Let us consider y = hν(O), where ν(O) is the exterior
outer normal to ∂ΩD in O with O defined as in (3.3), 0 < h < r0, where r0 is
the number introduced in Proposition 3.4 and x ∈ D1 such that |x − y| < r, with
0 < r < r0. Let us first observe that since O ∈ ∂D1 and x ∈ D1, for ΓD1 we have the
asymptotic formula (3.14), which says that∣∣∣∣∇xΓD1(x, y) −∇xΓ+(x, y)

∣∣∣∣ ≤ c1|x− y|1−n+δ.

Furthermore, since we are in the situation in which x ∈ D1 and y /∈ D1, for (3.11),
Γ+(x, y) = 2/(k+1)Γ(x, y), where Γ(x, y) denotes the standard fundamental solution
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of the Laplace operator. Let us now consider ΓD2
(x, y). With our choice of O, x and

y, we know that y /∈ D2 but we do not have any information on x; that is, we do not
know in which side of the interface ∂D2 it is. Thus we have to distinguish different
situations.

If x ∈ Br(O)∩D1 ∩D2, then we have the asymptotic formula (3.11) for ΓD2 and
from Lemma 3.1 of [A] the following formula holds:

∇xΓD1
(x, y) · ∇xΓD2(x, y) ≥ c|x− y|2−2n.(4.26)

Now consider the case x ∈ (D1 �D2)∩Br(O). In this region let us consider a smaller
ball Bρ(O) centered in O with radius ρ where 0 < ρ < dμ. Since the definition of dμ,
we have Bρ ∩D2 = ∅. If x and y are in Bρ(O), we have{

Δx

(
ΓD2(x, y) − Γ(x, y)

)
= 0 in Bρ(O),[

ΓD2
(x, y) − Γ(x, y)

]
|∂Bρ(O)

≤ cρ2−n.
(4.27)

Thus by the maximum principle∣∣ΓD2(x, y) − Γ(x, y)
∣∣ ≤ c1ρ

2−n ∀x, y ∈ Bρ(O),(4.28)

and by interior gradient bound∣∣∇xΓD2(x, y) −∇xΓ(x, y)
∣∣ ≤ c2ρ

1−n ∀x ∈ Bρ/2(O),∀ y ∈ Bρ(O).(4.29)

Thus, using Lemma 3.1 of [A], in Bρ/2(O) we obtain the formula

∇xΓD1(x, y) · ∇xΓD2(x, y) ≥ c3|x− y|2−2n − c4ρ
2−2n.(4.30)

Let us consider h ≤ r0/2 and Br(O) = {x ∈ R
n : |x−O| < r}, with 0 < r < r0. Then

we have

|SD1(y, y)|

= |k − 1|

∣∣∣∣∣∣∣
∫

D1∩Br(O)

∇ΓD1
· ∇ΓD2

dx +

∫
D1�Br(O)

∇ΓD1
· ∇ΓD2

dx

∣∣∣∣∣∣∣

≥ |k − 1|

∣∣∣∣∣∣∣
∫

D1∩Br(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣− |k − 1|
∣∣∣∣

∫
D1�Br(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣∣∣∣
The first term can be estimated as follows:∣∣∣∣

∫
D1∩Br(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣
=

∣∣∣∣
∫

(D1∩D2)∩Br(O)

∇ΓD1
· ∇ΓD2

dx +

∫
(D1�D2)∩Br(O)

∇ΓD1
· ∇ΓD2

dx

∣∣∣∣
≥

∣∣∣∣
∫

(D1∩D2)∩Br(O)

∇ΓD1 · ∇ΓD2dx +

∫
(D1�D2)∩Bρ(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣
−
∣∣∣∣
∫

[(D1�D2)∩Br(O)]�Bρ(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣.



216 G. ALESSANDRINI AND M. DI CRISTO

In conclusion, choosing ρ = dμ/2 and using (4.26) and (3.12) we obtain

|SD(y, y)| ≥ c1

∫
[(D1∩D2)∩Br(O)]∪[(D1�D2)∩Bdμ/2(O)]

|x− y|2−2ndx

−c2

∫
[(D1�D2)∩Br(O)]�Bdμ/2(O)

|x− y|1−n|x− y|1−ndx

−c3

∫
D1�Br(O)

|x− y|1−n|x− y|1−ndx

≥ c4h
2−n − c5d

2−2n
μ − c7.
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AXISYMMETRIC TE-MODES IN A SELF-FOCUSING DIELECTRIC∗

CHARLES A. STUART† AND HUAN-SONG ZHOU‡

Abstract. We extend and improve earlier work on the existence of positive solutions u ∈
H1

0 (0,∞) of the nonlinear eigenvalue problem

u′′(r) − 3

4r2
u(r) + g

(
r,

u(r)
√
r

)
u(r) − k2u(r) = 0 for r > 0,

where g ∈ C([0,∞)2) is such that
(i) 0 < A ≤ g(r, s) ≤ B < ∞ for all r, s ≥ 0, and
(ii) g(r, s) is a nondecreasing function of s for each r ≥ 0.

This problem is central to the study of guided TE-modes propagating in an axisymmetric, self-
focusing dielectric such as an optical fiber. The function g is a nonlinear refractive index and we are
now able to dispense with unnecessary restrictions about its behavior.

Key words. Nonlinear dielectric, guided waves, mountain pass theorem

AMS subject classifications. 35Q60, 78A60, 34B16

DOI. 10.1137/S0036141004441751

1. Introduction. This paper is concerned with the existence of positive solu-
tions u ∈ H1

0 (0,∞) of the nonlinear eigenvalue problem

u′′(r) − 3

4r2
u(r) + g

(
r,
u(r)√

r

)
u(r) − k2u(r) = 0 for r > 0,(1.1)

where g ∈ C([0,∞)2) is such that
(i) 0 < A ≤ g(r, s) ≤ B < ∞ for all r, s ≥ 0, and
(ii) g(r, s) is a nondecreasing function of s for each r ≥ 0.

As was shown in [9], this problem is central to the study of guided transverse electric
field modes (TE-modes) propagating in an axisymmetric, self-focusing dielectric such
as an optical fiber. These modes are typical examples of what are more generally
known as spatial solitons [8]. The derivation of (1.1) from Maxwell’s equation as a
model for guided waves in a self-focusing dielectric medium is reviewed in section 2.

The present contribution extends and improves our earlier work [12] on (1.1),
which dealt only with the case of a homogeneous medium, g(r, s) = g(s). In this
situation, our main result, Theorem 5.2 in section 5, shows that (1.1) has a solution,
provided that g(0) < k2 < lims→∞ g(s). In [12], we obtained the same conclusion, but
the function g was required to satisfy several additional technical conditions, namely,
(H1)–(H3) in Theorem 2.1 of [12], which we are now able to avoid. This improvement
has been made possible by recent progress on several related problems [1, 4, 5, 13, 15],
which will be discussed presently.
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Our approach to (1.1) is based on the characterization of solutions of (1.1) as
critical points of an energy functional Φk : H1

0 (0,∞) → R. For the values of k for which
there are positive solutions, this functional is indefinite in the sense that inf Φk =
−∞ and sup Φk = ∞, and the critical points which we discuss, are saddle points
of mountain pass type. Furthermore, by (i), all the terms in Φk(u) have quadratic
growth as u → ∞ in H1

0 (0,∞). As we pointed out in [12], this means that the main
difficulty, which has to be overcome in using a mountain pass method, is to establish
the boundedness in H1

0 (0,∞) of the Palais–Smale sequences, which are found due to
the mountain pass geometry of Φk. It was for this step in [12] that we required the
undesirable additional hypotheses about g mentioned above. Later, using an argument
from [4], we were able to establish the boundedness of Palais–Smale sequences for a
similar energy functional in [13] without such assumptions about g. We now return to
the physical problem (1.1) and, by following the same approach, we are able to avoid
the unnecessary restrictions on g and also to extend the discussion to inhomogeneous
media. Compared to our work in [13], there is a further improvement here in that we
are now able to avoid any assumptions about the behavior of g(r, s) as r → ∞. In
[13] we assumed that g(r, 0) is independent of r and that limr→∞ g∞(r) exists, where
g∞(r) = lims→∞ g(r, s). Again, this kind of situation has been treated recently in a
similar type of problem [5].

In (1.1) the lack of compactness in the embeddings of H1
0 (0,∞) into spaces such

as Lp(0,∞) is compensated for by the radial symmetry of the underlying problem,
which means that g depends on r−1/2u(r) rather than simply on u(r). The related
work in [1, 4, 5] deals with elliptic equations without such radial symmetry and the
lack of compactness is handled by arguments of the concentration-compactness type.

Finally, let us mention that (1.1) was first treated by a constrained variational
principle in which k2 occurs as a Lagrange multiplier [9]. In that method the constraint
is the power of the guided mode and so it has the advantage of establishing the
existence of such modes with prescribed power. On the other hand, it does not
yield the existence of guided modes for all wave numbers in the admissible range.
We have restricted our attention to positive solutions of (1.1) since they lead to the
fundamental TE-mode but, as Ruppen has shown [7], an infinity of higher modes
exist under suitable assumptions about g. Guided TE-modes can also propagate in a
defocusing axisymmetric medium under appropriate conditions [6].

The rest of this paper is organized as follows. In the next section we show how
(1.1) is related to TE-modes as special solutions of Maxwell’s equations in a nonlinear
dielectric. The variational formulation on which our work is based is set out in section
3 and the mountain pass structure of the associated energy functional is established in
section 4. The main result is Theorem 5.2, which asserts the existence of solutions of
(1.1) provided that −Λ0 < k2 < −Λ∞, where Λ0 and Λ∞ are numbers determined by
the functions g0(r) = g(r, 0) and g∞(r) = lims→∞ g(r, s), respectively, in (4.2), (4.3).
This result is established by showing that any Palais–Smale sequence (4.4), which
arises from the mountain pass geometry of Φk, has a strongly convergent subsequence.
Finally, we show that, if k2 /∈ [−Λ0,−Λ∞], then (1.1) has no positive solutions in
H1

0 (0,∞).

2. Guided TE-modes. In a medium without free charges, Maxwell’s equations
can be written as

(1) ∂tB = −c∇∧ E, (2) ∂tD = c∇∧H,

(3) ∇ ·B = 0, (4) ∇ ·D = 0,
(2.1)
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where c > 0 is the speed of light in a vacuum.
A field F : R

4 → R
3 is monochromatic if it has the form

F (x, t) = F1(x) cosωt + F2(x) sinωt for x ∈ R
3 and t ∈ R(2.2)

for some frequency ω > 0 and functions F1, F2 : R
3 → R

3. We are concerned with
solutions of (2.1) in which all the fields are monochromatic.

In this case, the constitutive assumptions used in the study of wave propagation
in optical fibers can be expressed in the form

H = B and D(x, t) = ε
(
ω, x,

1

2

[
|E1(x)|2 + |E2(x)|2

])
E(x, t)(2.3)

when E(x, t) = E1(x) cosωt +E2(x) sinωt, where the function ε : J × R
3 × [0,∞) →

(0,∞) is the dielectric response for an isotropic dielectric medium without absorption
for frequencies ω in the interval J.

When the medium is axisymmetric (as in an optical fiber), it is convenient to
use cylindrical polar coordinates (r, θ, z), where the z-axis is chosen to be the axis of
symmetry of the medium and we use the standard notation

ir = (cos θ, sin θ, 0), iθ = (− sin θ, cos θ, 0), iz = (0, 0, 1).

Then the response has the following properties:

(A)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

For ω ∈ J, there is a function ε(ω, ·, ·) : [0,∞) × [0,∞) → (0,∞)
such that ε (ω, x, s) = ε (ω, r, s) , where ε (ω, ·) ∈ C([0,∞)2) and
there are constants a(ω) and b(ω) such that

0 < a(ω) ≤ ε(ω, r, s) ≤ b(ω) < ∞ for all r, s ≥ 0.

Furthermore, ε (ω, r, s) → ε (ω, r, 0) as s → 0, uniformly for r ≥ 0.

A self-focusing medium is characterized by the following further property of the di-
electric response:

(AS) For ω ∈ J and r ≥ 0 fixed, ε(ω, r, s) is a nondecreasing function of s.

A field F : R
4 → R

3 is a traveling wave if it has the form

F (x, t) = w(x− tξ) for x ∈ R
3 and t ∈ R(2.4)

for some nonzero vector ξ ∈ R
3 and function w : R

3 → R
3. Here |ξ| is the wave speed

and ξ/ |ξ| is the direction of propagation. For waves propagating in the direction of
the axis of symmetry, we can suppose that ξ = (0, 0, s) for some wave speed s > 0.

A field F : R
4 → R

3 is axisymmetric (with respect to the x3-axis) if

F (Γθx, t) = ΓθF (x, t) for x ∈ R
3 and t ∈ R

for all rotations Γθ around the x3-axis.
A TE-mode is a solution of Maxwell’s equations in which the electric field is an

axisymmetric, monochromatic traveling wave which is everywhere transverse to the
direction of propagation. In such modes, the electric field can be expressed as

E(x, t) = v(r)iθ cos(kz − ωt),(2.5)
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where v : [0,∞) → R is the amplitude and k > 0 is the wave number, related to the
wave speed by s = ω/k. To ensure that (2.5) defines a field which is continuously
differentiable on R

4, we must suppose that v has the properties

v ∈ C1([0,∞)) and v(0) = 0.(2.6)

To establish the existence of TE-modes, one must show that there exist functions
v 
≡ 0 satisfying (2.6) and constants k > 0 and ω ∈ J such that (2.1), (2.3) are
satisfied by electromagnetic fields, where E has the form (2.5). As is shown in [9],
this reduces to satisfying the second order differential equation

v′′(r) +
1

r
v′(r) − 1

r2
v(r) +

(ω
c

)2

ε

(
ω, r,

1

2
v(r)2

)
v(r) − k2v(r) = 0 for r > 0,

where v ∈ C2((0,∞)) and v(0) = 0.(2.7)

In fact, if v satisfies (2.7) and E is defined by (2.5), a complete solution of (2.1) and
(2.3) is obtained by setting

D(x, t) = ε

(
ω, r,

1

2
v(r)2

)
v(r)iθ cos(kz − ωt) and(2.8)

B(x, t) = H(x, t)

=
c

ω

{
1

r
[rv(r)]′iz sin(kz − ωt) − kv(r)ir cos(kz − ωt)

}
.

A guided TE-mode must also satisfy the following guidance conditions, which
ensure that the electromagnetic energy is finite and that all the fields decay to zero
as the distance from the axis of symmetry becomes infinite. As is shown in [9], these
physical boundary conditions reduce to∫ ∞

0

{v(r)2 + v′(r)2} rdr < ∞,(2.9)

v(r) → 0 and v′(r) → 0 as r → ∞(2.10)

for TE-modes in the form (2.5).
From now on we fix a value of ω in J and try to find pairs (k, v) such that

(2.7)–(2.10) are satisfied. To simplify the notation we set

g(r, s) =
(ω
c

)2

ε

(
ω, r,

1

2
s2

)
for r ≥ 0 and s ∈ R(2.11)

and

u(r) = r1/2v(r).(2.12)

Equation (2.7) becomes

u′′(r) − 3

4r2
u(r) + g

(
r,
u(r)√

r

)
u(r) − k2u(r) = 0 for r > 0(2.13)

and, as we verify in Theorem 5.2, the other conditions in (2.7)–(2.10) are all satisfied
provided that u belongs to the Sobolev space

H = H1
0 (0,∞) = {u ∈ H1(0,∞) : u(0) = 0}.(2.14)
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More precisely, if (k, u) ∈ (0,∞)×H and (2.13) is satisfied in the weak sense, namely,

∫ ∞

0

u′(r)ϕ′(r)dr =

∫ ∞

0

{
g

(
r,
u(r)√

r

)
− k2 − 3

4r2

}
u(r)ϕ(r)dr for all ϕ ∈ C∞

0 ((0,∞)),

(2.15)

then the function v defined by (2.12) satisfies (2.7)–(2.10) and, consequently, it gen-
erates a guided TE-mode through the formulae (2.5) and (2.8).

The remainder of the paper deals with problem (2.13) so, for future reference, we
recall some basic properties of elements of H.

We reserve 〈·, ·〉 and | · |2 as notation for the usual scalar product and norm on
L2(0,∞) and, more generally, | · |p denotes the usual norm on Lp(0,∞) for 1 ≤ p ≤ ∞.
Then H is a Hilbert space with scalar product

〈u, v〉1 = 〈u′, v′〉 + 〈u, v〉 =

∫ ∞

0

[u′v′ + uv]dr(2.16)

and norm

‖u‖1 = {|u′|22 + |u|22}1/2.(2.17)

An element z ∈ H is, after modification on a set of measure zero, continuous on [0,∞)
and satisfies the inequalities

|z|2∞ ≤ |z|2|z′|2,(2.18)

r−1/2|z(r)| ≤ |z′|2 for all r > 0,(2.19)

lim
r→0

r−1/2z(r) = 0,(2.20)

|z/r|2 ≤ 2|z′|2 (Hardy’s inequality),(2.21)

and ∫ ∞

0

[
z′ +

z

2r

]2

dr =

∫ ∞

0

{
(z′)2 +

3z2

4r2

}
dr ≤ 4|z′|22.(2.22)

3. Variational formulation. Positive solutions of (2.15) are the critical points
of a functional Φk : H → R, which we now introduce. With g defined by (2.11) for a
response satisfying conditions (A) and (AS), we set

g0(r) = g(r, 0) and g∞(r) = lim
s→∞

g(r, s),(3.1)

g̃(r, s) = g(r, s) − g0(r),(3.2)

and then

G(r, s) =

∫ s

0

g(r, τ+)τdτ =
1

2
g0(r)s

2 + G̃(r, s) with G̃(r, s) =

∫ s

0

g̃(r, τ+)τdτ

and G(r, s) =

∫ s

0

g(r, r−1/2τ+)τdτ = rG(r, r−1/2s)(3.3)

=
1

2
g0(r)s

2 + rG̃(r, r−1/2s).(3.4)
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Note that, for all r > 0, G(r, ·) ∈ C1(R) with

∂sG(r, s) = g(r, r−1/2s+)s

and

1

2
A(ω)s2 ≤ 1

2
g0(r)s

2 ≤ G(r, s) ≤ 1

2
g∞(r)s2 ≤ 1

2
B(ω)s2(3.5)

for all r > 0 and s ∈ R, where A(ω) =
(
ω
c

)2
a(ω) and B(ω) =

(
ω
c

)2
b(ω).

Recalling (2.21), we can now define a functional Φk on H by setting

Φk(u) =
1

2

∫ ∞

0

{
|u′(r)|2 +

3

4r2
u(r)2 + k2u(r)2

}
dr −

∫ ∞

0

G(r, u(r))dr

for u ∈ H.
Lemma 3.1. Under assumptions (A) and (AS), we have the following:
(a) Φk ∈ C1(H,R) and

Φ′
k(u)v =

∫ ∞

0

u′(r)v′(r)dr −
∫ ∞

0

{
g

(
r,
u(r)+√

r

)
− k2 − 3

4r2

}
u(r)v(r)dr(3.6)

for all u, v ∈ H.
(b) Furthermore, for t > 0 and u ∈ H,

Φk(tu) ≤ 1

2
(t2 − 1)Φ′

k(u)u + Φk(u).

Remark 3.1. It follows from (3.6) that if Φ′
k(u) = 0 and u ≥ 0, then (k, u) satisfies

(2.15).
Proof. (a) First, we note that G : (0,∞) × R → R is a function of Carathéodory

type having the following properties:
(i) G(r, ·) ∈ C1(R) for all r > 0.
(ii) 0 ≤ G(r, s) ≤ 1

2B(ω)s2 for all s ∈ R.
(iii) |∂sG(r, s)| ≤ B(ω)|s| for all s ∈ R.

Using standard results about Nemytskii operators [14], it follows easily that

u �−→
∫ ∞

0

G(r, u(r))dr

is a continuously Fréchet differentiable mapping of L2(0,∞) into R. (See Theorem 2.8
of [2], for example.) Since H is continuously embedded in L2(0,∞), the same is true
when it is considered as mapping from H into R.

Using (2.21), it follows immediately that∫ ∞

0

{
u′v′ +

3

4r2
uv + k2uv

}
dr

is a bounded, symmetric bilinear form on H. Thus

u �−→
∫ ∞

0

{
u′(r)2 +

3

4r2
u(r)2 + k2u(r)2

}
dr

is a continuously Fréchet differentiable mapping of H into R.
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Combining these observations we see that Φk ∈ C1(H,R).
(b) For t > 0 and u ∈ H,

Φk(tu) =
t2

2

∫ ∞

0

{
u′(r)2 +

3

4r2
u(r)2 + k2u(r)2

}
dr −

∫ ∞

0

G(r, tu(r))dr

=
t2

2

[
Φ′

k(u)u +

∫ ∞

0

g

(
r,
u(r)+√

r

)
u(r)2dr

]
−
∫ ∞

0

G(r, tu(r))dr

=
t2

2
Φ′

k(u)u +

∫ ∞

0

{
1

2
g

(
r,
u(r)+√

r

)
t2u(r)2 −G(r, tu(r))

}
dr.

For r > 0 fixed, set

h(t) =
1

2
g

(
r,
u(r)+√

r

)
t2u(r)2 −G(r, tu(r)).

Then

h′(t) = g

(
r,
u(r)+√

r

)
tu(r)2 − [∂sG(r, tu(r))]u(r)

= g

(
r,
u(r)+√

r

)
tu(r)2 − g(r, r−1/2tu(r)+)tu(r)2

= tu(r)2
{
g

(
r,
u(r)+√

r

)
− g

(
r,
tu(r)+√

r

)}
.

The monotonicity of g(r, ·) shows that h′(t) ≥ 0 for 0 < t ≤ 1 and h′(t) ≤ 0 for t > 1.
Consequently, h(t) ≤ h(1) for all t > 0 and so

1

2
g

(
r,
u(r)+√

r

)
t2u(r)2 −G(r, tu(r)) ≤ 1

2
g

(
r,
u(r)+√

r

)
u(r)2 −G(r, u(r)).

Thus

Φk(tu) ≤ t2

2
Φ′

k(u)u +

∫ ∞

0

{
1

2
g

(
r,
u(r)+√

r

)
u(r)2 −G(r, u(r))

}
dr

=
t2

2
Φ′

k(u)u + Φk(u) − 1

2
Φ′

k(u)u.

4. Mountain pass geometry. Recalling (3.5), we set

(4.1)

Λ0 = inf

{∫ ∞

0

(
|u′(r)|2 +

[
3

4r2
− g0(r)

]
u(r)2

)
dr : u ∈ H and

∫ ∞

0

u(r)2dr = 1

}
(4.2)

Λ∞ = inf

{∫ ∞

0

(
|u′(r)|2 +

[
3

4r2
− g∞(r)

]
u(r)2

)
dr : u ∈ H and

∫ ∞

0

u(r)2dr = 1

}

and observe that

(k2 + Λ∞)

∫ ∞

0

u(r)2dr ≤ Φk(u) ≤ (k2 + Λ0)

∫ ∞

0

u(r)2dr
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for all u ∈ H. Furthermore, since

inf

{∫ ∞

0

(
|u′(r)|2 +

3

4r2
u(r)2

)
dr : u ∈ H and

∫ ∞

0

u(r)2dr = 1

}
= 0,

as is easily seen using (2.21), it follows from (3.5) that

−1

2
B(ω) ≤ Λ∞ ≤ Λ0 ≤ −1

2
A(ω) < 0.(4.3)

Lemma 4.1. Consider k2 > −Λ0. Then

(a)

(∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
+ k2 − g0(r)

]
u(r)2

}
dr

)1/2

defines a norm, denoted by ‖u‖0 , which is equivalent to the usual norm ‖u‖1 on H
defined by (2.17).

(b) There exist constants α, ρ > 0 such that

Φk(u) ≥ α > 0 for all u ∈ Sρ = {u ∈ H : ‖u‖0 = ρ}.

Remark 4.1. The norm ‖u‖0 is derived from a scalar product on H which we
denote by 〈·, ·〉0 .

Proof. (a) First we note that∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
+ k2 − g0(r)

]
u(r)2

}
dr

≤
∫ ∞

0

{|u′(r)|2 + 3|u′(r)|2 + k2u(r)2}dr

≤ max{4, k2} ‖u‖2
1 for all u ∈ H

by (2.21) and g0 ≥ 0.
On the other hand, for t ∈ (0, 1),∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
+ k2 − g0(r)

]
u(r)2

}
dr

= k2

∫ ∞

0

u(r)2dr + t

∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
− g0(r)

]
u(r)2

}
dr

+(1 − t)

∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
− g0(r)

]
u(r)2

}
dr

≥ (k2 + tΛ0)

∫ ∞

0

u(r)2dr + (1 − t)

∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
− g0(r)

]
u(r)2

}
dr

≥ {k2 + tΛ0 − (1 − t) |g0|∞}
∫ ∞

0

u(r)2dr + (1 − t)

∫ ∞

0

|u′(r)|2dr

for all u ∈ H. Since k2 + Λ0 > 0, we can choose tk ∈ (0, 1) such that k2 + tkΛ0 − (1−
tk) |g0|∞ > 0, and then∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
+ k2 − g0(r)

]
u(r)2

}
dr

≥ min{k2 + tΛ0 − (1 − t) |g0|∞ , 1 − tk} ‖u‖2
1 for all u ∈ H.
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(b) By (2.19) and part (a), there is a constant C such that

r−1/2 |u(r)| ≤ ‖u‖1 ≤ C ‖u‖0 for all r > 0 and u ∈ H.

It follows from (A) that, given any η > 0, there exists γ > 0 such that

g

(
r,
u(r)√

r

)
≤ g(r, 0) + η = g0(r) + η

for all r > 0 and all u ∈ H with ‖u‖0 < γ. Hence

G(r, u(r)) = r

∫ u(r)/
√
r

0

g(r, τ+)τdτ ≤ 1

2
{g0(r) + η}u(r)2

and so, for ‖u‖0 < γ,

Φk(u) =
1

2

∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
+ k2

]
u(r)2

}
dr −

∫ ∞

0

G(r, u(r))dr

≥ 1

2

∫ ∞

0

{
|u′(r)|2 +

3

4r2
u(r)2 + [k2 − g0(r) − η]u(r)2

}
dr

=
1

2
‖u‖2

0 −
η

2
|u|22

≥ 1

2
‖u‖2

0 −
ηC2

2
‖u‖2

0 =
1

2
(1 − ηC2) ‖u‖2

0 .

Choosing η = 1/2C2, it suffices to set ρ = γ/2 and α = ρ2/4.
Lemma 4.2. Suppose that −Λ0 < k2 < −Λ∞. There exists e ∈ H such that

‖e‖0 > ρ and Φk(e) < 0,

where ρ is given by Lemma 4.1(b).
Proof. Choose ε > 0 such that k2 + Λ∞ + ε < 0. By the definition of Λ∞, there

exists an element w ∈ H, w 
≡ 0 such that∫ ∞

0

{
|w′(r)|2 +

[
3

4r2
− g∞(r)

]
w(r)2

}
dr < (Λ∞ + ε)

∫ ∞

0

w(r)2dr

and, replacing w by |w| , we may assume that w ≥ 0. Now, for t > 0,

Φk(tw)

t2
=

1

2

∫ ∞

0

{
|w′(r)|2 +

[
3

4r2
+ k2

]
w(r)2

}
dr − t−2

∫ ∞

0

G(r, tw(r))dr,

where

0 ≤ t−2G(r, tw(r)) ≤ 1

2
B(ω)w(r)2

by (3.5). The dominated convergence theorem implies that

lim
t→∞

Φk(tw)

t2
=

1

2

∫ ∞

0

{
|w′(r)|2 +

[
3

4r2
+ k2

]
w(r)2

}
dr−

∫ ∞

0

lim
t→∞

t−2G(r, tw(r))dr.

For r, s > 0,

s−2G(r, s) = rs−2

∫ s/
√
r

0

g(r, τ)τdτ =

∫ 1

0

g

(
r,

sσ√
r

)
σdσ → g∞(r)

∫ 1

0

σdσ =
1

2
g∞(r)
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as s → ∞ by dominated convergence. Hence

lim
t→∞

t−2G(r, tw(r)) = lim
t→∞

[tw(r)]−2G(r, tw(r))w(r)2 =
1

2
g∞(r)w(r)2

if w(r) > 0, whereas limt→∞ t−2G(r, tw(r)) = 0 if w(r) = 0. Thus, since w ≥ 0, we
have that

lim
t→∞

Φk(tw)

t2
=

1

2

∫ ∞

0

{
|w′(r)|2 +

[
3

4r2
+ k2

]
w(r)2

}
dr −

∫ ∞

0

[
1

2
g∞(r)w(r)2

]
dr

=
1

2

∫ ∞

0

{
|w′(r)|2 +

[
3

4r2
− g∞(r)

]
w(r)2

}
dr +

1

2
k2

∫ ∞

0

w(r)2dr

<
1

2
(Λ∞ + ε + k2)

∫ ∞

0

w(r)2dr < 0

by the choice of w and ε. It suffices to set e = tw for t large enough.
Lemmas 4.1 and 4.2 show that for −Λ0 < k2 < −Λ∞, the functional Φk has what

is called the mountain pass geometry. Indeed, setting

c = inf
γ∈Γ

max
t∈[0,1]

Φk(γ(t)), where

Γ = {γ ∈ C([0, 1], H) : γ(0) = 0 and γ(1) = e},

the mountain pass geometry described in Lemmas 4.1 and 4.2 implies that

there exists a sequence {un} ⊂ H such that(4.4)

Φk(un)
n−→ c > 0,(4.5)

Φ′
k(un)un

n−→ 0,(4.6)

Φ′
k(un)ϕ

n−→ 0, for all ϕ ∈ H.(4.7)

The properties (4.5) and (4.7) follow from the existence of what is often called a
Palais–Smale sequence at level c, and the fact that the additional property (4.6) is
also available was first shown by Cerami; see [3, Chapter IV], for example. If {un}
has a subsequence converging strongly u in H,

Φ′
k(un)ϕ

n−→ 0 for all ϕ ∈ H

and we have a critical point of Φkwith Φk(u) = c, so u 
≡ 0. In the next section we
show that {un} has such a subsequence.

5. Existence of a ground state. We begin by establishing some further prop-
erties of the sequence (4.4)–(4.7). The main problems are to show that

(i) {un} is bounded in H1
0 , and then

(ii) un
n
⇀ u weakly in H =⇒ un

n−→ u strongly in H.

Lemma 5.1. The sequence (4.4)–(4.7) is bounded in H.
Proof. If {un} is not bounded in H, there is a subsequence, which we can still

denote by {un}, such that ‖un‖0
n−→ ∞.
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Next we set

wn = 2
√
c

un

‖un‖0

and tn =
2
√
c

‖un‖0

.(5.1)

By passing to a further subsequence, we can assume that wn
n
⇀ w weakly in H. The

rest of the proof is split into the following steps. First we show that w 
≡ 0, and then
we deduce that w > 0. Finally we obtain a contradiction, showing that {un} must be
bounded in H.

Step 1 (w 
≡ 0). By Lemma 3.1(b),

Φk(wn) = Φk(tnun) ≤ 1

2
(t2n − 1)Φ′

k(un)un + Φk(un)

and so

lim sup
n→∞

Φk(wn) ≤ c(5.2)

by (4.5) and (4.6) since tn → 0.
On the other hand, in the notation (3.4),

Φk(u) =
1

2

∫ ∞

0

{
|u′(r)|2 +

[
3

4r2
+ k2 − g0(r)

]
u(r)2

}
dr −

∫ ∞

0

rG̃(r, r−1/2u(r))dr

=
1

2
‖u‖2

0 −
∫ ∞

0

rG̃(r, r−1/2u(r))dr,

where

0 ≤ rG̃(r, r−1/2u(r)) = r

∫ u(r)/
√
r

0

{g(r, τ+) − g0(r)}τdτ

≤ r{g∞(r) − g0(r)}
∫ u(r)/

√
r

0

τdτ ≤ 1

2
B(ω)u(r)2.

Hence for any R > 0,

0 ≤
∫ ∞

0

rG̃(r, r−1/2u(r))dr

≤
∫ R

0

1

2
B(ω)u(r)2dr +

∫ ∞

R

rG̃(r, r−1/2u(r))dr,

and for r ≥ R,

0 ≤ rG̃(r, r−1/2u(r)) = r

∫ u(r)/
√
r

0

g̃(r, τ+)τdt

≤ rg̃(r, r−1/2u(r)+)

∫ u(r)/
√
r

0

τdt ≤ 1

2
g̃(r, r−1/2 |u|∞)u(r)2

by the monotonicity of the function g̃(r, s) = g(r, s) − g0(r) in s.
Hence

0 ≤
∫ ∞

0

rG̃(r, r−1/2u(r))dr

≤
∫ R

0

1

2
B(ω)u(r)2dr +

∫ ∞

R

1

2
g̃(r, r−1/2 |u|∞)u(r)2dr

≤ 1

2
B(ω)

∫ R

0

u(r)2dr +
1

2
sup
r≥R

g̃(r, r−1/2 |u|∞)

∫ ∞

R

u(r)2dr.(5.3)
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Since ‖wn‖0 = 2
√
c for all n, there is a constant K > 0 such that |wn|2 ≤ K and

|wn|∞ ≤ K. Thus putting u = wn in (5.3),

0 ≤
∫ ∞

0

rG̃(r, r−1/2wn(r))dr

≤ 1

2
B(ω)

∫ R

0

wn(r)2dr +
1

2
sup
r≥R

g̃(r, r−1/2K)K2

for all n. If wn
n
⇀ 0 weakly in H,

∫ R

0
wn(r)2dr

n−→ 0 for any R > 0, and so

lim sup
n→∞

∫ ∞

0

rG̃(r, r−1/2wn(r))dr ≤ 1

2
sup
r≥R

g̃(r, r−1/2K)K2

for all R > 0. But it follows from (A) that

lim
R→∞

sup
r≥R

g̃(r, r−1/2K) = 0,

so in fact,

lim sup
n→∞

∫ ∞

0

rG̃(r, r−1/2wn(r))dr = 0.

Finally,

lim inf
n→∞

Φk(wn) = lim inf
n→∞

{
1

2
‖wn‖2

0 −
∫ ∞

0

rG̃(r, r−1/2wn(r))dr

}

= 2c− lim sup
n→∞

∫ ∞

0

rG̃(r, r−1/2wn(r))dr

≥ 2c,

contradicting (5.2). Hence w 
≡ 0.
Step 2 (w > 0). For all ϕ ∈ C∞

0 ((0,∞)),

〈wn, ϕ〉0 =

∫ ∞

0

{
w′

nϕ
′ +

[
k2 +

3

4r2
− g0(r)

]
wnϕ

}
dr

= tn

∫ ∞

0

{
u′
nϕ

′ +

[
k2 +

3

4r2
− g0(r)

]
unϕ

}
dr

= tn

{
Φ′

k(un)ϕ +

∫ ∞

0

g̃(r, r−1/2un(r)+)unϕdr

}

= tnΦ′
k(un)ϕ +

∫ ∞

0

g̃(r, r−1/2un(r)+)wnϕdr.

By (4.7), tnΦ′
k(un)ϕ → 0 since tn → 0. Furthermore,

g̃(r, r−1/2un(r)+)wn(r) = g̃

(
r,
wn(r)+

tn
√
r

)
wn(r)

→
{

[g∞(r) − g0(r)]w(r) if w(r) > 0,
0 if w(r) ≤ 0
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as n → ∞ and ∣∣∣∣g̃
(
r,
wn(r)+

tn
√
r

)
wn(r)

∣∣∣∣ ≤ B(ω)K for all r > 0.

Hence, by dominated convergence we have that∫ ∞

0

g̃(r, r−1/2un(r)+)wnϕdr
n−→

∫ ∞

0

[g∞(r) − g0(r)]w(r)+ϕ(r)dr

and, consequently,

〈w,ϕ〉0 =

∫ ∞

0

[g∞(r) − g0(r)]w(r)+ϕ(r)dr(5.4)

for all ϕ ∈ C∞
0 ((0,∞)). But C∞

0 ((0,∞)) is dense in H and it follows easily that (5.4)
holds for all ϕ ∈ H. Putting ϕ = w− in (5.4), we obtain∥∥w−∥∥

0
=

〈
w,w−〉

0
= 0,

showing that w− ≡ 0. Hence w ≡ w+ and (5.4) can be written as∫ ∞

0

{
w′ϕ′ +

[
k2 +

3

4r2
− g∞(r)

]
wϕ

}
dr = 0 for all ϕ ∈ C∞

0 ((0,∞)).(5.5)

It follows that w′ has a generalized derivative on (0,∞) and that

w′′(r) =

{
k2 +

3

4r2
− g∞(r)

}
w(r) on (0,∞).(5.6)

Since w ≥ 0 on (0,∞), but w 
≡ 0, the maximum principle implies that w > 0 on
(0,∞).

Step 3 ({un} is bounded). We show that, for k2 > −Λ∞, (5.5) cannot have a
positive solution.

For R > 0, set

m(R) = inf

{∫ R

0

(
|u′(r)|2 +

[
3

4r2
− g∞(r)

]
u(r)2

)
dr : u ∈ H1

0 (0, R)

and

∫ R

0

u(r)2dr = 1

}
.

Recalling that g∞ ∈ L∞ and that H1
0 (0, R) is compactly embedded in L2(0, R), it

follows easily that there exists an element uR ∈ H1
0 (0, R)\{0} such that

∫ R

0

{
|u′

R(r)|2 +

[
3

4r2
− g∞(r)

]
uR(r)2

}
dr = m(R)

∫ R

0

uR(r)2dr

and, replacing uR by |uR| , we can suppose that uR ≥ 0 on [0, R]. But there is a
Lagrange multiplier λ such that

∫ R

0

{
u′
Rϕ

′ +

[
3

4r2
− g∞(r)

]
uRϕ

}
dr = λ

∫ R

0

uRϕdr for all ϕ ∈ H1
0 (0, R)
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and, putting ϕ = uR, we have λ = m(R). Thus, uR has a generalized derivative on
(0, R) and

−u′′
R(r) +

[
3

4r2
− g∞(r)

]
uR(r) = m(R)uR(r) on (0, R),(5.7)

uR(0) = uR(R) = 0.(5.8)

It follows that uR ∈ H2(δ,R) for all δ ∈ (0, R). We do not claim that uR ∈ H2(0, R)
but we can assume that uR ∈ C1((0, R]). Since k2 < −Λ∞, we can choose ε > 0 such
that k2 + 2ε < −Λ∞. By the definition of Λ∞, there exists z ∈ H\{0} such that∫ ∞

0

{
|z′(r)|2 +

[
3

4r2
− g∞(r)

]
z(r)2

}
dr ≤ (Λ∞ + ε)

∫ ∞

0

z(r)2dr

and then, by (2.21) and the density of C∞
0 ((0,∞)) there exists an element v ∈

C∞
0 ((0,∞)) such that∫ ∞

0

{
|v′(r)|2 +

[
3

4r2
− g∞(r)

]
v(r)2

}
dr ≤ (Λ∞ + 2ε)

∫ ∞

0

v(r)2dr.

Now choose R such that supp v ⊂ (0, R). It follows that m(R) ≤ Λ∞ +2ε. From (5.7)
we obtain

−u′
R(R)w(R) + u′

R(δ)w(δ) +

∫ R

δ

u′
Rw

′ +

{
3

4r2
− g∞(r)

}
uRwdr = m(R)

∫ R

δ

uRwdr

for any δ ∈ (0, R). Hence

lim
δ→0

u′
R(δ)w(δ) = u′

R(R)w(R) −
∫ R

0

u′
Rw

′ +

{
3

4r2
− g∞(r) −m(R)

}
uRwdr

since r−2uR(r)w(r) is integrable on (0, R) by (2.21).
By (2.21) and the density of C∞

0 ((0,∞)) in H, it follows that (5.5) holds for all
ϕ ∈ H. We denote by ũR the function obtained by extending uR by zero for all r ≥ R.
Setting ϕ = ũR in (5.5), we have that∫ R

0

u′
Rw

′dr +

∫ R

0

{
3

4r2
− g∞(r)

}
uRwdr = −k2

∫ R

0

uRwdr.

Hence,

lim
δ→0

u′
R(δ)w(δ) = u′

R(R)w(R) + {m(R) + k2}
∫ R

0

uRwdr

≤ u′
R(R)w(R) + {Λ∞ + 2ε + k2}

∫ R

0

uRwdr

< u′
R(R)w(R)

by the positivity of w and uR and the choice of ε and R. Since uR ≥ 0 on [0, R] and
uR(R) = 0, we have u′

R(R)w(R) ≤ 0 and, consequently, there exists δ0 > 0 such that
u′
R(r)w(r) < 0 for all r ∈ (0, δ0). Recalling that uR ∈ H1

0 (0, R) and that w > 0 on
(0, R), this yields

uR(δ0) =

∫ δ0

0

u′
R(r)dr < 0,
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contradicting the positivity of uR on (0, R).
Thus the initial assumption that the sequence {un} is unbounded implies the

existence of an element w whose properties lead to a contradiction. This establishes
the boundedness of {un}.

We are now ready to prove the main result of this paper.
Theorem 5.2. Let the dielectric response satisfy the assumptions (A) and (AS).

Let ω ∈ J be such that Λ∞ < Λ0. Then for every wave number k > 0 such that
Λ∞ < −k2 < Λ0 there is a positive solution u ∈ H\{0} of (2.15). Furthermore, the
function v defined by (2.12) has the following properties:

(i) v ∈ C2([0,∞)) with v(0) = v′′(0) = 0 and v > 0 on (0,∞).
(ii) v satisfies (2.9) and (2.10).
Remark 5.1. Observe that the conditions (A) and (AS) are satisfied by a linear

dielectric response,

ε(ω, r, s) = ε0(ω, r) for all r, s ≥ 0,

provided that ε0(ω, ·) ∈ C([0,∞)) and 0 < a(ω) ≤ ε0(ω, r) ≤ b(ω) < ∞ for all r, s ≥ 0.
In this case, Λ∞ = Λ0. Thus the requirement that Λ∞ < Λ0 in Theorem 5.2 ensures
that the dielectric response is in fact nonlinear.

Remark 5.2. In a homogeneous medium, ε(ω, r, s) = ε(ω, 0, s) for all r, s ≥ 0,
and so

Λ0 =
(ω
c

)2

ε(ω, 0, 0) and Λ∞ = lim
s→∞

(ω
c

)2

ε(ω, 0, s).

Thus for a homogeneous self-focusing material, Λ∞ = Λ0 if and only if the dielectric
response is linear.

Proof. We fix k > 0 such that Λ∞ < −k2 < Λ0 and consider the sequence (4.4)–
(4.7). By Lemma 5.1 this sequence is bounded in H and so we can suppose that

un
n
⇀ u weakly in H.
Putting ϕ = u in (3.6) we get

Φ′
k(un)u =

∫ ∞

0

{
u′
n(r) +

[
3

4r2
+ k2

]
un(r)

}
u(r)dr −

∫ ∞

0

g(r, r−1/2un(r)+)un(r)u(r)dr

=

∫ ∞

0

{
u′
n(r) +

[
3

4r2
+ k2 − g0(r)

]
un(r)

}
u(r)dr −

∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)u(r)dr

= 〈un, u〉0 −
∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)u(r)dr.

Similarly,

Φ′
k(un)un = ‖un‖2

0 −
∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)un(r)dr

and hence,

‖un − u‖2
0 = ‖un‖2

0 − 〈un, u〉0 − 〈u, un − u〉0

= Φ′
k(un)un +

∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)un(r)dr

−Φ′
k(un)u−

∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)u(r)dr − 〈u, un − u〉0

= Φ′
k(un)un − Φ′

k(un)u− 〈u, un − u〉0 +

∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)[un(r) − u(r)]dr.
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From the properties of (4.4)–(4.7) and the weak convergence of {un}, we see that

‖un − u‖0
n→ 0 provided that∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)[un(r) − u(r)]dr
n−→ 0.

For any R > 0,∣∣∣∣
∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)[un(r) − u(r)]dr

∣∣∣∣
≤

∫ R

0

∣∣∣g̃(r, r−1/2un(r)+)un(r)[un(r) − u(r)]
∣∣∣ dr

+

∫ ∞

R

∣∣∣g̃(r, r−1/2un(r)+)un(r)[un(r) − u(r)]
∣∣∣ dr

≤
∫ R

0

B(ω) |un(r)[un(r) − u(r)]| dr +

∫ ∞

R

g̃(r, r−1/2 |un|∞) |un(r)[un(r) − u(r)]| dr

by the monotonicity of g̃(r, ·). The boundedness of {un} in H ensures that there is a
constant K > 0 such that |un|2 ≤ K and |un|∞ ≤ K for all n. Hence∫ ∞

R

g̃(r, r−1/2 |un|∞) |un(r)[un(r) − u(r)]| dr

≤ sup
r≥R

g̃(r, r−1/2K)

∫ ∞

R

|un(r)[un(r) − u(r)]| dr

≤ sup
r≥R

g̃(r, r−1/2K)2K2 for all n.

Since un
n−→ u uniformly on [0, R], we have that

lim sup
n→∞

∣∣∣∣
∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)[un(r) − u(r)]dr

∣∣∣∣ ≤ sup
r≥R

g̃(r, r−1/2K)2K2

for all R. But it follows from (A) that

lim
R→∞

sup
r≥R

g̃(r, r−1/2K) = 0,

and consequently,

lim
n→∞

∫ ∞

0

g̃(r, r−1/2un(r)+)un(r)[un(r) − u(r)]dr = 0.

Hence ‖un − u‖0
n−→ 0 and Lemma 3.1, together with properties (4.5) and (4.7),

imply that Φk(u) = c > 0 and Φ′
k(u)ϕ = 0 for all ϕ ∈ H. Thus u 
≡ 0 and, choosing

ϕ = u−, we have that

0 = Φ′
k(u)u− =

∥∥u−∥∥2

0
.

Thus u ≥ 0, and u satisfies (2.15). This implies that u′ has a generalized derivative
on (0,∞) and that (2.13) is satisfied. Thus u ∈ C2((0,∞)). Setting

h(r) =
3

4r2
+ k2 − g

(
r,
u(r)√

r

)
for r > 0,
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we have that h ∈ C((0,∞)) and u′′(r) = h(r)u(r) for all r > 0. Since u ≥ 0, but
u 
≡ 0 on (0,∞), we must have that u(r) > 0 for all r > 0.

Setting v(r) = r−1/2u(r) for r > 0, we have that v ∈ C2((0,∞)) and, by (2.20),
limr→0 v(r) = 0. Setting v(0) = 0, this means that v ∈ C([0,∞)). Furthermore, v
satisfies (2.7), which can be written as

[
v′ +

v

r

]′
= {k2 − g(r, v(r))}v(r),(5.9)

showing that

lim
r→0

[
v′ +

v

r

]′
= 0

since A(ω) ≤ g(r, s) ≤ B(ω) for all r, s ≥ 0 and v(0) = 0. This implies that there
exists L ∈ R such that limr→0[v

′+ v
r ] = L. But v′+ v

r = 1
r (rv)′ and, using L’Hospital’s

rule,

lim
r→0

v(r)

r
= lim

r→0

rv(r)

r2
= lim

r→0

(rv)′

2r
=

1

2
lim
r→0

[
v′ +

v

r

]
=

L

2
.

This proves that v is differentiable at 0 with v′(0) = L
2 . Also,

lim
r→0

v′(r) = lim
r→0

{
v′(r) +

v(r)

r
− v(r)

r

}

= lim
r→0

{
v′ +

v

r

}
− lim

r→0

v(r)

r
= L− L

2

=
L

2

and we have shown that v ∈ C1([0,∞)).
Setting w(r) = v(r)/r, we find that (5.9) can be written as

[r3w′]′ = r3h(r)w, where h(r) = {k2 − g(r, v(r))} for r > 0,(5.10)

and hence,

r3w′(r) − s3w′(s) =

∫ r

s

t3h(t)w(t)dt for 0 < s < r.

Since r3w′(r) = r2v′(r) − rv(r) → 0 as r → 0, we have that

w′(r) = r−3

∫ r

0

t3h(t)w(t)dt for r > 0,

where h(t)w(t) remains bounded as t → 0. Thus limr→0 w
′(r) = 0. But then,

lim
r→0

v′′(r) = lim
r→0

{[
v′ +

v

r

]′
− w′

}

= lim
r→0

[
v′ +

v

r

]′
− lim

r→0
w′ = 0,

from which it follows that v ∈ C2([0,∞)) with v′′(0) = 0.
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Since u ∈ H and A(ω) ≤ g(r, s) ≤ B(ω) for all r, s ≥ 0, it follows from (2.13) that
u ∈ H2(1,∞). This implies that limr→∞ u(r) = limr→∞ u′(r) = 0, and hence that

lim
r→∞

v(r) = lim
r→∞

v′(r) = 0.

Straightforward substitution shows that∫ ∞

0

v(r)2 rdr =

∫ ∞

0

u(r)2 dr and

∫ ∞

0

v′(r)2 rdr =

∫ ∞

0

[
u′ − u

2r

]2

dr

and it follows from (2.21) that u′ − u
2r ∈ L2(0,∞) since u ∈ H. Thus v satisfies (2.9).

This completes the proof.
Finally, we show that the restrictions imposed on k in Theorem 5.2 are quite

sharp.
Theorem 5.3. Let the dielectric response satisfy assumptions (A) and (AS). If

the wave number k is such that −k2 /∈ [Λ∞,Λ0], then there is no nonnegative solution
u of (2.15) in H\{0}.

Proof. Suppose that u ∈ H\{0} satisfies (2.15) and that u ≥ 0 on (0,∞). As in
the proof of Theorem 5.2, it follows that u ∈ C2((0,∞)) and u(r) > 0 for all r > 0.

Putting ϕ = u in (2.15), we find that∫ ∞

0

|u′|2 +

[
3

4r2
+ k2

]
u2dr =

∫ ∞

0

g

(
r,
u(r)√

r

)
u2dr ≤

∫ ∞

0

g∞(r)u2dr

since g(r, ·) is nondecreasing for all r > 0. Hence∫ ∞

0

|u′|2 +

[
3

4r2
− g∞(r)

]
u2dr = −k2

∫ ∞

0

u2dr.

But the definition of Λ∞ implies that∫ ∞

0

|u′|2 +

[
3

4r2
− g∞(r)

]
u2dr ≥ Λ∞

∫ ∞

0

u2dr

so we must have −k2 ≥ Λ∞.
Suppose now that −k2 > Λ0. We can choose ε > 0 such that −k2 > Λ0 + 2ε and

then, by the definition of Λ0, there exists v ∈ H\{0} such that∫ ∞

0

|v′|2 +

[
3

4r2
− g0(r)

]
v2dr ≤ [Λ0 + ε]

∫ ∞

0

v2dr.

Using (2.21), it follows from the density of C∞
0 ((0,∞)) in H that there exists w ∈

C∞
0 ((0,∞))\{0} such that∫ ∞

0

|w′|2 +

[
3

4r2
− g0(r)

]
w2dr ≤ [Λ0 + 2ε]

∫ ∞

0

w2dr.

For R > 0, we now set

m(R) = inf

{∫ R

0

|z′|2 +

[
3

4r2
− g0(r)

]
z2dr : z ∈ H1

0 ((0, R)) and

∫ R

0

z2dr = 1

}

and observe that, for any R such that supp w ⊂ (0, R), we must have m(R) ≤ Λ0+2ε.
For any R ∈ (0,∞), it follows from the compactness of the embedding of H1

0 ((0, R))



236 CHARLES A. STUART AND HUAN-SONG ZHOU

in L2((0, R)) and the weak sequential lower semicontinuity of
∫ R

0
|z′|2 + 3

4r2 z
2dr on

H1
0 ((0, R)) that there exists uR ∈ H1

0 ((0, R)) such that
∫ R

0
u2
Rdr = 1 and∫ R

0

|u′
R|

2
+

[
3

4r2
− g0(r)

]
u2
Rdr = m(R).

We may assume that uR ≥ 0 on (0, R) and that∫ R

0

u′
Rz

′ +

[
3

4r2
− g0(r)

]
uRzdr = m(R)

∫ R

0

uRzdr for all z ∈ H1
0 ((0, R)).

This implies that uR ∈ H2((δ,R)) for any δ ∈ (0, R) with

−u′′
R +

[
3

4r2
− g0(r)

]
uR = m(R)uR on (0, R),

so we can suppose that uR ∈ C1((0, R]). Multiplying by u and integrating we get

−u′
R(R)u(R) + u′

R(δ)u(δ) +

∫ R

δ

u′
Ru

′ +

[
3

4r2
− g0(r)

]
uRudr = m(R)

∫ R

δ

uRudr

for any δ ∈ (0, R). Hence

lim
δ→0

u′
R(δ)u(δ) = u′

R(R)u(R) −
∫ R

0

u′
Ru

′ +

[
3

4r2
− g0(r) −m(R)

]
uRudr

since r−2uR(r)u(r) is integrable on (0, R) by (2.21). On the other hand, if ũR is the
function obtained by extending uR by zero for r ≥ R, we can set ϕ = ũR in (2.15),
and this yields ∫ R

0

u′u′
R +

[
3

4r2
+ k2 − g

(
r,
u(r)√

r

)]
uRudr = 0.

Thus we have that

lim
δ→0

u′
R(δ)u(δ) = u′

R(R)u(R) −
∫ R

0

[
g

(
r,
u(r)√

r

)
− k2 − g0(r) −m(R)

]
uRudr

≤ u′
R(R)u(R) + [k2 + m(R)]

∫ R

0

uRudr

≤ u′
R(R)u(R) + [k2 + Λ0 + 2ε]

∫ R

0

uRudr

for R > 0 such that supp w ⊂ (0, R). But u > 0 and uR ≥ 0 on (0, R) with uR(R) = 0,

so u′
R(R)u(R) ≤ 0. Also

∫ R

0
uRudr > 0 since uR 
≡ 0 on (0, R). Hence

lim
δ→0

u′
R(δ)u(δ) ≤ [k2 + Λ0 + 2ε]

∫ R

0

uRudr < 0,

since k2 +Λ0 +2ε < 0 by the choice of ε. But this means that there exists δ0 > 0 such
that u′

R(r)u(r) < 0 for all r ∈ (0, δ0). Recalling that uR ∈ H1
0 ((0, R)), we now have

that

uR(δ0) =

∫ δ0

0

u′
R(r)dr < 0,
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contradicting the fact that uR ≥ 0 on (0, R). Hence we must have −k2 ≤ Λ0, com-
pleting the proof.

Remark 5.3. The proceeding result concerns positive solutions, but the first
part of the proof shows that, in fact, (2.15) has no solutions at all in H\{0} for
−k2 < Λ∞. By strengthening slightly the assumptions on the dielectric response,
arguments similar to those used for planar waveguides in Theorem 3.1 of [10] show
that (2.15) may have no solutions in H\{0} if −k2 > Λ0. See also Theorems 4.2
and 4.4 in [11] for other nonexistence results of this kind used in a related problem
concerning cylindrical waveguides.
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RECONSTRUCTION OF A POLYNOMIAL FROM ITS RADON
PROJECTIONS∗

BORISLAV BOJANOV† AND YUAN XU‡

Abstract. A polynomial of degree n in two variables is shown to be uniquely determined by
its Radon projections taken over [n/2] + 1 parallel lines in each of the (2[(n + 1)/2] + 1) equidistant
directions along the unit circle.

Key words. Radon projection, polynomials of two variables, interpolation
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1. Introduction. Let f be a function defined on the unit disk B2 on the plane.
A Radon projection of f is the integral of f over a line segment inside B2. More
precisely, for any given pair (θ, t) of a real number t ∈ [−1, 1] and any angle θ, let
I(θ, t) denote the line segment inside the unit disk B2, where the line passes through
the point (t cos θ, t sin θ) and is perpendicular to the vector (cos θ, sin θ). Then

Rθ(f ; t) :=

∫
I(θ,t)

f(x, y)dxdy(1.1)

defines the Radon projection of f on the line segment I(θ, t).
The Radon transform f �→ {Rθ(f ; t)} associates with f a family of univariate

functions of t parameterized by θ. The problem of reconstructing f from full or partial
knowledge of {Rθ(f ; t)} has been studied by many authors. It plays an essential
role in computer tomography. It is well known that the set of Radon projections
{Rθ(f ; t) : 0 ≤ t ≤ 1, 0 ≤ θ ≤ 2π} determines f completely. Furthermore, it is known
that if f has compact support in B2, then f is uniquely determined by any infinite set
of Radon projections [16]. In practice, however, the data set is usually finite. Thus,
the main problem is to obtain a good approximation to the function from a large
collection of its Radon projections. See [13] for background and detailed discussions.
Using a finite data set, one may determine a polynomial whose Radon projections
agree with the given data. Such an approach has been considered in [10, 11, 12] in
connection with computer tomography.

The present paper is concerned with the problem of whether a polynomial of
degree n in two variables can be uniquely determined from a set of (n + 1)(n + 2)/2
distinct Radon projections. The solution depends on the arrangement of the lines on
which the projections are taken. One early solution was given in [12], in which the
Radon projections are taken over all possible line segments [xi,xj ] joining xi and xj ,
where x0,x1, . . . ,xn+1 are n+2 equally spaced points on the boundary of the unit disk
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B2. In [7] (see also [4, 5]), a more general result was proved, in which x0,x1, . . . ,xn+1

are n+2 distinct points on the boundary of a convex set, and the result was extended
in [8] to higher dimensions. Recently the problem was considered in [1], in which the
lines are taken in (n + 1) directions, with one line in the first direction, two lines in
the second direction, etc. This set has the drawback of lacking symmetry.

The main result of the present paper shows that a set of Radon projections taken
over 2�n/2� + 1 parallel lines on each of the 2�(n + 1)/2� + 1 equidistant directions
can determine a polynomial of degree n uniquely. The set of the corresponding line
segments possesses a rotation symmetry. If n = 2m is a fixed positive integer, then
our method requires the Radon data in 2m + 1 directions, which are taken to be
in equally spaced angles along the unit circle, and in each direction we take m + 1
parallel lines associated with t0, t1, . . . , tm. We prove that for almost all choices of
{tk} a polynomial Pn of degree n = 2m in two variables is uniquely determined by the
set of its Radon projections over these line segments; more precisely, for any given f ,
Pn is uniquely determined such that

Rφj (Pn; tk) = Rφj (f ; tk), 0 ≤ j ≤ 2m, 0 ≤ k ≤ m.(1.2)

A similar construction works for n = 2m − 1. Several examples of the sets of points
{tk} that define regular interpolation are given. Furthermore, the polynomial Pn

can be easily computed. Thus, the result appears to offer a simple way to recover a
polynomial from its Radon data.

The number of conditions (1.2) is equal to (n+1)(n+2)/2, which is the dimension
of the space of bivariate polynomials of total degree at most n. Hence, (1.2) can be
interpreted as an interpolation problem by polynomials based on line integrals. As in
the case of interpolation based on points, this bivariate problem is not always regular.
The only general configurations in the literature that hold for every integer n are that
of Hakopian [8], mentioned above, and the nonsymmetric configuration given recently
in [1]. The result of the present paper provides another family of examples. The
proof is based on an observation that recovering polynomials from their Radon pro-
jections can be reduced, using a formula in [12], to a family of univariate interpolation
problems that uses certain special classes of algebraic polynomials. In the case of [1],
the strategy of solving the interpolation problem resembles the approach that uses
the Bezout theorem for pointwise interpolation. The approach in the present paper
follows the strategy of [2], which uses equally spaced points on circles for pointwise
interpolation and allows one to step beyond the limitation of the Bezout theorem.

The paper is organized as follows. In the following section we prove the existence
and uniqueness of the reconstructing problem. In section 3 we show how to construct
the polynomial and we give an outline of the algorithm.

2. Existence and uniqueness of the solution.

2.1. Preliminary. Let B2 = {(x, y) : x2 + y2 ≤ 1} denote the unit disk on the
plane. Let θ be the angle in the polar coordinates

x = r cos θ, y = r sin θ, r ≥ 0, 0 ≤ θ ≤ 2π.

A line � whose slope is − cot θ is defined by the equation

�(x, y) := x cos θ + y sin θ − t = 0,

where t is a real number. Clearly the line � passes through the point (t cos θ, t sin θ)
and is perpendicular to the vector ξ = (cos θ, sin θ). Since, for a fixed t, the line
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corresponding to (θ, t) coincides with the line corresponding to (π + θ,−t), we could
assume θ ∈ [0, π). Alternatively, we could assume that θ ∈ [0, 2π) and t ≥ 0.

We will also use � to denote the set of points on the line � and introduce the
notation

I(θ, t) = � ∩B2, 0 ≤ θ < π, −1 ≤ t ≤ 1

to denote the line segment of � inside B2. The points on I(θ, t) can be represented as

x = t cos θ − s sin θ, y = t sin θ + s cos θ

for s ∈ [−
√

1 − t2,
√

1 − t2].
The Radon projection of a function f in the direction θ with a parameter t ∈

[−1, 1] is denoted by Rθ(f ; t),

Rθ(f ; t) :=

∫
I(θ,t)

f(x, y)dxdy

=

∫ √
1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ)ds.

In the literature it is also called an X-ray. It is clear that Rθ(f ; t) = Rπ+θ(f ;−t), so
we can assume, for the sake of definiteness, either 0 ≤ θ < π or 0 ≤ t ≤ 1.

2.2. Polynomial bases. Let Π2
n denote the space of polynomials of total degree

n in two variables, which has dimension dim Π2
n = (n + 1)(n + 2)/2. If P ∈ Π2

n, then

P (x) =

n∑
k=0

k∑
j=0

ck,jx
jyk−j , x = (x, y).

Let Uk denote the Chebyshev polynomial of the second kind [15],

Uk(x) =
sin(k + 1)θ

sin θ
, x = cos θ.

For ξ = (cos θ, sin θ) and x = (x, y), the ridge polynomial Uk(θ; ·) is defined by

Uk(θ;x) := Uk(〈x, ξ〉) = Uk(x cos θ + y sin θ).

Clearly, Uk is an element of Π2
k and it is constant on every line that is perpendicular

to ξ. The Radon projection of this function in any direction can be easily computed.
This is a result due to Marr [12] and it plays a central role in our discussion below.

Lemma 2.1. For each t ∈ (−1, 1), 0 ≤ θ, φ ≤ 2π,

Rφ(Uk(θ; ·); t) =
2

k + 1

√
1 − t2Uk(t)Uk(cos(φ− θ)).

The following useful relation follows easily from Marr’s formula [11]:

1

π

∫
B2

Uk(θ;x)Uk(φ;x)dx =
1

k + 1
Uk(cos(φ− θ)).(2.1)

Let Vn denote the space of orthogonal polynomials of degree n on B2 with respect to
the unit weight function; that is, P ∈ Vn if P is of degree n and∫

B2

P (x)Q(x)dx = 0 for all Q ∈ Π2
n−1.
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For special choices of θ and φ, (2.1) becomes an orthogonal relation. Indeed, for
k ∈ N, let

ξj,k = (cos θj,k, sin θj,k), θj,k :=
jπ

k + 1
, 0 ≤ j ≤ k.

For fixed k, the points cos θj,k, 1 ≤ j ≤ k, are zeros of Uk. The ridge polynomi-
als Uk(θ;x) have the remarkable orthogonal property that Uk(θ; ·) ∈ Vk. Since the
dimension of Vk is k + 1, it follows from (2.1) that the set

Pk := {Uk(θj,k;x) : 0 ≤ j ≤ k}

is a basis for Vk. In particular, this shows that the set {Pk : 0 ≤ k ≤ n} is a basis for
Π2

n. Together with Lemma 2.1, this proves the following result.
Lemma 2.2. Every polynomial Pn ∈ Π2

n can be written uniquely as

Pn(x) =

n∑
k=0

k∑
j=0

cj,kUk(θj,k;x).(2.2)

Furthermore, for each φ and t,

Rφ(Pn; t) =
√

1 − t2
n∑

k=0

2

k + 1
Uk(t)

k∑
j=0

cj,kUk(cos(φ− θj,k)).(2.3)

There are several other explicit orthogonal bases for Vn; see, for example, [6]. If
{Qk

j : 0 ≤ k ≤ n} is an orthogonal basis of Vn, then, as was shown in [17],

Uk(θj,k;x) =
1

k + 1

k∑
l=0

Qk
l (x, y)Q

k
l (cos θj,k, sin θj,k).(2.4)

One explicit basis of Vn, denoted by Qj,i(x), is given in terms of polar coordinates as
(cf. [6])

Qj,1(x, y) = hn−2j,1P
(0,n−2j)
j (2r2 − 1)rn−2j cos(n− 2j)θ, 0 ≤ 2j ≤ n,

Qj,2(x, y) = hn−2j,2P
(0,n−2j)
j (2r2 − 1)rn−2j sin(n− 2j)θ, 0 ≤ 2j ≤ n− 1,

where P
(α,β)
j denotes the usual Jacobi polynomial, h0,1 = 1/(n+1), and hj,1 = hj,2 =

1/(2n + 2) for 1 ≤ 2j ≤ n− 1. Using this basis and restricting x to the boundary of
B2, (2.4) becomes

U2k(cos(φ− θj,2k)) = 1 + 2

k∑
l=1

(cos 2lθj,2k cos 2lφ + sin 2lθj,2k sin 2lφ) ,

U2k−1(cos(φ− θj,2k−1)) = 2

k∑
l=1

(cos(2l − 1)θj,2k−1 cos(2l − 1)φ

+ sin(2l − 1)θj,2k−1 sin(2l − 1)φ) .

(2.5)

The above equations also follow from the elementary trigonometric identities

1 + 2
k∑

j=1

cos 2jθ =
sin(2k + 1)θ

sin θ
and 2

k∑
j=1

cos(2j − 1)θ =
sin 2kθ

sin θ
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with θ replaced by φ − θj,2k and φ − θj,2k−1, respectively. These relations allow us
to rewrite (2.3) in a form that is easier to work with. In the following we use �x� to
denote the integer part of x.

Lemma 2.3. Let Pn be given as in (2.2). Then

Rφ(Pn; t)√
1 − t2

=

�n/2�∑
l=0

U2l(t)

⎡
⎣a0,2l + 2

l∑
j=1

(aj,2l cos 2jφ + bj,2l sin 2jφ)

⎤
⎦(2.6)

+

�(n+1)/2�∑
l=1

U2l−1(t)

⎡
⎣2

l∑
j=1

(aj,2l−1 cos(2j − 1)φ + bj,2l−1 sin(2j − 1)φ)

⎤
⎦ ,

in which the coefficients cj,k in (2.2) and aj,k, bj,k are related by

cj,2l =
1

2
a0,2l +

l∑
k=1

(ak,2l cos 2kθj,2l + bk,2l sin 2kθj,2l)(2.7)

for 0 ≤ j ≤ 2l, 0 ≤ l ≤ �n/2�, and

cj,2l−1 =

l∑
k=1

(ak,2l−1 cos(2k − 1)θj,2l−1 + bk,2l−1 sin(2k − 1)θj,2l−1)(2.8)

for 0 ≤ j ≤ 2l − 1, 1 ≤ l ≤ �(n + 1)/2�.
Proof. We prove only the case of n = 2m. Comparing (2.3) and (2.6) shows that

1

2l + 1

2l∑
j=0

cj,2lU2l(cos(φ− θj,2l)) =
1

2
a0,2l +

l∑
j=1

(aj,2l cos 2jφ + bj,2l sin 2jφ),

1

2l

2l−1∑
j=0

cj,2l−1U2l−1(cos(φ− θj,2l−1)) =

l∑
j=1

(aj,2l−1 cos(2j − 1)φ + bj,2l−1 sin(2j − 1)φ).

Using (2.5) we can rewrite the left-hand side in the form of the right-hand side, which
leads to

aj,2l =
2

2l + 1

2l∑
k=0

ck,2l cos 2jθk,2l, bj,2l =
2

2l + 1

2l∑
k=0

ck,2l sin 2jθk,2l

for 1 ≤ j ≤ l, and 2a0,2l satisfies the above formula with j = 0, and

aj,2l−1 =
1

l

2l−1∑
k=0

ck,2l−1 cos(2j − 1)θk,2l−1,

bj,2l−1 =
1

l

2l−1∑
k=0

ck,2l−1 sin(2j − 1)θk,2l−1

for 1 ≤ j ≤ l. For fixed l, the above linear relations can be written in the matrix form.
After a proper normalization, the coefficient matrix turns out to be an orthogonal
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matrix. For example, for the even indices, we have

1√
2l + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1√
2

√
2 cos 2π

2l+1 · · ·
√

2 cos 2lπ
2l+1

0
√

2 sin 2π
2l+1 · · ·

√
2 sin 2lπ

2l+1
...

... · · ·
...√

2
√

2 cos 2l 2π
2l+1 · · ·

√
2 cos 2l 2lπ

2l+1

0
√

2 sin 2l 2π
2l+1 · · ·

√
2 sin 2l 2lπ

2l+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎣
c0,2l
c1,2l

...
c2l,2l

⎤
⎥⎥⎥⎦ =

1√
2l + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,2l
a1,2l√

2
b1,2l√

2
...

al,2l√
2

bl,2l√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The (l + 1) × (l + 1) matrix in the left-hand side, including the factor 1/
√

2l + 1, is
orthogonal. Hence, the linear system of equations can be easily reversed, which leads
to the stated relations, (2.7) and (2.8). The formulas can also be verified directly by
inserting (2.7) and (2.8) into the equations of aj,k and bj,k and using the well-known
trigonometric identities

1

m + 1

m∑
k=0

cos 2jθk,m + i
1

m + 1

m∑
k=0

sin 2jθk,m =
1

m + 1

m∑
k=0

e2ijθk,m = δ0,j

for 0 ≤ j ≤ m, where δ0,j = 1 if j = 0 and δ0,j = 0 otherwise, and using the
elementary trigonometric identities 2 cos θ cosφ = cos(θ + φ) + cos(θ − φ).

To reconstruct the polynomial, we will determine the coefficients aj,k and bj,k and
use them in (2.7) and (2.8) to determine cj,k in (2.2). The following representation is
useful.

Lemma 2.4. Let n = 2m or n = 2m− 1. Let Pn be given as in (2.2). Then

Rφ(Pn; t)√
1 − t2

= A0(t) +

n∑
j=1

[Aj(t) cos jφ + Bj(t) sin jφ] ,(2.9)

where

A0(t) =

�n/2�∑
l=0

a0,2lU2l(t),

and for 1 ≤ j ≤ m,

A2j(t) = 2

�n/2�∑
l=j

aj,2lU2l(t), B2j(t) = 2

�n/2�∑
l=j

bj,2lU2l(t),(2.10)

A2j−1(t) = 2

�n/2�∑
l=j

aj,2l−1U2l−1(t), B2j−1(t) = 2

�n/2�∑
l=j

bj,2l−1U2l−1(t).(2.11)

Proof. The proof is obtained from changing the order of summations in (2.6).

2.3. Existence and uniqueness of the solution. We now state the Radon
projections from which the polynomial Pn can be uniquely recovered. These are given
by

Rφj,m(Pn; tk), 0 ≤ k ≤ �n/2�, 0 ≤ j ≤ 2m, m = �(n + 1)/2�,(2.12)
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which has a total of (�n/2� + 1)(2�(n + 1)/2� + 1) = (n + 1)(n + 2)/2 projections,
which is the same as the dimension of Π2

n. The angles are chosen to be equidistant,

Θm :=

{
φj,m =

2jπ

2m + 1
: 0 ≤ j ≤ 2m

}
.(2.13)

The reason that we choose the equidistant angles lies in the lemma below, which
plays a key role in our study. Such a lemma appeared first in [2] and has been used
in [3] and [18].

Lemma 2.5. For φ ∈ Θm and Pn ∈ Π2
n with n = 2m or n = 2m− 1,

Rφ(Pn; t)√
1 − t2

= A0(t)

+

m∑
j=1

[(
Aj(t) + A2m−j+1(t)

)
cos jφ +

(
Bj(t) −B2m−j+1(t)

)
sin jφ

]
,

where we assume that A2m = B2m = 0 if n = 2m− 1.
Proof. Using the expression in the previous lemma, the proof follows from the

fact that

cos(2m− j + 1)φ = cos jφ and sin(2m− j + 1)φ = − sin jφ

for φ ∈ Θm.
For the expression in this lemma, the variable t is in (−1, 1). We can also state

the result for φ ∈ Θ̃m = {(2j +1)π/(2m+1) : 0 ≤ j ≤ 2m}, for which the sign before

A2m−j+1 and B2m−j+1 will be reversed. It is easy to see that Θ̃m = Θm +π modulus
2π. The two expressions are consistent with the fact that Rθ(f ; t) = Rπ+θ(f ;−t).

We are now ready to prove our main result, which shows that the polynomial
Pn can be uniquely determined by the data (2.12). We need the following function
classes: For n = 2m define

Xj(t) = {U2m(t), U2m−2(t), . . . , U2j(t), U2m−1(t), U2m−3(t), . . . , U2m−2j+1(t)}

for 1 ≤ j ≤ m− 1. We also consider Xj as a column vector in R
m+1 and regard

Ξj(t) = [Xj(t0), Xj(t1), . . . , Xj(tm)]

as an (m + 1) × (m + 1) matrix.
A set of points t = {t0, t1, . . . , tm} in (−1, 1) is said to be asymmetric if t and −t

do not both belong to t.
Theorem 2.1. Let t := {t0, t1, . . . , tm} be a set of asymmetric distinct points in

(−1, 1) such that the matrices Ξ1(t),Ξ2(t), . . . ,Ξm−1(t) are all nonsingular; then the
polynomial P ∈ Π2

2m is uniquely determined by the set (2.12) of its Radon projections.
Proof. In order to prove that there is a unique solution, it is sufficient to show

that if Rφj,m(P ; tk) = 0 for 0 ≤ j ≤ 2m and 0 ≤ k ≤ m, then P (x) ≡ 0.
Setting its left-hand side to zero, the expression in Lemma 2.5 shows that

A0(tk) +

m∑
j=1

[(
Aj(tk) + A2m−j+1(tk)

)
cos jφ +

(
Bj(tk) −B2m−j+1(tk)

)
sin jφ

]
= 0
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for 0 ≤ k ≤ m and φ ∈ Θm. The left-hand side is a trigonometric polynomial of
degree m and it vanishes on 2m + 1 points. Hence, it follows from the uniqueness of
the trigonometric interpolation that the coefficients have to be zero, that is,

A0(tk) = 0, Aj(tk) + A2m−j+1(tk) = 0,

Bj(tk) −B2m−j+1(tk) = 0, 1 ≤ j ≤ m
(2.14)

for 0 ≤ k ≤ m. Since Aj and A2m−j+1 have different parities, the coefficients in
Aj(t) + A2m−j+1(t) will not combine, and there are exactly m + 1 terms in this
polynomial, which are written as a linear combination of the Chebyshev polynomials
{Uk}. Let Y0(t) = {U2m(t), U2m−2(t), . . . , U2(t), U0(t)} and let

Y2j(t) = {U2m(t), U2m−2(t), . . . , U2j(t), U2m−1(t), U2m−3(t), . . . , U2m−2j+1(t)},
Y2j−1(t) = {U2m−1(t), U2m−3(t), . . . , U2j+1(t), U2m(t), U2m−2(t), . . . , U2m−2j(t)}.

Furthermore, let ΞYj denote the matrix ΞYj = [Yj(t0), Yj(t1), . . . , Yj(tm)]. The coef-
ficients of the linear systems of equations in (2.14) are ΞY0 , ΞY2j for 1 ≤ j ≤ m/2,
and ΞY2j−1 for 1 ≤ j ≤ (m + 1)/2. Hence, in order to prove that (2.14) implies
A0(t) ≡ 0, Aj(t) = Bj(t) ≡ 0 for 1 ≤ j ≤ m, we need to show that these matrices are
all invertible. However, it is easy to see that we have the relation ΞY2(m−j)−1

= ΞY2j ,
which shows, in particular, that ΞYm = ΞYm−1 . Thus, we can deal with ΞY2j for
0 ≤ j ≤ m − 1. Furthermore, Y0 contains only even polynomials U2l, 0 ≤ l ≤ m.
Using the notation s = t2, it follows that U2l(

√
s) is a polynomial of degree l so that

the matrix ΞY0
is always invertible as t is a set of asymmetric distinct points. Thus,

since ΞY2j = Ξj(t), our assumption on t implies that all matrices are invertible.
A similar theorem holds in the case of n = 2m − 1. First, we need to define for

n = 2m− 1,

Xj(t) = {U2m−2(t), U2m−4(t), . . . , U2j(t), U2m−1(t), U2m−3(t), . . . , U2m−2j+1(t)}
for 1 ≤ j ≤ m− 1 and

Xm(t) = {U2m−1(t), U2m−3(t), . . . , U3(t), U1(t)}.
We will keep the notion Ξj(t) for the matrix built upon from the columns of Xj ,
which is an m×m matrix.

Theorem 2.6. Let t = {t0, t1, . . . , tm−1} be a set of asymmetric distinct points
in (−1, 0) ∪ (0, 1) such that the matrices Ξ1(t),Ξ2(t), . . . ,Ξm(t) are all nonsingular.
Then the polynomial P ∈ Π2

2m−1 is uniquely determined by the set (2.12) of its Radon
projections.

That the points t0, t1, . . . , tm are all in (−1, 0) ∪ (0, 1) means that none of the
points can be zero. In fact, since U2k−1 is an odd polynomial, Ξm(t) contains only
odd polynomials, which vanish at the origin. Otherwise, the proof of this theorem
is similar to that of the previous theorem. In the case of n = 2m, the set X0 =
{U2m, U2m−2, . . . , U0} does not appear in the conditions of the theorem since the
interpolation at distinct points in [0, 1) by X0 is always regular. Such a reduction of
conditions does not appears to happen for n = 2m− 1.

For each fixed j, the determinant of Ξj(t) can be considered as a polynomial func-
tion in t = (t0, t1, . . . , tm) so that det Ξj(t) = 0 defines a hypersurface of dimension
m. Hence, the determinant is not zero for almost all choices of t ∈ R

m+1. Evidently,
the same holds true for m + 1 matrices. Hence, we have the following corollary.

Corollary 2.7. For n = 2m or 2m − 1, and for almost all choices of distinct
points t0, t1, . . . , tm in (−1, 1) for n = 2m or in (−1, 0) ∪ (0, 1) for n = 2m − 1, the
polynomial Pn ∈ Π2

n is uniquely determined by the set (2.12) of its Radon projections.
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2.4. Choices of tk. We have shown that almost all choices of t = {t0, t1, . . . , tm}
will lead to the unique solution of recovering the polynomial. One may ask if any
choice of t ⊂ (−1, 1)m+1 will work. The answer, however, is negative, as the following
example shows.

Example: m = 2. By Theorem 2.1 we have only to choose t0, t1, t2 in (0, 1) such
that the set X2 = {U2, U3, U4} has nonsingular determinant Ξ2(t). Recall that

U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, U4(t) = 16t4 − 12t2 + 1.

We can compute the determinant Ξ2(t) explicitly, and the result is

det Ξ2(t) = 32
∏

1≤i<j≤3

(ti − tj)

×
[
8t21t

2
2t

2
3 + 4t1t2t3(t1 + t2 + t3) + (2t21 − 1)(2t22 − 1)(2t23 − 1)

]
.

Since ti ∈ (0, 1), the first two terms in the square brackets are positive, while the
third term could be negative. This shows, in particular, that det Ξ2(t) = 0 if one of
the ti’s is

√
2/2, or if two of t1, t2, t3 are less than

√
2/2 and one is greater than

√
2/2.

However, det Ξ2(t) can be zero for some choices of t0, t1, t2.
On the positive side, we give two results that provide sets of points that will ensure

the uniqueness of the reconstruction. The first result uses the following theorem due
to Obrechkoff [14].

Lemma 2.8. Let dμ be a nonnegative weight function on an interval and let P0, P1,
P2, . . . be the orthogonal polynomials with respect to dμ. Denote by αn the largest zero
of Pn. Then the number of zeros of the polynomial a0P0 + a1P2 + · · · + anPn, where
a0, a1, . . . , an are real numbers, in the interval (αn,+∞) is at most the number of sign
changes in the sequence of the coefficients a0, a1, . . . , an.

The Chebyshev polynomials U0, U1, U2, . . . are orthogonal with respect to the
weight function

√
1 − x2 on [−1, 1] so that the above lemma implies the following.

Proposition 2.9. Let t = {t0, t1, . . . , tm} be a set of numbers that satisfies

cos
π

2m + 1
< t0 < t1 < · · · < tm < 1.(2.15)

Then the matrices Ξ1(t), . . . ,Ξm−1(t) are all nonsingular.
Proof. If one of the matrices, say Ξj(t), were singular, there would be a nonzero

polynomial P ∈ spanXj that vanishes on t. This means that the number of zeros of
P in (αn,∞) would be m+1. However, each set Ξj has cardinality m+1 so that the
number of sign changes in the sequence of the coefficients of P is at most m. This is
a contradiction to the conclusion of the lemma.

The set of points given in this proposition ensures the uniqueness of determining
a polynomial by the set of its Radon projections. Condition (2.15) implies that all
points are clustered toward one end of the interval [−1, 1]. This appears to be neither
a practical nor a good choice for computation. In fact, the numerical test indicates
that some of the matrices Ξj tend to have very large condition numbers.

Our second positive result is more interesting. Here the points {tk} are based on
the zeros of the Chebyshev polynomials U2m. It is well known that these zeros are
given by

ηj,2m := cos
jπ

2m + 1
, j = 1, 2, . . . , 2m.
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We state the result for n = 2m first.
Theorem 2.10. Let t0 be any point in (−1, 1) such that U2m(t0) = 0. Let

tj = η2j,2m for j = 1, 2, . . . ,m. Then the matrices Ξ1(t),Ξ2(t), . . . ,Ξm−1(t) in The-
orem 2.1 are all nonsingular. Consequently, the polynomial P ∈ Π2

2m is uniquely
determined by the set (2.12) of its Radon projection.

Proof. It is easy to see that the set t is asymmetric. Hence, according to Theo-
rem 2.1, we need only show that Ξj(t) is invertible for each j = 1, 2, . . . ,m−1. Using
the explicit expression of U2m(t), it is easy to see that

U2m−2j(tk) = U2m−2j(η2k,2m) = −U2j−1(η2k,2m) = −U2j−1(tk).(2.16)

Indeed, since sin(2m + 1)η2k,2m = 0 and cos(2m + 1)η2k,2m = 1, it follows from
the addition formula that sin(2m − 2j + 1)η2k,2m = − sin 2jη2k,2m, from which the
equation follows.

Since U2m(t1) = · · · = U2m(tm) = 0, we evidently have

det Ξj(t) = U2m(t0) det Ξ̃j(t),

where Ξ̃j(t) is a submatrix of Ξj(t) with the column Xj(t0) and the row containing

U2m(tj) of Ξj(t) removed. Using (2.16), we can replace all rows of Ξ̃j(t) that contain
even Chebyshev polynomials with rows that contain odd Chebyshev polynomials.
More precisely, we replace the rows (U2i(t1), . . . , U2i(tm)) for i = j, j + 1, . . . ,m − 1
with rows (U2m−2i−1(t1), . . . , U2m−2i−1(tm)), respectively. The new matrix has all
elements given in terms of the Chebyshev polynomials of the odd degree; hence,

det Ξ̂j(t) = ε det(U2i−1(tk))
m, m
i=1,k=1,

where ε = ±1. Assume now that this determinant is zero. Then there exists a nonzero
polynomial Q of the form

Q(x) =

m∑
i=1

biU2i−1(x),

which vanishes at t1, . . . , tm. Since Q is odd, it vanishes also at −t1, . . . ,−tm. Observe
that the sets (−t1, . . . ,−tm) and (t1, . . . , tm) do not overlap. We conclude that the
polynomial Q of degree 2m − 1 vanishes at 2m distinct points and, consequently, it
vanishes identically, which is a contradiction.

A similar theorem holds for n = 2m− 1, which we state below.
Theorem 2.11. Let tj = η2j,2m for j = 1, 2, . . . ,m. Then the matrices Ξ1(t),

Ξ2(t), . . . ,Ξm(t) in Theorem 2.6 are all nonsingular. Consequently, the polynomial
P ∈ Π2

2m−1 is uniquely determined by the set (2.12) of its Radon projection.
The proof is similar to that of Theorem 2.10 and uses

U2m−2j(η2k−1,2m) = U2j−1(η2k−1,2m),

which can be verified using elementary trigonometric identities.
We have conducted some numerical tests for identifying other sets of tk, for which

the matrices Ξ1(t), . . . ,Ξm−1(t) are nonsingular, so that the reconstruction of a poly-
nomial from the set (2.12) of its Radon projections is unique. For n ≤ 20, it turns
out that both the equidistant points in (0, 1) and the Chebyshev points in (0, 1) work
out. See, however, the discussion at the end of the next section.
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3. Reconstruction of polynomials. In this section we set up the algorithm
that can be used to compute Pn from the Radon projections. We consider only the
case n = 2m. Let γj,k be the data

γj,k = Rφj (f ; tk)
/√

1 − t2k, 0 ≤ j ≤ 2m, 0 ≤ k ≤ m,(3.1)

where φj,m are given as in (2.13) and tk are distinct numbers in [0, 1), chosen in
advance, such that the linear systems of equations (3.2) and (3.3) below have unique
solutions for all j.

Recall that the Lagrange interpolation by trigonometric polynomials is used in
the proof of Theorem 2.1. The Lagrange interpolation based on the points in (2.13)
is given explicitly by (see, for example, [19])

Lnf(φ) =

2m∑
j=0

f(φj,m)�j(φ), �j(φ) =
sin(m + 1

2 )(φ− φj,m)

(2m + 1) sin 1
2 (φ− φj,m)

,

where we assume that f is the function being interpolated; that is, Lnf(φj,m) =
f(φj,m) for 0 ≤ j ≤ 2m. Using the well-known formula

1 + 2 cosφ + · · · + 2 cosmφ =
sin(m + 1

2 )φ

sin φ
2

,

we can write Lnf in the standard form of a trigonometric polynomial,

Lnf(φ) = m0(f) + 2
∑
j=1

(
mC

j (f) cos jφ + mS
j (f) sin jφ

)
,

where

mC
j (f) =

1

2m + 1

2m∑
l=0

f(φl,m) cos jφl,m,

mS
j (f) =

1

2m + 1

2m∑
l=0

f(φl,m) sin jφl,m.

For each k, 0 ≤ k ≤ m, we will use the above formulas with f(φj,m) = γj,k and write
mC

j,k = mC
j (f) and mS

j,k = mS
j (f) for this particular f . This will allow us to determine

the values A0(tk), Aj(tk) + A2m−j+1(tk), and Bj(tk) −B2m−j+1(tk) for 1 ≤ j ≤ m.
The next step is to fix j and use the values of A0(tk), or Aj(tk) + A2m−j+1(tk),

or Bj(tk) − B2m−j+1(tk) for k = 0, 1, . . . ,m to determine the coefficients of Aj and
Bj . For this purpose we consider the following linear systems of equations: For
1 ≤ j ≤ m/2,

m∑
l=j

dj,2lU2l(tk) +

m∑
l=m−j+1

dm−j+1,2lU2l−1(tk) = m2j,k, 0 ≤ k ≤ m,(3.2)

and for 1 ≤ j ≤ (m + 1)/2,

m∑
l=j

dj,2l−1U2l−1(tk) +

m∑
l=m−j+1

dm−j+1,2lU2l(tk) = m2j−1,k, 0 ≤ k ≤ m.(3.3)
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The quantities mj,k will be specified later. It is easy to see that the coefficient matrix
of these systems of equations is Ξj as in Theorem 2.1. There are a total of m systems
of linear equations, each of size (m+1)×(m+1). Solving these equations with proper
mj,k will determine the coefficients of Aj and Bj .

The last step is to use (2.7) and (2.8) to get cj,k, which are the coefficients of Pn

in (2.2).
Algorithm.

Step 1. For 1 ≤ l ≤ m and 0 ≤ k ≤ m, compute

mC
l,k =

1

2m + 1

2m∑
j=0

γj,k cos lθj and mS
l,k =

1

2m + 1

2m∑
j=0

γj,k sin lθj .(3.4)

Step 2. Solve the systems of equations (3.2) and (3.3) to get the coefficients aj,k
and bk,j in (2.6):

Case 1. Solve the m systems of (3.2) and (3.3) for mj,k = mC
j,k to get

aj,k := dj,k, 1 ≤ j ≤ m, 0 ≤ k ≤ 2m.

Case 2. Solve the m systems of (3.2) and (3.3) for mj,k = mS
j,k to get

bj,2l := dj,2l, 1 ≤ j ≤ m/2 and bj,2l := −dj,2l,
m + 2

2
≤ j ≤ m,

bj,2l−1 := dj,2l−1, 1 ≤ j ≤ m + 1

2
and bj,2l−1 := −dj,2l−1,

m + 1

2
≤ j ≤ m,

where 1 ≤ l ≤ m.
Step 3. Substitute the outputs aj,k and bj,k from Step 2 into (2.7) and (2.8) to

get cj,k. Then the polynomial P is given by (2.2).
The output of this algorithm is the polynomial P that satisfies (1.2). The main

computation appears to be Step 2. Initial numerical experiments indicate that the
linear systems of equations (3.2) and (3.3) are ill-conditioned. However, among the set
of points that we tested, the largest condition number of the matrices corresponding
to the equidistant points tk = (k + 1)/(m + 2), 0 ≤ k ≤ m of (0, 1) is smaller than
that corresponding to the Chebyshev points tk = cos(k + 1)π/(2m + 4), 0 ≤ k ≤ m,
or the points in Theorem 2.10.

As pointed out by a referee, it is perhaps not surprising that the matrices of
the linear systems (3.2) and (3.3) are ill-conditioned. Solving these linear systems
means inverting the Radon transform while it is known that the Radon reconstruction
problem is ill posed. Thus, for m large, the algorithm may not be useful for practical
computation. On the other hand, our result shows that it is possible to determine
a polynomial of degree n uniquely from a set of (n + 1)(n + 2)/2 Radon data that
concurs with the parallel geometry. This appears to be of independent interest.
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GLOBAL ATTRACTORS AND STEADY STATES FOR UNIFORMLY
PERSISTENT DYNAMICAL SYSTEMS∗
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Abstract. By appealing to the theory of global attractors on complete metric spaces, we obtain
weaker sufficient conditions for the existence of interior global attractors for uniformly persistent
dynamical systems, and hence generalize the earlier results on coexistence steady states. We also
provide examples to show applicability of our interior fixed point theorem in the case of convex
κ-contracting maps, and to prove the existence of discrete- and continuous-time dynamical systems
that admit global attractors, but no strong global attractors, which gives an affirmative answer to
an open question presented by Sell and You [Dynamics of Evolutionary Equations, Springer-Verlag,
New York, 2002] in the case of continuous-time semiflows.
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1. Introduction. Uniform persistence is an important concept in population dy-
namics since it characterizes the long-term survival of some or all interacting species
in an ecosystem. There have been extensive investigations on uniform persistence for
discrete- and continuous-time dynamical systems. We refer to [13, 27, 30] for surveys
and reviews. Looked at abstractly, uniform persistence is the notion that a closed
subset of the state space (e.g., the set of extinction for one or more populations) is
repelling for the dynamics on the complementary set. A natural question concerns
the existence of “interior” global attractors and “coexistence” steady states for uni-
formly persistent dynamical systems. The existence of interior global attractors was
addressed by Hale and Waltman [10], and the existence of coexistence steady states
under a general setting was investigated by Zhao [29]. In [10, 29] the traditional con-
cept of global attractors was employed: a global attractor is a compact, invariant set
which attracts every bounded set in the phase space (see, e.g., Hale [7], Temam [24],
and Raugel [20]).

Recently, the following weaker concept of global attractors was introduced by
Hirsch, Smith, and Zhao [11] and Sell and You [22]: a global attractor is a compact,
invariant set which attracts some neighborhood of itself and every point in the phase
space. For convenience, we refer to a traditional global attractor as a strong global at-
tractor. With the concept of strong global attractor, Zhao [29, Theorem 2.3] assumed
more conditions than necessary for the existence of a coexistence fixed point. How-
ever, the proof of [29, Theorem 2.3] needs only the property that the interior attractor
attracts every compact set, and hence actually implies a general fixed point theorem
that, if a continuous and κ-condensing map T has an interior global attractor, then
it has a coexistence fixed point (see Theorem 4.1). So an important problem is to
obtain sufficient conditions for the existence of interior global attractors for uniformly
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persistent dynamical systems. This is a nontrivial problem since the phase space M0

is an open subset of a complete metric space (M,d).
The main purpose of this paper is to establish the existence of the interior global

attractor (i.e., the global attractor for T : (M0, d) → (M0, d)) and a fixed point in
M0.

There is the following open question on the weaker concept of global attractor (see
pages 55 and 56 of [22]): Does there exist an example of a κ-contracting semiflow that
is point dissipative on a complete metric space W in which the global attractor does
not attract every bounded set in W? In other words, we expect to find a dynamical
system which has a global attractor, but no strong global attractor. In the case
of discrete-time semiflows (i.e., maps), such a question has already been answered
positively by Cholewa and Hale [4] (see also Raugel [20]) who developed an original
result of Cooperman [5] and introduced an appropriate κ-contraction map on the
Hilbert space of square summable series. As a byproduct of our investigations on
interior global attractors, we will provide examples of both discrete- and continuous-
time semiflows to give an affirmative answer to Sell and You’s question (see sections
5.2 and 5.3). It is worth pointing out that our continuous-time dynamical systems are
solution semiflows associated with a class of evolutionary equations with age structure.

It is obvious that we should start with the development of the theory of strong
global attractors into that of global attractors on complete metric spaces. Note that
the metric space (M0, d) is not complete since M0 is an open subset of the complete
metric space (M,d). In order to apply the theory of global attractors to T : (M0, d) →
(M0, d), we introduce a new metric d0(x, y) on M0 (see equation (2) for its definition)
so that (M0, d0) is a complete metric space. It turns out that the strongly bounded sets
introduced in [10] correspond to the bounded sets in (M0, d0). This metric function
d0(x, y) is the key tool for both the existence of a global attractor for T : (M0, d) →
(M0, d) and four counterexamples of dynamical systems on the complete metric space
(M0, d0). The theory of global attractors was already developed for continuous-time
semiflows in the book [22], where the concept of κ-contracting maps was introduced
(i.e., for each bounded set B ⊂ M, κ(Tn (B)) → 0 as n → +∞). It seems that this
strong notion may not be applied to T : (M0, d0) → (M0, d0). In fact, if T : (M0, d0) →
(M0, d0) is κ-contracting, then Tn (B) is strongly bounded for all sufficiently large
integers n whenever B is a strongly bounded subset of M0. But this property may
not be satisfied in general in the applications (see the first example in section 5.1). So
we will use the concept of asymptotically smooth maps introduced in [7] to establish
the existence of global attractors.

Using our established theory of global attractor in M0, we further investigate
the existence of a fixed point of T in M0. We also generalize the aforementioned
coexistence fixed point theorem for κ-condensing maps to convex κ-contracting maps
(see Definition 4.3), a new concept motivated by the fixed point theorem of Hale and
Lopes [9] and the Poincaré maps associated with periodic age-structured population
models. In terms of uniform persistence, our fixed point theorem (see Theorem 4.5)
and its corollary (see Corollary 4.6) generalize earlier results due to Browder [2],
Nussbaum [18, 19], Zhao [29], and Magal and Arino [15]. Clearly, there are analogues
of interior global attractors and fixed point results for continuous-time semiflows (see
Remark 3.10 and Theorem 4.7).

This paper is organized as follows. In section 2, we recall some basic concepts
and results for dissipative dynamical systems based on the book of Hale [7] and
establish sufficient conditions for the existence of global attractors and strong global
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attractors. In section 3, we prove the existence of a global attractor for T : (M0, d) →
(M0, d). In section 4, we present the fixed point theorems and their corollaries. In
section 5, we provide four examples to show the existence of discrete- and continuous-
time dynamical systems that admit global attractors, but no strong global attractors.
A simple periodic age-structured model is also studied in this section to illustrate
applicability of Theorem 4.5 in the case of convex κ-contracting maps.

2. Preliminaries. Let (M,d) be a complete metric space. Recall that a set U in
M is said to be a neighborhood of another set V provided V is in the interior int(U)
of U . For any subsets A, B ⊂ M and any ε > 0, we define

d(x,A) := inf
y∈A

d(x, y), δ(B,A) := sup
x∈B

d(x,A),

N(A, ε) := {x ∈ M : d(x,A) < ε} and N(A, ε) := {x ∈ M : d(x,A) ≤ ε} .

The Kuratowski measure of noncompactness, κ, is defined by

κ(B) = inf{r : B has a finite open cover of diameter ≤ r}

for any bounded set B of M . We set κ(B) = +∞ whenever B is unbounded.
For various properties of Kuratowski’s measure of noncompactness, we refer to

[17, 6] and [22, Lemma 22.2]. The proof of the following lemma is straightforward.
Lemma 2.1. The following statements are valid:
(a) Let I ⊂ [0,+∞) be unbounded, and let {At}t∈I be a nonincreasing family

of nonempty closed subsets (i.e., t ≤ s implies As ⊂ At). Assume that
κ(At) → 0, as t → +∞. Then A∞ = ∩t≥0At is nonempty and compact, and
δ(At, A∞) → 0, as t → +∞.

(b) For each A ⊂ M and B ⊂ M, we have κ(B) ≤ κ(A) + δ(B,A).
Let T : M → M be a continuous map. We consider the discrete-time dynamical

system Tn : M → M ∀n ≥ 0, where T 0 = Id and Tn = T ◦ Tn−1 ∀n ≥ 1. We denote
for each subset B ⊂ M, γ+ (B) = ∪m≥0T

m(B) the positive orbit of B for T, and
denote

ω(B) =
⋂
n≥0

⋃
m≥n

Tm(B)

the omega-limit set of B. A subset A ⊂ M is positively invariant for T if T (A) ⊂ A.
A is invariant for T if T (A) = A. We say that a subset A ⊂ M attracts a subset
B ⊂ M for T if limn→∞ δ(Tn(B), A) = 0.

It is easy to see that B is precompact (i.e., B is compact) if and only if κ(B) = 0.
A continuous mapping T : X → X is said to be compact (completely continuous) if
T maps any bounded set to a precompact set in M .

The theory of attractors is based on the following fundamental result, which is
related to [7, Lemmas 2.1.1 and 2.1.2].

Lemma 2.2. Let B be a subset of M, and assume that there exists a compact
subset C ⊂ M, which attracts B for T. Then ω(B) is nonempty, compact, invariant
for T, and attracts B.

Proof. Let I = N, the set of all nonnegative integers, and

An =
⋃

m≥n

Tm(B) ∀n ≥ 0.
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Since C attracts B, from Lemma 2.1(b) we deduce that

κ(An) ≤ κ(C) + δ(An, C) = δ(An, C) → 0 as n → +∞.

So the family {An}n≥0 satisfies the conditions of assertion (a) in Lemma 2.1, and we
deduce that ω(B) is nonempty, compact, and δ(An, ω(B)) → 0, as n → +∞. So ω(B)
attracts B for T. Moreover, we have

T

⎛
⎝ ⋃

m≥n

Tm(B)

⎞
⎠ =

⋃
m≥n+1

Tm(B) ∀n ≥ 0,

and since T is continuous, we obtain

T (An) ⊂ An+1, and An+1 ⊂ T (An) ∀n ≥ 0.

Finally, since δ(An, ω(B)) → 0, as n → +∞, we have T (ω(B)) = ω(B).
Definition 2.3. A continuous mapping T : M → M is said to be point (compact,

bounded) dissipative if there is a bounded set B0 in M such that B0 attracts each point
(compact set, bounded set) in M ; T is κ-condensing (κ-contraction of order k, 0 ≤ k <
1) if T takes bounded sets to bounded sets and κ(T (B)) < κ(B)(κ(T (B)) ≤ kκ(B)) for
any nonempty closed bounded set B ⊂ M with 0 < κ(B) < +∞; T is asymptotically
smooth if, for any nonempty closed bounded set B ⊂ M for which T (B) ⊂ B, there
is a compact set J ⊂ B such that J attracts B.

Clearly, a compact map is a κ-contraction of order 0, and a κ-contraction of
order k is κ-condensing. It is well known that κ-condensing maps are asymptotically
smooth (see, e.g., [7, Lemma 2.3.5]). By Lemma 2.1, it follows that T : M → M is
asymptotically smooth if and only if limn→∞ κ (Tn(B)) = 0 for any nonempty closed
bounded subset B ⊂ M for which T (B) ⊂ B.

A positively invariant subset B ⊂ M for T is said to be stable if for any neighbor-
hood V of B there exists a neighborhood U ⊂ V of B such that Tn (U) ⊂ V ∀n ≥ 0.
We say that A is globally asymptotically stable for T if, in addition, A attracts points
of M for T .

By the proof that (i) implies (ii) in [7, Theorem 2.2.5], we have the following
result.

Lemma 2.4. Let B ⊂ M be compact and positively invariant for T . If B attracts
compact subsets of one of its neighborhoods, then B is stable.

Definition 2.5. A nonempty, compact, and invariant set A ⊂ M is said to be
an attractor for T if A attracts one of its neighborhoods; a global attractor for T if
A is an attractor that attracts every point in M ; and a strong global attractor for T
if A attracts every bounded subset of M .

We remark that the notions of attractor and global attractor were used in [11,
22, 30]. The strong global attractor was defined as a global attractor in [7, 24, 20].
The following result is essentially the same as [8, Theorem 3.2]. Note that the proof
of this result was not provided in [8]. For completeness, we state it in terms of global
attractors and give an elementary proof below.

Theorem 2.6. Let T be a continuous map on a complete metric space (M,d).
Assume that

(a) T is point dissipative and asymptotically smooth;
(b) positive orbits of compact subsets of M for T are bounded.

Then T has a global attractor A ⊂ M . Moreover, for each subset B of M, if there
exists k ≥ 0 such that γ+(T k(B)) is bounded, then A attracts B for T .
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Proof. Assume that (a) is satisfied. Since T is point dissipative, we can find
a closed and bounded subset B0 in (M,d) such that, for each x ∈ M, there exists
k = k(x) ≥ 0, Tn (x) ∈ B0 ∀n ≥ k. Define

J(B0) := {y ∈ B0 : Tn(y) ∈ B0 ∀n ≥ 0} .

Thus, T (J(B0)) ⊂ J(B0), and for every x ∈ M, there exists k = k(x) ≥ 0 such that
T k (x) ∈ J(B0). Since J(B0) is closed and bounded, and T is asymptotically smooth,
Lemma 2.2 implies that ω(J(B0)) is compact invariant and attracts points of M .

Assume, in addition, that (b) is satisfied. We claim that there exists an ε > 0 such
that γ+(N(ω(J(B0)), ε)) is bounded. Assume, by contradiction, that γ+(N(ω(J(B0)),

1
n+1 )) is unbounded for each n > 0. Let z ∈ M be fixed. Then we can find a sequence

xn ∈N(ω(J(B0)),
1

n+1 ), and a sequence of integers mn ≥ 0 such that d(z, Tmn (xn)) ≥
n. Since ω(J(B0)) is compact, we can always assume that xn → x ∈ ω(J(B)) as
n → +∞. Since H := {xn : n ≥ 0} ∪ {x} is compact, assumption (b) implies that
γ+ (H) is bounded, which is a contradiction. Let D = γ+(N (ω(J(B0)), ε)). Then D
is closed, bounded, and positively invariant for T . Since ω(J(B0)) attracts points of
M for T, and ω(J(B0)) ⊂ N (ω(J(B0)), ε) ⊂ int(D), we deduce that, for each x ∈ M,
there exists k = k(x) ≥ 0 such that T k(x) ∈ int(D). It then follows that, for each
compact subset C of M, there exists an integer k ≥ 0 such that T k (C) ⊂ D. Thus,
the set A := ω(D) attracts every compact subset of M . Fix a bounded neighborhood
V of A. By Lemma 2.4, it follows that A is stable, and hence, there is a neighbor-
hood W of A such that Tn(W ) ⊂ V ∀n ≥ 0. Clearly, the set U := ∪n≥0T

n(W ) is a
bounded neighborhood of A, and T (U) ⊂ U . Since T is asymptotically smooth, there
is a compact set J ⊂ U such that J attracts U . By Lemma 2.2, ω(U) is nonempty,
compact, invariant for T, and attracts U . Since A attracts ω(U), then ω(U) ⊂ A.
Thus, A is a global attractor for T .

To prove the last part of the theorem, without loss of generality we assume that
B is a bounded subset of M and γ+(B) is bounded. We set K = γ+(B). Then
T (K) ⊂ K. Since K is bounded and T is asymptotically smooth, there exists a
compact C which attracts K for T . Note that T k (B) ⊂ T k (γ+(B)) ⊂ T k (K) ∀k ≥ 0.
Thus, C attracts B for T . By Lemma 2.2, we deduce that ω(B) is nonempty, compact,
invariant for T, and attracts B. Since A is a global attractor for T, it follows that
A attracts compact subsets of M . By the invariance of ω(B) for T, we deduce that
ω(B) ⊂ A, and hence, A attracts B for T .

Remark 2.7. From the first part of the proof of Theorem 2.6, it is easy to see
that if T is point dissipative and asymptotically smooth, then there exists a nonempty,
compact, and invariant subset C of M for T such that C attracts every point in M
for T .

The following lemma provides sufficient conditions for the positive orbit of a
compact set to be bounded.

Lemma 2.8. Assume that T is point dissipative. If C is a compact subset of M
with the property that, for every bounded sequence {xn}n≥0 in γ+(C), {xn}n≥0 or

{T (xn)}n≥0 has a convergent subsequence, then γ+(C) is bounded in M .
Proof. Since T is point dissipative, we can choose a bounded and open subset V of

M such that for each x ∈ M there exists n0 = n0(x) ≥ 0 such that Tn(x) ∈ V ∀n ≥ n0.
By the continuity of T and the compactness of C, it follows that there exists a positive
integer r = r(C) such that for any x ∈ C there exists an integer k = k(x) ≤ r such
that T k(x) ∈ V . Let z ∈ M be fixed. Assume, by contradiction, that γ+(C) is
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unbounded. Then there exists a sequence {xp} in γ+(C) such that

xp = Tmp(zp), zp ∈ C, and lim
p→∞

d(z, xp) = ∞.

Since T is continuous and C is compact, without loss of generality we can assume
that

lim
p→∞

mp = ∞, and mp > r, xp /∈ V ∀p ≥ 1.

For each zp ∈ C, there exists an integer kp ≤ r such that T kp(zp) ∈ V . Since
xp = Tmp(zp) /∈ V, there exists an integer np ∈ [kp,mp) such that

yp = Tnp(zp) ∈ V, and T l(yp) /∈ V ∀1 ≤ l ≤ lp = mp − np.

Clearly, xp = T lp(yp) ∀p ≥ 1, and {yp} is a bounded sequence in γ+(C).
We consider only the case where {yp} has a convergent subsequence, since the

proof for the case where {T (yp)} has a convergent subsequence is similar. Thus,
without loss of generality we can assume that limp→∞ yp = y ∈ V . In the case where

the sequence {lp} is bounded, there exist an integer l̂ and sequence pk → ∞ such that

lpk
= l̂ ∀k ≥ 1, and hence,

d(z, T l̂(y)) = lim
k→∞

d(z, T l̂(ypk
)) = lim

k→∞
d(z, xpk

) = ∞,

which is impossible. In the case where the sequence {lp} is unbounded, there exists
a subsequence lpk

→ ∞ as k → ∞. Then for each fixed m ≥ 1 there exists an integer
km such that m ≤ lpk

∀k ≥ km, and hence,

Tm(ypk
) ∈ M \ V ∀k ≥ km.

Letting k → ∞, we obtain

Tm (y) ∈ M \ V ∀m ≥ 1,

which contradicts the definition of V .
The following result on the existence of strong global attractors is implied by [8,

Theorems 3.1 and 3.4]. Since the proof of this result was not provided in [8], we
include a simple proof of it.

Theorem 2.9. Let T be a continuous map on a complete metric space (M,d).
Assume that T is point dissipative on M, and one of the following conditions holds:

(a) Tn0 is compact for some integer n0 ≥ 1, or
(b) T is asymptotically smooth and, for each bounded set B ⊂ M, there exists

k = k(B) ≥ 0 such that γ+(T k(B)) is bounded.
Then there is a strong global attractor A for T .

Proof. The conclusion in case (b) is an immediate consequence of Theorem 2.6.
In the case of (a), since Tn0 is compact for some integer n0 ≥ 1, it suffices to show
that for each compact subset C ⊂ M, ∪n≥0T

n (C) is bounded. By applying Lemma

2.8 to T̃ = Tn0 , we deduce that for each compact subset C ⊂ M, ∪n≥0T̃
n (C) is

bounded. So Theorem 2.6 implies that T̃ has a global attractor Ã ⊂ M . We set
B̃ = ∪0≤k≤n0−1T

k(Ã). By the continuity of T, it then follows that B̃ is compact
and attracts every compact subset of M for T, and hence, the result follows from
Theorem 2.6.
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Remark 2.10. It is easy to see that a metric space (M,d) is complete if and only
if for any subset B of M, κ(B) = 0 implies that B is compact. However, we can
prove that Lemmas 2.2 and 2.4 also hold for noncomplete metric spaces by employing
the equivalence between the compactness and the sequential compactness for metric
spaces. It then follows that Theorems 2.6 and 2.9 are still valid for any metric space.
We refer to [3, 20] for the existence of strong global attractors of continuous-time
semiflows on a metric space.

3. Persistence and attractors. Let (M,d) be a complete metric space, and
let ρ : M → [0,+∞) be a continuous function. We define

M0 := {x ∈ M : ρ(x) > 0} and ∂M0 := {x ∈ M : ρ(x) = 0} .

A subset B ⊂ M0 is said to be ρ-strongly bounded if B is bounded in (M,d) and
infx∈B ρ(x) > 0. Throughout this section, we always assume that T : M → M is a
continuous map with T (M0) ⊂ M0.

Definition 3.1. T is said to be ρ-uniformly persistent if there exists ε > 0 such
that lim infn→+∞ ρ (Tn(x)) ≥ ε, ∀x ∈ M0; weakly ρ-uniformly persistent if there
exists ε > 0 such that limn→+∞ sup ρ (Tn(x)) ≥ ε ∀x ∈ M0. The set ∂M0 is said to
be ρ-ejective for T if there exists ε > 0 such that for every x ∈ M with 0 < ρ (x) < ε
there is n0 = n0(x) ≥ 0 such that ρ (Tn0(x)) ≥ ε.

For a given open subset M0 ⊂ M, let ∂M0 := M \ M0. Then we can use the
continuous function ρ : M → [0,∞), defined by ρ(x) = d (x, ∂M0) ∀x ∈ M, to obtain
the traditional definition of persistence.

Proposition 3.2. Assume that there is a compact subset C of M that attracts
every point in M for T . Then the following statements are equivalent:

(1) T is weakly ρ-uniformly persistent.
(2) T is ρ-uniformly persistent.
(3) ∂M0 is ρ-ejective for T .
Proof. The observations (1)⇔(3) and (2)⇒(1) are obvious. Let us prove that

(1)⇒(2). Let ε > 0 be fixed such that

lim
n→+∞

sup ρ (Tn(x)) ≥ ε ∀x ∈ M0.(1)

Then for each x ∈ M0, and each n ≥ 0, there exists p ≥ 0 such that ρ (Tn+p(x)) ≥
ε/2. Assume that T is not ρ-uniformly persistent. Then we can find a sequence
{xm}m≥0 ⊂ M0 such that

lim
n→+∞

inf ρ (Tn(xm)) ≤ 1

m + 1
∀m ≥ 0.

So there exist lm ≥ 1 and nm ≥ 0 such that

d(Tnm(xm), C) ≤ 1

m + 1
, ρ (Tnm(xm)) ≥ ε/2,

ρ
(
Tnm+k(xm)

)
≤ ε/2∀ k = 1, . . . , lm, and

ρ
(
Tnm+lm(xm)

)
≤ 1

m + 1
.

Since C is compact, by taking a subsequence that we denote with the same index, we
can always assume that ym = Tnm(xm) → y ∈ C. Since ρ and T are continuous, we
deduce that

ρ (y) ≥ ε/2, and ρ
(
T k(y)

)
≤ ε/2 ∀k = 1, . . . , l,
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where l = limm→+∞ inf lm. If l < +∞, we have ρ
(
T l(y)

)
= 0, which is impossible

because T (M0) ⊂ M0. If l = +∞, we have

lim
n→+∞

sup ρ (Tn(y)) ≤ ε/2 < ε,

which contradicts (1).
We note that the concept of general ρ-persistence was used in [27, 23, 30]. It

was also shown in [27] that the ρ-uniform persistence implies the weak ρ-uniform
persistence for nonautonomous semiflows under appropriate conditions. The following
result shows that the notion of ρ-uniform persistence is independent of the choice of
continuous function ρ.

Proposition 3.3. Let ξ : M → [0,+∞) be a continuous function such that
∂M0 = {x ∈ M : ξ(x) = 0}. Assume that there is a compact subset of M that
attracts every point in M . Then T is ρ-uniformly persistent if and only if T is ξ-
uniformly persistent.

Proof. It suffices to prove that ρ-uniform persistence implies ξ-uniform persistence
since the problem is symmetric. Let us first remark that T is ρ-uniformly persistent
if and only if there exists ε > 0 such that

inf
x∈M0

inf
y∈ω(x)

ρ(y) ≥ ε,

where ω(x) is the omega-limit set of the positive orbit of x. Define

Aω = ∪x∈M0ω(x) and V = {y ∈ M : ρ(y) ≥ ε} .

Then

inf
x∈M0

inf
y∈ω(x)

ρ(y) = inf
x∈Aω

ρ(x) ≥ ε.

Clearly, Aω ⊂ C, so Aω is compact. Since Aω is included in V ⊂ M0, which is
closed, we deduce that Aω ⊂ V ∩ C ⊂ M0. So Aω ⊂ M0 is compact, and hence,
there exists η > 0 such that infx∈Aω

ξ(x) ≥ η, which implies that T is ξ-uniformly
persistent.

Let A be a nonempty subset of M. A is said to be ejective for T if there exists
a neighborhood V of A such that for every x ∈ (M \A) ∩ V there is n0 = n0(x) ≥ 0
such that Tn0(x) ∈ M \ V .

Proposition 3.4. Assume that ∂M0 �= ∅ and that there is a compact subset
C of M which attracts every point in M for T . Then the following statements are
equivalent:

(1) T is ρ-uniformly persistent.
(2) ∂M0 is ejective for T .
Proof. Assume first that (1) is true. Let ε > 0 be fixed such that

lim
n→+∞

sup ρ (Tn(x)) ≥ ε ∀x ∈ M0.

Then it is clear that ∂M0 is ejective for T, with V = {x ∈ M : ρ (x) ≤ ε/2}.
Conversely, assume that ∂M0 is ejective for T . Let V be a neighborhood of ∂M0

such that for every x ∈ M0 ∩ V there is n0 = n0(x) ≥ 0 such that Tn0(x) ∈ M \ V .
By Proposition 3.3, it is sufficient to prove that T is ρ-uniformly persistent when
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ρ (x) = d(x, ∂M0). Assume, by contradiction, that T is not ρ-uniformly persistent.
Then for each n ≥ 1 there exists xn ∈ M0, such that

lim
m→+∞

sup ρ (Tm(xn)) ≤ 1

n
.

By the attractivity of C, it follows that for each n ≥ 1 there exists ln ≥ 0 such that
each yn := T ln(xn) ∈ M0 satisfies

d
(
T k (yn) , C

)
≤ 2

n
and d

(
T k (yn) , ∂M0

)
≤ 2

n
∀k ≥ 0.

Since C is compact and V is a neighborhood of ∂M0, there exists δ > 0 such that

{x ∈ M : d (x,C) ≤ δ and d (x, ∂M0) ≤ δ} ⊂ V.

Let n0 ≥ 2/δ be fixed. Then we have yn0
∈ M0, and

d
(
T k (yn0) , C

)
≤ δ and d

(
T k (yn) , ∂M0

)
≤ δ ∀k ≥ 0.

Thus, we obtain

yn0 ∈ M0 ∩ V and T k (yn0) ∈ V ∀k ≥ 0,

which is a contradiction.
Observe that M0 is an open subset in (M,d). In order to make M0 become a

complete metric space, we define a new metric function d0 on M0 by

d0(x, y) =

∣∣∣∣ 1

ρ (x)
− 1

ρ (y)

∣∣∣∣+ d(x, y) ∀x, y ∈ M0.(2)

Lemma 3.5. (M0, d0) is a complete metric space.
Proof. It is easy to see that d0 is a metric function. Let {xn}n≥0 be a Cauchy

sequence in (M0, d0). Since d(x, y) ≤ d0(x, y) ∀x, y ∈ M0, we deduce that {xn}n≥0 is
a Cauchy sequence in (M,d), and there exists x ∈ M, such that d(xn, x) → 0 as n →
+∞. To prove that d0(xn, x) → 0 as n → +∞, it is sufficient to show that x ∈ M0.
Given ε > 0, since {xn}n≥0 is a Cauchy sequence in (M0, d0), there exists n0 ≥ 0 such
that d0(xn, xp) ≤ ε ∀n, p ≥ n0. In particular, we have d0(xn, xn0) ≤ ε ∀n ≥ n0. Then∣∣∣∣ 1

ρ (xn)
− 1

ρ (xn0
)

∣∣∣∣ ≤ ε ∀n ≥ n0.

So there exists r > 0 such that infn≥0 ρ (xn) ≥ r. Since ρ is continuous and d(xn, x) →
0 as n → +∞, we deduce that ρ (x) ≥ r, and hence x ∈ M0. Thus, (M0, d0) is
complete.

For any two subsets A,B ⊂ M, we denote

δ (B,A) = sup
x∈B

inf
y∈A

d(x, y),

and if A,B ⊂ M0, we denote

δ0 (B,A) = sup
x∈B

inf
y∈A

d0(x, y).

Lemma 3.6. The following two statements are valid:
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(1) Let {Bt}t∈I be a family of subsets of M0, where I is a unbounded subset of
[0,+∞). If A ⊂ M0 is compact in (M,d) and limt→∞ δ (Bt, A) = 0, then
limt→∞ δ0 (Bt, A) = 0.

(2) If T is asymptotically smooth, then T is asymptotically smooth in (M0, d0).
Proof. (1) We denote k := 1

2 infx∈A ρ(x) > 0. Assume, by contradiction, that
limt→+∞ sup δ0 (Bt, A) > ε > 0. Then we can find a sequence {tp}p≥0 ⊂ I such that

tp → +∞, p → +∞, and a sequence
{
xtp

}
p≥0

⊂ M0 such that xtp ∈ Btp , d0

(
xtp , A

)
≥

ε ∀p ≥ 0. Since d
(
xtp , A

)
→ 0, as p → +∞, without loss of generality we can assume

that there exists x ∈ A such that d(xtp , x) → 0, as p → +∞. Since ρ is continuous
and ρ(x) > k, there exists p0 ≥ 0 such that ρ(xtp) ≥ k ∀p ≥ p0. Thus, we have

0 < ε ≤ d0

(
xtp , x

)
≤ k−2

∣∣ρ(xtp) − ρ(x)
∣∣+ d(xtp , x) → 0 as p → +∞,

which is a contradiction.
(2) It is easy to see that T : (M0, d0) → (M0, d0) is continuous. Let B be a

bounded subset in (M0, d0) such that T (B) ⊂ B. Since T is asymptotically smooth,
there exists a compact subset C ⊂ M that attracts B for T. So C0 = C ∩B ⊂ M0 is
compact and attracts B for T . It easily follows that C0 is also compact in (M0, d0).
Since C0 attracts B for T, statement (1) implies that C0 attracts B for T : (M0, d0) →
(M0, d0).

The main result of this section is the following theorem.
Theorem 3.7. Assume that T is asymptotically smooth and ρ-uniformly persis-

tent, and that T has a global attractor A. Then T : (M0, d) → (M0, d) has a global
attractor A0. Moreover, for each subset B of M0, if there exists k ≥ 0 such that
γ+

(
T k (B)

)
is ρ-strongly bounded, then A0 attracts B for T.

Proof. We consider the continuous map T : (M0, d0) → (M0, d0). Since T is point
dissipative and ρ-uniformly persistent, T is point dissipative in (M0, d0). Moreover,
Lemma 3.6 implies that T is asymptotically smooth in (M0, d0). Let C be a compact
subset in (M0, d0), and {xp} a bounded sequence in γ+(C) in (M0, d0). Then xp =
Tmp(zp), zp ∈ C ∀p ≥ 1, and the sequence {xp} is ρ-strongly bounded in (M,d).
Since C is also compact in (M,d), we have limm→∞ δ(Tm(C), A) = 0. Thus, {xp}
has a convergent subsequence xpk

→ x in (M,d) as k → ∞. By the continuity
of ρ and the ρ-strong boundedness of {xp}, it follows that ρ(x) > 0, i.e., x ∈ M0,
and hence, xpk

→ x in (M0, d0) as k → ∞. Thus, Lemma 2.8 implies that positive
orbits of compact sets are bounded for T : (M0, d0) → (M0, d0). Then the conclusion
for T : (M0, d) → (M0, d) follows from Theorem 2.6, as applied to T : (M0, d0) →
(M0, d0).

Theorem 3.8. Assume that T is point dissipative on M and ρ-uniformly persis-
tent, and that one of the following conditions holds:

(a) There exists some integer n0 ≥ 1 such that Tn0 is compact on M, and Tn0

maps ρ-strongly bounded subsets of M0 onto ρ-strongly bounded sets in M0,
or

(b) T is asymptotically smooth on M, and for every ρ-strongly bounded subset
B ⊂ M0, there exists k = k (B) ≥ 0 such that γ+

(
T k(B)

)
is ρ-strongly

bounded in M0.
Then T : (M0, d) → (M0, d) has a global attractor A0, and A0 attracts every ρ-strongly
bounded subset in M0 for T .

Proof. Clearly, T : (M0, d0) → (M0, d0) is point dissipative. It is easy to see that
condition (a) implies that Tn0 : (M0, d0) → (M0, d0) is compact, and that condition
(b) implies that condition (b) of Theorem 2.9 holds for T : (M0, d0) → (M0, d0).
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By Theorem 2.9, there is a strong global attractor A0 for T : (M0, d0) → (M0, d0).
Consequently, A0 is a global attractor for T : (M0, d) → (M0, d), and A0 attracts
every ρ-strongly bounded subset in M0 for T .

Remark 3.9. A result similar to Theorem 3.8 was already presented for discrete-
and continuous-time dynamical systems in [29] and [10], respectively. The only differ-
ence, compared with the earlier results, is that we add a ρ-boundedness assumption
for case (a). In fact, this assumption is necessary for the existence of a strong global
attractor in M0 for T (see two examples in section 5.1).

Remark 3.10. A family of mappings Φ(t) : M → M, t ≥ 0, is called a continuous-
time semiflow if (x, t) → Φ(t)x is continuous, Φ(0) = Id, and Φ(t) ◦ Φ(s) = Φ(t + s)
for t, s ≥ 0. By similar arguments we can prove the analogues of Theorems 3.7 and
3.8 for a continuous-time semiflow Φ(t) on M with Φ(t)(M0) ⊂ M0 ∀t ≥ 0.

4. Coexistence steady states. In this section, we establish the existence of a
coexistence steady state (i.e., the fixed point in M0) for uniformly persistent dynamical
systems.

Throughout this section we always assume that M is a closed and convex subset
of a Banach space (X, ‖·‖), that ρ : M → [0,+∞) is a continuous function such
that M0 = {x ∈ M : ρ(x) > 0} is nonempty and convex, and that T : M → M is a
continuous map with T (M0) ⊂ M0. For convenience, we set ∂M0 := M \M0.

Assume that T : M0 → M0 has a global attractor A0. By Definition 2.5, it easily
follows that for every compact set K ⊂ M0 there exists an open neighborhood of K
which is attracted by A0. This property of A0 is enough to support the arguments in
the proof of [29, Theorem 2.3] (see also [30, Theorem 1.3.6]) instead of the property
that A0 attracts ρ-strongly bounded sets in M0. Thus, the proof of [29, Theorem 2.3]
actually implies the following fixed point theorem.

Theorem 4.1. Assume that T is κ-condensing. If T : M0 → M0 has a global
attractor A0, then T has a fixed point x0 ∈ A0.

Note that a fixed point theorem for κ-condensing maps in [9] was used in the
proof of [29, Theorem 2.3]. To generalize Theorem 4.1 to another class of maps, we
need the following fixed point theorem, which is a combination of Theorems 3 and 5
in [9] (see also [7, Lemma 2.6.5]).

Lemma 4.2 (Hale–Lopes fixed point theorem). Assume that K ⊂ B ⊂ S are
convex subsets of a Banach space X, with K compact, S closed and bounded, and B
open in S. If T : S → X is continuous, TnB ⊂ S ∀n ≥ 0, and K attracts compact
subsets of B, then there exists a closed bounded and convex subset C ⊂ S such that
C = co

(
∪j≥1T

j (B ∩ C)
)
. Moreover, if C is compact, then T has a fixed point in B.

We should point out that in the above fixed point theorem the claim that T has a
fixed point in B follows from the proof of [7, Lemma 2.6.5], where Horn’s fixed point
theorem [12] was used.

Motivated by Lemma 4.2 and the Poincaré maps associated with age-structured
population models, we give the following definition.

Definition 4.3. Let M be a closed and convex subset of a Banach space X, and
let T : M → M be a continuous map. Define T̂ (B) = co (T (B)) for each B ⊂ M . T

is said to be convex κ-contracting if limn→∞ κ(T̂n(B)) = 0 for each bounded subset
B ⊂ M .

Now we are ready to generalize Theorem 4.1 to convex κ-contracting maps.
Theorem 4.4. Assume that T is convex κ-contracting. If T : M0 → M0 has a

global attractor A0, then T has a fixed point x0 ∈ A0.
Proof. Since A0 is a global attractor for T : M0 → M0, the proof of [29, Theorem
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2.3] (see also [30, Theorem 1.3.6]) implies that there are three convex subsets, K ⊂
B ⊂ S ⊂ M, such that K ⊂ M0, B ⊂ M0, and the assumptions of Lemma 4.2 hold
for T . Let C be defined in Lemma 4.2. Define Ĉ := ∪j≥1T

j (B ∩ C). Then we have

Ĉ = T (B ∩ C) ∪ T
(
Ĉ
)

and C = co
(
Ĉ
)
,

and hence, Ĉ ⊂ T (C). Thus, we further obtain

C ⊂ T̂ (C) ⊂ T̂ 2(C) ⊂ · · · ⊂ T̂n(C) ∀n ≥ 0.

Since T is convex κ-contracting, it follows that κ(C) ≤ κ(T̂n(C)) → 0 as n → ∞.
Then κ(C) = 0, and hence, C is compact. Now Lemma 4.2 implies the existence of a
fixed point of T in A0.

Combining Theorems 2.6, 2.9, 3.7, 4.1, and 4.4 we have the following result on
the existence of coexistence steady states for uniformly persistent systems, which is a
generalization of [29, Theorem 2.3].

Theorem 4.5. Assume that
(1) T is point dissipative and ρ-uniformly persistent.
(2) One of the following two conditions holds:

(2a) Tn0 is compact for some integer n0 ≥ 1, or
(2b) for each compact subset C ⊂ M, γ+ (C) is bounded.

(3) Either T is κ-condensing or T is convex κ-contracting.
Then T : M0 → M0 admits a global attractor A0, and T has a fixed point in A0.

Let A ⊂ M and B ⊂ M \ A. A is said to be ejective for T in B if there exists a
neighborhood V of A such that for each x ∈ V ∩ B there exists n = n(x) ≥ 0 such
that Tn (x) ∈ M \ V . A is said to be ejective for T if A is ejective for T in M \A.

The following corollary is a generalization of [15, Theorem 4.1] on semi-ejective
fixed points.

Corollary 4.6. Assume that T (∂M0) ⊂ ∂M0 and that there exists x∂ ∈ ∂M0, a
fixed point of T, which is globally asymptotically stable for T : ∂M0 → ∂M0. Assume,
in addition, that

(1) T is point dissipative and x∂ is ejective for T in M0.
(2) One of the following two conditions holds:

(2a) Tn0 is compact for some integer n0 ≥ 1, or
(2b) positive orbits of compact subsets of M are bounded.

(3) Either T is κ-condensing or convex κ-contracting.
Then T : M0 → M0 admits a global attractor A0, and T has a fixed point in A0.

Proof. By [29, Theorem 2.2] (see also [30, Theorem 1.3.1]), we deduce that T
is ρ-uniformly persistent with ρ(x) = d(x, ∂M0). Now Theorem 4.5 completes the
proof.

We remark that when ∂M0 = {x∂} in Corollary 4.6, we obtain a generalization
of the classical Browder [2] ejective fixed point theorem.

A point e ∈ M is said to be an equilibrium of a continuous-time semiflow Φ(t) on
M if Φ(t)e = e ∀ t ≥ 0. As a consequence of Theorems 4.1 and 4.4 and the proof of
[29, Theorem 2.4] (see also [30, Theorem 1.3.7]), we have the following result on the
existence of equilibrium in M0 for Φ(t).

Theorem 4.7. Let Φ(t) be a continuous-time semiflow on M with Φ(t)(M0) ⊂
M0 ∀ t ≥ 0. Assume that either Φ(t) is κ-condensing for each t > 0, or Φ(t) is convex
κ-contracting for each t > 0, and that Φ(t) : M0 → M0 has a global attractor A0.
Then Φ(t) has an equilibrium x0 ∈ A0.
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In the rest of this section, we establish sufficient conditions for T to be convex
κ-contracting.

Lemma 4.8. Let M be a closed and convex subset of a Banach space X, and let
T : M → M be a continuous map which takes bounded sets to bounded sets. Assume
that there exists a sequence of bounded linear operators {Pk}k≥1 ∈ L(X,X) such that

(1) for each bounded subset B ⊂ M, (Id− P1)T (B) is relatively compact;
(2) one of the following conditions holds:

(2a) There exists n0 ≥ 0 such that Pn0
is compact, and if k ∈ {1, . . . , n0 − 1} ,

C ⊂ M, and (Id− Pk)C is compact, then (Id− Pk+1)T (C) is compact.
(2b) There exists c ∈ (0, 1) such that ‖Pk+1T (x)‖ ≤ c ‖Pkx‖ ∀ x ∈ M, ∀ k ≥

1, and if k ≥ 1, C ⊂ M, and (Id − Pk)C is compact, then
(Id− Pk+1)T (C) is compact.

Then T is convex κ-contracting.
Proof. Let B ⊂ M be a bounded subset of M . Since (Id−P1)T (B) is relatively

compact and P1 is linear, it follows that

(I − P1)co(T (B)) = co((I − P1)T (B)) is compact,

and (Id− P1)co(T (B)) is compact.

Thus, (Id− P2)co(T (co(T (B)))) is compact, and, by induction, (Id− Pk+1)T̂
k(B) is

compact ∀k ∈ {1, . . . , n0 − 1} if (2a) holds, and ∀ k ≥ 1 if (2b) holds. If (2a) holds,

since Pn0 is compact, we deduce that T̂n0(B) is compact, and hence, κ(T̂n(B)) =
0 ∀n ≥ n0. If (2b) holds, then the boundedness of linear operator P1 implies that

sup
y∈co(T (B))

‖P1y‖ = sup
x∈T (B)

‖P1x‖ ≤ c sup
x∈B

‖x‖ .

Similarly, we have

sup
y∈co(T (T̂ (B)))

‖P2y‖ = sup
x∈T (T̂ (B))

‖P2x‖ ≤ c sup
x∈T̂ (B)

‖P1x‖

≤ c2 sup
x∈B

‖x‖ .

By induction, it follows that

sup
y∈T̂k(B)

‖Pky‖ ≤ ck sup
x∈B

‖x‖ ∀k ≥ 1.

Let δk := ck supx∈B ‖x‖. Since (Id−Pk)T̂
k(B) is compact, there exists x1, . . . , xm(k) ∈

(Id− Pk)T̂
k(B) such that

(Id− Pk)T̂
k(B) ⊂ ∪j=1,...,m(k)BM (xj , δk) ,

where BM (xj , δk) = {x ∈ M : ‖x− xj‖ < δk}. Thus, we have

(Id− Pk)T̂
k(B) + PkT̂

k(B) ⊂ ∪j=1,...,m(k)BM (xj , 2δk) .

Since T̂ k(B) ⊂ (Id− Pk)T̂
k(B) + PkT̂

k(B), it follows that

κ(T̂ k(B)) ≤ κ
(
(Id− Pk)T̂

k(B) + PkT̂
k(B)

)
≤ 2δk → 0 as k → +∞.
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Thus, T is convex κ-contracting.
We complete this section with an example of convex κ-contracting maps.
Example 4.9. Consider T : L1

+(0, c) → L1
+(0, c), with c ∈ (1,+∞] , defined by

T (ϕ) (a) =

{
χ (ϕ)ϕ(a− 1) if 1 ≤ a < c,
λ if a ∈ (0, 1) ,

where λ > 0, and χ : L1
+(0, c) → [0, α] (with 0 < α) is a continuous map. We choose

for each integer k ≥ 1, Pk : L1(0, c) → L1(0, c) the operator defined by

Pk (ϕ) (a) =

{
ϕ(a) if a ∈ (0, c) ∩ (k,+∞) ,
0 otherwise.

If c < +∞, then (2a) holds. If c = +∞ and α < 1, then (2b) holds. Thus, Lemma 4.8
implies that T is convex κ-contracting. Note that in this example we need to impose
some additional conditions on χ to show that T is κ-condensing.

5. Five examples. In this section, we first provide four examples of discrete-
and continuous-time semiflows which admit global attractors, but no strong global at-
tractors, in the complete metric spaces (M0, d0) introduced in section 3. Then we give
an example showing applicability of Theorem 4.5 in the case of a convex κ-contracting
map. Our examples are highly motivated by age-structured population models. We
refer to Webb [28], Iannelli [14], and Anita [1] for the classical approach and to Thieme
[25] and Magal and Thieme [16] (and references therein) for the integrated semigroup
approach to this class of evolutionary equations.

5.1. Asymptotically smooth semiflows on (M0, d0). Let C ([0, 1] ,R) be
endowed with the usual norm ‖ϕ‖∞ = supa∈[0,1] |ϕ(a)|. Let M := C+([0, 1],R) be
endowed with the metric d(x, y) = ‖x− y‖ , and T : M → M be defined by

T (ϕ) = δ
Fβ(ϕ)

1 + Fβ(ϕ)
1[0,1],

where 1[0,1](a) = 1 ∀a ∈ [0, 1] , and Fβ(ϕ) =
∫ 1

0
β(a)ϕ(a)da ∀ϕ ∈ X. We assume that

(A1) δ > 1, β ∈ C ([0, 1] ,R) ,
∫ 1

0
β(a)da = 1, β(a) > 0 ∀a ∈ [0, 1) , and β(1) = 0.

Consider the following discrete-time system on M :

un+1 = T (un) ∀n ≥ 0, and u0 ∈ M.

It is easy to see that the map T is continuous and maps bounded sets into compact
sets of M . Note that T (M) ⊂ [0, δ] 1[0,1] =

{
α1[0,1] : α ∈ [0, δ]

}
is bounded. So T is

compact and point dissipative and has a strong global attractor in M . Set

∂M0 = {0} , M0 = M \ {0} , ρ(x) = ‖x‖∞ .

Clearly, T (M0) ⊂ M0, T (∂M0) ⊂ ∂M0, and the fixed points of T are 0 and u =
(δ − 1)1[0,1]. Then it is easy to see that for each ϕ ∈ M0, T

m(ϕ) → u, as m → +∞.
So T is ρ-uniformly persistent. Let α = (δ − 1) and B := {x ∈ M : ‖x‖∞ = α}.
Since β(1) = 0, we have Fβ(B) = (0, α]. Moreover, T (B) = {α1[0,1] : α ∈ (0, α]}, and
Tn(B) = T (B) ∀n ≥ 1. Thus, there exists no compact subset in M0 that attracts B
for T . In particular, there is no strong global attractor for T : (M0, d0) → (M0, d0),
where d0 is defined as in (2).
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Next we consider the continuous-time semiflow {U(t)}t≥0 on M := L1
+ (0, 1) ,

which is generated by the following age-structured model:⎧⎪⎪⎨
⎪⎪⎩

∂u(t)
∂t + ∂u(t)

∂a = −μ(a)u(t)(a) −FΓ (u(t))u(t)(a), a ∈ (0, 1),

u(t, 0) = Fβ(u(t)),

u(0) = ϕ ∈ L1
+(0, 1),

(3)

where for each χ ∈ L∞ (0, 1) , and each ϕ ∈ L1 (0, 1) , Fχ (ϕ) =
∫ 1

0
χ(a)ϕ(a)da. We

assume that
(A2) β ∈ (0,+∞), μ ∈ L1

loc[0, 1), μ ≥ 0, lima→1−
∫ a

0
μ(r)dr = +∞,∫ 1

0
β exp(−

∫ a

0
μ(s)ds)da > 1, and

Γ(a) =
1∫ 1

0
exp(−

∫ s

0
μ(r) + λ0dr)ds

∫ 1

a

exp

(
−
∫ s

a

μ(r) + λ0dr

)
ds ∀a ∈ [0, 1] ,

where λ0 > 0 is the unique solution of
∫ 1

0
β exp

(
−
∫ a

0
μ(s) + λ0ds

)
da = 1.

Let {T (t)}t≥0 be the C0-semigroup of bounded linear operators generated by

A : D(A) ⊂ L1 (0, 1) → L1 (0, 1) with

Aϕ = −dϕ

da
− μϕ ∀ ϕ ∈ D(A),

D(A) =

{
ϕ ∈ W 1,1 (0, 1) : μϕ ∈ L1 (0, 1) and ϕ (0) =

∫ 1

0

βϕ(a)da

}
.

Let P : L1 (0, 1) → L1 (0, 1) be the bounded linear operator of projection defined by

P (ϕ)(a) =

∫ 1

0

Γ(s)ϕ(s)dsχ(a) ∀ϕ ∈ L1 (0, 1) ,

where χ(a) = α exp
(
−
∫ a

0
μ(s) + λ0ds

)
, and

α =

(∫ 1

0

Γ(s) exp

(
−
∫ a

0

μ(s) + λ0ds

)
ds

)−1

.

Then PT (t) = T (t)P = eλ0tP ∀t ≥ 0, and there exist δ > 0 and M ≥ 1 such that

‖(Id− P )T (t)‖ ≤ Me(λ0−δ)t ∀t ≥ 0.

Moreover, we have

U(t)x =
T (t)x

1 +
∫ t

0
FΓ (T (s)x) ds

∀t ≥ 0,∀x ∈ M.

It is easy to see that for each ϕ ∈ M0, U(t)ϕ → λ0χ, as t → +∞. Since T (t) is compact
for t ≥ 2, U(t) is compact for t ≥ 2. So {U(t)}t≥0 has a strong global attractor. Set

∂M0 = {0} , M0 = M \ {0} , ρ(ϕ) = ‖ϕ‖L1(0,1) ∀ϕ ∈ M.

Since T (t) is irreducible, we have U(t)(∂M0) ⊂ ∂M0, and U(t)M0 ⊂ M0 ∀t ≥ 0.
Since U(t)ϕ → λ0χ, as t → +∞, we deduce that U(t) is ρ-uniformly persistent. So
U(t) : (M0, d) → (M0, d) has a global attractor. Let

B :=
{
ϕ ∈ L1

+ (0, 1) : ‖ϕ‖L1(0,1) = 1
}
.
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Then B is ρ-strongly bounded. Since Γ(1) = 0, we deduce that there exists c > 0
such that (0, c] ⊂ FΓ (B). We further claim that for each ε > 0 and t0 > 0, there exist
t1 > t0 and ϕ ∈ B such that ‖U(t1)ϕ‖L1(0,1) < ε. Indeed, given ε > 0 and t0 > 0, we

can choose t1 > t0 such that Me−δt1 ≤ ε/2. Then for every ϕ ∈ B, we have

‖U(t1)ϕ‖ ≤ FΓ (ϕ) ‖χ‖[
1 − FΓ(ϕ)

λ0

]
e−λ0t1 + FΓ(ϕ)

λ0

+
ε

2
,

and hence, by choosing ϕ ∈ B with FΓ (ϕ) small enough, we obtain ‖U(t1)ϕ‖ ≤ ε.
This claim shows that for each t0 > 0, ∪t≥t0U(t)B is not ρ-strongly bounded. So
there exists no compact set in M0 that attracts B for U(t). In particular, there exists
no strong global attractor for the semiflow U(t) : (M0, d0) → (M0, d0), where d0 is
defined as in (2).

5.2. κ-contracting maps on (M0, d0). In this subsection, we construct κ-
contracting maps on (M0, d0) such that they admit a global attractor, but no strong
global attractor.

We set

X = L1 ((0,+∞) ,R) × R, X+ = L1
+ ((0,+∞) ,R) × R+

and endow X with the product norm ‖(ϕ, y)‖ = ‖ϕ‖L1 + |y|. Define 1[0,1] ∈ X by
1[0,1](l) = 1 ∀l ∈ (0, 1), and 1[0,1](l) = 0 ∀l ∈ [1,∞). Let a, b, and c be three real
numbers. Define T : X+ → X+ by T (ϕ, y) = (T1 (ϕ, y) , T2 (ϕ, y)) with

T1 (ϕ, y) = aϕ(· + 1) +

[
a

∫ 1

0

ϕ(l)dl + c

∫ 1

0
ϕ(l)dl

1 + ‖(ϕ, y)‖

]
1[0,1],

T2 (ϕ, y) = ay + b
‖(ϕ, y)‖

1 + ‖(ϕ, y)‖ .

We assume that
(A3) a ∈ (0, 1), b > 0, c > 0,

√
a < a + b < 1, and a + c > 1.

Consider the discrete-time system

xn+1 = T (xn) ∀n ≥ 0, and x0 ∈ X+.

It is easy to see that Tn (0, y) → 0, as n → +∞. Clearly, T is not uniformly persistent
for X+ \ {0}. We will find a closed subset M of X+, such that it contains 0 and is
positively invariant for T, and show that T is uniformly persistent for M \ {0}.

Lemma 5.1. There exists a nondecreasing and right-continuous function f :
R+ → R+ such that f(0) = 0, f(x) > 0 ∀x > 0, limx→0 f(x) = 0, and the set
M := {(ϕ, y) ∈ X+ : y ≤ f(‖ϕ‖)} is positively invariant for T .

Proof. We define F : R
2
+ → R

2
+ by

F (x1, x2) =

(
ax1, ax2 + b

x1 + x2

1 + x1 + x2

)
∀x = (x1, x2) ∈ R

2
+.

Then F is nondecreasing on R
2
+. Set

χ(t) = (ta + (1 − t), 1) ∀t ∈ [0, 1] .
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By induction, we define χ : R+ → R
2
+ by

χ(t) = F (χ(t− 1)) ∀t ∈ (n, n + 1], ∀n ≥ 1.

Note that χ(1)1 = F (χ(0))1 and a < 1. Then the function t → χ(t)1 is strictly
decreasing and continuous. Since F (1, 1) ≤ (a, 1) , the function t → χ(t)2 is non-
increasing and left-continuous. Moreover, since a+ b < 1, we have limt→+∞ χ(t) = 0.
We further set

χ(t) = (1 − t, 1) ∀t ∈ (−∞, 0] .

Since χ(t)1 is strictly decreasing in t ∈ R, we can define

f(x) =

{
χ(χ(x)−1

1 )2 if x > 0,
0 if x = 0.

It is easy to see that f has the desired properties.
Let D :=

{
(x1, x2) ∈ R

2
+ : x2 ≤ f(x1)

}
. Since f is nondecreasing and right-

continuous, it easily follows that D is closed. Now we show that F (D) ⊂ D. Let
x = (x1, x2) ∈ D; then x2 ≤ f (x1) . If x1 = 0, there is nothing to prove because
F (0) = 0. Assume that x1 > 0; then there exists t ∈ R such that χ(t)1 = x1, and
hence, x2 ≤ f(x1) = χ(t)2. Clearly, x = (x1, x2) ≤ χ(t), and F (x) ≤ F (χ(t)). In the
case where t ≥ 0, we have

χ(t + 1)1 = F (χ(t))1 = F (x)1 ,

and hence,

f(F (x)1) = χ(t + 1)2 = F (χ(t))2 ≥ F (x)2 ,

which implies that F (x) ∈ D. In the case where t ≤ 0, we have

x1 ≥ F (x)1 = F (χ(t))1 = aχ(t)1 = a (1 − t) ≥ a = χ(1)1,

and hence, there exists s ∈ [t, 1] such that χ(s)1 = F (x)1. It then follows that

f(F (x)1) = χ(s)2 = 1 ≥ F (χ(t))2 ≥ F (x)2,

which implies that F (x) ∈ D. This proves that F (D) ⊂ D.
Finally, we prove that T (M) ⊂ M . For any (ϕ, y) ∈ M, we have (‖ϕ‖, y) ∈ D,

and hence, the positive invariance of D for F implies that F (‖ϕ‖, y)2 ≤ f(F (‖ϕ‖, y)1).
Note that ‖T1(ϕ, y)‖ ≥ a‖ϕ‖ = F (‖ϕ‖, y)1 and T2(ϕ, y) = F (‖ϕ‖, y)2. By the mono-
tonicity of f, it then follows that

T2(ϕ, y) = F (‖ϕ‖, y)2 ≤ f(F (‖ϕ‖, y)1) ≤ f(‖T1(ϕ, y)‖),

which implies that T (ϕ, y) ∈ M . Thus, M is positively invariant for T .
Now we consider T : M → M, where M is endowed with the usual distance

d(x, x̂) = ‖x− x̂‖. We set

∂M0 = {0} , M0 = M \ {0} , and ρ(x) = ‖x‖ .
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Since T is the sum of a compact operator and a linear operator with norm being a,
we have κ (T (B)) ≤ aκ (B) for any bounded set B ⊂ M . Thus, T is a κ-contraction.
Moreover, for each x ∈ M, we have ‖T (x)‖ ≤ a ‖x‖ + b + c, and hence

‖Tn(x)‖ ≤ an ‖x‖ +

(
n−1∑
i=0

ai

)
(b + c) ∀n ≥ 1.

It then follows that B = {x ∈ M : ‖x‖ ≤ b+c
1−a} is positively invariant for T, and

attracts every bounded subset of M for T . So T : (M,d) → (M,d) has a strong global
attractor.

Let ε > 0 be fixed such that a + c
1+ε > 1. We claim that

lim sup
n→∞

‖Tnx‖ ≥ ε ∀x = (ϕ, y) ∈ M0.

Assume, by contradiction, that lim supn→∞ ‖Tnx‖ < ε for some x = (ϕ, y) ∈ M0. We
set (ϕn, yn) = Tnx ∀n ≥ 0. By the definition of M, we have ϕ ∈ L1

+ ((0,+∞) ,R)\{0}.
It then follows that there exists n0 ≥ 0 such that

∫ 1

0
ϕn0

(l)dl > 0 and

∫ 1

0

ϕn+1(l)dl ≥
(
a +

c

1 + ε

)∫ 1

0

ϕn(l)dl ∀n ≥ n0.

Thus, we obtain

∫ 1

0

ϕn(l)dl → +∞ as n → +∞,

which is a contradiction. By Proposition 3.2, we conclude that T is ρ-uniformly
persistent. Since T : (M,d) → (M,d) has a global attractor, it follows from Theorem
3.7 that T : (M0, d0) → (M0, d0) has a global attractor.

To avoid possible confusion, we denote by κ0 the Kuratowski measure of non-
compactness on the complete metric (M0, d0). We now consider T : (M0, d0) →
(M0, d0). Let ε > 0 be fixed such that

√
a < d := a +

b

1 + ε
< 1.

Then for each x ∈ M, we have

‖T (x)‖ ≥ a ‖x‖ + b
‖x‖

1 + ‖x‖ ≥ dmin(ε, ‖x‖).

Let B ⊂ M0 be a ρ-bounded set. We set ρ0 = infx∈B ρ(x). Then for each x ∈ B, we
obtain

‖T (x)‖ ≥ a ‖x‖ + b
‖x‖

1 + ‖x‖ ≥ dmin(ε, ‖x‖).

By induction, it follows that

ρ (Tn (x)) ≥ dn min (ε, ρ0) ∀n ≥ 1, ∀x ∈ B.
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Thus, for each x, y ∈ B, we have

d0 (Tn(x), Tn(y)) =

∣∣∣∣ 1

ρ (Tn (x))
− 1

ρ (Tn (y))

∣∣∣∣+ ‖Tn (x) − Tn (y)‖

≤
[

1

ρ (Tn (x)) ρ (Tn (y))
+ 1

]
‖Tn (x) − Tn (y)‖

≤
[

1

d2n min (ε, ρ0)
2 + 1

]
d(Tn (x) , Tn (y)),

and hence,

κ0 (Tn(B)) ≤
[

1

d2n min (ε, ρ0)
2 + 1

]
κ (Tn(B))

≤ an

[
1

d2n min (ε, ρ0)
2 + 1

]
κ (B) .

Since d >
√
a, we obtain κ0 (Tn(B)) → 0 as n → +∞. So T : (M0, d0) → (M0, d0) is

κ0-contracting.
It remains to show that T : (M0, d0) → (M0, d0) has no strong global attractor.

Let δ > 0 be fixed, and consider the ρ-strongly bounded set

Bδ = {x ∈ M : ρ (x) = δ} .

For each m ≥ 0, we set xm := (ϕm, 0) with ϕm = δ1[m,m+1], and

xm
n := (ϕm

n , ymn ) = Tn (xm) ∀n ≥ 0.

Then for each m ≥ 1 and each n ∈ {0, . . . ,m− 1} , we have
∫ 1

0
ϕm
n (l)dl = 0, and

hence, ⎧⎨
⎩

ϕm
n+1(·) = aϕm

n (· + 1) + a
∫ 1

0
ϕm
n (l)dl1[0,1](·),

ymn+1 = aymn + b
‖xm

n ‖
1+‖xm

n ‖ .

Thus, for each m ≥ 1 and each n ∈ {0, . . . ,m− 1} , we obtain∥∥xm
n+1

∥∥ ≤ (a + b) ‖xm
n ‖ ≤ (a + b)

n
δ.

It follows that infx∈Bδ
ρ (Tn (x)) → 0 as n → +∞. So the κ0-contracting map

T : (M0, d0) → (M0, d0) has a global attractor, but no strong global attractor.

5.3. κ-contracting semiflows on (M0, d0). In this subsection, we construct
continuous-time κ-contracting semiflows on (M0, d0) such that they admit a global
attractor, but no strong global attractor.

Let X and X+ be defined as in the previous subsection. Consider the following
age-structured model:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + ∂u

∂a = −μu(t, a), t ≥ 0, a ∈ (0,∞) ,

u(t, 0) =
∫+∞
0

β(a)u(t,a)da

1+‖(u(t),y(t))‖ ,

dy(t)
dt = −μy(t) + γ ‖(u(t),y(t))‖

1+‖(u(t),y(t))‖ ,

u(0, .) = u0 ∈ L1
+ ((0,+∞) ,R) , y(0) = y0 ∈ R+.

(4)
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We assume that
(A4) μ > 0, γ ∈ (μ2 , μ), β : R+ → R+ is uniformly continuous, bounded,∫∞

0
β(a)e−μada > 1, and there exists a sequence of real numbers {an}n≥0 ⊂ [0,+∞)

such that an < an+1 ∀n ≥ 0, limn→+∞(a2n+2 − a2n+1) = +∞, and

β(a) > 0 ⇔ a ∈
⋃
n≥0

(a2n, a2n+1) .

For each χ ∈ L∞ ((0,+∞) ,R) and each ϕ ∈ L1 ((0,+∞) ,R) , we define

Fχ (ϕ) =

∫ +∞

0

χ(s)ϕ(s)ds.

Let {U(t)}t≥0 be the solution semiflow on X+ generated by system (4), and let
(u(t), y(t)) = U(t)(u0, y0). Then we have the following Volterra formulation of system
(4):

u(t, a) =

{
e−μtu0(a− t) if a > t,
e−μaB(t− a) if a ≤ t,

with B(t) =
Fβ(u(t))

1+F1(u(t))+y(t) , and for each t ≥ 0,⎧⎨
⎩

dF1(u(t))
dt = −μF1 (u(t)) +

Fβ(u(t))
1+F1(u(t))+y(t) ,

dy(t)
dt = −μy(t) + γ F1(u(t))+y(t)

1+F1(u(t))+y(t) ,
(5)

and

Fβ (u(t)) = e−μt

∫ +∞

t

β(s)u0(s− t)ds

+

∫ t

0

β(s)e−μa Fβ (u(t− a))

1 + F1 (u(t− a)) + y(t− a)
da.

Lemma 5.2. There exists a continuous and nondecreasing function f : R+ → R+

such that f(0) = 0, f(x) > 0 ∀x > 0, and the set

M := {(ϕ, y) ∈ X+ : y ≤ f(‖ϕ‖)}

is positively invariant for {U(t)}t≥0.
Proof. Let (x̂(t), ŷ(t)) be the unique solution on [0,∞) of the following cooperative

system: ⎧⎨
⎩

dx(t)
dt = −μx(t),

dy(t)
dt = −μy(t) + γ x(t)+y(t)

1+x(t)+y(t)

(6)

with

(x̂(0), ŷ(0)) =

(
γ

μ
+ 1,

γ

μ
+ 1

)
.

Since x̂′(0) < 0 and ŷ′(0) < 0, (x̂(t), ŷ(t)) is nonincreasing on some small interval
[0, ε]. By the monotonicity of the solution semiflow of system (6) on R

2
+, it follows

that (x̂(t), ŷ(t)) is nonincreasing on [0,∞), and (x̂(t), ŷ(t)) → (0, 0) as t → +∞. Set

x̂(t) =
γ

μ
+ 1 − t, and ŷ(t) =

γ

μ
+ 1 ∀t ∈ (−∞, 0].



GLOBAL ATTRACTORS AND UNIFORM PERSISTENCE 271

Clearly, x̂(t) is strictly decreasing in t ∈ R. Define f : R+ → R+ by

f(α) =

{
ŷ(x̂−1(α)) if α > 0,
0 if α = 0.

Then f satisfies the desired properties. Note that the set D := {(x, y) ∈ R
2
+ : y ≤

f(x)} is positively invariant for the solution semiflow of (6). By using the monotonicity
of f and the planar vector field associated with (5), one can easily prove that U(t)M ⊂
M ∀t ≥ 0.

Now we consider U(t) : (M,d) → (M,d), where d (x, x̂) = ‖x− x̂‖ . Set

∂M0 = {0} , M0 = M \ {0}, and ρ (x) = ‖x‖ .

Since β : R+ → R+ is uniformly continuous, it follows from [28] that for any bounded
set B ⊂ M, we have

κ (U(t)B) ≤ e−μtκ (B) ∀t ≥ 0.

Let z(t) := F1 (u(t)) + y(t). Then we obtain

dz(t)

dt
≤ −μz(t) + (‖β‖∞ + γ) ∀t ≥ 0.

Consequently, U(t) : (M,d) → (M,d) has a strong global attractor.
Let ε > 0 be such that ∫ +∞

0
β(a)e−μada

1 + ε
> 1.

We claim that lim supt→∞ ‖U(t)x‖ ≥ ε ∀x ∈ M0. Assume, by contradiction, that
lim supt→∞ ‖U(t)x‖ < ε for some x = (u0, y0) ∈ M0. Then there exists t0 ≥ 0 such
that ‖U(t + t0)x‖ < ε ∀t ≥ 0. By the definition of M, we have u0 �= 0, and hence,

u(t) �= 0 ∀t ≥ 0. It follows that u(t + t0) ≥ T̂ (t)u(t0) ∀t ≥ 0, where {T̂ (t)}t≥0 is
the strongly continuous semigroup of bounded linear operators on L1 ((0,+∞) ,R) ,

which is generated by Âϕ = −ϕ′ − μϕ with

D(Â) =

{
ϕ ∈ W 1,1 ((0,+∞) ,R) : ϕ(0) =

∫ +∞
0

β(a)ϕ(a)da

1 + ε

}
.

Since u(t0) �= 0, it follows from [28] that

‖u(t + t0)‖L1 ≥
∥∥∥T̂ (t)u(t0)

∥∥∥
L1

→ +∞ as t → +∞,

which is a contradiction. By the continuous-time version of Proposition 3.2, we deduce
that U(t) : (M,d) → (M,d) is ρ-uniformly persistent, and hence, U(t) : (M0, d0) →
(M0, d0) has a global attractor (see Theorem 3.7 and Remark 3.10).

We now prove that U(t) : (M0, d0) → (M0, d0) is κ0-contracting. Let ε > 0 be such
that μ− 2γ

1+ε < 0. Let B be a ρ-strongly bounded set of M0. We set ρ0 = infx∈B ρ(x).
For each x ∈ B, if we set z(t) = ρ (U(t)x) ∀t ≥ 0, we then have

dz(t)

dt
≥ −μz(t) + γ

z(t)

1 + z(t)
∀t ≥ 0,
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and hence,

ρ (U(t)x) ≥ e(−μ+ γ
1+ε )t min (ε, ρ0) ∀t ≥ 0.

It then follows that for each x, y ∈ B, we have

d0 (U(t)x, U(t)y) ≤
[

1

e2(−μ+ γ
1+ε )t min (ε, ρ0)

2
+ 1

]
d (U(t)x, U(t)y) ,

and hence,

κ0 (U(t)B) ≤
[

1

e2(−μ+ γ
1+ε )t min (ε, ρ0)

2
+ 1

]
κ (U(t)B)

≤ e−μt

[
1

e2(−μ+ γ
1+ε )t min (ε, ρ0)

2
+ 1

]
κ (B) .

Since μ− 2γ
1+ε < 0, we deduce that κ0 (U(t)B) → 0 as t → +∞. So U(t) : (M0, d0) →

(M0, d0) is κ0-contracting.
It remains to show that U(t) : (M0, d0) → (M0, d0) has no strong global attractor.

We fix a real number δ > 0 and set

B := {x ∈ M : ρ (x) = δ} .
Let xn = (un

0 , 0) , with un
0 = δ1[a2n+1,a2n+1+1](·), and (un(t), yn(t)) = U(t)xn ∀t ≥ 0.

Then for each t ≥ 0, we have

Fβ (un(t)) = e−μt

∫ +∞

t

β(s)un
0 (s− t)ds

+

∫ t

0

β(s)e−μa Fβ (un(t− a))

1 + F1 (un(t− a)) + yn(t− a)
da

(7)

and ∫ +∞

t

β(s)un
0 (s− t)ds =

∫ +∞

0

β(s + t)un
0 (s)ds

= δ

∫ a2n+1+1

a2n+1

β(s + t)ds = δ

∫ t+a2n+1+1

t+a2n+1

β(s)ds.

Since a2n+2−a2n+1 → +∞ as n → +∞, there exists n0 ≥ 0 such that a2n+2−a2n+1 >
1 ∀n ≥ n0. Then we have∫ +∞

t

β(s)un
0 (s− t)ds = 0 ∀t ∈ [0, a2n+2 − (a2n+1 + 1)], ∀n ≥ n0.

Since Fβ (un(t)) is a solution of (7), we deduce that for each n ≥ n0, and t ∈
[0, a2n+2 − (a2n+1 + 1)] , Fβ (un(t)) = 0. It then follows that zn(t) := ‖U(t)xn‖
satisfies zn(0) = δ and

dzn(t)

dt
= −μzn(t) + γ

zn(t)

1 + zn(t)
∀t ∈ [0, a2n+2 − (a2n+1 + 1)] , ∀n ≥ n0.

Thus, we have

zn(t) ≤ e(−μ+γ)tδ ∀t ∈ [0, a2n+2 − (a2n+1 + 1)] ,

which implies that infx∈B ρ (U(t)x) → 0, as t → +∞. So U(t) : (M0, d0) → (M0, d0)
has no strong global attractor.
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5.4. A periodic age-structured model. In this subsection, we illustrate ap-
plicability of Theorem 4.5 in the case of convex κ-contracting maps.

Consider the 1-periodic nonautonomous age-structured model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t + ∂u

∂a = −
(
μ + m(t,

∫ +∞
0

u(t, l)dl)(a)
)
u(t, a), t ≥ 0, a ∈ (0,+∞) ,

u(t, 0) =
∫+∞
0

β(t,a)u(t,a)da

1+
∫+∞
0

u(t,a)da
,

u(0, .) = u0 ∈ L1
+ ((0,+∞) ,R) .

(8)

We assume that
(A5) μ > 0 and the following conditions are satisfied:
(a) β : R

2
+ → R+ is uniformly continuous, positive, bounded, and t → β(t, a) is

1-periodic.
(b) m ∈ C

(
R

2
+, L

∞
+ ((0,+∞) ,R)

)
and the map t → m(t, ·) is 1-periodic.

(c) There exist a bounded and uniformly continuous map β̂ : R+ → R+ and a
continuous and bounded map m̂ : R+ → R+ such that

β(t, ·) ≥ β̂(·) and m(t, ·) ≤ m̂(·) ∀t ∈ [0, 1] ,

and for any a ≥ 0, there exists r ≥ a such that β̂(r) > 0 and

∫ +∞

0

β̂(a)e−
∫ a
0

μ+m̂(r)drda > 1.

Let Y = L1
+ ((0,+∞) ,R) and Y+ = L1

+ ((0,+∞) ,R) , and let {U(t, s)}0≤s≤t be
the nonautonomous semiflow generated by system (8). Set

M = Y+, ∂M0 = {0} and M0 = Y+ \ {0} .

Then U(t, s)0 = 0, and U(t, s)M0 ⊂ M0 ∀t ≥ s ≥ 0. For a 1-periodic solution of
system (8) in Y+ \ {0} , it suffices to find a fixed point of T = U(1, 0). By setting
x(t) := F1 (U(t, s)x) , we have

dx(t)

dt
≤ −μx(t) + ‖β‖∞

x(t)

1 + x(t)
,

which implies that T is bounded dissipative on M . Moreover, by using the results in
[28] and assumptions (A5)(a),(b), we obtain

U(t, s) = C(t, s) + N(t, s),

where C(t, s) is a compact operator, and

‖N(t, s)x‖ ≤ e−μ(t−s) ‖x‖ ∀t ≥ s ≥ 0,∀x ∈ M.

Thus, T is κ-contracting in the sense that κ (Tn (B)) → 0 as n → +∞ for any bounded
set B ⊂ M . It follows from Theorem 2.9 that T has a strong global attractor in M .
Using assumption (A5)(c) and comparison arguments, we can further prove that the
fixed point 0 of T is ejective. In order to apply Theorem 4.5, we need to verify that
T is convex κ-contracting.
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Let V (t, s) = (V1(t, s), V2(t, s)) be the nonautonomous semiflow on Y+×Y+, which
is generated by the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t + ∂u1

∂a = −
(
μ + m(t,

∫ +∞
0

(u1 + u2) (t, l)dl)(a)
)
u1(t, a), a ∈ (0,+∞) ,

u1(t, 0) = 0,
∂u2

∂t + ∂u2

∂a = −
(
μ + m(t,

∫ +∞
0

(u1 + u2) (t, l)dl)(a)
)
u2(t, a), a ∈ (0,+∞) ,

u2(t, 0) =
∫+∞
0

β(t,a)(u1+u2)(t,a)da

1+α
∫+∞
0

(u1+u2)(t,a)da
,

(u1(0, .), u2(0, .)) =
(
u1

0, u
2
0

)
∈ L1

+

(
(0,+∞) ,R2

)
.

We define Pn : Y → Y by

Pn (ϕ) = ϕ1[n,+∞) ∀n ≥ 0.

Then for each n ≥ 0, we have

Pn+1T (x) = V1(1, 0) (Pnx, (I − Pn)x)

and

(I − Pn+1)T (x) = V2(1, 0) (Pnx, (I − Pn)x) .

Moreover, if B is bounded and (I − Pn) (B) is relatively compact, then

{(I − Pn+1)T (x) : x ∈ B} = {V2(1, 0) (Pnx, (I − Pn)x) : x ∈ B}

is relatively compact. Note that for each x ∈ M, we have

‖Pn+1T (x)‖ = ‖V1(1, 0) (Pnx, (I − Pn)x)‖ ≤ e−μ ‖Pnx‖ .

By Lemma 4.8, it follows that T is convex κ -contracting. Thus, Theorem 4.5 implies
that T has a fixed point in M0, and hence, system (8) admits a nontrivial 1-periodic
solution.

Finally, we remark that the similar approach can be applied to more general
age-structured models.
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Abstract. This paper deals with the transient Landau–Lifschitz equations describing ferro-
magnetic media without exchange interaction coupled with Maxwell’s equations. The asymptotic
behavior of the solutions to this system is investigated.
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1. Introduction. This paper is concerned with a mathematical model for mi-
cromagnetism consisting of Maxwell’s equations

ε∂tE = curl H − σE − j, μ∂tH = − curl E − μ∂tM̃,(1.1)

coupled with the equation

∂tM = F (x,M) · [H −A(x)M](1.2)

for the unknown electromagnetic field quantities E,H depending on the time t ≥ 0
and the space variable x ∈ R

3. The magnetization M defined on R
+ × G is also

an unknown function which solves the ordinary differential equation (1.2); see [1],
[6], [5], [8]. Here the set G ⊂ R

3 represents the ferromagnetic medium. In (1.1) the

function M̃ is the extension of M on R
+×R

3 defined by zero on the set R
+×(R3\G).

This system is supplemented by the initial conditions

E(0, x) = E0(x), H(0, x) = H0(x)(1.3)

and

M(0, x) = M0(x) on G.(1.4)

From the physical point of view it is reasonable to assume that the initial state for

the magnetic induction B0
def
= μ(H0 + M̃0) is divergence free.

In (1.2) the term A(x)M describes a possible anisotropy of the medium, where
A(x) is a symmetric positive semidefinite matrix. The precise assumptions on the
nonlinear function F : G×R

3 → R
3×3 will be given in the next section. A physically

relevant example for F is

F (x,m)h = −γm ∧ h − α|m|−1m ∧ (m ∧ h),(1.5)

including a damping term αm ∧ (m ∧ h) with α ≥ 0.
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The main topic of this paper is the investigation of the large time asymptotic
behavior of the solutions. If F is given by (1.5), one obtains the energy dissipation
law

1

2

d

dt

(∫
R3

(ε|E|2 + μ|H|2)dx +

∫
G

μM ·AMdx

)
(1.6)

= −
∫

R3

Ejdx−
∫

R3

σ|E|2dx−
∫
G

μα|M|−1|M ∧ [H −AM]|2dx

for the system (1.1)–(1.4) including dissipative terms arising from the electrical con-
ductivity σ and the damping for ∂tM on the set where α > 0. In the autonomous
case where j = 0, the energy occurring in (1.6) is a nonincreasing function of the
time t. However, no information about the asymptotic behavior of M and the mag-
netic field H (even on sets of nonvanishing electrical conductivity) can be obtained
directly from this dissipation law, since there is no direct damping for any component
of H. In this paper the damping coefficient α may vanish on some part of the set G,
which means that on this subset there is even no damping for ∂tM.

The main goal of section 3 is to show that the solenoidal part of the magnetic field
decays in the weak topology and that the electric field converges for t → ∞ weakly to
some asymptotic state which is determined by the prescribed initial data E0,H0,M0

and the external current j (Theorem 2.2).

In section 4 it is shown that this convergence of the electromagnetic field is strong
with respect to the energy norm for t → ∞ on bounded sets of nonvanishing electrical
conductivity (Theorem 2.4). Here, the main idea is to prove local energy estimates
using a vector potential which provides additional dissipative terms for the magnetic
field. Since the system (1.1)–(1.4) does not admit strong solutions with bounded
derivatives for t → ∞ in general, this strong convergence cannot be obtained from
standard embedding results.

The existence of solutions to (1.1)–(1.4) has been proved in [6] for constant coeffi-
cients ε, μ and in [5] for nonsmooth coefficients ε, μ. In the spatially one-dimensional
case the local decay of the transverse components is shown in [7]. Uniqueness of so-
lutions to (1.1)–(1.4) is still an open question, at least for nonsmooth coefficients as
considered here. The quasi-stationary limit for this system is studied in [5], in which
the size of the ferromagnetic medium is very small in comparison to the electromag-
netic wave length. It is shown in [5] that in this case the magnetic field is governed
by the equations of the magnetostatic approximation.

Existence and quasi-stationary limit for the Landau–Lifschitz equation for the
magnetic moment with exchange interaction coupled with Maxwell’s equations are
studied in [2] and [3]; see also [11]. Furthermore it is shown in [2] and [3] that all
points of the weak ω-limit set are solutions of the corresponding stationary equations
by using the H1(G) estimate coming from the second order exchange-energy term
which does not occur in the system (1.1)–(1.4).

2. Definitions, assumptions, and statement of main results. All assump-
tions stated in this section shall be fulfilled throughout this paper. Let G ⊂ R

3

be an open subset of finite measure. The dielectric and magnetic susceptibilities
ε, μ ∈ L∞(R3) are assumed to have a positive lower bound, which means that

ε(x), μ(x) ≥ a0 on R
3 with some a0 > 0.(2.1)
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The assumptions on the initial data (E0,H0) ∈ X and j are

j ∈ L1((0,∞), L2(R3)) ∩ L∞((0,∞), L2(R3)), E0 ∈ L2(R3), H0 ∈ L2(R3),(2.2)

and

M0 ∈ L∞(G) with div [μ(H0 + M̃0)] = 0 on R
3.(2.3)

Next, A ∈ L∞(G,R3×3) is assumed to be a positive semidefinite matrix-valued
function, which means that A(x) ∈ R

3×3 is symmetric and

y ·A(x)y ≥ 0 for all x ∈ G, y ∈ R
3.(2.4)

It is assumed that the nonlinear function F : G× R
3 → R

3×3 satisfies

m · F (x,m)h = 0 for all x ∈ G, h ∈ R
3, and m ∈ R

3,(2.5)

and that there is some nonnegative function β ∈ L∞(G) such that

h · F (x,m)h ≥ β(x)|F (x,m)h|2(2.6)

for all x ∈ G, h ∈ R
3, and m ∈ R

3 with |m| ≤ ‖M0‖L∞(G), where M0 is as in (2.2).
Furthermore, F is assumed to be locally Lipschitz-continuous with respect to M; i.e.,
for k ∈ (0,∞) there exists Lk ∈ (0,∞) such that

|F (x, y) − F (x, ỹ)| ≤ Lk|y − ỹ|(2.7)

for all x ∈ G, y ∈ R
3, and ỹ ∈ R

3 with |y| + |ỹ| ≤ k. Finally,

F (·, 0) ∈ L∞(G).(2.8)

The conductivity satisfies

σ ∈ L∞(R3) and σ ≥ 0.(2.9)

Let

G0
def
= {x ∈ G : β(x) = 0}(2.10)

with the nonnegative function β ∈ L∞(G) occurring in assumption (2.6), and let

Sσ
def
= {x ∈ R

3 : σ(x) > 0}(2.11)

be the conducting region.
It is assumed that there is a nonempty open set U ⊂ Sσ such that

G0 ⊂ U ⊂ Sσ.(2.12)

Roughly speaking this condition requires that the medium is conducting on a neigh-
borhood of the region of undamped magnetization contained in G0. Furthermore,

ε(x) = μ(x) = 1 on R
3 \ U .(2.13)

The physical meaning of this condition is that the set R
3 \Sσ ⊂ R

3 \U represents the
vacuum region.
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Remark 1. If F is given by (1.5) with some nonnegative function α ∈ L∞(G),
one obtains

h · F (x,m)h = −α(x)|m|−1h · m ∧ (m ∧ h) = α(x)|m|−1|m ∧ h|2

≥ α(x)‖M0‖−1
L∞(G)|m ∧ h|2

and

|F (x,m)h|2 ≤ 2‖γ‖2
L∞(G)|m ∧ h|2 + 2‖α‖2

L∞(G)|m ∧ h|2

for all x ∈ G, h ∈ R
3, and m ∈ R

3 with |m| ≤ ‖M0‖L∞(G), whence assumption (2.6).
Furthermore, the set G0 occurring in (2.10) can be chosen as G0 = {x ∈ G : α(x) = 0}
in this case.

Next, let Hcurl be the space of all e ∈ L2(R3,R3) with curl e ∈ L2(R3). As

in [5] let 1 − PE and 1 − PH be the orthogonal projectors on Hcurl,0
def
= {f ∈ Hcurl :

curl f = 0} with respect to the weighted scalar products

〈e, f〉ε
def
=

∫
R3

εe · fdx and 〈g,h〉μ
def
=

∫
R3

μg · hdx,

respectively. Furthermore, let P0 be the orthogonal projector on Hdiv,0
def
= {f ∈ Hcurl :

div f = 0} with respect to the standard scalar product. It can be regarded as a
pseudodifferential operator of order zero and can be expressed by using a Fourier
transform:

(1 − P0)u = F−1
(
|k|−2k · û(k)k

)
.(2.14)

One of the main results in [5] is the existence of solutions.
Proposition 2.1. Assume (2.1)–(2.9). Then problem (1.1)–(1.4) admits a weak

solution (E,H,M) with the properties

(E,H) ∈ C([0,∞), X) and M ∈ W 1,∞
loc ([0,∞), L2(G)) ∩ L∞

loc([0,∞), L∞(G)).

Here and in what follows, the space variable x ∈ R
3 is often omitted in the

notation for the sake of brevity. The Maxwell system (1.1) is fulfilled in the sense
that

(E(t),H(t)) = exp (tB)(E0,H0)(2.15)

−
∫ t

0

exp ((t− s)B)
[
R∂tM(s) + (ε−1j(s), 0) + Fσ(E(s),H(s))

]
ds,

where (exp (tB))t∈R is the unitary group generated by the skew adjoint operator B in

the Hilbert space X
def
= L2(R3,C6) introduced in [5, sect. 2]; see [9]. The definitions

of Fσ : X → X and R : L2(G) → X can also be found in [5, sect. 2].
In what follows let Z be the set of all f ∈ Hcurl,0 with f(x) = 0 for all x ∈ Sσ,

where Sσ is given in (2.11).
Let P1 be the orthogonal projector on Z in L2(R3) with respect to the weighted

scalar product 〈·, ·〉ε. Now the main result of this paper concerning weak convergence
for t → ∞ can be stated.



280 FRANK JOCHMANN

Theorem 2.2. Assume (2.1)–(2.13). Then every solution (E,H,M) (with the
previously mentioned properties) to problem (1.1)–(1.4) satisfies

E(t)
t→∞−→ P1

(
E0 −

∫ ∞

0

ε−1j(s)ds

)
in L2(R3) weakly,

PHH(t)
t→∞−→ 0 and P0H(t)

t→∞−→ 0 in L2(R3) weakly.(2.16)

Corollary 2.3. Suppose that, in addition to the assumptions of Theorem 2.2,∫
R3

D0fdx = 0 for all f ∈ Z,(2.17)

where D0
def
= εE0 −

∫∞
0

j(s)ds. Then every solution (E,H,M) to problem (1.1)–(1.4)
satisfies

E(t)
t→∞−→ 0 in L2(R3) weakly.

Since ∇ϕ ∈ Z for all ϕ ∈ C∞
0 (R3 \ Sσ), condition (2.17) includes

div D0 = 0 on R
3 \ Sσ.

By (1.1) one has

div [εE(t)] = div

[
εE0 −

∫ t

0

j(s)ds

]
t→∞−→ div D0 = 0 in D′(R3 \ Sσ)

if condition (2.17) is fulfilled. The physical meaning of this is that the space charge

ρ
def
= div [εE(t)] determined by the initial state (E0,H0) and the prescribed current j

decays on the nonconducting region R
3 \ Sσ as t → ∞.

The next theorem concerns the local energy decay of E and QHH on the con-
ducting part of the medium.

Theorem 2.4. Suppose that the assumptions of Theorem 2.2 are satisfied and
that, in addition to assumption (2.3), there exists some A0 ∈ Hcurl with

curl A0 = μ[H0 + M̃0].(2.18)

Let K ⊂ R
3 be a compact set such that σ has a positive lower bound on some open

neighborhood U of K; i.e., let U ⊂ R
3 be open and K ⊂ U be compact with

σ(x) ≥ c0 for all x ∈ U(2.19)

with some c0 > 0. Then every solution (E,H,M) to problem (1.1)–(1.4) satisfies

‖E(t)‖L2(K) + ‖QHH(t)‖L2(K) + ‖Q0H(t)‖L2(K)
t→∞−→ 0.

3. Weak convergence for t → ∞, proof of Theorem 2.2. This section is
concerned with the proof of Theorem 2.2 concerning the weak convergence of the field
quantities for t → ∞. For this purpose the basic energy dissipation law is proved first.

Lemma 3.1. Assume (2.1)–(2.13). Then every solution (E,H,M) to problem
(1.1)–(1.4) satisfies

(E,H) ∈ L∞((0,∞), X), ∂tM ∈ L∞((0,∞), L2(G)),(3.1)

β1/2∂tM ∈ L2((0,∞), L2(G))(3.2)
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with the nonnegative function β ∈ L∞(G) occurring in assumption (2.6). Further-
more,

|M(t, x)| = |M0(x)| ≤ C0(3.3)

and ∫ ∞

0

∫
R3

σ|E(t)|2dxdt < ∞,(3.4)

in particular

Fσ(E(·),H(·)) ∈ L2((0,∞), X).(3.5)

Proof. By assumption (2.5) multiplication of both sides of (1.2) with M gives
M∂tM = 0, whence (3.3). By the standard energy estimate for (2.15) one has

1

2

d

dt
‖(E(t),H(t))‖2

X(3.6)

= −〈(E(t),H(t)), Fσ(E(t),H(t)) + (ε−1j(t), 0) + R∂tM(t)〉X

= −
∫

R3

E(t) [σE(t) + j(t)] dx−
∫
G

μH(t) · ∂tM(t)dx.

Hence the energy functional

E(t)
def
=

1

2

(
‖(E(t),H(t))‖2

X +

∫
G

μM(t) ·AM(t)dx

)
(3.7)

satisfies

E ′(t) ≤ ‖ε−1/2j(t)‖L2(R3E(t)1/2(3.8)

−
∫

R3

σ|E(t)|2 −
∫
G

μ[H(t) −AM(t)] · ∂tM(t)dx.

With

[H −AM] · ∂tM = [H −AM] · F (x,M)[H −AM]

≥ β|F (x,M)[H −AM]|2 = β|∂tM|2

by (3.3) and assumption (2.6), it follows from (3.8) that

E ′(t) ≤ −
∫

R3

σ|E(t)|2dx + ‖ε−1/2j(t)‖L2E(t)1/2 −
∫
G

μβ|∂tM|2dx.(3.9)

Since j ∈ L1((0,∞), L2(R3)), this completes the proof.
Next the weak ω-limit set of (E,H) will be characterized by means of the following

proposition.
Proposition 3.2. Assume (2.13) and let g ∈ X with

(exp (tB)g)
1

= 0 on U for all t ∈ R.(3.10)

Then g ∈ Hcurl,0 ×Hcurl,0 = ker B.
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Here and in what follows, u1 ∈ C
3 denotes the first three and u2 ∈ C

3 denotes
the last three components of a vector u ∈ C

6.
Proof. In Lemma 2 of [10] this assertion is proved for the scalar wave equation with

smooth coefficients and Maxwell’s equations with constant coefficients on arbitrary
spatial domains. In [4] this has been generalized to discontinuous coefficients ε and μ
satisfying (2.13). However, in the whole space case a shorter proof is possible. For
this purpose let

A(f)u
def
=

∫
R

f̂(t) exp (−tB)udt(3.11)

for f ∈ C∞
0 (R) and u ∈ X, where f̂ denotes the Fourier transform of f . Then

A(f)u ∈ D(Bk), and with fk(λ) = (−iλ)kf(λ) one has

BkA(f)u =

∫
R

f̂ (k)(t) exp (−tB)gdt = A(fk)u.(3.12)

Suppose that g ∈ X satisfies (3.10). Let f ∈ C∞
0 (R), G

def
= A(f)g ∈ D(B). Then

(3.10), (3.11), and (3.12) yield (BkG)
1

= 0 on U . Since

Bk+1G =
(
ε−1 curl (BkG)

2
,−μ−1 curl (BkG)

1

)
,

this also gives (BkG)
2

= 0 on the open set U and, thus,

BkG = 0 on U for all k ≥ 1.(3.13)

By assumption (2.13) it follows from (3.13) that

Bk+1G =
(
ε(Bk+1G)

1
, μ(Bk+1G)

2

)
=

(
curl (BkG)

2
,− curl (BkG)

1

)
(3.14)

for all k ≥ 0 on R
3 in the sense of distributions. By induction (3.14) yields

(1 − Δ)kBG = A(hk)g ∈ L2(R3)(3.15)

in the sense of distributions with hk(λ)
def
= −iλ(1 + λ2)kf(λ). By (3.11) and (3.15)

one obtains

‖(1 − Δ)kBG‖L2(R3) ≤ ‖ĥk‖L1(R)‖g‖X ≤ C1‖(1 + ξ2)ĥk(ξ)‖L∞(R)(3.16)

≤ C2‖hk − h′′
k‖L1(R) ≤ Ck

3 for all k ∈ N.

By Sobolev’s embedding theorem one obtains from (3.16) BG ∈ C∞(R3) and

‖∂αBG‖L∞ ≤ C4‖∂αBG‖H2(R3) ≤ C5‖(1 − Δ)n+1BG‖L2(R3) ≤ Cn+1
6(3.17)

for all n ∈ N and |α| ≤ 2n with C1 − C6 ∈ (0,∞) independent of n. This yields the
real analyticity of BG. By (3.13) this analyticity implies BG = 0 on all of R

3, i.e.,

A(f)g ∈ ker B for all f ∈ C∞
0 (R).(3.18)

Since ker B is a closed subspace of X = L2(R3) and there is a sequence fn ∈ C∞
0 (R)

with A(fn)g
n→∞−→ g, (3.18) completes the proof.
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In what follows let ω0 denote the ω-limit set of (E,H) with respect to the weak

topology of X, i.e., the set of all g ∈ X such that there exists a sequence tn
n→∞−→ ∞

with (E(tn),H(tn))
n→∞−→ g in X weakly. Since (E,H) ∈ L∞((0,∞), X) by Lemma 3.1

this set is nonempty.
Lemma 3.3. Under the assumptions of Theorem 2.2 it follows that ω0 ⊂ Z ×

Hcurl,0 ⊂ ker B.

Proof. Suppose g ∈ X and tn
n→∞−→ ∞ with

(E(tn),H(tn))
n→∞−→ g in X weakly.(3.19)

Let u(n)(t)
def
= (E(tn + t),H(tn + t)) for t ∈ (−tn,∞) and u(n)(t)

def
= 0 for t ≤ −tn.

Next, let m(n)(t)
def
= M(tn + t) for t ∈ (−tn,∞) and m(n)(t)

def
= 0 for t ≤ −tn. After

passing to a further subsequence, one has by (3.1)

∂tm
(n) n→∞−→ r(∞) in L∞(R, L2(G)) weak-∗.(3.20)

Let t ∈ R. By (2.15) one has

u(n)(t) = exp (tB)(E(tn),H(tn))

−
∫ tn+t

tn

exp ((tn + t− τ)B)
[
Fσ(E(τ),H(τ)) + R∂tM(τ) + (ε−1j(τ), 0)

]
dτ

= exp (tB)(E(tn),H(tn))

−
∫ t

0

exp ((t− s)B)
[
Fσ(E(s + tn),H(s + tn)) + R∂tm

(n)(s) + (ε−1j(s + tn), 0)
]
ds

for all n ∈ N with tn + t ≥ 0. (In order to apply Proposition 3.2 it is necessary also
to consider t ≤ 0.) With j ∈ L1((0,∞), L2(R3)), it follows from (3.5) and (3.19) that

u(n)(t)
n→∞−→ u(∞)(t)(3.21)

def
= exp (tB)g −

∫ t

0

exp ((t− s)B)Rr(∞)(s)ds in X weakly for all t ∈ R.

In particular, u∞ ∈ C(R, X) is a generalized solution of

∂tu
(∞) = Bu(∞) −Rr(∞)(3.22)

in the sense of (2.15). For all a, b ∈ R with a < b it follows from (3.21) that

∫ b

a

σu(n)
1(t)dt

n→∞−→
∫ b

a

σu(∞)(t)
1
dt in L2(Sσ).(3.23)

On the other hand, it follows from (3.5) that

∥∥∥∥∥
∫ b

a

σu(n)
1(t)dt

∥∥∥∥∥
L2(Sσ)

≤ (b− a)1/2

(∫ b+tn

a+tn

‖σE(t)‖2
L2(Sσ)dt

)1/2

n→∞−→ 0.(3.24)
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Now (3.23) and (3.24) yield
∫ b

a
σu(∞)

1(t)dt = 0 on Sσ for all a, b ∈ R, a < b, which
implies that

u(∞)
1(t) = 0 on Sσ for all t ∈ R.(3.25)

Let r̃(∞)(t) denote the extension of r(∞)(t) by zero outside G. Then (3.22) and (3.25)
yield, by assumption (2.12),

curl u(∞)
2 = ∂t(εu

(∞)
1) = 0(3.26)

and

∂t(μu
(∞)

2) + μr̃(∞) = − curl u(∞)
1 = 0(3.27)

on R×U in the sense of distributions. Since μ−1 ∈ L∞(R3,R3×3) is independent of t,
it follows easily from (3.27) that

∂tu
(∞)

2 + r̃(∞) = 0 on R × U .

Invoking (3.26) yields

curl r̃(∞) = −∂t curl u(∞)
2 = 0(3.28)

on R × U in the sense of distributions.
Next, it follows from (3.2) that for all a < b,∥∥∥∥∥β1/2

∫ b

a

∂tm
(n)(t)dt

∥∥∥∥∥
L2(G)

≤ (b− a)1/2

(∫ b+tn

a+tn

‖β1/2∂tM(t)‖2
L2(G)dt

)1/2

n→∞−→ 0,

which implies that∫ b

a

r(∞)(t, x)dt = 0 for all x ∈ G with β(x) > 0.

Hence, one obtains by (2.10)

r(∞)(t) = 0 a.e. on G \G0

and, thus,

r̃(∞)(t) = 0 a.e. on R
3 \G0,(3.29)

since r̃(∞)(t) is the extension of r(∞)(t) by zero outside G. Recall that G0 ⊂ U by
assumption (2.12). Hence, (3.28) and (3.29) imply

r̃(∞)(t) ∈ Hcurl,0 for all t ∈ R.

In particular,

Rr(∞)(t) ∈ ker B for all t ∈ R.(3.30)

Going back to (3.21), one obtains from (3.30)

u(∞)(t) = exp (tB)g −
∫ t

0

Rr(∞)(s)ds for all t ∈ R.
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Since (Rr(∞)(s))
1

= 0, one has

u(∞)(t)
1

= (exp (tB)g)
1

for all t ∈ R,

in particular

(exp (tB)g)
1

= 0 on Sσ for all t ∈ R,(3.31)

by (3.25). Now it follows from assumption (2.12), (3.31), and Proposition 3.2 that
g ∈ Hcurl,0 ×Hcurl,0. Furthermore, g

1
= 0 on Sσ by (3.31), whence g

1
∈ Z.

Remark 2. The open neighborhood U of G0 with positive conductivity in as-
sumption (2.12) is necessary to show that r̃(∞)(t), the extension of r(∞)(t) by zero
outside G, is curl free on all of R

3. (In particular, the fact that r(∞)(t) is supported
in G0 is used here.) If only G0 ⊂ Sσ instead of (2.12) is assumed, one can only
conclude that curl r(∞) = 0 on R ×G0, but in general not curl r̃(∞) = 0 on R × R

3,
which is required for (3.30).

Lemma 3.4. Under the assumptions of Theorem 2.2 it follows that∥∥∥∥P1E(t) − P1

[
E0 −

∫ ∞

0

ε−1j(s)ds

]∥∥∥∥
L2(R3)

t→∞−→ 0(3.32)

and

(1 − PH)H(t) = −(1 − PH)M̃(t)(3.33)

for every solution (E,H,M) to problem (1.1)–(1.4).
Proof. Since

ran PH = {h ∈ L2(R3) : div (μh) = 0},

it follows from (2.3) that

(1 − PH)(H0 + M̃0) = 0.(3.34)

Let a ∈ Z ×Hcurl,0 ⊂ ker B, which means a ∈ ker B and a1 = 0 on Sσ. Then (2.15)
and (3.34) yield

〈(P1E(t), (1 − PH)H(t)),a〉X = 〈(E(t),H(t)),a〉X

=

〈
(E0,H0) −

∫ t

0

[
R∂tM(s) + Fσ(E(s),H(s)) + (ε−1j(s), 0)

]
ds,a

〉
X

=

〈(
E0 −

∫ t

0

ε−1j(s)ds,H0 + M̃0 − M̃(t)

)
,a

〉
X

=

〈(
P1

[
E0 −

∫ t

0

ε−1j(s)ds

]
,−(1 − PH)M̃(t)

)
,a

〉
X

,

whence (3.33) and

P1E(t) = P1

[
E0 −

∫ t

0

ε−1j(s)ds

]
,(3.35)

from which the assertion follows, since j ∈ L1(0,∞, L2(R3)).
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Completion of the proof of Theorem 2.2. Since 1 − P1 and PH are the
orthogonal projectors on Z⊥ and H⊥

curl,0, respectively, it follows from Lemma 3.3
that zero is the only possible accumulation point of ((1 − P1)E(t), PHH(t)) and
((1−P1)E(t), P0H(t)) for t → ∞ with respect to the weak topology of X. Hence, by
Lemma 3.1,

P0H(t)
t→∞−→ 0 in L2(R3) weakly

and

((1 − P1)E(t), PHH(t))
t→∞−→ 0 in X weakly.(3.36)

Finally, the assertion follows from Lemma 3.4 and (3.36).

4. Local strong decay, proof of Theorem 2.4. In what follows let (E,H,M)
be a solution to problem (1.1)–(1.4). The following lemma is based on a result in [5].

Lemma 4.1. Let T > 0 and g ∈ W 1,∞((0,∞), L2(R3)). Then

∫ T

0

χ(s)

∫
R3

ψg(t + s) · PHH(t + s)dxds
t→∞−→ 0(4.1)

for all χ ∈ C∞
0 (0, T ) and ψ ∈ C∞

0 (R3).

Proof. Let {tn}n∈N with tn
n→∞−→ ∞, hn(t)

def
= PHH(tn + t), and Gn(t)

def
=

χ(t)ψg(tn + t). Then it follows from (2.16) that

hn
n→∞−→ 0 in L∞((0, T ), L2(R3)) weak-∗.(4.2)

Since ran (1 − PH) ⊂ Hcurl,0, one has by (1.1)∫
R3

hn(t) curl ϕdx =

∫
R3

H(tn + t) curl ϕdx =
d

dt

∫
R3

Dn(t) · ϕdx(4.3)

for all ϕ ∈ C∞
0 (R3) with

Dn(t)
def
= εE(tn + t) +

∫ tn+t

tn

(σE(s) + j(s))ds.

By Lemma 3.1 the sequences {Dn}n∈N, {Gn}n∈N, and {hn}n∈N are bounded se-
quences in L∞((0, T ), L2(R3)). Furthermore, {Gn}n∈N is equicontinuous in the sense
that for all θ > 0 there exists some δ > 0 such that

‖Gn(t) − Gn(s)‖L2(R3) ≤ θ for all n ∈ N and s, t ∈ (0, T ) with |s− t| ≤ δ.

Hence, {Dn}n∈N, {Gn}n∈N, and {hn}n∈N satisfy all assumptions required for Lemma
3.4 in [5]. Since ψ has compact support, Lemma 3.4 in [5] yields

∫ T

0

χ(s)

∫
R3

ψg(tn + s) · PHH(tn + s)dxds =

∫ T

0

∫
supp ψ

ψGn(s) · PHhn(s)dxds
n→∞−→ 0,

which completes the proof.
Proof of Theorem 2.4. The decay of PHH does not follow directly from (3.9),

since H does not occur in the right-hand side of (3.9). In order to obtain a dissipative
term also for the magnetic field, a vector potential A is introduced.



ASYMPTOTIC BEHAVIOR IN MICROMAGNETISM 287

Let A1
def
= P0A0 ∈ Hcurl ∩ ran P0 = Hcurl ∩Hdiv,0 with A0 ∈ Hcurl as in (2.18).

Then

curl A1 = curl A0 = μ[H0 + M̃0](4.4)

by (2.18). Let

A(t)
def
= A1 −

∫ t

0

P0E(s)ds ∈ Hcurl ∩Hdiv,0.(4.5)

Then it follows from (1.1), (4.4), and (4.5) that for all g ∈ Hcurl, one has∫
R3

A(t) curl gdx =

∫
R3

A1 curl gdx−
∫ t

0

∫
R3

P0E(s) · curl gdxds

=

∫
R3

μ[H0 + M̃0] · gdx−
∫ t

0

∫
R3

E(s) curl gdxds

=

∫
R3

μ(H(t) + M̃(t)) · gdx.

Hence, A(t) ∈ Hcurl ∩Hdiv,0 and, by (3.33),

curl A(t) = μ(H(t) + M̃(t)) = μPH(H(t) + M̃(t)).(4.6)

By a classical estimate one has

‖a‖L6(R3) ≤ C2‖curl a‖L2(R3) for all a ∈ Hcurl ∩Hdiv,0.(4.7)

Thus, (4.6) yields

‖A(t)‖L6(R3) ≤ C2‖PH(H(t) + M̃(t))‖L2(R3) ≤ C3,(4.8)

where C1–C3 are independent of t. By (4.6) and the estimates (3.1) and (4.8), one
has A ∈ L∞((0,∞), L6(R3)) and curl A ∈ L∞((0,∞), L2(R3)). Therefore, it follows
that

{A(t) : t ∈ (0,∞)} is precompact in L2(K)(4.9)

for all compact subsets K ⊂ R
3. Now let U ⊂ R

3 and K ⊂ U be as in (2.19) and
choose ψ ∈ C∞

0 (U) with ψ = 1 on K. First, it follows from Lemma 3.1 and (2.19)
that ∫ T

0

‖ψ1/2E(t + s)‖L2(R3)ds
t→∞−→ 0 for all T > 0.(4.10)

Let

g(t)
def
=

∫
R3

ψεE(t)A(t)dx.(4.11)

By (4.8), Hölder’s inequality, and (4.10) one has, for all T > 0,∫ T

0

|g(t + s)|ds ≤ C1

∫ T

0

‖ψE(t + s)‖L2(R3)ds
t→∞−→ 0.(4.12)
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From (1.1), (3.1) again, (4.6), (4.5), and (4.11) it follows that

g′(t) =

∫
R3

H(t) curl (ψA(t))dx−
∫

R3

ψ[σE(t) + j(t)]A(t)dx(4.13)

−
∫

R3

ψεE(t) · P0E(t)dx

≥
∫

R3

H(t) curl (ψA(t))dx− C1‖ψE(t)‖L2(R3) − C1‖ψj(t)‖L2(R3).

With (4.6) one obtains∫
R3

H(t) curl (ψA(t))dx =

∫
R3

(PHH(t)) curl (ψA(t))dx

=

∫
R3

ψ|μ1/2PHH(t)|2dx +

∫
R3

ψμ · (PHH(t)) · PHM̃(t)dx

+

∫
R3

(∇ψ) ∧ A(t) · PHH(t)dx

and hence, by (4.13),∫
R3

ψ|μ1/2PHH(t)|2dx ≤ g′(t) + C1‖ψE(t)‖L2(R3) + C1‖ψj(t)‖L2(R3)(4.14)

−
∫

R3

ψμ · (PHH(t)) · PHM̃(t)dx−
∫

R3

(∇ψ) ∧ A(t) · PHH(t)dx.

It follows from (2.16) and (4.9) that∫
R3

(∇ψ) ∧ A(t) · PHH(t)dx
t→∞−→ 0.(4.15)

Now a time average is estimated in (4.14). For this purpose let χ ∈ C∞
0 ((0, 1), [0,∞)).

Then Lemma 4.1 yields∫ 1

0

χ(s)

∫
R3

ψμ · (PHH(t + s)) · PHM̃(t + s)dxds
t→∞−→ 0,(4.16)

since G
def
= PH(M̃(·)) ∈ W 1,∞((0,∞), L2(R3)) by (3.1). It follows from (4.10), (4.12),

and (4.14)–(4.16) that

lim sup
t→∞

∫ 1

0

χ(s)

∫
R3

ψ|μ1/2PHH(t + s)|2dxds(4.17)

≤ lim sup
t→∞

∫ 1

0

χ′(t + s)g(t + s)ds = 0.

Note that (4.10) and (4.17) do not immediately yield the assertion of Theorem 2.4.
The aim of the following considerations is to show that the localized energy E :
[0,∞) → R defined by

E(t)
def
=

∫
R3

ψ[|ε1/2E(t)|2 + |μ1/2PHH(t)|2]dx(4.18)
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is uniformly continuous on [0,∞). With curl (1 − PH)g = 0 for all g ∈ L2(R3), it
follows from (1.1) that

∂tE = ε−1 curl (PHH(·)) + f1, ∂t(PHH(·)) = −μ−1 curl E + f2

on R
+ × R

3 weakly in the sense of (2.15) with

f1(t)
def
= −ε−1σE(t) − ε−1j(t), f2(t)

def
= −PH∂tM̃(t).

Since f
def
= (f1, f2) ∈ L∞((0,∞), X) by Lemma 3.1, the standard energy estimate and

(3.1) again yield

|E′(t)| =

∣∣∣∣2
∫

R3

ψ · [εE(t)f1(t) + μ(PHH(t))f2(t)] dx + 2

∫
R3

(∇ψ) ∧ E(t) · PHH(t)dx

∣∣∣∣
≤ C6

with some C1 ∈ (0,∞) independent of t. Hence, E satisfies

sup
s∈(0,a)

|E(t) − E(t + s)| ≤ C3a for all a > 0.(4.19)

Now, choose χ ∈ C∞
0 (0, 1) with ∫

R

χdt = 1(4.20)

and let χm(t)
def
= mχ(mt) for m ∈ N. Since

∫ 1

0
χm(t)dt = 1 by (4.20) and supp χm ⊂

(0, 1/m), it follows that∣∣∣∣E(t) −
∫ 1

0

χm(s)E(t + s)ds

∣∣∣∣ ≤ sup
s∈(0,1/m)

|E(t) − E(t + s)| m→∞−→ 0(4.21)

uniformly with respect to t. On the other hand (4.10) and (4.17) yield∫ 1

0

χm(s)E(t + s)ds
t→∞−→ 0 for all m ∈ N.(4.22)

From (4.21) and (4.22) one obtains E(t)
t→∞−→ 0, which yields by (4.18)

‖E(t)‖L2(K) + ‖QHH(t)‖L2(K)
t→∞−→ 0.(4.23)

It remains to show

‖Q0H(t)‖L2(K)
t→∞−→ 0.

Since (1 −QH)H(t) ∈ Hcurl,0, one has

‖ψQ0H(t)‖L2(R3) = ‖ψQ0QHH(t)‖L2(R3) = ‖ψQ0QHH(t)‖L2(BR(0))(4.24)

≤ ‖ψQHH(t)‖L2(BR(0)) + ‖[ψ,Q0]QHH(t)‖L2(BR(0)),

where R > 0 with supp ψ ⊂ BR(0). By (2.19) assertion (4.23) holds for all compact
subsets of U , in particular for supp (ψ). Hence

‖ψQHH(t)‖L2(R3)
t→∞−→ 0.(4.25)
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Since the commutator [ψ,Q0] is a compact operator from L2(R3) to L2(BR(0)), it
follows from (2.16) that

‖[ψ,Q0]QHH(t)‖L2(BR(0))
t→∞−→ 0.(4.26)

Finally, the assertion follows from (4.24)–(4.26).
Remark 3. For all compact sets K ⊂ R

3 satisfying assumption (2.19), one has
by Theorem 2.4

‖H(t) − H(q)(t)‖L2(K) = ‖PHH(t)‖L2(K)
t→∞−→ 0,(4.27)

where H(q)(t) ∈ L2(R3) is given by H(q)(t) = (1 − PH)H(t) = −(1 − PH)M̃(t); i.e.,

curl H(q)(t) = 0 and div (μ[H(q)(t) + M̃(t)]) = 0 on R
3.

This means that H(q) is determined by the quasi-stationary approximation obtained
in [5]. Therefore, (4.27) provides a further justification of the magnetostatic approxi-
mation in which H is replaced by H(q).
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EXISTENCE OF WEAK SOLUTIONS FOR THE
MULLINS–SEKERKA FLOW∗

MATTHIAS RÖGER†

Abstract. The long-time existence of solutions for the Mullins–Sekerka problem in a new weak
formulation is proved. Using a variational approach introduced by Luckhaus and Sturzenhecker [Calc.
Var. Partial Differential Equations, 3 (1995), pp. 253–271], time-discrete solutions are constructed,
satisfying approximate Gibbs–Thomson laws in a BV-formulation. But since the passage to a limit
allows a loss of surface area for the phase interfaces, convergence in this setting is in general not true.
We consider the surface measure of the phase interfaces and use the theory of varifolds to obtain a
rigorous passage to a limit in a suitable weak formulation of the Gibbs–Thomson law.

Key words. free boundaries, Mullins–Sekerka flow, varifolds
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1. Introduction. The Mullins–Sekerka flow is a variant of the classical Stefan
problem and describes phase transitions, such as melting or solidification processes,
where a negligible specific heat of the material under consideration can be assumed. In
this situation the energy balance is expressed by a quasi-stationary parabolic equation.
A geometric condition on the phase interface, known as Gibbs–Thomson law, accounts
for surface tension effects. In contrast to the classical Stefan problem, the Mullins–
Sekerka flow allows for superheating and undercooling, i.e., temperatures above the
melting point in the solid phase or temperatures below the melting point in the liquid
phase.

To state the problem we consider a given time interval (0, T ) and an open bounded
region Ω ⊂ R

3 representing the body of the material. Denote ΩT := (0, T ) × Ω. The
state variables are the relative temperature

u : ΩT → R

(u = 0 denoting the melting point) and a phase function

X : ΩT → {0, 1},

which partitions Ω at a time t ∈ (0, T ) into a liquid phase {X (t, .) = 1} and a solid
phase {X (t, .) = 0} separated by the phase interface, that is, their common boundary
in Ω. The energy balance for the classical Stefan problem reads

∂t(cu + LX ) − kΔu = f(1.1)

in the sense of distributions, with a given heat source f : Ω → R and phase indepen-
dent constants c, L, and k describing the specific heat, latent heat, and heat capacity,
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respectively. Assuming that c is negligibly small and setting for simplicity L = k = 1,
we get the quasi-stationary energy balance

∂tX − Δu = f.(1.2)

In the classical Stefan problem the temperature at the phase interface equals the
melting temperature, that is,

u(t, .) = 0 on the phase interface.(1.3)

Surface tension effects are taken into consideration by the Gibbs–Thomson law

H(t, .) = u(t, .) on the phase interface,(1.4)

where H(t, .) denotes the scalar mean curvature of the phase interface, which we take
as positive for convex liquid phases.

The Mullins–Sekerka problem is given by (1.2) and (1.4). An initial condition for
X and a boundary condition for u on ∂Ω are prescribed. This model can be seen as a
quasi-stationary variant of the Stefan problem with Gibbs–Thomson law given by (1.1)
and (1.4). Existence of classical solutions for the Mullins–Sekerka problem locally in
time was proved by Chen, Hong, and Li [CHY96] and by Escher and Simonett [ES97].
In general, classical solutions can develop singularities. To derive long-time existence
results one has to turn to weak formulations. Chen [Che96] obtains solutions globally
in time studying the limit of a certain Cahn–Hilliard model. Here the Gibbs–Thomson
law is satisfied in a rather weak and complex formulation. In particular, the measures
giving the energy density are not necessarily rectifiable.

Luckhaus and Sturzenhecker give in [LS95] another weak formulation of the
Mullins–Sekerka problem. Phase and temperature function

X ∈ L∞(0, T ; BV(Ω; {0, 1})), u ∈ L2(0, T ; H1,2(Ω))

satisfy (1.2) in the sense of distributions and (1.4) in the BV-formulation of the Gibbs–
Thomson law, that is,

∫ T

0

∫
Ω

(
∇ · ξ − ∇X

|∇X | ·Dξ
∇X
|∇X |

)
(t, .)|∇X |(t, .) dt =

∫
ΩT

∇ · (uξ)X

for all ξ ∈ C∞
c (ΩT ; R3).

Whereas this weak formulation is comparatively simple, the convergence of time-
discrete approximations X h and uh to correct weak solutions of (1.2) and (1.4) is only
shown under an additional condition on the approximations, which reads

lim
h→0

∫
ΩT

|∇X h| →
∫

ΩT

|∇X |.(1.5)

This excludes a loss of surface area for the phase interfaces and allows one to prove
the convergence of approximate Gibbs–Thomson laws within the BV-formulation.

In the present paper we use the time-discrete approximation scheme of [LS95]
but drop condition (1.5). Difficulties which arise are captured in the following time-
independent example. Assume two solid parts of approximations X h which merge to
one when letting h → 0.
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A part of the boundary, indicated by the dashed line, has ceased to separate two
different phases. We call this part the hidden boundary, whereas the phase interface
represents the physically relevant part of the boundary. Cusp singularities occur due
to the cancellation of phase interfaces. As shown in [Sch97], the BV-formulation of
the Gibbs–Thomson law breaks down.

These difficulties are tackled in [Rög03] and [Rög04], where the Stefan problem
with Gibbs–Thomson law is treated. Following an idea of Schätzle [Sch01] we consider
the surface measure of the phase interfaces to master possible cancellations. In the
above example the surface measures |∇X h| converge with h → 0 to a Radon measure
that has double multiplicity on the hidden boundary. This suggests the use of the con-
cept of integral varifolds introduced by Almgren [Alm65]. Geometric measure theory
provides a notion of mean curvature for integral varifolds; Schätzle [Sch01] investigates
the convergence of approximate Gibbs–Thomson equations in this context. However,
the control about the hidden boundaries is quite weak and we have to focus on the
physically relevant part of the boundary. For this purpose the following Proposition,
which we have proved in an earlier work, will be crucial (for the notations, consult
section 2).

Proposition 1.1 (see [Rög04, Proposition 3.1]). Let Ω ⊂ R
n be open, E ⊂ Ω,

and XE ∈ BV(Ω). Assume that there are two integral (n − 1)-varifolds μ1, μ2 on Ω
such that for i = 1, 2 the following hold:

∂∗E ⊂ spt(μi),(1.6)

μi has locally bounded first variation with mean curvature vector �Hμi ,(1.7)

�Hμi ∈ Ls
loc(μi), s > n− 1, s ≥ 2.(1.8)

Then

�Hμ1 |∂∗E = �Hμ2 |∂∗E

is satisfied Hn−1-almost everywhere on ∂∗E.
This proposition justifies the following definition.
Definition 1.2. Let E ⊂ Ω and XE ∈ BV(Ω), and assume that there exists an

integral (n− 1)-varifold μ on Ω satisfying (1.6)–(1.8). Then we call

�H := �Hμ|∂∗E

the generalized mean curvature vector of ∂∗E and define a scalar mean curvature by

H := �H · ∇X
|∇X | on ∂∗E.
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The essential boundary ∂∗E represents the phase interface, whereas spt(μ) \ ∂∗E
can be seen as a hidden boundary. Proposition 1.1 shows that the varifold’s mean
curvature restricted to the phase interface is a property of the phase interface itself
and independent of the location of hidden boundaries.

Our solutions of the Mullins–Sekerka problem satisfy the Gibbs–Thomson in the
sense that for almost all times a generalized mean curvature for the phase interface
exists and is given pointwise almost everywhere by (1.4).

Theorem 1.3. Let Ω ⊂ R
3 be an open bounded set with Lipschitz boundary, ΓD a

H2-measurable subset of ∂Ω with H2(ΓD) > 0, and define M0 := {v ∈ H1,2(Ω) : v = 0
on ΓD}. For given data

X0 ∈ BV(Ω; {0, 1}),
uD ∈ H1,2(Ω),

f ∈ L2(Ω),

there exists functions

X ∈ L∞(0, T ; BV(Ω; {0, 1})),
u ∈ L2(0, T ;uD + M0),

such that ∫
ΩT

X∂tϕ +

∫
Ω

X0ϕ(0, .) −
∫

ΩT

∇u · ∇ϕ = −
∫

ΩT

fϕ(1.9)

for all ϕ ∈ C∞
c ([0, T ) × Ω̄), ϕ = 0 on ΓD. For almost all t ∈ (0, T ) a generalized

mean curvature H(t) of ∂∗{X (t, .) = 1} exists and satisfies H2-almost everywhere on
∂∗{X (t, .) = 1} :

H(t, .) = u(t, .).(1.10)

As shown in [Rög04], (1.10) is well defined since for u ∈ L2(0, T ; H1,2(Ω)) trace
values of u(t, .) exist H2-almost everywhere for almost all t ∈ (0, T ). Furthermore,
our formulation of the Gibbs–Thomson law generalizes the BV-formulation. Never-
theless we remark that this solution concept does not include a weak formulation of a
boundary condition on the angle between the phase interface and the fixed boundary
∂Ω (see also the comments in [Rög03]). Moreover, since our focus is on the valida-
tion of the Gibbs–Thomson law, we have restricted our investigation to the case of a
nonvanishing Dirichlet boundary. In the case of a pure Neumann boundary condition
one has to take care of Lagrange multipliers occurring in the approximate Gibbs–
Thomson laws. For a discussion of this topic we refer to [BGS98], where a multiphase
Mullins–Sekerka system under a pure Neumann boundary condition is investigated.

The proof of Theorem 1.3 is given in sections 3 and 4. Compared to the Stefan
problem with Gibbs–Thomson law, the technical difficulty is due to the degeneracy of
the energy balance equation and the lack of L1(ΩT )-compactness for the approximate
temperature functions.

2. General definitions and notations. We fix some notations and basic def-
initions. As a general reference for geometric measure theory, see the book by Simon
[Sim83].
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For functions depending on time and space variables we denote “∇” as the spatial
gradient and “∇·” as the spatial divergence. For a differentiable function f : R

n → R
n

and a k-dimensional subspace T of R
n we define the divergence restricted to T as

divT f(x) :=

k∑
i=1

ti ·Df(x)ti,

where {ti}i=1,...,k is any orthonormal basis of T .
For Ω ⊂ R

n open, μ a Radon measure on Ω, x ∈ Ω, and � > 0, define the scaled
measures

μx,�(A) := �−n+1μ(x + �A).(2.1)

A k-dimensional subspace P ⊂ R
n is called the k-dimensional tangential plane of μ

in x, denoted by Txμ, if there is θ > 0 such that

μx,� → θHk| P as Radon measures

as � tends to zero. In this case θ is the multiplicity of μ in x.
We call μ a rectifiable (n − 1)-varifold if for μ-almost all x ∈ Ω the (n − 1)-

dimensional tangential plane Txμ exists, and an integral (n−1)-varifold if in addition
the multiplicity of μ is μ-almost everywhere integer-valued. A general (n−1)-varifold
is a Radon measure on the Grassmannian Gn−1Ω, which denotes the product of Ω
and the space of (n−1)-dimensional subspaces of R

n. In the present paper we identify
a rectifiable (n− 1)-varifold μ and the related Radon measure Vμ on Gn−1Ω, defined
by

Vμ(ζ) :=

∫
Ω

ζ(x, Txμ) dμ(x) for ζ ∈ C0
c (Gn−1Ω).

The first variation of a rectifiable (n− 1)-varifold μ is given by

δμ(ξ) :=

∫
Ω

divTxμ ξ(x) dμ(x) for ξ ∈ C1
c (Ω; Rn).

We say that μ is of locally bounded first variation with mean curvature vector �Hμ if
�Hμ ∈ L1

loc(μ) and

δμ(ξ) =

∫
Ω

− �Hμ · ξ dμ for all ξ ∈ C1
c (Ω; Rn).

For a Ln-measurable set E ⊂ Ω of finite perimeter let ∂∗E denote the reduced bound-
ary of E in Ω, that is, the subset of ∂E∩Ω where a generalized inner normal exists as
Radon–Nikodým derivative ∇XE/|∇XE | with length one. Then |∇XE | = Hn−1| ∂∗E
is an integral (with density 1) (n− 1)-varifold on Ω (see [AFP00, paragraph 3.5]).

3. Time discretization. We use the scheme introduced by Luckhaus and
Sturzenhecker [LS95] to construct time-discrete approximations. Given a time step
h> 0, determine iteratively step functions in time

uh : (0, T ) → (uD + M0), X h : (0, T ) → BV(Ω; {0, 1})
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by the following procedure. We use the abbreviations X h
t = X h(t, .), uh

t = uh(t, .)
and set

X h
t := X0 for 0 ≤ t < h.

For known uh
t−h,X h

t−h we define functionals Fh
t : BV(Ω; {0, 1}) → R,

Fh
t (X ) :=

∫
Ω

|∇X | + 1

2

∫
Ω

Bh(X − X h
t−h − hf)(X − X h

t−h − hf),(3.1)

where for v ∈ L2(Ω) the function Bh(v) denotes the solution of

−hΔBh(v) = v, Bh(v)|ΓD
= uD, ∇Bh(v) · νΩ|∂Ω\ΓD

= 0.(3.2)

Let X h
t be a global minimizer of Fh

t and define

uh
t := −Bh(X h

t −X h
t−h − hf).(3.3)

(3.3) yields the approximate energy-balance

∂−h
t X h = Δuh + f.(3.4)

Since the first variation of Fh
t vanishes in X h

t , we get for all ξ ∈ C1
c (Ω,R3)∫

Ω

(
∇ · ξ − ∇X h

t

|∇X h
t |

· Dξ
∇X h

t

|∇X h
t |

)
|∇X h

t | =

∫
Ω

X h
t ∇ · (uh

t ξ),(3.5)

which is the BV-formulation of the approximate Gibbs–Thomson law

Hh
t = uh

t ,

where Hh
t denotes the mean curvature of ∂∗{X h

t = 1}.
To derive compactness properties for the approximate solutions we first observe

Bh(hv) = B1(v) and∫
Ω

Bh(v)v = h

∫
Ω

|∇Bh(v)|2 − h

∫
Ω

∇Bh(v) · ∇uD +

∫
Ω

vuD

≥ h

2

∫
Ω

|∇Bh(v)|2 − h

2

∫
Ω

|∇uD|2 +

∫
Ω

vuD.

With Fh
τ (X h

τ ) ≤ Fh
τ (X h

τ−h), we calculate for all 0 < τ < T∫
Ω

|∇X h
τ | +

h

4

∫
Ω

|∇uh
τ |2 −

h

4

∫
Ω

|∇uD|2 +
1

2

∫
Ω

(X h
τ −X h

τ−h − hf)uD

≤
∫

Ω

|∇X h
τ−h| +

h

2

∫
Ω

B1(f)f.(3.6)

Now, for any t ∈ (0, T ), t ∈ [Mh, (M + 1)h) with M ∈ N 0, we take inequality (3.6)
for τi = ih and sum over i = 1, . . . ,M , which yields∫

Ω

|∇X h
t | +

1

4

∫ t

0

∫
Ω

|∇uh|2

≤
∫

Ω

|∇X0| +
T

4

∫
Ω

|∇uD|2 +
1

2

∫
Ω

|uD|(1 + T |f |) +
T

2

∫
Ω

B1(f)f.(3.7)
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In particular we get

sup
h>0

‖X h‖L∞(0,T ;BV(Ω)) < ∞, sup
h>0

‖uh‖L2(0,T ;H1,2(Ω)) < ∞(3.8)

and Fatou’s lemma ensures

lim inf
h→0

(
t �→ ‖uh(t, .)‖H1,2(Ω)

)
∈ L2(0, T ).(3.9)

In [LS95] an estimate for time differences of X h is derived from (3.8); that is,∫ T

τ

∫
Ω

|X h
t −X h

t−τ | dL3 dt ≤ Cτ
1
4(3.10)

holds for all 0 < τ < T . The Fréchet–Kolmogorov–Riesz theorem (see, for example,
[DS88, IV.8, Theorem 21]), the weak*-compactness of L2(0, T ; H1,2(Ω)), and (3.8),
(3.9), and (3.10) yield the following proposition.

Proposition 3.1. There exists a subsequence h → 0 and functions X ∈
L∞(0, T ; BV(Ω)), u ∈ L2(0, T ;uD + M0), such that

uh ⇀ u weakly in L2(0, T ; H1,2(Ω)),(3.11)

X h → X in L1(ΩT ),(3.12)

and for almost all t ∈ (0, T ) we have

X h(t) → X (t) in L1(Ω),(3.13)

sup
h>0

‖X h(t, .)‖BV(Ω) < ∞,(3.14)

lim inf
h→0

‖uh(t, .)‖H1,2(Ω) < ∞.(3.15)

4. Convergence to solutions. Let u,X and a subsequence h → 0 be given
as in Proposition 3.1. To prove Theorem 1.3 we pass (3.4) and (3.5) to a limit and
show u,X to be a correct weak solution of the Mullins–Sekerka problem. The energy
balance is derived in a standard way. Use any ϕ ∈ C∞

c ([0, T ) × Ω̄) with ϕ|ΓD
= 0

as a test function in (3.4), perform a discrete partial integration, and use (3.11) and
(3.12) to obtain (1.9).

The main effort is the passage to a limit in the approximate Gibbs–Thomson law
(3.5). To use a convergence result of Schätzle [Sch01] we argue pointwise in time. Due
to the lack of strong L1(ΩT )-compactness of the approximate temperatures, we have
to consider any limit point of (uh(t, .))h>0 in the weak-H1,2(Ω) topology and identify
their traces on ∂∗{X (t, .) = 1} with the trace of the weak limit u in (3.11).

Let us denote by μh
t the integral 2-varifolds with density one associated to the

surface measure of the phase interfaces

μh
t (η) :=

∫
Ω

η |∇X h
t | for η ∈ C0

c (Ω).

For the first variation of μh
t we obtain, recalling (3.5),

δμh
t (ξ) =

∫
Ω

(
∇ · ξ − ∇X h

t

|∇X h
t |

· Dξ
∇X h

t

|∇X h
t |

)
|∇X h

t | =

∫
Ω

X h
t ∇ · (uh

t ξ)
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for all ξ ∈ C1
c (Ω,R3). Finally, we define Th : L2(0, T ;C1

c (Ω,R3))∗ → R by

Th(ξ) =

∫ T

0

δμh
t (ξ(t, .)) dt(4.1)

and observe from (3.5) and (3.8) that

‖δμh
t ‖C1

c (Ω,R3)∗ ≤ C(Ω)‖uh
t ‖H1,2(Ω),(4.2)

‖Th‖L2(0,T ;C1
c (Ω,R3))∗ ≤ C ′(Ω),(4.3)

where C(Ω), C ′(Ω) are independent of h > 0.
In a first step we will prove that the phase interfaces ∂∗{X (t, .) = 1} have a

generalized mean curvature. Due to Proposition 1.1 this mean curvature is determined
by the phase interface itself and thus given by the strong convergence in (3.12) and
(3.13). Even more, any limit of the first variations (δμh

t )h>0 is determined by (3.12).
Lemma 4.1. For almost all t ∈ (0, T ) the phase interface ∂∗{X (t, .) = 1} has a

generalized mean curvature �H(t) in the sense of Definition 1.2 with

�H(t) ∈ L4
loc(|∇X (t, .)|).(4.4)

For any subsequence (hi)i∈N, hi → 0(i → ∞), with supi∈N ‖uhi(t, .)‖H1,2(Ω) < ∞ and
for all ξ ∈ C1

c (Ω,R3) we obtain

δμhi
t (ξ) →

∫
Ω

− �H(t) · ξ |∇X (t, .)|.(4.5)

Defining the functionals T (t) ∈ C1
c (Ω,R3)∗ by

〈ξ, T (t)〉 :=

∫
Ω

− �H(t) · ξ |∇X (t, .)|,(4.6)

we finally observe that

T ∈ L2(0, T ;C1
c (Ω,R3))∗(4.7)

holds.
Proof. Fix any t ∈ (0, T ) such that (3.13)–(3.15) hold and let (hi)i∈N be an

arbitrary subsequence with

sup
i∈N

‖uhi(t, .)‖H1,2(Ω) < ∞.(4.8)

Define V h ∈ C0
c (G2Ω)∗ as the general varifold associated to the density-one integer

varifold |∇X h(t, .)|. Recalling (3.14) and (4.8), there is a subsequence (h̃i)i∈N , a
function v ∈ H1,2(Ω), and a Radon measure V ∈ C0

c (G2Ω)∗ such that

uh̃i(t, .) ⇀ v weakly in H1,2(Ω),(4.9)

V h̃i
∗
⇀ V weakly* in C0

c (G2Ω)∗.(4.10)

With (3.5), (3.12), and (4.9), (4.10) all assumptions of Theorem 1.1 in [Sch01] are
fulfilled and we obtain that

V = Vμ for an integral 2-varifold μ,(4.11)

μ has locally bounded first variation with mean curvature vector �Hμ,(4.12)

�Hμ ∈ L4
loc(μ),(4.13)
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and that

�Hμ = vν(t, .)(4.14)

holds μ-almost everywhere, with

ν(t, .) =

{ ∇X (t,.)
|∇X (t,.)| on ∂∗{X (t, .) = 1},
0 elsewhere.

According to Definition 1.2 the phase interface ∂∗{X (t, .) = 1} has the generalized

mean curvature vector �H(t, .) = �Hμ|∂∗{X (t,.)=1} and (4.13) yields (4.4). Moreover,
due to [Sch01, Theorem 1.2], we have

�H(t, .) = 0 μ-almost everywhere in {θ2(μ, .) �= 1}.(4.15)

From (4.10) and (4.11) we obtain the convergence of μh̃i
t to μ and therefore also the

convergence of their first variations. Using (4.12), (4.14), and (4.15) we calculate

lim
i→∞

δμh̃i
t (ξ) = δμ(ξ)

=

∫
Ω

− �Hμ · ξ dμ =

∫
Ω

− �H(t, .) · ξ |∇X (t, .)| = 〈ξ, T (t, .)〉.

Since �H(t) is determined by X ∈ BV(Ω; {0; 1}) the functional T (t) does not depend
on the choices of v, V , and (h̃i). Thus we deduce

δμhi
t

∗
⇀ T (t)

for the whole sequence (hi)i∈N and for all subsequences of h → 0 for which (4.8)
holds. We choose hi → 0 such that

lim
i→∞

‖uhi(t, .)‖H1,2(Ω) = lim inf
h→0

‖uh(t, .)‖H1,2(Ω) < ∞

and the lower semicontinuity of the norm with respect to weak*-convergence, and
thus (4.2) yields

‖T (t, .)‖C1
c (Ω;R3)∗ ≤ lim inf

i→∞
‖δμhi

t ‖C1
c (Ω;R3)∗

≤ lim inf
i→∞

C(Ω)‖uhi(t, .)‖H1,2(Ω)

= C(Ω) lim inf
h→0

‖uh(t, .)‖H1,2(Ω).

Recalling (3.9) we get T ∈ L2(0, T ;C1
c (Ω; R3))∗.

To prove that the mean curvature of the phase interface is given as trace of the
weak limit u in (3.11), the weak*-convergence of Th in L2(0, T ;C1

c (Ω))∗ will be crucial.
The difficulty is that the pointwise convergence (4.5) holds only for time-dependent
subsequences. We use an argument similar to a refined dominated convergence theo-
rem in [PS93].

Lemma 4.2. There is a subsequence h → 0 such that

Th ∗
⇀ T in L2(0, T ;C1

c (Ω; R3))∗.(4.16)
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Proof. Fix an arbitrary ξ ∈ L2(0, T ;C1
c (Ω; R3)). For α > 0 we define functions

Th
α : (0, T ) → C1

c (Ω; R3)∗:

Th
α (t) :=

{
δμh

t if ‖uh(t, .)‖H1,2(Ω) ≤ α,

T (t) if ‖uh(t, .)‖H1,2(Ω) > α.
(4.17)

For all t ∈ (0, T ), for which the assertions of Lemma 4.1 hold, the definition of Th
α

and (4.5) yield

〈ξ(t, .), Th
α (t)〉 → 〈ξ(t, .), T (t)〉 (h → 0).

The estimate

|〈ξ(t, .), Th
α (t)〉| ≤ ‖ξ(t, .)‖C1

c (Ω;R3)

(
Cα + ‖T (t)‖C1

c (Ω;R3)∗

)
and (4.7) give a L1(0, T )-dominator. Thus the Lebesgue theorem ensures∫ T

0

〈ξ(t, .), Th
α (t)〉 dt →

∫ T

0

〈ξ(t, .), T (t)〉 dt (h → 0).(4.18)

Next, consider the sets Ah := {t ∈ (0, T ) : ‖uh(t, .)‖H1,2(Ω) > α} and observe

∣∣∣∫ T

0

〈
ξ(t, .), δμh

t − Th
α (t)

〉
dt
∣∣∣

≤
∫
Ah

∣∣∣〈ξ(t, .), δμh
t − T (t)

〉∣∣∣ dt
≤

(∫
Ah

‖ξ(t, .)‖2
C1

c (Ω;R3)dt
) 1

2
(
‖Th‖L2(0,T ;C1

c (Ω;R3)∗) + ‖T‖L2(0,T ;C1
c (Ω;R3)∗)

)
.

By (4.3) and (4.7) the norms ‖Th‖L2(0,T ;C1
c (Ω;R3)∗) and ‖T‖L2(0,T ;C1

c (Ω;R3)∗) are bounded
uniformly in h > 0. Estimating

|Ah| ≤ 1

α2
‖uh‖2

L2(0,T ;H1,2(Ω)) ≤ 1

α2
C

by (3.8), we end up with∫ T

0

〈ξ(t, .), Th − Th
α (t)〉 dt → 0 (α → ∞)(4.19)

uniformly in h > 0. Putting this together with (4.18) proves the lemma.
By establishing the Gibbs–Thomson law we finish the proof of Theorem 1.3.
Lemma 4.3. For all ξ ∈ L2(0, T ;C1

c (Ω; R3)) we obtain∫ T

0

〈ξ(t, .), T (t)〉 dt =

∫
ΩT

X ∇ · (uξ).

In particular, for almost all t ∈ (0, T ),

H(t, .) = u(t, .)

holds H2-almost everywhere on ∂∗{X (t, .) = 1}.
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Proof. We get from (3.5), (3.11), (4.1) and Lemma 4.2∫
ΩT

X∇ · (uξ) = lim
h→0

∫
ΩT

X h∇ · (uhξ)

= lim
h→0

∫ T

0

〈ξ(t, .), δμh
t 〉 dt

=

∫ T

0

〈ξ(t, .), T (t)〉 dt.

Since no time derivative is involved we deduce that for almost all t ∈ (0, T ) and all
ξ ∈ C1

c (Ω; R3), ∫
Ω

X (t, .)∇ · (u(t, .)ξ) = 〈ξ, T (t)〉

holds. The Gauss–Green theorem [EG92, Theorem 5.8.1] and (4.6) yield∫
Ω

−u(t, .)ν(t, .) · ξ |∇X (t, .)| =

∫
Ω

− �H(t, .) · ξ |∇X (t, .)|,

with ν(t, .) = ∇X (t, .)/|∇X (t, .)| on ∂∗{X (t, .) = 1}. This proves the Gibbs–Thomson
law.

Acknowledgment. I thank R. Schätzle for many fruitful discussions and for
referring me to geometric measure theory.
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ANALYTICITY OF DIRICHLET–NEUMANN OPERATORS ON
HÖLDER AND LIPSCHITZ DOMAINS∗

BEI HU† AND DAVID P. NICHOLLS†

Abstract. In this paper we take up the question of analyticity properties of Dirichlet–Neumann
operators with respect to boundary deformations. In two separate results, we show that if the
deformation is sufficiently small and lies either in the class of C1+α (any α > 0) or Lipschitz functions,
then the Dirichlet–Neumann operator is analytic with respect to this deformation. The proofs of both
results utilize the “domain flattening” change of variables recently advocated by Nicholls and Reitich
for the stable, high-order numerical simulation of Dirichlet–Neumann operators. We extend their
analyticity results through the use of more specialized function spaces, and our new theorems are
optimal in terms of boundary regularity. In the case of C1+α boundary perturbations the underlying
field also lies in the Hölder class C1+α and the theorem follows by appealing to familiar Schauder
theory arguments. In contrast, for Lipschitz deformations the field must lie in an Lp-based Sobolev
space (W 1,p), so the relevant elliptic estimates come from Sobolev theory. Additionally, in the case
of Lipschitz domains, the Dirichlet–Neumann operator must be reformulated weakly in order to
accommodate the lack of regularity at the boundary which these Sobolev-class fields possess.

Key words. Dirichlet–Neumann operators, geometric perturbations, free-boundary problems,
boundary value problems, Hölder regularity, Sobolev regularity
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1. Introduction. Many problems of fundamental importance in engineering and
the sciences are posed in terms of partial differential equations formulated on irregu-
lar and/or moving boundaries. In many instances the differential equations are quite
simple (linear and constant coefficient); however, the nonlinearity of the boundary
conditions and/or the geometrical difficulties of the domain usually prevent analytic
solution of these problems. Classical examples of such problems are the free-surface
evolution of an ideal fluid [15], scattering of electromagnetic radiation from an ir-
regular grating [2], and precipitate growth [13]. For these problems a simplification
and reduction in dimension can be achieved by considering surface quantities and,
if applicable, the shape of the boundary as fundamental variables. Then, if desired,
bulk quantities can be recovered from these boundary measurements via appropriate
integral formulas. In general this procedure is complicated by the necessity of normal
derivatives of field quantities at the boundary. Therefore, Dirichlet–Neumann oper-
ators (DNOs), which deliver normal derivatives (“Neumann data”) given boundary
measurements (“Dirichlet data”), play a crucial role.

Among the many ways in which the DNO can be simulated numerically (e.g.,
boundary integrals/elements, finite differences, finite elements, etc.), methods based
upon boundary perturbations are particularly appealing. These approaches view the
shape of the domain as a (small) deformation of a separable geometry (e.g., disk, torus,
infinite strip) and seek solutions as a Taylor series expanded in powers of this small
parameter. Aside from being highly accurate within their domain of applicability,
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ANALYTICITY OF DNO ON HÖLDER AND LIPSCHITZ DOMAINS 303

a particularly appealing property of these methods is that, in contrast with most
alternative approaches, the spatial dimension of the problem does not affect their
implementation or performance. See [18, 19, 20] for a complete discussion of these
issues and presentation of numerical results.

Since perturbation algorithms play such a crucial role in the study of DNOs
we take up the mathematical question of their analyticity with respect to boundary
perturbations, i.e., with respect to ε, which measures the size of the perturbation.
The first results along these lines can be derived from the work of Calderón [4] and of
Coifman and Meyer [6], who showed that if the upper boundary of a two-dimensional
domain is a (one-dimensional) Lipschitz curve, then the DNO maps H1 to L2 and is
analytic in ε (sufficiently small). Next, Craig, Schanz, and Sulem [10] showed that the
DNO maps W k+1,p to W k,p for k ≥ 0 and is analytic in ε (sufficiently small) for three-
dimensional domains provided that the two-dimensional upper boundary is C1; Craig
and Nicholls [8] extended this result to general d dimensions ((d − 1)–dimensional
upper boundary) by the same techniques but, due to the application at hand, also
required the boundary deformation to be in the class W k+1,p for k ≥ 0.

These results are the most general to date but rely heavily on an implicit boundary
integral formulation for the DNO which, from a numerical standpoint, undermines the
computational advantages of boundary perturbation approaches. With this consider-
ation in mind, Nicholls and Reitich studied analyticity through the transformed field
expansion (TFE) approach [18, 19, 20]. While this method did not deliver the sharpest
results from a theoretical standpoint (the boundary deformation was required to be
in the class C3/2+δ for any δ > 0), it did produce a new, stabilized, high-order numer-
ical procedure for the approximation of DNOs with all the advantages of boundary
perturbation methods (e.g., ease of implementation, dimension independent perfor-
mance) without the shortcomings of classical implementations (e.g., cancellations and
high-order instability); please see [18, 19, 20] for a complete discussion and [21, 22]
for recent advancements in the setting of acoustic and electromagnetic scattering ap-
plications. Finally, we mention the recent work of Buffoni [3] who, in the setting
of an existence theory for two-dimensional traveling capillary-gravity waves, utilized
the DNO in Zakharov’s formulation [23] of surface water wave evolution. However,
since other techniques prevailed, the analyticity of the DNO with respect to boundary
perturbations was not used.

The goal of this paper is to show that the TFE approach can, in addition to pro-
viding a stabilized numerical approach, be used to realize the most general analyticity
results possible (in terms of boundary regularity) in arbitrary dimension. Concerning
smoothness of the boundary, this matches the theorems of Calderón [4] and Coifman
and Meyer [6] in two dimensions. However, the underlying function spaces are quite
different being based upon Lp-Sobolev spaces rather than L2-Sobolev spaces. Our
results extend those of Craig, Schanz, and Sulem [10] and Craig and Nicholls [8] in
higher dimensions. Of course, our method can be extended to spaces with higher reg-
ularity if greater smoothness is assumed on the boundary deformation and Dirichlet
data. We begin by showing that the TFE method analyzed with Schauder theory in
Hölder spaces gives a simple and elegant analyticity theorem for surface deformations
in the class C1+α for any α > 0. We then follow this analysis with a more involved
calculation in W k,p spaces using Sobolev theory and demonstrate that, in fact, the
regularity of the surface shape can be reduced to Lipschitz.

The paper is organized as follows: In section 2 we introduce the TFE change of
variables and state our main results. In section 3.1 we work in the classical Hölder
spaces via Schauder theory and conclude analyticity for boundary deformations of
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class C1+α for any α > 0, and we show that the DNO will map C1+α Dirichlet data
to Cα Neumann data and is uniformly analytic in ε. In section 3.2 we utilize the
Sobolev theory of W k,p spaces and show that, in fact, the regularity of the boundary
deformation can be reduced to Lipschitz in any spatial dimension; in this case, the
DNO is analytic in ε and maps W 1−1/p,p Dirichlet data to W−1/p,p Neumann data
(see section 2 for the precise definition of W−1/p,p). In Appendix A, we review the
key elliptic estimates which enable our analysis of the DNO.

2. Problem statement and change of variables. To focus upon a particular
problem we consider the classical free-boundary problem of the evolution of a d-
dimensional ideal fluid under the effects of gravity. The fluid sits above the bottom
of a flat ocean bed at mean depth h and is bounded above by the free surface η(x, t),
giving the domain

Sh,η = {(x, y) ∈ Rd−1 × R | − h < y < η}.

The fundamental variables for this problem are the shape of the free surface, η, and
the velocity potential ϕ(x, y, t) which gives the velocity of the fluid from �v = ∇ϕ. The
equations of motion are [15]

Δϕ = 0 in Sh,η,(2.1a)

∂yϕ(x,−h) = 0,(2.1b)

∂tη + ∇xϕ · ∇xη − ∂yϕ = 0 at y = η,(2.1c)

∂tϕ +
1

2
|∇ϕ|2 + gη = 0 at y = η.(2.1d)

These equations must be supplemented with initial conditions and lateral boundary
conditions, which we discuss later.

In a fundamental paper on stability of free-surface ocean waves, Zakharov [23]
noted that the Euler equations, (2.1), could be stated as a Hamiltonian system in
terms of the canonical variables (η(x, t), ξ(x, t) ≡ ϕ(x, η(x, t), t)). This observation,
coupled with the solvability of Laplace’s equation on the domain Sh,η given ξ, leads
to the realization that (2.1) can be equivalently stated at the surface of the domain
Sh,η. The restatement was first made by Craig and Sulem [11] as

∂tη = G(η) ξ,(2.2a)

∂tξ = −gη − 1

2(1 + |∇xη|2)

[
|∇xξ|2 − (G(η) ξ)2

−2(G(η) ξ)∇xξ · ∇xη + |∇xξ|2 |∇xη|2 − (∇xξ · ∇xη)
2
]
,(2.2b)

where G(η) ξ is the DNO. This set of equations, (2.2), has been useful in a variety of
analytical [8, 7] and numerical [16, 17, 9, 14] treatments of the Euler equations, and
clearly a detailed understanding of the DNO is at the heart of these analyses.

Inspired by the geometry of the Euler equations (2.1) and the reduction of Craig
and Sulem, we study the DNO, G(η), and its associated boundary value problem:

Δv(x, y) = 0 in Sh,η,(2.3a)

∂yv(x,−h) = 0,(2.3b)

v(x, η(x)) = ξ(x).(2.3c)
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Upon the solution of (2.3) the DNO is defined as

G(η) ξ = ∇v|y=η ·Nη = [−∇xη · ∇xv + ∂yv]y=η ,(2.4)

where the normal N = (−∇xη, 1)T (not of unit length) is chosen to simplify the
restatement of the kinematic condition (2.1c) as (2.2a). Regarding lateral boundary
conditions, it is well known that bounded solutions to (2.3) are unique. Thus, v(x, y)
is periodic in x if η(x) and ξ(x) are periodic in x; similarly, the behavior of v(x) as
x → ±∞ will be uniquely determined by the behavior of ξ(x) near infinity. In this
way we incorporate quite general boundary conditions into the definition of the DNO.

In order to work with more general Lipschitz boundaries, we now derive a weak
formulation of the DNO: Take any test function ψ ∈ T 1

R(Sh,η), where

T 1
R(Sh,η) =

{
f ∈ C1(Sh,η) | f = 0 on {|x| > R} for some large R

}
.

Then

0 =

∫
Sh,η

(Δv)ψ dV

=

∫
y=η(x)

(∂νv)ψ dS −
∫
Sh,η

(∇xv · ∇xψ + ∂yv ∂yψ) dV

=

∫
Rd−1

G(η) ξ√
1 + |∇xη|2

ψ(x, η(x))

√
1 + |∇xη|2 dx−

∫
Sh,η

(∇xv · ∇xψ + ∂yv ∂yψ) dV.

Thus ∫
Rd−1

(G(η) ξ)ψ(x, η(x)) dx =

∫
Sh,η

∇xv · ∇xψ + ∂yv ∂yψ dV.(2.5)

For any ψ ∈ T 1
R(Sh,η) we can always approximate ψ with ψj ∈ C1(Sh,η) such that

ψj → ψ strongly in C(Sh,η),

∇ψj → ∇ψ weak* in L∞(Sh,η)
d.

Using this approximation, we find that (2.5) also extends to functions ψ ∈ T 0,1
R (Sh,η),

where

T 0,1
R (Sh,η) =

{
f ∈ C0,1(Sh,η) | f = 0 on {|x| > R} for some large R

}
.

Using the notation

〈a, b〉 =

∫
Rd−1

a(x) b(x) dx,

we restate (2.5) as follows: For any ψ ∈ T 0,1
R (Sh,η),

〈G(η) ξ, ψ(x, η(x))〉 =

∫
Sh,η

(∇xv · ∇xψ + ∂yv ∂yψ) dV.(2.6)

It is clear that the right-hand side of this equality requires v only to be W 1,1
loc (Sh,η).
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It has been discovered [18, 19, 20] that an effective technique for establishing the
analyticity of DNOs is to make a “domain flattening” change of variables

x′ = x, y′ = h
y − η

h + η
,(2.7)

which maps Sh,η to Sh,0. Considering the transformed field

u(x′, y′) = v(x′, (h + η)y′/h + η),(2.8)

the change of variables induces the formulas

(h + η)∇x = (h + η)∇x′ − (h + y′)(∇x′η)∂y′ ,(2.9a)

(h + η) divx = (h + η) divx′ − (h + y′)(∇x′η) · ∂y′ ,(2.9b)

(h + η)∂y = h∂y′ ,(2.9c)

which include a prefactor of (h+ η) in order to realize transformed equations with no
quotients involving η. Upon making this transformation, (2.3) becomes

Δu(x′, y′) = F (x′, y′) in Sh,0,(2.10a)

∂yu(x′,−h) = 0,(2.10b)

u(x′, 0) = ξ(x′),(2.10c)

where

F (x′, y′) = divx′

[
F (1)(x′, y′)

]
+ ∂y′F (2)(x′, y′) + F (3)(x′, y′).(2.11)

The form for F can be found most easily from the following calculation:

0 = (h + η)2{Δxv + ∂2
yv}

= (h + η)2Δxv + (h + η)2∂2
yv

= (h + η)divx [(h + η)∇xv] −∇xη · (h + η)∇xv + (h + η)∂y [(h + η)∂yv] .

Using (2.9) it is straightforward to show that

0 = h2Δ′
xu + h2∂2

y′u

+η divx′ [h∇x′u] + h divx′ [η∇x′u] + η divx′ [η∇x′u] − h divx′ [(h + y)∇x′η∂y′u]

−η divx′ [(h + y)∇x′η∂y′u] − (h + y)∇x′η · ∂y′ [h∇x′u]

−(h + y)∇x′η · ∂y′ [η∇x′u] + (h + y)∇x′η · ∂y′ [(h + y′)∇x′η∂y′u]

−h∇x′η · ∇x′u− η∇x′η · ∇x′u + (h + y′) |∇x′η|2 ∂y′u.

From this point, several manipulations can be effected to realize the divergence struc-
ture of F . Upon dropping primes, this results in

F (1) = − 2

h
η∇xu− 1

h2
η2∇xu +

h + y

h
∇xη∂yu +

(h + y)

h2
η∇xη∂yu,(2.12a)

F (2) =
h + y

h
∇xη · ∇xu +

(h + y)

h2
η∇xη · ∇xu− (h + y)2

h2
|∇xη|2 ∂yu,(2.12b)

F (3) =
1

h
∇xη · ∇xu +

1

h2
η∇xη · ∇xu− (h + y)

h2
|∇xη|2 ∂yu,(2.12c)
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where F (1), F (2), and F (3) are all O(η). At this point we note that, as claimed above,
the right-hand side of (2.10a) contains no quotients involving η.

Of course, we are primarily concerned with the DNO; formula (2.4) transforms
as

(h + η)G(η) ξ

= {−∇xη · (h + η)∇xv + (h + η)∂yv}
∣∣∣
y′=0

= {h∂y′u− h∇x′η · ∇x′u− η∇x′η · ∇x′u + (h + y′) |∇x′η|2 ∂y′u}
∣∣∣
y′=0

.

(2.13)

Therefore, again dropping primes,

G(η) ξ(x) = ∂yu(x, 0) + J(x),(2.14)

where

J = −η

h
G(η) ξ −∇xη · ∇xu(x, 0)

− 1

h
η∇xη · ∇xu(x, 0) + |∇xη|2 ∂yu(x, 0),

and clearly J = O(η). The weak statement of the DNO, (2.6), transforms as

〈G(η) ξ, ψ(x, 0)〉

=

∫
Sh,0

{(
∇xu− h + y

h + η
(∇xη)∂yu

)
·
(
∇xψ − h + y

h + η
(∇xη)∂yψ

)

+
h2

(h + η)2
(∂yu)∂yψ

}
h + η

h
dV

(2.15)

for any ψ ∈ T 0,1
R (Sh,0). Finally, we point out that sometimes it is more convenient to

write the DNO in the following form:

G(η) ξ(x) = −∇xη · ∇xξ +
h(1 + |∇xη|2)

h + η
∂yu

∣∣∣∣∣
y=0

,(2.16)

where we have used the fact that u(x, 0) = ξ(x).
In the spirit of the boundary perturbation methods we alluded to in the Intro-

duction, we now suppose that we are considering η to be a small perturbation of a
flat geometry, i.e., η(x) = εf(x). In this case, for future reference, (2.16) becomes

G(η) ξ(x) = −ε∇xf · ∇xξ +
h(1 + |ε∇xf |2)

h + εf
∂yu

∣∣∣∣∣
y=0

.(2.17)

We show the following theorem in section 3.1.
Theorem 2.1. Let f, ξ ∈ C1+α(Rd−1), 0 < α < 1. Let v(x, y) be the solution of

(2.3) in the region Sh,η with η = εf and define

u(x, y, ε) = v

(
x,

(h + εf)y

h
+ εf

)
, −∞ < x < ∞,−h < y < 0

(cf. (2.8)). Define the DNO G(εf) by (2.14) with η = εf . Then both the solution
u(x, y, ε) and the DNO G(εf) are analytic as functions of ε; i.e., they can be expressed
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as the convergent series

u(x, y, ε) =

∞∑
n=0

un(x, y) εn, G(εf) =

∞∑
n=0

Gn(f) εn,(2.18)

for small ε, where un and Gn(f) satisfy, for some constants B and C independent
of ε,

|un|C1+α(Sh,0)
≤ CBn |ξ|C1+α(Rd−1) , |Gn(f)|L(C1+α(Rd−1),Cα(Rd−1)) ≤ CBn.

This theorem implies that the DNO maps C1+α Dirichlet data to Cα Neumann
data.

By working in Lp-based Sobolev spaces, W k,p (p > d), we can refine this result
by requiring the boundary to be only Lipschitz continuous. In dealing with these
Sobolev spaces, we must appeal to the trace operator and its mapping properties (see
[1, Chapter 7 (e.g., Theorem 7.53)] for trace theorems); in particular, if ∂Ω ∈ Ck,
then the trace operator W k,p(Ω) → W k−1/p,p(∂Ω) is continuous and surjective.

To state the next result with complete accuracy we first define a pair of function
spaces. We denote by Br(x

∗) the ball of radius r centered at x∗, and for p > 1 define

Xp = {ξ | ξ ∈ W 1−1/p,p(B1(x
∗)) for any x∗ ∈ Rd−1}.

For ξ ∈ Xp we define

‖ξ‖Xp = sup
x∗∈Rd−1

‖ξ‖W 1−1/p,p(B1(x∗)).

Recall that [1, Chapter 7]

‖ξ‖W 1−1/p,p(B1(x∗)) = inf ‖ζ‖W 1,p(B1(x∗)×[−h,0]) ,

where the infimum is taken over all functions ζ ∈ W 1,p(B1(x
∗) × [−h, 0]) such that

ζ(x, 0) = ξ(x) in the trace sense; i.e., for any C∞ function γ(x, y) such that γ = 0 on

{∂B1(x
∗) × [−h, 0]} ∪ {B1(x

∗) × {y = −h}} ,

γ(ζ − ξ) ∈ W 1,p
0 ((B1(x

∗) × (−h, 0))). It is clear that with this definition

‖ξ‖Xp ≤ sup
x∗∈Rd−1

‖ξ‖W 1−1/p,p(B2(x∗)) ≤ 2(d−1)/p ‖ξ‖Xp .

We also define

Y k,p = {u | u ∈ W k,p(B1(x
∗) × [−h, 0]) for any x∗ ∈ Rd−1}

and

‖u‖Y k,p = sup
x∗∈Rd−1

‖u‖Wk,p(B1(x∗)×[−h,0]) .

In the case of boundary data in Xp, the solution u(x, y, ε) will only be in the space
W 1,p in the domain. Therefore, the first order derivative ∇u will only be an Lp

function in the domain and the trace operator in (2.14) is not well defined. Thus
we shall use the weak formulation (2.15). Since the DNO is local in nature, we shall
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discuss the DNO only in a neighborhood of an arbitrarily fixed point x̂ ∈ Rd−1. We
will establish the following in section 3.2.

Theorem 2.2. If f ∈ C0,1(Rd−1), ξ ∈ Xp, p > d. Let v(x, y) be the solution of
(2.3) in the region Sh,η with η = εf and define

u(x, y, ε) = v

(
x,

(h + εf)y

h
+ εf

)
, −∞ < x < ∞,−h < y < 0

(cf. (2.8)). Define the DNO G(εf) by (2.15) with η = εf . Then both the solution
u(x, y, ε) and the DNO G(εf) are analytic as functions of ε; i.e., they can be expressed
as the convergent series

u(x, y, ε) =

∞∑
n=0

un(x, y) εn, G(εf) =

∞∑
n=0

Gn(f) εn,

for small ε, where un and Gn(f) satisfy, for some constants B and C independent
of ε,

‖un‖Y 1,p ≤ CBn ‖ξ‖Xp , ‖Gn(f)‖L(Xp,(Xq
c (x̂))∗) ≤ CBn(2.19)

for any fixed x̂ ∈ Rd−1. In these formulas, q is the conjugate of p, i.e., q = p/(p− 1),
and (Xq

c (x̂))∗ is the dual space of Xq
c (x̂):

Xq
c (x̂) = {ϕ ∈ Xq | ϕ = 0 for |x− x̂| > 1}

∼= W
1−1/q,q
0 (B1(x̂)).

Remark. Roughly speaking, Xp behaves like W 1−1/p,p and Xq behaves like
W 1−1/q,q. Thus, the dual space of W 1−1/q,q behaves locally like W−(1−1/q),p =
W−1/p,p. Therefore, the above theorem states that the DNO “loses one spatial deriva-
tive” and is analytic in ε. This is the optimal regularity that one can expect for the
DNO.

Remark. Theorem 2.2 concerns a field, v, in W 1,p with boundary trace, ξ, in
W 1−1/p,p. Such assumptions were made to enable a proof which demands the weak-
est possible regularity on the boundary perturbation. Of course, if the boundary
deformation and Dirichlet data are more regular, then the field and DNO will be
smoother as well. Results mentioned in the Introduction (e.g., Calderón [4], Coifman
and Meyer [6], Craig, Schanz, and Sulem [10], Craig and Nicholls [8], and Nicholls
and Reitich [18, 20]) provide such results in a wide array of function spaces.

Remark. We introduced the spaces Xp and Y k,p in order to include quite general
behavior at infinity. For instance, we can accommodate periodicity or convergence (at
infinity) to a constant. If we specialize to periodic boundary conditions, say on the
period cell Q ⊂ Rd−1, we can simplify the statements of the theorem by replacing Xp

with W 1−1/p,p(Q), Y 1,p with W 1,p(Q× [−h, 0]), and B1(x̂) with Q in Theorem 2.2.
Remark. Finally, a direct, “method of majorants” approach could be pursued to

derive these results; cf. [18, 19, 20]. This would involve (for Theorem 2.1) inserting
the expansions (2.18) into (2.10) and (2.14), finding equations satisfied by the un and
Gn, and then estimating them directly in an appropriate function space. Since our
purpose is to simply establish analyticity in ε (rather than joint analyticity in x, y,
and ε; cf. [20]), we have found that a complexification approach greatly simplifies the
argument while delivering the most general result possible.
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3. Analyticity. In this section we establish analyticity of u(x, y, ε) in ε via a
complexification argument. Of course, in the original system (2.3) we cannot allow ε
to be complex-valued as ε measures the magnitude of the (real) deformation of the
domain. On the other hand, in the transformed system (2.10) ε has no such interpre-
tation and we are free to allow ε = ε1 + iε2 ∈ C and to look for complex solutions, u.
The advantage of this approach is the availability of the formulas of complex analysis
which readily deliver analyticity provided that straightforward estimates are estab-
lished. Once this is accomplished we may set ε2 = 0 and obtain the series expansion
for u which must be real-valued.

The complexification approach requires us to simply show that u(x, y, ε) is dif-
ferentiable in ε = ε1 + iε2 for |ε| sufficiently small. To this end we define the finite
difference operator as follows:

Tδ[u](x, y, ε) =
1

δ
[u(x, y, ε + δ) − u(x, y, ε)], δ = δ1 + iδ2.

A simple computation shows that

Tδ[u · w](x, y, ε) = Tδ[u](x, y, ε) · w(x, y, ε) + u(x, y, ε + δ) · Tδ[w](x, y, ε).(3.1)

In the next two subsections we show that Tδ[u](x, y, ε) converges as δ → 0, for ε
in a small disk. This is done in Hölder spaces in section 3.1 and in W k,p spaces in
section 3.2.

3.1. Hölder estimates. To begin this section we recall the following well-known
algebra property of the space Cα.

Lemma 3.1. Let 0 ≤ α ≤ 1. For f ∈ Cα(Rd−1), u ∈ Cα(Sh,0), the product
fu ∈ Cα(Sh,0), and

|fu|Cα ≤ |f |Cα |u|Cα .

For convenience, we often use Ck+α to denote either Ck+α(Rd−1) or
Ck+α(Sh,0); the meaning should be clear from the context. Now, recalling that since
ε ∈ C, solutions u of (2.10) will generally be complex-valued (with the real and imag-
inary parts individually satisfying (2.10)), we establish the following lemma regarding
existence and uniqueness of solutions.

Lemma 3.2. Given f, ξ ∈ C1+α for any α ∈ (0, 1), there exists c0 > 0 such
that (2.10) (with the right-hand side of (2.10) given by (2.12)) has a unique solution
u ∈ C1+α for all ε in the disk |ε| ≤ c0. Furthermore,

|u|C1+α ≤ C|ξ|C1+α ,(3.2)

where the constant C is independent of ε.
Proof. The contraction mapping principle will be utilized. Consider the space

X = {u ∈ C1+α | u(x, 0) = ξ, ∂yu(x,−h) = 0}

and the map Φ, defined by the following steps: For u ∈ X, compute R(x, y) =
F (x, y, u(x, y)) from (2.11) and (2.12), and find the solution of

Δw(x, y) = R(x, y) in Sh,0,

w(x, 0) = ξ(x),

∂yw(x,−h) = 0,
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guaranteed by Theorem A.2. Setting η = εf , we note that if u ∈ C1+α, then

∣∣∣F (1)
∣∣∣
Cα

≤ 2

h
|εf∇xu|Cα +

1

h2

∣∣ε2f2∇xu
∣∣
Cα +

∣∣∣∣h + y

h
ε(∇xf)∂yu

∣∣∣∣
Cα

+

∣∣∣∣ (h + y)

h2
ε2f(∇xf)∂yu

∣∣∣∣
Cα

≤ 2|ε|
h

|f |Cα |u|C1+α +
|ε|2
h2

|f |2Cα |u|C1+α +
Y |ε|
h

|f |C1+α |u|C1+α

+
Y |ε|2
h2

|f |Cα |f |C1+α |u|C1+α

≤ |ε|K1,1 |f |C1+α |u|C1+α + |ε|2K1,2 |f |2C1+α |u|C1+α ,

where we have used Lemma 3.1, and Y is defined by

|(h + y)u|Cα ≤ Y |u|Cα .

Similarly, it can be shown that∣∣∣F (2)
∣∣∣
Cα

≤ |ε|K2,1 |f |C1+α |u|C1+α + |ε|2K2,2 |f |2C1+α |u|C1+α ,∣∣∣F (3)
∣∣∣
L∞

≤ |ε|K3,1 |f |C1 |u|C1 + |ε|2K3,2 |f |2C1 |u|C1 ,

so that from (A.1) of Theorem A.2, w ∈ C1+α. Thus, Φ : X → X defined by w = Φu
is well-defined.

Now, if we choose u, ũ ∈ X, this will generate w, w̃ ∈ X, respectively. Further-
more,

|w − w̃|C1+α ≤ Ce

[∣∣∣R(1) − R̃(1)
∣∣∣
Cα

+
∣∣∣R(2) − R̃(2)

∣∣∣
Cα

+
∣∣∣R(3) − R̃(3)

∣∣∣
L∞

]
≤ |ε|K4,1 |f |C1+α |u− ũ|C1+α + |ε|2K4,2 |f |2C1+α |u− ũ|C1+α

≤ γ |u− ũ|C1+α

for γ < 1 if

|ε| ≤ c0 ≡ max

{
γ

2K4,1 |f |C1+α

,

√
γ√

2K4,2 |f |C1+α

}
.

Clearly the estimate is uniformly valid for all ε in the disk |ε| ≤ c0, and thus the
contraction mapping principle gives existence and uniqueness of solutions. Repeating
the above estimation procedure we find that (3.2) is valid.

We next establish differentiability of u in ε.
Lemma 3.3. By shrinking the constant c0 in Lemma 3.2 if necessary, we have

|Tδ[u]|C1+α ≤ C for |ε| ≤ c0, |δ| ≤ c0,(3.3)

where the constant C is independent of ε and δ.
Proof. We begin by applying the difference operator Tδ to (2.10) as follows:

ΔTδ[u] = divx

[
Tδ[F

(1)]
]

+ ∂yTδ[F
(2)] + Tδ[F

(3)].(3.4)
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The product rule (3.1) can be used to derive

Tδ[F
(1)]

= − 2

h
εf∇xTδ[u](ε) − 2

h
f∇xu(ε + δ) − ε2

h2
f2∇xTδ[u](ε) − 2ε

h2
f2∇xu(ε + δ)

− δ

h2
f2∇xu(ε + δ) +

ε(h + y)

h
∇xf∂yTδ[u](ε) +

(h + y)

h
∇xf∂yu(ε + δ)(3.5)

+
ε2(h + y)

h2
f∇xf∂yTδ[u](ε) +

2ε(h + y)

h2
f∇xf∂yu(ε + δ)

+
δ(h + y)

h2
f∇xf∂yu(ε + δ).

Estimating this in Cα we find∣∣∣Tδ[F
(1)]

∣∣∣
Cα

≤
{
K5,1|ε| |f |C1+α + K5,2|ε|2 |f |2C1+α

}
|Tδ[u](ε)|C1+α

+K6 {|f |C1+α + |ε| |f |C1+α + |δ| |f |C1+α} |u(·, ·, ε + δ)|C1+α ;

similar expressions for
∣∣Tδ[F

(2)]
∣∣
Cα and

∣∣Tδ[F
(3)]

∣∣
L∞ can be found. These results

coupled with Theorem A.2 imply that

|Tδ[u]|C1+α ≤ Ce

[∣∣∣Tδ[F
(1)]

∣∣∣
Cα

+
∣∣∣Tδ[F

(2)]
∣∣∣
Cα

+
∣∣∣Tδ[F

(3)]
∣∣∣
L∞

]
≤ Ce

[{
K7,1 |ε| |f |C1+α + K7,2 |ε|2 |f |2C1+α

}
|Tδ[u]|C1+α

+K8

{
|f |C1+α + |ε| |f |2C1+α + |δ| |f |2C1+α

}
|u|C1+α

]
.

Clearly, if ε and δ are chosen sufficiently small, then |Tδ[u]|C1+α is bounded indepen-
dently of ε and δ.

In the next step we show that this difference quotient converges to the derivative
of u with respect to ε.

Lemma 3.4. There exists a small positive constant c0 such that, in the disk {|ε| ≤
c0}, the complexified solution u of (2.10) is differentiable in the complex variable ε in
the space C1+β, for any β ∈ (0, α), i.e.,

Tδ[u] → ∂εu as |δ| → 0.

Proof. For any β ∈ (0, α), we can use the compactness of C1+α to conclude that
there exists a subsequence δn → 0 such that

Tδn [u] → w in C1+β(S0,h ∩ {|x| ≤ K})

for any K > 1. By passing δn to 0 in the equation, we find that w satisfies

Δw = divx

[
H(1)

]
+ ∂yH

(2) + H(3),

where

H(1) = − 2

h
εf∇xw − 2

h
f∇xu− ε2

h2
f2∇xw − 2ε

h2
f2∇xu

+
ε(h + y)

h
∇xf∂yw +

(h + y)

h
∇xf∂yu

+
ε2(h + y)

h2
f∇xf∂yw +

2ε(h + y)

h2
f∇xf∂yu,
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and similar expressions hold for H(2) and H(3). Similar to the proof of Lemma 3.2,
the C1+β solution w to such a system is unique. This uniqueness implies that the
convergence is independent of the subsequence of δn.

At this point we can prove Theorem 2.1.
Proof of Theorem 2.1. By Cauchy’s formula, for |ε| < c0,

u(x, y, ε) =
1

2πi

∫
|ζ|=c0

u(x, y, ζ)

ζ − ε
dζ =

∞∑
n=0

un(x, y) εn,

where

un(x, y) =
1

2πi

∫
|ζ|=c0

u(x, y, ζ)

ζn+1
dζ.

From this formula, we obtain the estimates on un from the estimates for u as follows:

|un|C1+α ≤ 1

cn+1
0

max
|ζ|=c0

|u(·, ·, ζ)|C1+α ≤ CBn |ξ|C1+α ,

where B = 1/c0. Since G(εf) ξ(x) is expressed in terms of u and its first order
derivatives (see (2.17)), we can extend G(εf) ξ(x) to complex ε. Using the (complex)
analyticity of u in ε, we immediately have the differentiability of G(εf) ξ with respect
to ε and

|G(εf) ξ|Cα ≤ C |u|C1+α ≤ C |ξ|C1+α .

Thus, for |ε| < c0,

G(εf) ξ =
1

2πi

∫
|ζ|=c0

G(ζf) ξ

ζ − ε
dζ =

∞∑
n=0

(Gn(f) ξ) εn,

where

Gn(f) ξ =
1

2πi

∫
|ζ|=c0

G(ζf) ξ

ζn+1
dζ.

From this, we obtain

|Gn(f) ξ|Cα ≤ 1

cn+1
0

max
|ζ|=c0

|G(ζf) ξ|Cα ≤ C

cn+1
0

max
|ζ|=c0

|u(·, ·, ζ)|C1+α ≤ CBn |ξ|C1+α .

This implies

|Gn(f)|L(C1+α(Rd−1),Cα(Rd−1)) ≤ CBn.

The theorem is proved.

3.2. W 1,p estimates. Using W 1,p(Sh,η) (W 1−1/p,p on the boundary) estimates,
we will extend the result of the previous section to Lipschitz boundaries; i.e., we will
assume

f ∈ C0,1, ξ ∈ Xp (p > d),

and approximate f and ξ by smooth functions where necessary. The key result which
allows the estimation of Lipschitz boundaries is the following.
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Lemma 3.5. For f ∈ C0,1, u ∈ Y 0,p, the product (∇xf)u ∈ Y 0,p, and

‖(∇xf)u‖Y 0,p ≤ |f |C0,1 ‖u‖Y 0,p .

Given this result we can prove the following lemma.
Lemma 3.6. Given f ∈ C0,1, ξ ∈ Xp (p > d), there exists c0 > 0 such that (2.10)

has a unique solution u ∈ Y 1,p for all ε in the disk |ε| ≤ c0. Furthermore,

‖u‖Y 1,p ≤ C ‖ξ‖Xp ,(3.6)

where the constant C is independent of ε.
Proof. The proof is the same as in Lemma 3.2, with the C1+α Hölder esti-

mate (Theorem A.2) replaced by the W 1,p estimate (Theorem A.3) given in Appen-
dix A. For instance, the key estimate which guaranteed the contraction property in
Lemma 3.2 now reads∥∥∥F (1)

∥∥∥
Y 0,p

≤ 2

h
‖εf∇xu‖Y 0,p +

1

h2

∥∥ε2f2∇xu
∥∥
Y 0,p +

∥∥∥∥h + y

h
ε(∇xf)∂yu

∥∥∥∥
Y 0,p

+

∥∥∥∥ (h + y)

h2
ε2f(∇xf)∂yu

∥∥∥∥
Y 0,p

≤ 2|ε|
h

|f |C0,1 ‖u‖Y 1,p +
|ε|2
h2

|f |2C0,1 ‖u‖Y 1,p

+
Ỹ |ε|
h

|f |C0,1 ‖u‖Y 1,p +
Ỹ |ε|2
h2

|f |2C0,1 ‖u‖Y 1,p

≤ |ε|K̃1,1 |f |C0,1 ‖u‖Y 1,p + |ε|2K̃1,2 |f |2C0,1 ‖u‖Y 1,p ,

where Ỹ is defined by

‖(h + y)u‖Y 0,p ≤ Ỹ ‖u‖Y 0,p .

From this calculation, using Lemma 3.5, we see the explicit appearance of the Lipschitz
norm on the boundary deformation f(x).

To establish the differentiability in complex ε, we apply the finite difference op-
erator, Tδ[·].

Lemma 3.7. By shrinking the positive constant c0 in Lemma 3.6 if necessary, we
have

‖Tδ[u]‖Y 1,p ≤ C for |ε| ≤ c0, |δ| ≤ c0,(3.7)

where the constant C is independent of ε.
Proof. Again, the proof is essentially the same as for Lemma 3.3 with the C1+α

Hölder estimate (Theorem A.2) replaced by the W 1,p estimate (Theorem A.3) given
in Appendix A.

Now we are ready to establish the differentiability in complex ε.
Lemma 3.8. If |ε| ≤ c0 and u is the solution of (2.10), then u is differentiable

in ε as a complex function almost everywhere; i.e.,

Tδ[u] → ∂εu as |δ| → 0.

Proof. The proof is similar to that of Lemma 3.4. However, since we no longer
have compactness for the first order derivatives, the subsequential convergence as
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δn → 0 must be replaced by the following:

Tδn [u] → w strongly in C0({|x| < K} × [−h, 0]) for any K > 1,

(∇x, ∂y)Tδn [u] → (∇x, ∂y)w weakly in [Lp({|x| < K} × [−h, 0])]d for any K > 1.

We note that Tδn [u] satisfies equation (3.4) from Lemma 3.3. The terms in (3.5) are
all linear in Tδn [u] and its first order of derivatives; furthermore, all the coefficients
are in L∞ since we assume that f is Lipschitz continuous. These key facts allow us
to use weak convergence to take the limit δn → 0. Thus we obtain the equation for
w. The rest of the proof remains the same as that of Lemma 3.4.

Proof of Theorem 2.2. The analyticity of u(x, y, ε) in ε, and the corresponding
estimate for un in Y 1,p, can be obtained in the same manner as in the proof of
Theorem 2.1. However, the estimates on G(εf) must be modified since we are only
permitted the weak formulation of the DNO in this case. It is clear that this weak
formulation, (2.15), allows the complexification in ε. To use this definition, however,
we have to show that (2.15) defines a DNO in the appropriate space also for complex ε.
Namely, we have to show that the value on the right-hand side of (2.15) is independent
of the way the function ψ(x, 0) is extended to Rd−1 × [−h, 0].

Since

T∞
R (Sh,0) =

{
f ∈ C∞(Sh,0) | f = 0 on {|x| > R} for some large R

}
is dense in T 0,1

R (Sh,0), we only need to show that the right-hand side of (2.15) is
independent of the extension for such ψ; namely, we need to show∫

Sh,0

{(
∇xu− h + y

h + η
(∇xη)∂yu

)
·
(
∇xψ − h + y

h + η
(∇xη)∂yψ

)

+
h2

(h + η)2
(∂yu)∂yψ

}
h + η

h
dV = 0,

(3.8)

for any ψ ∈ C∞(Sh,0) such that ψ(x, 0) ≡ 0 for all x ∈ Rd−1 and ψ(x, y) ≡ 0 for
|x| > R for some R > 1. Under our assumptions, all boundary terms vanish upon
utilization of integration by parts in (3.8), so we can establish (3.8) by using the weak
formulation of the complexified equation for u.

We next proceed to establish the estimates for G(εf). As in the proof of Theo-
rem 2.1,

〈G(εf) ξ, ψ(x, 0)〉 =
1

2πi

∫
|ζ|=c0

〈G(ζf) ξ, ψ(x, 0)〉
ζ − ε

dζ =
∞∑

n=0

〈Gn(f) ξ, ψ(x, 0)〉 εn,

where ψ(x, 0) ∈ C0,1
c (Rd−1), and

〈Gn(f) ξ, ϕ(x, 0)〉 =
1

2πi

∫
|ζ|=c0

〈G(ζf) ξ, ϕ(x, 0)〉
ζn+1

dζ.

Thus the conclusion of our theorem will follow if we can establish the estimate

‖G(εf)‖L(Xp,(Xq
c (x̂))∗) ≤ C(3.9)

for some C, independent of ε, and for all |ε| ≤ c0.
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For any Ψ ∈ Xq
c (x̂), we use the definition of Xq

c (x̂) to extend Ψ to a function
ψ ∈ W 1,q

loc (Rd−1 × [−h, 0]) such that

ψ(x, 0) = Ψ(x) in the trace sense,(3.10a)

ψ(x, y) = 0 for |x− x̂| > 1, −h < y < 0,(3.10b)

‖ψ‖W 1,q(B1(x̂)×(−h,0)) ≤ C ‖Ψ‖Xq .(3.10c)

Since we have already established a W 1,p(B1(x̂) × (−h, 0)) estimate for u, we can
approximate ψ with C0,1 functions so that its first order derivatives converge weakly
in Lq(B1(x̂)× (−h, 0)). Thus the test function defined in (3.10) can be used in (2.15).
Using (2.15) we find that, for all Ψ ∈ Xq

c (x̂),

| 〈G(εf) ξ,Ψ〉 | ≤ C ‖u‖W 1,p(B1(x̂)×(−h,0)) ‖∇ψ‖Lq(B1(x̂)×(−h,0))

≤ C ‖ξ‖Xq ‖Ψ‖Xq .

This implies that

‖G(εf) ξ‖(Xq
c (x̂))∗ ≤ C ‖ξ‖Xp ;

i.e., the estimate (3.9) is valid.

Appendix A. Elliptic estimates. In this appendix we present the statements
(together with brief proofs) of the elliptic estimates which are at the heart of the
analyticity results, Theorems 2.1 and 2.2. Of course, the great simplification of our
approach was the use of the “domain flattening” change of variables, (2.7), which
maps the domain Sh,η to the strip Sh,0. Consequently, it is sufficient to analyze
(inhomogeneous) elliptic equations on a much simpler geometry. This, in turn, allows
the simple establishment of the following results which, we point out, are true on
much more general domains (e.g., see [5]).

We begin with the “comparison principle” on a domain, which implies the unique-
ness of bounded solutions.

Theorem A.1. If w is bounded and satisfies (in the weak sense)

−Δw(x, y) ≥ 0 in Sh,0,

−∂yw(x,−h) ≥ 0,

w(x, 0) ≥ 0,

then

w(x, y) ≥ 0 in Sh,0.

Proof. Since we can only use weak comparison in the bounded domain, we choose
M = |w|L∞ and let

Φ =
2(d− 1)

R
M

[x2
1 + · · · + x2

d−1

2(d− 1)
− (y + h)2

2
+

h2

2

]
+ w.

It is clear that

−ΔΦ ≥ 0 in Sh,0,

−∂yΦ(x,−h) ≥ 0,

Φ ≥ 0 on {y = 0} ∪ {x2
1 + · · · + x2

d−1 = R2}.
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We can now apply the comparison principle on the bounded domain {x | x2
1 + · · · +

x2
d−1 < R2} × (−h, 0) to conclude that Φ ≥ 0 there. If we fix (x, y) and let M → ∞,

we obtain w > 0 on Sh,0.
We next state the Hölder estimate used in section 3.1.
Theorem A.2. For any α ∈ (0, 1) there exists a constant Ce such that for any

R(1), R(2) ∈ Cα, R(3) ∈ L∞, and ξ ∈ C1+α there exists a unique solution w(x, y) of

Δw = divx

[
R(1)

]
+ ∂yR

(2) + R(3) in Sh,0,

∂yw(x,−h) = 0,

w(x, 0) = ξ(x),

which satisfies

|w|C1+α ≤ Ce

{∣∣∣R(1)
∣∣∣
Cα

+
∣∣∣R(2)

∣∣∣
Cα

+
∣∣∣R(3)

∣∣∣
L∞

+ |ξ|C1+α

}
.(A.1)

Proof. The uniqueness is a corollary of the comparison principle. The existence
can be proved using a continuation argument once we obtain the estimate, (A.1), in
this theorem. This estimate is a special case of the general C1+α theory for elliptic
systems in divergence form which is established using Campanato spaces Lp,μ (see [5,
Theorems 2.6 and 2.7, pp. 152–154]).

Since our system is of constant coefficients and in a special domain, we provide a
short proof here. We write

w =
d−1∑
j=1

∂xj
w

(1)
j + ∂yw

(2) + w(3) + w(4) + w(5),

where

Δw
(1)
j = R

(1)
j in Sh,0,(A.2a)

∂yw
(1)
j (x,−h) = 0,(A.2b)

w
(1)
j (x, 0) = 0;(A.2c)

Δw(2) = R(2) in Sh,0,(A.3a)

∂yw
(2)(x,−h) = 0,(A.3b)

w(2)(x, 0) = 0;(A.3c)

Δw(3) = R
(3)
j in Sh,0,(A.4a)

∂yw
(3)(x,−h) = 0,(A.4b)

w(3)(x, 0) = 0;(A.4c)

Δw(4) = 0 in Sh,0,(A.5a)

∂yw
(4)(x,−h) = 0,(A.5b)

w(4)(x, 0) = ξ(x);(A.5c)
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and, finally,

Δw(5) = 0 in Sh,0,(A.6a)

∂yw
(5)(x,−h) = −∂yyw

(2)(x,−h) = −R(2)(x,−h),(A.6b)

w(5)(x, 0) = 0.(A.6c)

We can apply standard Schauder theory [12] to w(1) and w(2) to obtain C2+α estimates
for w(1) and w(2). We can apply W 2,p estimates to w(3) for p > d/(1 − α) and then
use an embedding theorem to obtain the C1+α estimate for w(3). Since the Dirichlet
boundary data for w(4) is C1+α, we obtain C1+α estimates for w(4). Finally, if we let

z(x, y) =

∫ y

−h

w(5)(x, s) ds,

then

Δz = w(5)
y (x,−h) = −R(2)(x,−h) in Sh,0,

∂yz(x,−h) = 0,

z(x, 0) = 0.

Since R(2) is in Cα, we can apply the Schauder C2+α estimate for z and obtain an
C1+α estimate for w(5) = ∂yz.

Finally, we state the W k,p estimate used in section 3.2.
Theorem A.3. For any p > d there exists a constant C̃e such that for any

R(1), R(2), R(3) ∈ Y 0,p, and ξ ∈ Xp there exists a unique solution w(x, y) of

Δw = divxR
(1) + ∂y{(h + y)R(2)} + R(3) in Sh,0,(A.7a)

∂yw(x,−h) = 0,(A.7b)

w(x, 0) = ξ(x),(A.7c)

which satisfies

‖w‖Y 1,p ≤ C̃e

{∥∥∥R(1)
∥∥∥
Y 0,p

+
∥∥∥R(2)

∥∥∥
Y 0,p

+
∥∥∥R(3)

∥∥∥
Y 0,p

+ ‖ξ‖Xp

}
.

Proof. This estimate is a special case of the general Lp theory for elliptic systems
in divergence form which is established in [5] (see page 157, Theorem 2.2 for interior
estimates; the boundary estimates can be done in a similar way). In this short proof
for our special system, we will assume that the involved functions are smooth since
we can always approximate them with smooth functions. The estimate is valid as
long as the constants involved are independent of the smoothness. We use the ideas
of the earlier proof (Theorem A.2) and divide the proof into two cases.

Case 1: ξ(x) ≡ 0. The proof is similar to the proof of Theorem A.2. For any
x∗ ∈ Rd−1, it suffices to establish estimates on B1(x

∗)× (−h, 0) in terms of norms of
R(1), R(2), and R(3) on B2(x

∗)× (−h, 0). We decompose w into w(j) (j = 1, 2, 3, 4, 5)
as before, and we can then apply the standard W 2,p interior-boundary estimates to
w(1), w(2), and w(3). Since we have a factor (h + y) on the right-hand side of (A.7)
in the R(2) term, w(5) vanishes. Since we have assumed, in this case, that ξ ≡ 0,
w(4) also vanishes and the estimate is established.

Case 2: General case. We need only estimate w(4); by the maximum principle,∣∣∣w(4)
∣∣∣
L∞

≤ |ξ|L∞ .
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Since p > d, we have, by embedding, |ξ|L∞ ≤ C ‖ξ‖Xp . Thus we can use the standard
elliptic regularity estimates to derive

∥∥∥w(4)
∥∥∥
C2(B2(x∗)×[−h,−h/2])

≤ C ‖ξ‖Xp .

For any x∗ ∈ Rd−1, we use the definition of Xp to extend the function ξ to a function
Φ(x, y) ∈ W 1,p

loc (B2(x
∗) × [−h, 0]) ∩ C2(B2(x

∗) × [−h,−h/2]) so that

‖Φ‖W 1,p(B2(x∗)×(−h,0)) ≤ C ‖ξ‖Xp ,(A.8)

where we understand that Φ(·, 0) = ξ(·) in the trace sense. By using a cut-off function
if necessary, we may assume, without loss of generality, that

Φ(x, y) ≡ w(4)(x, y) for x ∈ B2(x
∗),−h ≤ y ≤ −h

2
.

It is clear that w(4) satisfies

Δ(w(4) − Φ) = −divx [μ1(y)∇xΦ] − ∂y

(
(y + h)

μ1(y)

y + h
∂yΦ

)
in Sh,0,

∂y(w
(4) − Φ)(x,−h) = 0,

w(4)(x, 0) − Φ(x, 0) = 0,

where

μ1(y) = 1 for
−h

2
≤ y < 0, μ1(y) = 0 for − h ≤ y <

−h

2
;

we point out that, in fact, w(4) − Φ ≡ 0 for −h ≤ y ≤ −h/2. Using (A.8), we have

∥∥∥∥ μ1(y)

(h + y)
∂yΦ

∥∥∥∥
Lp(B2(x∗)×(−h,0))

≤ 2

h
‖∂yΦ‖Lp(B2(x∗)×(−h,0)) ≤ C ‖ξ‖Xp

and

‖μ1(y)∇xΦ‖Lp(B2(x∗)×(−h,0)) ≤ C ‖ξ‖Xp .

We can now apply Case 1 to obtain

∥∥∥w(4)
∥∥∥
W 1,p(B1(x∗)×(−h,0))

≤ C ‖ξ‖Xp .

Combining all the estimates for w(j) (j = 1, 2, 3, 4, 5) and taking the supremum over
all x∗ ∈ Rd−1, we conclude the theorem.
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Abstract. We study the semiclassical limit for the following system of Maxwell–Schrödinger
equations:

− �2

2m
Δv + v + ωφv − γvp = 0, −Δφ = 4πωv2,

where �, m, ω, γ > 0, v, φ : R3 → R, 1 < p < 11
7

. This system describes standing waves for
the nonlinear Schrödinger equation interacting with the electrostatic field: the unknowns v and φ
represent the wave function associated to the particle and the electric potential, respectively. By
using localized energy method, we construct a family of positive radially symmetric bound states
(v�, φ�) such that v� concentrates around a sphere {|x| = s0} when � → 0.
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1. Introduction. In this paper we consider the following system of Maxwell–
Schrödinger equations in the following electrostatic case:⎧⎪⎨

⎪⎩
−�

2Δv + v + ωφv − γvp = 0 in R
3,

−Δφ = 4πωv2 in R
3,

v, φ > 0, v, φ → 0 as |x| → +∞,

(1.1)

where �, ω, γ > 0 and p > 1. This system was first introduced in [6]; it provides a
physical model which describes the interaction of a charged particle with the electro-
static field. In (1.1) we have assumed, for the sake of simplicity, 2m = 1, where m
is the mass of the particle. ω denotes the electric charge of the particle, while � is a
constant which is known under the name of Planck’s constant. The unknowns of the
system are the wave function v associated to the particle and the electric potential
φ. The presence of the nonlinear term in (1.1) simulates the interaction effect among
many particles.

The eigenvalue problem for the system (1.1) with γ = 0 has been studied in [6]
(in the case in which the charged particle lies in a bounded space region Ω) and in [8]
(under the action of an external nonzero potential). Existence results for (1.1) have
been established in [11].

In all the above-mentioned results the size of � is not relevant, hence one may
assume, without loss of generality, � = 1. This paper deals with the semiclassical
limit of the system (1.1); i.e., it is concerned with the problem of finding nontrivial
solutions and studying their asymptotic behavior when � → 0+. Hence such solutions
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are usually referred to as semiclassical ones. Letting � go to zero has great physical
interest since it formally describes the transition from quantum mechanics to classical
mechanics; as one expects, the solutions exhibit some kind of notable behavior in the
semiclassical limit, a concentration behavior: their form consists of very sharp peaks
which become highly concentrated when � is small.

The study of semiclassical phenomena for nonlinear Schrödinger equations has
attracted considerable attention in recent years; in particular, a large number of
papers have been devoted to studying single and multiple spike solutions for the
following stationary Schrödinger equation in the presence of an external potential V :

−�
2Δv + V (x)v − γ|v|p−1v = 0, x ∈ Ω, V : Ω → R,(1.2)

where Ω is an open subset of R
N (N ≥ 1). In the case p ∈ (1, N+2

N−2 ) for N ≥ 3 and
p > 1 for N = 1, 2, (1.2) admits solutions, called spike layers, concentrating at one or
multiple points of Ω, in the sense that their shape consists of sharp peaks near those
points while it vanishes everywhere else as � → 0+.

Concerning (1.2) in bounded domains Ω with V ≡ 1 and Neumann boundary
conditions, in [16], [20], [22], [23], [26], [32], [31], [41] the authors look for solutions
exhibiting a concentration at one or more points of the boundary which are proved
to be critical for the mean curvature of ∂Ω. As regards interior spike solutions, the
distance function from the boundary ∂Ω plays a role similar to that of the mean
curvature: in [19], [21], [33], [35], [42] single or multiple spikes are constructed for the
Neumann or the Dirichlet problem associated to (1.2) with Ω bounded and V ≡ 1,
and concentration occurs, roughly speaking, at critical points of the distance function
d from the boundary ∂Ω.

When Ω ≡ R
N and V �≡ const, spike layer solutions are constructed around the

critical points of the potential V . The first result in this line seems due to Floer and
Weinstein [17]. These authors considered the one-dimensional case and constructed for
small � > 0 such a concentrating family via a Lyapunov–Schmidt reduction around
any nondegenerate critical point of the potential V , under the condition that V is
bounded and p = 3. This line of research has been extensively pursued in a set of
recent papers (we recall, among many others, [1], [12], [14], [13], [15], [18], [24], [25],
[36], [37], [38], [40]) and semiclassical states are produced using minimax methods or,
under suitable nondegeneracy conditions, by finite dimensional reductions.

In contrast to pointwise concentration, only very recently has concentration at
higher dimensional sets been proved. The first progress was the recent paper [29], in
which, assuming V ≡ const, the authors prove the existence of positive solutions for
(1.2) in a smooth bounded subset Ω ⊂ R

2 with the Neumann boundary conditions;
such solutions concentrate at the whole boundary ∂Ω or at some of its components.
This result has been extended to higher dimensions in [28]. Under symmetry assump-
tions, higher dimensional spike layers are proved to exist. In [2] and [4], assuming that
V is radial, the existence of radially symmetric solutions for (1.2) in R

N concentrating
on a sphere centered in zero is established, and it is shown that the location of the
concentration arises as a balance between the effect of the potential energy due to V
and the volume energy of the solutions. In [5] and [9] concentration on circles in R

2

and R
3, respectively, is produced for a special class of solutions of (1.2). Concerning

(1.2) in a ball with Dirichlet or Neumann boundary conditions and V radial, in [3]
the effect of the boundary of the domain is analyzed; more precisely, it is proved that
there exists a family of radial solutions concentrating on the boundary. Finally, we
recall the recent papers [27] and [30], in which other phenomena of concentration on
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manifolds are studied.
Motivated by this rich literature, in this paper we want to study which kind

of phenomena occur for the system of Maxwell–Schrödinger equations (1.1) in the
semiclassical limit.

More precisely, for small values of the parameter �, we prove the existence of a
positive radially symmetric wave v� and a potential φ� satisfying (1.1). Furthermore,
in the limit when � → 0+, v� exhibits a concentration behavior around a sphere
{|x| = s0}: the analysis reveals that most of the support of v� is concentrated in a
neighborhood of such a sphere whose size depends on � and shrinks to zero as � → 0+.
The radius s0 is determined by the exponent p and the charge ω. In order to state
the exact result, denote by w(y) the unique solution for the following ODE:⎧⎪⎨

⎪⎩
w′′ − w + wp = 0 in R,

w > 0, w(0) = maxy∈R w(y),

w(y) → 0 as |y| → +∞.

It is well known that w(y) can be written explicitly as

w(y) =

(
p + 1

2

) 1
p−1

(
cosh

(
p− 1

2
y

))− 2
p−1

.(1.3)

Then, roughly speaking, the limit profile of our solutions v� resembles, after a suitable
rescaling in the coordinates, the function w.

More precisely, the main result of this paper is the following.
Theorem 1.1. Assume that 1 < p < 11

7 . Then there exists �0 > 0 such that for

every � ∈ (0, �0) the system (1.1) has a solution (v�, φ�) with γ = γ� = �
(p−1)/2 and

(1) v�, φ� are radially symmetric, v�, |∇v�, |∇φ�| ∈ L2(R3),

(2) v�(r) = �
−(1/2)α

1/(p−1)
�

w
(√

α�
r−s�

�

)
+ o(1) exp

(
−μ |r−s�|

�

)
uniformly in R

3

for a suitable μ ∈ (0, 1),

(3) φ�(r) = 4πω(1+o(1))α
(5−p)/2(p−1)
�

(
∫

R
w2dy)G(r; s�), where G(r; ρ) is defined

as follows:

G(r; ρ) =
ρ

r
min(r, ρ).(1.4)

Furthermore, as � → 0+,

α� → α0 :=
p + 3

11 − 7p
(1.5)

and

s� → s0 := (α0 − 1)α
p−5

2(p−1)

0

(
4πω2

∫
R

w2dy

)−1

.(1.6)

Remark 1.2. The case 1 < p < 3
2 has been proved in [10] by variational method.

Here we use localized energy method to cover the whole range for p ∈ (1, 11
7 ). Notice

that for p ≥ 11
7 it results in α0 − 1 ≤ 0, hence formula (1.6) does not make sense; this

suggests that the range (1, 11
7 ) is also necessary to get concentration around a sphere.

Furthermore, unlike [10], the different method used in this paper allows us to provide
the more precise description of the profile of the solutions (v�, φ�) given by (2)–(3) of
Theorem 1.1.
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Remark 1.3. Notice that by (2) of Theorem 1.1 it immediately follows that

∫
R3

|v�|2dx = 4πα
5−p

2(p−1)

�

∫ +∞

−√
α�

s�

�

(
�y
√
α�

+ s�

)2

|w|2dy + o(1)

= 4πα
5−p

2(p−1)

0 s2
0

∫
R

|w|2dy + o(1);

i.e., the L2-norm of the waves v� becomes bounded from below and from above. Fur-
thermore, for every δ > 0 and for small �,

v�(r) ≤ C exp

(
−μ

|r − s�|
�

)
for |r − s�| ≥ δ,

where C is independent on � and δ. Hence the solutions v� can be viewed as small
perturbations of the function w rescaled in such a way to be very concentrated near
a suitable neighborhood of s0; then their profile has the form of a solitary elevation
which becomes a very sharp peak when � is small.

The proof of Theorem 1.1 relies on a local approach and is related to the argu-
ments employed in [34], in which a phenomenon of concentration around a sphere
has been obtained for the stationary Gierer–Meinhardt system in R

N . This approach
is based on a finite dimensional reduction by using the classical Lyapunov–Schmidt
reduction method. We first construct some approximate solution (obtained as a small
perturbation of rescalation of w) and we solve (1.1) in its normal direction, and then
we study the remaining finite dimensional equation. After this reduction process, by
using the implicit function theorem we solve (1.1) in a suitable neighborhood of the
approximate solution.

The paper consists of four more sections. In section 2 we introduce some notations
and prove some preliminary estimates that play a key role in the rest of the arguments.
In sections 3 and 4 we construct the approximate solutions and we carry out the
Lyapunov–Schmidt procedure that allows us to reduce the problem to the study of a
finite dimensional functional. Finally, the proof of Theorem 1.1 is given in section 5.

Notations.
- If u : R

N → R is a radially symmetric function, we will continue to denote
by u the real function r > 0 �→ u(r) with |x| = r.

- If u is a real valued function, then u+ is its positive part and u− its negative
part.

- We will often use the symbol C for denoting a positive constant independent
on ε. The value of C is allowed to vary from line to line (and also in the same
formula).

- Given Aε ⊂ R
N , fε, gε : Aε → R two families of functions on Aε and k ∈ R,

we write fε = o(εk)gε on Aε (resp. fε = O(εk)gε on Aε) to mean that fε
gε

→ 0

(resp. |fε| ≤ Cεk|g|) uniformly on Aε as ε → 0.

2. Preliminaries. In order to obtain solutions of (1.1) we choose a suitable
functional setting. Let H1

r (R3) and L2
r(R

3) denote the subspace of the Sobolev space
H1(R3) and L2(R3), respectively, formed by the radially symmetric functions endowed
with the norms

‖u‖2
H1(R3) =

∫
R3

(
|∇u|2 + |u|2

)
dx, ‖u‖2

L2(R3) =

∫
R3

|u|2 dx.
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It is well known that H1
r (R3) is compactly imbedded in Lp(R3) for 2 < p < 6 (see [7,

Theorem A.I’, p. 341] or [39]). Furthermore, if u ∈ H1
r (R3), then

|u(x)| ≤ (4π)−
1
2 |x|−1‖u‖H1 a.e. in R

3

(see [39]). Define D1(R3) as the completion of C∞
0 (R3) with respect to the norm

‖u‖2
D1(R3) ≡

∫
R3

|∇u|2 dx,

and let D1
r(R

3) denote the closed subspace consisting of the radially symmetric func-
tions.

The following proposition holds (see [10] for the proof).
Proposition 2.1. For every u ∈ H1

r (R3) denote by (−Δ)−1[u2] the unique
solution in D1

r(R
3) of

−Δv = u2.

Then the following representation formula holds:

(−Δ)−1[u2](x) =
1

4π

∫
R3

1

|x− y|u
2(y)dy =

∫ +∞

0

G(|x|, ρ)u2(ρ)dρ,

where G(s, ρ) has been defined in (1.4). Furthermore, the functional F : u ∈ H1
r (R3) �→∫

R3 u
2(−Δ)−1[u2]dx is compact and C1, and

F ′(u)[w] = 4

∫
R3

uw(−Δ)−1[u2]dx ∀u,w ∈ H1
r (R3).

By suitably scaling, (1.1) can be reduced to the following system of equations:⎧⎪⎨
⎪⎩

−Δu + u + Γuψ − up = 0 in R
3,

−Δψ = εu2 in R
3,

u, ψ > 0, u, ψ → 0 as |x| → +∞,

(2.1)

where

ε = � = γ
2

p−1 , Γ = 4πω2, u(x) =
√
εv(εx), ψ(x) =

1

4πω
φ(εx).(2.2)

Associated with (2.1) is the following energy functional Eε ∈ C1(H1
r (R3),R):

Eε[u] :=
1

2

∫
R3

(
|∇u|2 + u2

)
dx− 1

p + 1

∫
R3

up+1
+ dx +

Γ

4
ε

∫
R3

u2(−Δ)−1[u2]dx.

By using Proposition 2.1 the energy functional can be rewritten as

Eε[u] = 2π

∫ +∞

0

r2
(
|u′|2 + |u|2

)
dr − 4π

p + 1

∫ +∞

0

r2|u+|p+1dr

+ Γπε

∫ +∞

0

∫ +∞

0

r2G(r, ρ)u2(r)u2(ρ)drdρ.

Before going on we define in the following lemma two suitable functions which
will be useful in order to locate the asymptotic peak of the solutions.
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Lemma 2.2. Assume p, N ∈ R such that N ≥ 3 and 1 < p < 7N−10
3N−2 , and

consider the two functions

ρ(t) = (1 + t)
p−5

2(p−1) t2[(3p− 7)t + 4(p− 1)], t > t̂ :=
2(p− 1)

7 − 3p
,

and t = t(s) the inverse function of

s(t) =

(
Γ

∫
R

w2dy

)−1

(1 + t)
p−5

2(p−1) t, t > t̂.

Then the function sN−3ρ(t(s)) has a unique (and nondegenerate) minimum point s0

for s ∈ (0, s(t̂)). In particular, if N = 3, then s0 is given by (1.6).
Proof. Since 7N−10

3N−2 < 7
3 , it is easy to see that s is a strictly decreasing function

for t > t̂. Thus the inverse function t = t(s) exists for s ∈ (0, s(t̂)). Now compute

(
sN−3ρ

)′
(t)=

(
Γ

∫
R

w2dy

)3−N

tN−2(1 + t)
(p−5)N+4(3−p)

2(p−1)

×
(

(7 − 3p)N + 2(p− 5)

2(p− 1)
t− 2(N − 1)

)(
(7 − 3p)t− 2(p− 1)

)
.

For t > t̂, ρ(t) has the following unique critical point:

t0 =
4(N − 1)(p− 1)

(7 − 3p)N + 2(p− 5)
.(2.3)

Moreover, ρ′′(t0) > 0, which means that t0 is also nondegenerate. Set s0 = s(t0).
Then the function ρ(t(s)) has a unique (and nondegenerate) minimum point s0 for
s ∈ (0, s(t̂)).

Now we are in position to introduce our approximate solutions. As we have al-
ready stated in the introduction, we construct the approximations by suitably rescal-
ing the function w and then using suitable truncations. Fix s1, s2 ∈ (0, s(t̂)) such that
s1 < s2 and, according to Lemma 2.2,

s0 ∈ (s1, s2),
2t(s)

1 + t(s)
�= 4(p− 1)

5 − p
∀s ∈ [s1, s2].(2.4)

Let η(r) be a cut-off function satisfying

η(r) = 1 for r ∈ (−δ, δ), η(r) = 0 for r �∈ (−2δ,+2δ),(2.5)

where δ > 0 is a fixed number such that s1 − 2δ > 0. For every s ∈ [s1, s2] define

ws(y) := (1 + t(s))
1

p−1w(
√

1 + t(s)y)

and

Uε,s(y) := ws(y)η(εy).(2.6)

We immediately see that ws satisfies

w
′′

s − (1 + t(s))ws + wp
s = 0, ws > 0, ws(y) = ws(−y).(2.7)
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The definitions of Uε,s in (2.6) and w in (1.3) imply that for every i ∈ N, denoting by
U i
ε,s and wi

ε,s the derivatives of order i of the functions Uε,s and ws, respectively, we
have

U i
ε,s(y) = O(1)e−|y|, U i

ε,s(y) = wi
s(y

)
+ o(ε)e−|y|(2.8)

uniformly for s ∈ [s1, s2]. We need to recall the following well-known facts on the
functions w and ws which will be frequently used later on.

Lemma 2.3. (1) For every s ∈ [s1, s2] the following identities hold:∫
R

(w′
s)

2dy=
p− 1

2(p + 1)

∫
R

wp+1
s dy,

∫
R

w2
sdy=

p + 3

2(1 + t(s))(p + 1)

∫
R

wp+1
s dy.(2.9)

(2) Let L0 : H2(R) → L2(R) be the linear operator defined by

L0[φ] = φ′′ − φ + pwp−1φ.

Then

L0

[
1

p− 1
w +

1

2
yw′

]
= w(2.10)

and φ ∈ H2(R) satisfies

L0[φ] = 0

if and only if φ = cw′ for some constant c. As a consequence, if we consider the
kernel K0 and the cokernel C0 of the operator L0,

K0 = {cw′ | c ∈ R} ⊂ H2(R), C0 = {cw′ | c ∈ R} ⊂ L2(R),

then L0 is an invertible operator from K⊥
0 to C⊥

0 .

Proof. Since each ws satisfies (2.7), we have
(
(w′

s)
2
)′

= (1+t(s))(w2
s)

′− 2
p+1 (wp+1

s )′,

by which (w′
s)

2 = (1 + t(s))w2
s − 2

p+1w
p+1
s . Combining this with the identity

∫
R

(w′
s)

2dy + (1 + t(s))

∫
R

w2
sdy =

∫
R

wp+1
s dy

we deduce (2.9). To prove (2.10), it is sufficient to observe that L0[w] = (p − 1)wp,
L0[yw

′
] = 2(w − wp).

The last part of the lemma follows from the uniqueness of w.
Fix λ > 0. We conclude this section by analyzing the following nonlocal operator:

L : H2(R) → L2(R), L[φ] := L0[φ] − λ(p− 1)

∫
R
wφdy∫

R
w2dy

w.

The following lemma characterizes the kernel of L.
Lemma 2.4. If λ �= 4

5−p , then φ ∈ H2(R) satisfies

L[φ] = 0

if and only if φ = cw
′
for some constant c.



328 TERESA D’APRILE AND JUNCHENG WEI

Proof. Assume L[φ] = 0. From (2.10) we deduce that

L0

[
φ− λ

∫
R
wφdy∫

R
w2dy

(
w +

p− 1

2
yw

′
)]

= L[φ] = 0.

By (2) of Lemma 2.3, we have

φ− λ

∫
R
wφdy∫

R
w2dy

(
w +

p− 1

2
yw

′
)

= cw
′

(2.11)

for some c. Multiplying (2.11) by w and integrating over R, we obtain

(1 − λ)

∫
R

wφdy − λ
p− 1

2

∫
R
wφdy∫

R
w2dy

∫
R

yww′dy = 0.

After an integration by parts we deduce
∫

R
yww′dy = − 1

2

∫
R
w2dy, by which

(
1 − λ

(
1 − p− 1

4

))∫
R

wφdy = 0,

and hence
∫

R
wφdy = 0, which implies L0[φ] = L[φ] = 0; then Lemma 2.3 leads to

φ = cw
′
.

3. The linearized problem. For every s ∈ [s1, s2], where s1, s2 have be chosen
in (2.4), we set

Iε,s :=
(
−s

ε
,+∞

)
.

Denote by Lp
ε(Iε,s) the space of the functions φ : Iε,s → R such that, setting uφ(x) =

φ
(
|x| − s

ε

)
, it results in uφ ∈ Lp(R3). L2

ε(Iε,s) can be equipped with the following
scalar product:

〈φ, ψ〉ε =

∫
Iε,s

φψ(s + εy)2dy ∀φ, ψ ∈ L2
ε(Iε,s)

(which is equivalent to the norm ‖uφ‖L2(R3)).
We define the following operator:

Tε,s[φ](y) =

∫
Iε,s

G(s + εy, s + εz)φ(z)dz, y ∈ Iε,s, φ ∈ L1
ε(Iε,s).

Notice that

s− ε(2|z| + |y|) ≤ G(s + εy, s + εz) ≤ s + εz ∀y, z ∈ Iε,s;(3.1)

hence, by using (2.8) and Lemma 2.2, we get

Tε,s[U
2
ε,s](y) = s

∫
R

U2
ε,sdz + O(ε)(|y| + 1) = s

∫
R

w2
sdz + O(ε)(|y| + 1)

(3.2)

= s(1 + t(s))
5−p

2(p−1)

∫
R

w2dz + O(ε)(|y| + 1) =
1

Γ
t(s) + O(ε)(|y| + 1)
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uniformly for s ∈ [s1, s2]. In the same way, we define H1
ε (Iε,s), the space of the

functions φ : Iε,s → R, such that uφ ∈ H1
r (R3). We can equip H1

ε (Iε,s) with the
following scalar product:

(φ, ψ)ε =

∫
Iε,s

[φ′ψ′ + (1 + ΓTε,s[U
2
ε,s])φψ](s + εy)2dy ∀φ, ψ ∈ H1

ε (Iε,s)

(which is equivalent to the norm ‖uφ‖H1(R3) since 0 ≤ Tε,s[U
2
ε,s](y) ≤

∫
Iε,s

(s +

εz)U2
ε,sdz).
We introduce the following functions:

Zε,s(y) = U ′′′
ε,s(y) +

2ε

s + εy
U ′′
ε,s(y) − (1 + ΓTε,s[U

2
ε,s])U

′
ε,s(y), y ∈ Iε,s.(3.3)

By integration by parts we immediately prove that

(φ,U ′
ε,s)ε = −〈φ,Zε,s〉ε ∀φ ∈ H1

ε (Iε,s);(3.4)

then orthogonality of the functions U ′
ε,s in H1

ε (Iε,s) is equivalent to orthogonality of
Zε,s in L2

ε(Iε,s).
First we study a linear problem: given h ∈ C(Īε,s) ∩ L2

ε(Iε,s), find a function
φ ∈ H1

ε (Iε,s) and c ∈ R satisfying{
Lε,s[φ] = h + cZε,s,

φ
′(− s

ε

)
= 0, 〈φ,Zε,s〉ε = 0,

(3.5)

where

Lε,s[φ] := φ′′ +
2ε

s + εy
φ′ − (1 + ΓTε,s[U

2
ε,s])φ + pUp−1

ε,s φ− 2ΓTε,s[Uε,sφ]Uε,s.

In order to solve the system (3.5) we need the following result based on ODE
estimates.

Lemma 3.1. Let φ ∈ C2(Īε,s) satisfy∣∣∣∣φ′′(y) +
2ε

s + εy
φ

′
(y) − (1 + ΓTε,s[U

2
ε,s])φ(y)

∣∣∣∣ ≤ c0e
−μ|y|, φ

′
(
−s

ε

)
= 0,

for some c0 > 0, and

φ(y) → 0 as y → +∞.

Then, provided that μ > 0 is sufficiently small,

|φ(y)| ≤ 2e2(|φ(0)| + c0)e
−μ|y| ∀y ∈ Iε,s.

Proof. We use a comparison principle. Take χ(t), a smooth cut-off function such
that

χ(t) = 1 for |t| ≤ 1, χ(t) = 0 for |t| ≥ 2, 0 ≤ χ ≤ 1.

Now consider the following auxiliary function:

Φ(y) = A
[
eμy + (eμy0 − eμy)χ

(
μ
(
y +

s

ε

))]
,
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where

y0 = −s

ε
+

1

μ
, A = 2e(|φ(0)| + c0).

If y ∈ (− s
ε , y0), Φ(y) = Aeμy0 ≤ Aeμy+1 and hence

Φ′′ +
2ε

s + εy
Φ′ − (1 + ΓTε,s[U

2
ε,s])Φ = −A(1 + Tε,s[U

2
ε,s])e

μy0 ≤ −c0e
μy.

If y ∈ (− s
ε + 2

μ , 0), Φ(y) = Aeμy, and ε
s+εy ≤ μ

2 , then

Φ′′ +
2ε

s + εy
Φ′ − (1 + ΓTε,s[U

2
ε,s])Φ = A[2μ2 − (1 + Tε,s[U

2
ε,s])]e

μy ≤ −c0e
μy

provided that μ is sufficiently small. Finally, it is easy to see that for y ∈ (y0, y0 + 1
μ ),

eμy0 ≤ eμy ≤ eeμy0 , Φ(y) ≥ Aeμy−1,
μ

2
≤ ε

s + εy
≤ μ;

hence

Φ′′+
2ε

s + εy
Φ′− (1 + ΓTε,s[U

2
ε,s])Φ ≤ AO(μ2)eμy−A(1 + ΓTε,s[U

2
ε,s])e

μy−1≤ −c0e
μy

provided that μ is sufficiently small.
In any case, we have that for y ∈ (− s

ε , 0), Φ(y) satisfies

Φ
′′
+

2ε

s + εy
Φ

′ − (1 + ΓTε,s[U
2
ε,s])Φ ≤ −c0e

μy,

(3.6)
Φ

′
(
−s

ε

)
= 0, Φ(0) ≥ |φ(0)|.

Combining (3.6) with the hypothesis we obtain

(Φ − φ)′′(y) +
2ε

s + εy
(Φ − φ)′(y) − (1 + ΓTε,s[U

2
ε,s])(Φ − φ)(y) ≤ 0(3.7)

for every y ∈
[
− s

ε , 0
]

and

(Φ − φ)(0) > 0, (Φ − φ)′
(
−s

ε

)
= 0;

we claim that (Φ − φ)(y) ≥ 0 for y ∈ [− s
ε , 0). Otherwise, if we call ȳ the minimum

point of Φ − φ in [− s
ε , 0), then it would be (Φ − φ)(ȳ) < 0 and (Φ − φ)′(ȳ) = 0,

(Φ − φ)′′(ȳ) > 0, in contradiction to (3.7). Hence we have proved that φ ≤ Φ in
[− s

ε , 0]. On the other hand, by (3.6) and the hypothesis we also get

(Φ + φ)
′′
(y) +

2ε

s + εy
(Φ + φ)

′
(y) − (1 + ΓTε,s[U

2
ε,s])(Φ + φ)(y) ≤ 0 ∀y ∈

[
−s

ε
, 0
]

and (Φ + φ)(0) > 0, (Φ + φ)′(− s
ε ) = 0. Proceeding as before we conclude φ ≥ −Φ in

[− s
ε , 0].

For y ∈ [0,+∞), we use Φ̂(y) = Ae−μy and hence

Φ̂
′′

+
2ε

s + εy
Φ̂

′ − (1 + ΓTε,s[U
2
ε,s])Φ̂ ≤ A(μ2 − (1 + ΓTε,s[U

2
ε,s]))e

−μy ≤ −c0e
−μy
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provided that μ is sufficiently small. By repeating the previous argument we obtain
|φ| ≤ Φ̂ in [0,+∞) and the conclusion follows.

Let μ ∈ (0, 1) be a number sufficiently small such that Lemma 3.1 holds and for
every function φ : Iε,s → R define

‖φ‖∗ = ‖eμ〈y〉φ(y)‖L∞(Iε,s),

where 〈y〉 = (1 + y2)1/2. Since 2ε
s+εyU

′′
ε,s = O(ε)e−|y|, by using (2.7), (2.8), and (3.2)

we obtain

Zε,s(y) = w′′′
s (y) − (1 + t(s))w′

s(y) + O(ε)e−μ〈y〉
(3.8)

= −pwp−1
s (y)w′

s(y) + O(ε)e−μ〈y〉

uniformly for s ∈ [s1, s2].
Next we prove the following a priori estimate for (3.5).
Lemma 3.2. There exists a constant C > 0 such that, provided that ε is suffi-

ciently small, if s ∈ [s1, s2] and (φ, c, h) satisfy (3.5), the following holds:

‖φ‖∗ ≤ C‖h‖∗.

Proof. We argue by contradiction. Assume the existence of a sequence εk → 0,
(sk) ⊂ [s1, s2] and (φ̃k, c̃k) ∈ H1

ε (Iεk,sk) × R, hk ∈ L2
ε(Iεk,sk) ∩ C(Īεk,sk) satisfying

(3.5) such that

‖φ̃k‖∗ > k‖h̃k‖∗.

In particular, ‖h̃k‖∗ < +∞ for every k. For the sake of simplicity, in the remaining
part of the proof we replace the subscript (εk, sk) with k. By standard regularity
results φ̃k ∈ C2(Īk); furthermore, for every k ‖Tk(Ukφ̃k)‖∞ ≤

∫
Ik

(sk + εkz)Ukφ̃kdz <

+∞ and, consequently, ‖ − pUp−1
k φ̃k + 2ΓTk[Ukφ̃k]Uk + h̃k + c̃kZk‖∗ < +∞. Then

Lemma 3.1 implies ‖φ̃k‖∗ < +∞ for every k. Hence it makes sense to set φk = φ̃k

‖φ̃k‖∗
,

ck = c̃k
‖φ̃k‖∗

, hk = h̃k

‖φ̃k‖∗
. We obtain that (φk, ck, hk) satisfies (3.5) and

‖φk‖∗ = 1, ‖hk‖∗ = o(1).

Assume without loss of generality that sk → s as k → +∞. By multiplying the
equation Lk[φk] = hk + ckZk by U

′

k and integrating over Ik, we get

ck

∫
Ik

ZkU
′

kdy = −
∫
Ik

hkU
′

kdy +

∫
Ik

Lk[φk]U
′

kdy.(3.9)

First examine the left-hand side of (3.9): by using (2.8) and (3.8) we deduce∫
Ik

ZkU
′

kdy = −p

∫
R

wp−1
sk

(w′
sk

)2dy + o(1) = −p

∫
R

wp−1
s (w′

s)
2dy + o(1).(3.10)

The first term on the right-hand side of (3.9) can be estimated as∫
Ik

|hkU
′
k|dy ≤ ‖hk‖∗

∫
R

|U ′
k|eμ〈y〉dy = O(1)‖hk‖∗ = o(1).(3.11)
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The last term in (3.9) equals∫
Iεk

(Lk[φk])U
′
kdy

=

∫
Ik

φk

[
U ′′′
k +

2ε2
k

(sk + εky)2
U ′
k − 2εk

sk + εky
U ′′
k − (1 + ΓTk[U

2
k ])U ′

k + pUp−1
k U ′

k

]
dy

−2Γ

∫
Ik

Tk[Ukφk]UkU
′

kdy

=

∫
Ik

φk

[
U ′′′
k (y) − (1 + ΓTk[U

2
k ])U ′

k(y) + pUp−1
k U ′

k

]
dy + O(εk)‖φk‖∗

−2Γ

∫
Ik

Tk[Ukφk]UkU
′
kdy

since, according to the definition of Uk in (2.6) and to (2.8),
2ε2k

(sk+εky)2U
′
k = O(εk)e

−|y|

and 2εk
sk+εky

U ′
k = O(εk)e

−|y|. By (2.7), (2.8), and (3.2) we obtain∫
Ik

φk

[
U ′′′
k (y) − (1 + ΓTk[U

2
k ])U ′

k + pUp−1
k U ′

k

]
dy = O(εk)‖φk‖∗.(3.12)

On the other hand, by (2.8) and (3.1) we deduce

Tk[Ukφk](y) = s

∫
Ik

Ukφkdy + O(εk)(|y| + 1)‖φk‖∗,(3.13)

by which∫
Ik

Tk[Ukφk]UkU
′

kdy = O(εk)‖φk‖∗
∫
Ik

(|y| + 1)|UkU
′

k|dy = O(εk)‖φk‖∗.

Hence we have proved that∫
Ik

Lk[φk]U
′
kdz = O(εk)‖φk‖∗ = O(εk).(3.14)

Combining (3.9), (3.10), (3.11), and (3.14) we achieve |ck| = o(1), by which ‖hk +
ckZk‖∗ = o(1).

Next we claim that φk → 0 uniformly in any compact interval of R.
By multiplying (3.5) by (sk + εky)

2φk and integrating by parts we immediately
get that the sequence (φk, φk)ε =

∫
Ik

(sk + εky)
2(|φ′

k|2 + |φk|2)dy is bounded. Now

we consider φ̄k(y) = φk(y)η(εky) ∈ H1(R), where η has been defined in (2.5). Then
it is easy to see that φ̄k is bounded in H1(R), and hence φ̄k → φ̄0 weakly in H1(R).
Taking into account of (3.2) and (3.13), φ̄0 satisfies

Δφ̄0 − (1 + t(s))φ̄0 + pwp−1
s φ̄0 − 2sΓ

(∫
R

wsφ̄0dy

)
ws = 0 in R, |φ̄0| ≤ e−μ〈y〉.

By rescaling, setting φ0(y) = φ̄0(
y√

1+t(s)
), and recalling the definition of ws in (2.6),

we obtain

φ′′
0 − φ0 + pwp−1φ0 − 2

t(s)

1 + t(s)

∫
R
wφ0dy∫

R
w2dy

w = 0.
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By (2.4), because of the choice of s,

2
t(s)

1 + t(s)
�= 4(p− 1)

5 − p
;

Lemma 2.4 implies φ0 = cw′. On the other hand,
∫
Ik

φkZk(sk + εky)
2dy = 0 and

hence, since by (3.8) Zk(sk + εky)
2 → −s2pwp−1

s w′
s for every y ∈ R, by Lebesgue’s

dominated convergence theorem
∫

R
φ̄0w

p−1
s w′

s = 0, that is,
∫

R
φ0w

p−1w′ = 0, by which
c = 0; we have proved that φk → 0 in any compact interval of R. Taking into account
(2.8), this shows that

‖Up−1
k φk‖∗ ≤ sup

y∈Ik

|eμ〈y〉wp−1
sk

(y)φk(y)| = o(1).

By using again Lebesgue’s dominated convergence theorem, we have that∫
Ik

Ukφkdy → 0,

which implies, using (3.13), ∥∥Tk[Ukφk]Uk

∥∥
∗ = o(1).

Thus we have arrived at the following situation: φk satisfies

φ
′′

k +
2εk

sk + εky
φ

′

k − (1 + ΓTk[U
2
k ])φk = o(1)e−μ〈y〉,

φ
′

k

(
−sk
εk

)
= 0, φk → 0 as y → ∞.

Furthermore, φk(0) = o(1). Hence we can apply Lemma 3.1 and obtain that φk(y) =
o(1)e−μ〈y〉, which is a contradiction since ‖φk‖∗ = 1. This proves the lemma.

Now we are in position to provide the existence of a solution for the system (3.5).
Lemma 3.3. For ε > 0 sufficiently small, for every s ∈ [s1, s2] and h ∈ L2

ε(Iε,s)∩
C(Īε,s), there exists a unique pair (φ, c) solving (3.5). Moreover, by Lemma 3.2,

‖φ‖∗ ≤ C‖h‖∗.(3.15)

Proof. The existence follows from Fredholm alternative. To this aim, let us
consider Hε the closed subset of H1

ε (Iε,s) defined by

Hε = {u ∈ H1
ε (Iε,s) | (u, U

′

ε,s)ε = 0}.

Notice that, by (3.4), φ solves the system (3.5) if and only if φ ∈ Hε and

(φ, ψ)ε − p〈Up−1
ε,s φ, ψ〉ε + 2Γ〈Tε,s[Uε,sφ]Uε,s, ψ〉ε = −〈h, ψ〉ε ∀ψ ∈ Hε.(3.16)

Once we know φ we can determine a unique c from the equation

−p〈Up−1
ε,s φ,U ′

ε,s〉ε+ 2Γ〈Tε,s[Uε,sφ]Uε,s, U
′
ε,s〉ε =−〈h, U ′

ε,s〉ε+ c(U ′
ε,s, U

′
ε,s)ε.

Thus it remains to solve (3.16). According to Riesz’s representation theorem, take
Kε(φ), h̄ ∈ Hε such that

(Kε(φ), ψ)ε = −p〈Up−1
ε,s φ, ψ〉ε + 2Γ〈Tε,s[Uε,sφ]Uε,s, ψ〉ε ∀ψ ∈ Hε,
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(h̄, ψ)ε = −〈h, ψ〉ε ∀ψ ∈ Hε.

Then problem (3.16) consists in finding φ ∈ Hε such that

φ + Kε(φ) = h̄.(3.17)

It is easy to prove that Kε is a linear compact operator from Hε to Hε.
Using Fredholm’s alternatives, (3.17) has a unique solution for each h̄ if and only if

(3.17) has a unique solution for h̄ = 0. Let φ ∈ Hε be a solution of φ+Kε(φ) = 0; then
φ solves the system (3.5) with h = 0 for some c ∈ R. Lemma 3.2 implies φ ≡ 0.

4. Finite dimensional reduction. This section is devoted to solving the fol-
lowing nonlinear system with the unknowns (φ, β) ∈ H1

ε (Iε,s) × R:{
Sε,s[Uε,s + φ] = βZε,s, y ∈ Iε,s,

φ
′(− s

ε

)
= 0, 〈φ,Zε,s〉ε = 0,

(4.1)

where

Sε,s[ψ] = ψ′′ +
2ε

s + εy
ψ′ − ψ + ψp

+ − ΓψTε,s[ψ
2].

Lemma 4.1. Fix σ ∈ ( 1
2 , 1). Provided that ε > 0 is sufficiently small, for every

s ∈ [s1, s2] there is a unique pair (φε,s, βε,s) ∈ H1
ε (Iε,s) × R satisfying (4.1) and

‖φε,s‖∗ ≤ εσ, (φε,s, φε,s)ε ≤ εσ.(4.2)

Furthermore, setting Φε,s(x) = φε,s

(
|x| − s

ε

)
, the maps Φε : s ∈ [s1, s2] �→ Φε,s ∈

H1
r (R3) and βε : s ∈ [s1, s2] �→ βε,s ∈ R are continuous.

Proof. We write the equation in (4.1) in the form

Lε,s[φ] = Eε,s + Mε,s[φ] + βZε,s(4.3)

and use contraction mapping theorem. Here

−Eε,s = U
′′

ε,s +
2ε

s + εy
U

′

ε,s − (1 + ΓTε,s[U
2
ε,s])Uε,s + Up

ε,s(4.4)

and

Mε,s[φ] = −(Uε,s + φ)p+ + Up
ε,s + pUp−1

ε,s φ + Γ
[
(Uε,s + φ)Tε,s[φ

2] + 2φTε,s[Uε,sφ]
]
.

By (2.7), (2.8), and (3.2) we immediately obtain

‖Eε,s‖∗ = ‖U ′′
ε,s − (1 + t(s))Uε,s + Up

ε,s‖∗ + Cε ≤ Cε ∀s ∈ [s1, s2],(4.5)

where we have also used the estimate 2ε
s+εyU

′
ε,s = O(ε)e−|y| uniformly for s ∈ [s1, s2].

Now we have to estimate the term Mε,s[φ]. Set Bε,s = {φ ∈ C(Īε,s) | ‖φ‖∗ ≤ εσ}.
Given φ1, φ2 ∈ Bε,s, we compute

‖−(Uε,s + φ1)
p
+ + pUp−1

ε,s φ1 + (Uε,s + φ2)
p
+ − pUp−1

ε,s φ2‖∗
≤ ‖φ1 − φ2‖∗ sup

ξ∈Bε,s

‖p(Uε,s + ξ)p−1
+ − pUp−1

ε,s ‖∞

≤ Cεσ(p−1)‖φ1 − φ2‖∗ ∀s ∈ [s1, s2].
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For every φ ∈ C(Īε,s): |Tε,s[φ](y)| ≤ ‖φ‖∗
∫
Iε,s

(s + εz)e−μ〈z〉dz ≤ C‖φ‖∗,

‖(Uε,s + φ1)Tε,s[φ
2
1] − (Uε,s + φ2)Tε,s[φ

2
2]‖∗

≤ ‖(Uε,s + φ1)(Tε,s[φ
2
1 − φ2

2])‖∗ + ‖(φ1 − φ2)Tε,s[φ
2
2]‖∗

≤ C‖φ2
1 − φ2

2‖∗ + C‖φ1 − φ2‖∗εσ ≤ C‖φ1 − φ2‖∗εσ ∀s ∈ [s1, s2].

In a similar way

‖φ1Tε,s[Uε,sφ1] − φ2Tε,s[Uε,sφ2]‖∗ ≤ C‖φ1 − φ2‖∗εσ ∀s ∈ [s1, s2],

by which

‖Mε,s(φ1) −Mε,s(φ2)‖∗ ≤ C(εσ + εσ(p−1))‖φ1 − φ2‖∗ ∀φ1, φ2 ∈ Bε,s,(4.6) ∀s ∈ [s1, s2].

According to Lemma 3.3, for every φ ∈ Bε,s we define Aε,s[φ] ∈ H1
ε (Iε,s) to be the

unique solution to the system (3.5) with h = Eε,s + Mε,s[φ]. Then by Lemma 3.3 we
have

‖Aε,s[φ]‖∗ ≤ C‖Eε,s + Mε,s[φ]‖∗ ≤ C(ε + ε2σ + εσp) ≤ εσ ∀s ∈ [s1, s2]

and hence Aε,s[φ] ∈ Bε,s. Moreover, since Aε,s[φ1] −Aε,s[φ2] solves the system (3.5)
with h = Mε,s[φ1] −Mε,s[φ2], by (4.6) we also have that

‖Aε[φ1] −Aε[φ2]‖∗ ≤ C‖Mε,s[φ1] −Mε,s[φ2]‖∗ < ‖φ1 − φ2‖∗ ∀s ∈ [s1, s2];(4.7)

i.e., the map Aε,s is a contraction map from Bε,s to Bε,s. By the contraction mapping
theorem, (4.1) has a unique solution (φε,s, βε,s) ∈ Bε,s × R. By multiplying both
members of (4.3) by (s + εz)2φε,s and integrating by parts we obtain

(φε,s, φε,s)ε = 〈pUp−1
ε,s φε,s − 2ΓTε,s[Uε,sφε,s]Uε,s − Eε,s −Mε,s[φε,s], φε,s〉ε ≤ εσ,

(4.8)

where we have used (4.5) and (4.6); in particular, since ‖Φε,s‖2
H1(R3)≤ ε−24π(φε,s, φε,s)ε,

fixed ε > 0, the family Φε,s is bounded in H1
r (R3). On the other hand, by using (3.4)

we have

(φε,s, U
′
ε,s)ε =〈pUp−1

ε,s φε,s − 2ΓTε,s[Uε,sφε,s]Uε,s − Eε,s −Mε,s[φε,s], U
′
ε,s〉ε

+βε,s(U
′
ε,s, U

′
ε,s)ε,

by which we deduce that the family βε,s is also bounded for fixed ε > 0.
Now consider {sn} ⊂ [s1, s2] such that sn → s. Up to a subsequence, Φε,sn ⇀ Φ̄

weakly in H1
r (R3) and βε,sn → β̄. Then, setting φ̄(y) = Φ̄(y + s̄

ε ) for y ∈ Iε,s̄, (φ̄, β̄)
solves the equation

Lε,s̄(φ̄) = Eε,s̄ + Mε,s̄[φ̄] + β̄Zε,s̄, φ̄′
( s̄
ε

)
= 0, 〈φ̄, Zε,s̄〉 = 0, ‖φ̄‖∗ ≤ εσ.

From uniqueness it follows that φ̄ = φε,s̄ and β̄ = βε,s̄. By (4.8) we get

(φε,sn , φε,sn)ε → 〈pUp−1
ε,s̄ φ̄− 2ΓTε,s̄[Uε,s̄φ̄]Uε,s̄ − Eε,s̄ −Mε,s̄[φ̄], φ̄〉ε = (φ̄, φ̄)ε,
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hence (since the norm (φ, φ)ε is equivalent to ‖Φ‖H1(R3)), we deduce Φε,sn → Φε,s̄ in
H1(R3).

Lemma 4.2. For ε > 0 sufficiently small, the map Φε : s ∈ [s1, s2] �→ Φε,s ∈
H1

r (R3) constructed in Lemma 4.1 is C1.
Proof. Consider the following map Hε : [s1, s2] ×H1

r (R3) × R → H1
r (R3) × R of

class C1:

Hε(s,Φ, β) =

( (
Δ − (1 + ΓTε,s[U

2
ε,s])

)−1(
Sε,s[Uε,s + φ] − βZε,s

)
(|x| − s

ε )

(φ,U
′

ε,s)ε

)
,

where Φ(x) = φ(|x|− s
ε ) and v =

(
Δ− (1+ΓTε,s[U

2
ε,s])

)−1
(h) is defined as the unique

solution in H1
ε (Iε,s) of

v
′′

+
2ε

s + εy
v

′ −
(
1 + ΓTε,s[U

2
ε,s]

)
v = h, v

′
(
−s

ε

)
= 0, y ∈ Iε,s.(4.9)

It is immediate that (φ, β) solves the system (4.1) if and only if Hε(s,Φ, β) = 0. We
are going to prove that, provided that ε is sufficiently small, for every s ∈ [s1, s2] the
linear operator

∂Hε(s,Φ, β)

∂(Φ, β)
|(s,Φε,s,βε,s) : H1

r (R3) × R → H1
r (R3) × R

is invertible. But first notice how, assuming this, the thesis easily follows; indeed,
the continuity of the map Φε proved in Lemma 4.1 implies that Φε actually coincides
with the implicit function associated to Hε, hence the C1-regularity of Φε will follow
from the implicit function theorem.

Now we compute

∂Hε(s,Φ, β)

∂(Φ, β)
|(s,Φε,s,βε,s)[Φ, c]

=

((
Δ − (1 + ΓTε,s[U

2
ε,s])

)−1(
S′
ε,s[Uε,s + φε,s](φ) − cZε,s

)
(|x| − s

ε )

(φ,U
′

ε,s)ε

)
.

Proceeding as in the proof of Lemma 3.3, (Φ, c) solves the system

∂Hε(s,Φ, β)

∂(Φ, β)
|(s,Φε,s,βε,s)[Φ, c] = (Θ, d)

if and only if φ = φ̄+ d
(U ′

ε,s,U
′
ε,s)ε

U ′
ε,s, where φ̄ ∈ Hε (Hε is the closed subset of H1

ε (Iε,s)

defined in Lemma 3.3) and

((
Δ −

(
1 + ΓTε,s[U

2
ε,s]

))−1(
S′
ε,s[Uε,s + φε,s](φ) − cZε,s

)
, ψ

)
ε

= (θ, ψ)ε ∀ψ ∈ Hε,

(4.10)

where Θ(x) = θ(|x| − s
ε ). By (4.9) we have ((Δ − (1 + ΓTε,s[U

2
ε,s]))

−1(h), ψ)ε =
−〈h, ψ〉ε; hence (4.10) may be rewritten as

(φ̄, ψ)ε−p〈(Uε,s + φε,s)
p−1
+ φ, ψ〉ε + Γ〈Tε,s[φ

2
ε,s + 2Uε,sφε,s]φ, ψ〉ε

+2Γ〈(Uε,s + φε,s)Tε,s[(Uε,s + φε,s)φ], ψ〉ε = (θ, ψ)ε ∀ψ ∈ Hε.
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Once we know φ̄, the related c is given by the identity

d−p〈(Uε,s + φε,s)
p−1
+ φ,U ′

ε,s〉ε + Γd′〈Tε,s[φ
2
ε,s + 2Uε,sφε,s]φ,U

′
ε,s〉ε

+2Γd′〈(Uε,s + φε,s)Tε,s[(Uε,s + φε,s)φ], U ′
ε,s〉ε = c(U ′

ε,s, U
′
ε,s)ε + (θ, U ′

ε,s)ε,

where we have set d′ = d
(U ′

ε,s,U
′
ε,s)ε

. According to Riesz’s representation theorem, take

Wε,t(φ̄), θ ∈ Hε such that

(Wε,t(φ̄), ψ)ε =−p〈(Uε,t + φε,t)
p−1
+ φ̄, ψ〉ε + Γ〈Tε[φ

2
ε,t + 2Uε,tφε,t]φ̄, ψ〉ε

+2Γ〈(Uε,t + φε,t)Tε[(Uε,t + φε,t)φ̄], ψ〉ε ∀ψ ∈ Hε,

(θ̄, ψ)ε =−pd′〈(Uε,t + φε,t)
p−1
+ U ′

ε,t, ψ〉 + Γd′〈Tε[φ
2
ε,t + 2Uε,tφε,t]U

′
ε,t, ψ〉ε

+2Γd′〈(Uε,t + φε,t)Tε[(Uε,t + φε,t)U
′
ε,t], ψ〉ε ∀ψ ∈ Hε.

Then problem (4.10) consists in finding φ̄ ∈ Hε such that

φ̄ + Wε(φ̄) = θ − θ̄.(4.11)

Since ‖φε,s‖∗ ≤ εσ, combining the definition of Wε with that of Kε (see Lemma 3.3),
when ε → 0 we have

Wε −Kε → 0.

Since we have proved that I + Kε is invertible, then the theory of the linear opera-
tor assures the invertibility of I + Wε for small ε. This concludes the proof of the
lemma.

5. The reduced energy functional: Proof of Theorem 1.1. For every
s ∈ [s1, s2] set

vε,s(x) = Uε,s

(
|x| − s

ε

)
+ φε,s

(
|x| − s

ε

)
,

where φε,s has been constructed in Lemma 4.1, and consider the function

Kε : [s1, s2] → R, Kε(s) :=
ε2

4π
Eε[vε,s].

First we provide the following estimate.
Lemma 5.1. For s ∈ [s1, s2], we have

Kε(s) =
1

8(p + 1)

∫
R
wp+1dy

(
∫

R
w2dy)2

ρ(t(s)) + o(1),(5.1)

where ρ(t) and t(s) have been defined in Lemma 2.2.
Proof. We compute

Kε(s)

=

∫ +∞

− s
ε

[
1

2
|(Uε,s + φε,s)

′ |2 +
1

2
|Uε,s + φε,s|2 −

1

p + 1
(Uε,s + φε,s)

p+1
+

]
(s + εy)2dy

+
Γ

4

∫ ∞

− s
ε

(Uε,s + φε,s)
2Tε,s[(Uε,s + φε,s)

2](s + εy)2dy

=
s2

2

∫
R

|w′

s|2dy +
s2

2

∫
R

w2
sdy −

s2

p + 1

∫
R

wp+1
s dy +

s2

4
t(s)

∫
R

w2
sdy + o(1),
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where we have used (2.8), (3.2), and the estimates ‖φε,s‖∗, (φε,s, φε,s)ε ≤ εσ given by
Lemma 4.1. Now we use (2.9) to obtain

Kε(s) = s2 (3p− 7)t(s) + 4(p− 1)

8(p + 1)(1 + t(s))

∫
R

wp+1
s dy + o(1)

= s2 (3p− 7)t(s) + 4(p− 1)

8(p + 1)
(1 + t(s))

5−p
2(p−1)

∫
R

wp+1dy + o(1)

= s2 ρ(t(s))

8t(s)2(p + 1)
(1 + t(s))

5−p
p−1

∫
R

wp+1dy + o(1)

=
ρ(t(s))

8(p + 1)

∫
R
wp+1dy(

Γ
∫

R
w2dy

)2 + o(1).

Corollary 5.2. For ε sufficiently small, the function s ∈ [s1, s2] �→ Kε(s) has
a minimum sε = s0 + o(1).

Proof. This follows immediately from the previous lemma. By Lemma 2.2 the
function ρ(t(s)) has a unique local minimum point s0 ∈ [s1, s2] and, moreover, s0 is
nondegenerate; thus, by (5.1) and by the continuity of Kε(s), for ε small enough the
minimum point of Kε is attained at some sε which tends to s0 as ε → 0.

Proof of Theorem 1.1. Fix ε > 0 sufficiently small such that Lemma 4.1 and
Lemma 4.2 hold for ε ∈ (0, ε0). According to Lemma 4.1, for every ε ∈ (0, ε0) and
s ∈ [s1, s2] the function vε,s solves the equation in R

3 as follows:

Δvε,s(x) − vε,s(x) + (vε,s)
p
+(x) − εΓ(−Δ)−1[v2

ε,s](x) = βε,sZε,s

(
|x| − s

ε

)
.(5.2)

Set uε = vε,sε , where sε ∈ (s1, s2) is the minimum point of Kε, according to Corol-
lary 5.2. Then we have

d

ds
Eε(vε,s)|s=sε

= 0;(5.3)

by using the C1 regularity of the map s ∈ [s1, s2] �→ Φε,s ∈ H1
r (R3), (5.3) can be

rewritten as∫
R3

[
∇uε∇

d

ds
vε,s + uε

d

ds
vε,s − (uε)

p
+

d

ds
vε,s + εΓuε(−Δ)−1[u2

ε]
d

ds
vε,s

]
dx

∣∣∣∣∣
s=sε

= 0,

which is equivalent, by (5.2), to

βε,sε

∫
R3

Zε,sε

(
|x| − sε

ε

) d

ds
vε,sdx

∣∣∣∣
s=sε

= 0,

that is,

βε,sε

∫
Iε,s

Zε,sε(y)
d

ds
(vε,s)

∣∣∣∣
s=sε

(
y +

sε
ε

)
(sε + εy)2dy = 0.(5.4)

Notice that, by (2.8), we easily compute

d

ds

[
Uε,s

(
· − s

ε

)](
y +

s

ε

)

=
t′(s)

(p− 1)(1 + t(s))
ws(y) + w′

s(y)

(
t′(s)y

2
√

1 + t(s)
−

√
1 + t(s)

ε

)
+ o(ε)e−μ〈y〉

(5.5)

= −
√

1 + t(s)

ε
w′

s(y) + O(1)e−μ〈y〉.
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Differentiating the equation
∫

R3 Φε,sZε,s(|x|− s
ε )dx = ε−2〈φε,s, Zε,s〉ε = 0 with respect

to s, we get∫
Iε,s

Zε,s
d

ds
(Φε,s)

(
y +

s

ε

)
(s + εy)2dy=−

∫
Iε,s

φε,s
d

ds

[
Zε,s

(
· − s

ε

)](
y +

s

ε

)
(s + εy)2dy.

By computing similarly as in (5.5) we get

d

ds

[
Zε,s

(
· − s

ε

)](
y +

s

ε

)
= O(ε−1)e−μ〈y〉,

by which ∫
Iε,s

Zε,s
d

ds
(Φε,s)

(
y +

s

ε

)
(s + εy)2dy = O(εσ−1).(5.6)

Combining (3.8), (5.5), and (5.6) we obtain

∫
Iε,s

Zε,s
d

ds
(vε,s)

(
y +

s

ε

)
(s + εy)2dy = −s2p

√
1 + t(s)

ε

∫
R

wp−1
s (w′

s)
2dy + O(εσ−1).

In particular,
∫
Iε,sε

Zε,sε
d
ds (vε,s)

∣∣
s=sε

(
y + sε

ε

)
(sε + εy)2dy �= 0 for ε sufficiently small,

then (5.4) implies βε,sε = 0. Hence uε solves the equation

Δuε − uε + (uε)
p
+ − εΓuε(−Δ)−1[u2

ε] = 0 in R
3.(5.7)

By multiplying both members of (5.7) by (uε)− and integrating by parts we get∫
R3

|∇(uε)−|2dx +

∫
R3

|(uε)−|2 + εΓ

∫
R3

(uε)
2
−(−Δ)−1[u2

ε]dx = 0,

by which (uε)− = 0. From the strong maximum principle it follows that uε > 0.
Hence uε and ψε = ε(−Δ)−1[u2

ε] actually solve the system (2.1). In order to obtain
(2) of Theorem 1.1, using (2.8) and the estimate ‖φε,s‖∗ ≤ εσ we obtain

1√
ε
uε

(r
ε

)
=

1√
ε
Uε,sε

(r − sε
ε

)
+

1√
ε
φε,sε

(r − sε
ε

)

=
1√
ε
(1 + t(sε))

1
p−1w

(√
1 + t(sε)

r − sε
ε

)
+ o(1) exp

(
−μ

|r − sε|
ε

)
.

Finally, notice that for every r, ρ ∈ (0,+∞) it results in |G
(
r, ρ

)
− G(r, sε)| ≤

|ρ− sε| 1
sε

(
2 + ρ

sε

)
G(r, sε), by which

ψε

(r
ε

)
=

1

ε

∫ +∞

0

G
(
r, ρ

)
u2
ε

(ρ
ε

)
dρ

=
1

ε
G(r, sε)

∫ +∞

0

u2
ε

(ρ
ε

)
dρ + O(1)G(r, sε)

1

εsε

∫ +∞

0

|ρ− sε|
(
2 +

ρ

sε

)
u2
ε

(ρ
ε

)
dρ

= G(r, sε)

(
(1 + t(sε))

5−p
2(p−1)

∫
R

w2dρ + o(1)

)
.

Taking into account (2.2), Theorem 1.1 is proved.
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Remark 5.3. In order to better understand the presence of the critical power 11
7 ,

it could be useful to look at the system (1.1) in higher dimension N ≥ 3, apart from the
physical model under consideration. Proceeding similarly as in the case N = 3, we can
construct the family of functions vNε,s lying in the normal direction of the approximated
solution surface, and we can prove that the following asymptotic expansion of the
energy holds:

ε2

ωN
Eε[v

N
ε,s] =

1

8(p + 1)

∫
R
wp+1dy

(
∫

R
w2dy)2

sN−3ρ(t(s)) + o(1),

where ωN denotes the surface measure of the unit sphere of R
N . Then, by using

Lemma 2.2, we deduce that the dimension-dependent critical number appearing in
higher dimension is given by 7N−10

3N−2 and, repeating the same computations as in

N = 3, for every 1 < p < 7N−10
3N−2 we can prove the existence of a family of solu-

tions concentrating on the sphere whose radius is given by the unique minimum point
s0 of the function sN−3ρ(t(s)) in (0, s(t̂)).

Remark 5.4. It is possible to prove the existence of radial solutions to the system
(1.1) for every 1 < p < 5 by a simple rescaling argument; indeed, it is sufficient to
minimize the functional

T (u) =
1

2

∫
R3

(
|∇u|2 + u2

)
dx +

ω

4

∫
R3

u2(−Δ)−1[4πωu2] dx

over the manifold

M :=

{
u ∈ H1

r

∣∣∣ ∫
R3

|u|p+1dx = 1

}
.

According to the compact injection H1
r ↪→ Lp for 1 < p < 5, M is a compact mani-

fold, while T is weakly lower semicontinuous on H1
r . Hence we easily get the existence

of a minimizing function u. The constraint causes a Lagrange multiplier to appear,
and one obtains that u solves −Δu + u + ωu(−Δ)−1[4πωu2] = γ|u|p−1u. We notice
that since T (u) = T (|u|), we may assume that u ≥ 0; then, from the strong maxi-
mum principle, u > 0. Setting v�(x) = �

−1u(x
�
) and φ�(x) = (−Δ)−1[4πωv2

�
](x) =

(−Δ)−1[4πωu2](x
�
), we obtain that (v�, φ�) solves (1.1) with γ� = γ�

p−1.
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LACK OF COMPACTNESS IN TWO-SCALE CONVERGENCE∗

MARC BRIANE† AND JUAN CASADO-DÍAZ‡

Abstract. This article deals with the links between compensated compactness and two-scale
convergence. More precisely, we ask the following question: Is the div-curl compactness assumption
sufficient to pass to the limit in a product of two sequences which two-scale converge with respect to
the pair of variables (x, x/ε)? We reply in the negative. Indeed, the div-curl assumption allows us
to control oscillations which are faster than 1/ε but not the slower ones.
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1. Introduction. In order to study the asymptotic behavior of periodic prob-
lems arising in homogenization theory, Nguetseng introduced in [7] (see also Allaire [1])
the notion of two-scale convergence:

Let Ω be a bounded open subset of R
d, Y := (− 1

2 ,
1
2 )d, and let M be a positive

integer. A bounded sequence uε in L1
loc(Ω)M two-scale converges to a function û

in L1
loc(Ω × R

d)M and Y -periodic with respect to the last variable if, for any ψ ∈
C∞

c (Ω, C∞
# (Y ))M , we have

lim
ε→0

∫
Ω

uε(x)ψ
(
x,

x

ε

)
dx =

∫
Ω

∫
Y

û(x, y)ψ(x, y) dx dy.(1.1)

A compactness theorem due to Nguetseng [7] establishes that if uε is bounded in
Lp(Ω)M , then there exists a subsequence of uε which two-scale converges to û ∈
Lp(Ω;Lp

#(Y ))M .
Taking in (1.1) ψ(x, y) independent of y, we deduce that if uε two-scale converges

to û, then it converges weakly in Lp(Ω)M to u :=
∫
Y
û(x, y) dy. On the other hand, if

uε strongly converges to u in L1(Ω)M , then it also two-scale converges to u. Therefore
two-scale convergence is stronger than weak convergence and weaker than the strong
one. Moreover, it provides an expression of the limit of the product uε ψ(x, x

ε ) of (1.1)
in which each term only weakly converges.

In the periodic homogenization we usually deal with a sequence uε which is not
only bounded in Lp(Ω)M but whose some combinations of its derivatives are also
bounded. In this context, let us recall that if uε converges weakly in W 1,p(Ω)M , for
1 ≤ p < +∞, to a function u, then it converges strongly in Lp

loc(Ω)M (Lp(Ω)M if Ω
smooth) and so uε two-scale converges to u. Then we can conjecture that the classical
results of the compensated compactness theory due to Murat and Tartar (see, e.g.,
[6] and [8]), and in particular the div-curl theorem, still hold true when we replace
the weak convergence in Lp(Ω)M with two-scale convergence. In fact we have the
following result:
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Proposition 1.1. Let (Y, Y1, . . . , Yn) be (n + 1) parallelotops of R
d of Lebesgue

measure equal to 1, and let U, V be two vector-valued functions in L2(Ω;C#(Y × Y1×
· · · × Yn))d, where C#(Y × Y1 × · · · × Yn) denotes the set of the continuous functions
on (Rd)n+1 which are Y -periodic with respect to the variable y and Yk-periodic with
respect to the variable yk for any k = 1, . . . , n. Let εk = εk(ε) for k = 1, . . . , n be n
well-ordered scales such that

lim
ε→0

ε1

ε
= lim

ε→0

εk+1

εk
= 0 for any k = 1, . . . , n− 1.(1.2)

Consider the vector-valued sequences uε and vε defined by

uε(x) := U

(
x,

x

ε
,
x

ε1
, . . . ,

x

εn

)
and vε(x) := V

(
x,

x

ε
,
x

ε1
, . . . ,

x

εn

)
,(1.3)

and assume that

divuε is compact in H−1(Ω) and curl vε is compact in H−1(Ω)d×d.(1.4)

Then the two-scale limits û of uε, v̂ of vε, and ŵ of uε·?vε exist and satisfy

ŵ = û · v̂.(1.5)

Proposition 1.1 shows that the div-curl condition (1.4) implies some compactness
in the two-scale convergence process (as in the classical case) when the oscillations
of the sequences are faster than 1

ε . Unfortunately, this is not the case for general
sequences, particularly when the oscillations are slower than 1

ε . This assertion follows
from the following theorem, which is the main result of the present paper:

Theorem 1.2. Assume that d ≥ 2. Then there exist two functions U, V ∈
C∞

# (2Y )d such that the sequence uε(x) := U(xε ) is divergence-free, the sequence
vε(x) := V (xε ) is curl-free, but the two-scale limits of uε, vε, and uε · vε do not
satisfy (1.5).

The key ingredient of this counterexample is that 2-periodic functions are consid-
ered although the test functions are 1-periodic.

In order to understand the lack of compactness in two-scale convergence, let
us recall the equivalence between the two-scale convergence theory and the method
introduced by Arbogast, Douglas, and Hornung [3] to study the oscillations of a
sequence uε in L1

loc(R
d)M . Their method consists in introducing the function ûε :

R
d × Y → R

M defined by

ûε(x, y) =
∑
k∈Zd

1εk+εY (x)uε(εk + εy).(1.6)

The equivalence between the two approaches is then given by the following result (see,
e.g., [5] and [4]):

Theorem 1.3. Assume that uε is bounded in Lp(Ω)M , with 1 < p < +∞. Then

ûε converges weakly to û in Lp (Ω;Lp(Y ))
M

if and only if uε two-scale converges to û.

The functions ûε(x, y) are not continuous with respect to the variable x. If a
combination of derivatives of uε is bounded, we also get a bound for the same combi-
nation of derivatives with respect to the variable y of ûε but not with respect to the
variable x. This explains the lack of compactness in two-scale convergence.
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2. Proof of the results. In this section we prove Proposition 1.1 and Theo-
rem 1.2.

Proof of Proposition 1.1. We follow the multiscale procedure of [2]. Thanks to
the separation of scales (1.2) the sequences uε, vε, and uε · vε, respectively, two-
scale converge to û :=

∫
Y1

· · ·
∫
Yn

U , v̂ :=
∫
Y1

· · ·
∫
Yn

V , and ŵ :=
∫
Y1

· · ·
∫
Yn

U · V .

Putting test functions of type εk Φ(x, x
ε ,

x
ε1
, . . . , x

εk
) from k = n to 1 in the div-curl

assumption (1.4) implies that

divyk

(∫
Yk+1

· · ·
∫
Yn

U

)
= 0 and curlyk

(∫
Yk+1

· · ·
∫
Yn

V

)
= 0 for k = 1, . . . , n,

whence, integrating by parts the product of
∫
Yk+1

· · ·
∫
Yn

U and
∫
Yk+1

· · ·
∫
Yn

V (which

is equal to the gradient in yk of a periodic function plus a function depending only
on the other variables y1, . . . , yk−1) successively from k = n to 1, yields

ŵ =

∫
Y1

· · ·
∫
Yn

U · V =

(∫
Y1

· · ·
∫
Yn

U

)
·
(∫

Y1

· · ·
∫
Yn

V

)
= û · v̂,

which implies the desired equality (1.5).
Proof of Theorem 1.2. Let us consider two vector-valued functions Φ,Ψ ∈ C∞

c (Y )d

such that div Φ = 0, curl Ψ = 0, and Φ · Ψ �= 0 (this is possible since d > 1),
which we extend to R

d by Y -periodicity. Let η : R → R be the 1-periodic function
η :=

∑
i∈Z

1(i− 1
4 ,i+

1
4 ) and let us define the following sequences

uε(x) := η
( x1

2 ε

)
Φ
(x
ε

)
and vε(x) := η

( x1

2 ε

)
Ψ
(x
ε

)
.

Since in each cube εk + εY , for k ∈ Z
d, η( x1

2 ε ) is constant, and Φ(xε ), Ψ(xε ) vanish
on the boundary of εk + εY , we have uε, vε ∈ C∞(RN ), divuε = 0, and curl vε = 0
in R

d. Moreover, since η( x1

2 ε ) is constant in εk + εY for any k ∈ Z
d, it is invariant by

the transformation (1.6). So we get

ûε(x, y) = η
( x1

2 ε

)
Φ(y), v̂ε(x, y) = η

( x1

2 ε

)
Ψ(y), ûε · vε(x, y) = η2

( x1

2 ε

)
Φ(y) · Ψ(y).

By Theorem 1.3 the two-scale limits û of uε, v̂ of vε, and ŵ of uε · vε are thus given
by

û(x, y) =

(∫ 1
2

− 1
2

η(s) ds

)
Φ(y) =

1

2
Φ(y), v̂(x, y) =

(∫ 1
2

− 1
2

η(s) ds

)
Ψ(y) =

1

2
Ψ(y),

and ŵ(x, y) =

(∫ 1
2

− 1
2

η2(s) ds

)
Φ(y) · Ψ(y) =

1

2
Φ(y) · Ψ(y),

whence ŵ �= û · v̂.
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UNIVERSAL BOUNDS ON COARSENING RATES FOR
MEAN-FIELD MODELS OF PHASE TRANSITIONS∗
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Abstract. We prove one-sided universal bounds on coarsening rates for two kinds of mean-field
models of phase transitions, one with a coarsening rate l ∼ t1/3 and the other with l ∼ t1/2. Here l
is a characteristic length scale. These bounds are both proved by following a strategy developed by
Kohn and Otto [Comm. Math. Phys., 229 (2002), pp. 375–395]. The l ∼ t1/2 rate is proved using
a new dissipation relation which extends the Kohn–Otto method. In both cases, the dissipation
relations are subtle and their proofs are based on a residual lemma (Lagrange identity) for the
Cauchy–Schwarz inequality.

Key words. Ostwald ripening, Lifshitz–Slyozov–Wagner equations, scaling exponents
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1. Introduction. In the late stages of heterogeneously nucleated phase transi-
tions, a two-phase mixture is created, composed of particles of one phase dispersed in
a matrix of the other. Initially the particles are small and their total surface area is
large. According to thermodynamics, the system evolves in order to decrease the total
surface area and conserve the total mass or volume of the particles. Smaller particles
shrink and disappear and larger ones grow. As a result, the typical length scale that
characterizes the particle size increases. It is widely observed that the length scale
behaves as a temporal power law.

In this paper, we will try to give this power-law behavior a rigorous mathematical
explanation in the context of mean-field models. In mean-field models, particles
exchange mass by some interaction through a mean field θ(t) which is determined
as a function of time t by the conservation of mass. There are many mechanisms
that can dominate the mass transfer process [15]. We will consider two of them in
this paper that correspond to two kinds of mean-field models with different power-law
behaviors.

In the first model, particle growth is controlled by bulk or volume diffusion, with
or without kinetic drag at the interface. Each particle radius R obeys the growth law

Ṙ =
1

R + β

(
θ(t) − 1

R

)
,(1.1)

where β ≥ 0 is a constant. The particle size distribution f(t, R) satisfies the transport
equation

∂tf + ∂R

(
1

R + β

(
θ − 1

R

)
f

)
= 0.(1.2)
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To conserve the total mass, the mean field θ satisfies

θ(t) =

∫ ∞
0

(R + β)−1Rn−2f(t, R) dR∫ ∞
0

(R + β)−1Rn−1f(t, R) dR
,(1.3)

where n is the dimension of space. When β = 0, (1.1)–(1.3) is the classical model by
Lifshitz and Slyozov [9] and Wagner [16]. Equation (1.1) is an approximation to the
Mullins–Sekerka sharp-interface model with a modified Gibbs–Thomson law in the
situation in which the particles are sparsely located in a domain Ω:

−Δu = 0 outside the particles,(1.4)

n · ∇u = V on Γ,(1.5)

u = κ + βV on Γ.(1.6)

Here Γ is the boundary of the particles, u is a chemical potential, n is the outer normal
to Γ, κ is the mean curvature, and V is the normal velocity of Γ. Note that (1.6) is the
Gibbs–Thomson law modified by a kinetic drag term βV . In [10, 11], Niethammer
rigorously derived the model (1.1)–(1.3) in R3 for β = 0 and β > 0, respectively,
from a model similar to (1.4)–(1.6) under the condition that the total capacity of the
particles was small.

The second model arises formally by taking β → ∞ after rescaling time by β. In
this model, particle growth is controlled by the attachment reaction at the interface
[1]. Now each particle radius R obeys the law

Ṙ = θ(t) − 1

R
.(1.7)

The corresponding transport equation of the particle size distribution becomes

∂tf + ∂R

((
θ − 1

R

)
f

)
= 0.(1.8)

In this case, the mean field θ satisfies

θ(t) =

∫ ∞
0

Rn−2f(t, R) dR∫ ∞
0

Rn−1f(t, R) dR
.(1.9)

Equation (1.7) is the normalized mean curvature flow for a collection of spheres; i.e.,
it is a special case of the following sharp-interface model:

V = −κ +
1

|Γ|

∫
Γ

κ dS,(1.10)

where |Γ| is the total area of the particle surface, κ is the mean curvature of the
particle surface, and V is the normal velocity of the particle surface.

As in many systems, the coarsening rates for these mean-field models can be
predicted by heuristic reasoning based on scaling invariance. The models we are
considering are invariant under the scalings

R = ηR̂, t = η3t̂, θ = η−1θ̂ for (1.1) if β = 0;(1.11)

R = ηR̂, t = η2t̂, θ = η−1θ̂ for (1.7).(1.12)
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If one expects that over long times the behavior of the coarsening system will appear
scale invariant in some rough or statistical sense, then this kind of scaling invariance
suggests that a characteristic length scale l(t) ought to satisfy l(t) = ηl(t/ηp) with
p = 3 or 2, respectively, so that l(t) will be given by a temporal power law

l(t) ∼ t1/3 for (1.1),(1.13)

l(t) ∼ t1/2 for (1.7).(1.14)

When β �= 0, under the scaling (1.11) equation (1.1) keeps its form if β is replaced by

β̂ = β/η. Then (1.1) is not invariant since we assume β to be a constant. However,
this suggests that as the length scale becomes large, the influence of kinetic drag can
be neglected and should not influence the ultimate coarsening rate for the volume-
diffusion–controlled growth model.

In three dimensions (n = 3), the classical Lifshitz–Slyozov–Wagner (LSW) theory
suggests that the size distribution function approaches a universal self-similar solution
where the critical radius Rc = θ−1 follows the temporal power law Rc ∼ t1/3. Such
a power law is observed in experiments. However, Niethammer and Pego [12] proved
that, mathematically, for solutions of (1.2) the size distribution function does not
necessarily converge to the predicted universal similarity solution, and the long-time
behavior need not be self-similar.

Thus, the question is whether anything can be said universally about the coars-
ening rate of solutions in classical LSW theory. We cannot expect all solutions to
coarsen at the same rate. For example, if initially all the particles are of the same
size, then the system does not coarsen at all. One would like to be able to show that
the expected power-law behavior is typical in some sense. What is “typical” is not
clear, but a related question is whether it is possible that some solutions coarsen faster
than expected. We know of no heuristic reason that would prevent such behavior.

Recently, Kohn and Otto [6] introduced a powerful method to answer this ques-
tion. They obtain rigorous, universally valid time-averaged upper bounds on coarsen-
ing rates, in the setting of Cahn–Hilliard equations, which are diffuse-interface models
for phase transitions (see also [3, 7, 8] for subsequently related results). Kohn and
Otto consider the standard Cahn–Hilliard equation, whose sharp-interface limit is the
Mullins–Sekerka model (1.4)–(1.6) with β = 0, and the Cahn–Hilliard equation with
degenerate mobility, whose sharp interface limit is the surface diffusion model. Scaling
invariance suggests that these two models have coarsening rates l ∼ t1/3 and l ∼ t1/4,

respectively. Define −
∫ T

0
:= 1

T

∫ T

0
to indicate the time-averaged integral. The results

of Kohn and Otto, in their simplest form, are estimates of the following forms:

(i) −
∫ T

0
E2(t) dt ≥ C2−

∫ T

0
(t−1/3)2 dt for T ≥ C3L(0)3 (standard Cahn–Hilliard);

(ii) −
∫ T

0
E3(t) dt ≥ C2−

∫ T

0
(t−1/4)3 dt for T ≥ C3L(0)4 (Cahn–Hilliard with

degenerate mobility).
Here E is the volume-averaged free energy, which is a decreasing function of time and
scales as inverse to length, L is a “length scale” that is dual to E, and C2 and C3

are positive constants that depend only on the dimension of space n. Thus, these
estimates are time-averaged versions of E ≥ C2t

−1/3 and E ≥ C2t
−1/4, respectively,

which correspond to upper bounds on the length scale E−1. These results show that,
in a time-averaged sense, it is impossible for solutions to coarsen at a rate faster than
the expected power law.

Our goal in this paper is to prove universal time-averaged upper bounds on cor-
responding coarsening rates for the mean-field models—see (2.4) and (2.5) below.
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Again, we find that no solution can coarsen at a rate faster than that expected from
scaling. The mean-field models that we study have three aspects that distinguish
them from those models considered in [3, 6, 7, 8]:

(i) Mean-field models concern the evolution of dilute systems; i.e., the second
phase consists of only a small fraction of the whole mixture. Kohn and Otto’s
analysis for the Cahn–Hilliard equations breaks down in this extreme case.

(ii) There is no spatial information and hence no pattern scale in mean-field
models. This requires a different definition and interpretation of the dual
length scale L.

(iii) For the normalized mean curvature flow (1.10), there is no result available for
the corresponding diffuse-interface model—the conserved Allen–Cahn equa-
tion (see [14] for an asymptotic analysis of this correspondence).

To handle these differences, we will need to define all relevant quantities in terms of
the distribution of particle radii. For the interface-reaction–controlled model, we will
establish a new dissipation relation that extends the Kohn–Otto method and enables
us to prove bounds that correspond to a coarsening rate of the form l ∼ t1/2. The proof
of the dissipation relations in both mean-field models requires a different technique
from previous works. A key ingredient in our proofs is the use of residual lemma
(Lagrange identity) for the Cauchy–Schwarz inequality to compare the dissipation
rates of E and L.

2. Strategy and main results. Let us describe our strategy for obtaining
bounds on coarsening rates for the mean-field models (1.2) and (1.8) and state our
main results. We work at first with a collection of finitely many particles undergoing
coarsening with growth laws (1.1) and (1.7), respectively, for each particle. Such a
system of particles has a discrete size distribution. We will apply a strategy similar to
that of Kohn and Otto [6] to get time-averaged bounds for such discrete systems, and
then pass to limits in section 5 to establish the bounds for arbitrary size distributions
that have finite (n + 1)st moment.

Kohn and Otto’s strategy involves two quantities that measure length scales and
three key steps. The first quantity is a volume-averaged free energy or negative
entropy that decreases with time and scales as inverse to length. The second quantity
scales like length, but its physical interpretation is not as clear. What is important is
that, in a sense to be made precise, the second quantity is dual to the first one while
at the same time being controlled by it.

In our situation, thermodynamics suggests that a natural quantity that is de-
creasing is the surface energy, which is proportional to the total surface area S of all
the particles. Analogous to the cases considered in [3, 6, 7, 8], we will consider a kind
of volume average of the surface area, which gives a quantity scaling as inverse to
length. Because the total volume V of the particles is conserved, it is reasonable to
consider the ratio S/V . For a finite particle system, we therefore define

E :=

∑
Rn−1

i∑
Rn

i

,(2.1)

where n is the dimension of space and the sum goes over all surviving particles. E can
also be considered as the volume-weighted average of curvatures {1/Ri}. In sections
3 and 4, we will prove that E is indeed decreasing in both models considered.

We need a length scale L that is dual to E. Since radius is dual to curvature, we



COARSENING RATES FOR MEAN-FIELD MODELS 351

define L to be the volume-weighted average of the radii {Ri}, i.e.,

L :=

∑
Rn+1

i∑
Rn

i

.(2.2)

The first step of the Kohn–Otto method is to establish an interpolation inequality
that expresses the duality of E and L. With the definitions (2.1) and (2.2) this is
easy. By the Cauchy–Schwarz inequality,

∑
Rn

i =
∑

R
(n−1)/2
i R

(n+1)/2
i ≤

(∑
Rn−1

i

∑
Rn+1

i

)1/2

,

and this immediately yields the required interpolation inequality,

EL ≥ 1.(2.3)

The second step is to obtain a dissipation inequality that controls L̇ in terms of
Ė. In sections 3 and 4 below, we will prove that

|L̇|2 ≤ C1 (−Ė) for volume-diffusion–controlled growth (1.1),

|L̇|2 ≤ D1 (−Ė)L for interface-reaction–controlled growth (1.7),

where C1 and D1 are positive constants depending only on the dimension of space
n. We remark that in the cases considered in [3, 6, 7, 8], the difficult part is proving
the interpolation inequalities; the dissipation relations are rather easy to prove. By
contrast, in the situation of the mean-field models considered here, under definitions
(2.1) and (2.2) the interpolation inequality is a simple consequence of the Cauchy–
Schwarz inequality and it is the dissipation relations that need careful treatment.

The third step is an ODE argument. For the case of volume-diffusion–controlled
growth, Lemma 3 in [6] and the two inequalities EL ≥ 1 and |L̇|2 ≤ C1(−Ė) directly
give us appropriate time-averaged bounds on coarsening rates. Those that involve
only E, the volume-averaged surface area, take a simple form, saying that for any
1 < p < 3 there exist positive constants C2 and C3, depending only on n, p, and
nothing else, such that

−
∫ T

0

E(t)p dt ≥ C2−
∫ T

0

(
t−1/3

)p
dt for T ≥ C3L(0)3.(2.4)

This is exactly a time-averaged version of E ≥ t−1/3, which corresponds to an upper
bound on the “length scale” E−1.

For the case of interface-reaction–controlled growth, we will establish an ODE
lemma in section 4 to show that the inequalities EL ≥ 1 and |L̇|2 ≤ D1L(−Ė) give
us appropriate time-averaged estimates. In particular, for any 1 < p < 2 there exist
positive constants D2 and D3, depending only on n, p, and nothing else, such that

−
∫ T

0

E(t)p dt ≥ D2−
∫ T

0

(
t−1/2

)p
dt for T ≥ D3L(0)2.(2.5)

This is a time-averaged version of E ≥ t−1/2.
Once these results for discrete systems are established, we will pass to the case of

general size distributions in section 5 by applying the well-posedness and compactness
results for a family of mean-field models established by Niethammer and Pego in [13].
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All of our models under consideration are included in that work except for the two-
dimensional (2D) volume-diffusion–controlled growth model with β = 0. Thus this
case is not included in our main theorems on coarsening rates for general size distri-
butions.

The results in [13] enable us to approximate a general distribution by a sequence
of discrete ones. These results, together with an extended moment compactness re-
sult proved here in an appendix, enable us to take limits in the estimates for the
discrete sequence. This leads to our main results on coarsening rates for general size
distributions.

We consider such size distributions to belong to Pn, the set of Borel probability
measures on [0,∞) with finite nth moment. Topologically we regard Pn as a subset
of the Banach space of finite Radon measures on [0,∞), which is dual to C0([0,∞)),
the space of continuous functions on [0,∞) that vanish at infinity. A measure-valued
solution of the transport equation (1.2) or (1.8) is a weak-star continuous map t 	→ νt
taking [0,∞) → Pn that is a solution in the sense of distributions on (0,∞)× (0,∞).
Based on the results in [13], we will see that for each initial size distribution μ ∈ Pn,
there is a unique measure-valued solution with initial value ν0 = μ that preserves the
nth moment (total volume). The corresponding mean field is given for a.e. t > 0 by

θ(t) =

∫ ∞

0

Rn−2

R + β
dνt(R)

/∫ ∞

0

Rn−1

R + β
dνt(R)(2.6)

in the case of volume-diffusion–controlled growth and

θ(t) =

∫ ∞

0

Rn−2dνt(R)

/∫ ∞

0

Rn−1dνt(R)(2.7)

in the case of interface-reaction–controlled growth. The quantities corresponding to
(2.1) and (2.2) are defined by

E(t) :=

∫ ∞

0

Rn−1 dνt(R)

/∫ ∞

0

Rn dνt(R) ,(2.8)

L(t) :=

∫ ∞

0

Rn+1 dνt(R)

/∫ ∞

0

Rn dνt(R) .(2.9)

Our main results take the following form.
Theorem 2.1 (volume-diffusion–controlled growth). Let n ≥ 2 be an integer and

β ≥ 0, with β > 0 if n = 2, and let p be real with 1 < p < 3. Then there exist positive
constants C2 and C3, depending on p, n, and nothing else, such that whenever ν is
a measure-valued solution of the transport equation (1.2) and ν0 has finite nth and
(n + 1)st moments, we have

−
∫ T

0

E(t)p dt ≥ C2−
∫ T

0

(
t−1/3

)p
dt for T ≥ C3 L(0)3.(2.10)

Theorem 2.2 (interface-reaction–controlled growth). Let n ≥ 2 be an integer
and let p be real with 1 < p < 2. Then there exist positive constants D2 and D3,
depending on p, n, and nothing else, such that whenever ν is a measure-valued solution
of the transport equation (1.8) and ν0 has finite nth and (n+ 1)st moments, we have

−
∫ T

0

E(t)p dt ≥ D2−
∫ T

0

(
t−1/2

)p
dt for T ≥ D3 L(0)2.(2.11)



COARSENING RATES FOR MEAN-FIELD MODELS 353

3. Discrete systems I: Volume-diffusion–controlled growth. In this sec-
tion, our aim is to prove the coarsening estimate (2.4) for any collection of finitely
many spherical particles in Rn that undergoes coarsening controlled by volume diffu-
sion with or without kinetic drag. The following growth law holds for each particle:

Ṙi =
1

Ri + β

(
θ − 1

Ri

)
, (1 ≤ i ≤ N(t)),(3.1)

where Ri is the radius of the ith particle, N(t) is the number of surviving particles
at time t, θ is the mean field, and the dot denotes the time derivative.

By the conservation of total mass,

0 =
d

dt

∑
Rn

i = n
∑

Rn−1
i Ṙi = n

∑ Rn−1
i

Ri + β

(
θ − 1

Ri

)
.(3.2)

Here the sum goes over all surviving particles. Thus

θ =

∑
(Ri + β)−1Rn−2

i∑
(Ri + β)−1Rn−1

i

.(3.3)

The right-hand side of (3.1) is smooth as long as there is no particle disappearing. The
conservation of total mass guarantees that the solution for (3.1) and (3.3) cannot blow
up in finite time. So the solution is smooth and unique from time t0 = 0 up to t1 when
some particles disappear. Restarting from t1 with the remaining particles, we again
get a smooth solution until a next time t2 when some other particles disappear. In
this way, we can find finitely many times {ti} such that the solution for (3.1) and (3.3)
globally exists, is unique, and is smooth in each time interval (ti, ti+1), i = 0, 1, . . . .

By definition (2.1),

E =

∑
Rn−1

i∑
Rn

i

.(3.4)

Notice that E is nonincreasing in time—we have

Ė =
n− 1∑

Rn
i

∑
Rn−2

i Ṙi =
n− 1∑

Rn
i

∑ Rn−2
i

Ri + β

(
θ − 1

Ri

)
(3.5)

=
n− 1∑

Rn
i

[(∑
(Ri + β)−1Rn−2

i

)2∑
(Ri + β)−1Rn−1

i

−
∑ Rn−3

i

Ri + β

]
≤ 0

since, by the Cauchy–Schwarz inequality,

∑ Rn−2
i

Ri + β
=

∑ [
R

(n−1)/2
i

(Ri + β)1/2
R

(n−3)/2
i

(Ri + β)1/2

]
≤

( ∑ Rn−1
i

Ri + β

∑ Rn−3
i

Ri + β

)1/2

.

By definition (2.2),

L =

∑
Rn+1

i∑
Rn

i

.(3.6)

Inequality (2.3) gives us the required interpolation inequality EL ≥ 1. Next we estab-
lish a dissipation relation that controls L̇ in terms of Ė. Taking the time derivative
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of L, we get

L̇ =
n + 1∑

Rn
i

∑
Rn

i Ṙi =
n + 1∑

Rn
i

∑ Rn
i

Ri + β

(
θ − 1

Ri

)
(3.7)

=
n + 1∑

Rn
i

[∑
(Ri + β)−1Rn

i ·
∑

(Ri + β)−1Rn−2
i∑

(Ri + β)−1Rn−1
i

−
∑ Rn−1

i

Ri + β

]
.

We can infer L̇ ≥ 0 using again the Cauchy–Schwarz inequality, but we will not need
this fact. We want to prove a dissipation inequality

|L̇|2 ≤ C1

(
−Ė

)
(3.8)

for some constant C1 depending only on n. Choosing C1(n) = (n + 1)2/(n− 1), and
plugging in the expressions (3.5) and (3.7), (3.8) becomes

[∑ Rn
i

Ri + β

∑ Rn−2
i

Ri + β
−

( ∑ Rn−1
i

Ri + β

)2]2

(3.9)

≤
∑

Rn
i

∑ Rn−1
i

Ri + β
·
[∑ Rn−1

i

Ri + β

∑ Rn−3
i

Ri + β
−

(∑ Rn−2
i

Ri + β

)2 ]
.

Lemma 3.1. Inequality (3.9) holds for any sequence of positive numbers {Ri}Ni=1.
To prove Lemma 3.1, we need the following lemma from [2].
Lemma 3.2 (Lagrange identity).

(
N∑
i=1

x2
i

)(
N∑
i=1

y2
i

)
−

(
N∑
i=1

xiyi

)2

=

N∑
i,j=1
i<j

(xiyj − xjyi)
2(3.10)

for any sequences of real numbers {xi}Ni=1 and {yi}Ni=1.
Proof of Lemma 3.1. The proof consists of several careful applications of the

Lagrange identity and the Cauchy–Schwarz inequality. Taking xi = (Rn
i /(Ri +β))1/2

and yi = (Rn−2
i /(Ri + β))1/2 in (3.10), we get

I :=
∑ Rn

i

Ri + β

∑ Rn−2
i

Ri + β
−

( ∑ Rn−1
i

Ri + β

)2

(3.11)

=
N∑

i,j=1
i<j

[(
Rn

i

Ri + β

)1/2( Rn−2
j

Rj + β

)1/2

−
(

Rn
j

Rj + β

)1/2(
Rn−2

i

Ri + β

)1/2
]2

=

N∑
i,j=1
i<j

Rn−2
i Rn−2

j

(Ri + β)(Rj + β)
(Ri −Rj)

2

≤
{

N∑
i,j=1
i<j

Rn−1
i Rn−1

j (Ri −Rj)
2

(Ri + β)(Rj + β)

}1/2

·
{

N∑
i,j=1
i<j

Rn−3
i Rn−3

j (Ri −Rj)
2

(Ri + β)(Rj + β)

}1/2

.

Taking xi = R
n/2
i and yi = (Rn−1

i /(Ri + β))1/2 in (3.10), we get

∑
Rn

i

∑ Rn−1
i

Ri + β
(3.12)



COARSENING RATES FOR MEAN-FIELD MODELS 355

=

[ ∑ (
R2n−1

i

Ri + β

)1/2
]2

+

N∑
i,j=1
i<j

[
R

n/2
i

(
Rn−1

j

Rj + β

)1/2

−R
n/2
j

(
Rn−1

i

Ri + β

)1/2
]2

≥
N∑

i,j=1
i<j

Rn−1
i Rn−1

j

(Ri + β)(Rj + β)

[
R

1/2
i (Ri + β)1/2 −R

1/2
j (Rj + β)1/2

]2

.

Taking xi = (Rn−1
i /(Ri + β))1/2 and yi = (Rn−3

i /(Ri + β))1/2 in (3.10), we get

∑ Rn−1
i

Ri + β

∑ Rn−3
i

Ri + β
−

( ∑ Rn−2
i

Ri + β

)2

(3.13)

=

N∑
i,j=1
i<j

[(
Rn−1

i

Ri + β

)1/2( Rn−3
j

Rj + β

)1/2

−
(

Rn−1
j

Rj + β

)1/2(
Rn−3

i

Ri + β

)1/2
]2

=

N∑
i,j=1
i<j

Rn−3
i Rn−3

j

(Ri + β)(Rj + β)
(Ri −Rj)

2.

Thus

II :=
∑

Rn
i

∑ Rn−1
i

Ri + β

[∑ Rn−1
i

Ri + β

∑ Rn−3
i

Ri + β
−

( ∑ Rn−2
i

Ri + β

)2]
(3.14)

≥
N∑

i,j=1
i<j

Rn−1
i Rn−1

j

(Ri + β)(Rj + β)

[
R

1/2
i (Ri + β)1/2 −R

1/2
j (Rj + β)1/2

]2

·
N∑

i,j=1
i<j

Rn−3
i Rn−3

j

(Ri + β)(Rj + β)
(Ri −Rj)

2.

Comparing (3.11) and (3.14), I2 ≤ II is an immediate consequence of the in-
equality

(Ri −Rj)
2 ≤

[
R

1/2
i (Ri + β)1/2 −R

1/2
j (Rj + β)1/2

]2
for all i, j.(3.15)

Inequality (3.15) holds since[
R

1/2
i (Ri + β)1/2−R

1/2
j (Rj + β)1/2

]2 − (Ri −Rj)
2

= β(Ri + Rj) + 2RiRj − 2R
1/2
i R

1/2
j (Ri + β)1/2(Rj + β)1/2,

and [
β(Ri + Rj) + 2RiRj

]2 − [
2R

1/2
i R

1/2
j (Ri + β)1/2(Rj + β)1/2

]2
= β2(Ri −Rj)

2 ≥ 0.

The dissipation inequality (3.8) follows from Lemma 3.1. Applying Lemma 3 in
[6], we directly get the following estimates.

Theorem 3.3. For any 0 ≤ λ ≤ 1 and 0 < r < 3 satisfying λr > 1 and
(1−λ)r < 2, there exist positive constants C2 and C3, depending only on λ, r, and the
dimension of space n, such that for any solution {Ri} of equations (3.1) and (3.3),
we have

−
∫ T

0

EλrL−(1−λ)r dt ≥ C2−
∫ T

0

(
t−1/3

)r
dt for T ≥ C3 L(0)3,(3.16)
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where E and L are defined in terms of (2.1) and (2.2), respectively.
Proof. Lemma 3.1 guarantees that the dissipation relation (3.8) holds. Together

with the interpolation inequality (2.3), we have

EL ≥ 1 and |L̇|2 ≤ C1(−Ė).

Lemma 3 in [6] leads directly to (3.3).
Taking λ = 1 and r = p for 1 < p < 3 in Theorem 3.3 yields (2.4).

4. Discrete systems II: Interface-reaction–controlled growth. Our aim in
this section is to prove the coarsening estimate (2.5) for any collection of finitely many
spherical particles in Rn that undergoes coarsening controlled by interface reactions.
Each particle obeys the growth law

Ṙi = θ − 1

Ri
, (1 ≤ i ≤ N(t)),(4.1)

where Ri is the radius of the ith particle and θ is the mean field.
By the conservation of total mass,

0 =
d

dt

∑
Rn

i = n
∑

Rn−1
i Ṙi = n

∑
Rn−1

i

(
θ − 1

Ri

)
,(4.2)

and thus

θ =

∑
Rn−2

i∑
Rn−1

i

.(4.3)

Solutions of the system (4.1) and (4.3) have the same global existence and piecewise
smooth properties as that of (3.1) and (3.3). Taking the time derivative of E =∑

Rn−1
i /

∑
Rn

i , we have

Ė =
n− 1∑

Rn
i

∑
Rn−2

i Ṙi =
n− 1∑

Rn
i

∑
Rn−2

i

(
θ − 1

Ri

)
(4.4)

=
n− 1∑

Rn
i

[(∑
Rn−2

i

)2∑
Rn−1

i

−
∑

Rn−3
i

]
≤ 0,

since

∑
Rn−2

i =
∑[

R
(n−1)/2
i R

(n−3)/2
i

]
≤

(∑
Rn−1

i

)1/2(∑
Rn−3

i

)1/2

.(4.5)

Taking the time derivative of L =
∑

Rn+1
i /

∑
Rn

i , we have

L̇ =
n + 1∑

Rn
i

∑
Rn

i Ṙi =
n + 1∑

Rn
i

[∑
Rn

i

∑
Rn−2

i∑
Rn−1

i

−
∑

Rn−1
i

]
.(4.6)

Again, by the Cauchy–Schwarz inequality, we can infer L̇ ≥ 0.
As described in section 2, we will need a dissipation inequality that relates L̇ and

Ė. We claim that

|L̇|2 ≤ D1L(−Ė)(4.7)
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for some positive constant D1 depending only on n. Choosing D1(n) = (n+1)2/(n−1),
and plugging in the expressions (4.4) and (4.6), inequality (4.7) becomes[∑

Rn
i

∑
Rn−2

i −
(∑

Rn−1
i

)2]2

(4.8)

≤
∑

Rn−1
i

∑
Rn+1

i ·
[∑

Rn−1
i

∑
Rn−3

i −
(∑

Rn−2
i

)2]
.

Lemma 4.1. Inequality (4.8) holds for any sequence of positive numbers {Ri}Ni=1.
Proof. Similar to the proof of Lemma 3.1, we will apply the Lagrange identity

(3.10) and the Cauchy–Schwarz inequality. Taking xi = R
n/2
i and yi = R

(n−2)/2
i in

(3.10), we have

I :=
∑

Rn
i

∑
Rn−2

i −
(∑

Rn−1
i

)2

(4.9)

=
N∑

i,j=1
i<j

[
R

n/2
i R

(n−2)/2
j −R

n/2
j R

(n−2)/2
i

]2

=

N∑
i,j=1
i<j

Rn−2
i Rn−2

j (Ri −Rj)
2

≤

⎡
⎢⎣ N∑

i,j=1
i<j

Rn−1
i Rn−1

j (Ri −Rj)
2

⎤
⎥⎦

1/2 ⎡
⎢⎣ N∑

i,j=1
i<j

Rn−3
i Rn−3

j (Ri −Rj)
2

⎤
⎥⎦

1/2

.

Taking xi = R
(n−1)/2
i and yi = R

(n+1)/2
i in (3.10), we have

∑
Rn−1

i

∑
Rn+1

i =
(∑

Rn
i

)2

+

N∑
i,j=1
i<j

(
R

(n−1)/2
i R

(n+1)/2
j −R

(n−1)/2
j R

(n+1)/2
i

)2

=
(∑

Rn
i

)2

+

N∑
i,j=1
i<j

Rn−1
i Rn−1

j (Rj −Ri)
2.(4.10)

Taking xi = R
(n−1)/2
i and yi = R

(n−3)/2
i in (3.10), we have

∑
Rn−1

i

∑
Rn−3

i −
(∑

Rn−2
i

)2

=

N∑
i,j=1
i<j

[
R

(n−1)/2
i R

(n−3)/2
j −R

(n−1)/2
j R

(n−3)/2
i

]2

=

N∑
i,j=1
i<j

Rn−3
i Rn−3

j (Ri −Rj)
2.(4.11)

Thus

II :=
∑

Rn−1
i

∑
Rn+1

i

[∑
Rn−1

i

∑
Rn−3

i −
(∑

Rn−2
i

)2]
(4.12)

≥
N∑

i,j=1
i<j

Rn−1
i Rn−1

j (Rj −Ri)
2

N∑
i,j=1
i<j

Rn−3
i Rn−3

j (Rj −Ri)
2

≥ I2.



358 SHIBIN DAI AND ROBERT L. PEGO

At this point we have established the desired interpolation and dissipation in-
equalities. The third step toward our coarsening estimates is an ODE lemma.

Lemma 4.2 (ODE lemma). Let E(t) and L(t) be two continuous and piecewise
smooth positive functions. Assume that for some T1, 0 ≤ T1 ≤ ∞, E(t) satisfies

Ė < 0 a.e. on (0, T1), Ė = 0 on (T1,∞).(4.13)

If E(t) and L(t) satisfy

EL ≥ 1 and |L̇|2 ≤ D1L(−Ė),(4.14)

then for any 0 ≤ λ ≤ 1 and r > 0 satisfying

r < 3, λr > 1 and (1 − λ)r < 2,(4.15)

we have

−
∫ T

0

E(t)λrL(t)1−(1−λ)r dt ≥ D2−
∫ T

0

(t−1/2)r−1 dt for T ≥ D3L(0)2,(4.16)

where D2 and D3 are positive constants depending only on λ, r, and D1.
We remark that this lemma is key for obtaining bounds on coarsening rates for the

t1/2 growth law. We will extend the ideas in the proof of Lemma 3 in [6] to establish
this result. A special case of Lemma 4.2 is to take r = p + 1 and λ = p/(p + 1) for
1 < p < 2. In this case, we obtain (2.5)

−
∫ T

0

E(t)p dt ≥ D2−
∫ T

0

(t−1/2)p dt for T ≥ D3L(0)2,(4.17)

where D2 and D3 are positive constants depending only on p and D1.
Proof of Lemma 4.2. (1) If T1 = 0, then Ė = 0 on (0,∞). By assumption (4.14),

we get L̇ = 0 on (0,∞). Hence E(t) = E(0) and L(t) = L(0) for all t ∈ (0,∞). By
(4.15), λr > 1 and 0 ≤ λ ≤ 1 imply that r > 1/λ ≥ 1. Hence we have 1 < r < 3.
Then

−
∫ T

0

E(t)λrL(t)1−(1−λ)r dt = E(0)λrL(0)1−(1−λ)r(4.18)

≥ L(0)1−r

≥ 2

3 − r
T (1−r)/2 if T ≥

(
2

3 − r

)2/(r−1)

L(0)2

= D′
2−
∫ T

0

(t−1/2)r−1 dt if T ≥ D′
3L(0)2,

where

D′
2 = 1 and D′

3 =

(
2

3 − r

)2/(r−1)

.

(2) Now we consider the case when T1 > 0. Ė(t) < 0 on (0, T1) implies that E is
a strictly decreasing function of t on (0, T1). Hence E(t) is invertible on (0, T1) and
we regard t ∈ (0, T1) as a function of ε, with ε denoting the independent variable to
distinguish it from E = E(t) and avoid confusion. Note that ε ranges from E(0) to
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E(∞) := limt→∞ E(t), since Ė(t) = 0 for t ∈ (T1,∞) implies that E(t) = E(T1) for
any t > T1. Consequently, for t ∈ (0, T1), L(t) can be viewed as a function of ε. Thus

dL

dt
=

dL

dε

dE

dt
for t ∈ (0, T1)(4.19)

and |L̇|2 ≤ D1L(−Ė) implies that

∣∣∣dL
dε

∣∣∣2(−Ė) ≤ D1L(ε).(4.20)

Multiplying both sides by a positive function f(ε) and integrating from 0 to T , we
have ∫ T

0

f(E(t))L(t) dt ≥ 1

D1

∫ E0

ET

f(ε)

(
dL

dε

)2

dε(4.21)

if T < T1, and

∫ T

0

f(E(t))L(t) dt ≥
∫ T1

0

f(E(t))L(t) dt ≥ 1

D1

∫ E0

ET

f(ε)

(
dL

dε

)2

dε(4.22)

if T ≥ T1, where E0 = E(0) and ET = E(T ). Taking f(ε) = ελrL(ε)−(1−λ)r, we get

∫ T

0

E(t)λrL(t)1−(1−λ)r dt ≥ 1

D1

∫ E0

ET

ελrL(ε)−(1−λ)r

(
dL

dε

)2

dε.(4.23)

We will change variables so that the right-hand side becomes an integral of a square
of some gradient. Consider

ε̂ =
1

λr − 1
ε−(λr−1), L̂ =

1

1 − r(1 − λ)/2
L1−r(1−λ)/2.(4.24)

Our requirements λr > 1 and (1 − λ)r < 2 guarantee that ε̂ > 0, L̂ > 0 and ε̂ →
∞, L̂ → ∞ as ε → 0 and L → ∞, respectively. Also, we have

dε̂

dε
= −ε−λr(4.25)

and (
dL̂

dε̂

)2

dε̂ =

(
dL̂

dL

)2(
dL

dε

)2(
dε

dε̂

)2(
dε̂

dε

)
dε = −ελrL−(1−λ)r

(
dL

dε

)2

dε.(4.26)

Hence ∫ E0

ET

ελrL−(1−λ)r

(
dL

dε

)2

dε =

∫ ÊT

Ê0

(
dL̂

dε̂

)2

dε̂.(4.27)

The right-hand side is bounded below by its minimum over all functions L̂(ε̂) with
the same endpoint values

L̂0 := L̂(Ê0) =
1

1 − r(1 − λ)/2
L(0)1−r(1−λ)/2
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and

L̂T := L̂(ÊT ) =
1

1 − r(1 − λ)/2
L(t)1−r(1−λ)/2,

and the minimum is achieved when L̂ is a linear function of ε̂. Thus∫ T

0

Eλr(t)L1−(1−λ)r(t) dt ≥ 1

D1

(L̂T − L̂0)
2

ÊT − Ê0

.(4.28)

(2a) If L(T ) ≥ 2L(0), then

L̂0 ≤ 2r(1−λ)/2−1L̂T < L̂T .

Hence

L̂T − L̂0 ≥
(
1 − 2r(1−λ)/2−1

)
L̂T

and, consequently,

∫ T

0

Eλr(t)L1−(1−λ)r(t) dt ≥ 1

D1

(L̂T − L̂0)
2

ÊT − Ê0

≥
(
1 − 2r(1−λ)/2−1

)2

D1

L̂2
T

ÊT

≥
(
1 − 2r(1−λ)/2−1

)2

D1

(λr − 1)

(1 − r(1 − λ)/2)2
Eλr−1L2−(1−λ)r(4.29)

= D̂2 (EL)((2λ−1)r+1)/(r−1) ·
(
EλrL1−(1−λ)r

)−(r−3)/(1−r)
,

where

D̂2 :=
(λr − 1)

D1

(
1 − 2r(1−λ)/2−1

1 − r(1 − λ)/2

)2

.

Since 1 < r < 3 and λr > 1,

(2λ− 1)r + 1 = 2λr + 1 − r > 3 − r > 0.

Thus

(2λ− 1)r + 1

r − 1
> 0 and

r − 3

1 − r
> 0.

So EL ≥ 1 implies (EL)((2λ−1)r+1)/(r−1) ≥ 1 and hence

∫ T

0

Eλr(t)L1−(1−λ)r(t) dt ≥ D̂2

(
EλrL1−(1−λ)r

)−(r−3)/(1−r)
if LT ≥ 2L0.(4.30)

Define

h(T ) :=

∫ T

0

Eλr(t)L1−(1−λ)r(t) dt.(4.31)

Then h′(T ) = Eλr(T )L1−(1−λ)r(T ) and (4.30) can be rewritten as

h(T ) ≥ D̂2(h
′(T ))−(r−3)/(1−r) if LT ≥ 2L0(4.32)
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or, equivalently,

h′(T )
(
h(T )

)(r−1)/(3−r) ≥ D̂
(r−1)/(3−r)
2 if LT ≥ 2L0.(4.33)

(2b) If L(T ) < 2L(0), then by EL ≥ 1,

ET ≥ L−1
T ≥ 1

2
L−1

0 ,

Eλr
T L

1−(1−λ)r
T =

(
ETLT

)λr

L1−r
T ≥ L1−r

T ≥ L1−r
0 21−r.

Thus

h′(T ) ≥ L1−r
0 21−r if L(T ) ≤ 2L(0).(4.34)

Combining (4.33) and (4.34), we have

h′(T )
[
h(T ) + L3−r

0

](r−1)/(3−r)

≥ min{21−r, D̂
(r−1)/(3−r)
2 } =: m for all T.

Thus

d

dt

[
h(t) + L3−r

0

]2/(3−r)

=
2

3 − r
h′(t)

[
h(t) + L3−r

0

](r−1)/(3−r)

≥ 2m

3 − r
.(4.35)

By integration over time from 0 to T , we get

h(T ) ≥
[

2m

3 − r
T + L2

0

](3−r)/2

− L3−r
0(4.36)

≥
(

2m

3 − r

)(3−r)/2

T (3−r)/2 − L3−r
0

≥ 1

2

(
2m

3 − r

)(3−r)/2

T (3−r)/2 if T > 22/(3−r) (3 − r)

2m
L2

0.

Equivalently,

−
∫ T

0

E(t)λrL(t)1−(1−λ)r dt ≥ D′′
2−
∫ T

0

(t−1/2)r−1 dt for T > D′′
3L

2
0,(4.37)

where

D′′
2 =

3 − r

4

(
2m

3 − r

)(3−r)/2

and D′′
3 = 22/(3−r) (3 − r)

2m
.

(3) Combining (1) and (2), we conclude that

−
∫ T

0

E(t)λrL(t)1−(1−λ)r dt ≥ D2−
∫ T

0

(t−1/2)r−1 dt for T > D3L
2
0,(4.38)

where

D2 = min{D′
2, D

′′
2} and D3 = max{D′

3, D
′′
3}.



362 SHIBIN DAI AND ROBERT L. PEGO

We claim the following estimate for the collection of particles that undergoes
coarsening determined by (4.1).

Theorem 4.3. For any 0 ≤ λ ≤ 1 and 0 < r < 3 satisfying λr > 1 and (1−λ)r <
2, there exist positive constants D2 and D3, depending only on λ, r, and the dimension
of space n, such that for any solution {Ri} of equations (4.1) and (4.3), we have

−
∫ T

0

E(t)λrL(t)1−(1−λ)r dt ≥ D2−
∫ T

0

(t−1/2)r−1 dt for T ≥ D3L(0)2,(4.39)

where E and L are defined in terms of (2.1) and (2.2), respectively.
Proof. As we discussed at the beginning of this section, solutions {Ri} of equations

(4.1) and (4.3) are continuous and piecewise smooth. Hence E and L defined by (2.1)
and (2.2) are continuous and piecewise smooth. Furthermore, by (4.4), Ė ≤ 0 and
Ė = 0 if and only if all Ri are equal. Notice that if all Ri are equal, then the
system (4.1) and (4.3) reaches an equilibrium point and the solution stops coarsening.
Consequently, if Ė = 0 at some time t1, then Ė(t) = 0 for all t ≥ t1. Hence, Ė satisfies
the condition (4.13) of Lemma 4.2.

On the other hand, the interpolation inequality (2.3) and the dissipation relation
(4.7) say

EL ≥ 1 and |L̇|2 ≤ D1L(−Ė).

The theorem is then an immediate consequence of Lemma 4.2.

5. Coarsening rates for particle systems with general size distributions.
Now it is time to consider our mean-field models with more general size distributions.
Definitions (2.1) and (2.2) imply that, in the more general case, E and L should be
defined in terms of the (n−1)st, nth, and (n+1)st moments of the size distributions.
Thus it is necessary to require the initial size distributions to be in Pn+1, the set
of Borel probability measures on [0,∞) with finite (n + 1)st moments. By Hölder’s
inequality, it is immediate to see that Pn+1 is a subset of Pn.

In [13], Niethammer and Pego proved well-posedness and compactness results for a
family of mean-field models. All of our models under consideration are included in that
work except for the 2D volume-diffusion–controlled growth model with β = 0. Their
results guarantee the existence and uniqueness of measure-valued solutions of equation
(1.2) or (1.8). A measure-valued solution is a weak-star continuous map t 	→ νt taking
[0,∞) → Pn that is a solution in the sense of distributions on (0,∞) × (0,∞); i.e.,
for all φ ∈ C∞

c ([0,∞) × (0,∞)) (smooth functions with compact support),∫ ∞

0

∫ ∞

0

(
∂tφ +

1

R + β

(
θ(t) − 1

R

)
∂Rφ

)
dνt dt +

∫ ∞

0

φ(0, ·) dν0 = 0(5.1)

in the case of volume-diffusion–controlled growth (1.2), or∫ ∞

0

∫ ∞

0

(
∂tφ +

(
θ(t) − 1

R

)
∂Rφ

)
dνt dt +

∫ ∞

0

φ(0, ·) dν0 = 0(5.2)

in the case of interface-reaction–controlled growth (1.8).
Our main results are estimates in terms of these measure-valued solutions.
Theorem 5.1 (volume-diffusion–controlled growth). Let n ≥ 2 be an integer and

β ≥ 0, with β > 0 if n = 2. For any 0 ≤ λ ≤ 1 and 0 < r < 3 satisfying λr > 1 and
(1−λ)r < 2, there exist positive constants C2 and C3, depending only on λ, r, and the
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dimension of space n, such that whenever ν is a measure-valued solution of the trans-
port equation (1.2) and the initial value ν0 has finite nth and (n + 1)st moments, we
have

−
∫ T

0

E(t)λrL(t)−(1−λ)r dt ≥ C2−
∫ T

0

(t−1/3)r dt for T ≥ C3L(0)3,(5.3)

where E(t) and L(t) are defined by (2.8) and (2.9), respectively, and the mean field
θ(t) is defined by (2.6).

Taking r = p and λ = 1 for 1 < p < 3 in Theorem 5.1 gives Theorem 2.1.
Theorem 5.2 (interface-reaction–controlled growth). Let n ≥ 2 be an integer.

For any 0 ≤ λ ≤ 1 and 0 < r < 3 satisfying λr > 1 and (1 − λ)r < 2, there exist
positive constants D2 and D3, depending only on λ, r, and the dimension of space n,
such that whenever ν is a measure-valued solution of the transport equation (1.8) and
the initial value ν0 has finite nth and (n + 1)st moments, we have

−
∫ T

0

E(t)λrL(t)1−(1−λ)r dt ≥ D2−
∫ T

0

(t−1/2)r−1 dt for T ≥ D3L(0)2,(5.4)

where E(t) and L(t) are defined by (2.8) and (2.9), respectively, and the mean field
θ(t) is defined by (2.7).

Taking r = p + 1 and λ = p/(p + 1) for 1 < p < 2 in Theorem 5.2 gives Theorem
2.2.

The remaining part of this section is devoted to proving the theorems above. To
do this, we will need a change of variables as is done in [13]. In that paper, rather than
directly working on distributions of particle radii R, Niethammer and Pego change
the problems into equivalent ones expressed in terms of rescaled particle volumes
x(:= Rn) and work with a size-ranking function for particle volumes.

According to (1.1) and (1.7), the particle volume x satisfies the following growth
law:

ẋ = a(x)θ − b(x),(5.5)

where

a(x) =
nx1−1/n

x1/n + β
, b(x) =

nx1−2/n

x1/n + β
for volume-diffusion–controlled case,(5.6)

a(x) = nx1−1/n, b(x) = nx1−2/n for interface-reaction–controlled case,(5.7)

and θ(t) =
∫
b(x) dνt(x)/

∫
a(x) dνt(x). Here ν is the measure-valued solution in the

sense of distributions for the transport equation

∂tu + ∂x
(
(a(x)θ − b(x))u

)
= 0.(5.8)

The results of Niethammer and Pego are established by a further change of vari-
ables ([13]; see also [12]). For any size distribution of particles which is a probability
measure μ on [0,∞), they define a size-ranking function x = x̂(μ) : (0, 1] → [0,∞) by

x(ϕ) =

⎧⎨
⎩ sup{y | μ([y,∞)) > ϕ} for 0 < ϕ < 1,

0 for ϕ = 1.
(5.9)



364 SHIBIN DAI AND ROBERT L. PEGO

This is the right-continuous inverse of the tail distribution function ϕ(x) = μ([x,∞)).
The map x̂ gives a 1–1 correspondence between the set of Borel probability measures
on [0,∞) and the set of right-continuous decreasing functions x on (0, 1] with x(1) = 0.

The following space for size ranking is introduced in [13]:

L1
d = {x : (0, 1] → R| x ∈ L1((0, 1)), x(1) = 0, and x is decreasing

and right continuous on (0, 1]}.

It is a closed subspace of L1((0, 1)). We will also perform our estimates in this space.
By statement 2.5.18(3) in [5], for any continuous function f : (0,∞) → R with

compact support, ∫ 1

0

f(x(ϕ)) dϕ =

∫ ∞

0

f(y) dμ(y).(5.10)

For any positive number α > 0, y 	→ yα can be approximated by a monotonically
increasing sequence of such functions, and thus by the monotone convergence theorem∫ 1

0

x(ϕ)α dϕ =

∫ ∞

0

yα dμ(y),(5.11)

where both sides may be infinite. Hence μ ∈ Pα (Borel probability measures with
finite αth moment) if and only if x is right-continuous decreasing on (0, 1] with x(1) =

0 and
∫ 1

0
x(ϕ)α dϕ < ∞.

The growth law (5.5) can be rewritten as an integral equation,

x(t, ϕ) = x(0, ϕ) +

∫ t

0

(a(x(s, ϕ))θ(s) − b(x(s, ϕ))) ds(5.12)

with

θ(t) =

∫ ϕ̄(t)

0

b(x(t, ϕ)) dϕ
/ ∫ 1

0

a(x(t, ϕ)) dϕ for a.e. t > 0,(5.13)

where ϕ̄(t) := sup{ϕ|x(t, ϕ) > 0}.
Theorem 2.3 of [13] established the existence and uniqueness of the initial value

problem for (5.12) and (5.13) under some assumptions ((H1)–(H5) in [13]) which our
problems satisfy except for the 2D volume-diffusion–controlled growth model with
β = 0. This theorem claims that for any x0 ∈ L1

d, there exists a unique function
x ∈ C([0,∞), L1

d) such that (5.12) and (5.13) hold with x(0, ϕ) = x0(ϕ). This is
equivalent to the existence and uniqueness (Theorem 2.1 of [13]) of a weak-star con-
tinuous solution ν : [0,∞) → P1 for the transport equation (5.8) in the sense of
distributions on (0,∞) × (0,∞) with initial value ν0 = x̂−1(x0).

Proposition 6.1 of [13] established an L1 compactness result for (5.12) and (5.13);
namely, given T ∈ (0,∞), for a compact sequence of initial values {x0k} ⊂ L1

d, the
corresponding sequence of solutions xk is compact in C([0, T ], L1

d) and any limit x is
again a solution of (5.12) and (5.13).

Based on this result, in the appendix we prove an Lp compactness result for
(5.12) and (5.13) for any 1 < p < ∞; namely, given T ∈ (0,∞), for a sequence of
initial values {x0k} ⊂ L1

d∩Lp((0, 1)) which is compact in Lp((0, 1)), the corresponding
sequence of solutions xk is compact in C([0, T ], Lp((0, 1))) and any limit x is again a
solution of (5.12) and (5.13).
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Given x0 ∈ L1
d∩L(n+1)/n((0, 1)), for any positive integer N , we divide the interval

(0, 1) uniformly into N subintervals and define a function x0N (ϕ) by

x0N (ϕ) = N

∫ i/N

(i−1)/N

x0(ψ) dψ (=: xi
0N ),(5.14)

i− 1

N
≤ ϕ <

i

N
, (i = 1, . . . , N).

Then x0N ∈ L1
d∩L(n+1)/n((0, 1)) is piecewise constant, and x0N → x0 in L(n+1)/n((0, 1))

as N → ∞.
By the above compactness and uniqueness results, the solutions {xN} for (5.12)

and (5.13) with initial values {x0N} converge in the space C([0, T ], L(n+1)/n((0, 1)))
to the solution x for (5.12) and (5.13) with initial value x0.

For any N , {xi
0N}Ni=1 gives a discrete collection of particles and the corresponding

collection of radii {Ri := (xi
0N )1/n} undergoes coarsening determined by (1.1) or (1.7).

Hence the estimates (3.16) and (4.39) claimed in Theorems 3.3 and 4.3 hold for

EN (t) =

∑
Ri(t)

n−1∑
Ri(t)n

=

∫ 1

0

xN (t, ϕ)(n−1)/n dϕ
/∫ 1

0

xN (t, ϕ) dϕ

and

LN (t) =

∑
Ri(t)

n+1∑
Ri(t)n

=

∫ 1

0

xN (t, ϕ)(n+1)/n dϕ
/∫ 1

0

xN (t, ϕ) dϕ.

We will establish the convergence results for EN (t) and LN (t) in Lemma 5.4. To
do this, let us first prove a general convergence result for Lp functions.

Lemma 5.3. For nonnegative functions fk, f ∈ Lp(Ω) (k = 1, 2, . . .) with 1 < p <
∞ and Ω a bounded open subset of Rn, if∫

Ω

|fk(y)p − f(y)p| dy → 0 as k → ∞,(5.15)

then ∫
Ω

|fk(y) − f(y)|p dy → 0 as k → ∞.(5.16)

Proof. The convergence (5.15) implies that {fk} is bounded in Lp(Ω). Notice that
Lp(Ω) is a reflexive Banach space since 1 < p < ∞. Thus there exist a subsequence
{fkj

} and w ∈ Lp(Ω) such that fkj
converges weakly to w: fkj

⇀ w as j → ∞. Hence

||w||Lp(Ω) ≤ lim inf
j→∞

||fkj ||Lp(Ω) = ||f ||Lp(Ω).(5.17)

By fp
kj

→ fp in L1(Ω), there exists a further subsequence, denoted the same, such

that fkj (y) → f(y) for a.e. y ∈ Ω. Hence, by Fatou’s lemma and Hölder’s inequality,

∫
Ω

fp =

∫
Ω

lim inf
j→∞

fp−1fkj ≤ lim inf
j→∞

∫
Ω

fp−1fkj =

∫
Ω

fp−1w≤
(∫

Ω

fp

)1− 1
p
(∫

Ω

wp

)1/p

.

Thus

||f ||Lp(Ω) ≤ ||w||Lp(Ω).(5.18)
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Comparing inequalities (5.17) and (5.18), we get ||f ||Lp(Ω) = ||w||Lp(Ω). Thus

fkj ⇀ w in Lp(Ω),(5.19)

||fkj ||Lp(Ω) → ||w||Lp(Ω).(5.20)

Thus (see, e.g., [4])

fkj → w in Lp(Ω),(5.21)

and there exists a further subsequence of fkj that converges a.e. to w. Since fkj → f
a.e. in Ω, we have w = f and hence

fkj → f in Lp(Ω).(5.22)

The above argument works for every weakly convergent subsequence and hence
the whole sequence fk converges strongly to f in Lp(Ω).

Lemma 5.4. For any t > 0, we have

EN (t) → E(t) :=

∫ 1

0

x(t, ϕ)(n−1)/n dϕ
/∫ 1

0

x(t, ϕ) dϕ as N → ∞,(5.23)

LN (t) → L(t) :=

∫ 1

0

x(t, ϕ)(n+1)/n dϕ
/∫ 1

0

x(t, ϕ) dϕ as N → ∞.(5.24)

Proof. Fix t > 0. By the conservation of total mass and the convergence of initial
value x0N → x0 in L1((0, 1)),

∫ 1

0

xN (t, ϕ) dϕ =

∫ 1

0

x0N (ϕ) dϕ →
∫ 1

0

x0(ϕ) dϕ =

∫ 1

0

x(t, ϕ) dϕ(5.25)

as N → ∞. By the compactness of {xN} in C
(
[0, T ], Lp((0, 1))

)
for all T > 0 and all

p > 1, ∫ 1

0

xN (t, ϕ)(n+1)/n dϕ →
∫ 1

0

x(t, ϕ)(n+1)/n dϕ as N → ∞.(5.26)

The convergence of LN (t) to L(t) is an immediate consequence of (5.25) and (5.26).
Define fN = xN (t, ϕ)(n−1)/n, f = x(t, ϕ)(n−1)/n, and p = n/(n − 1). Equation

(5.25) implies that fp
N → fp as N → ∞. Thus Lemma 5.3 implies fN → f in

Lp((0, 1)) and consequently fN → f in L1((0, 1)). Hence

∫ 1

0

xN (t, ϕ)(n−1)/n dϕ →
∫ 1

0

x(t, ϕ)(n−1)/n dϕ.(5.27)

The convergence of EN (t) to E(t) is an immediate consequence of (5.25) and
(5.27).

To enable us to take limit in the estimates (3.16) and (4.39) claimed in Theorems
3.3 and 4.3, we will prove the following boundedness lemma for EN (t) and LN (t) and
then apply Lebesgue’s dominated convergence theorem.

Lemma 5.5. Given T > 0, there exist positive constants M1,m2, and M2, de-
pending only on n and T , such that

0 < EN (t) ≤ M1, m2 < LN (t) < M2
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uniformly in N and 0 ≤ t ≤ T , with M1,m2, and M2 positive constants depending
only on n and T .

Proof. By (5.25), there exist positive constants m̂1 and M̂1 such that for all N
and all t ≥ 0,

m̂1 ≤
∫ 1

0

xN (t, ϕ) dϕ ≤ M̂1, m̂1 ≤
∫ 1

0

x(t, ϕ) dϕ ≤ M̂1.(5.28)

Then by Hölder’s inequality,

∫ 1

0

xN (t, ϕ)(n−1)/n dϕ ≤
( ∫ 1

0

xN (t, ϕ) dϕ

)(n−1)/n

≤ M̂
(n−1)/n
1 .(5.29)

Hence

EN (t) =

∫ 1

0

xN (t, ϕ)(n−1)/n dϕ
/ ∫ 1

0

xN (t, ϕ) dϕ ≤ M̂
(n−1)/n
1 /m̂1 =: M1.(5.30)

By Hölder’s inequality,

m̂1 ≤
∫ 1

0

xN (t, ϕ) dϕ ≤
{ ∫ 1

0

xN (t, ϕ)(n+1)/n dϕ

}n/(n+1)

.(5.31)

Thus

LN (t) =

∫ 1

0

xN (t, ϕ)(n+1)/n dϕ
/ ∫ 1

0

xN (t, ϕ) dϕ ≥ m̂
(n+1)/n
1 /M̂1 =: m2.(5.32)

In the appendix, we will prove that there exists a positive increasing function G(t)

such that
∫ 1

0
xN (t, ϕ)(n+1)/n dϕ ≤ G(t) ≤ G(T ). Thus, for all 0 ≤ t ≤ T ,

LN (t) =

∫ 1

0

xN (t, ϕ)(n+1)/n dϕ
/ ∫ 1

0

xN (t, ϕ) dϕ ≤ G(T )/m̂1 =: M2.(5.33)

The above boundedness results and Lebesgue’s dominated convergence theorem
guarantee that we can take limit as N → ∞ in the estimates for coarsening rates
for discrete systems (Theorems 3.3 and 4.3). This procedure gives us the estimates
in Theorems 5.1 and 5.2, with E and L defined as in Lemma 5.4, for the coarsening
rates for solutions of (5.12)+(5.13) with initial value x0 ∈ L1

d ∩ L(n+1)/n((0, 1)).
Our ultimate goal is to get estimates for coarsening rates for measure-valued so-

lutions of the transport equations (1.2) and (1.8), respectively. To do this, we will
establish the 1–1 correspondence between these measure-valued solutions, which are
distributions of particle radii, and volume size-ranking solutions for (5.12)+(5.13).
The estimates for coarsening rates for these measure-valued solutions are immedi-
ate consequences of this 1–1 correspondence and the estimates for these size-ranking
solutions.

For any initial particle radius distribution μ(R) ∈ Pn+1, we define a particle
volume distribution μ̂(x) = (Tμ)(x) by requiring∫ ∞

0

f(x) dμ̂(x) =

∫ ∞

0

f(Rn) dμ(R)(5.34)

for all continuous functions f with compact support. Then μ̂ ∈ P(n+1)/n.



368 SHIBIN DAI AND ROBERT L. PEGO

The size-ranking function x0(ϕ) = x̂(μ̂) defined as in (5.9) belongs to L1
d ∩

L(n+1)/n((0, 1)). Hence the solution x(t, ϕ) of problem (5.12)+(5.13) with x(0, ·) =
x0(·) belongs to L1

d and we can get the estimates as in Theorems 5.1 and 5.2 by the
procedure described above.

It is proved in [13] that the mapping (5.9) is invertible and that under the as-
sumptions (H1)–(H5), the weak-star continuous mapping ν̂ : [0,∞) → P1 related with
x(t, ϕ) through (5.9) is the unique measure-valued solution of the transport equation
(5.8) in the sense of distributions with initial value μ̂. For any t ∈ [0,∞), we define a
Borel measure νt by requiring∫ ∞

0

f(R) dνt(R) =

∫ ∞

0

f(x1/n) dν̂t(x)(5.35)

for all continuous functions f with compact support. Then ν : [0,∞) → Pn is weak-
star continuous and is a measure-valued solution of the transport equation (1.2) or
(1.8), with initial value ν0 = μ. Again, since we can approximate a power function
y 	→ yα(α > 0) by a monotonically increasing sequence of continuous functions with
compact support, we get the following moment equivalence identity for ν and ν̂:∫ ∞

0

Rα dνt(R) =

∫ ∞

0

xα/n dν̂t(x) for any α > 0.(5.36)

On the other hand, if we have a measure-valued solution ν : [0,∞) → Pn for (1.2)
or (1.8) with a given initial value μ, we can define ν̂ : [0,∞) → P1 by (5.35) and ν̂
will be a measure-valued solution for (5.8) with initial value μ̂ defined by (5.34). The
uniqueness of ν̂ then implies the uniqueness of ν.

The above analysis, together with the moment equivalence statements (5.11) and
(5.36), gives us Theorems 5.1 and 5.2 on coarsening rates for mean-field models with
general initial distributions of particle radii.

Appendix. In this appendix, we will establish a compactness result for solutions
x(t, ϕ) of problem (5.12)+(5.13) with x(0, ·) = x0(·) for any x0 ∈ L1

d ∩ Lp((0, 1))
with 1 < p < ∞ under the same assumptions (H1)–(H4) as in [13]. Note that the
two models we considered fall into this category except for the case n = 2, β = 0 of
the volume-diffusion–controlled growth model (and this is the reason why we do not
include this case in our estimates for coarsening rates with general size distribution).

Proposition A.1. Fix T ∈ (0,∞) and consider a sequence {xk}∞k=1 of solutions
to (5.12)+(5.13) for 0 ≤ t ≤ T with initial values xk(0, ϕ) = x0k(ϕ) (ϕ ∈ (0, 1)).
Assume that the sequence of initial data {x0k} ⊂ L1

d ∩ Lp((0, 1)) is compact in

Lp((0, 1)) for some 1 < p < ∞ with c1 := infk
∫ 1

0
x0k > 0. Then {xk} is compact in

C([0, T ], Lp((0, 1))) and any limit x is again a solution of (5.12)+(5.13).
Proof. By Hölder’s inequality, the assumption that {x0k} ⊂ L1

d ∩ Lp((0, 1)) is
compact in Lp((0, 1)) implies that {x0k} is compact in L1((0, 1)). Hence, by Proposi-
tion 6.1 in [13], {xk} is compact in C([0, T ], L1

d) and any limit x is again a solution of
(5.12)+(5.13). We will follow the strategy of the proof of Lemma 6.2 in [13] to prove
that xk is compact in Lp((0, 1)).

It has been shown in [13] that θ(t) is uniformly bounded on [0,T]. The assumptions
(H1)–(H4) together with the boundedness of θ imply that there exists a positive
constant C, depending only on T , such that

|a(x)θ(t) − b(x)| ≤ C(1 + x)
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for all x ≥ 0. By the generalized Arzelà–Ascoli theorem, to show that {xk} is compact
in C([0, T ], Lp((0, 1))), we need to prove the following three steps:

(1) uniform boundedness of {
∫ 1

0
xp
k(t, ϕ) dϕ} for all t ∈ [0, T ] and all k,

(2) for fixed t ∈ (0, T ), {xk(t, ·)} is compact in Lp((0, 1)),
(3) supk ||xk(t1, ·) − xk(t2, ·)||Lp((0,1)) → 0 as |t1 − t2| → 0.

To show (1), define Fδ(t) =
∫ 1

δ
xp
k(t, ϕ) dϕ for δ > 0. Then Fδ < ∞ since xk(t, ·) is

decreasing and

Fδ(t) =

∫ 1

δ

xp
0k(ϕ) dϕ +

∫ 1

δ

∫ t

0

pxp−1
k ∂sxk(s, ϕ) ds dϕ

=

∫ 1

δ

xp
0k(ϕ) dϕ +

∫ 1

δ

∫ t

0

pxp−1
k (a(xk)θ − b(xk)) ds dϕ

≤
∫ 1

δ

xp
0k(ϕ) dϕ + Cp

∫ 1

δ

∫ t

0

xp−1
k (1 + xk) dt dϕ.

By Young’s inequality,

xp−1
k ≤ p− 1

p
xp
k +

1

p
.(A.1)

Thus

Fδ(t) ≤
∫ 1

δ

xp
0k(ϕ) dϕ + C

∫ 1

δ

∫ t

0

((2p− 1)xp
k + 1) dt dϕ

≤
∫ 1

δ

xp
0k(ϕ) dϕ + CT + C(2p− 1)

∫ t

0

∫ 1

δ

xp
k dϕ dt.

By Gronwall’s inequality,

Fδ(t) ≤
∫ 1

δ

xp
0k(ϕ) dϕ + CT + C(2p− 1)eC(2p−1)t

( ∫ 1

δ

xp
0k(ϕ) dϕ + CT

)
.(A.2)

The compactness of x0k in Lp((0, 1)) implies that there exists positive constant C1

such that
∫ 1

0
xp

0k(ϕ) dϕ ≤ C1 for all k. Thus, by taking δ → 0 in (A.2) we get

∫ 1

0

xp
k(t, ϕ) dϕ ≤ C1 + CT + C(2p− 1)eC(2p−1)t(C1 + CT ) =: G(t) ≤ G(T ).(A.3)

Here G is an increasing function of t and does not depend on k. Hence (1) is proved.
It is shown in the proof of Lemma 6.2 in [13] that, for fixed t, there exists a

pointwise convergent subsequence, still denoted as {xk} for simplicity. Therefore, to
prove (2) we need only show that {xk} is equi-integrable. Since xk(t, ·) are decreasing,
it is enough to show

sup
k

∫ ε

0

xk(t, ϕ) dϕ → 0 as ε → 0.(A.4)

∫ ε

0

xp
k(t, ϕ) dϕ =

∫ ε

0

xp
0k(ϕ) dϕ +

∫ ε

0

∫ t

0

pxp−1
k (s, ϕ)∂sxk(s, ϕ) ds dϕ(A.5)

=

∫ ε

0

xp
0k(ϕ) dϕ +

∫ ε

0

∫ t

0

pxp−1
k (s, ϕ)(a(xk)θ − b(xk)) ds dϕ
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≤
∫ ε

0

xp
0k(ϕ) dϕ + Cp

∫ ε

0

∫ t

0

xp−1
k (1 + xk) ds dϕ

≤
∫ ε

0

xp
0k(ϕ) dϕ + C

∫ ε

0

∫ t

0

((2p− 1)xp
k + 1) ds dϕ by (A.1)

≤
∫ ε

0

xp
0k(ϕ) dϕ + CTε + C(2p− 1)

∫ t

0

∫ ε

0

xp
k dϕ ds.

By Gronwall’s inequality,∫ ε

0

xp
k(t, ϕ) dϕ ≤

∫ ε

0

xp
0k(ϕ) dϕ + CTε(A.6)

+(2p− 1)Ce(2p−1)Ct

( ∫ ε

0

xp
0k(ϕ) dϕ + CTε

)
.

We can assume without loss of generality that x0k → x0 in Lp((0, 1)). Hence
supk

∫ ε

0
xp

0k(ϕ) dϕ → 0 as ε → 0. By (A.6), supk

∫ ε

0
xp
k(t, ϕ) dϕ → 0 as ε → 0 and (2)

is proved.
Now let us prove (3). Assume t1 < t2.∫ 1

0

|xp
k(t1, ϕ) − xp

k(t2, ϕ)| dϕ = p

∫ 1

0

∣∣∣∣
∫ t2

t1

xp−1
k ∂txk(t, ϕ) dt

∣∣∣∣ dϕ(A.7)

= p

∫ 1

0

∣∣∣∣
∫ t2

t1

xp−1
k (a(xk)θ(t) − b(xk)) dt

∣∣∣∣ dϕ
≤ Cp

∫ 1

0

∫ t2

t1

xp−1
k (1 + xk) dt dϕ

≤ C

∫ 1

0

∫ t2

t1

((2p− 1)xp
k + 1) dt dϕ by (A.1)

≤ C(2p− 1)(G(T ) + 1)|t2 − t1| by (A.3).

Thus (3) is true and the proposition is proved.
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ON A HELE–SHAW-TYPE DOMAIN EVOLUTION WITH
CONVECTED SURFACE ENERGY DENSITY∗

MATTHIAS GÜNTHER† AND GEORG PROKERT‡

Abstract. Interest is directed to a moving boundary problem with a gradient flow structure
which generalizes surface tension–driven Hele–Shaw flow to the case of nonconstant surface tension
coefficient taken along with the liquid particles at the boundary. In the case with kinetic undercooling
regularization, well-posedness of the resulting evolution problem in Sobolev scales is proved, including
cases in which the surface tension coefficient degenerates. The problem is reformulated as a vector-
valued, degenerate parabolic Cauchy problem. To solve this, we prove and apply an abstract result
on Galerkin approximations with variable bilinear forms.

Key words. free boundary motion, degenerate nonlocal parabolic evolution
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1. Introduction. Various experimental studies investigate the influence of spa-
tial variations of the surface energy density (corresponding to the surface tension
coefficient γ) on surface tension–driven Hele–Shaw flows (cf., e.g., [15]). However, a
mathematical model for such flows seems to be lacking. In this paper, a first step is
attempted to close this gap. We derive and investigate a moving boundary problem
which arises, at least from a mathematical point of view, as a natural generalization
from the case where γ is a positive constant to the case of variable, nonnegative γ.
Let us give an informal description of this generalization here; for details we refer to
section 2.

The Hele–Shaw moving boundary problem with constant γ is well investigated.
In particular, our starting point is the following observation [1, 8]: On the Fréchet
manifold M of the surfaces Γ that bound a domain of fixed given volume, an evolution
t �→ Γt satisfying the moving boundary problem can be interpreted as a gradient flow
with respect to (w.r.t.) the energy functional

E = E(Γ) := γ meas(Γ)(1.1)

and the Riemannian metric g given by (2.4).
In our generalization to nonconstant γ we use the energy functional

E = E(Γ, γ) :=

∫
Γ

γ dΓ(1.2)

and keep the demand that the evolution be given by a gradient flow w.r.t. the same
Riemannian metric. (A parallel procedure applied to viscous free boundary flows
leads to the usual description of the Marangoni effect.) This leads to two related
difficulties: First, the functional E no longer depends on Γ only. This is resolved in
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the following way: Instead of the manifold M we consider the vector bundle F over
M , having as fiber space at Γ the (smooth) functions on Γ. On this bundle, E is
well defined. Second, one also has to prescribe an evolution law for γ as a function
on the moving surface t �→ Γt. Again, we make a simple choice: We assume γ to be
transported along with the velocity field at the boundary, and we allow the tangential
transport to be diminished by a “slip factor” δ ∈ [0, 1]. The case δ = 1 describes a
fixed coupling of the values of γ to the moving liquid particles. Physically, this would
occur, e.g., if γ is temperature-dependent and heat conduction is negligible. On the
other hand, the case δ = 0 corresponds to transport in the normal direction only. In
differential geometric terms, this transport law is realized by introducing a suitable
connection D on F and demanding parallel transport of γ; see (2.7)–(2.10).

Let us note here that we do not claim that these assumptions are necessarily in
accordance with the physics of an actual Hele–Shaw flow with nonuniform surface
energy density, e.g., induced by the presence of a surfactant. It is well conceivable
that the interface dynamics in such a situation might be dominated by more complex
phenomena like the occurrence of boundary layers, thin surfactant films, or other
effects. For instance, if a surfactant is present, one has to solve a transport equation for
the surfactant concentration and determine γ from this. (See [17] for the case of Stokes
flow; such a modification of our problem would not present new principal difficulties.)

To test our assumptions in a concrete situation, numerical work as well as com-
parison with experiments would be necessary. However, even our simple model is of
mathematical interest in its own right and as a typical example for nonlocal, degen-
erate parabolic evolutions.

In section 2 of this paper we derive the moving boundary problem (2.12), (2.13)
from the gradient flow formulation. In what follows, we prove our main result, namely,
a local existence and uniqueness result for this problem in scales of Sobolev spaces. For
the precise formulation and further results concerning continuous dependence on the
initial data, see Theorems 3.1 and 3.2. If the surface Γt and the coefficient γt are known
at some time t, then the velocity potential φt is completely determined by (2.12). If
one parametrizes Γt over a fixed reference surface S, the moving boundary problem
can be interpreted as an evolution equation with nonlinear, nonlocal pseudodifferential
operators. The parametrization can be constructed in at least two different ways: On
one hand, it is possible to parametrize the surfaces using one scalar function, e.g., the
normal distance to the reference surface. Then γt has to satisfy a transport equation
whose coefficients depend on the parametrization and on the velocity potential. On
the other hand, the moving boundary can also be represented by mappings u(·, t) :
S → R

m whose time derivatives are given by the velocity vector, i.e.,

∂tu = F(u) :=
(
(∇N + δ∇T )φt

)
◦ u,

where ∇N and ∇T denote the normal and tangential component of the gradient,
respectively.

This formulation, which we will use in what follows, is R
m-valued. Therefore,

the corresponding Cauchy problem will be necessarily degenerate, even if γ is strictly
positive (or even constant). However, this is no crucial disadvantage, as our problem
couples a transport equation with a parabolic evolution and we allow γ to degenerate
as well. Our approach has two favorable properties: γ now appears only as a known,
time-independent function on the reference domain, and the additional freedom in
the choice of the diffeomorphisms can be used to derive generalized chain rules for
our nonlocal operators which reduce the technical effort in the proofs of the necessary
estimates.
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As long as γ is nonnegative, the normal component of the linearization F ′(u)v
behaves as a degenerate elliptic second order operator on the normal component of v,
so that we have, e.g., w.r.t. the L2-inner product〈

n · v, n · F ′(u)v
〉
L2 ≤ C‖v‖2

L2 .

An estimate like this does not hold for the complete linearization, including the tan-
gential components. Due to the special structure of F , however, it is possible to define
inner products 〈 , 〉u which define equivalent norms on L2 and satisfy〈

v,F ′(u)v
〉
u
≤ C‖v‖2

L2 .

Defining higher order inner products 〈 , 〉u,s on the basis of 〈·, ·〉u, one finally can show
an Hs-energy estimate 〈

F(u), u
〉
u,s

≤ C‖u‖2
s(1.3)

for s sufficiently large, and, on the other hand, the dependence of these inner products
on u can be controlled by a weaker Sobolev norm. In a suitable abstract functional
analytic framework, these estimates can be used to obtain proofs for our main results.
Moreover, these results imply the existence of a unique solution w := (Id − λF)−1 of
the equation w − λF(w) = v provided λ ≥ 0 sufficiently small. The solution of the
Cauchy problem for the evolution equation is given by the exponential formula

u(t) = lim
n→∞

(
Id − t

n
F
)−n

u(0)

with convergence in Hs provided u(0) ∈ Hs, s sufficiently large.
The structure of the paper after section 2 is as follows: In section 3, we introduce

the necessary notation and announce our main results together with the abstract exis-
tence theorems which are used. Section 4 is devoted to the behavior of our (nonlocal)
operators in scales of Sobolev spaces, and in section 5 the u-dependent inner products
are introduced and the necessary estimates are shown. Finally, the main results (The-
orems 3.1 and 3.2) are proved in section 6. The proof of a general abstract existence
result (Theorem 3.4), which may be of independent interest, is given in the appendix.

2. The equations of motion. Here we characterize the moving boundary prob-
lem as abstract gradient flow on the manifold of the natural configuration space. We
start by recalling the following general properties of incompressible, source-free Hele–
Shaw flows. One looks for a family of domains Ω(t) ⊂ R

m parametrized by time t ≥ 0
and corresponding velocity fields v(·, t) such that (according to Darcy’s law)

v(·, t) = ∇ϕ(·, t) in Ω(t)(2.1)

with a potential field ϕ(·, t) proportional to negative pressure. As we also demand that
the boundary Γ(t) of Ω(t) moves along with the velocity field, we find the kinematic
boundary condition

Vn(t) = ∂nϕ(·, t) on Γ(t),(2.2)

where Vn(t) is the normal velocity of the moving boundary Γ(t) and ∂n = ∂/∂n is the
derivative in direction of the unit outward normal n(t) of Γ(t). As v is divergence-free,

Δϕ(·, t) = 0 in Ω(t).(2.3)
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Thus, in any Hele–Shaw flow, the complete velocity field is determined by the normal
velocity at the boundary.

If the surface tension coefficient is a positive constant, the corresponding surface
energy is proportional to the surface area and the Hele–Shaw flow driven by surface
tension can be interpreted as abstract gradient flow of this functional w.r.t. an appro-
priately chosen inner product; cf. [1, 8]. As this formulation is a main ingredient in
our derivation of the moving boundary problem below, we define this inner product
more precisely. Consider for the time being a fixed smooth domain Ω with boundary
Γ and define

VΓ :=

{
v ∈ C∞(Γ)

∣∣∣∣∣
∫

Γ

v dΓ = 0

}
.

The space VΓ can be interpreted as the space of all possible normal boundary velocities;
the restriction expresses conservation of volume. We fix β ≥ 0 and introduce on VΓ

the bilinear form gΓ given by

gΓ(v1, v2) :=

∫
Ω

∇ϕ1∇ϕ2 dx + β

∫
Γ

v1v2 dΓ,(2.4)

where the ϕi, i = 1, 2, are (weak) solutions of the Neumann problems

Δϕi = 0 in Ω, ∂nϕi = vi on Γ.

To give a physical interpretation of the quadratic functional v �→ gΓ(v, v) we remark
that the first term represents energy dissipation by the corresponding Hele–Shaw flow
(cf. [8]), while for β > 0 the second term is a penalty for large normal boundary
velocities. Note that, by Green’s formula,

gΓ(v1, v2) =

∫
Γ

(
ϕ1 + β∂nϕ1

)
v2 dΓ.(2.5)

In differential geometric terms, this inner product defines a Riemannian metric on
the Fréchet manifold M of boundaries Γ = ∂Ω to smooth compact domains Ω ⊂ R

m

with given fixed volume. By interpreting a tangent vector at Γ ∈ M as the normal
velocity field of the boundary, there is a natural way of thinking of vector fields X on
M as sections in the Fréchet vector bundle E = ∪Γ∈MVΓ with base M and fiber VΓ;
i.e., there is a natural isomorphism TΓM � VΓ and we have for any real functional
J ∈ C∞(M)

(XJ)(Γ) = ∂εJ(Γε)|ε=0,

where ε �→ Γε ∈ M is a path of admissibles shapes with normal velocity v for ε = 0,

Γε :=
{
xε

∣∣ x ∈ Γ
}
, xε := x + ε

(
v(x) + O(ε)

)
n(x).(2.6)

Thus, identifying a vector XΓ ∈ TΓM in this sense with its image v ∈ VΓ and con-
sidering smooth domain dependence of the solution to a Neumann problem, Γ �→ gΓ

defines a Riemannian metric g on the manifold M . It is remarkable that in the case
β = 0 a geodetic line w.r.t. this metric g represents the motion of an incompress-
ible irrotational perfect fluid with a free boundary; for the corresponding Levi-Civita
derivative, Riemannian curvature, and an analysis of the Jacobi equation from a dif-
ferential geometric point of view, we refer to [3].
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Now, considering first the surface energy (1.1) with constant γ, the normal velocity
Vn ∈ VΓ of a surface tension–driven Hele–Shaw flow is determined by

gΓ

(
Vn, v

)
= −E ′(Γ){v} for all v ∈ VΓ,

where E ′(Γ){v} := (XE)(Γ) denotes the derivative of the energy in the direction of
XΓ � v. As a consequence, at each instant of time t the flow reduces the surface energy
as rapidly as possible among all normal velocities with prescribed norm corresponding
to the inner product (2.4); in particular, the flow is volume preserving and surface
area decreasing. By a well-known formula for the first variation of surface area, we
find

E ′(Γ){v} = −
∫

Γ

κv dΓ,

where κ is the mean curvature of Γ with sign determined by the above variation for-
mula (negative sign if Ω is convex); for notational convenience, throughout the paper
the usual normalization of κ has been changed by a cofactor m − 1. To model the
influence of a variable surface tension coefficient which is coupled on a transport mech-
anism, it is now quite natural to consider a surface energy functional of the form (1.2)
where γ ≥ 0 denotes a surface energy density function along Γ, not necessarily con-
stant. It should be noted that we don’t assume a priori a one-to-one correspondence
between the surface Γ and density γ, as is the case in simpler situations, e.g., where
a known global function generates the density via restriction or where an anisotropic
surface energy density is considered, i.e.,

γ = f |Γ or γ = f ◦ n on Γ,

given f ∈ C∞(Rm) or f ∈ C∞(Sm−1), respectively; the latter energy density is com-
monly used to model crystal growth problems. In fact, in our setting the functional
E is uniquely defined on the vector bundle F := ∪Γ∈MC∞(Γ) with base M only. In
such a case, computation of the derivative of the surface energy in the direction of
a given vector field requires a law for the change of γ on the moving surface. Using
differential geometric terms we make the following assumption: along a path c in M
the energy density is transported by parallel displacement w.r.t. a given connection
DX which acts on sections γ in F , i.e.,

Dċγ = 0 along c.(2.7)

In further considerations we restrict our attention to the connection DX , defined as
follows: Let X be any vector field, let Γ ∈ M , and let v ∈ VΓ with XΓ � v; then we
set for any section γ in F

DXγ|Γ := ∂εγ̄ε |ε=0 + δ∇Γψ∇Γγ, δ ∈ [0, 1],(2.8)

where in terms of the notation (2.6)

γ̄ε(x) := γ̄Γε
(xε), (ε, x) ∈ (−ε0, ε0) × Γ,(2.9)

and ψ is a solution of the Neumann problem

Δψ = 0 in Ω, ∂nψ = v on Γ.(2.10)



ON A HELE–SHAW-TYPE EVOLUTION 377

Interpretation of DX and parallel transport w.r.t. DX is quite obvious in terms of
the underlying Hele–Shaw flow. In contrast to the case of constant γ, we also have
to consider the influence of the tangential motion at the boundary which results
from a normal variation of the boundary. As pointed out before, in a Hele–Shaw
flow the velocity field corresponding to a normal boundary velocity v ∈ VΓ is ∇ψ,
where ψ solves (2.10). Hence, in the case δ = 1, (2.7), (2.8) express that the surface
energy density is transported along with the liquid particles, i.e., with the velocity
field ∇ψ at the boundary. On the other hand, in the case of δ = 0, transport in
the normal direction without any tangential movement is expressed. The other cases
are intermediate. On VΓ we define the linear operator AND (Neumann-to-Dirichlet
operator) by

ANDv := ψ|Γ,

where ψ satisfies (2.10) and
∫
Γ
ψ dΓ = 0. Hence, again in terms of the notation (2.6),

the assumption Dvγ|Γ = 0 implies

∂εγ̄ε |ε=0 = −δ∇Γγ∇ΓANDv

and we obtain for

E ′(γ,Γ){v} :=
d

dε
E(γε,Γε)

∣∣∣
ε=0

using again the formula for the first variation of area

E ′(γ,Γ){v} =

∫
Γ

(
∂εγ̄ε |ε=0 − κγv

)
dΓ = −

∫
Γ

(
κγv + δ∇Γγ∇Γψ

)
dΓ.

It easily follows from Green’s formula that AND is symmetric w.r.t. the usual L2-inner
product on Γ, and thus

E ′(γ,Γ){v} = −
∫

Γ

(γκv − δΔΓγ ANDv) dΓ = −
∫

Γ

(γκ− δANDΔΓγ)v dΓ.(2.11)

We have to consider (2.7), (2.11) as a differential rule for the change of surface energy
dependent upon surface and energy density. They allow the computation of the
energy along any path in M starting from a known initial shape Γ(0) with known
energy density γ0. But of course, in general, this computation is path-dependent; i.e.,
the resulting energy in the endpoint of the path will depend on the history along the
whole path.

Now, as in the case of constant γ, we define the normal velocity Vn ∈ VΓ as a
solution of the variational problem

gΓ(Vn, v) = −E ′(γ,Γ){v} for all v ∈ VΓ.

Together with (2.2), (2.5), and (2.11), this yields the dynamic boundary condition

ϕ + β∂nϕ = γκ− δANDΔΓγ.

Summarizing and using an auxiliary function ψ instead of the nonlocal operator AND,
we have obtained the following moving boundary problem: For a given bounded
domain Ω(0) ⊂ R

m and a given nonnegative function γ0 defined on ∂Ω(0) one looks
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for a family of C2-domains Ω(t) ⊆ R
m, t > 0, and functions ϕ(·, t), ψ(·, t) ∈ C2

(
Ω(t)

)
,

γt ∈ C2
(
Γ(t)

)
such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δϕ(·, t) = 0 in Ω(t),

Δψ(·, t) = 0 in Ω(t),

∂nψ(·, t) = ΔΓ(t)γt on Γ(t),

ϕ(·, t) + β∂nϕ(·, t) = γtκ(t) − δψ(·, t) on Γ(t),

Vn(t) = ∂nϕ(·, t) on Γ(t),

(2.12)

where κ(t) is the curvature of Γ(t). In the main part of this paper, we restrict our
attention to the case δ = 1. The generalization to δ ∈ [0, 1) is sketched at the end
of section 5. Additionally, we describe the transport of γ by (2.7), (2.8) with δ = 1.
Introducing Lagrangian coordinates x = x(ξ, t), ξ ∈ Γ(0) corresponding to the velocity
field via

∂tx(ξ, t) = ∇ϕ
(
x(ξ, t), t

)
for t ≥ 0, x(ξ, 0) = ξ,(2.13)

we obtain from (2.2) that x = x(·, t) is a diffeomorphism from Γ(0) onto Γ(t), and the
transport law for γt takes the form

γt
(
x(ξ, t)

)
= γ0(ξ), ξ ∈ Γ(0), t ≥ 0.(2.14)

In (2.12), ϕ(·, t) and ψ(·, t) are determined up to a constant only, but this is without
significance for the evolution of both Ω(t) and γt. Note that in the case β = 0, by
setting Φ = ϕ + ψ, (2.12) simplifies to⎧⎪⎨

⎪⎩
ΔΦ(·, t) = 0 in Ω(t),

Φ(·, t) = γtκ(t) on Γ(t),

Vn = ∂nΦ(·, t) − ΔΓ(t)γt on Γ(t).

(2.15)

In what follows, however, we will restrict our attention to the case β > 0. Without
loss of generality, we can assume β = 1. In the case β > 0, δ = 1, we can show
well-posedness of our moving boundary problem even if γ is zero on parts of the
boundary, provided its square root is smooth. This seems to be particular to this
situation. We intend to discuss the case β = 0, which leads to a third order problem,
in a forthcoming paper.

For γt = γ = const and γ > 0, ψ is constant, and (2.12) is known as the so-called
Hele–Shaw flow problem with kinetic undercooling and surface tension regularization.
From a modeling point of view, this problem can be seen as the quasi-stationary
version of the well-known Stefan problem. In this context, the boundary condition
incorporates both the Gibbs–Thomson surface energy and a nonequilibrium effect
of temperature decrease at the advancing phase boundary. A short-time existence
proof for this problem and a proof that its solution is the limit for the solutions
of the corresponding Stefan problems can be found in [20]. For existence results
concerning a corresponding two-phase problem we refer to [5, 21]. Both effects are
known to regularize the motion of the interface, and this is also true for Hele–Shaw
flow problems [13, 18, 19]. In the case γ ≡ 0, with internal sources or sinks as driving
forces, existence results are given in [11] for the two-dimensional case and analytic
data and in [16] for arbitrary dimensions in the framework of Sobolev spaces.

If γ is a positive constant, the moving boundary has stable, attractive equilibria
which are given by the spheres (see, e.g., [4, 6, 7] for the case β = 0). In general,
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however, after prescribing a nonconstant function γ on the reference domain and an
initial diffeomorphism u, it is not a priori clear (even with γ near a constant and
the moving domain near a ball) what the long-time evolution and the corresponding
equilibrium will be. Instead, determining the equilibria belonging to a γ prescribed
on the reference domain leads to a stationary free boundary problem in ψ whose
solvability and stability (for Γ near a sphere and γ near a constant) we intend to
discuss elsewhere.

3. Notation and main results. We list some notation. C,C1, . . . , etc., de-
note generic constants; their dependences on other quantities is indicated only if not
obvious from the context. Let E ⊆ R

m, m ≥ 2, be a bounded domain with smooth
boundary S := ∂E and ν the outer unit normal on S. For M = S or M = E, we make
constant use of the usual L2-based Sobolev spaces Hs(S), Hs(S,Rm) of order s with
values in R and R

m, respectively. If no confusion is likely, we just write Hs. The norms
of these spaces will be denoted by ‖ · ‖Ms ; for M = S the upper index M is dropped
in most cases. When Fréchet derivatives of operator-valued mappings are considered,
the additional arguments describing the variations are written in braces ({ }).

3.1. Well-posedness for the moving boundary problem. Now, as already
mentioned in the introduction, we reformulate the moving boundary problem (2.12)–
(2.14) by describing Γ(t) as an embedding u(·, t) : S → R

m such that the curves
t �→ u(y, t) for fixed y ∈ S are trajectories belonging to the velocity field and γt is
constant along these curves. This approach enables us to consider γt as a known
function during the evolution at the cost of describing the moving boundary by m
functions. To do so, let

U :=
{
u : S → R

m
∣∣ u = w|S with w ∈ Diff(Ē,Ωu ∪ Γu)

}
,(3.1)

where

Ωu := w(E) and Γu := ∂Ωu = u(S).

Throughout this paper, we use the abbreviation

Us := U ∩Hs(S,Rm).

Now, (2.12)–(2.14) is reduced to the following Cauchy problem, which will be inves-
tigated in what follows: Given u0 ∈ Us, s sufficiently large, we look for T > 0 and a
mapping [0, T ] � t �→ u(t) ∈ Us, such that

u′(t) = F
(
u(t)

)
, t ∈ [0, T ],(3.2)

u(0) = u0.(3.3)

Thereby, for u ∈ U , we have set

F(u) := F (u)
(
G(u)

)
with G(u) := H(u) + G(u),(3.4)

where, for any given function f on S,

F (u)f := ∇ϕ(u, f) ◦ u,(3.5)

and ϕ = ϕ(u, f) denotes the solution of the Robin boundary value problem

Δϕ = 0 in Ωu, ∂nϕ + ϕ = f ◦ u−1 on Γu.(3.6)
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Further, H(u), G(u) are given by

H(u) := γ(κΓu ◦ u), G(u) := −A(u)
(
Δ(u)γ

)
.(3.7)

Here γ ∈ C∞(S) is a fixed and given nonnegative function, κΓu denotes the mean
curvature of Γu with sign and scaling conventions as above,

Δ(u)w := ΔΓu
(w ◦ u−1) ◦ u(3.8)

is the pullback to S of the Laplace–Beltrami operator ΔΓu
on Γu, and

A(u)f := ϕN

(
u, f) ◦ u(3.9)

is the Neumann–Dirichlet operator, i.e., ϕN = ϕN (u, f) solves the Neumann problem

ΔϕN = 0 in Ωu, ∂nϕN = c + f ◦ u−1 on Γu,
∫
Γu

ϕN dx = 0.(3.10)

The constant c = c(u, f) ∈ R in (3.10) is determined by the solvability condition∫
Γu

(f ◦ u + c) dΓu = 0;(3.11)

clearly c(u, f) = 0 for f = Δ(u)γ. For fixed smooth γ on S, the mappings u �→
H(u) and u �→ Δ(u)γ constitute quasi-linear second order differential operators on S.
Moreover, the solutions of the boundary value problems (3.6), (3.10) depend smoothly
on the domain Ωu, i.e., on u ∈ Hs, s > (m + 1)/2, and f �→ F (u)f , f �→ A(u)f
represent pseudodifferential operators of order zero and minus one, respectively. In
particular, G is a pseudodifferential operator of lower order than H and may be
considered as a correction term to ensure the gradient flow structure of the evolution
problem. For precise formulations of the mapping properties of F and A and detailed
proofs, see section 4. As a consequence, this leads to

[u �→ F(u)] ∈ C∞(
Us, H

s−2(S,Rm)
)

(3.12)

for s > (m + 3)/2. Now we are in position to formulate our main results.
Theorem 3.1 (short-time existence and uniqueness). Fix an integer s0 > (m +

5)/2 and assume γ = ρ2 with ρ ∈ C∞(S). Let s ≥ s0 be an integer and let u0 ∈ Us.
Then there exists T > 0 and a unique solution

u ∈ C
(
[0, T ], Us

)
∩ C1

(
[0, T ], Hs−2(S,Rm)

)
(3.13)

of the initial value problem (3.2), (3.3). Additionally, any given ū0 ∈ Us0 has a
suitable Hs0-neighborhood K, such that for initial values u0 varying in K ∩Hs, there
are T > 0 and C independent of u0 such that

‖u(t)‖s ≤ C(1 + ‖u(0)‖s) for all t ∈ [0, T ].(3.14)

Theorem 3.2 (regularity and continuous dependence on initial values). Under
the assumptions of Theorem 3.1 let u be any solution to (3.2) in the class (3.13) with
some T > 0. Then the following holds:

(i) u(0) ∈ Hs+1(S,Rm) implies

u ∈ C
(
[0, T ], Us+1

)
∩ C1

(
[0, T ], Hs−1(S,Rm)

)
.

(ii) Assume un
0 → u0 in Hs(S,Rm) for n → ∞. Then, for n sufficiently large,

there exist solutions un of (3.2) in the class (3.13) with initial values un(0) =
un

0 , and there holds un → u in C
(
[0, T ], Hs(S,Rm)

)
.

The proofs of both theorems are given in section 6.
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3.2. An existence result for abstract evolution equations. Here we con-
sider (3.2), (3.3) as an abstract nonlinear Cauchy problem for an unknown function
u = u(t) with values in a Banach space and prove existence of a solution if the non-
linearity F satisfies a certain condition of semiboundedness w.r.t. a family of bilinear
forms. As a general framework we adopt the following assumptions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Let X ⊆ Y ⊆ Z be real, separable Banach spaces with dense and
continuous embeddings and U ⊆ Y open. For every u ∈ U let 〈·, ·〉u :
X × Z → R be a continuous and nondegenerate bilinear form, such
that with fixed constants C ≥ 1, M ≥ 0,

(H1) 〈v, w〉u = 〈w, v〉u for all v, w ∈ X;

(H2) C−1‖v‖2
Y ≤ 〈v, v〉u ≤ C‖v‖2

Y for all v ∈ X, u ∈ U ;

(H3) 〈v, v〉u ≤ 〈v, v〉w
(
1 + M‖u− w‖Z

)
for all v ∈ X, u,w ∈ U ;

(H4) weak convergences un ⇀ u in Y , un, u ∈ U , and wn ⇀ w in
Z imply 〈v, wn〉un → 〈v, w〉u for all v ∈ X.

(H)

Assuming (H) holds, by the dense embedding X ⊆ Y and

∣∣〈v, w〉u∣∣2 ≤ 〈v, v〉u〈w,w〉u ≤ C2‖v‖2
Y ‖w‖2

Y for v, w ∈ X

there exists for each u ∈ U an inner product (·, ·)u on Y , which is compatible with
〈·, ·〉u; i.e., we have

(v, w)u = 〈v, w〉u for v ∈ X,w ∈ Y.

Moreover, for un, u ∈ U , un ⇀ u, wn ⇀ w in Y implies

(v, wn)un → (v, w)u for all v ∈ X.

In further considerations, for the sake of brevity we put

‖v‖u = (v, v)1/2u , |||u||| = (u, u)1/2u .

Assumption (H2) implies that ‖ · ‖Y and ‖ · ‖u are equivalent, and hence Y has all
topological properties of a Hilbert space—in particular, Y is reflexive. From un, u ∈ U ,
un ⇀ u in Y it follows that

|||u||| ≤ lim n→∞ |||un||| ;

if |||u||| = limn→∞ |||un|||, one concludes hereby that un → u in Y .
Theorem 3.3. Let (H) be valid and let F : U → Z be a weakly sequentially

continuous mapping such that for every u0 ∈ U there exists a neighborhood B(u0) ⊂ U
of u0 in Y with

sup
{
〈u,F(u)〉u

∣∣ u ∈ B(u0) ∩X
}
< +∞.(3.15)

Then for any u0 ∈ U , there exist T > 0 and a solution u of (3.2), (3.3) in the class

Cw

(
[0, T ],U

)
∩ C1

w

(
[0, T ], Z

)
.(3.16)

Additionally, this solution satisfies u(t) → u0 in Y for t → +0. Moreover, T > 0 can
be chosen uniformly for initial values taken from a suitable neighborhood of u0 in Y .
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In (3.16), we denote by Cw

(
[0, T ],U

)
the space of functions from [0, T ] to U which

are continuous w.r.t. weak convergence in Y . Similarly, C1
w

(
[0, T ], Z

)
denotes the set

of weakly differentiable functions from [0, T ] to Z with the derivative in Cw

(
[0, T ], Z

)
.

It should be noted that in general there is no uniqueness and no continuous dependence
on initial data in any sense in Theorem 3.3. This theorem can be easily derived from
a more elaborate, quantitative formulation given in the next theorem. Note that, for
the limit case R = +∞ and bilinear forms independent of u, this theorem coincides
with Theorem A in [14], but, as already mentioned in the introduction, our application
requires only the generalization to such variable bilinear forms.

Theorem 3.4. Assume (H) is satisfied with some ball

U = B :=
{
u ∈ Y

∣∣ ‖u‖Y < R
}
, R > 0,

and G : B → Z is a weakly sequentially continuous mapping such that

2〈u,G(u)〉u + M ‖G(u) ‖Z |||u||| ≤ β
(
|||u|||2

)
for all u ∈ X ∩B(3.17)

with a C1-function β : R+ → R+ = [0,∞). Let u0 ∈ B,

|||u0||| < r := R/(2C3)1/2,

and T > 0 such that the solution ρ of the scalar Cauchy problem

dρ/dt = β
(
ρ(t)

)
, ρ(0) = |||u0|||2(3.18)

exists on [0, T ] and satisfies ρ(t) < r2 there. Then the Cauchy problem

u′(t) = G(u(t)), u(0) = u0(3.19)

possesses a solution u in the class (3.16) for which additionally

|||u(t)|||2 ≤ ρ(t) for all t ∈ [0, T ],

u(t) → u0 in Y for t → +0.

The proof of this theorem will be given in the appendix.
Proof of Theorem 3.3. Let u0 ∈ U and B(u0) as in Theorem 3.3 be given. We set

G(v) = F(v + w0) for v ∈ B :=
{
v ∈ Y

∣∣ ‖v‖Y < R
}
,

〈·, ·〉v,1 := 〈·, ·〉v+w0 , |||v|||1 := (v, v)
1/2
v+w0

,

whereby the density of X in Y enables us to choose w0 ∈ X and R > 0 such that

‖w0 − u0‖Y < R/(32C5)1/2,
{
w0 + v

∣∣ v ∈ B
}
⊆ B(u0).

Clearly, the bilinear form 〈·, ·〉v,1, v ∈ B, satisfies the assumptions (H) again (with
the same constants as 〈·, ·〉u, u ∈ U). Further, by (3.15), there exists L > 0 such that

〈v + w0,G(v)〉v,1 ≤ L for all v ∈ B ∩X

and, by the weak sequential continuity of F , the reflexivity of Y and (H4),∣∣〈w0,G(v)〉v,1
∣∣, ‖G(v)‖Z ≤ L for all v ∈ B.



ON A HELE–SHAW-TYPE EVOLUTION 383

Thus

2〈v,G(v)〉v,1 + M‖G(v)‖Z |||v|||1 ≤ K for all v ∈ B ∩X

with K := L(4 + MCR). Now, for any given w ∈ Y with

‖w − u0‖Y ≤ R/(32C5)1/2,

we apply Theorem 3.4 to solve the initial value problem

dv/dt = G(v), v(0) = w − w0,

which corresponds to (3.2) with initial value u(0) = w. As

|||w − w0|||1 ≤ C
(
‖w − u0‖Y + ‖u0 − w0‖Y

)
< r/2, r := R/(2C3)1/2,

Theorem 3.4 ensures the existence of a solution in the class (3.16) with T = 3r2/(4K)
and v(t) → w − w0 in Y for t → +0.

4. Smooth domain dependence of the nonlocal operators. In this section
we study the domain dependence, i.e., dependence on u ∈ Us, of the Robin problem
(3.6) by transforming it into a boundary value problem on the fixed reference domain
E. In particular, we derive multilinear estimates for the Fréchet derivatives w.r.t. u.
The crucial tools here will be estimates for (multiple) pointwise products in our scale
of Sobolev spaces and a differentiation rule based on invariance properties of the
nonlocal operators.

To begin with, we recall some well-known basic properties and estimates con-
cerning Sobolev spaces. For s > d/2, where M is E or S and d = dimM/2, the
spaces Hs(M) turn into Banach algebras and the pointwise product of functions
w1, . . . , wn ∈ Hs(M) allows the estimate

‖w1w2 · · ·wn‖Ms ≤ C

n∑
i=1

(
‖wi‖Ms

∏
j �=i

‖wj‖Ms0
)

(4.1)

if s ≥ s0 > d/2. Moreover, for such values of s the composition of C∞-functions with
Hs-functions leads to Hs-functions again: e.g., Ψ ∈ C∞(M̄ × R) and w ∈ Hs(M)
imply Ψ(·, w(·)) ∈ Hs(M) (note the continuity of w by Sobolev’s embedding),[

w �→ Ψ(·, w(·))
]
∈ C∞(

Hs(M), Hs(M)
)
,(4.2)

and it holds that

‖Ψ(·, w(·))‖Ms ≤ C
(
1 + ‖w‖Ms

)
(4.3)

for all w from bounded subsets of Hs0(M), where the constant depends, in addition
to s0, s, and M , on Ψ and on upper bounds of ‖w‖s0 . In particular,

‖1/w‖Ms ≤ C
(
α, ‖w‖Ms0

)
‖w‖Ms(4.4)

for all w ∈ Hs(M) with w ≥ α > 0 on M . On the other hand, we have the following
counterpart of (4.1) for the product of functions w1 ∈ Hs1(M), . . . , wn ∈ Hsn(M):

‖w1w2 · · ·wn‖Ms ≤ c ‖w1‖Ms1 ‖w2‖Ms2 · · · ‖wn‖Msn(4.5)
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if 0 ≤ s ≤ s1, . . . , sn ≤ s0 with s1 + · · · + sn ≥ s + (n− 1)s0 and s0 > d/2.
In the following, for functions w defined on S let Ew be an extension into Ē, i.e.,

Ew|S = w, whereby the trace mapping theorem permits us to choose

E ∈ L
(
Hs(S), Hs+1/2(E)

)
for all s > 0.(4.6)

For R
m-valued functions we apply E componentwise.

Our first technical concern is the extension of the mapping u ∈ Us to a suitable
diffeomorphism ũ from Ē to Ωu ∪ Γu. For fixed, smooth u0 ∈ Diff(Ē,Ωu ∪ Γu),
(4.7) clearly defines a possible extension for all u in Us such that ‖u0|S − u‖s < ε for
sufficiently small ε > 0. However, ε depends on u0 in an uncontrolled way. Eventually,
this would restrict our existence results to evolutions in an open and dense subset of
Us containing Us ∩ C∞(S,Rm) but being uncharacterized otherwise. The following
lemma provides a way to avoid this unnecessary restriction.

Lemma 4.1. Let v ∈ Us, s > (m + 1)/2. Then there exist an Hs-neighborhood
Vs ⊆ Us of v and a map u0 ∈ C∞(Ē,Rm) such that for every u ∈ Vs the mapping

ũ := u0 + E(u− u0)(4.7)

defines a diffeomorphism of Ē onto Ω̄u.
Proof. By the definition (3.1) of U , every v ∈ U has an extension v1 ∈ Diff(Ē, Ω̄v)

and there exists an ε > 0 such that w ∈ Diff(Ē, Ω̄w|S ) for all w ∈ C1(Ē,Rn) with

‖w − v1‖ĒC1 ≤ ε. Thus it suffices to find u0 and Vs with

‖ũ− v1‖ĒC1 ≤ ε for all u ∈ Vs,(4.8)

where ũ is given by (4.7). Let

E1 ∈ L
(
C1(S,Rm), C1(Ē,Rm)

)
(4.9)

be an extension operator which maps C∞(S,Rm) into C∞(Ē,Rm). Setting

u0 = w1 + E1w2 with w1 ∈ C∞(Ē,Rm), w2 ∈ C∞(S,Rm)

to be chosen later, we get by Sobolev embedding Hs+1/2(E) ↪→ C1(Ē) and (4.6),
(4.9)

‖ũ− v1‖ĒC1 ≤ C‖u− u0‖SHs + ‖u0 − v1‖ĒC1

≤ C
(
‖w2‖SC1 + ‖u− u0‖SHs

)
+ ‖w1 − v1‖ĒC1

≤ C
(
‖w1 − v1‖ĒC1 + ‖w2 + w1 − v‖SHs + ‖v − u0‖SHs + ‖u− v‖SHs

)
.

Hence, letting δ = ε/(4C) and choosing first w1 with ‖w1−v1‖ĒC1 ≤ δ and, afterwards,
w2 with ‖w2 +w1−v‖SHs ≤ δ, then (4.8) is valid with Vs =

{
u | ‖u−v‖SHs < δ

}
.

Fix s > (m+1)/2, v ∈ Us, and Vs according to Lemma 4.1. Maintaining notation
and construction of this lemma, let

Ē � x → y = ũ(x) =
(
ũ1(x), . . . , ũm(x)

)
∈ Ω̄u, u ∈ Vs,(4.10)

be the corresponding diffeomorphism (4.7), J = (∂iũj) its Jacobian, and (gij) = J	J
the Euclidean metric tensor relative to the above coordinates. Furthermore let (gij) be
the inverse of (gij) and g = det(gij). Then we have (gij) = g−1(Cof J)	(Cof J), where
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Cof J = (aij) and aij is the algebraic complement of ∂iũj in J . Note that, uniformly
in u ∈ Vs, the function g is strictly positive in E. Moreover, for the transformation
ω = dΓu/dS of surface area elements via (4.10) and the outer normals n of Ωu and ν
of S, the following holds:

ω = |(Cof J)ν|, n ◦ ũ = (Cof J)ν/|(Cof J)ν|.

By definition, all of the quantities g, gij , aij , and gij are polynomials in the first
derivatives of ũ and, in the case of gij , additionally in 1/g. Consequently, remembering
(4.1)–(4.5) and the construction (4.7) of ũ, we obtain smooth dependence of these
quantities on u. More precisely, we have

[u �→ q] ∈ C∞(
Vs, H

s−1/2(E)
)
, q = g, gij , aij , or gij ,(4.11)

and (4.5) implies an estimate of the kth Fréchet derivative:

‖q(k)(u){u1, . . . , uk}‖Et−1/2 ≤ C‖u1‖s1 · · · ‖uk‖sk(4.12)

if 1/2 ≤ t ≤ s1, . . . , sk ≤ s and s1+· · ·+sk ≥ t+(k−1)s. The constant is independent
of u ∈ Vs and of u1 ∈ Hs1(S), . . . , uk ∈ Hsk(S). Similar arguments lead to

[u �→ p] ∈ C∞(
Vs, H

s−1(S)
)
, p = ω or n ◦ ũ,(4.13)

with an estimate of the derivatives corresponding to (4.12).
Now, introducing the transformed velocity potential ψ = ψ(u)f = ϕ(u, f)◦ ũ and

the transformed Laplace and boundary operator according to

L(u)ψ = ∂i
(√

ggij∂jψ
)
, B(u)ψ = ωψ + νi

√
ggij∂jψ,

the Robin problem (3.6) may be written as

L(u)ψ = 0 in E, B(u)ψ = ωf on S.(4.14)

Note that the values of ψ(u)f in E depend not only on u and f , but also on the
diffeomorphism ũ, i.e., on the chosen Vs. On the other hand, ψ(u)f |S is completely
determined by u and f . The symmetry of the operator h �→ ϕ(u)h w.r.t. the L2-inner
product on Γu implies ∫

S

wψ(u)f dS =

∫
S

ωf ψ(u)(wω−1) dS(4.15)

(recall that ω = dΓu/dS) and the operator F from (3.5) gets the form

F (u)f = (F1(u)f, . . . , Fm(u)f), Fi(u)f = aij∂jψ(u)f/
√
g.(4.16)

We start the investigation of F by discussing a generalized version of (4.14).
Note that we have to deal with two technical difficulties here concerning nonsmooth
coefficients and uniformity of the estimates for “large” subsets of Us. Therefore, we
need the following preparation.

Lemma 4.2. Let Ω ⊂ R
m be a bounded smooth domain, let x0 ∈ Ω, χ ∈ C∞

0 (Rm),
and let

χε(x) := χ((x− x0)/ε), x ∈ R
m.
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Moreover, let μ ∈ Hs(Ω) with s > m/2 and μ(x0) = 0. Then there is an s1 ∈ (m/2, s)
such that

lim
ε↓0

‖χεμ‖Ω
s1 = 0.

Proof. Note at first that

‖χε‖R
m

s ≤ Cεm/2−s.

This is immediately clear for integer s; the general case follows by interpolation. By
Sobolev’s embedding, we have μ ∈ Cα(Ω) for some α > 0, and consequently, due to
μ(x0) = 0,

|μ(x)| ≤ Cεα, x ∈ suppχε ∩ Ω.

Thus,

‖χεμ‖Ω
0 ≤ Cεα‖χε‖Ω

0 ≤ Cεα+m/2

and

‖χεμ‖Ω
s ≤ C‖χε‖Ω

s ‖μ‖Ω
s ≤ Cεm/2−s.

The assertion follows now from interpolation.
Lemma 4.3. Let s > (m + 1)/2, s0 ∈ ((m + 1)/2, s) be given.
For any v ∈ Us there is an Hs0-neighborhood Vs0 such that the boundary value

problem

L(u)w = ∂ihi in E, B(u)w = ωe + νihi on S

is uniquely solvable for u ∈ Vs0 ∩ Hs(S,Rm), e ∈ Hs−1(S), h ∈ Hs−1/2(E,Rm).
Moreover, we have

‖w‖Et ≤ C
(
‖h‖Et−1 + ‖e‖St−3/2

)
(4.17)

for t ∈ [1, s + 1/2] with C independent of h, e, and u varying in Hs-bounded subsets
of Vs0 ∩Hs(S,Rm).

Proof. 1. Fix v ∈ Us and choose Vs0 according to Lemma 4.1. Fix u ∈
Vs0 ∩Hs(S,Rm). For t = 1, the assertions are easily seen from the variational formu-
lation. For t = s+ 1/2, the assertions follow from the Hs-regularity theory of elliptic
boundary value problems (with operators in divergence form). Our coefficients

√
ggij ,

however, are only in Hs−1/2(E), which is slightly nonstandard. To prove the neces-
sary regularity result in this case, we can proceed as in the proof of Theorem A.14 in
[12], replacing the Hölder norms there by Sobolev norms. To control the error terms
occurring from the freezing of coefficients, we use the estimate

‖μij∂jw‖Es−1/2 ≤ C
(
‖μij‖Es1‖w‖

E
s+1/2 + ‖μij‖Es−1/2‖w‖Es1+1/2

)
(and a corresponding one for the boundary term) with s1 from Lemma 4.2. Recalling
that μij has a form to which that lemma applies, (4.17) can be established for t =
s + 1/2 by a usual perturbation argument, with a constant C = C(u). The general
case follows by interpolation.



ON A HELE–SHAW-TYPE EVOLUTION 387

2. To show uniformity w.r.t. u ∈ Vs0 ∩Hs(S,Rm), we proceed in a similar way:
For t = s + 1/2, pick u1, u2 ∈ Vs0 ∩Hs(S,Rm), denote the corresponding coefficients
by

√
gkg

ij
k , k = 1, 2, and estimate

∥∥(√g1g
ij
1 −√

g2g
ij
2

)
∂jw

∥∥E
s−1/2

≤ C
(
‖ũ1 − ũ2‖Es0+1/2‖w‖Es+1/2 + ‖ũ1 − ũ2‖Es+1/2‖w‖Es0+1/2

)
≤ C

(
‖u1 − u2‖Ss0‖w‖

E
s + ‖w‖E1

)
,

where an interpolation inequality has been used. A similar estimate can be given for
the boundary term. After shrinking Vs0 if necessary, one can show the uniformity by
another perturbation argument.

Under the assumptions of Lemma 4.3, as a first trivial consequence we obtain the
estimate

‖ψ(u)f‖Et , ‖ψ(u)f‖St−1/2 ≤ C‖f‖t−3/2(4.18)

for t ∈ [1, s + 1/2]. Note for later reference that these estimates continue to hold for
t ∈ [0, s + 1/2], provided s > max{m + 1, 5}/2. To see this, it is sufficient to show
(4.18) for t = 0; the general case follows by interpolation again. Fix u, pick φ ∈ L2(S)
arbitrary and define w ∈ H3/2(E) by

L(u)w = 0 in E, B(u)w = φ on S.

Then, by Green’s formula rewritten in the form∫
E

(
φ1L(u)φ2 dx− φ2L(u)φ1

)
dx =

∫
S

(
φ1B(u)φ2 − φ2B(u)φ1

)
dS

and (4.17) with t = 2,∫
S

φψ(u)f dS =

∫
S

B(u)wψ(u)f dS =

∫
S

wωf dS

≤ C‖w‖3/2‖f‖−3/2 ≤ C‖φ‖1/2‖f‖−3/2.

This proves the second estimate in (4.18). Analogously, picking ζ ∈ L2(E) and
defining v ∈ H2(E) by

L(u)v = ζ in E, B(u)w = 0 on S,

we get ∫
e

ζψ(u)f dx =

∫
E

L(u)wψ(u)f dx = −
∫
S

vωf dS ≤ C‖ζ‖0‖f‖−3/2.

This proves the first estimate in (4.18).
Furthermore, concerning the smooth dependence of ψ(u)f on u, Lemma 4.3 to-

gether with (4.11), (4.13) implies via a perturbation argument

[u �→ ψ(u)] ∈ C∞(
Vs,L

(
Ht−3/2(S), Ht(E)

))
.(4.19)

Replacing t by t− 3/2 and considering (4.16), leads to the following corollary.
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Corollary 4.4. Let s > (m + 1)/2 and −1/2 ≤ t ≤ s− 1. Then

[u �→ F (u)] ∈ C∞(
Us,L

(
Ht(S), Ht(S,Rm)

))
.

Recall that our ultimate goal is to prove the energy estimate (1.3). Since we
will translate spatial derivatives into Fréchet derivatives later, higher order Fréchet
derivatives will have to be estimated. The operator (u, f) �→ F (u)f is of order one
w.r.t. u and of order zero w.r.t. f ; note that the estimates (4.20) are standard for local
operators of this type, e.g.,

(u, f) �→ [x �→ Ψ(∇u(x))f(x)].

The nonstandard aspect here is that F involves the solution of an elliptic boundary
value problem, and therefore the same is true for its Fréchet derivatives.

Lemma 4.5. Let s > (m + 1)/2, u ∈ Us, and t ∈ [1, s] be given. Then for any
choice of s1, . . . sk+1 ∈ [t, s] with s1 + · · ·+sk+1 ≥ t+ks there exists a constant C > 0
such that for all f ∈ Hs−1(S) and all u1, . . . , uk ∈ Hs(S,Rm) the following holds:∥∥F (k)(u){u1, . . . , uk}f

∥∥
t−1

≤ C‖u1‖s1 · · · ‖uk‖sk‖f‖sk+1−1.(4.20)

The constant may be chosen independently of u as long as u varies in Hs-bounded
subsets of Us which are Hs0-closed for some s0 ∈ ((m + 1)/2, s).

Proof. 1. Fix v ∈ Us and a neighborhood Vs0 according to Lemma 4.3. We show
(4.20) with C independent of u ∈ Vs0 ∩Hs(S,Rm). To begin with, recall the estimate
(4.18) in the form

‖∇ψ(u)f‖St−1, ‖ψ(u)f‖Et+1/2 ≤ C‖f‖t−1(4.21)

for t ∈ [1, s]; concerning the estimate of ∇ψ along S in the limit case t = 1, note that
the boundary condition allows a representation of ∇ψ as a suitable linear combination
of ψ, f , and tangential derivatives of ψ. In view of (4.16) this implies the asserted
estimate (4.20) for the simplest case k = 0. To obtain similar estimates for the
Fréchet derivatives ψ(k) = ψ(k)(u){u1, . . . , uk}f , k = 1, 2, . . . , we have to examine
the corresponding derivatives of the coefficients in the transformed Laplacian and the
boundary terms. For ψ(k) we get

L(u)ψ(k) = −
∑

L(l)(u){ui1 , . . . , uij}ψ(k−l)(u){uij+1
, . . . , uik}f in E,

B(u)ψ(k) = −
∑

B(l)(u){ui1 , . . . , uij}ψ(k−l)(u){uij+1 , . . . , uik}f

+ ω(k){u1, . . . , uk}f on S,

(4.22)

where

L(l)(u){ui1 , . . . , uij}ϕ = ∂i
(
(
√
ggij)(k){ui1 , . . . , uij}∂jϕ

)
,

B(l)(u){ui1 , . . . , uij}ϕ = νi(
√
ggij)(k){ui1 , . . . , uij}∂jϕ + ω(l){ui1 , . . . , uij}ϕ,

and the sums are extended over 1 ≤ l ≤ k and all decompositions i1 < · · · < il
and ij+1 < · · · < ik of the indices 1, 2, . . . , n. In particular, if k = 1, we obtain for
ψ′ = ψ′(u){u1}f the boundary value problem

L(u)ψ′ = −∂i
(
(
√
ggij)′{u1}∂jψ

)
in E,

B(u)ψ′ = −νi
(√

ggij
)′{u1}∂jψ + ω′{u1}(f − ψ) on S.

(4.23)
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Thus, for any t ∈ [1, s], Lemma 4.3 implies

‖ψ′(u){u1}f‖Et+1/2 ≤ C
(
‖(√ggij)′{u1}∂jψ‖Et−1/2 + ‖ω′{u1}(f − ψ)‖St−1

)
.

To estimate the terms on the right-hand side, by (4.5) we obtain

‖(√ggij)′{u1}∂jψ‖Et−1/2 ≤ C‖(√ggij)′{u1}‖Es1−1/2‖∂jψ‖Es2−1/2,

and accordingly

‖ω′{u1}(f − ψ)‖St−1 ≤ C‖ω′{u1}‖Ss1−1

(
‖f‖s2−1 + ‖ψ‖Ss2−1

)
for any choice of s1, s2 ∈ [t, s] with s1 + s2 ≥ t + s. As

‖ψ‖Ss2−1, ‖∂jψ‖Es2−1/2 ≤ C‖ψ‖Es2+1/2 ≤ C ′‖f‖s2−1,

by (4.21), using (4.12), (4.13), we find∥∥(
√
ggij)′{u1}∂jψ

∥∥E
t−1/2

,
∥∥ω′{u1}(f − ψ)

∥∥S
t−1

≤ C ′‖u1‖s1‖f‖s2−1,

and hence

‖∇ψ′(u){u1}f‖St−1, ‖ψ′(u){u1}f‖Et+1/2 ≤ C‖u1‖s1‖f‖s2−1,

where the same remark applies to the estimate of ∇ψ′ along S as to (4.21). Using
(4.22), these estimates are extended inductively to ψ(k):

‖∇ψ(k)‖St−1, ‖ψ(k)‖Et+1/2 ≤ C‖u1‖s1 · · · ‖uk‖sk‖f‖sk+1−1,(4.24)

provided t ∈ [1, s], s1, . . . , sk+1 ∈ [t, s] with s1 + · · ·+sk+1 ≥ t+ks. In view of (4.16),
these estimates together with (4.11) and (4.5) imply the asserted estimate (4.20).

2. Let K ⊂ Us be Hs0-closed and bounded in Hs(S,Rm). As shown in part 1 of
this proof, K can be covered by Hs0-open sets Vs0,v, v ∈ K, such that (4.20) holds
uniformly for u ∈ Vs0,v ∩K. Now the assertion follows from the compactness of K in
Hs0(S,Rm).

Now we use invariance properties w.r.t. diffeomorphisms (cf., e.g., [10]). Let
τ ∈ Diff(S). Then by definition

ϕ(u, f) = ϕ(u ◦ τ, f ◦ τ) in Ωu.(4.25)

Recalling the definition of F , we have

(F (u)f) ◦ τ =
(
∇ϕ(u, f)

)
◦ (u ◦ τ),

F (u ◦ τ)(f ◦ τ) =
(
∇ϕ(u ◦ τ, f ◦ τ)

)
◦ (u ◦ τ)p;

consequently (4.25) implies

(F (u)f) ◦ τ = F (u ◦ τ)(f ◦ τ) on S.(4.26)

Any smooth vector field D on S, identified with a first order differential operator,
generates a one-parameter group of smooth diffeomorphisms t �→ τt with τt = id for
t = 0. Setting τ = τt in (4.26) and differentiating w.r.t. t at t = 0 gives

DF (u)f = F ′(u){Du}f + F (u)Df(4.27)
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for u ∈ Us and f ∈ Hs−1(S), s > (m+ 1)/2. Furthermore, by differentiation w.r.t. u,

DF (k)(u){. . . }f = F (k+1)(u){Du, . . . }f + F (k)(u){. . . }Df

+

k∑
j=1

F (k)(u){u1, . . . , uj−1, Duj , uj+1, . . . , uk}f,
(4.28)

where the dots indicate the arguments u1, . . . , uk ∈ Hs(S,Rm). We choose m smooth
vector fields D1, . . . , Dm on S such that

span{D1, . . . , Dm} = Tx for all x ∈ S

and use the multi-index notation Dα = Dα1
1 . . . Dαm

m , α = (α1, . . . , αm), for higher
order derivatives. Note that, for s ≥ 0 integer, we can use

(u, v)s =
∑
|α|≤s

(Dαu,Dαv)L2(S)

as the inner product generating the norm in Hs(S). As a consequence of (4.27),
(4.28), by induction we obtain a differentiation rule which resembles Leibniz’s rule at
an abstract level: For any multi-index α and u ∈ Us, f ∈ Hs−1(S), s > |α|+(m+1)/2,
it holds that

DαF (u)f =
∑

cβ1,...,βk+1
F (k)(u){Dβ1u, . . . ,Dβku}Dβk+1f,(4.29)

where the sum has to be extended over all integers k and systems of nonnegative
multi-indices β1, . . . , βk+1 with

0 ≤ k ≤ |α|, 1 ≤ |β1|, . . . , |βk|, β1 + · · · + βk+1 = α.(4.30)

The coefficients are nonnegative integers, in particular, cα = cα,0 = 1.

The differentiation rule (4.29) and Lemma 4.5 enable us to prove estimates involv-
ing spatial derivatives of F . Concerning the second part of the following proposition,
note that (4.31) provides a splitting of DαF (u)f according to (4.29), with Rα(u)f
containing the lower order terms, i.e., the terms involving spatial derivatives up to
order |α| − 1 only. Again, the results (as well as the techniques used in the proof) are
standard for local operators of corresponding types.

Proposition 4.6.

(i) Let s ≥ s0 > (m + 1)/2 integer, u ∈ Us+1. Then

‖F (u)f‖s ≤ C
(
‖u‖s+1‖f‖s0 + ‖f‖s

)
.

(ii) Assume additionally s ≥ s0 + 1 and let α be any multi-index with |α| = s.
Then we have

DαF (u)f = F (u)Dαf + F ′(u){Dαu}f + Rα(u)f,(4.31)

where the remainder term allows the estimate

‖Rα(u)f‖0 ≤ C
(
‖u‖s‖f‖s0 + ‖f‖s−1

)
.
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The constants in both estimates can be chosen uniformly as u varies in Hs0-closed,
Hs0+1-bounded subsets of Us+1.

Proof. We consider the more complicated situation (ii) only. According to (4.29),
the remainder term has a representation as a sum of terms

Iβ = F (k)(u){Dβ1u, . . . ,Dβku}Dβk+1f,

where the multi-indices satisfy (4.30) and additionally |βi| < s = |α|. Thus k ≥ 1
and |βi| ≥ 1 for at least two indices, say i = i1, i2. We estimate Iβ using (4.20) with
si = 1 + (1 − θi)(s0 − 1) and

θi = (|βi| − 1)/(s− 2), i = i1, i2, θi = |βi|/(s− 2), i /∈ {i1, i2}.

Then si ∈ [1, s0] and s1 + · · · + sk+1 = 1 + ks0; hence applying (4.20) (with t = 1,
s = s0) yields

‖Iβ‖0 ≤ C‖u‖|β1|+s1 . . . ‖u‖|β1|+sk‖f‖|βk+1|+sk+1−1.

Note that θ1 + · · · + θk+1 = 1 and set λ := θ1 + · · · + θk. From

|βi| + si ≤ (1 − θi)(s0 + 1) + θis

we get by norm convexity and Young’s inequality

‖Iβ‖0 ≤ C‖u‖k−1
s0+1

(
‖u‖s0+1‖f‖s−1

)1−λ(‖u‖s‖f‖s0)λ
≤ C‖u‖k−1

s0+1

(
‖u‖s0+1‖f‖s−1 + ‖u‖s‖f‖s0

)
.

This proves the assertion.
We conclude this section with remarks concerning the Neumann–Dirichlet opera-

tor A defined by (3.9), (3.10). It is obvious that the regularity properties of u �→ A(u)
are the same as for u �→ ψ(u)|S ; hence (4.19) reappears as

[u �→ A(u)] ∈ C∞(
Us,L

(
Ht(S), Ht+1(S)

))
(4.32)

for s > (m+1)/2 and −1/2 ≤ t ≤ s− 1. Moreover, the differentiation rule (4.28) also
holds for A, and ψN (u)f := ϕN (u)f ◦ ũ satisfies estimates parallel to (4.24). Hence
we get

‖A(k)(u){u1, . . . , uk}f‖t ≤ C‖u1‖s1 · · · ‖uk‖sk‖f‖sk+1−1,(4.33)

provided s1, . . . , sk+1 ∈ [t, s] with s1 + · · ·+sk+1 ≥ t+ks. Thus we have the following
analogue to Proposition 4.6.

Proposition 4.7.

(i) Let s ≥ s0 > (m + 1)/2 integer, u ∈ Us, and f ∈ Hs−1(S). Then

‖A(u)f‖s ≤ C
(
‖u‖s‖f‖s0−1 + ‖f‖s−1

)
with a uniform constant as long as u varies in Hs0-closed, Hs0-bounded subsets of
Us.

(ii) Assume additionally s ≥ s0+1, and let α be any multi-index with |α| = s−1.
Then we have

‖DαA(u)f −A(u)Dαf‖1 ≤ C
(
‖u‖s‖f‖s0−1 + ‖f‖s−2

)
,

where now the constant can be chosen uniformly as u varies in Hs0-closed, Hs0+1-
bounded subsets of Us+1.
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Finally, for later reference we point out the simple commutator estimate

‖A(u)(hf) − hA(u)f‖1 ≤ C‖h‖s‖f‖−1(4.34)

for u ∈ Us, f, h ∈ Hs(S), s > (m + 1)/2. Fixing any neighborhood Vs according to
Lemma 4.1, fixing u ∈ Vs with corresponding diffeomorphism (4.10), and considering

A(u)f = ψ(u)
(
f − ωA(u)f

)
|S

reduces (4.34) to

‖hψ(u)f − ψ(u)(hf)‖S1 ≤ C‖h‖s‖f‖−1.(4.35)

Let h̃ be the extension of h into E determined by solving the Dirichlet problem

L(u)h̃ = 0 in E, h̃ = h on S.

Clearly ‖h̃‖Es+1/2 ≤ C‖h‖s and ψ̃ := hψ(u)f − ψ(u)(hf) solves the boundary value
problem

L(u)ψ̃ = 2∂i
(√

ggij∂ih̃ ψ(u)f
)

in E,

B(u)ψ̃ = −ωνig
ij∂ih̃ ψ(u)f on S.

Hence by Lemma 4.3

‖ψ̃‖E3/2 ≤ C‖√ggij∂ih̃‖s−1/2‖ψ(u)f‖E1/2 ≤ C‖h‖s‖ψ(u)f‖E1/2.

Together with (4.18) this implies (4.35).

5. The main estimate. In this section we prove Hs a priori estimates for the
nonlinear operator F w.r.t. variable bilinear forms, which we define in what follows.
As already mentioned in the introduction, these estimates are the main ingredient in
the existence proof.

To begin with, for u ∈ Us, s > (m + 1)/2, we define

P (u)v := v ·
(
n(u) ◦ u

)
, N(u)w := w

(
n(u) ◦ u

)
,(5.1)

Λ(u)w := ∇Γu
(w ◦ u−1) ◦ u(5.2)

as the Euclidean inner product and multiplication with outer normal n(u) of Γu and
pullback of tangential gradient ∇Γu along Γu, respectively. If P (u), N(u), and Λ(u)
are considered as operators in v and w, their coefficients are smooth functions of u
and its first derivatives. Thus, using (4.1)–(4.5),

P (u) ∈ L
(
Ht(S,Rm), Ht(S)

)
, N(u) ∈ L

(
Ht(S), Ht(S,Rm)

)
,(5.3)

Λ(u) ∈ L
(
Ht(S), Ht−1(S,Rm)

)
(5.4)

depend smoothly on u ∈ Us for 0 ≤ t ≤ s − 1 and 1 ≤ t ≤ s, respectively. Clearly,
the operators P,N,Λ satisfy invariance properties as stated for F in (4.26). As a
consequence, the differentiation rule (4.27) and its corollary (4.28) are also true for
P,N,Λ; we make use of that without explicit mention. Further, recall that the pull-
back Δ(u)w of the Laplace–Beltrami operator ΔΓu on Γu according to (3.8) and the
operator H(u) according to (3.7) may be expressed as

Δ(u)w = Λi(u)
(
Λi(u)w

)
, H(u) = −γΛi(u)

(
ni(u) ◦ u

)
,
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respectively (see, e.g., [9, sect. 15.1]). Thus, recalling (4.32), the operator G defined
by (3.4), (3.7) satisfies

[u �→ G(u)] ∈ C∞(
Us, H

s−2(S)
)
,

provided s > (m + 3)/2. Together with Corollary 4.4 this implies the smoothness of
F as stated in (3.12).

In further considerations of this section we fix the integer s0 := [(m + 5)/2] + 1
and set

Ũs := Us ∩K for all s ≥ s0

with an Hs0-bounded and L2-closed subset K ⊆ Us0 . Note that

1 ≤ C‖u‖s0 ≤ C ′‖u‖s, ‖u‖C3(S) ≤ C

for all u ∈ Ũs, s ≥ s0. By transforming the well-known integration by parts formula
for the differential operator ∇Γu

onto S, we get the form∫
S

ωΛi(u)f dS = −
∫
S

ω(κΓu ◦ u)(ni(u) ◦ u)f dS.

Consequently, for u ∈ Ũs, s ≥ s0, and any f ∈ C1(S), we have∣∣∣∣
∫
S

Λi(u)f dS

∣∣∣∣ ≤ C

∫
S

|f | dS.(5.5)

Furthermore, note the estimates

‖G(u)‖s−2, ‖F(u)‖s−2 ≤ C‖u‖s for all u ∈ Ũs, s ≥ s0.

The following lemma is crucial, as it identifies the leading (first) order term in
the linearization of u �→ F (u) in an explicit way.

Lemma 5.1. Let s ≥ s0. Then for u ∈ Us, v ∈ Hs(S,Rm), and f ∈ Hs−1(S) it
holds that

F ′(u){v}f = F (u)
(
Λ(u)

(
P (u)v

)
· F (u)f

)
+ R(u){v}f,

where R allows the estimate

‖R(u){v}f‖0 ≤ C‖f‖s−1‖v‖0.

The constant is independent of u as long as u varies in Ũs.
Proof. As in the proof of Lemma 4.5 we can assume u ∈ Vs. We have

F ′
i (u){v}f = ∂iϕ

′ ◦ u + vj∂i∂jϕ ◦ u,

where ϕ′ = ϕ′(u, f){v} denotes the derivative w.r.t. u of the velocity potential ϕ =
ϕ(u, f) in Ωu. As

‖ϕ(u, f)‖C2(Ω̄u) ≤ C1‖ψ(u)f‖C2(Ē) ≤ C2‖ψ(u)f‖Hs+1/2(E) ≤ C3‖f‖s−1

by Sobolev’s embedding and (4.21), we obtain

‖vj∂i∂jϕ ◦ u‖S0 ≤ C‖f‖s−1‖v‖0.
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Furthermore, ϕ′ satisfies Δϕ′ = 0 in Ωu and the boundary condition

ϕ′ + n · ∇ϕ′ + n′ · ∇ϕ + (∂iϕ + nj∂i∂jϕ)vi ◦ u−1 = 0 on Γu,

where we have used the abbreviation

n′ = ∂ε
(
n(u + εv) ◦ (id + εv ◦ u−1)

)
|ε=0

for the variation of the outer normal on Γu. A simple calculation (cf. Lemma 1.1 in
[3]) shows

n′ = −∇Γu

(
n · v ◦ u−1

)
+ vi ◦ u−1∇Γuni.(5.6)

By retransformation onto the reference domain E, for ψ̃′ = ϕ′ ◦ u to satisfy the
boundary value problem, this implies

L(u)ψ̃′ = 0 in E, B(u)ψ̃′ = Λ(u)
(
P (u)v

)
· F (u)f + R1(u){v}f on S.

The operator R1 acts by pointwise multiplications w.r.t. the components of v, and
hence by the same reasoning as above we get the estimate

‖R1(u){v}f‖S0 ≤ C‖f‖s−1‖v‖0.

Thus the result follows.
For u ∈ Us let M(u) ∈ L

(
L2(S,Rm)

)
be the operator defined by

M(u)v := v − Λ(u)
(
ψ(u)P (u)v

)
.(5.7)

By (4.19) and (5.4),

M(u) ∈ L
(
Ht(S,Rm), Ht(S,Rm)

)
, 0 ≤ t ≤ s− 1,

depends smoothly on u ∈ Us, s > (m + 1)/2; for later reference we state explicitly

‖M (k)(u){u1, . . . , uk}v‖t ≤ C‖u1‖s · · · ‖uk‖s‖v‖t.(5.8)

Because of P (u)Λ(u) = 0 the operator M(u) constitutes an isomorphism in L2(S,Rm)
with inverse

M(u)−1v = v + Λ(u)
(
ψ(u)P (u)v

)
,(5.9)

and we have

C−1‖v‖0 ≤ ‖M(u)v‖0 ≤ C‖v‖0(5.10)

for all v ∈ L2(S,Rm) with a positive constant C independent of u ∈ Ũs.
The operator M will be used for the definition of our variable inner products;

see (5.12) below. The technique used here is comparable to the symmetrization of
hyperbolic systems. The following lemma exhibits the crucial property on which the
choice of M is based. Note that it relates, up to lower order terms, an inner product
for vector-valued functions to an inner product for scalar-valued ones.

Lemma 5.2. Let s > (m+ 3)/2. There exists a positive constant C such that for

all u ∈ Ũs and f ∈ L2(S), w ∈ L2(S,Rm)∣∣(M(u)F (u)f,M(u)w
)
0
−
(
f, P (u)w

)
0

∣∣ ≤ C‖f‖−1‖w‖0.(5.11)
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Proof. Reformulating the boundary condition satisfied by ψ(u)f , we have

P (u)
(
F (u)f

)
= f − ψ(u)f, F (u)f − Λ(u)

(
ψ(u)f

)
= N(u)

(
f − ψ(u)f

)
,

and consequently

M(u)F (u)f = F (u)f − Λ(u)ψ(u)
(
f − ψ(u)f

)
= N(u)

(
f − ψ(u)f

)
+ Λ(u)ψ(u)2f.

Further, recalling P (u)Λ(u) = 0,(
N(u)f,M(u)w

)
0

=
(
f, P (u)M(u)w

)
0

=
(
f, P (u)w

)
0
,

and we obtain(
M(u)F (u)f,M(u)w

)
0

=
(
f − ψ(u)f, P (u)w

)
0

+
(
Λ(u)ψ(u)2f,M(u)w

)
0
.

Together with

‖Λ(u)ψ(u)2f‖S0 , ‖ψ(u)f‖S0 ≤ C‖f‖−1

from (4.18), this immediately implies (5.11).
In view of (5.10), for every fixed u ∈ Us, s ≥ s0,

(v, w)s,u :=
(
M(u)v,M(v)w

)
0

+
∑
|α|=s

(
M(u)Dαv,M(u)Dαw

)
0

(5.12)

defines a inner product on Hs(S,Rm), which is equivalent to the usual one. This inner
product (and corresponding bilinear forms) will be used when we apply the abstract
existence theorem, Theorem 3.4, to our evolution problem. The next two lemmas
provide the properties necessary for this.

Lemma 5.3. Let s ≥ s0 and u ∈ Ũs.
(i) There exists a C > 0 independent of u such that for all v ∈ Hs+2(S,Rm)

and w ∈ Hs(S,Rm)

(v, w)s,u ≤ C‖v‖s+2‖w‖s−2.(5.13)

(ii) There exist λ0, c0 > 0 independent of u such that for all v ∈ Hs+4(S,Rm)
and λ ≥ λ0 (

v, (Δ2
0 + λ)v

)
s,u

≥ c0‖v‖2
s+2(5.14)

with the elliptic operator Δ0 := DiDi on S.
Proof. (i) We consider a typical term of (5.12) and show

Iα(v, w) :=
(
M(u)Dαv,M(u)Dαw

)
0
≤ C‖v‖s+2‖w‖s−2(5.15)

for smooth v, w and multi-indices α with |α| = s. Recalling (5.8), we have

‖M (k)(u){Dα1u, . . . ,Dαku}w‖0 ≤ C‖w‖0

if |α1|, . . . , |αk| ≤ 2. Thus, writing Dαw = DβDδw with |β| = 2 and |δ| = s − 2,
multiple application of the differentiation rule gives a representation

M(u)Dαw =
∑

(−1)|α0|Dα0M (k)(u){Dα1u, . . . ,Dαku}Dδw,(5.16)
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where |αi| ≤ 2 (in fact α0 + · · · + αk = β); hence

‖M (k)(u){Dα1u, . . . ,Dαku}Dδw‖0 ≤ C‖w‖s−2.

Furthermore, using the differentiation rule again, we have

‖M(u)Dαv‖2 ≤ C‖v‖s+2,

and consequently(
M(u)Dαw,Dα0M (k)(u){Dα1u, . . . ,Dαku}Dδv

)
0
≤ C‖v‖s+2‖w‖s−2.

This implies (5.15).
(ii) Using the same type of argument as in the proof of part (i), we obtain(

v,Δ2
0v
)
s,u

≥
(
DiDjv,DiDjv

)
s,u

− C‖v‖s+1‖v‖s+2,

and consequently(
v, (Δ2

0 + λ)v
)
s,u

≥ c0
(
‖v‖2

s+2 + λ‖v‖2
s

)
− C‖v‖2

s+1

with a positive constant c0. Hence applying

‖v‖2
s+1 ≤ σ‖v‖2

s+2 + C(σ)‖v‖2
s

with σ = c0/2 and choosing λ sufficiently large, we get the claim.
An immediate consequence of Lemma 5.3(i) is the existence of a continuous bilin-

ear form 〈·, ·〉s,u on Hs+2(S,Rm)×Hs−2(S,Rm) compatible with (·, ·)s,u; i.e., it holds
that 〈v, w〉s,u = (v, w)s,u for all v, w ∈ Hs+2(S,Rm). Further, we put for ε ∈ (0, 1]

〈v, w〉εs,u := 〈v, w〉s0,u + ε2〈v, w〉s,u.(5.17)

Lemma 5.4. We assume as above that s ≥ s0, ε ∈ (0, 1].
(i) For fixed u ∈ Us, the mapping 〈·, ·〉εs,u : Hs+2(S,Rm) × Hs−2(S,Rm) → R

constitutes a continuous, nondegenerate bilinear form, symmetric on Hs+2(S,Rm) ×
Hs+2(S,Rm).

(ii) With constants C > 0 independent of ε, u, v, w, one has for u,w ∈ Ũs and
v ∈ Hs+2(S,Rm)

C
(
‖v‖2

s0 + ε2‖v‖2
s

)
≤ 〈v, v〉εs,u ≤ C−1

(
‖v‖2

s0 + ε2‖v‖2
s

)
,(5.18)

〈v, v〉εs,u ≤ 〈v, v〉εs,w
(
1 + C‖u− w‖s0−2

)
.(5.19)

(iii) The weak convergences un ⇀ u ∈ Hs, wn ⇀ w ∈ Hs−2 imply for each
v ∈ Hs+2

〈v, wn〉εs,un
→ 〈v, w〉εs,u.

Proof. (i) It remains only to show nondegeneracy. First note that Lemma 5.3(ii)
implies for every v ∈ Hs+2 and λ ≥ λ0〈

v,Δ2
0v + λv

〉ε
s,u

≥ c0‖v‖2
0.

Let ε, u, w be fixed such that 〈v, w〉εs,u = 0 for every v ∈ Hs+2. Let λ be sufficiently
large and let v ∈ Hs+2 be the unique solution of the fourth order elliptic equation

Δ2
0v + λv = w on S.
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Thus we have

0 =
〈
v, w

〉ε
s,u

=
〈
v,Δ2

0v + λv
〉ε
s,u

≥ c0‖v‖2
0

for our special v; consequently it follows that v = 0 and then w = 0.
(ii) The estimates (5.18) are immediate consequences of (5.10). Concerning (5.19)

we note only that by (5.8)

‖M(u)f −M(w)f‖0 ≤ C‖u− w‖s0−2‖f‖0,

from which the assertion can easily be derived.
(iii) Fix v ∈ Hs+2, u ∈ Us, and, for the time being, w ∈ Hs. Using the represen-

tation (5.14), we get for |α| = s(
M(u)Dαv,M(u)Dαw

)
0

=
∑

(−1)|α0|(M(u)Dαv,Dα0M (k)(u){Dα1u, . . . ,Dαku}Dδw
)
0

with |αi| ≤ 2, |δ| = s − 2. Now assume un ⇀ u in Us; thus un → u in Hs′ with
s ∈ [0, s), and wn ⇀ w in Hs−2. According to the above remark,

〈
v, wn

〉
s,un

can

essentially be represented as a sum of terms∑
(−1)|α0|〈M(un)Dαv,Dα0M (k)(un){Dα1un, . . . , D

αkun}Dδwn

〉
H2×H−2

with α, αi, and δ as above, where 〈·, ·〉H2×H−2 denotes the L2-duality map on
H2(S,Rm) ×H−2(S,Rm). From the smoothness properties of M we conclude that

M(un)Dαv → M(u)Dαv in H2(S,Rm).(5.20)

Similarly, uniform boundedness of ‖wn‖s−2 and convergence un → u in Hs0−2 imply
via (5.8)

M (k)(un){Dα1un, . . . , D
αkun}Dδwn −M (k)(u){Dα1u, . . . ,Dαku}Dδwn → 0

in L2. Since strong continuity of linear operators implies weak continuity, we have

M (k)(u){Dα1u, . . . ,Dαku}Dδwn ⇀ M (k)(u){Dα1u, . . . ,Dαku}Dδw

weakly in L2, and consequently

Dα0M (k)(un){Dα1un, . . . , D
αkun}Dδwn ⇀ Dα0M (k)(u){Dα1u, . . . ,Dαku}Dδw

weakly in H−2. Together with (5.20), this completes the proof.
The following estimates, given in Lemma 5.5 and Proposition 5.6, form the core

of the existence proof. The techniques are quite standard (cf. (4.1), (4.5)), but it is
crucial to use the structure of G given by (5.25), which provides “coercivity w.r.t. the
normal component”; cf. (5.24). Finally, in the proof of Proposition 5.6 we will couple
the results concerning the operators F and G and use an integration by parts to deal
with the possible degeneration of γ.

Lemma 5.5. Let s ≥ s0 be an integer, let u ∈ Ũs, and assume γ = ρ2 with
ρ ∈ C∞(S).
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(i) There exist positive constants c, C, independent of u, such that

‖G′(u)v‖0 ≤ C
(
‖ρP (u)v‖2 + ‖v‖1

)
,(5.21) (

DP (u)v,DG′(u)v
)
0
≤ −c‖ρP (u)Dv‖2

1 + C‖v‖2
1(5.22)

for all v ∈ H2(S,Rm) and any derivative D = Dα, |α| ≤ 1.
(ii) Moreover, for |α| = s we have

‖DαG(u)‖−1 ≤ C
(
‖ρP (u)Dαu‖1 + ‖u‖s

)
,(5.23) (

P (u)Dαu,DαG(u)
)
0
≤ −c‖ρP (u)Dαu‖2

1 + C‖u‖2
s.(5.24)

Proof. (i) To show (5.21), (5.22) it suffices to construct a representation of the
form

G′(u)v = γΔ(u)(P (u)v) + ρR1(u)v + R2(u)v(5.25)

with operators R1(u), R2(u) such that

‖R1(u)v‖0, ‖R2(u)v‖1 ≤ C‖v‖1.(5.26)

For the part H ′(u)v of G′(u)v, which is a second order differential operator in v, this
is quite clear using the well-known fact that the linearization of the mean curvature
has Δ(u)(P (u)v) as its main part. Concerning G′(u)v we note

−G′(u)v = A(u)Δ′(u){v}γ + A′(u){v}Δ(u)γ,

Δ′(u){v}γ = 2ρΔ′(u){v}ρ + 4Λ′
i(u){v}ρΛi(u)ρ;

hence we have the representation −G′(u)v = ρR1(u) + R2(u) with

R1(u) := 2A(u)Δ′(u){v}ρ,
R2(u) := 2

(
A(u)(ρΔ′(u){v}ρ) − ρA(u)Δ′(u){v}ρ

)
+ 4A(u)Λ′

i(u){v}ρΛi(u)ρ + A′(u){v}Δ(u)γ.

Due to

‖Δ(u)ρ‖s0−2 ≤ C, ‖Δ′(u){v}ρ‖−1, ‖Λ′
i(u){v}ρ‖0 ≤ C‖v‖1,

the estimate (5.26) for R1 is now a consequence of

‖A(u)f‖0 ≤ C‖f‖−1, ‖Δ′(u){v}ρ‖−1 ≤ C‖v‖1,

whereas the estimate for R2 follows from the commutator estimate (4.34) together
with

‖A(u)f‖1 ≤ C‖f‖0, ‖A′(u){v}f‖1 ≤ C‖v‖1‖f‖s0−2.

(ii) Similar to part (i), it suffices to show the existence of a decomposition

DαG(u) = γΔ(u)(P (u)Dαu) + ρR1(u) + R2(u),

with operators R1, R2 allowing the estimates

‖R1(u)‖−1, ‖R2(u)‖0 ≤ C‖u‖s.
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Again, for the part DαH of DαG this is quite clear, where R1, R2 are now local
differential operators w.r.t. u of order s + 1 and s, respectively. Concerning DαG(u)
we write α = β + δ with |β| = 1, |δ| = s− 1 and calculate

−DαG(u) = 2ρDβA(u)Δ′(u){Dδu}ρ + Q1 + · · · + Q5

with

Q1 := Dβ
(
DδA(u)Δ(u)γ −A(u)DδΔ(u)γ

)
,

Q2 := DβA(u)
(
DδΔ(u)γ − Δ′(u){Dδu}γ

)
,

Q3 := 4DβA(u)Λ′
i(u){Dδu}ρΛi(u)ρ,

Q4 := 2Dβ
(
A(u)(ρΔ′(u){Dδu}ρ) − ρA(u)Δ′(u){Dδu}ρ

)
,

Q5 := 2(Dβρ)A(u)Δ′(u){Dδu}ρ.

Now we set R1 := 2DβA(u)Δ′(u){Dδu}ρ and R2 := Q1 + · · · + Q5. The necessary
estimates follow from the properties of A—in particular, Proposition 4.7 (ii) and
(4.34)—and from the additional commutator estimate

‖DδΔ(u)γ − Δ′(u){Dδu}γ‖0 ≤ C‖u‖s.

Now we are prepared to formulate and prove the following a priori estimates for
F w.r.t. the bilinear forms 〈·, ·〉s,u.

Proposition 5.6. Let s ≥ s0 be an integer. Then〈
v,F ′(u)v

〉
1,u

≤ C‖v‖2
1,(5.27) 〈

u,F(u)
〉
s,u

≤ C‖u‖2
s(5.28)

for all u ∈ Ũs and v ∈ H2(S,Rm) with constants independent of u and v.
Proof. We start with the proof of (5.27). Due to (5.21), for any derivative D∥∥DF ′(u)v − F ′(u){Dv}G(u) − F (u)

(
DG′(u)v

)∥∥
0
≤ C

(
‖v‖1 + ‖ρP (u)v‖2

)
,

and consequently by Lemma 5.1

DF ′(u)v = F (u)
(
F(u) · Λ(u)(P (u)Dv) + DG′(u)v

)
+ R(u)v,

where the remainder term satisfies

‖R(u)v‖0 ≤ C
(
‖v‖1 + ‖ρP (u)v‖2

)
.

Further, by (5.21) we have

‖DG′(u)v‖−1 ≤ C
(
‖v‖1 + ‖ρP (u)v‖2

)
,

and moreover

‖F(u) · Λ(u)(P (u)Dv)‖−1 ≤ C‖v‖1.

Hence by Lemma 5.2 it follows that〈
Dv,DF ′(u)v

〉
0,u

≤
(
P (u)Dv,F(u) · Λ(u)(P (u)Dv) + DG′(u)v

)
0

+ I(u)v2,
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where now

I(u)v2 ≤ C
(
‖v‖1 + ‖ρP (u)v‖2

)
‖v‖1.

Writing(
P (u)Dv,F(u) · Λ(u)(P (u)Dv)

)
0

=
1

2

∫
S

(
Λi(u)

(
Fi(u)(P (u)Dv)2

)
− (P (u)Dv)2Λi(u)Fi(u)

)
dS,

an integration by parts on S using (5.5) yields∣∣(P (u)Dv,F(u) · Λ(u)(P (u)Dv)
)
0

∣∣ ≤ C‖v‖2
1;

hence together with Lemma 5.5 and (5.22) we obtain the estimate (5.27).
Further, to prove (5.28) we use the abbreviation

‖u‖′s+1 :=

⎛
⎝‖u‖s +

∑
|α|=s

‖ρP (u)Dαu‖1

⎞
⎠ .

Using Proposition 4.6(ii) we write

DαF(u) = F (u)DαG(u) + F ′(u){Dαu}G(u) + R1(u),

where R1 allows the estimate

‖R1(u)‖0 ≤ C
(
‖u‖s‖G(u)‖s0−2 + ‖G(u)‖s−1

)
≤ C‖u‖′s+1

because of

‖G(u)‖s−1 ≤ C

⎛
⎝ ∑

|α|=s

‖DαG(u)‖−1 + ‖G(u)‖0

⎞
⎠

and (5.23). Further, using Lemma 5.1 we have

DαF(u) = F (u)
(
DαG(u) + F(u) · Λ(u)(P (u)Dαu)

)
+ R1(u) + R2(u),

where again

‖R2(u)‖0 ≤ C‖Dαu‖0 ≤ C‖u‖s,

and consequently 〈
R1(u) + R2(u), Dαu

〉
0,u

≤ C‖u‖′s+1‖u‖s.

By (5.11) we obtain〈
Dαu,DαF(u)

〉
0,u

=
(
P (u)Dαu,F(u) · Λ(u)(P (u)Dαu) + DαG(u)

)
0

+ I(u),

where I(u) allows the estimate

I(u) ≤ C‖Dαu‖0

(
‖DαG(u)‖−1 + ‖F(u) · Λ(u)(P (u)Dαu)‖−1

)
≤ C

(
1 + ‖u‖′s+1

)
‖u‖s.
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Finally, by an integration by parts as above we get(
Dαu,F(u) · Λ(u)(P (u)Dαu

)
0
≤ C‖u‖2

s.

Together with (5.24), this completes the proof.
The structure of F ′(u) as stated in Lemma 5.1 and the integration by parts

argument used in the above proof are necessary to cover the case of a γ which can
degenerate. If γ is strictly positive, the argumentation can be simplified by using
Lemma 5.1 to obtain the estimate

‖F ′(u){v}f‖0 ≤ C
(
‖P (u)v‖1 + ‖v‖0

)
‖f‖s0−1.(5.29)

To conclude this section we add some remarks about the case of a slip factor δ (intro-
duced in (2.8)) different from one. The nonlinear operator of the evolution equation
is now

F1(u) := F1(u)
(
G1(u)

)
with

F1(u)f :=
(
δ id + (1 − δ)N(u)P (u)

)
F (u)f, G1(u) = H(u) + δG(u).

Clearly, Lemma 4.5 and Proposition 4.6 continue to hold also for F1. To see that
F ′

1(u) satisfies an estimate parallel to (5.29) as well, note that due to (5.6) we have

‖P ′(u){v}w‖0 ≤ C
(
‖P (u)v‖1 + ‖v‖0

)
‖w‖s0−2,

‖N ′(u){v}z‖0 ≤ C
(
‖P (u)v‖1 + ‖v‖0

)
‖z‖s0−2.

This implies such an estimate for F1. Hence, by changing the definition (5.7) of M
into

M(u)v := v − δΛ(u)
(
ψ(u)P (u)v

)
and 〈·, ·〉s,u accordingly, we obtain the crucial estimates (5.27), (5.28) of Proposi-
tion 5.6 also for F1, at least in the case of strictly positive γ. Note that for δ = 0 the
bilinear forms 〈·, ·〉s,u are in fact independent of u.

6. Proofs of Theorems 3.1 and 3.2. As pointed out earlier, the abstract
existence results, Theorems 3.3 and 3.4, provide neither uniqueness of the solution
nor strong continuity. The corresponding statements of Theorem 3.1 have to be proved
separately. We start with a result on (Lipschitz) continuous dependence on the initial
data in a weak norm which immediately implies uniqueness but will also be used in the
proof of strong continuity. The techniques (Gronwall’s lemma and Taylor expansion,
together with the use of estimates obtained earlier) are quite standard.

Lemma 6.1. Fix Ũs0 ⊂ Us0 . Let u, v ∈ Cw

(
[0, T ], Hs0

)
∩ C1

w

(
[0, T ], Hs0−2

)
be

two solutions of (3.2) with

u(t), v(t) ∈ Ũs0 for t ∈ [0, T ].

There exists a real number C depending only on T and Ũs0 such that

‖u(t) − v(t)‖1 ≤ C‖u(0) − v(0)‖1 for all t ∈ [0, T ].(6.1)
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Proof. We put w(t) := v(t) − u(t) and remark

u, v ∈ C
(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−2

)
for 2 ≤ s < s0;

in particular, the mapping [0, T ] � t �→
〈
w(t), w(t)

〉
0,u(t)

is differentiable and we will

show

d

dt

〈
w(t), w(t)

〉
1,u(t)

≤ C
〈
w(t), w(t)

〉
1,u(t)

,(6.2)

which implies (6.1) via Gronwall’s lemma. Recalling that H is a quasi-linear second
order differential operator, we have

‖H ′(z)w‖1 ≤ C‖w‖3, ‖H ′′(z){w,w}‖1 ≤ C‖w‖3‖w‖s0−2

and, accordingly by (4.33),

‖G′(z)w‖1 ≤ C‖v‖3, ‖G′′(z){w,w}‖1 ≤ C‖w‖3‖w‖s0−2.

Consequently, together with Lemma 4.5 and (4.20), we obtain

‖F ′′(z){w,w}‖1 ≤ C‖w‖3‖w‖s0−2.(6.3)

Using Taylor’s theorem we have

w′(t) :=
d

dt
w(t) = F

(
v(t)

)
−F

(
u(t)

)
= F ′(u(t)

)
w(t) + R

(
u(t), v(t)

)
;

the remainder term therein can be estimated by (6.3) and norm convexity∥∥R(
u(t), v(t)

)∥∥
1
≤ C1‖w(t)‖s0−2‖w(t)‖3 ≤ C2‖w(t)‖s0‖w(t)‖1 ≤ C3‖w(t)‖1.

From this and (5.27), we obtain〈
w(t), w′(t)

〉
1,u(t)

=
〈
w(t),F ′(u(t)

)
w(t) + R

(
u(t), v(t)

)〉
1,u(t)

≤ C‖w(t)‖2
1.(6.4)

Furthermore, recalling (5.8), we have∥∥M ′(u(t)
)
{u′(t)}w(t)

∥∥
1
≤ C2‖u′(t)‖s0−2‖w(t)‖1.

Hence

‖u′(t)‖s0−2 = ‖F(u(t))‖s0−2 ≤ C

gives ∥∥M ′(u(t)
)
{u′(t)}w(t)

∥∥
1
≤ C‖w(t)‖1.(6.5)

Consequently, considering

1

2
d
dt

〈
w(t), w(t)

〉
1,u(t)

=
〈
w(t), w′(t)

〉
1,u(t)

+
(
M

(
u(t)

)
w(t),M ′(u(t)

)
{u′(t)}w(t)

)
1
,

we obtain the desired estimate (6.1) from (6.4), (6.5).
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We note a result on nonlinear interpolation, whose proof can be found in [2,
Prop. A.1 and Rem. A.2]. It will be crucial in the proof of strong continuity of the
solution in time.

Lemma 6.2. Let U ⊆ Hs(S,Rm), s ≥ 1, be an open set. Let Tα : U → H1(S,Rm)
be mappings with Tα(U∩Hs+1) ⊆ Hs+1; α runs through a certain index set I. Further,
assume Lipschitz continuity of Tα in H1 and boundedness of Tα in Hs+1:

‖Tα(u) − Tα(v)‖1 ≤ C‖u− v‖1 for all u, v ∈ U ,
‖Tα(u)‖s+1 ≤ C

(
1 + ‖u‖s+1

)
for all u ∈ U ∩Hs+1

with a constant C independent of u, v and α ∈ I. Then Tα(U ∩ Hs) ⊆ Hs and the
mappings Tα : U ⊆ Hs → Hs are continuous, uniformly w.r.t. α ∈ I.

Now we are prepared for the proof of our theorems. In many respects, it is parallel
to the proof of the main results in [10].

Proof of Theorem 3.1.
Step 1. We show that for any given ū0 ∈ Us0 and any integer s ≥ s0 there exist

T = T (ū0, s) > 0 and δ = δ(ū0, s) > 0 such that the Cauchy problem (3.2) has a
unique solution in the class

u ∈ Cw

(
[0, T ], Us

)
∩ C1

w

(
[0, T ], Hs−2

)
for all initial values u0 ∈ Hs with ‖u0 − ū0‖s0 ≤ δ. The uniqueness of the solu-
tion follows immediately from Lemma 6.1. In order to prove the existence we use
Theorem 3.4. With a fixed s ≥ s0 and an ε ∈ (0, 1] which will be fixed below, we put

X = Hs+2(S,Rm), ‖ · ‖X = ‖ · ‖s0+2 + ε‖ · ‖s+2;

Y = Hs(S,Rm), ‖ · ‖Y = ‖ · ‖s0 + ε‖ · ‖s;
Z = Hs−2(S,Rm), ‖ · ‖Z = ‖ · ‖s0−2 + ε‖ · ‖s−2.

Further, let Ũs be as in section 5 and assume that the given ū0 is an interior point.
Then, according to the results of section 5, for u ∈ Ũs the bilinear forms 〈v, w〉εs,u :
X × Z → R satisfy the requirements (H) of section 3; note that the constants C,M
in (H) can be chosen independently of ε. As in the proof of Theorem 3.3 we choose
w0 ∈ C∞(S,Rm) and R > 0 (both independent of ε) such that

‖w0 − u0‖s0 ≤ R/(32C5)1/2, {w0 + v | v ∈ B} ⊆ Ũs0

with the ball B :=
{
v ∈ Y | ‖v‖Y < R

}
. We set

〈v, w〉u := 〈v, w〉εs,w0+u, |||v||| = 〈v, v〉w0+v

and define a map H : B ⊆ Y → Z by

H(v) := F(v + w0), u ∈ B.

Further, the mapping H : B ⊆ Y → Z is weakly sequentially continuous and

〈w0 + v,H(v)〉 ≤ C1‖w0 + v‖2
Y ≤ C2

by Proposition 5.6. Moreover we have

‖H(v)‖Z ≤ C3‖v + w0‖Y ≤ C4
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and

|〈w0,H(v)〉v| ≤ C5‖w0‖X‖H(v)‖Z ≤ C6.

These estimates hold for all v ∈ B with constants C1, . . . , which may depend on
C,M,R, s and ū0, w0, but not on v. Gathering them, we obtain the inequality

2〈v,H(v)〉v + M‖H(v)‖Z |||v||| ≤ C7 for all v ∈ B ∩X.

Now, let u0 ∈ Hs(S,Rm) be given such that

‖u0 − ū0‖s0 ≤ R/(32C5)1/2.(6.6)

Hence, with r := R/(2C3)1/2 we find

|||u0 − w0||| ≤ C
(
‖u0 − ū0‖s0 + ‖ū0 − w0‖s0 + ε(‖u0‖s + ‖w0‖s)

)
≤ r

if ε is chosen according to

ε := min
{
1, r/4C(‖u0‖s + ‖w0‖s)

}
.(6.7)

By Theorem 3.4, applied to H, there exist T > 0, independent of u0 with (6.6), and
a solution

v ∈ Cw

(
[0, T ], B ∩Hs

)
∩ C1

w

(
[0, T ], Hs−2

)
of

dv(t)/dt = G(v(t)) for t ∈ [0, T ], v(0) = u0 − w0.

Then u := v + w0 is a solution of (3.2) with initial value u(0) = u0, and we have

‖u(t)‖s ≤ ‖w0‖s + ‖v(t)‖s ≤ ‖w0‖s + ε−1‖v(t)‖Y ,

which in view of (6.7) implies

‖u(t)‖s ≤ C(1 + ‖u(0)‖s).(6.8)

Step 2. Let u, ũ be two solutions of (3.2) in [0, T ] according to Step 1 with initial
values

u(0), ũ(0) ∈ U , U :=
{
v ∈ Hs | ‖v − ū0‖s0 ≤ δ

}
,

δ > 0 sufficiently small. Lemma 6.1 gives

‖u(t) − ũ(t)‖1 ≤ C‖u(0) − ũ(0)‖1.(6.9)

For fixed t ∈ [0, T ] we consider the evolution operator

U � u0 �→ Tt(u0) := u(t) ∈ Hs,

assigning to any initial value u0 the value of the corresponding solution of (3.2) at
time t. By Step 1 with s replaced by s + 1 we obtain Tt(U ∩Hs+1) ⊆ Hs+1 and the
estimate

‖Tt(u0)‖s+1 ≤ C
(
1 + ‖u0‖s+1

)
.(6.10)
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Equations (6.9) and (6.10) together with the interpolation result from Lemma 6.2
show the continuity of the mapping

U ∩Hs � u0 �→ u(t) ∈ Hs for s ≥ s0,

uniformly w.r.t. t ∈ [0, T ].
Step 3. To complete the proof of Theorem 3.1 it remains to show that the solutions

according to Step 1 actually belong to

u ∈ C
(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−2

)
.(6.11)

To do this, we approximate the initial value u0 = u(0) by a sequence un
0 ∈ Hs+1 such

that un
0 → u0 in Hs. Then by Step 1, for n sufficiently large, there exist solutions un

of (3.2) with un(0) = un
0 in the class

un ∈ Cw

(
[0, T ], Hs+1

)
∩ C1

w

(
[0, T ], Hs−1

)
,

which in particular implies

un ∈ C
(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−2

)
.

On the other hand, by Step 2, we have un(t) → u(t) in Hs uniformly w.r.t. t ∈
[0, T ]. Since the uniform limit of continuous functions is continuous again, this implies
(6.11).

Proof of Theorem 3.2. Let a solution u ∈ C([0, T ], Us)∩C1([0, T ], Hs−2) be given.
The set {u(t) | t ∈ [0, T ]} is compact in Hs and can be covered by the open sets
{v ∈ Hs | ‖v − u(t)‖s < δ(u(t), s+ 1)}, t ∈ [0, T ], where δ(u(t), s+ 1) are the same as
in the proof of Theorem 3.1. Choosing a finite subcover, we find from this theorem and
the autonomous character of (3.2) that there is a T0 > 0 such that for any t ∈ [0, T ]
with u(t) ∈ Hs+1, we have

u|[t,T1] ∈ C([t, T1], Us+1) ∩ C1([t, T1], H
s−1), T1 := min{t + T0, T}.

Proceeding stepwise, we obtain (i).
A similar compactness argument together with Theorem 3.1 and its proof ensures

the existence of T2 > 0 such that the following is true for all t ∈ [0, T ]: Problem
(3.2) is solvable on the time interval [0, T2] (in the class (3.13)) for all initial values z
sufficiently near u(t), and the mapping which assigns to z its corresponding solution
V (·, z) is continuous with values in C([0, T2], H

s). We choose ti ∈ [0, T ] such that
0 = t0 < · · · < tn = T , ti − ti−1 < T2, and open Hs-neighborhoods Ki of u(ti) small
enough to ensure that V is defined on Ki and V (ti−ti−1,Ki−1) ⊂ Ki, i = n−1, . . . , 1.
Now (ii) follows from the continuity of the composition of continuous maps.

Appendix. Proof of Theorem 3.4. We will construct a solution of (3.19)
by implicit time discretization, solving the nonlinear problems in each timestep by
Galerkin approximations. For this purpose, we need the following lemma.

Lemma A.1. For any K ∈ (0, r2) there is an ε0 > 0 such that for any ε ∈ (0, ε0]
and any v ∈ Y satisfying |||v|||2 ≤ K there is a u∗ ∈ B satisfying

u∗ = v + εG(u∗)(A.1)

and the estimate

|||u∗|||2 ≤ |||v|||2 + εβ
(
|||u∗|||2

)
≤ 2K.(A.2)
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Proof. For arbitrary v ∈ Y , u ∈ X ∩B we have

〈u, u− εG(u) − v〉u = |||u|||2 − ε〈u,G(u)〉u − (u, v)u

≥ |||u|||2 − ε

2
β
(
|||u|||2

)
+

εM

2
‖G(u)‖Z |||u|||2 − |||u|||‖v‖u

≥ 1

2

(
|||u|||2 − εβ

(
|||u|||2

)
− ‖v‖2

u + εM‖G(u)‖Z |||u|||2
)
.(A.3)

Choose ε0 > 0 such that for all ε ∈ (0, ε0] and for all s ∈ [0, 2C4K]

K − εβ(s) ≥ 0,(A.4)

1 − εβ′(s) ≥ 0.(A.5)

Assume now that v ∈ B, |||v|||2 ≤ K. Let

B := {u ∈ Y | ‖u‖2
Y ≤ 2KC3}

and note that B is a closed convex subset of B. Assume ‖u‖2
Y = 2KC3. Then

2C2K = C−1‖u‖2
Y ≤ |||u|||2 ≤ C‖u‖2

Y = 2C4K,

‖v‖2
u ≤ C‖v‖2

Y ≤ C2|||v|||2 ≤ C2K.

Therefore, for ε ∈ (0, ε0],

〈u, u− εG(u) − v〉u ≥ 1

2
(C2K − εβ(|||u|||2)) ≥ 0.(A.6)

Let {Mn} be an increasing sequence of finite-dimensional subspaces of X whose union
is dense in X. We fix n, choose a basis {e1, . . . , en} of Mn, and show that the
variational equality

〈w, un − εG(un) − v〉u = 0 for all w ∈ Mn(A.7)

has a solution un ∈ Mn ∩ B. Note that (A.7) is equivalent to g(un) = 0, where
g : Mn ∩ B → Mn is defined by

g(u) := Pu(u− εG(u) − v) with Pu(z) :=

n∑
i=1

〈ei, z〉uei.

Due to (H4), g is continuous. Assume now that g(u) �= 0 for all u ∈ Mn ∩ B. Then
we define the continuous operator f : Mn ∩ B → Mn by

f(u) := −
√

2KC3g(u)
/
‖g(u)‖Y .

As ‖f(u)‖2
Y = 2KC3, f maps the closed convex set Mn ∩ B into itself. Therefore, by

Brouwer’s fixed point theorem, there is a u ∈ Mn ∩ B such that u = f(u). Conse-
quently, ‖u‖2

Y = 2KC3, and from (A.6) we obtain the contradictory inequality

0 < |||u|||2 =
〈
u, f(u)

〉
u

= −
√

2KC3

‖g(u)‖Y
〈
u, g(u)

〉
u

= −
√

2KC3

‖g(u)‖Y
〈
u, u− εG(u) − v

〉
u
≤ 0.
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Therefore, (A.7) is solvable for every n, and as {un} is bounded in Y , we can assume
without loss of generality that un ⇀ u∗ in Y for some u∗ ∈ B. Passage to the limit
in (A.7) yields by (H4)

〈w, u∗ − εG(u∗) − v〉u∗ = 0 for all w ∈ Mn, n = 1, 2, . . . ,

and consequently by the density assumption

〈w, u∗ − εG(u∗) − v〉u∗ = 0 for all w ∈ X.

The nondegeneracy of 〈·, ·〉u∗ yields (A.1). To show the estimate (A.2), note first that

|||u∗|||2 ≤ lim n→∞|||un|||2 ≤ 2C4K.

Thus, the second inequality in (A.2) follows from (A.4). To show the first inequality
we assume without loss of generality that |||v||| ≤ |||u∗||| and use (A.5), (A.3), and (H4)
to obtain

|||u∗|||2 − εβ(|||u∗|||2) ≤ lim n→∞
(
|||un|||2 − εβ

(
|||un|||2

))
≤ lim n→∞

(
‖v‖2

un
−Mε‖G(un)‖Z |||un|||2

)
≤ ‖v‖2

u∗ −Mε‖G(u∗)‖Z |||u∗|||2

≤ |||v|||2 + M‖u∗ − v‖Z |||v|||2 −Mε‖G(u∗)‖Z |||u∗|||2

= |||v|||2 + Mε‖G(u∗)‖Z |||v|||2 −Mε‖G(u∗)‖Z |||u∗|||2 ≤ |||v|||2.

As further preparation for the proof of Theorem 3.4 we need the following simple
result on approximate solutions of the ordinary differential equation (3.18).

Lemma A.2. Assume u0 ∈ B and let ρ ∈ C1[0, T ] be the solution of (3.18).
There is an n0 ∈ N such that for n ≥ n0 and k = 1, . . . , n there are ρkn, rn ∈ R such
that

ρ0
n = |||u0|||2, ρkn + δnβ(ρk+1

n ) ≤ ρk+1
n ≤ ρ

(
(k + 1)δn

)
+ rn, rn → 0,

where δn := T/n.
Proof. If n0 is sufficiently large, n ≥ n0, there exist solutions ρn ∈ C1[0, T ] to the

initial value problems

ρ′n(t) = β
(
ρn(t)

)
+ 1/

√
n, ρn(0) = |||u0|||2.

We set

ρkn := ρn(kδn), k = 0, . . . , n.

Then

ρk+1
n − ρkn = δnρ

′
n(ξ) = δnβ(ρn(ξ)) + δnn

−1/2

for some ξ ∈
(
kδn, (k + 1)δn

)
. Moreover,∣∣β(ρn(ξ)

)
− β

(
ρk+1
n

)∣∣ ≤ S
∣∣ρn(ξ) − ρk+1

n

∣∣ ≤ S′n−1

with constants S, S′ independent of n. Thus

ρk+1
n − ρkn ≥ δnβ(ρk+1

n ) + δnn
−1/2 − S′δnn

−1 ≥ δnβ(ρk+1
n )



408 MATTHIAS GÜNTHER AND GEORG PROKERT

for n ≥ n0, n0 sufficiently large. Moreover, well-known results on the dependence of
the solution of ordinary differential equation’s on their right-hand sides ensure

rn := max
t∈[0,T ]

|ρn(t) − ρ(t)| → 0, n → ∞,

and hence

ρn(t) ≤ ρ(t) + rn, t ∈ [0, T ].

This proves the lemma.
Proof of Theorem 3.4. In a first step, we construct approximations uk

n for the
solution at time kT/n. Choose K ∈

(
maxt∈[0,T ] ρ(t), r

2
)

and choose ε0 > 0 such that
the assertions of Lemma A.1 and (A.5) hold. Let n0 ∈ N be at least as large as in
Lemma A.2 and assume additionally that n0 ≥ T/ε0 and

ρ(t) + rn ≤ K for n ≥ n0 and t ∈ [0, T ].

Now we fix n ≥ n0 and show the existence of uk
n ∈ B, k = 0, . . . , n, such that

uk+1
n = uk

n + δnG(uk+1
n ), k = 0, . . . , n− 1,

u0
n = u0,

|||uk
n|||2 ≤ ρkn,

where the ρkn are given by Lemma A.2. For k = 0, existence and the estimate are
clear. Assume now that u0

n, . . . , u
k
n are constructed according to these conditions for

0 ≤ k ≤ n− 1. Our assumptions imply δn ≤ ε0 and |||uk
n|||2 ≤ K; hence the existence

of uk+1
n follows from Lemma A.1. Moreover, by (A.2), |||uk+1

n |||2 ≤ 2K and

|||uk+1
n |||2 ≤ |||uk

n|||2 + δnβ
(
|||uk+1

n |||2
)
≤ ρkn + δnβ

(
|||uk+1

n |||2
)
;

hence

|||uk+1
n |||2 − δnβ

(
|||uk+1

n |||2
)
≤ ρk+1

n − δnβ
(
ρk+1
n

)
.

Note that (A.5) implies that the mapping s �→ s− δnβ(s) is monotone increasing on
[0, 2K], and hence |||uk+1

n |||2 ≤ ρk+1
n .

In a second step, we approximate u on [0, T ] by piecewise linear functions un and
piecewise constant functions un, n ≥ n0, given by

un(t) := uk
n + δ−1

n (t− kδn)(uk+1
n − uk

n) for kδn ≤ t ≤ (k + 1)δn,

k = 0, . . . , n− 1,

un(t) := uk+1
n for kδn < t ≤ (k + 1)δn, k = 0, . . . , n− 1, un(0) = u0

n.

Then

un(t) = u0 +

∫ t

0

G
(
un(τ)

)
dτ, t ∈ [0, T ],

and with a suitable constant S independent of t ∈ [0, T ] and n ≥ n0,

‖un(t)‖Y , ‖un(t)‖Y ≤ S.
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Consequently, ‖G
(
un(t)

)
‖Z is bounded independently of n and thus

‖un(t) − un(t′)‖Z ≤ L|t− t′|

with L independent of n. Hence, the sequence {un} is bounded and equicontinuous
with values in Z, and hence by Ascoli’s theorem, we can assume without loss of
generality that

un → u in C
(
[0, T ], Z

)
.

Moreover,

un(t) ⇀ u(t) in Y, t ∈ [0, T ].(A.8)

To show this, fix t ∈ [0, T ] and choose an arbitrary subsequence {un′(t)}. As it is
bounded in Y , it has a weakly convergent subsequence {un′′(t)} for which un′′(t) ⇀ u�

in Y , and hence also in Z, and thus u� = u(t). Now (A.8) follows from a standard
argument. An analogous argument shows

u ∈ Cw

(
[0, T ], Y

)
.

Furthermore, for t ∈
(
kδn, (k + 1)δn

]
we have

‖un(t) − un(t)‖Z = ‖un ((k + 1)δn) − un(t)‖Z ≤ Lδn,

hence also

un → u in C
(
[0, T ], Z

)
,

and, by the same arguments as for un above,

un(t) ⇀ u(t) in Y, t ∈ [0, T ].

As G is weakly sequentially continuous,

G
(
un(t)

)
⇀ G

(
u(t)

)
in Z, t ∈ [0, T ],

and G ◦ u ∈ Cw

(
[0, T ], Z

)
. If f is any bounded linear functional on Z, it follows that

f

(∫ t

0

G(un(τ)) dτ

)
=

∫ t

0

f
(
G(un(τ))

)
dτ →

∫ t

0

f
(
G(u(τ))

)
dτ, n → ∞,

and hence

f
(
u(t)

)
= f(u0) +

∫ t

0

f
(
G(u(τ))

)
dτ, t ∈ [0, T ].

Consequently,

f

(
u(t + h) − u(t)

h

)
→ f

(
G(u(t))

)
, h → 0,

i.e.,

u(t + h) − u(t)

h
⇀ G

(
u(t)

)
in Z, h → 0.
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Therefore u∈C1
w([0, T ], Z) and u satisfies (3.19). Finally, for t∈(kδn, (k+1)δn] we get

|||un(t)|||2 = |||uk+1
n |||2 ≤ ρ

(
(k + 1)δn

)
+ rn,

and hence

|||un(t)|||2 ≤ ρ(t + δn) + rn for 0 ≤ t ≤ T − δn.

Thus

|||u(t)|||2 ≤ lim n→∞|||un(t)|||2 ≤ ρ(t), t ∈ [0, T ].

For t → 0 this implies, in particular,

lim t→0|||u(t)|||2 ≤ lim
t→0

ρ(t) = |||u(0)|||2 ≤ lim t→0|||u(t)|||2;

hence |||u(t)||| → |||u(0)||| and consequently u(t) → u(0) in Y as t → 0.
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LIMITS OF SOLUTIONS OF p-LAPLACE EQUATIONS AS p GOES
TO INFINITY AND RELATED VARIATIONAL PROBLEMS∗
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Abstract. We show that the convergence, as p → ∞, of the solution up of the Dirichlet problem
for −Δpu(x) = f(x) in a bounded domain Ω ⊂ Rn with zero-Dirichlet boundary condition and with
continuous f in the following cases: (i) one-dimensional case, radial cases; (ii) the case of no balanced
family; and (iii) two cases with vanishing integral. We also give some properties of the maximizers
for the functional

∫
Ω f(x)v(x) dx in the space of functions v ∈ C(Ω) ∩W 1,∞(Ω) satisfying v|∂Ω = 0

and ‖Dv‖L∞(Ω) ≤ 1.
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1. Introduction. We study the asymptotic behavior, as p → ∞, of the solution
up of the Dirichlet problem{

−Δpu(x) = f(x) in Ω,
u(x) = 0 for x ∈ ∂Ω.

(1.1)

Here and henceforth Δp denotes the p-Laplacian, i.e.,

Δpu(x) :=

n∑
i=1

∂

∂xi

(
|Du|p−2 ∂u

∂xi

)
,

Ω ⊂ Rn is a bounded open set, the exponent p satisfies p > 1, and f ∈ C(Ω).
The PDE in (1.1) is the Euler–Lagrange equation of the maximization problem

for the functional

Ip(u) :=

∫
Ω

(
f(x)u(x) − 1

p
|Du(x)|p

)
dx over W 1,p

0 (Ω).(1.2)

As is well known, the two problems (1.1) and (1.2) are equivalent. The problem
(1.1) has a unique solution u ∈ W 1,p

0 (Ω), and so does (1.2). For the existence and
uniqueness of a solution of (1.1), we refer to [L]. According to the regularity results for
(1.1), the solution up has Hölder continuous derivatives in Ω. That is, up ∈ C1,γ(Ω)
for some constant γ ∈ (0, 1) which depends on p. Moreover, if the boundary ∂Ω is
smooth, then up ∈ C1,γ(Ω). See [U, D, Lb, T] for these regularity properties.

The asymptotic problem for (1.1) as p → ∞ appears in modeling of a torsional
creep phenomenon for a prismatic elastoplastic rod. This corresponds to the case
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where n = 2 and f is a positive constant (see, for instance, [BDM, K, PP]). In fact,
if f > 0, then the limit of up in C(Ω) exists and is the distance function from the
boundary ∂Ω, i.e., the function d(x) := dist (x, ∂Ω). See [IK, IL1, IL2, FIN, BK, JLM]
for some related topics.

This convergence result is then generalized to the case of general nonnegative
functions f by using the ∞-Laplace equation in the region ω where f vanishes, i.e,
solving the problem {

−Δ∞w(x) = 0 in ω,
w(x) = d(x) on ∂ω,

(1.3)

where

Δ∞w(x) :=

n∑
i,j=1

∂w(x)

∂xi

∂w(x)

∂xj

∂2w(x)

∂xi∂xj
and ω := int {x ∈ Ω | f(x) = 0}.

Due to [J] (see also [BB]), the problem (1.3) has a unique viscosity solution w ∈ C(ω)
which is Lipschitz continuous in ω and satisfies ‖Dw‖L∞(ω) ≤ 1. If we assume that

f ≥ 0 in Ω and define U ∈ C(Ω) by

U(x) =

{
d(x) for x ∈ Ω \ ω,
w(x) for x ∈ ω,

where w is the unique viscosity solution of (1.3), then U gives the limit of up in C(Ω)
as p → ∞. See Remark 5.2 in [BDM], where the above idea of finding the limit
function appears. See also [CIL] for an introduction to viscosity solutions.

In 1967 G. Aronsson initiated the study of the ∞-Laplace equation in his study
of absolutely minimal Lipschitz extensions (AMLE), also called canonical Lipschitz
extensions, to a domain ω of a function given on ∂ω. The AMLE and ∞-Laplace
equation are subjects which have seen intensive research activities recently. For these
developments, we refer to [A1, A2, CEG, ACJ].

As we will see in section 5, the family {up}p>q, with q > n, is precompact in C(Ω).
Therefore, {up}p>1 has a sequence {upj}j∈N convergent in C(Ω), where pj → ∞ as
j → ∞. However, it is not clear whether the whole family {up}p>1 is convergent in
C(Ω) or not, except in the case where f ≥ 0.

In this paper we address ourselves to the question of whether the whole family
{up}p>1 is convergent in C(Ω) as p → ∞. We present only partial positive answers
to this question in this paper.

In the cases where n = 1 or when Ω is an open ball and f is a radial function, we
show the convergence of up in C(Ω) and identify the limit function. In these cases,
our proof relies heavily on an explicit formula for up.

In the general situation we do not know any convenient formula for up and in our
approach we make a careful study (especially the structure of its maximizers) of the
variational problem for the functional

I∞(u) :=

∫
Ω

f(x)u(x)dx(1.4)

over the set X := {v ∈ C(Ω)∩W 1,∞(Ω) | v|∂Ω = 0, ‖Dv‖L∞(Ω) ≤ 1}. This variational
problem appears as the limit problem of (1.2). (See Proposition 5.3 below.) This
problem may be conceived of an L∞ variational problem because of the L∞ bound
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on the gradient Du and because it appears as the limit problem for the variational
problem (1.2) as p → ∞.

As a generalization of the case where f ≥ 0, we show the convergence of up in
C(Ω) under the condition of no balanced family, i.e., under the assumption that for
any nonempty family C of Lipschitz-connected components of {x ∈ Ω | f(x) 
= 0} that
stay away from ∂Ω and ω :=

⋃
{U ∈ C} (the union of the sets U , where U ranges over

all U ∈ C), ∫
ω

f(x) dx 
= 0.

Here the standard definition of connected components is not appropriate and we
have used the notion of Lipschitz-connected (L-connected, for short) components.
See section 2 for the precise assumption, (2.4), and for the definition of L-connected
components.

We also consider the case when∫
Ω

f(x) dx = 0 and f 
= 0.(1.5)

This is the case when the above assumption (the assumption of no balanced family)
is not satisfied. Also, this is the case related to the Monge–Kantorovich mass transfer
problem. The Monge–Kantorovich mass transfer problem has received much attention
in the last decade. We refer to [EG, BBD, ACBBV] for the recent developments of the
Monge–Kantorovich mass transfer problem and the role of the asymptotic problem
for (1.1) as p → ∞ in the mass transfer problem.

In the Monge–Kantorovich case, i.e., the case where (1.5) holds, we have only
two special results besides those in the cases when n = 1 or when Ω is an open ball
and f is radial. One of them says that if Ω is symmetric with respect to the origin
and f is an odd function, up converges in C(Ω), and the other roughly says that if
the diameter of Ω is relatively small compared with support of f , spt f , then the
convergence of up in C(Ω) is valid.

The main results of this paper, concerned with convergence of up, are precisely
stated in section 2. The proof of convergence in the one-dimensional case and the
radial case are presented in sections 3 and 4, respectively. Section 5 is devoted to
general properties of {up}, the set M of maximizers of the variational problem (1.4),
the set A of the limits of up, i.e.,

A = {U ∈ C(Ω) | there is a sequence pj → ∞ such that upj → U in C(Ω)}.(1.6)

Section 6 is devoted to further properties of the set M which are useful in our
study of convergence of up. These observations on M comprise the main results of
this paper together with our results on the convergence of up.

We prove our convergence results in the case of no balanced family and in the
vanishing integral case (the case of (1.5)), respectively, in sections 7 and 8.

We explain the notation in this paper. For a, b ∈ R we write a ∨ b = max{a, b},
a∧b = min{a, b}, a+ = a∨0, and a− = a∧0. We use the same notation for functions.
We denote by μ(A) the Lebesgue measure of the measurable set A ⊂ Rn. If needed,
we denote by μn(A) in order to specify the dimension of the space where A lives. We
denote by B(x, a) the closed ball of radius a with x as its center.

Finally, we remark that most of the results in this paper have already been an-
nounced in [IL4].
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2. Main results on the convergence. In this section we state our results
concerning the limit, as p → ∞, of the solution up of the Dirichlet problem{

−Δpu(x) = f(x) in Ω,
u(x) = 0 for x ∈ ∂Ω.

(2.1)

Here, as before, Ω ⊂ Rn is a bounded, open subset of Rn and f ∈ C(Ω).
To begin with, let us recall that the problem (2.1) has a unique solution up ∈

W 1,p
0 (Ω) for any p ∈ (1,∞). See, e.g., [L].

Let X = {v ∈ C(Ω) ∩ W 1,∞(Ω) | v|∂Ω = 0, ‖Dv‖L∞(Ω) ≤ 1}. We will recall
that the family {up}p>r is bounded in W 1,q(Ω) for any q > 1 and r > 1, which
guarantees that for any sequence pj → ∞, there is a subsequence {pjk}k∈N such that
upjk converges to a function U ∈ X uniformly in Ω as k → ∞.

We are interested in whether the following claim (C) is true or not:
(C) The solution up converges uniformly to a function U ∈ X as p → ∞.
We are not yet able to determine if the claim (C) is always true or not, and in

what follows we present a couple of sufficient conditions for (C) to hold as our main
results in this paper.

First we treat the case when n = 1. In this case we can not only show that (C)
holds but also identify the limit, as the next theorem states.

Let n = 1 and Ω = (0, a), where a > 0 is a constant. We define the function
F ∈ C1([0, a]) by

F (x) =

∫ x

0

f(t) dt.

We define

h(r) = μ({x ∈ Ω | F (x) < r}), β∗ = sup
{
r ∈ R | h(r) ≤ a

2

}
,

O− = {x ∈ Ω | F (x) < β∗}, O+ = {x ∈ Ω | F (x) > β∗}, O0 = {x ∈ Ω | F (x) = β∗},

k =

{
0 if μ(O0) = 0,
μ(O+)−μ(O−)

μ(O0)
if μ(O0) > 0.

Then we introduce the function U ∈ C([0, a]) by

U(x) =

∫ x

0

(1O−(t) − 1O+(t) + k1O0(t)) dt.(2.2)

Here and henceforth 1A denotes the characteristic function of the set A. We will see
in the next section (Lemma 3.5) that |k| ≤ 1, which assures that U ∈ X.

Theorem 2.1. If n = 1 and Ω = (0, a), then (C) holds and, moreover, the limit
function U is given by (2.2).

As above in the radial case we can show that (C) is valid and give an explicit
formula for the limit function.

Let a > 0 be a constant and assume that Ω = intB(0, a) and f(x) = g(|x|) for
some g ∈ C([0, a]).

We define O± ⊂ Rn by

O+ =

{
t ∈ (0, a)

∣∣∣∣
∫
B(0,t)

f(x) dx > 0

}
, O− =

{
t ∈ (0, a)

∣∣∣∣
∫
B(0,t)

f(x) dx < 0

}
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and U ∈ X by

U(x) =

∫ a

|x|
(1O+(t) − 1O−(t)) dt.(2.3)

Theorem 2.2. If Ω = intB(0, a) and f(x) = g(|x|) is a radial function, then
(C) holds and the limit function U is given by (2.3).

The next condition under which (C) holds is a generalization of the well-known
observation due to [BDM] and [J] (see Remark 5.2 of [BDM] and the uniqueness result
of [J]) that if f ≥ 0 in Ω, then (C) holds.

In order to make a precise statement, we need to introduce some notation.
We write

Ω+ = {x ∈ Ω | f(x) > 0}, Ω− = {x ∈ Ω | f(x) < 0}, and Ω∗ = Ω+ ∪ Ω−.

Note that spt f = Ω∗. Let O∗ denote the sets of all connected components of Ω∗.
We modify the notion of “connectedness” for a better formulation, as follows. Let

A,B ⊂ Rn. Define ρ(A,B) ∈ [0,∞] by setting

ρ(A,B) = inf{d(A,U1) + d(U1, U2) + · · · + d(Um, B) | U1, . . . , Um ∈ O∗},

where d(U, V ) = inf{|x − y| | x ∈ U, y ∈ V }. Notice that ρ(A,B) = ∞ if and only if
either A = ∅ or B = ∅. Since, as is easily checked,

ρ(A,B) = ρ(B,A) ≥ 0, ρ(A,B) ≤ ρ(A,C) + ρ(C,B)

for any A,B,C ⊂ Rn, if we write A ∼ B for A,B ⊂ RN when ρ(A,B) = 0, then this
relation ∼ defines an equivalence relation in O∗.

Using the above equivalence relation, we classify O∗ as

O∗ =
⋃

{Oλ | λ ∈ Λ},

where
(i) for each λ ∈ Λ, Oλ 
= ∅;
(ii) for each λ ∈ Λ, if U ∈ Oλ, then Oλ = {V ∈ O∗ | V ∼ U};
(iii) if λ1, λ2 ∈ Λ and λ1 
= λ2, then Oλ1

∩ Oλ2
= ∅.

We set

Gλ =
⋃

{U | U ∈ Oλ} for λ ∈ Λ

and define

Λ0 = {λ ∈ Λ | ρ(Gλ, ∂Ω) = 0}.

We note that {Gλ | λ ∈ Λ} classifies the set Ω∗. Each Gλ, with λ ∈ Λ, is called an
L-connected component of Ω∗.

As the proof of Lemma 7.1 below shows, if w is a Lipschitz continuous function on
Ω and Dw(x) = 0 for almost every (a.e.) x ∈ Ω∗, then w is constant on each Gλ, with
λ ∈ Λ. Conversely, one can show the following: Let U, V be connected components
of Ω∗ having the property that if w is Lipschitz continuous on Ω and Dw(x) = 0 for
a.e. x ∈ Ω∗, then w is constant on U ∪ V . Then U ∼ V , i.e., U, V are subsets of an
L-connected component Gλ. In light of these observations, we have chosen the term
“Lipschitz-connected” (L-connected).
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graph of f

0 α1 α2 α3 α4 α5 a

Fig. 1.

graph of f
α1

0 β α2 a

Fig. 2.

Our assumption on (f,Ω) is as follows:

For any nonempty Γ ⊂ Λ \ Λ0 and ω :=
⋃

{Gλ | λ ∈ Γ},(2.4)

∫
ω

f(x) dx 
= 0.

We call this condition that of no balanced family (of L-connected components).
Figure 1 gives pictorially an example of a function f which satisfies condition

(2.4). Here
∫ α2

α1
f(x) dx =

∫ α3

α2
f(x) dx = −

∫ α5

α4
f(x) dx is assumed. In this example,

Ω+ = (α1, α2)∪(α2, α3), Ω− = (α4, α5), and the L-connected components are Ω+ and
Ω−. The integral of f over ω = Ω+, Ω−, or Ω+ ∪ Ω− does not vanish. On the other
hand, the connected components of Ω∗ are (α1, α2), (α2, α3), and (α4, α5), and the
integral of f over ω = (α1, α2)∪ (α4, α5) vanishes. For this f , the condition similar to
(2.4) but with the usual notion of connectedness in place of that of L-connectedness
does not hold.

Next, we examine the function f given pictorially by Figure 2, where
∫ α2

α1
f(x) dx =

0 is assumed. For this function f , Ω∗ = (α1, α2) is the only L-connected component
of Ω∗, and condition (2.4) does not hold. This function f will appear in Example 3.2
in section 3.

Theorem 2.3. Under the assumption (2.4), (C) holds.
Regarding the cases when (2.4) is violated, we restrict ourselves to the case where∫

Ω

f(x) dx = 0 and f 
= 0,(2.5)

and

Ω+ and Ω− are connected.(2.6)
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Fig. 3. A case where b ≥ a + c.

We give two sufficient conditions for (C) to hold. One is a symmetry requirement
on (f,Ω). That is, we assume that

Ω is symmetric with respect to the origin, i.e., −Ω = Ω,(2.7)

and

f is an odd function, i.e., f(−x) = −f(x) for all x ∈ Ω.(2.8)

The asymptotic problem, as p → ∞, for (1.1) has applications to the Monge–
Kantorovich mass transfer problem. In the mass transfer problem, the condition of
vanishing integral, (2.5), is a natural compatibility condition, which means conserva-
tion of the total mass in the process of mass transfer.

The second one is the condition that

min

{
inf

x∈Ω+

sup
y∈Ω−

[d(x) + d(y) − |x− y|], inf
y∈Ω−

sup
x∈Ω+

[d(x) + d(y) − |x− y|]
}

≤ 0

(2.9)

holds. Here and henceforth d(x) denotes the distance between x and ∂Ω, i.e., d(x) =
dist (x, ∂Ω). See Figure 3.

Theorem 2.4. Under the assumptions (2.5) and (2.6), if either (2.7) and (2.8)
or (2.9) are satisfied, then (C) holds.

3. One-dimensional case. In this section we prove Theorem 2.1.
Let Ω = (0, a), where a > 0 is a constant, and f ∈ C([0, a]). Fix p > 1 and

consider the (p + 1)-Laplace equation with the inhomogeneous term f ,

d

dx

(
|u′(x)|p−1u′(x)

)
= −f(x) in Ω,(3.1)

together with the Dirichlet condition

u(0) = u(a) = 0.(3.2)

Here u′ denotes the derivative of u. The unique solution in W 1,p+1
0 (Ω) of (3.1) (i.e.,

the solution of (3.1)–(3.2)) is denoted by up+1 as in the previous sections.
We seek an explicit formula for up+1. For this, noting that u := up+1 ∈ C1([0, a])

and integrating both sides of (3.1), we get

|u′(x)|p−1u′(x) = |u′(0)|p−1u′(0) − F (x) for x ∈ Ω,

where F (x) :=
∫ x

0
f(t) dt.
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Let ψp be the inverse function of r �→ |r|p−1r. That is, ψp(s) = |s| 1p−1s for s ∈ R.
Note that as p → ∞,

ψp(r) →
{

1 for r > 0,
−1 for r < 0.

Observe, moreover, that for any ε ∈ (0, 1), the above convergence is uniform for
|r| ∈ [ε, ε−1].

Writing β = |u′(0)|p−1u′(0) and integrating the equality u′(x) = ψp(β − F (x)),
we get

u(x) =

∫ x

0

ψp(β − F (t)) dt for x ∈ Ω.(3.3)

Conversely, if we can choose β ∈ R so that∫ a

0

ψp(β − F (t)) dt = 0,

then the function u defined by (3.3) is in C1([0, a]) and the unique solution of (3.1)–
(3.2).

We show directly that there is a unique constant βp ∈ R such that∫ a

0

ψp(βp − F (t)) dt = 0,(3.4)

although this can be deduced from the general existence and uniqueness result for
solutions of (1.1).

Set

Gp(r) =

∫ a

0

ψp(r − F (t)) dt

for r ∈ R. Since the function ψp(r) is strictly increasing, the function Gp is strictly
increasing on R. In view of the monotone convergence theorem, we see that the
function Gp is continuous on R. If f = 0, then it is clear that βp = 0 gives the unique
solution of (3.4).

We may thus assume in what follows that f 
= 0. We set

F− = min
[0,a]

F, F+ = max
[0,a]

F, δ(F ) = F+ − F−.(3.5)

Note that F− ≤ 0 ≤ F+ and δ(F ) > 0. Since F− − F (x) ≤ 0 for all x ∈ Ω and
δ(F ) > 0, we have Gp(F−) < 0. Similarly, we have Gp(F+) > 0. Thus we see that
there is a unique constant βp ∈ (F−, F+) such that Gp(βp) = 0, and we find an explicit
formula

up+1(x) =

∫ x

0

ψp(βp − F (t)) dt for x ∈ Ω.(3.6)

Next, we study the asymptotic behavior of the function up+1 given by (3.6) as
p → ∞. Recall that

h(r) = μ({x ∈ Ω | F (x) < r}), β∗ = sup
{
r ∈ R | h(r) ≤ a

2

}
,

O− = {x ∈ Ω | F (x) < β∗}, O+ = {x ∈ Ω | F (x) > β∗}, O0 = {x ∈ Ω | F (x) = β∗}.
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We define open sets O(r) ⊂ R for r ∈ R by

O(r) = {x ∈ Ω | F (x) < r}.

We have (i) for r ≤ s, O(r) ⊂ O(s); (ii) O(F−) = ∅; (iii) O(r) = (0, a) for all r > F+;
and (iv)

⋃
t<r

O(t) = O(r),
⋂
t>r

O(t) = {x ∈ Ω | F (x) ≤ r}.

Consequently, we have (i) h is nondecreasing in R; (ii) h(r)=μ(∅)= 0 for r∈(−∞, F−];
(iii) h(r) = μ(Ω) = a for r ∈ (F+,∞); and (iv)

lim
t↗r

h(t) = h(r) ≤ μ({x ∈ Ω | F (x) ≤ r}) = lim
t↘r

h(t).

Now, property (iv) for h and the definition of β∗ implies that

h(β∗) ≤ a

2
≤ h(β∗ + 0) := lim

t↘β∗
h(t).

A key step in the proof of Theorem 2.1 is the following lemma.
Lemma 3.1. We have

lim
p→∞

βp = β∗.

We use three lemmas to prepare for the proof of Lemma 3.1.
Lemma 3.2. Let r ∈ (F−, F+). Then, if s > r (resp., s < r), then h(s) > h(r)

(resp., h(s) < h(r)).
Proof. We consider the case when s > r. We may assume that s ∈ (F−, F+). By

the intermediate value theorem, we have

F (y) =
s + r

2

for some y ∈ Ω. By the continuity of F , we can choose δ > 0 so that

F (x) ∈ (r, s) for all x ∈ ω := (y − δ, y + δ) ∩ Ω.

It is clear that ω ⊂ O(s), μ(ω) > 0, and ω ∩O(r) = ∅. Hence we have

h(s) = μ(O(s)) = μ(O(r)) + μ(O(s) \O(r)) ≥ μ(O(r)) + μ(ω) > μ(O(r)) = h(r).

The proof for the case when s < r is similar and will be omitted.
Lemma 3.3. Let β ∈ [F−, F+]. We have

|ψp(β − F (x))| ≤ ψp(max{δ(F ), 1}) ≤ ψ1(max{δ(F ), 1}) for x ∈ Ω.

Proof. For x ∈ Ω we have

−δ(F ) = F− − F+ ≤ β − F (x) ≤ F+ − F− = δ(F ),

and hence |ψp(β − F (x))| ≤ ψp(max{δ(F ), 1}) ≤ ψ1(max{δ(F ), 1}).
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Lemma 3.4. Let {αj} ⊂ [F−, F+] be a sequence converging to some r ∈ R, let
{pj} ⊂ (1,∞) be a sequence such that pj → ∞ as j → ∞, and let φ ∈ L1(Ω). Set

O−(r) = {x ∈ Ω | F (x) < r} and O+(r) = {x ∈ Ω | F (x) > r}.

Then ∫
O−(r)

ψpj (αj − F (x))φ(x) dx →
∫
O−(r)

φ(x) dx,∫
O+(r)

ψpj (αj − F (x))φ(x) dx → −
∫
O+(r)

φ(x) dx.

Proof. Fix x ∈ O−(r). Since r − F (x) > δ for some constant δ > 0, there is a
J ∈ N such that for all j ≥ J ,

δ < αj − F (x) ≤ δ(F ),

which implies that

lim
j→∞

ψpj
(αj − F (x)) = 1.

Now, in view of Lemma 3.3 and the Lebesgue convergence theorem, we conclude that

lim
j→∞

∫
O−(r)

ψpj (αj − F (x))φ(x) dx =

∫
O−(r)

φ(x) dx.

In the same way we see that

lim
j→∞

∫
O+(r)

ψpj (αj − F (x))φ(x) dx = −
∫
O+(r)

φ(x) dx.

Proof of Lemma 3.1. First of all we show that lim infp→∞ βp ≥ β∗. For this, we
argue by contradiction and thus suppose that r := lim infp→∞ βp < β∗. There is a
sequence {pj} ⊂ (1,∞) such that limj→∞ pj = ∞ and limj→∞ βpj

= r. By Lemma
3.2, we see that h(r + 0) < h(β∗) ≤ a/2. Therefore, setting A = {x ∈ Ω | F (x) ≤ r}
and B = {x ∈ Ω | F (x) > r}, we have

h(r + 0) = μ(A) <
a

2
, μ(B) = a− μ(A) >

a

2
.

Since |ψp(βp − F (x))| ≤ ψp(max{δ(F ), 1}) for x ∈ Ω by Lemma 3.3, we have

lim sup
j→∞

∣∣∣∣
∫
A

ψpj (βpj − F (x)) dx

∣∣∣∣
≤ lim sup

j→∞

∫
A

ψpj
(max{δ(F ), 1}) dx =

∫
A

dx = μ(A) <
a

2
.

Observe next by Lemma 3.4 that

lim
j→∞

∫
B

ψpj
(βpj

− F (x)) dx = −μ(B) < −a

2
.

Since

0 =

∫
A

ψpj (βpj − F (x)) dx +

∫
B

ψpj (βpj − F (x)) dx,
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we find that 0 < a
2 −

a
2 = 0, which is a contradiction. This shows that lim infp→∞ βp ≥

β∗.
An argument similar to the above shows that lim supp→∞ βp ≤ β∗, and we con-

clude that limp→∞ βp = β∗.
Recall that k = 0 if μ(O0) = 0, and otherwise

k =
μ(O+) − μ(O−)

μ(O0)
.

Lemma 3.5. We have |k| ≤ 1.
Proof. Since

μ(O−) = h(β∗) ≤ a

2
≤ h(β∗ + 0) = μ(O−) + μ(O0),

we have

0 ≥ 2μ(O−) − a = μ(O−) − μ(O+) − μ(O0),

0 ≤ 2μ(O−) + 2μ(O0) − a = μ(O−) + μ(O0) − μ(O+).

Hence, if k 
= 0, then

−1 ≤ k =
μ(O+) − μ(O−)

μ(O0)
≤ 1.

Proof of Theorem 2.1. We show first that the family {up}p>2 is uniformly bounded
and equicontinuous on Ω.

To see this, fix x ∈ Ω and p > 1. By Lemma 3.3, we have

|up+1(x)| ≤
∫ x

0

ψ1(max{δ(F ), 1}) dx ≤ aψ1(max{δ(F ), 1})

and |u′
p+1(x)| ≤ ψ1(max{δ(F ), 1}). These show that the family {up}p>2 is uniformly

bounded and equicontinuous on Ω.
Next we show that

lim
p→∞

ψp(βp − β∗) = k if μ(O0) > 0.(3.7)

In fact, we have

0 =

∫ a

0

ψp(βp − F (x))dx =

∫
O−

ψp(βp − F (x))dx

+ ψp(βp − β∗)μ(O0) +

∫
O+

ψp(βp − F (x))dx,

and then Lemma 3.4 yields

0 = μ(O−) − μ(O+) + lim
p→∞

ψp(βp − β∗)μ(O0),

which shows (3.7).
Since {up}p>2 is precompact in C([0, a]), we need to show only that for each fixed

x ∈ Ω,

up+1(x) → U(x) :=

∫ x

0

(1O−(t) − 1O+
(t) + k1O0

(t)) dt as p → ∞.
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graph of U

0 a/2 a

Fig. 4. A case where f > 0.

graph of F

0 α1 α2 a

Fig. 5.

Fix x ∈ Ω and note that

up+1(x) =

∫
(0,x)∩O−

ψp(βp − F (t)) dt +

∫
(0,x)∩O+

ψp(βp − F (t)) dt

+ ψp(βp − β∗)

∫
(0,x)∩O0

dt.

Sending p → ∞ and using Lemma 3.4, we get

lim
p→∞

up(x) =

∫
(0,x)∩Ω−

dt−
∫

(0,x)∩Ω+

dt + k

∫
(0,x)∩Ω0

dt = U(x).

Next we examine the limit function U in a few cases.

Example 3.1. We consider the case when f(x) > 0 for all x ∈ Ω. Then the
function F is strictly increasing in Ω. Therefore we have O− = (0, a/2) and O+ =
(a/2, a), and hence

U(x) =

∫ x

0

(
1O−(t) − 1O+(t)

)
dt =

{
x for 0 ≤ x ≤ a/2,
a− x for a/2 ≤ x ≤ a.

This is the distance function from ∂Ω = {0, a} and, as is well known, it is the unique
viscosity solution of |U ′(x)| = 1 in Ω and U(0) = U(a) = 0. See Figure 4.

Example 3.2. Let 0 < α1 < α2 < a satisfy α2 − α1 < a
2 . Let F satisfy F (x) = 0

for x ∈ [0, α1] ∪ [α2, a] and F (x) < 0 for x ∈ (α1, α2). (See Figure 5.) Then we have
β∗ = 0, O− = (α1, α2), O+ = ∅, and O0 = (0, α1) ∪ (α2, a). Furthermore, we have
k = −(α2 − α1)/(a− (α2 − α1)), and
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graph of U

α1

0 α2 a

Fig. 6. A case where |k| < 1.

graph of F

0 α−
1 α−

2 α+
1 α+

2 a

Fig. 7.

U(x) =

∫ x

0

(
1O−(t) + k1O0(t)

)
dt =

⎧⎨
⎩

kx for 0 ≤ x ≤ α1,
kα1 + x− α1 for α1 ≤ x ≤ α2,
k(x− a) for α2 ≤ x ≤ a.

See Figure 6.
Example 3.3. Let 0 < α−

1 < α−
2 < α+

1 < α+
2 < a satisfy α−

2 −α−
1 = α+

2 −α+
1 < a

2 .

Let F satisfy the following: F (x) = 0 for x ∈ [0, α−
1 ]∪ [α−

2 , α
+
1 ]∪ [α+

2 , a], F (x) < 0 for
x ∈ (α−

1 , α
−
2 ), and F (x) > 0 for x ∈ (α+

1 , α
+
2 ). (See Figure 7.) Then we have β∗ = 0

and k = (α+
2 − α+

1 − (α−
2 − α−

1 ))/(a − (α+
2 − α+

1 ) − (α−
2 − α−

1 )) = 0, and the limit
function U is given by

U(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x ∈ [0, α−
1 ] ∪ [α+

2 , a],
x− α+

1 for x ∈ (α−
1 , α

−
2 ),

α−
2 − α−

1 for x ∈ [α−
2 , α

+
1 ],

−x + α+
2 for x ∈ (α+

1 , α
+
2 ).

See Figure 8.

4. Radial case. In this section we give a proof of Theorem 2.2, which is rather
close to that of Theorem 2.1 presented in the previous section.

Let a > 0 and g ∈ C([0, a]), and define f ∈ C(B(0, a)) by f(x) = g(|x|). Set
Ω = intB(0, a).

We consider the Dirichlet problem for up+1 as in the previous section:{
−Δp+1u(x) = f(x) in Ω,

u(x) = 0 on ∂Ω.
(4.1)

By the uniqueness of the solution of (4.1), we see that the function up+1 is a radial
function, i.e., up+1(x) = vp(|x|) for some vp ∈ C([0, a]). By the regularity results for
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graph of U

0 α−
1 α−

2 α+
1 α+

2 a

Fig. 8. A case where k = 0.

(4.1), we know that up+1 ∈ C1,γ(Ω) for some γ ∈ (0, 1). In particular, we have

vp ∈ C1([0, a]), v′p(0) = 0.

The PDE (4.1) is now reduced to the following ODE for vp:

(
rn−1|v′(r)|p−1v′(r)

)′
= −rn−1g(r) in (0, a);(4.2)

and the boundary condition for vp is v′(0) = v(a) = 0. Integrating twice yields

v(r) = α−
∫ r

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt for all r ∈ [0, a]

and for some α ∈ R, where ψp ∈ C(R) is the function given by ψp(s) = |s| 1p−1s as in
the previous section. Here the constant α for v = vp should be determined by

α =

∫ a

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt.

Setting

αp =

∫ a

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt,

we have

vp(r) = αp −
∫ r

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt for r ∈ [0, r].

At this point one can check directly and easily that vp ∈ C1([0, a]), and it satisfies
(4.2) and the boundary condition v′p(0) = vp(a) = 0.

Completion of the proof of Theorem 2.2. It is easy to see that as p → ∞,

αp → α∗ :=

∫ a

0

(
1O+

(r) − 1O−(r)
)
dr,

and

vp(r) → V (r) := α∗ +

∫ r

0

(
1O−(t) − 1O+(t)

)
dt for each r ∈ [0, a],
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where

O+ =

{
t ∈ (0, a)

∣∣∣∣
∫ t

0

sn−1g(s) ds > 0

}
=

{
t ∈ (0, a)

∣∣∣∣
∫
B(0,t)

f(x) dx > 0

}
,

O− =

{
t ∈ (0, a)

∣∣∣∣
∫ t

0

sn−1g(s) ds < 0

}
=

{
t ∈ (0, a)

∣∣∣∣
∫
B(0,t)

f(x) dx < 0

}
.

As in the previous section, it is easy to show that the collection of functions
vp(|x|), with p > 1, is precompact in C(Ω). Thus the above pointwise convergence is
enough for us to conclude that up(x) converges to U(x) := V (|x|) uniformly for x ∈ Ω
as p → ∞.

Remark. Contrary to the general one-dimensional case, the limit function V has
the property that V ′(r) ∈ {−1, 0, 1} for all r ∈ [0, a].

Remark. We also have a convergence result in the case when Ω is an annulus and
f is radial. Indeed, let 0 < r1 < r2, Ω = {x ∈ Rn | r1 < |x| < r2}, and f(x) = g(|x|)
for some g ∈ C([r1, r2]). Let up be the solution of (1.1). We define, for r ∈ R,

G(r) =

∫ r

r1

tn−1g(t) dt for r ∈ [r1, r2], h(r) = μ1({t ∈ (r1, r2) | G(t) < r})

β∗ = sup

{
t ∈ (r1, r2)

∣∣∣h(r) ≤ r2 − r1
2

}
, O+ = {r ∈ (r1, r2) | G(r) > β∗},

O− = {r ∈ (r1, r2) | G(r) < β∗}, O0 = {r ∈ (r1, r2) | G(r) = β∗},

k =

{
0 for μ1(O0) = 0,
μ1(O+)−μ1(O−)

μ1(O0)
otherwise,

U(x) =

∫ |x|

r1

(
1O−(t) − 1O+

(t) + k1O0
(t)

)
dt for x ∈ Ω.

Then we have

up → U in C(Ω) as p → ∞.

We do not give the proof of this result here since it is a simple combination of the
proofs of Theorems 2.1 and 2.2.

5. General observations. Here we study a few general properties of the solu-
tion up of (1.1), the set A of the limits of up defined by (1.6), and the set M of the
maximizers of the variational problem (1.4), i.e.,

M =
{
v ∈ X | I∞(v) = sup

u∈X
I∞(u)

}
.

We start by observing that the estimate

‖Dup‖Lp(Ω) ≤ C(5.1)
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holds, where the constant C can be chosen independently of p for p > 2. Indeed,
using the test function u = up in the weak formulation of (1.1), we get∫

Ω

|Du|p dx =

∫
Ω

fudx,

and hence by the Poincaré inequality for functions in W 1,1
0 (Ω),∫

Ω

|Du|p dx ≤ ‖f‖L∞(Ω)‖u‖L1(Ω) ≤ C1‖f‖L∞(Ω)‖Du‖L1(Ω)

≤ C1‖f‖L∞(Ω)μ(Ω)

∫
Ω

|Du| dx

μ(Ω)
≤ C1‖f‖L∞(Ω)μ(Ω)

(∫
Ω

|Du|p dx

μ(Ω)

) 1
p

≤ C1‖f‖L∞(Ω)μ(Ω)1−
1
p ‖Du‖Lp(Ω),

where C1 is a positive constant independent of p. Hence, we obtain

‖Du‖Lp(Ω) ≤
(
C1‖f‖L∞(Ω)

) 1
p−1 μ(Ω)

1
p ,

which shows (5.1).
From the above estimate (5.1), we have the following well-known observations

(see [BDM], for instance).
Proposition 5.1. (i) For any q > n, the collection {up}p≥q is precompact in

C(Ω). In particular, for any sequence 1 < pk → ∞ there is a subsequence pkj such

that upkj
(x) → U(x) uniformly on Ω for some U ∈ C(Ω).

(ii) Let U ∈C(Ω) be as above. Then U ∈W 1,∞(Ω) and |DU(x)| ≤ 1 for a.e. x ∈
Ω.

Proof. We first show (i). For p ≥ q, we have

‖Dup‖Lq(Ω) ≤ μ(Ω)
1
q−

1
p ‖Dup‖Lp(Ω).(5.2)

For q > n, by the Sobolev embedding theorem (see, e.g., [GT]), we have

‖up‖C0,γ(Ω) ≤ Cq‖Du‖Lq(Ω)

for some constants γ ∈ (0, 1) and Cq > 0. These together with (5.1) imply that for
any q > n, the collection {up}p≥q is precompact.

Next, we prove (ii). The estimates (5.1) and (5.2) and the weak compactness of
the balls in W 1,q

0 (Ω), with 1 < q < ∞, guarantee that U ∈ W 1,q
0 (Ω) for any q ∈ (1,∞).

This weak compactness, (5.1), and (5.2) yield

‖DU‖Lq(Ω) ≤ μ(Ω)
1
q for any q > 1,

which implies that |DU(x)| ≤ 1 almost everywhere in Ω.
Recalling the definition (1.6) of the set A, from Proposition 5.1 we immediately

have the following proposition.
Proposition 5.2. (i) A 
= ∅ and A ⊂ X. (ii) up → U in C(Ω) as p → ∞ if and

only if A = {U}.
Next, we consider the functional I∞(u) for u ∈ X defined by (1.4) and study the

set M of maximizers of this functional.
The following proposition states a basic relation between A and M.
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Proposition 5.3. (i) A ⊂ M. (ii) As p → ∞, Ip(up) → supu∈X I∞(u).

Proof. Let U ∈ A and pj → ∞ be such that upj → U in C(Ω) as j → ∞. As
p = pj → ∞, we have

Ip(up) = I∞(up) −
1

p

∫
Ω

|Dup|p dx ≤ I∞(up) → I∞(U).

Fix any V ∈ X and observe that as p → ∞,

Ip(up) ≥ Ip(V ) = I∞(V ) − 1

p

∫
Ω

|DV (x)|p dx → I∞(V ).

Hence we get

I∞(U) ≥ lim sup
j→∞

Ipj
(upj

) ≥ lim inf
p→∞

Ip(up) ≥ I∞(V ).

Since U ∈ X by Proposition 5.2, we thus conclude that

I∞(U) = sup
u∈X

I∞(u), lim
j→∞

Ipj (upj ) = sup
u∈X

I∞(u),

and A ⊂ M. Using (i) of Proposition 5.1, we deduce that

Ip(up) → sup
u∈X

I∞(u) as p → ∞.

Proposition 5.4. If u ∈ A, then u satisfies

−Δ∞u(x) ≤ 0 in Ω \ Ω+ and − Δ∞u(x) ≥ 0 in Ω \ Ω−

in the viscosity sense.

Proof. We prove only the first inequality, as the proof of the other inequality is
similar. We set W = Ω \ Ω+. Let ϕ ∈ C2(W ) and x̂ ∈ W . We assume that u − ϕ
attains a strict maximum at x̂ and will show that −Δ∞ϕ(x̂) ≤ 0. For this, we argue
by contradiction, and hence we assume that −Δ∞ϕ(x̂) > 0. Here we may assume
that u(x̂) = ϕ(x̂).

Since u ∈ A, there is a sequence 1 < pj → ∞ such that upj → u in C(Ω) as
j → ∞. Fix an r > 0 so that B(x̂, r) ⊂ W and Δ∞ϕ(x) < 0 for all x ∈ B(x̂, r).
Since

Δpϕ(x) = |Dϕ(x)|p−4(|Dϕ(x)|2Δϕ(x) + (p− 2)Δ∞ϕ(x)) for x ∈ B(x̂, r),

and

min
B(x̂, r)

|Dϕ| > 0 and max
B(x̂, r)

Δ∞ϕ < 0,

we see that if p is large enough, then Δpϕ(x) < 0 for all x ∈ B(x̂, r).

Set ω = intB(x̂, r). Choose an ε > 0 so that (u − ϕ)|∂ω < −3ε. If we choose
j ∈ N large enough, then we have (upj − ϕ)|∂ω < −2ε and (upj − ϕ)(x̂) > −ε. Fix
such a j and set v = upj + ε and q = pj for notational simplicity. We may assume as
well that Δqϕ(x) < 0 for all x ∈ ω.
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Since f ≤ 0 in ω and (v − ϕ)+ ∈ W 1,q
0 (ω), we have∫

ω

|Dv|q−2Dv ·D(v − ϕ)+ dx =

∫
ω

f(v − ϕ)+ dx ≤ 0,

∫
ω

|Dϕ|q−2Dϕ ·D(v − ϕ)+ dx = −
∫
ω

Δqϕ(v − ϕ)+ dx > 0,

and hence ∫
ω+

(|Dv|q−2Dv − |Dϕ|q−2Dϕ) ·D(v − ϕ) dx < 0,

where ω+ = {x ∈ ω | v(x) > ϕ(x)}. On the other hand, because of the convexity of
the function, ξ �→ |ξ|q, we know that∫

ω+

(|Dv|q−2Dv − |Dϕ|q−2Dϕ) ·D(v − ϕ) dx ≥ 0,

which contradicts the above inequality.
Remark. Let u ∈ A. By an argument similar to the above proof, we can prove

that min{|Du(x)| − 1,−Δ∞u(x)} ≤ 0 in Ω in the viscosity sense. However, we have
a stronger conclusion that

|Du(x)| ≤ 1 in Ω in the viscosity sense.(5.3)

Indeed, if u ∈ A, then u ∈ X, which implies that u satisfies (5.3) (see, for instance,
Proposition 3.4 in [Ln]).

Definition. Let Y ⊂ X. We call Y essentially single if for any u, v ∈ Y , u = v
on spt f .

Proposition 5.5. Let Y ⊂ X be such that A ⊂ Y . If Y is essentially single,
then A is a singleton. In particular, the whole family {up}p>1 converges in C(Ω).

The following proof has already been explained in the introduction.
Proof. Let u, v ∈ A. By assumption, we have u = v on spt f . By Proposition

5.4, we see that u and v are both viscosity solutions of

−Δ∞w(x) = 0 in Ω \ spt f.

By the uniqueness result for this PDE due to [J], we conclude that u = v in Ω\ spt f ,
which guarantees that u = v in Ω.

6. Properties of the set M. In this section we collect some properties of the
set M of the maximizers of the functional I∞.

Proposition 6.1. Let u ∈ M. Then

u(x) = inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} for all x ∈ Ω+(6.1)

and

u(x) = sup{u(y) − |x− y| | y ∈ Ω+ ∪ ∂Ω} for all x ∈ Ω−.(6.2)

A proposition similar to this can be found in [EG] (Lemma 3.1 of [EG]), the proof
of which can be easily adapted to our case, but we give a proof here for completeness.
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Proof. We prove only (6.1), since the proof of (6.2) is similar. Let u ∈ X. Then

|u(x) − u(y)| ≤ |x− y| for all x, y ∈ Ω,

from which we have

u(x) ≤ inf{u(y) + |x− y| | y ∈ A}

for all x ∈ Ω and any A ⊂ Ω. In particular, we have

u(x) ≤ inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} for all x ∈ Ω.(6.3)

Now, let u ∈ M. Since M ⊂ X, inequality (6.3) holds with this u. Setting

v(x) = inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} for x ∈ Ω,

we see immediately from the definition of v that

v(x) − v(y) ≤ |x− y| for all x, y ∈ Ω,

which implies that |Dv(x)| ≤ 1 almost everywhere in Ω. Also, we have

u(x) ≤ v(x) for all x ∈ Ω, by (6.3),

and

v(x) ≤ u(x) for all x ∈ Ω− ∪ ∂Ω, by the definition of v.

Combining these we find that u(x) = v(x) for all x ∈ Ω−∪∂Ω. In particular, v(x) = 0
for all x ∈ ∂Ω. Thus we see that v ∈ X.

Next note that I∞(u) = maxw∈X I∞(w) ≥ I∞(v). On the other hand, since u = v
on Ω− and v ≥ u on Ω+, we get I∞(u) ≤ I∞(v). Hence, we see that I∞(v) = I∞(u).
Now, since ∫

Ω+

f(x)u(x) dx =

∫
Ω+

f(x)v(x) dx

and v ≥ u on Ω+, we conclude that u = v on Ω+, which completes the proof.
Remark. As one can see from the above proof, the set Ω− ∪ ∂Ω in (6.1) can be

replaced by any set A ⊂ Ω satisfying Ω− ∪ ∂Ω ⊂ A. Similarly, the set Ω+ ∪ ∂Ω in
(6.2) can be replaced by any set A ⊂ Ω satisfying Ω+ ∪ ∂Ω ⊂ A.

Proposition 6.2. Let u, v ∈ M and k ≥ 0. Then u∧ (v + k), (u− k)∨ v ∈ M.
Proof. It is easy to see that u ∧ (v + k), (u− k) ∨ v ∈ X. In particular, we have

max{I∞(u ∧ (v + k)), I∞((u− k) ∨ v)} ≤ I∞(u) = I∞(v).

Noting that u ∧ (v + k) = u − (u − v − k)+ and (u − k) ∨ v = v + (u − v − k)+,
we see that

I∞(u∧(v+k)) = I∞(u)−I∞((u−v−k)+), I∞((u−k)∨v) = I∞(v)+I∞((u−v−k)+),

and hence

0 ≤ I∞(u) − I∞(u ∧ (v + k))

= I∞((u− v − k)+) = I∞((u− k) ∨ v) − I∞(v) ≤ 0.
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Consequently, we have

I∞(u ∧ (v + k)) = I∞((u− k) ∨ v) = I∞(u),

Thus we conclude that u ∧ (v + k), (u− k) ∨ v ∈ M.
The following proposition establishes the existence of the maximal and minimal

elements of M.
Proposition 6.3. Define V,W : Ω → R by

V (x) = sup{v(x) | v ∈ M} and W (x) = inf{v(x) | v ∈ M}.

Then V,W ∈ M.
Proof. We prove only the identity for V , since the proof of the other is similar.
First of all, note that V ∈ X. Choose a dense subset {yk}k∈N of Ω. For each

k ∈ N we choose a sequence {vkj}j∈N ⊂ M such that limj→∞ vkj(yk) = V (yk). By
the definition of V , we have v(x) ≤ V (x) for all x ∈ Ω and v ∈ M. Therefore, we find
that

V (yl) = sup{vkj(yl) | k, j ∈ N} for l ∈ N.

Define w ∈ X by setting

w(x) = sup{vkj(x) | k, j ∈ N} for x ∈ Ω.

It is immediate to see that V = w on Ω.
We intend to show that V ∈ M. Relabeling the countable set {vkj}k,j∈N, we find

a sequence {vm}m∈N ⊂ M such that

V (x) = sup{vm(x) | m ∈ N} for all x ∈ Ω.

We define the nondecreasing sequence {wj}j∈N by induction as follows:

w1 = v1, wj+1 = wj ∨ vj+1 for j ∈ N.

By Proposition 6.2, we see that wj ∈ M for all j ∈ N. It is clear that

lim
j→∞

wj(x) = V (x) for all x ∈ Ω.

Therefore we see by the monotone convergence theorem that

I∞(V ) = lim
j→∞

I∞(wj) = max
v∈X

I∞(v)

and conclude that V ∈ M.
Proposition 6.4. For any u, v ∈ M, we have

sup
Ω+

(u− v)+ = sup
Ω−

(u− v)+.

Proof. Set k = supΩ−(u− v)+ and observe that u(y) ≤ v(y) + k for y ∈ Ω− ∪ ∂Ω.
Using Proposition 6.1, we see that for x ∈ Ω+,

u(x) = inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} ≤ inf{v(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} + k.
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Hence, we have u(x) ≤ v(x) + k for all x ∈ Ω+, and therefore

sup
Ω+

(u− v)+ ≤ sup
Ω−

(u− v)+.

Exchanging the role of Ω+ and Ω− in the above argument, we get

sup
Ω−

(u− v)+ ≤ sup
Ω+

(u− v)+

and finish the proof.
Proposition 6.5. If u ∈ M, then in the viscosity sense u satisfies

|Du(x)| = 1 in Ω+ and − |Du(x)| = −1 in Ω−.(6.4)

This proposition is an easy consequence of Proposition 6.1. For completeness we
give a proof here.

Proof. Fix u ∈ M. Let ϕ ∈ C1(Ω) and x̂ ∈ Ω+. Assume that u − ϕ attains a
maximum at x̂. Then, since |u(x) − u(x̂)| ≤ |x− x̂| for all x ∈ Ω, we have as x → x̂

−|x− x̂| ≤ u(x) − u(x̂) ≤ ϕ(x) − ϕ(x̂) = Dϕ(x̂) · (x− x̂) + o(|x− x̂|).
Substituting x̂− tDϕ(x̂) for x and sending t ↘ 0, we see that |Dϕ(x̂)| ≤ 1.

Now, we assume that u− ϕ attains a minimum at x̂. In view of Proposition 6.1,
we choose a point y ∈ Ω− ∪ ∂Ω so that u(x̂) = u(y) + |x̂ − y| holds. As before, we
have as x → x̂

|x− y| − |x̂− y| ≥ u(x) − u(x̂) ≥ ϕ(x) − ϕ(x̂) ≥ −|Dϕ(x̂)||x− x̂| + o(|x− x̂|).
Substituting x̂ + t(y − x̂) for x and sending t ↘ 0, we see that |Dϕ(x̂)| ≥ 1.

Thus we see that u is a viscosity solution of |Du(x)| = 1 in Ω+. A parallel
argument shows that u is a viscosity solution of −|Du(x)| = −1 in Ω−.

Proposition 6.6. M is a convex set as a subset of C(Ω).
Proof. Note that X ⊂ C(Ω) is a convex set. Since I∞ is a linear functional on

C(Ω), we conclude that M is convex.
Proposition 6.7. Let u, v ∈ M. Then

Du(x) = Dv(x) for a.e. x ∈ Ω∗.

Proof. Let u and v ∈ M. Define w ∈ C(Ω) by

w =
1

2
(u + v).

According to Proposition 6.6, we have w ∈ M. By Rademacher’s theorem, we see
that functions u, v, w are almost everywhere differentiable in Ω. Now, Proposition 6.5
yields

|Du(x)| = |Dv(x)| = |Dw(x)| = 1 for a.e. x ∈ Ω∗,

and therefore the strict convexity of the Euclidean norm in Rn implies that

Du(x) = Dv(x) = Dw(x) for a.e. x ∈ Ω∗.

7. Case of no balanced family. In this section we first prove Theorem 2.3 and
then examine a case where the hypothesis (2.4) is satisfied.

We begin with a lemma. Let {Oλ}λ∈Λ be the classification of O∗,

Gλ :=
⋃

{U | U ∈ Oλ} for λ ∈ Λ,

as in section 2. Also, let Λ0 ⊂ Λ be as in section 2.
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Lemma 7.1. If u,v ∈ M, then u− v is constant on any Gλ, with λ ∈ Λ.
Proof. Let u, v ∈ M. First of all, we observe that for any A, B ⊂ Ω,

inf
(x,y)∈A×B

|(u− v)(x) − (u− v)(y)| ≤ inf
(x,y)∈A×B

(|u(x) − u(y)| + |v(x) − v(y)|)(7.1)

≤ 2d(A,B).

Fix λ ∈ Λ and U, V ∈ Oλ. By Proposition 6.7, we have

(u− v)(x) =

{
kU for x ∈ U,
kV for x ∈ V

for some constants kU , kV . Fix any ε > 0. Since ρ(U, V ) = 0, there is a finite
family W1, . . . ,Wm ∈ O∗ such that d(U,W1) + d(W1,W2) + · · · + d(Wm, V ) < ε. By
Proposition 6.7, for each i ∈ {1, . . . ,m} there is a constant ki such that (u−v)(x) = ki
for all x ∈ Ui.

Now, using (7.1), we get

|kU − kV | ≤ |kU − k1| + |k1 − k2| + · · · + |km − kV |
≤ 2(d(U,W1) + d(W1,W2) + · · · + d(Wm, V )) < 2ε.

Since ε > 0 is arbitrary, we conclude that kU = kV . This shows that u− v is constant
on Gλ.

Lemma 7.2. Let u, v ∈ M and λ ∈ Λ0. Then u = v on Gλ.
Proof. In view of Lemma 7.1, let k ∈ R be a constant such that u = v + k on

Gλ. Fix any U ∈ Oλ and ε > 0. There is a finite sequence U1, . . . , Um ∈ Ω such
that d(U,U1) + d(U1, U2) + · · ·+ d(Um, ∂Ω) < ε. As in the proof of Lemma 7.1, since
u = v = 0 on ∂Ω, we find that |k| ≤ 2(d(U,U1) + d(U1, U2) + · · · + d(Um, ∂Ω)) < 2ε.
This is enough for us to conclude that u = v on Gλ.

Proof of Theorem 2.3. In view of Proposition 5.5, it is enough to show that M is
essentially single.

For this we argue by contradiction. Thus we let u, v ∈ M and assume that u 
= v
on spt f . We may assume that u and v are, respectively, the maximal and minimal
elements of M, i.e.,

u(x) ≥ w(x) ≥ v(x) for all x ∈ Ω and w ∈ M.

Fix any k > 0 so that k < supΩ∗(u − v). For t ∈ (0, k] we set wt = u ∧ (v + t).
Note that for x ∈ Ω and 0 ≤ t < s ≤ k,

v(x) ≤ wt(x) ≤ ws(x) ≤ wk(x).

Also, since 0 < k < supΩ∗(u− v), we see that wk − v attains the maximum value k at
some point of Ω∗.

By Proposition 6.2, we have wt ∈ M for all t ∈ (0, k]. Hence we have I∞(wk) =
I∞(wt) for all t ∈ (0, k), which reads

0 =

∫
Ω

(wk − wt)(x)

k − t
f(x) dx for all t ∈ (0, k).

For 0 ≤ t < k, we set

At = {x ∈ Ω∗ | wt(x) < wk(x)} and B =
⋂

0<t<k

At.

Note that At ⊃ As for 0 < t < s < k.
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We claim here that

B = {x ∈ Ω∗ | (wk − v)(x) = k}.

To see this, we write C for the right-hand side of the above identity. Let x ∈ B. By
definition, we have wt(x) < wk(x) for all t ∈ (0, k). This implies that wt(x) = v(x)+ t
for all t ∈ (0, k), and hence that v(x) + t < u(x) for all t ∈ (0, k). Therefore, we have
v(x) + k ≤ u(x) and, moreover, wk(x) = v(x) + k. Thus, we see that B ⊂ C.

Next, let x ∈ C. We then have wk(x) = v(x) + k, which yields that u(x) ≥
v(x) + k > v(x) + t for all t ∈ [0, k). Hence we have wt(x) < wk(x) for all t ∈ (0, k).
That is, we have x ∈ B, which concludes that C ⊂ B and, moreover, B = C.

Since wk − v takes the value k at some point of Ω∗, we have B 
= ∅.
Now we go back to the equality

0 =

∫
Ω

(wk − wt)(x)

k − t
f(x) dx =

∫
At

(wk − wt)(x)

k − t
f(x) dx for t ∈ (0, k).

We are going to apply the Lebesgue convergence theorem. Since At ⊃ As for
0 < t < s < k and

⋂
0<t<k At = B, we see that as t ↗ k,

1At(x) → 1B(x) for all x ∈ Ω.

Note that |(wk − wt)(x)| ≤ |k − t| for all t ∈ (0, k) and x ∈ At, and hence

1At(x)

∣∣∣∣ (wk − wt)(x)

k − t
f(x)

∣∣∣∣ ≤ |f(x)| for all t ∈ (0, k) and x ∈ Ω.

For x ∈ B, we have wk(x) = v(x) + k and wt(x) = v(x) + t, and therefore

(wk − wt)(x)

k − t
= 1.

Therefore, as t ↗ k,

1At(x)
(wk − wt)(x)

k − t
f(x) → 1B(x)f(x).

We apply the Lebesgue convergence theorem along any sequence tk ↗ k, to conclude
that

∫
B
f(x) dx = 0.

Finally, noting by Lemma 7.1 that the function wk − v is constant on any Gλ,
with λ ∈ Λ, and setting

Γ = {λ ∈ Λ | (wk − v)(x) = k on Gλ},

we have

B =
⋃

{Gλ | λ ∈ Γ}.

We see from Lemma 7.2 that Γ ⊂ Λ \ Λ0. Recalling that B 
= ∅, by the assumption
(2.4) we have

∫
B
f(x) dx 
= 0. This is a contradiction.

Let us examine the case where

μ({x ∈ Ω | f(x) = 0}) = 0.(7.2)
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We have the following theorem as a corollary of Proposition 6.7.
Theorem 7.3. Under the assumption (7.2), M is a singleton. As a consequence,

the whole family {up}p>1 converges in C(Ω).
Proof. Let u, v ∈ M. By Proposition 6.7, we have Du(x) = Dv(x) almost

everywhere in Ω∗. By (7.2), we have Du(x) = Dv(x) almost everywhere in Ω. Hence,
u = v in Ω.

We wish to explain here that the convergence result in Theorem 7.3 can be shown
as a consequence of Theorem 2.3.

Proposition 7.4. If (7.2) holds, then Λ = Λ0 and hence (2.4) is satisfied.
Proof. We need to show only that ρ(U, ∂Ω) = 0 for all U ∈ O∗.
To do this, we fix U ∈ O∗ and x ∈ U . Choose a closest point y in ∂Ω to the

point x. Set R = |y − x|. Choose a constant r ∈ (0, R) so that B(x, r) ⊂ U . Let H
be the hyperplane normal to the vector y − x and passing through the point x, i.e.,
H = {ξ ∈ Rn | (ξ− x) · (y− x) = 0}. Let C be the truncated open cone generated by
the point y and the (n− 1)-dimensional sphere H ∩B(x, r). That is, we write

C = {ty + (1 − t)ξ | (t, ξ) ∈ (0, 1) × (H ∩B(x, r))}.

Note that C ⊂ intB(x,R) ⊂ Ω.
By the assumption (7.2), we have

μ(C) = μ(C ∩ Ω∗).

Using the Fubini theorem, from this we deduce that for μn−1-almost all ξ ∈ H ∩
B(x, r), we have μ1({t ∈ (0, 1) | ty + (1 − t)ξ ∈ Ω∗}) = 1.

Fix a point ξ ∈ H ∩ B(x, r) so that μ1({t ∈ (0, 1) | ty + (1 − t)ξ ∈ Ω∗}) = 1.
Define I ⊂ (0, 1) by setting I = {t ∈ (0, 1) | ty + (1 − t)ξ ∈ Ω∗}. Since I is an open
subset of (0, 1), there is a sequence {Ij}j∈J , with J ⊂ N, of nonempty open intervals
Ij ⊂ (0, 1) such that I =

⋃
{Ij | j ∈ J}. We may assume as well that if i, j ∈ J and

i 
= j, then Ii ∩ Ij = ∅. Since μ1(I) = 1, we have
∑

j∈J μ1(Ij) = 1.
Fix any ε > 0. There is a finite subset Jε ⊂ J such that

∑
j∈Jε

μ1(Ij) > 1 − ε.
We may assume that Jε = {1, . . . ,m}, where m is a positive integer which depends
on ε. For each j ∈ Jε, we choose aj , bj ∈ [0, 1] so that Ij = (aj , bj). We may further
assume that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm. Then we have

∑
j∈Jε

μ1(Ij) =∑
j∈Jε

(bj − aj) > 1 − ε.
For each j ∈ Jε, since ty+(1−t)ξ ∈ Ω∗ for t ∈ Ij , and the set {ty+(1−t)ξ | t ∈ Ij}

is connected, we see that there is a Uj ∈ O∗ such that

ty + (1 − t)ξ ∈ Uj for t ∈ Ij .

Observe that

d(U,U1) ≤ |ξ − (a1y + (1 − a1)ξ)| ≤ a1|y − ξ|,
d(Uj−1, Uj) ≤ |(bj−1y + (1 − bj−1)ξ) − (ajy + (1 − aj)ξ)|

≤ (aj − bj−1)|y − ξ| for all j ∈ {2, . . . ,m},
d(Um, ∂Ω) ≤ |y − (bmy + (1 − bm)ξ)| ≤ (1 − bm)|y − ξ|.

Adding all of these, we get

d(U,U1) + d(U1, U2) + · · · + d(Um, ∂Ω) ≤ (a1 + (a2 − b1) + · · · + (1 − bm))|y − ξ|

=

⎛
⎝1 −

∑
j∈Jε

(bj − aj)

⎞
⎠ |y − ξ| < ε|y − ξ|.
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Thus we see that ρ(U, ∂Ω) = 0 and finish the proof.

8. Cases with vanishing integral. In this section we prove Theorem 2.4.
Proof of Theorem 2.4. Assume that (2.5) and (2.6) are satisfied.
First, we assume that (2.7) and (2.8) are satisfied and show in view of Proposi-

tion 5.5 that A is essentially single.
We observe that every u ∈ A is an odd function. This follows from the uniqueness

of solutions of the Dirichlet problem{
−Δpu(x) = f(x) in Ω,

u(x) = 0 on ∂Ω.
(8.1)

Indeed, if u is a solution of (8.1), then the function −u(−x) is a solution of (8.1) as
well and, by the uniqueness, u(x) = −u(−x) for all x ∈ Ω. This shows that every
function u ∈ A is an odd function.

Now, let u, v ∈ A. Since Ω+ and Ω− are connected and Du(x) = Dv(x) for a.e.
x ∈ Ω∗, there is a constant k ∈ R such that u(x) = v(x) + k for all x ∈ Ω+. By
symmetry in u and v, we may assume that k ≥ 0.

Since u and v are odd functions, we have

−u(−x) = −v(−x) + k for all x ∈ Ω+.

That is, u(x) = v(x) − k for all x ∈ Ω−. Using Proposition 6.4, we thus get

k = max
Ω+

(u− v)+ = max
Ω−

(u− v)+ = 0,

which shows that u(x) = v(x) for all x ∈ Ω∗ and hence A is essentially single.
Next we turn to the case where (2.9) is satisfied. It is enough to show that M is

essentially single. Let u, v ∈ M; we will show that u = v on Ω∗.
By Proposition 6.4, we have

sup
Ω+

(u− v)+ = sup
Ω−

(u− v)+.(8.2)

We argue by contradiction, and hence suppose that u(z) 
= v(z) for some z ∈ Ω∗.
We may assume that u(z) > v(z). In view of (8.2), there is a constant k > 0 such
that u(x) − v(x) = k for all x ∈ Ω∗.

From (2.9) we have either

inf
x∈Ω+

sup
y∈Ω−

[d(x) + d(y) − |x− y|] ≤ 0(8.3)

or

inf
y∈Ω−

sup
x∈Ω+

[d(x) + d(y) − |x− y|] ≤ 0.(8.4)

We consider only the case where (8.3) holds, since the other case can be treated
similarly.

For each ε > 0 there exists a point xε ∈ Ω+ such that d(xε) + d(y)− |xε − y| ≤ ε
for all y ∈ Ω−. Since u, v ∈ X, we have |u(x)| ∨ |v(x)| ≤ d(x) for all x ∈ Ω. From
these we get

d(xε) ≤ inf{v(y) + |xε − y| | y ∈ Ω−} + ε.
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Since v = 0 on ∂Ω, we have

d(xε) = inf{v(y) + |xε − y| | y ∈ ∂Ω}.

Therefore, using Proposition 6.1, we have

d(xε) ≤ inf{v(y) + |xε − y| | y ∈ Ω− ∪ ∂Ω} + ε = v(xε) + ε.

Thus we obtain u(xε) ≤ d(xε) ≤ v(xε) + ε, which yields a contradiction by choosing
ε ∈ (0, k). This completes the proof.
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Abstract. We present a generalized energy functional E for plane Couette flow providing condi-
tional nonlinear stability for Reynolds numbers Re below ReE := 177.2, which is larger than the or-
dinary energy stability limit. The method allows the explicit calculation of so-called stability balls in
the E1/2-norm; i.e., the system is stable with respect to any perturbation with E1/2-norm in this ball.
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1. Introduction. Plane Couette flow is a paradigm with a long history of sci-
entific investigation for a whole class of hydrodynamic stability problems, viz. plane
parallel shear flows (cf. [DR, SH]). For these flows there is no obvious physical mech-
anism which triggers instability as, e.g., in circular Couette flow or in convection
problems. Instead, viscous stresses seem to play the dominant role at the onset of in-
stability. So, despite the striking simplicity of the set-up of these systems the onset of
instability is up to the present insufficiently understood and its nature is the subject
of ongoing research [TTRD, Gr].

The classical methods which yield rigorous stability results are the method of
linearized stability and the energy method. The former method provides the critical
value Rec of the Reynolds number Re, below which the system is conditionally stable
and above which it is unstable. In the case of Couette flow1 it turns out that Rec = ∞,
i.e., the system is linearly completely stable [Ro]. The second method provides global
asymptotic stability below some value ReE . For Couette flow ReE = 82.6 if Re is
defined with the separation of the walls and their velocity difference [Jo]. This has
to be compared with the experimentally observed onset of instability, which occurs
at Re ≈ 1300 [Gr, DD]. Thus, none of the classical methods describes the instability
behavior of Couette flow satisfactorily.

A more recent method which has successfully been applied to a couple of hy-
drodynamic stability problems uses generalized energy functionals which are better
adjusted to the specific problems under consideration [J1, J2, GP, St]. A generalized
energy functional E is a bilinear form of the dynamic variables of the problem. In
comparison with the ordinary energy these variables are, however, differently weighted
by additional coupling parameters and appear possibly in the form of higher deriva-
tives. A first part E1 of the functional determines (analogously to the energy method)
via a variational problem the stability boundary ReE . The coupling parameters are
chosen such that ReE becomes as large as possible—in particular, larger than ReE .
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Contrary to the energy balance the nonlinear terms in general do not drop from the
generalized energy balance. Therefore, a second part E2 involving higher derivatives of
the dynamic variables is needed in E in order to dominate these terms. If the method
works one obtains conditional stability for all Reynolds numbers below ReE together
with explicit stability balls in the E1/2-norm. This is different from the method of
linearized stability which gives no estimates for stability balls.

Generalized energy functionals have already been applied to plane parallel shear
flows, however, under the assumption of stress-free boundary conditions for the per-
turbations [RM]. This assumption clearly overestimates the stability of these flows
since wall induced stresses are neglected. In fact, the authors find conditional stabil-
ity for all Reynolds numbers not only for Couette flow but also for Poiseuille flow, a
system with finite critical Reynolds number if rigid boundary conditions are used.

If rigid boundary conditions are used no generalized energy functionals have been
found so far, neither in plane parallel shear flows nor in any other hydrodynamical
system with nontrivial basic flow and unrestricted (three-dimensional) perturbations.
Moreover, in the case of Couette flow it has been argued that the generalized energy
method as applied to systems with stress-free boundary conditions is incompatible
with rigid boundary conditions [KT].

We present in this paper a generalized energy functional E for Couette flow
(with correct rigid boundary conditions), which provides conditional stability for all
Reynolds numbers below ReE = 177.2. This number is still far below what is desired.
However, there is now hope that still more appropriate functionals can be found which
cover a larger stability region. The crucial point which allows the treatment of rigid
boundary conditions is a more refined calculus inequality that takes advantage of the
special geometry of the system.

The following point is of some historical interest: For Couette flow ReE = 177.2
is just the two-dimensional energy stability limit, where perturbations are not al-
lowed to vary in the spanwise direction. Following Orr [Or], early researchers in the
field took this number for the correct energy stability limit. It came as a surprise
when Joseph [Jo] showed that the complementary two-dimensional problem provided
a considerably lower limit. Busse proved subsequently that the latter limit is in fact
the correct energy stability limit [Bu]. Thus, our result may be viewed as a late
justification of (a weakened version of) Orr’s original claim.

The paper is organized as follows: Section 2 sets the mathematical framework for
the subsequent analysis. In particular, we introduce the so-called poloidal-toroidal
decomposition of divergence-free vector fields. This decomposition eliminates the di-
vergence constraint and provides appropriate building blocks for generalized energy
functionals. In section 3 a linear auxiliary problem is solved, viz. the variational prob-
lem associated with E1 which determines the stability limit ReE . Section 4 provides
estimates of the remaining terms in the energy balance of E1 +E2, the nonlinear terms
in particular, and it formulates the basic stability result. Some well-known inequal-
ities as well as the refined calculus inequality are collected in Appendix A, and the
results of a numerical computation related to the variational problem are contained
in Appendix B.

2. Mathematical setting. The Couette system is appropriately modeled by an
infinite layer R × (− 1

2 ,
1
2 ) of thickness 1 with horizontal coordinates x, y and vertical

coordinate z. The basic flow in this system takes the dimensionless form

U0 = U0(z) = Re

⎛
⎝−z

0
0

⎞
⎠(2.1)
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with Re being the Reynolds number based on the distance between bottom and top
boundaries of the layer and their velocity difference. In order to investigate the
stability of U0 we impose perturbations u = (ux, uy, uz). These are governed by the
system

∂tu − Δu − Re(z ∂xu + uzex) + u · ∇u + ∇p = 0,(2.2)

∇ · u = 0

in R
2 × (− 1

2 ,
1
2 ) × (0, T ), T > 0, and satisfy the boundary conditions

u(x, y, z, t) = 0 for (x, y, z) ∈ R
2 ×

{
−1

2
,
1

2

}
, t > 0.(2.3)

Here ex = (1, 0, 0)T. The initial value u(·, ·, ·, 0) = u0 is assumed to be given (and
of course solenoidal). u corresponds to the velocity field of the perturbation and
p denotes the pressure perturbation. Both u and ∇p are assumed to be x, y-periodic
with respect to a rectangle P = (−π

α ,
π
α ) × (−π

β ,
π
β ) with wave numbers (α, β) ∈ R

2
+.

In the following it suffices, therefore, to consider functions over the box

Ω = P ×
(
−1

2
,
1

2

)
=

(
−π

α
,
π

α

)
×

(
−π

β
,
π

β

)
×

(
−1

2
,
1

2

)
.

As basic function space we take L2(Ω). In what follows, ‖ · ‖ is always the norm
in L2(Ω) except in the case when applied to a function defined on (− 1

2 ,
1
2 ). Then,

‖·‖ means the norm in L2(− 1
2 ,

1
2 ); the correct notion should be clear from the context.

(·, ·) always denotes the scalar product associated with ‖ · ‖.
In order to cope with the divergence constraint (2.2)2 we make use of the poloidal-

toroidal decomposition [SW]:

u = ∇× (∇× (ϕ ez)) + ∇× (ψ ez) + F(2.4)

=: δϕ + εψ + F.

Here ez = (0, 0, 1)T. The functions ϕ and ψ are determined uniquely if one re-
quires them to be periodic with respect to P and to fulfill

∫
P ϕ(x, y, z) dx dy =∫

P ψ(x, y, z) dx dy = 0 for every z ∈ (− 1
2 ,

1
2 ). The first part in (2.4) is called the

poloidal part of u and the second part the toroidal one. The third part, the mean
flow, depends only on z and has a constant third component. These three parts are
mutually orthogonal in L2(Ω)3. The vector operators δ and ε have the form

δϕ =

⎛
⎝ ∂x∂zϕ

∂y∂zϕ
(−Δ2)ϕ

⎞
⎠, εψ =

⎛
⎝ ∂yψ
−∂xψ

0

⎞
⎠,

where Δ2 = ∂2
x + ∂2

y is the horizontal Laplacian. The boundary conditions (2.3) for u
transform into

ϕ = ∂zϕ = 0, ψ = 0, Fx = Fy = 0 for z = ±1

2
,(2.5)

and Fz(z) ≡ 0. Applying the operators δ and ε to (2.2)1 as well as taking the mean
with respect to P, the system (2.2) can equivalently be formulated in terms of the
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new variables (ϕ,ψ, Fx, Fy):

(−Δ)(−Δ2)∂tϕ + Δ2(−Δ2)ϕ− Re z (−Δ)(−Δ2)∂xϕ + δ · (u · ∇u) = 0,

(−Δ2)∂tψ + (−Δ)(−Δ2)ψ − Re z (−Δ2)∂xψ + Re(−Δ2)∂yϕ− ε · (u · ∇u) = 0,

∂tFx + (−∂2
z )Fx + 1

|P|
∫
P ũ · ∇ũx dxdy = 0,

∂tFy + (−∂2
z )Fy + 1

|P|
∫
P ũ · ∇ũy dxdy = 0.

(2.6)

ũ := δϕ+εψ is that part of u which has vanishing mean value over P, and |P| := 4π2

αβ
denotes the volume of P.

With Φ := (ϕ,ψ, Fx, Fy)
T a neat matrix notation can be used for system (2.6):

B ∂tΦ + AΦ − Re CΦ + M(Φ,Φ) = 0.(2.7)

Here, B and A are diagonal matrix operators, C is a nonnormal interaction matrix,
and M is a bilinear form. The operator A, for example, has the form

A = diag
(
Δ2(−Δ2), (−Δ)(−Δ2), (−∂2

z ), (−∂2
z )
)

acting in the Hilbert space

H := L2
M (Ω) × L2

M (Ω) × L2

((
−1

2
,
1

2

))
× L2

((
−1

2
,
1

2

))
,

where L2
M (Ω) denotes the space {f ∈ L2(Ω) |

∫
P f(x, y, z) dxdy = 0 for a.e. z ∈

(− 1
2 ,

1
2 )}. The domain D(A) is most easily described in terms of a Fourier mode

expansion for ϕ and ψ with respect to the horizontal variables x and y:

ϕ(x, y, z) =
1√
|P|

∑
κ∈Z2\{0}

aκ(z)ei(ακ1x+βκ2y),(2.8)

ψ(x, y, z) =
1√
|P|

∑
κ∈Z2\{0}

bκ(z)ei(ακ1x+βκ2y).(2.9)

We then define (cf. [KS, Wa])

D(A) = D(Δ2(−Δ2)) ×D((−Δ)(−Δ2)) ×D(−∂2
z ) ×D(−∂2

z ),

where

D(Δ2(−Δ2)) =

{
ϕ

∣∣∣∣∣ ϕ expanded as in (2.8),

aκ ∈ H4

((
−1

2
,
1

2

))
, aκ = ∂zaκ = 0 at z = ±1

2
,

∑
κ∈Z2\{0}

(α2κ2
1 + β2κ2

2)
2

∫ 1/2

−1/2

|(−∂2
z + α2κ2

1 + β2κ2
2)

2aκ(z)|2 dz < ∞
}
,
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D((−Δ)(−Δ2)) =

{
ψ

∣∣∣∣∣ ψ expanded as in (2.9),

bκ ∈ H2

((
−1

2
,
1

2

))
, bκ = 0 at z = ±1

2
,

∑
κ∈Z2\{0}

(α2κ2
1 + β2κ2

2)
2

∫ 1/2

−1/2

|(−∂2
z + α2κ2

1 + β2κ2
2)bκ(z)|2 dz < ∞

}
,

and

D(−∂2
z ) = H2

((
−1

2
,
1

2

))
∩ H̊1

((
−1

2
,
1

2

))
.

With these definitions A is a self-adjoint and strictly positive operator. Thus, frac-
tional powers of A make sense and can analogously be explained in terms of the
expansions (2.8) and (2.9). Similar definitions apply to the operators B and C.

A natural class of vector fields within which (2.7) can locally be uniquely solved
is given by (cf. [Wa])

Φ ∈ L2((0, T ),D(A)), ∂tΦ ∈ L2((0, T ),D(B)),(2.10)

and, as a consequence,

Φ ∈ C0([0, T ], I)

with I being an appropriate interpolation space between D(A) and D(B). Going back
to (2.2) we obtain from (2.10) at least a solution (u, p) with

u ∈ L2((0, T ), D(−Δ)) ∩ C0([0, T ], D((−Δ)1/2)), ∂tu ∈ L2((0, T ), L2(Ω)),

(2.11)

∇p ∈ L2((0, T ), L2(Ω)),

where D(−Δ) = {u ∈ (H2(Ω))3 | u periodic in x and y, u = 0 at z = ± 1
2}. This

is the usual notion of a strong solution. On the other hand, strong solutions have
further regularity properties. In particular, decomposing u from the class (2.11) in
its poloidal and toroidal part and the mean flow, Φ can be shown to lie in the class
(2.10). In the following we work with solutions within this class. All manipulations
with u (or Φ) and its horizontal derivatives ∂xu, ∂yu in the subsequent sections are
then justified.

The energy of the system (in the volume Ω) becomes in the new variables2

E =
1

2
‖u‖2 =

1

2

{
‖δϕ‖2 + ‖εψ‖2 + |P|‖F‖2

}
,(2.12)

and the variational expression determining ReE takes the form (cf. [KS])

|	(ux, uz)|
‖∇u‖2

=
|	((−Δ2)ϕ, ∂x∂zϕ + ∂yψ + Fx)|
‖(−Δ)εϕ‖2 + ‖δψ‖2 + |P|‖∂zF‖2

.(2.13)

2We use the usual notation for L2-scalar products of vector- or tensor-type quantities. Thus,
there is, e.g., ‖u‖2 = (u,u) =

∑3
i=1(ui, ui) or ‖∇u‖2 = (∇u,∇u) =

∑3
i,j=1(∂iuj , ∂iuj). Note that

∇u is understood in the sense of a tensor product, whereas u · ∇ =
∑3

i=1 ui∂i means the scalar
product in R3.
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For later convenience we admit here complex valued velocity fields. Thus, the real
part (denoted by 	) of the interaction term appears in the numerator of (2.13). ReE is
then given by

Re−1
E = sup

(α,β)∈R2
+

sup
(ϕ,ψ)∈Vαβ

|	((−Δ2)ϕ, (∂x∂zϕ + ∂yψ))|
‖(−Δ)εϕ‖2 + ‖δψ‖2

.(2.14)

Note that F does not depend on x or y and, therefore, drops from the numerator of
(2.13). Thus, F does not contribute to the supremum of (2.13) and can be omitted
altogether.

The variational class Vαβ should reflect the mean value condition, the boundary
conditions, and the periodicity of the functions ϕ and ψ. Moreover, it should ensure
that the supremum is in fact attained. A suitable choice is Vαβ = D(Ã1/2) \ {(0, 0)},
where Ã is that part of A that is operating on (ϕ,ψ) in the Hilbert space H̃ :=
L2
M (Ω) × L2

M (Ω).
If the class Vαβ of admissible functions is restricted to the class Vα of functions de-

pending only on x and z, or to the class Vβ of functions depending only on y and z, the
corresponding two-dimensional limits RexE and ReyE are determined by the following
simplified variational expressions:

1

ReyE
= sup

β∈R+

sup
(ϕ,ψ)∈Vβ

|	((−Δ2)ϕ, ∂yψ)|
‖(−Δ)∂yϕ‖2 + ‖δψ‖2

,(2.15)

1

RexE
= sup

α∈R+

sup
(ϕ,0)∈Vα

|	((−Δ2)ϕ, ∂x∂zϕ)|
‖(−Δ)∂xϕ‖2

.(2.16)

It is well known that ReE = ReyE = 82.6 . . . and RexE = 177.2 . . . (cf. [Or, Jo, Bu]).
Applying the matrix notation the variational expression (2.13) takes the form

|(Φ, ĈΦ)|
‖A1/2Φ‖2

with the symmetric lower order operator

Ĉ =
1

2

⎛
⎜⎜⎝

2(−Δ2)∂x∂z (−Δ2)∂y (−Δ2) 0
−(−Δ2)∂y 0 0 0

(−Δ2) 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Thus, A−1/2ĈA−1/2 is a self-adjoint and compact operator in H and the supremum
(with respect to (ϕ,ψ) ∈ D(Ã1/2)) in (2.14) is actually a maximum. This argument
applies, of course, also to the suprema in (2.15) and (2.16).

3. Generalized functional and variational problem. The usual method to
proceed from the energy functional to a generalized one is to introduce additional
coupling parameters and possibly additional derivatives in order to weigh the dy-
namic variables in an optimal way. For this purpose the generalized energy balance is
considered and (analogously to the energy method) the ratio of the interaction term
over the dissipative term is maximized with respect to the admissible functions. This
maximum still depends on the coupling parameters and possibly discrete parameters
counting the additional derivatives. Minimizing with respect to these parameters
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furnishes optimal (generalized) energy limits. Therefore, the first problem is to find
functionals which furnish larger stability limits than those provided by the energy
functional. Considering the functional (2.12) with F ≡ 0 (as already noted, the mean
flow does not contribute to the maximum in the variational problem) there is, how-
ever, not much freedom to introduce additional parameters. An obvious choice is the
functional

E1[ϕ,ψ] :=
1

2

{
‖δϕ‖2 + λ ‖εψ‖2

}
(3.1)

with 0 < λ < ∞. Taking the scalar product of (2.6)1,2 with (ϕ,ψ) in H̃ and using the
boundary conditions (2.5) one obtains the generalized energy balance

∂tE1 = −D1 + Re I1 + N1(3.2)

with

D1[ϕ,ψ] := ‖(−Δ)εϕ‖2 + λ‖δψ‖2,

I1[ϕ,ψ] := 	
(
(−Δ2)ϕ, ∂x∂zϕ

)
+ λ	

(
(−Δ2)ϕ, ∂yψ

)
,

N1[ϕ,ψ,F] := −	
(
(u · ∇u), δϕ + λ εψ

)
.

(3.3)

The generalized energy limit ReE is then determined by

ReE
−1 = sup

(α,β)∈R2
+

sup
(ϕ,ψ)∈Vαβ

I1

D1
[ϕ,ψ]

= sup
(α,β)∈R2

+

sup
(ϕ,ψ)∈Vαβ

|	((−Δ2)ϕ, ∂x∂zϕ) + λ	((−Δ2)ϕ, ∂yψ)|
‖(−Δ)εϕ‖2 + λ ‖δψ‖2

.

(3.4)

Note that in (3.4) I1 can always be replaced by |I1|; as with (ϕ(x, y, z), ψ(x, y, z)) ∈
Vαβ , (ϕ(−x,−y, z), ψ(−x,−y, z)) is also admissible. Thus, I1 can always be chosen
positive without affecting D1.

A comparison of (3.4) with the two-dimensional variational expressions (2.15)
and (2.16) already furnishes some bounds on ReE : Setting ϕ = ϕ(x, z), ψ = 0 in
(3.4) reduces the variational expression to that in (2.16), which implies the bound
ReE ≤ RexE = 177.2 . . . for all 0 < λ < ∞. For λ ≥ 1 the substitution ψ̃ := λψ allows
the estimate

|	((−Δ2)ϕ, ∂x∂zϕ) + λ	((−Δ2)ϕ, ∂yψ)|
‖(−Δ)εϕ‖2 + λ ‖δψ‖2

=
|	((−Δ2)ϕ, ∂x∂zϕ) + 	((−Δ2)ϕ, ∂yψ̃)|

‖(−Δ)εϕ‖2 + 1
λ‖δψ̃‖2

≥ |	((−Δ2)ϕ, ∂x∂zϕ) + 	((−Δ2)ϕ, ∂yψ̃)|
‖(−Δ)εϕ‖2 + ‖δψ̃‖2

,

and restricting ϕ and ψ̃ to functions independent of x furnishes the bound ReE ≤
ReyE = ReE = 82.6 . . . for λ ≥ 1. Thus the question remains whether ReE does
exceed ReE for some 0 < λ < 1.

A numerical computation indicates that ReE attains its upper bound RexE for
sufficiently small values of λ (cf. Appendix B). In order to prove this, consider the
variational expression

I1

D1
[ϕ, ψ̂] =

|	((−Δ2)ϕ, ∂x∂zϕ) +
√
λ	((−Δ2)ϕ, ∂yψ̂)|

‖(−Δ)εϕ‖2 + ‖δψ̂‖2
,(3.5)
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where ψ̂ :=
√
λψ. Now, inserting the mode expansions (2.8) and (2.9) for ϕ and ψ̂

in (3.5) observe that the maximum for a fixed periodicity cell P is attained by a
single mode. This can be seen as follows: Assume the maximum is attained by a
(possibly infinite) linear combination of modes. By inserting this combination into the
variational expression (3.5), the numerator as well as the denominator decomposes
into a sum of bilinear terms each containing a single mode. Without restriction
the modes can be chosen such that the expansion of the numerator contains only
nonnegative terms. Applying Lemma 1 (cf. Appendix A) we can select a single mode
with maximal ratio, which at most increases the value of the variational expression.
Let κ ∈ Z

2 \ {0} be this maximal mode. With the abbreviation α̃ := κ1α, β̃ := κ2β,
ã(z) := aκ(z), b̃(z) := bκ(z) we obtain

I1

D1
[ã, b̃, α̃, β̃] =

α̃ |(ã, ã′)| +
√
λ β̃ |(ã, b̃)|

‖(α̃2 + β̃2)ã− ã′′‖2 + (α̃2 + β̃2)‖b̃‖2 + ‖b̃′‖2

≤ max

{
α̃ |(ã, α̃′)|

α̃4‖ã‖2 + 2α̃2‖ã′‖2 + ‖ã′′‖2
,
√
λ

β̃ |(ã, b̃)|
β̃4‖ã‖2 + 2β̃2‖ã′‖2 + β̃2‖b̃‖2 + ‖b̃′‖2

}
,

(3.6)

where we used partial integration and Lemma 1 in the last line. Abbreviating the first
term in (3.6) with F1[ã, α̃] and the second with F2[ã, b̃, α̃], it follows from (3.4)–(3.6)
that

ReE
−1 = max

{
sup
α̃∈R+

sup
(ã,0)∈W

F1[ã, α̃],
√
λ sup

β̃∈R+

sup
(ã,b̃)∈W

F2[ã, b̃, β̃]

}
,(3.7)

with

W =

{
(a, b) ∈ H4

((
−1

2
,
1

2

))
×H2

((
−1

2
,
1

2

)) ∣∣∣∣ a = ∂za = b = 0 at z = ±1

2

}
\ {0}.

Inserting the mode expansion (2.8) into (2.16), the first term in (3.7) turns out to
be 1

RexE
, whereas F2[ã, b̃, β̃] is estimated with the help of inequality (A.2) as follows:

F2[ã, b̃, β̃] ≤ β̃ ‖ã‖‖b̃‖
(β̃4 + 2β̃2π2)‖ã‖2 + (β̃2 + π2)‖b̃‖2

≤ β̃

2[(β̃4 + 2β̃2π2)(β̃2 + π2)]1/2

≤ 1

2
√

2π2
.

Therefore, by choosing
√
λ ≤ 2

√
2π2

RexE
, (3.7) yields ReE ≥ RexE , hence

ReE = RexE .

We formulate this result in the following proposition.

Proposition 1. For 0 < λ < 8π4

RexE
≈ 0.025, 0 < Re < ReE with ReE = RexE =

177.2 . . . , (α, β) ∈ R
2
+, and (ϕ,ψ) ∈ Vα,β = D(Ã1/2) \ {(0, 0)} with D(Ã1/2), as

explained in section 2, we have the bound

Re
I1

D1
≤ Re

ReE
< 1,(3.8)
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where

I1

D1
=

|	((−Δ2)ϕ, ∂x∂zϕ) + λ	((−Δ2)ϕ, ∂yψ)|
‖(−Δ)εϕ‖2 + λ ‖δψ‖2

.

Remarks. 1. The numerical computation in Appendix B indicates coincidence of
ReE with RexE for values of λ up to λ ≈ 0.042.

2. Whether other functionals provide even larger stability limits is an open prob-
lem. Another candidate which failed to provide a larger stability limit has been
discussed in [KT].

4. Nonlinear stability. For λ �= 1 the nonlinear term N1 in (3.2) does not
vanish. In order to dominate this term we introduce a second part E2 of the generalized
energy functional E ,

E2[u,F] :=
1

2
{σ‖εu‖2 + ρ |P|‖F‖2},(4.1)

with yet undetermined nonnegative coupling parameters σ and ρ.
By scalar multiplication of (2.2) with σΔ2u and of (2.6)3,4 with ρFx, ρFy and

using (2.3) and (2.5), we arrive at

∂tE2 = −D2 + Re I2 + N2,(4.2)

where3

D2[u,F] = σ‖δu‖2 + ρ |P|‖F′‖2,

I2[u,F] = σ	(εuz, εux),

N2[u,F] = −σ	(εu · ∇u, εu) − ρ	(ũ · ∇ũ,F).

(4.3)

By defining

ΔRe := 1 − Re

ReE
(4.4)

and

D := ΔReD1 + D2,(4.5)

the interaction term Re I2 can be estimated in terms of D:

I2 ≤ σ|(εuz, εux)| ≤ σ1/2‖ε(−Δ2)ϕ‖σ1/2‖εu‖ ≤ σ1/2D1/2
1 (2E2)

1/2.

Using 2E2 ≤ D2

π2 , which follows with (A.2), and setting

σ :=
π2 ΔRe

Re2 ,(4.6)

we obtain

Re I2 ≤ (ΔRe)1/2D1/2
1 D1/2

2 ≤ 1

2
(ΔReD1 + D2) =

1

2
D.(4.7)

3Note that no boundary terms arise in (4.2) since the terms in E2 differ from those in the ordinary
energy at most by horizontal derivatives.
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We estimate next the nonlinear parts in terms of DE1/2, E := E1 + E2, and begin
with N1:

N1 ≤ |(u · ∇u, δϕ + λ εψ)| ≤ ess supΩ |u| ‖∇u‖(‖δϕ‖ + λ ‖εψ‖).

The three factors are estimated separately. With (A.8) we obtain for the first factor

‖u‖∞ ≤ C√
2
‖δũ‖ +

√
2

π
‖F′‖,

where C = 8(
√

2
m )3/2, and under the condition

ρ ≥ 4σ

π C2|P|(4.8)

we get further

‖u‖∞ ≤ C√
2σ

{√
σ ‖δũ‖ + (ρ |P|)1/2‖F′‖

}
≤ C√

σ
D1/2

2 ≤ C√
σ
D1/2.(4.9)

With the conditions

ρ ≥ λΔRe, 0 < λ < 1(4.10)

we obtain for the second factor

‖∇u‖2 = ‖∇ũ‖2 + |P|‖F′‖2 ≤ D1

λ
+

D2

ρ
≤ 1

λΔRe
D;

thus

‖∇u‖ ≤ 1√
λΔRe

D1/2.(4.11)

Finally, we have

‖δϕ‖ + λ ‖εψ‖ ≤
√

1 + λ (2E1)
1/2 ≤

√
2
√

1 + λ E1/2.(4.12)

The conditions (4.8) and (4.10) are satisfied for the choice

ρ := ΔRe max

{
λ,

α β m3

√
2 27πRe2

}
,(4.13)

and by collecting the estimates (4.9), (4.11), and (4.12) we have

N1 ≤
√

2C√
σΔRe

√
1 + 1/λDE1/2.(4.14)

As to N2, we obtain by partial integration

N2 = −σ	
3∑

i,j=1

2∑
n=1

∫
Ω

∂nui∂iuj∂nuj dτ − ρ	
3∑

i,j=1

∫
Ω

ũi∂iũjF j dτ

= σ	
3∑

i,j=1

2∑
n=1

∫
Ω

∂nui∂n∂iujuj dτ + ρ	
2∑

n=1

∫
Ω

ũzũnF
′
n dτ.
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Estimates analogous to those for N1, in particular (4.9), then yield

N2 ≤ σ‖u‖∞‖δu‖ ‖εu‖ + ρ ‖ũ‖∞ |P|1/2‖F′‖ ‖ũz‖

≤ C√
σ
D1/2

√
σ ‖δu‖ (2E2)

1/2 +
C√
σ
D1/2 ρ |P|1/2‖F′‖ (2E1)

1/2

≤ C√
σ
D1/2

√
1 + ρD1/2

2 (2E)1/2 ≤
√

2C√
σ

√
1 + ρDE1/2.

(4.15)

Summarizing (4.14) and (4.15) we have

N1 + N2 ≤ 1

2
D

(
E
δ

)1/2

(4.16)

with

δ :=
σ

8C2

(√
1 + 1/λ

1√
ΔRe

+
√

1 + ρ

)−2

.

Observe that the estimate (4.15) is based on the estimate (4.9), which increases the
number of z-derivatives by only one. Previously used estimates (cf. [GP] or [St])
increase this number by two and do not work in our situation. On the other hand,
functionals involving more z-derivatives do not work either, since there is not enough
information about boundary values which would allow the necessary partial integra-
tions [KT].

Finally, we add up equations (3.2) and (4.2), apply Proposition 1, and use the
estimates (4.7) and (4.16). This yields the following for E = E1 + E2:

∂tE = −
[
D1

(
1 − Re I1

D1

)
+ D2

]
+ Re I2 + N1 + N2

≤ −D +
1

2
D +

1

2
D

(
E
δ

)1/2

≤ −1

2
D
[
1 −

(
E
δ

)1/2
]
.

(4.17)

Inequality (4.17) implies that E(t) is monotonically nonincreasing if E(0) < δ. With

1

2
D =

1

2
(ΔReD1 + D2) ≥ π2(ΔRe E1 + E2) ≥ π2 ΔRe E ,

which follows from (A.2), (A.3), and 0 < ΔRe < 1, we therefore have

∂tE ≤ −1

2
D
[
1 −

(
E(0)

δ

)1/2
]
≤ −π2 ΔRe E

[
1 −

(
E(0)

δ

)1/2
]
,

and integration yields

E(t) ≤ E(0) exp

{
−π2 ΔRe

[
1 −

(
E(0)

δ

)1/2
]
t

}
.(4.18)

We formulate our stability result in the following theorem.
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Theorem 2. Let us consider perturbations Φ = (ϕ,ψ,F)T of the basic flow U0 =
Re(−z, 0, 0)T in the plane Couette system satisfying globally (in time) the system (2.6)
as a strong solution (i.e., in the sense of (2.10)) under rigid boundary conditions (2.5)
and being periodic in the horizontal variables x, y with wave numbers (α, β) ∈ R

2
+.

Let 0 < Re < ReE = 177.2 . . . , ΔRe = 1 − Re
ReE

, C = 8(
√

2
m )3/2, and m = min(α, β).

Consider, furthermore, the generalized energy functional

E [ϕ,ψ,F] =
1

2

{
‖δϕ‖2 + λ ‖εψ‖2 + σ ‖εu‖2 + ρ

4π2

αβ
‖F‖2

}

with coupling parameters 0 < λ < 8π4

ReE
and

σ =
π2 ΔRe

Re2 , ρ = ΔRe max

{
λ,

α β m3

√
2 27πRe2

}
.

Then, the solution (ϕ,ψ,F) of (2.5) and (2.6) decays in the norm E1/2 exponentially
to zero provided the initial value satisfies

E(0) < δ =
σ

8C2

(√
1 + 1/λ

1√
ΔRe

+
√

1 + ρ

)−2

.(4.19)

Remarks. 1. The functional E dominates the classical energy E = 1
2 ‖u‖2. There-

fore, E(t) also decays to zero for Re < ReE . However, for Re > ReE , E(t) does not
necessarily decay monotonically.

2. We did not try to obtain optimal (i.e., as large as possible) stability balls δ.
Considering the restricted Reynolds number range the stability balls have not yet any
importance for experiments. The emphasis of the present paper is on demonstrat-
ing that the method of generalized energy functionals also works for rigid boundary
conditions.

3. The stability balls δ vanish in the limit ΔRe → 0 or m → 0. Asymptotically
we have

δ1/2
∼

{
ΔRe in the limit ΔRe → 0,

m3/2 in the limit m → 0.

This behavior seems to be intrinsic to the functional method and it is independent of
the choice of boundary conditions (cf. [RM]). The decay constant (in time) in (4.18)

for a fixed value E(0)
δ = const < 1 decreases likewise with ΔRe to zero, but it is

independent of m. This is different from the case of free boundary conditions,4 where
arbitrarily slowly decaying modes always exist; e.g.,

u = e−α2t sinαy ex, p ≡ 0

for any α = m > 0.
4. There is another interesting approach, which is at least in parts rigorous and

which aims at providing stability balls of power law type in the Reynolds number; they
have the form cRe−γ , where c depends on the geometry but is independent of Re. The
starting point of the method is a power law bound on the resolvent of the linearized

4Note that the Poincaré-type inequalities in [RM] have to be corrected; cf. [KX].
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operator, which has been obtained so far only by numerical methods. In a second
step the exponent γ can then rigorously be derived whereas c remains unknown. Such
bounds, valid for all Reynolds numbers, have been obtained for Couette flow [KLH]
and have recently been improved [LK].

5. More generally, Theorem 2 applies to (not necessarily global) strong solutions
on their maximal intervals of existence. In particular, it provides an a priori bound
on the horizontal derivatives of u in the L2(Ω)-norm under an explicit condition on
its initial values. An interesting (but so far open) question is whether this condition,
viz. (4.19), guarantees already global existence of the solution in time. The following
is known in this respect [KW]: A strong solution which is conditionally stable in the
energy norm on the maximal interval of existence exists globally in time (in the class
(2.10)) provided its initial value is small in the norm of the interpolation space I.
This norm is, however, stronger than E1/2; in particular, it involves nontangential
derivatives of u, which are not controlled by E1/2. The required smallness depends
on the steady flow to be perturbed and the stability behavior of the kinetic energy of
the perturbation.

Appendix A. We collect in this appendix some more-or-less standard inequali-
ties we made use of in the main text. Only Lemma 3, which presents a refined calculus
inequality, is proved.

Lemma 1. Let n ∈ N and aν ≥ 0, bν > 0 for 1 ≤ ν ≤ n. Then∑n
ν=1 aν∑n
ν=1 bν

≤ max

{
aν
bν

∣∣∣∣ 1 ≤ ν ≤ n

}
=: M(A.1)

and equality holds if and only if aν = M bν for every ν.
Note that inequality (A.1) remains valid for n → ∞.
Frequent use is made of the Poincaré-type inequalities

‖f‖ ≤ 1

π
‖∇f‖,(A.2)

‖∇f‖ ≤ 1

π
‖∇∇f‖ =

1

π
‖Δf‖,(A.3)

which are valid for P-periodic functions f decomposed according to

f(x, y, z) =
1√
P

∑
κ∈Z2

fκ(z)ei(ακ1x+βκ2y)(A.4)

with (at least) fκ ∈ H1((− 1
2 ,

1
2 )) and (weakly) satisfying the boundary conditions

fκ(± 1
2 ) = 0, κ ∈ Z

2 (cf. Appendix A in [KX]). The inequalities (A.2) and (A.3) hold
likewise for vector valued functions if each component satisfies such a decomposition.

The next two lemmata provide bounds on the sup-norm ‖ · ‖∞ = ess sup | · | in
terms of the L2-norm ‖ · ‖2 = ‖ · ‖ in one and three dimensions.

Lemma 2. Let f ∈ H1((− 1
2 ,

1
2 )) with (weakly) f(− 1

2 ) = 0. Then

‖f‖2
∞ ≤ 2 ‖f‖ ‖f ′‖.(A.5)

Lemma 3. Let f : R
2 × [− 1

2 ,
1
2 ] → R be P-periodic and decomposed accord-

ing to (A.4) with fκ ∈ H1((− 1
2 ,

1
2 )) and weakly satisfying the boundary conditions

fκ(± 1
2 ) = 0 for κ ∈ Z

2 \ {0}, f0 = 1√
|P|

∫
P f(x, y, z) dxdy = 0. Then

‖f‖∞ ≤ C ‖(−Δ2)
1/2∂zf‖1/2‖(−Δ2)f‖1/2(A.6)

with C := 8(
√

2
m )3/2, m := min{α, β}.
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Proof. With (A.4) and Lemma 2 one obtains

ess supΩ |f(x, y, z)| ≤ ess sup[−1/2,1/2]

∑
κ∈Z2\{0}

|fκ(z)|

≤
√

2
∑

κ∈Z2\{0}
‖f ′

κ‖1/2‖fκ‖1/2.

Therefore, with Hölder’s inequality

‖f‖∞ ≤
√

2
∑

κ∈Z2\{0}
‖f ′

κ‖1/2(α2κ2
1 + β2κ2

2)
1/4 ‖fκ‖1/2(α2κ2

1 + β2κ2
2)

1/2

× (α2κ2
1 + β2κ2

2)
−3/4

≤
√

2

( ∑
κ∈Z2\{0}

‖f ′
κ‖2(α2κ2

1 + β2κ2
2)

)1/4( ∑
κ∈Z2\{0}

‖fκ‖2(α2κ2
1 + β2κ2

2)
2

)1/4

×
( ∑

κ∈Z2\{0}
(α2κ2

1 + β2κ2
2)

−3/2

)1/2

≤ C ‖(−Δ2)
1/2∂zf‖1/2‖(−Δ2)f‖1/2.

In the last line we used the estimate( ∑
κ∈Z2\{0}

(α2κ2
1 + β2κ2

2)
−3/2

)1/2

≤ 25/2

(√
2

m

)3/2

(cf. Lemma 4.1 in [BK]).
A more convenient form of (A.6) is

‖f‖∞ ≤ C√
2
‖δf‖,(A.7)

which follows from (A.6) by

‖f‖2
∞ ≤ C2

2

[
‖(−Δ2)

1/2∂zf‖2 + ‖(−Δ2)f‖2
]

=
C2

2

[
(Δ2f, ∂

2
zf) + (Δ2f,Δ2f)

]
=

C2

2
(Δ2f,Δf) =

C2

2
‖δf‖2.

If f has a nonzero mean value f0 the inequalities (A.2), (A.5), and (A.7) furnish

‖f‖∞ ≤ ‖f̃‖∞ + ‖f0‖∞ ≤ C√
2
‖δf̃‖ +

√
2

π
‖f ′

0‖,(A.8)

where f̃ = f − f0.
The inequalities (A.5)–(A.8) hold likewise for vector valued functions if each com-

ponent satisfies the appropriate conditions.
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Appendix B. In this appendix the variational problem (3.4) with 0 ≤ λ ≤ 1 is
treated on a numerical basis. We first solve the eigenvalue problem associated with
the variational problem with fixed periodicity cell P and subsequently perform the
variation with respect to P.

The Euler–Lagrange equations with Lagrange parameter μ read

Δ2(−Δ2)ϕ− μ

2

(
2 (−Δ2)∂x∂zϕ + λ (−Δ2)∂yψ

)
= 0,

λ (−Δ)(−Δ2)ψ +
μ

2
λ (−Δ2)∂yϕ = 0.

(B.1)

By inserting the mode expansions (2.8) and (2.9) the system (B.1) becomes equivalent
to

D2
κ1α,κ2β aκ(z) − i

μ

2

(
2ακ1∂zaκ(z) + λβκ2bκ(z)

)
= 0,

Dκ1α,κ2β bκ(z) + i
μ

2
βκ2aκ(z) = 0,

κ ∈ Z
2 \ {0}(B.2)

with Dα̃,β̃ := α̃2 + β̃2 − ∂2
z . The system (B.2) has to be complemented with the

boundary conditions

aκ = ∂zaκ = bκ = 0 at z = ±1

2
, κ ∈ Z

2 \ {0},

in order to have a well-posed eigenvalue problem. As explained in section 3, the
maximum is attained by a single mode. Since we are ultimately interested in the
maximum with respect to all periodicity cells, it is sufficient to consider the finite
dimensional system

D2
α̃,β̃

ã(z) − i
μ

2

(
2α̃∂zã(z) + λ β̃b̃(z)

)
= 0,

Dα̃,β̃ b̃(z) + i
μ

2
β̃ã(z) = 0

(B.3)

together with

ã = ∂zã = b̃ = 0 at z = ±1

2
.(B.4)

ReE is then given by

ReE = min
(α̃,β̃)∈R2

μ0(α̃, β̃, λ),

with μ0 being the smallest positive eigenvalue in (B.3) and (B.4). Applying a standard
shooting method based on a fourth order Runge–Kutta integration, μ0 is determined
as a function of α̃, β̃, and λ. Subsequent minimization with respect to α̃ and β̃
furnishes ReE as a function of λ. The result is displayed in Figure 1: With decreasing λ
the stability limit ReE increases from the ordinary energy limit ReE = 82.6 . . . (λ = 1)
up to the value RexE = 177.2 . . . (Figure 1, left), and this value is, in fact, attained for
finite λ (λ ≈ 0.042; see Figure 1, right).

Acknowledgment. The authors would like to thank an anonymous referee whose
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Fig. 1. The generalized energy limit ReE versus coupling parameter λ with E1 given in (3.1).
In the left graph, λ covers the range between 0 and 1 (λ = 1 corresponds to the ordinary energy);
the right graph magnifies the region close to λ = 0.
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WRIGGLED LAMELLAR SOLUTIONS AND THEIR STABILITY IN
THE DIBLOCK COPOLYMER PROBLEM∗

XIAOFENG REN† AND JUNCHENG WEI‡

Abstract. In a diblock copolymer system the free energy field depends nonlocally on the
monomer density field. In addition there are two positive parameters in the constitutive relation.
One of them is small, with respect to which we do singular perturbation analysis. The second one
is of order 1, with respect to which we do bifurcation analysis. Combining the two techniques we
find wriggled lamellar solutions of the Euler–Lagrange equation of the total free energy under a
hypothesis regarding the simplicity of the principal eigenvalue, which is generically satisfied. The
wriggled lamellar solutions bifurcate from the perfect lamellar solutions. The stability of the wriggled
lamellar solutions is reduced to a relatively simple finite dimensional problem, which may be solved
accurately by a numerical method. Our tests show that most of them are stable. The existence of
such stable wriggled lamellar solutions explains why in reality the lamellar phase is fragile and often
exists in distorted forms.

Key words. distortion, bifurcation, singular perturbation, stability, wriggled lamellar solution,
perfect lamellar solution, diblock copolymer
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1. Introduction. Symmetry breaking distortions often appear for intrinsic rea-
sons in systems of condensed matters that exhibit self-organization and pattern for-
mation. We study this phenomenon in diblock copolymers. A diblock copolymer is
a soft material, characterized by fluidlike disorder on the molecular scale and a high
degree of order at longer length scales. A molecule in a diblock copolymer melt is a
linear subchain of A monomers grafted covalently to another subchain of B monomers.
Because of the repulsion between the unlike monomers, the different type subchains
tend to segregate below some critical temperature, but as they are chemically bonded
in chain molecules, even a complete segregation of subchains cannot lead to a macro-
scopic phase separation. Only a local microphase separation occurs: microdomains
rich in A and B are formed. These microdomains form morphology patterns/phases
in a larger scale. The most commonly observed undistorted phases are the spheri-
cal, cylindrical, and lamellar, depicted in Figure 1. Here we seek distorted, defective
lamellar patterns, where the interfaces separating the microdomains, unlike the ones
in Figure 1(c), are wriggled (Figure 2(b)).

We consider a scenario that a diblock copolymer melt is placed in a domain D
and maintained at fixed temperature. D is scaled to have unit volume in space. Let
a ∈ (0, 1) be the relative number of the A monomers in a chain molecule, and b = 1−a
be the relative number of the B monomers in a chain. The relative A monomer density
field u is an order parameter. u ≈ 1 stands for high concentration of A monomers.
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(a) (b) (c)

Fig. 1. The (a) spherical, (b) cylindrical, and (c) lamellar morphology phases commonly ob-
served in diblock copolymer melts. The dark color indicates the concentration of type A monomer,
and the white color indicates the concentration of type B monomer.

The melt is incompressible, and thus the relative B monomer density is 1 − u and
u ≈ 0 stands for high concentration of B monomers.

Ohta and Kawasaki [11] introduced an equilibrium theory in which the free energy
of the system is a functional of the relative A monomer density,

I(u) =

∫
D

{
ε2

2
|∇u|2 +

εγ

2
|(−Δ)−1/2(u− a)|2 + W (u)

}
,(1.1)

defined in Xa = {u ∈ W 1,2(D) : u = a}, where u :=
∫
D
u is the average of u on

D. The original formula in [11] is given on the entire R3. The expression here on
a bounded domain D first appeared in Nishiura and Ohnishi [9]. A mathematically
more rigorous derivation is in Choksi and Ren [3]. The local function W is smooth and
has the shape of a double well. It has the global minimum value 0 at two numbers: 0
and 1. To avoid unnecessary technical difficulties we assume that W (p) = W (1 − p).
The two global minimum points are nondegenerate: W ′′(0) = W ′′(1) �= 0.

The most unusual feature in (1.1) is the nonlocal expression (−Δ)−1/2(u − a).
It reflects the connectivity of polymer chains. (−Δ)−1/2 is the square root of the
positive operator (−Δ)−1 from {w ∈ L2(D) : w = 0} to itself. The integral of the
nonlocal part in (1.1) may be rewritten as∫

D

|(−Δ)−1/2(u− a)|2 =

∫
D

∫
D

GD(x, y)(u(x) − a)(u(y) − a) dxdy.

GD is the Green function of −Δ with the Neumann boundary condition. It splits to
a fundamental solution part and a regular part. The fundamental solution in R3 is

1

4π|x− y| ,

a long range Coulomb-type interaction, which is common in many important physical
systems (see Muratov [7]).

The dimensionless parameters ε and γ are positive and depend on various physical
quantities [3]. In the strong segregation region where morphology patterns form, ε
is very small. The second parameter γ is of order 1 when we choose the size of
the sample to be comparable to the size of the microdomains [3]. We develop a
particular two-parameter perturbation method. We do singular perturbation analysis
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(a) (b)

Fig. 2. A perfect lamellar solution (a) and a wriggled lamellar solution (b). In the dark regions
the solutions are close to 1 and in the light regions the solutions are close to 0.

with respect to ε and bifurcation analysis with respect to γ. The challenge is to
combine these two techniques to derive fine analytical results. Even though this
mathematical method is tailored for the diblock copolymer problem, we believe that
it may be applied to other ones with multiple parameters. Examples include the
Seul–Andelman membrane problem [25, 19], charged Langmuir monolayers [1, 16],
and smectic films [24].

The Euler–Lagrange equation of I is

−ε2Δu + f(u) − f(u) + εγ(−Δ)−1(u− a) = 0, ∂νu = 0 on ∂D.(1.2)

The function f is the derivative of W . The term f(u) is equal to the Lagrange
multiplier corresponding to the constraint u = a. Equation (1.2) may also be written
as an elliptic system: ⎧⎪⎪⎨

⎪⎪⎩
−ε2Δu + f(u) + εγv = const,
−Δv = u− a,
∂νu = ∂νv = 0 on ∂D,
u− a = v = 0.

(1.3)

Here const is the Lagrange multiplier.
In Ren and Wei [12] a family of lamellar solutions is found. When D = (0, 1),

for each positive integer K there exists a 1-dimensional (1-D) local minimizer of I
having K sharp interfaces if ε is sufficiently small (see Theorem 2.1). This 1-D local
minimizer may be extended trivially to a three-dimensional (3-D) solution of (1.2)
on a box. Such a solution, illustrated in Figure 2(a), models the lamellar phase,
Figure 1(c), only if it is stable in the sense that it is a local minimizer of I in three
dimensions. A local minimizer in three dimensions is called a metastable state of the
physical system. It survives mild thermal fluctuation.

However, in Ren and Wei [15] it is shown that such 1-D local minimizers are
not necessarily 3-D local minimizers after trivial extension. Detailed spectral infor-
mation at each 1-D solution is found (see Theorem 3.1; a similar analysis for the
FitzHugh–Nagumo system was carried out by Nishiura [8]). In summary, these 1-D
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local minimizers are not 3-D local minimizers unless K is sufficiently large or γ is
sufficiently small. Moreover, the 1-D global minimizer, which is one of the 1-D local
minimizers with the optimal number of interfaces

Kopt ≈
(
a2b2γ

3τ

)1/3

,

where τ is defined in (2.2), has a delicate stability property. It actually lies near the
borderline that separates the stable 1-D solutions from the unstable 1-D solutions.

All this suggests that the lamellar phase is only a metastable, transient state
of the material. Thermal fluctuation will eventually destroy this phase. In reality
one often observes the lamellar phase in distorted forms. We predict based on the
model (1.1) that a defective, wriggled lamellar pattern (Figure 2(b)) exists in diblock
copolymers. We point out that the wriggled lamellar pattern is typically observed in
systems with competing interactions [25].

To simplify the presentation of our results, we consider wriggled lamellar solutions
in two dimensions. We take D = (0, 1) × (0, 1) to be a 2-D square instead of a 3-D
box. The 1-D local minimizers are trivially extended to D. Generalization of our
results to 3-D is straightforward.

The existence of wriggled lamellar solutions is shown by a bifurcation analysis.
Each perfect lamellar solution uγ with K interfaces is stable when γ is sufficiently
small. The spectrum of the second variation of I at uγ , which consists of real eigen-
values only, lies to the right of 0. If we increase γ, the spectrum moves to the left.
When γ reaches a critical value γB, the principal (smallest) eigenvalue in the spec-
trum becomes 0. Under Hypothesis 4.1, which is generically satisfied, the principal
eigenvalue is simple. Then a new solution branch bifurcates out of uγB

. This is a
wriggled lamellar solution (Figure 2(b)). If we further increase γ, then another eigen-
value of uγ , which is not the principal eigenvalue, may become 0, and another new
solution also of a wriggled lamellar pattern bifurcates from uγ . However, wriggled
lamellar solutions that bifurcate from larger eigenvalues are unstable and physically
less interesting.

Whether the wriggled lamellar solution associated with the principal eigenvalue
of uγB is stable is a subtle question. It is relatively easy to see that the bifurcation
diagram has the shape of a pitchfork (Figure 3). The stability of the wriggled solution
depends on the direction of the fork. Here we face a formidable problem. The direction
is determined by the sign of a number which turns out to be terribly small (of order
ε5; see Lemma 5.2). To find this number we have to expand the “trivial solution” uγB ,
its principal eigenfunction corresponding to the 0 eigenvalue, and the third function
g′(0) defined in (5.4), with respect to ε. As we prove Lemma 5.2, these expansions
have to be carefully managed. All the lower order terms up to ε4 vanish. In the end we
arrive at a quantity S(a,K) that depends on a and K only. The bifurcating solution
is stable if S(a,K) > 0 and unstable if S(a, k) < 0. The quantity S(a,K) may be
accurately calculated by a simple numerical method. Our tests, reported in section 5,
show that for most values of a and K the wriggled lamellar solution bifurcating out
of the principal eigenvalue is stable.

Our study of defects in diblock copolymers is partially motivated by the work
of Tsori, Andelman, and Schick [27]. They considered two tilt lamellar patterns:
chevron morphology and omega morphology. They used a model different from (1.1),
which agrees well with experiments in the so-called weak segregation regime. In this
regime interfaces separating microdomains are not sharp compared to the size of the
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microdomains. In our work we deal with the strong segregation regime using (1.1).
Here microdomains are separated by sharp interfaces. The calculations in [27] are
restricted to an ansatz without solving the Euler–Lagrange equation of their free
energy functional. The wriggled lamellar patterns we find are solutions of the Euler–
Lagrange equation (1.2). Many of them are proved to be stable. They are therefore
genuine metastable states of the system.

Moreover, we are able to answer the question whether a 1-D global minimizer,
mentioned earlier, is stable in 2-D. We will find cases where the 1-D global minimizer
is stable and also cases where the 1-D global minimizer is unstable.

The paper is organized as follows. In section 2 we recall some properties of the
perfect lamellar solutions uγ . Section 3 contains some spectral information of the
second variation of I at uγ . Hypothesis 4.1, which guarantees the simplicity of the
principal eigenvalue, is given in section 4. Under this condition the existence of the
wriggled lamellar solutions is given in Theorem 4.2. The reduction of their stability to
the positivity of S(a,K) culminates in Theorem 5.4. The stability of the 1-D global
minimizer is discussed after Theorem 5.4. The lengthy calculations that prove Lemma
5.2 are in Appendices B and C.

To avoid clumsy notations a quantity’s dependence on ε is usually suppressed.
For example, we write u, the lamellar solution, instead of uε. On the other hand we
often emphasize a quantity’s independence of ε with a superscript 0. For example,
the limit of a lamellar solution u as ε → 0 is denoted by u0. The parameter γ may
vary in a compact interval of positive numbers. It is understood in this paper that
all estimates are uniform in such γ. In estimates C is always a positive constant
independent of ε and γ. Its value may vary from line to line. The L2 inner product
is denoted by 〈·, ·〉 and the Lp norm by ‖ · ‖p.

References on the mathematical aspects of the block copolymer theory include,
in addition to the ones cited already, Ohnishi et al. [10], Choksi [2], Fife and Hilhorst
[5], Henry [6], and Ren and Wei [14, 13, 20, 21, 22] on diblock copolymers, and Ren
and Wei [17, 18] on triblock copolymers.

2. The perfect lamellar solution uγ . The perfect lamellar solutions that
serve as “trivial solutions” in the bifurcation theory are constructed in [12] by the
Γ-limit theory. The findings there are summarized in the following theorem.

Theorem 2.1 (see Ren and Wei [12]). In 1-D for each positive integer K the
functional

I1(u) =

∫ 1

0

⎧⎨
⎩ε2

2

(
du

dx

)2

+
εγ

2

∣∣∣∣∣
(
− d2

dx2

)−1/2

(u− a)

∣∣∣∣∣
2

+ W (u)

⎫⎬
⎭ dx,

in {u ∈ W 1,2(0, 1) : u = a}, has a local minimizer u near u0, under the L2 norm,
when ε is sufficiently small. It satisfies the Euler–Lagrange equation

−ε2u′′ + f(u) − f(u) + εγG0[u− a] = 0, u′(0) = u′(1) = 0

and has the properties

lim
ε→0

‖u− u0‖2 = 0 and lim
ε→0

ε−1I1(u) = τK +
γ

2

∫ 1

0

∣∣∣∣∣
(
− d2

dx2

)−1/2

(u0 − a)

∣∣∣∣∣
2

dx.

Let H be the solution of

−H ′′ + f(H) = 0 in R, H(−∞) = 0, H(∞) = 1, H(0) =
1

2
.(2.1)
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The constant τ in the theorem is defined by

τ :=

∫
R

(H ′(t))2 dt.(2.2)

τ is often called the surface tension in the literature. u0 is a step function with K
jump discontinuity points, defined to be

u0(x) = 1 on (0, x0
1), 0 on (x0

1, x
0
2), 1 on (x0

2, x
0
3), 0 on (x0

3, x
0
4), 1 on (x0

4, x
0
5), . . .

with (recall b = 1 − a)

x0
1 =

a

K
, x0

2 =
1 + b

K
, x0

3 =
2 + a

K
, x0

4 =
3 + b

K
, x0

5 =
4 + a

K
, . . . .(2.3)

G0 is the solution operator of −v′′ = g, v′(0) = v′(1) = v = 0; i.e., v = G0[g] =

(− d2

dx2 )−1g.
There is another K-interface 1-D local minimizer whose limiting value as ε → 0

is 0 instead of 1 on the first interval (0, b/K). It is just 1 − ũ, where ũ is a solution
constructed in Theorem 2.1, but with ũ = b instead. 1 − ũ has the same properties
as u does, so we focus on u. u is periodic in the following sense.

Theorem 2.2 (see Ren and Wei [15]). Let u be a 1-D local minimizer constructed
in Theorem 2.1. When ε is small, for every x ∈ (0, 1/K),

u(x) = u

(
2

K
− x

)
= u

(
x +

2

K

)
= u

(
4

K
− x

)

= u

(
x +

4

K

)
= · · · =

{
u(1 − x) if K is even,
u(x + K−1

K ) if K is odd.

Moreover, when ε is small, u is the unique local minimizer of I1 in an L2 neighborhood
of u0. If u on ((j − 1)/K, j/K) for some j = 1, 2, . . . ,K is scaled to a function on
(0, 1), then it is exactly a one-layer local minimizer of I1 with ε and γ replaced by
ε̃ = εK and γ̃ = γ/K3.

Let us denote this u of K interfaces by uγ , to emphasize its dependence on γ.
We need asymptotic expansions of uγ in terms of ε. According to [15, Lemma A.1]
there exist exactly K points xj , j = 1, 2, . . . ,K in (0, 1) so that u(xj) = 1/2. These K
points identify the interfaces of u. Theorem 2.2 implies that x2 = 2

K −x1, x3 = 4
K −x2,

x4 = 6
K − x3, etc. The zeroth order approximation of uγ is

s(x) = H

(
−x− x1

ε

)
+ H

(
x− x2

ε

)

+H

(
−x− x3

ε

)
− 1 + · · · +

{
H(x−xK

ε ) if K is even,
H(−x−xK

ε ) − 1 if K is odd.
(2.4)

The ε order outer expansion term is z0, defined to be

z0(x) = −
γ(v0(x) − v0(x0

j ))

f ′(0)
, v0 =

(
− d2

dx2

)−1

(u0 − a),(2.5)

and the ε order inner expansion term is 0. Because of the periodicity, v0(x0
j ) is

independent of j and z0 is well defined. The ε2 order inner expansion term is P ,
where P is the solution of

−P ′′ + f ′(H)P = −γ(v0)′(x0
j )t, P ⊥ H ′.(2.6)
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There are two different P ’s depending on whether j is odd or even. But they just
differ by a sign, and it is always easy to tell from the context which one is referred to.

Lemma 2.3 (see Ren and Wei [15]). Let z be defined by uγ = s + εz.
1. ‖z − z0‖∞ = O(ε).
2. There exists a constant C > 0 independent of ε so that |ε−1z(xj + εt)| ≤

C(1 + |t|) for all t ∈ (−xj

ε ,
1−xj

ε ). ε−1z(xj + ε·) converges to P in C2
loc(R).

Proof. See [15, Lemmas 2.4 and 2.5].
It is proved in [15] that uγ is a nondegenerate 1-D local minimizer in the sense

that the 1-D spectrum at uγ lies to the right of the origin (see part 2 of Theorem 3.1).
This allows us to apply the implicit function theorem to conclude that uγ depends on
γ smoothly.

Next we estimate duγ/dγ. The inner approximation is

qj(x) = cH ′
(
x− xj

ε

)
+ ε2R

(
x− xj

ε

)
(2.7)

near each xj . The constant c is chosen so that

duγ

dγ
(xj) = cH ′(0).(2.8)

We will show in Appendix A that

lim
ε→0

c = c0 := −
v0(x0

j )

Kf ′(0)
.(2.9)

The function R is the solution of

−R′′ + f ′(H)R + c0f
′′(H)H ′P + tv′(xj) = ζ, R(0) = 0.(2.10)

The constant ζ is chosen so that∫
R

(c0f
′′(H)H ′P + v(xj) − ζ)H ′ dt = 0(2.11)

for solvability. Because of the periodicity of uγ in Theorem 2.2, neither c nor R
depends on j. However, they do depend on ε. Our argument here is a bit different
from the formal matched asymptotics method. If we compare (2.10) to (2.6) we find
that

lim
ε→0

R =
1

γ
P + R̃,(2.12)

where R̃ is the solution of

−R̃′′ + f ′(H)R̃ + c0f
′′(H)H ′P = ζ0, R̃(0) = 0,(2.13)

where ζ0 satisfies ∫
R

(c0f
′′(H)H ′P + v0(x0

j ) − ζ)H ′ dt = 0.(2.14)

The inner approximation (2.7) is used in the interval (xj − εα, xj + εα), where α
satisfies

α ∈
(

1

2
, 1

)
.(2.15)



462 XIAOFENG REN AND JUNCHENG WEI

The outer approximation is denoted by qo:

qo =
η − εγr − εv

f ′(uγ)
,(2.16)

where

r = G0

[
duγ

dγ

]
, v = G0[uγ − a].(2.17)

The outer approximation is used in

[0, 1]\(∪K
j=1(xj − 2εα, xj + 2εα)).(2.18)

The inner approximation is matched to the outer approximation in the matching
intervals (xj −2εα, xj − εα) and (xj + εα, xj +2εα), j = 1, 2, . . . ,K. Let χj be smooth
cut-off functions so that

χj(x) =

{
0 if x �∈ (xj − 2εα, xj + 2εα),
1 if x ∈ (xj − εα, xj + εα);

moreover, χ′
j = O(ε−α) and χ′′

j = O(ε−2α) in (xj−2εα, xj−εα) and (xj+εα, xj+2εα).
We glue the two approximations to form a uniform approximation

q =

K∑
j=1

χjqj +

⎛
⎝1 −

K∑
j=1

χj

⎞
⎠ qo.(2.19)

Lemma 2.4. q − u = o(ε2).
The proof of this lemma is technical. We include it in Appendix A.

3. The 2-D spectrum at uγ . The 1-D local minimizer uγ of I1 is now viewed
as a function on D, through extension to the second dimension trivially, so uγ(x, y) =
uγ(x). It is a solution of (1.2) and I1(uγ) = I(uγ). In two dimensions it has straight
interfaces. We call it a perfect lamellar solution of (1.2).

The linearized operator of (1.2) at uγ is

Lγϕ := −ε2Δϕ+f ′(uγ)ϕ−f ′(uγ)ϕ+εγ(−Δ)−1ϕ, ϕ ∈ W 2,2(D), ∂νϕ = 0 on ∂D, ϕ = 0.
(3.1)
This is an unbounded self-adjoint operator defined densely on {φ ∈ L2(D) : φ = 0}
whose spectrum consists of real eigenvalues only.

For an eigenpair (λ, ϕ) of Lγ , separation of variables shows that ϕ(x, y) =
φm(x) cos(mπy), where m, a nonnegative integer, is called the mode of ϕ. We de-
note a λ that is associated with m by λm. We have the following reduced eigenvalue
problems for (λm, φm).

1. When m = 0,

−ε2φ′′
0 + f ′(uγ)φ0 − f ′(uγ)φ0 + εγG0[φ0] = λ0φ0, φ′

0(0) = φ′
0(1) = φ0 = 0.(3.2)

2. When m �= 0,

−ε2(φ′′
m −m2π2φm) + f ′(uγ)φm + εγGm[φm] = λmφm, φ′

m(0) = φ′
m(1) = 0.(3.3)

Here Gm are the solution operators of the differential equations

−X ′′ = φ0, X ′(0) = X ′(1) = 0, X = 0 if m = 0,(3.4)
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−X ′′ + m2π2X = φm, X ′(0) = X ′(1) = 0 if m �= 0;(3.5)

i.e., Gm[φm] = X. We often identify the operators Gm with the Green functions of
(3.4) and (3.5).

Theorem 3.1 (see Ren and Wei [15]). The following three statements hold when
ε is sufficiently small.

1. There exists M(K) depending on K but not ε so that when m ≥ M(K),
λm ≥ Cε2 for some C > 0 independent of ε.

2. When m = 0, there are K small positive λ0’s. One of them is of order ε.
The other K − 1 λ0’s are of order ε2. The remaining λ0’s are positive and
bounded below by a positive constant independent of ε.

3. When 1 ≤ m < M(K), there are K λm’s of order ε2, which are not necessarily
positive. The remaining λm’s are positive and bounded below by a positive
constant independent of ε. For every γ > 0 there exist K0 > 0 and ε0 > 0
such that for ε < ε0 and K > K0 all the eigenvalues of L are positive and the
solution u, of K interfaces, is stable. For every positive integer K there exist
γ0 > 0 and ε0 > 0 so that for ε < ε0 and γ < γ0 all the eigenvalues of L are
positive and u is stable.

Actually, [15, Theorem 1.1] is formulated for a 3-D box. Here we have stated the
simpler 2-D version.

The eigenvalues λ0 in part 2 of Theorem 3.1 are just the 1-D eigenvalues of uγ .
The asymptotic expansions of the λ0’s are given in [15, sections 4 and 5]. One of the
small λ0’s satisfies

lim
ε→0

ε−1λ0 > 0.

The other K − 1 small λ0’s satisfy

lim
ε→0

ε−2λ0 > 0.

That these eigenvalues are positive is consistent with the fact that uγ is a local mini-
mizer of I1.

Bifurcation occurs at a zero eigenvalue, and thus we focus on the λm’s of part
3, the proof of which is in [15, sections 6 and 7]. There we obtained asymptotic
expansions of the K eigenpairs (λm, φm) of (3.3) satisfying λm → 0 as ε → 0. Define

hj(x) = H ′
(
x− xj

ε

)
χ

(
x− xj√

ε

)
= H ′

(
x− xj

ε

)
+ e.s.,(3.6)

where χ is a smooth, even cut-off function

χ(s) =

{
1 if |s| ≤ 1,
0 if |s| ≥ 2.

Here e.s. is an exponentially small quantity with respect to ε because of the exponen-
tially fast decay rate of H ′: H ′(t) ≤ C1e

−C2|t|. Therefore hj(0) = hj(1) = h′
j(0) =

h′
j(1) = 0, ‖h′

j−ε−1H ′′(
·−xj

ε )‖∞ = O(ε−C/ε), and ‖h′′
j −ε−2H ′′′(

·−xj

ε )‖∞ = O(ε−C/ε).
When m ≥ 1,

λm = ε2
(
γ

τ

(
Λ − ab

K

)
+ m2π2

)
+ o(ε2), φm =

∑
j

cjhj + ε2φ⊥
m.(3.7)
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As mentioned in the introduction, the estimate of λm in (3.7) is uniform in γ when γ
varies in a compact interval of positive numbers. Here the Λ’s are the K eigenvalues
of the K by K matrix [Gm(x0

j , x
0
k)]. [Gm(x0

j , x
0
k)] is diagonalized in [15, section 7].

When K = 1, it has, for each m ≥ 1, one eigenpair (Λ, c0):

Λ =
1

mπ(tanh(mπa) + tanh(mπb))
, c0 ∝ 1.(3.8)

When K = 2, there are two eigenpairs (Λ, c0):

Λ =
1

mπ(coth(mπa) + cot(mπb) − csch (mπa) + csch (mπb))
, c0 ∝ (−1, 1),

Λ =
1

mπ(coth(mπa) + cot(mπb) − csch (mπa) − csch (mπb))
, c0 ∝ (1, 1).(3.9)

When K ≥ 3, there are K eigenpairs

Λ =
1

d− q
, c0.(3.10)

Here q is one of the K eigenvalues of the trigonal matrix

Q =

⎡
⎢⎢⎢⎢⎣

α β
β 0 α

α 0 β
β 0 α

. . .

⎤
⎥⎥⎥⎥⎦ ,(3.11)

where

α = mπcsch
2mπa

K
, β = mπcsch

2mπb

K
, d = mπ

(
coth

2mπa

K
+ coth

2mπb

K

)
,

and c0 is a corresponding eigenvector of Q.

In (3.7) φm is decomposed to
∑

j cjhj in the subspace spanned by hj , j =

1, 2, . . . ,K, and ε2φ⊥
m in the orthogonal complement of the subspace. Moreover,

‖φ⊥
m‖2 = O(|c|) (see [15, Formula (6.4)]). As ε → 0, cj → c0j .

Within each mode m the K eigenvalues λm described in (3.7) are all different when
ε is sufficiently small because the K eigenvalues Λ of [Gm(x0

j , x
0
k)] are all different [15,

sections 5 and 7]. However, this does not imply that each λm is a simple eigenvalue. It
is possible that there exists a different mode m′ such that a λm′ happens to equal λm.
This problem will appear when we consider the simplicity of the principal eigenvalue
in the next section.

In this section we improve the estimate ‖φ⊥
m‖2 = O(|c|) to ‖φ⊥

m‖∞ = O(|c|) and
find the limiting behavior of φ⊥

m near each xj . Define Π to be the solution of

−Π′′ + f ′(H)Π =
γ

τ

(
Λ − ab

K

)
H ′ + const, Π ⊥ H ′(3.12)

in R. Recall P from (2.6).
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Lemma 3.2.

1. ‖φ⊥
m‖∞ = O(|c|).

2. At each xj, φ
⊥
m(xj + ε·) converges in C2

loc(R) to c0j (P
′ + Π).

Proof. We define an operator Lm so that the left side of (3.3) is Lmφm. Note that
this Lm differs from the one in [15] slightly. The function φ⊥

m satisfies the equation

Lmφ⊥
m − λmφ⊥

m =
∑
j

cj

{
−m2π2hj −

1

ε2
(f ′(uγ) − f ′(H))hj − γGm

[
hj

ε

]
+

λm

ε2
hj

}
.

(3.13)
We claim that the right side of (3.13) is O(|c|). The first term inside {} on the right
side is obviously O(1). The last term is O(1) by (3.7). The third term is O(1) because

Gm[
hj

ε ] → Gm(x, x0
j ) as ε → 0. The least obvious is the second term. It is O(1) by

Lemma 2.3.
Suppose that part 1 of Lemma 3.2 is false. Let

ψ =
φ⊥
m

‖φ⊥
m‖∞

.

Then ψ satisfies

Lmψ = o(1).(3.14)

There exists x∗ ∈ [0, 1] so that |ψ(x∗)| = max |ψ| = 1. Without the loss of generality
we assume ψ(x∗) = 1. Otherwise just change ψ to −ψ. Then x∗ − xj = O(ε) for
some xj . If this is not the case, (3.14) cannot be satisfied at x∗ since, by a maximum
principle argument,

Lmψ(x∗) = −ε2(ψ′′(x∗)−m2π2ψ(x∗))+f ′(uγ(x∗))ψ(x∗)+εγGm[ψ](x∗) ≥ f ′(0)+o(1).

Here ψ′′(x∗) ≤ 0 because x∗ is a maximum, and because the Neumann boundary
condition in case x∗ is on the boundary. Define Ψ(t) = ψ(xj + εt). On the rescaled
interval (xj/ε, (1 − xj)/ε) Ψ satisfies

−Ψtt+ε2m2π2Ψ+f ′(uγ)Ψ+εγGm[ψ](xj+εt) = o(1), Ψ′
(
−xj

ε

)
= Ψ′

(
1 − xj

ε

)
= 0.

On every bounded subinterval of R, because Ψ is bounded and the terms ε2m2π2Ψ,
f ′(uγ)Ψ, and εγGm[ψ](xj + εt) are bounded, by the elliptic regularity theory Ψ is
bounded in W 2,p for any p > 1. A bootstrapping argument shows that Ψ is bounded
in C2,α on the subinterval.

As ε → 0, Ψ converges in C2
loc(R), along a subsequence of ε, to a bounded nonzero

solution Ψ∞ of

−Ψ′′
∞ + f ′(H)Ψ∞ = 0.

There are infinitely many solutions to the last equation. However, only H ′ and its
scalar multiples are bounded on R. Therefore Ψ∞ ∝ H ′. But ψ ⊥ hj implies that
Ψ∞ ⊥ H ′. Hence Ψ∞ = 0, a contradiction.

To prove part 2 we let Φ⊥(t) = φ⊥
m(xj + εt). By part 1 we can pass the limit in

(3.13) to find that Φ⊥ → Φ⊥
∞ in C2

loc(R), which is a solution of

−(Φ⊥
∞)′′ + f ′(H)Φ⊥

∞ = c0j

(
−f ′′(H)H ′P +

γ

τ

(
Λ − ab

K

)
H ′ + const

)
.(3.15)
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By differentiating the equation for P we find

−(P ′)′′ + f ′(H)P ′ = −f ′′(H)H ′P − γab

K
.

Thus Φ⊥
∞ and c0j (P

′+Π) satisfy the same equation (3.15). Moreover, φ⊥
m ⊥ hj implies

Φ⊥
∞ ⊥ H ′. Hence Φ⊥

∞ = c0j (P
′ + Π).

4. Bifurcation at (γB, uB). We use γ as a bifurcation parameter. Since we are
mainly interested in stable wriggled solutions, we study bifurcation from the principal
eigenvalue, i.e., the smallest eigenvalue, which we denote by λ(γ). We must find γB

so that λ(γB) = 0 and make sure that λ(γB) is a simple eigenvalue. The following
procedure easily finds the critical γB.

1. According to [15, section 7], for each m the eigenvalues Λ of the matrix
[Gm(x0

j , x
0
k)] are all different and the smallest one is

Λm =
1

mπ(tanh(mπa) + tanh(mπb))
if K = 1,

Λm =
1

mπ(coth(mπa) + cot(mπb) − csch (mπa) + csch (mπb))
(4.1)

if K = 2,

Λm =
1

d +
√
α2 + β2 + 2αβ cos θ

, θ =
2π

K
if K ≥ 3.

Recall that α, β, and d are defined after (3.11).
2. For each m ≥ 1 we define γ0

m to be the solution of

γ0
m

τ

(
Λm − ab

K

)
+ m2π2 = 0.(4.2)

According to (3.7) at γ = γ0
m, λm = o(ε2) where

λm = ε2
(
γ0
m

τ

(
Λm − ab

K

)
+ m2π2

)
+ o(ε2)

is the smallest eigenvalue of the mode m. The solution γ0
m may or may not

be positive. If γ0
m ≤ 0, this means that the mode m does not yield a zero

eigenvalue for any γ > 0. We discard nonpositive γ0
m.

3. We minimize the positive γ0
m’s with respect to m. Because limm→∞ γ0

m = ∞,
the minimum is achieved and is denoted by γB

0. If m is the mode where
γ0
m = γB

0 and m′ is another mode such that γ0
m′ > γB

0, then, since for m′

Λm′ − ab

K
< 0,

a consequence of γ0
m′ being positive, we find that

γB
0

τ

(
Λm′ − ab

K

)
+ (m′)2π2 >

γ0
m′

τ

(
Λm′ − ab

K

)
+ (m′)2π2 = 0.

Hence at γ = γB
0 the smallest eigenvalue associated with a mode m of γB

0

vanishes up to order ε2 while the greater eigenvalues associated with the mode
m and the eigenvalues associated with the modes m′ satisfying γ0

m′ > γB
0 are

positive and of order ε2. Then there exists γB such that limε→0 γB = γB
0 and

at γ = γB the principal eigenvalue λ(γB) is zero.
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The simplicity of λ(γB) is more complex. For most a and τ , the minimum γB
0

of γ0
m is achieved at one m. Then, for sufficiently small ε, the mode of λ(γB) is the

unique m and λ(γB) is a simple eigenvalue.

However, it is possible, for some particular a and τ , that two modes, m and m+1,
both minimize γ0

m, and thus γB
0 is achieved by two modes. This does not necessarily

mean that the principal eigenvalue λ(γB) has multiplicity two because there is the
effect of the o(ε2) order term in (3.7). Nevertheless we cannot exclude the possibility.
Throughout the rest of the paper we impose the following condition which can be
easily tested numerically for given a and τ .

Hypothesis 4.1. The positive γ0
m’s defined in (4.2) are minimized at a unique

m.

Being a simple eigenvalue now, λ(γB) is continued smoothly to a curve of simple
eigenvalues λ(γ) of Lγ as γ varies. λ(γ), which is estimated in (3.7), is valid uni-
formly in γ when γ varies in a neighborhood (such as [γB/2, 2γB]) of γB. Denote the
eigenfunction associated with λ(γB) by ϕB(x, y) = φB(x) cos(mπy), where m from
now on is the unique mode in Hypothesis 4.1. We write uB := uγB

and LB := LγB
for

simplicity. Let

X := {w ∈ W 2,2(D) : ∂νw = 0 on ∂D, w = 0}, Y := {z ∈ L2(D) : z = 0}.(4.3)

Here X is a dense subspace of Y equipped with the W 2,2 norm; Y is a Hilbert space
with the usual inner product 〈·, ·〉 inherited from L2(D).

A nonlinear map F : (0,∞) ×X → Y is defined by

F (γ,w) := −ε2Δ(uγ + w) + f(uγ + w) − f(uγ + w) + εγ(−Δ)−1(uγ + w − a).(4.4)

Obviously the trivial branch (γ, 0) is a solution branch of F (γ,w) = 0. It corresponds
to the K-interface, perfect lamellar solution uγ of (1.2), parameterized by γ. We look
for another solution branch, a bifurcating branch, (γ(s), w(s)) of F . It gives another
solution uγ(s) + w(s) of (1.2).

Theorem 4.2. Under Hypothesis 4.1, when ε is sufficiently small, at γ = γB

another solution branch (γ(s), w(s)) bifurcates from the trivial branch (γ, 0). Here
w(s) = sϕB + sg(s), where the parameter s is in a neighborhood of 0 with γ(0) = γB

and w(0) = 0. Moreover, γ : s → γ(s) ∈ R and g : s → g(s) ∈ X are both
continuously differentiable, g satisfies g(s) ⊥ ϕB, and g(0) = 0.

Note that uγ(s) + w(s) is approximately uγ(s)(x) + sφB(x) cos(mπy) since g(s) is
a smaller term compared to ϕB(x, y) = φB(x) cos(mπy). Figure 2(b) is made based
on this observation.

Proof. We appeal to the standard bifurcation from the simple eigenvalue theorem
(see [26, Theorem 13.5, page 173]). Denote the Fréchet derivatives of F with respect
to γ by D1 and with respect to w by D2. We need to verify the following three
properties.

1. D2F (γB, 0), which is just LB : X → Y , has a 1-D kernel spanned by ϕB.
2. R(D2F (γB, 0)), the range of D2F (γB, 0), has codimension 1.
3. D1D2F (γB, 0)ϕB is not in R(D2F (γB, 0)).

Property 1 follows from the simplicity of λ(γ). To prove 2 we claim that there
exists a positive constant c(ε, γB) depending on ε and γB so that

‖ψ‖2 ≤ c(ε, γB)‖LBψ‖2 for all ψ ⊥ ϕB, ψ ∈ X.(4.5)
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Suppose (4.5) is false. There would exist a sequence ψn ∈ X, ψn ⊥ ϕB, ‖ψn‖2 = 1 so
that ‖LBψn‖2 → 0. Let ψn → ψ∗ weakly in L2(D). Then ψ∗ ⊥ ϕB. For every ω ∈ X,

〈ψ∗, LBω〉 = lim
n→∞

〈ψn, LBω〉 = lim
n→∞

〈LBψn, ω〉 = 0.

By the self-adjointness of LB, ψ∗ ∈ X and LBψ∗ = 0. Hence ψ∗ = 0 from property 1.
Rewrite LBψn as

−ε2Δψn = −f ′(uB)ψn + f ′(uB)ψn − εγB(−Δ)−1ψn + LBψn.

Since ‖ψn‖2 = 1 and ‖LBψn‖2 → 0, the right side is bounded in L2(D). The elliptic
regularity theory asserts that ψn is precompact in L2(D). Hence ψn → 0 in L2(D).
This is inconsistent with the fact ‖ψn‖2 = 1. Hence (4.5) holds.

We now prove 2. by showing R(LB) = {ϕB}⊥. The self-adjointness of LB and
1. imply that every ψ ∈ R(LB)⊥ is ϕB multiplied by a constant. It suffices to show
that R(LB) is closed. Take ωn ∈ R(LB) so that ωn → ω∗ in L2(D). Let ψn ∈ X,
ψn ⊥ ϕB such that LBψn = ωn. Since ωn is a Cauchy sequence, by (4.5) ψn is also a
Cauchy sequence. Let ψn → ψ∗ in L2(D). Note that LB is a closed operator since it
is self-adjoint. Hence ψ∗ ∈ X and LBψ∗ = ω∗. This proves property 2.

To prove 3, note that the linear map D1D2F (γB, 0) : X → Y is

ψ → f ′′(uB)
duγ

dγ
|γ=γB

ψ − f ′′(uB)
duγ

dγ
|γ=γBψ + ε(−Δ)−1ψ.(4.6)

Since R(LB) = {ϕB}⊥, it suffices to show

〈D1D2F (γB, 0)ϕB, ϕB〉 �= 0, i.e.,

∫
D

{
f ′′(uB)

duγ

dγ
|γ=γB

ϕ2
B + εϕB(−Δ)−1ϕB

}
�= 0.

(4.7)

This fact is established in the next lemma.
Lemma 4.3. When ε is sufficiently small,∫
D

{
f ′′(uB)

duγ

dγ
|γ=γB

ϕ2
B + εϕB(−Δ)−1ϕB

}
= −ε3|c0|2τm2π2

2γB
+ o(ε3|c0|2) < 0.

Here τ is given in (2.2), and c0 is in (3.8)–(3.10), a nonzero vector.
Proof. Note that ϕB(x, y) = φB(x) cos(mπy) and (−Δ)−1ϕB(x, y) =

Gm[φB](x) cos(mπy). Hence after integrating out the y variable we deduce∫
D

{
f ′′(uB)

duγ

dγ
|γ=γBϕ

2
B + εϕB(−Δ)−1ϕB

}

=

∫ 1

0

{
1

2
f ′′(uB)

duγ

dγ
|γ=γB

φ2
B +

ε

2
Gm[φB]φB

}
dx.(4.8)

By Lemmas 2.4 and 3.2, we find

∫ 1

0

f ′′(uB)
duγ

dγ
|γ=γBφ

2
B =

∫ 1

0

f ′′(uB)

⎛
⎝∑

j

(chj + ε2R)

⎞
⎠φ2

B + o(ε3)

=

∫ 1

0

f ′′(uB)

⎛
⎝∑

j

(chj + ε2(γ−1P + R̃)

⎞
⎠φ2

B + o(ε3|c|2)

= ε2
∫ 1

0

f ′′(uB)(γ−1P )φ2
B + o(ε3|c|2).
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We have used the fact that P is odd, and R̃ and Ht are even. Hence we arrive at

∫ 1

0

f ′′(uB)
duγ

dγ
|γ=γB

φ2
B = ε3

∫
R

f ′′(H)γ−1P

⎛
⎝∑

j

c2j

⎞
⎠ (H ′)2 dt + o(ε3|c|2)

= −ε3|c0|2ab
K

+ o(ε3|c0|2),

where the last equation follows after we differentiate the equation for γ−1P ,

−(γ−1P )′′′ + f ′(H)(γ−1P )′ + f ′′(H)H ′(γ−1P ) = −ab

K
,

multiply by H ′, and integrate:
∫
R
f ′′(H)γ−1P (H ′)2 dt = −ab/K. By Lemma 3.2 we

obtain

∫ 1

0

εGm[φB]φB = ε3
∫ 1

0

⎛
⎝∑

j

cjGm

[
hj

ε

]⎞⎠
(∑

k

ck
hk

ε

)
+ o(ε3|c|2)

= ε3
∑
j,k

cjckGm(xk, xj) + o(ε3|c|2) = ε3Λ|c0|2 + o(ε3|c0|2).

Here Λ is an eigenvalue of the K by K matrix Gm(x0
k, x

0
j ) and c0 is a corresponding

eigenvector, satisfying limε→0 cj = c0j .
Hence the right side of (4.8) becomes

ε3|c0|2
2

(
Λ − ab

K

)
+ o(ε3|c0|2).

To determine the sign of this quantity we recall (3.7):

λ(γB) = ε2
[
γB

τ

(
Λ − ab

K

)
+ m2π2

]
+ o(ε2).

But here λ(γB) = 0. Hence

Λ − ab

K
= −τm2π2

γB
+ o(1).

This proves the lemma.
Remark 4.4. The proof of Theorem 4.2 does not use the fact that λ(γB) is a

principal eigenvalue. The theorem continues to hold if λ(γB) is just a zero, simple
eigenvalue, not necessarily principal. However, the bifurcating solution from a non-
principal eigenvalue is unstable, and hence less interesting to us.

5. Stability of the bifurcating solutions. The eigenvalue λ(γ) of the trivial
branch uγ corresponds to an eigenvalue λ∗(s) of the bifurcating solution uγ(s) +w(s).
The sign of λ∗(s) may be determined from the shape of γ(s). Thus we proceed to
compute γ′(0) and γ′′(0).

Place w(s) = sϕB + sg(s) into F (γ,w) = 0 and divide by s:

−ε2Δ
(uγ(s)

s
+ ϕB + g(s)

)
+

f(uγ(s) + w(s))

s

+ εγ(s)(−Δ)−1

(
uγ(s) − a

s
+ ϕB + g(s)

)
= const,(5.1)



470 XIAOFENG REN AND JUNCHENG WEI

Perfect, Stable Unstable

Wriggled, Unstable

> γ

Perfect, Stable Unstable

Wriggled, Stable

Fig. 3. The two possible diagrams of wriggled lamellar solutions bifurcating out of perfect
lamellar solutions. The bifurcating solutions are unstable in the first case (left) where γ′′(0) < 0,
and stable in the second case (right) where γ′′(0) > 0.

where const refers to the term coming from the average of f , which is independent of
(x, y). Here we do not need its exact value. On the other hand, divide (1.2) of uγ(s)

by s and subtract the result from (5.1):

(5.2)

−ε2Δ(ϕB + g(s)) +
f(uγ(s) + w(s)) − f(uγ(s))

s
+ εγ(s)(−Δ)−1(ϕB + g(s)) = const.

Differentiate (5.2) with respect to s and set s = 0 afterwards:

LBg
′(0) + γ′(0)

{
f ′′(uB)

duγ

dγ
|γ=γBϕB + ε(−Δ)−1ϕB

}
+

1

2
f ′′(uB)ϕ2

B = const.(5.3)

Then we multiply (5.3) by ϕB and integrate over D:

γ′(0)

∫
D

{
f ′′(uB)

duγ

dγ
|γ=γB

ϕ2
B + εϕB(−Δ)−1ϕB

}
= −

∫
D

1

2
f ′′(uB)ϕ3

B.(5.4)

Clearly the right side of (5.4) is 0 since ϕB(x, y) = φB(x) cos(mπy) and integration
with respect to y yields 0. Lemma 4.3 then implies the following.

Corollary 5.1. γ′(0) = 0.
Consequently, (5.3) is simplified to

LBg
′(0) = −1

2
f ′′(uB)ϕ2

B + const, g′(0) ⊥ ϕB.(5.5)

The right side of (5.5) is perpendicular to ϕB since the integration of the right side
multiplied by uB with respect to y yields 0, so there is a solution of g′(0). g′(0) ⊥ ϕB

follows from g(s) ⊥ ϕB in Theorem 4.2, so g′(0) is uniquely determined.
Corollary 5.1 implies that the bifurcation diagram has the shape of a pitchfork.

There are two possibilities illustrated in Figure 3. To determine which of the two
cases occurs, we need to find γ′′(0). Differentiate (5.2) with respect to s twice and set
s = 0 afterwards:

LBg
′′(0) + γ′′(0)

{
f ′′(uB)

duγ

dγ
|γ=γBϕ

2
B + ε(−Δ)−1ϕB

}

+2f ′′(uB)ϕBg
′(0) +

1

3
f ′′′(uB)ϕ3

B = const.(5.6)
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We have used Corollary 5.1 in deriving (5.6). Again we multiply (5.6) by ϕB and
integrate:

γ′′(0)

∫
D

{
f ′′(uB)

duγ

dγ
|γ=γBϕ

2
B + εϕB(−Δ)−1ϕB

}

= −
∫
D

{
2f ′′(uB)ϕ2

Bg
′(0) +

1

3
f ′′′(uB)ϕ4

B

}
.(5.7)

The integral on the left side of (5.7) has been calculated in Lemma 4.3. We now need
to know the right side.

Lemma 5.2.

−
∫
D

{
2f ′′(uB)ϕ2

Bg
′(0) +

1

3
f ′′′(uB)ϕ4

B

}

= −ε5mπγB

K∑
j=1

c4j

[
2 + cosh(2mπ)

8 sinh(2mπ)
+

cosh(2mπ(1 − 2x0
j ))

8 sinh(2mπ)

+
cosh(mπ(1 − 2x0

j ))

4 sinh(mπ)
− 3(mπ)3τ

8γB

]
+ o(ε5|c|4).

The proof of Lemma 5.2 is formidable. We have to expand the quantity to the
ε5 order term, because all the lower order terms up to ε4 vanish. Our main idea is
to expand uB, φB, 2g

′(0) as (· · ·) + ε2(· · ·) near each interface xj and then show that
the quantity in Lemma 5.2 depends “locally” on these expansions near xj . This is
a very long computation; we do not know if there is a simpler proof. We include
the computation in Appendices B and C. The reader may skip it in a first reading.
Combining Lemmas 4.3 and 5.2 we obtain the following.

Corollary 5.3. As ε → 0, ε−2γ′′(0) →

2(γB
0)2

|c0|2mπτ

K∑
j=1

(c0j )
4

[
2 + cosh(2mπ)

8 sinh(2mπ)
+

cosh(2mπ(1 − 2x0
j ))

8 sinh(2mπ)

+
cosh(mπ(1 − 2x0

j ))

4 sinh(mπ)
− 3(mπ)3τ

8γB
0

]
,

where γB
0 = limε→0 γB is given in section 4.

Define

S(a,K) :=

K∑
j=1

(
c0j
|c0|

)4 [
2 + cosh(2mπ)

8 sinh(2mπ)
+

cosh(2mπ(1 − 2x0
j ))

8 sinh(2mπ)

+
cosh(mπ(1 − 2x0

j ))

4 sinh(mπ)
− 3(mπ)3τ

8γB
0

]
.(5.8)

Note that S(a,K) depends on a and K only. It does not depend on τ . Since τ depends
on the shape of W , S(a,K) is independent of the exact shape of W . Then Corollary
5.3 implies

lim
ε→0

ε−2γ′′(0) =
2(γB

0)2|c0|2
mπτ

S(a,K).(5.9)
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Theorem 5.4. Under Hypothesis 4.1 when ε is sufficiently small, the bifurcating
solution uγ(s) + w(s) of K wriggled interfaces is stable if S(a,K) > 0 and unstable if
S(a,K) < 0.

Proof. We first find λ′(γB). Differentiate the equation Lγϕ = λϕ with respect to
γ:

−ε2Δϕγ+f ′(uγ)ϕγ+εγ(−Δ)−1ϕγ+f ′′(uγ)
duγ

dγ
ϕγ+ε(−Δ)−1ϕ = λϕγ+λ′(γ)ϕ+const.

Set γ = γB in the equation, multiply the equation by ϕB, and integrate over D.∫
D

{
f ′′(uB)

duγ

dγ
|γ=γB

ϕ2
B + εϕB(−Δ)−1ϕB

}
= λ′(γB)

∫
D

ϕ2
B.

The left side is calculated in Lemma 4.3. The integral on the right side is

∫
D

ϕ2
B =

∫
D

⎛
⎝∑

j

cjhj

⎞
⎠

2

cos2(mπy) dxdy + o(ε|c|2) =
ετ

2

∑
j

c2j + o(ε|c|2).

Therefore

λ′(γB) = −ε2m2π2

γB
+ o(ε2) < 0.(5.10)

According to Crandall and Rabinowitz [4, Theorem 1.16], who generalize an ear-
lier result of Sattinger [23], near s = 0, λ∗(s) and −sγ′(s)λ′(γB) have the same zeros,
and

lim
s→0, λ∗(s) �=0

−sγ′(s)λ′(γB)

λ∗(s)
= 1.(5.11)

Here λ∗(s) is the principal eigenvalue of the bifurcating solution uγ(s)+w(s). Whether
the bifurcating solution is stable depends on whether λ∗(s) is positive. The theorem
follows from (5.9), (5.10), and (5.11).

Let us use Theorem 5.4 to work out some examples. The quantity S(a,K) may
be accurately calculated following these numerical steps.

1. Follow the procedure in section 4 to find γB
0/τ and m.

2. Make certain that Hypothesis 4.1 is satisfied.
3. Find c0 from Q corresponding to Λ of (4.1).
4. Find S(a,K) from (5.8).

Tables 1, 2, and 3 report our numerical calculations based on this method for
the cases a = 1/2, 1/8, and 7/8. In each table the first column is the number of the
interfaces in the perfect lamellar solution uB. The second column gives the value of
m associated with the principal eigenvalue 0 of uB. Note that m does not increase as
fast as K does. The third column has the value of γB

0/τ . We will explain the fourth
in a moment. The fifth column has the value of S(a,K). The last column indicates
the stability of the bifurcating solution with K wriggled interfaces.

We have deliberately chosen a = 1/8 and a = 7/8 because they are somehow
“symmetric.” With the exception of K = 2, the γB

0/τ ’s are identical in Tables 2
and 3 for the same value of K. Moreover, the S(a,K) values are the same in the
two tables when K is odd. All these symmetries and asymmetries can be explained
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Table 1

The stability of the wriggled lamellar solutions that bifurcate from the principal eigenvalues of
the perfect lamellar solutions, when a = 1/2.

K m γB
0/τ Kopt S(1/2,K) Stability

1 1 1.2906e+02 2 5.7961e-02 Stable
2 2 8.6349e+02 3 1.4167e-02 Stable
3 3 2.7193e+03 4 5.4073e-03 Stable
4 3 5.3823e+03 5 2.5346e-02 Stable
5 3 9.7086e+03 6 2.8045e-02 Stable
6 4 1.6165e+04 7 1.9801e-02 Stable
7 4 2.4091e+04 8 2.0216e-02 Stable
8 4 3.4492e+04 9 1.9435e-02 Stable
9 4 4.7728e+04 10 1.8273e-02 Stable

10 4 6.4156e+04 11 1.7045e-02 Stable

Table 2

The stability of the wriggled lamellar solutions that bifurcate from the principal eigenvalues of
the perfect lamellar solutions, when a = 1/8.

K m γB
0/τ Kopt S(1/8,K) Stability

1 3 1.7317e+03 2 -3.1473e-02 Unstable
2 5 1.3418e+04 4 2.7118e-02 Stable
3 2 1.0218e+04 3 6.0136e-02 Stable
4 3 2.3798e+04 5 5.5916e-02 Stable
5 3 4.3553e+04 6 3.5615e-02 Stable
6 3 7.3607e+04 7 3.0307e-02 Stable
7 4 1.1373e+05 8 2.5439e-02 Stable
8 4 1.6489e+05 9 2.2622e-02 Stable
9 4 2.3061e+05 10 2.0337e-02 Stable

10 4 3.1284e+05 11 1.8426e-02 Stable

Table 3

The stability of the wriggled lamellar solutions that bifurcate from the principal eigenvalues of
the perfect lamellar solutions, when a = 7/8.

K m γB
0/τ Kopt S(7/8,K) Stability

1 3 1.7317e+03 2 -3.1473e-02 Unstable
2 2 3.4949e+03 2 4.9812e-02 Stable
3 2 1.0218e+04 3 6.0136e-02 Stable
4 3 2.3798e+04 5 2.8615e-02 Stable
5 3 4.3553e+04 6 3.5615e-02 Stable
6 3 7.3607e+04 7 3.0508e-02 Stable
7 4 1.1373e+05 8 2.5439e-02 Stable
8 4 1.6489e+05 9 2.2655e-02 Stable
9 4 2.3061e+05 10 2.0337e-02 Stable

10 4 3.1284e+05 11 1.8433e-02 Stable

from (4.1) for Λ and the matrix (3.11) of Q. In summary, our problem is invariant
under the reflection u(x) → u(1 − x) with respect to x = 1/2, and the exchange
u(x) → 1− u(x) of A and B monomers. When K is odd the perfect lamellar solution
uγ studied in Table 2 becomes uγ in Table 3, and vice versa, after we perform the last
two transformations. However, this is not true when K is even.

There is an interesting relationship between the perfect lamellar solution uB whose
principal eigenvalue is 0 and the 1-D global minimizer. In [15, section 8] it is shown
that the 1-D global minimizer (the global minimizer of I1 in Theorem 2.1, also a perfect
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lamellar solution on D after trivial extension), which is one of the 1-D local minimizers,
has the number of interfaces Kopt which minimizes (among positive integers N) τN +
γa2b2/(6N2). If we take γ = γB so that the K-interface, perfect lamellar solution
uB has 0 principal eigenvalue, we find the 1-D global minimizer corresponding to γB.
The number of interfaces Kopt of this 1-D global minimizer is reported in the fourth
columns in Tables 1, 2, and 3.

It is known [15] that for any γ the 1-D global minimizer sits near the 2-D stability
borderline. But it has not been determined whether the 1-D global minimizer is stable
in 2-D. Now we show that the 1-D global minimizer is stable in two dimensions for
some γ and unstable for other γ.

First consider γ = γB. Then uB is the borderline of 2-D stability. By examining
the formulae (3.7) and (4.1) we find that for each γ the principal eigenvalue increases
as K increases. If γ = γB and K is the number of the interfaces of uB whose principal
eigenvalue is zero, then Tables 1–3 show that in most cases Kopt = K + 1, and hence
the 1-D global minimizer is stable.

However, in some cases, such as the third row of Table 2, K = Kopt. Then uB

is the 1-D global minimizer. Since the principal eigenvalue of uB is zero, the linear
stability of uB is undetermined. However, if we consider γ in a small neighborhood of
γB, then uγ continues to be the 1-D global minimizer. But Figure 3 shows that when
γ is slightly greater than γB the 1-D global minimizer is unstable in two dimensions.

Appendix A. Proof of Lemma 2.4.
We differentiate the 1-D Euler–Lagrange equation in Theorem 2.1 with respect

to γ to deduce

−ε2Δ

(
duγ

dγ

)
+ f ′(uγ)

duγ

dγ
− η + εγG0

[
duγ

dγ

]
+ εv = 0,(A.1)

where

η = f ′(uγ)
duγ

dγ
.(A.2)

We first show that duγ/dγ = O(1) so that c defined in (2.8) is of order O(1). By
the periodicity of uγ and duγ/dγ we consider (A.1) in one half period (0, l) where
l = 1/K. Decompose

duγ

dγ
= βφ0 + φ⊥

0 , φ0 ⊥ φ⊥
0 ,(A.3)

where φ0 is the eigenfunction associated with the ε order eigenvalue λ0 described in
part 2 of Theorem 3.1. Note that λ0 is the only small eigenvalue of mode zero now.
In [15, section 4] it was shown that

φ0 = h1 − h1 + O(ε).(A.4)

Denote the operator on the left side of (A.1) by L0. Then

L0φ
⊥
0 = −βL0φ0 − εv = −βλ0 − εv = O(ε|β|) + O(ε).

This equation and the fact that φ0 ⊥ φ⊥
0 imply, as in the proof of Lemma 3.2, that

φ⊥
0 = O(ε|β|) + O(ε).(A.5)
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We rewrite (A.1) as βL0φ0 + L0φ
⊥
0 = −εv, multiply by φ0, and integrate to deduce

βλ0‖φ0‖2
2 = −ε

∫ l

0

vφ0 dx.

It follows from (A.4) that

β = O(1),(A.6)

and (A.5) in turn becomes

φ⊥
0 = O(ε).(A.7)

Therefore duγ/dγ = O(1). We can assume that along a subsequence of ε, c → c0.
After we prove Lemma 2.4 we will find the value of c0. Then c → c0 along all ε → 0.

We now return to the whole interval (0, 1) as we prove Lemma 2.4. We first
construct a preliminary approximation p = c

∑
j hj . The difference

duγ

dγ
− p

satisfies

−ε2Δ

(
duγ

dγ
− p

)
+ f ′(uγ)

(
duγ

dγ
− p

)
= η + O(ε).(A.8)

Together with the fact that

duγ

dγ
(xj) = p(xj),

we deduce that

duγ

dγ
− p = O(ε) + O(|η|).(A.9)

If we multiply (A.8) by a hi and integrate, then

η = O

(
ε2‖duγ

dγ
− p‖∞

)
+ O(ε).(A.10)

We conclude from (A.9) and (A.10) that

duγ

dγ
− p = O(ε), η = O(ε),(A.11)

and consequently (recall r = G0[duγ/dγ])

r = O(ε).(A.12)

We are now ready to consider the approximation q of duγ/dγ. In the inner and
matching regions,

−ε2Δqj + f ′(uγ)qj

= −ε2Δ(cH ′
j + ε2Rj) + f ′(uγ)(cH ′

j + ε2Rj)

= c(f ′(uγ) − f ′(H))H ′
j − ε2(c0PH ′

jf
′′(H) + tv′(xj) − ζ) + ε2(f ′(uγ) − f ′(H))Rj

= ε2(c− c0)f
′′(H)PH ′

j − ε2(tv′(xj) − ζ) + ε2(f ′(uγ) − f ′(H))Rj

= −ε2(tv′(xj) − ζ) + o(ε2) + ε2O(ε|t|)
= ε2(ζ − tv′(xj)) + o(ε2).
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Therefore, with the help of α ∈ (1/2, 1),

−ε2Δqj + f ′(uγ)qj − η + εγr + εv = −η + εγr + εv(xj) + ε2ζ + o(ε2).(A.13)

In the outer region, the definition of q0 in (2.16) implies that

−ε2Δqo + f ′(uγ)qo − η + εγr + εv = O(ε3),(A.14)

because Δqo = O(ε) on the outer region.
We now estimate the difference of qj and qo on a matching region. First, from

(2.10) we find

ε2Δqj = O(ε3).

Then (A.13) implies that

f ′(uγ)qj − η + εγr + εγv = σ + o(ε2),

where

σ = −η + εγr(xj) + εv(xj) + ε2ζ.(A.15)

Comparing this to (2.16) we deduce that

qj − q0 = O(|σ|) + o(ε2)(A.16)

on the matching regions (xj − 2εα, xj − εα) and (xj + εα, xj +2εα). Then we consider
q in the matching region. Here by (A.16)

−ε2Δq + f ′(uγ)q − η + εγr + εv

= −ε2Δqo + f ′(uγ)qo − η + εγr + εv + O(‖qj − qo‖∞)

= −ε2Δq + O(|σ|) + o(ε2)

= −ε2Δq − ε2Δ(χj(qj − qo)) + O(|σ|) + o(ε2)

= −ε2(χ′′
j (qj − qo) + 2χ′

j(qj − qo)
′ + χj(qj − qo)

′′) + O(|σ|) + o(ε2)

= O(|σ|) + o(ε2).(A.17)

If we let g = u− q, then (A.13), (A.14), and (A.17) imply that

−ε2Δg + f ′(uγ)g =

⎧⎨
⎩

σ + o(ε2) in an inner region,
O(|σ|) + o(ε2) in a matching region,
O(ε3) in the outer region.

(A.18)

We deduce from (A.18) and g(xj) = 0 that

g = O(|σ|) + o(ε2).(A.19)

On the other hand, if we multiply (A.18) by H ′
j and integrate, then

∫ 1

0

[(f ′(uγ) − f ′(H))gH ′
j ] dx = εσj + O(ε2|σ|) + o(ε3).

But the integral on the left side is O(ε2‖g‖∞), from which we conclude that

σ = O(ε‖g‖∞) + o(ε2).(A.20)
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Inserting (A.20) into (A.19) we find that

g = o(ε2),(A.21)

proving Lemma 2.4; and substituting (A.21) into (A.20) we deduce that

σ = o(ε2).(A.22)

Then we deduce

η = εv(xj) + o(ε).(A.23)

Because duγ/dγ = 0,

0 = q+o(ε2) = ε

∫ 1

0

v0(x0
j ) − v0(x)

f ′(0)
dx+c

∫ 1

0

∑
j

hj+o(ε) = ε

(
v0(x0

j )

f ′(0)
+ c0K

)
+o(ε).

Thus we obtain the value for c0 in (2.8).

Appendix B. Expansion of 2g′(0).
In Appendices B and C we use the following simplified notations:

u := uB, v := G0[uB−a], γ := γB, φ := φB, ω := φ⊥
B , f

′ := f ′(H), f ′′ := f ′′(H), etc.
(B.1)
The vector cj in the expansion of φ satisfies |c| = 1.

Define a linear operator L by

LU := U ′′ − f ′U,(B.2)

where U is defined on R. Then

LHt = 0,(B.3)

LHtt = f ′′H2
t ,(B.4)

LHttt = 3f ′′HtHtt + f ′′′H3
t .(B.5)

Let u = s + ε2p, where s is given in (2.4). Then p satisfies

ε2p′′ − f ′p =
1

ε2
[γεG0[u− a] − const] + ε2f ′′ p

2

2
+ O(ε4).(B.6)

By Lemma 2.3, as ε → 0, p(xj + ε·) → P in C2
loc(R), where P satisfies

LP = γ(v0)′(x0
j )t.(B.7)

Note that P (t) is an odd function (and hence P ⊥ Ht). It is easy to compute that

LPt = f ′′HtP + γ(v0)′(x0
j ),(B.8)

LPtt = (f ′′Ht)tP + 2f ′′HtPt,(B.9)

LPttt = (f ′′Ht)ttP + 3(f ′′Ht)tP + 3f ′′HtPtt.(B.10)

Recall Lemma 3.2. Set the decomposition

φ(x) =
K∑
j=1

cjhj + ε2ω, hj ⊥ ω,(B.11)
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for the zero principal eigenfunction φ. ω satisfies

ε2ω′′ − ε2(mπ)2ω − f ′(u)ω − εγGm[ω]

= − 1

ε2

K∑
j=1

cj [(f
′ − f ′(u))hj − ε2(mπ)2hj ] +

γ

ε

K∑
k=1

ckGm[hk].(B.12)

We further expand (B.12):

ε2ω′′ − f ′ω =

K∑
j=1

cj [f
′′Htp−m2π2Ht] +

γ

ε

∑
j

cjGm[hj ]

+γεGm[ω] + ε2

⎡
⎣f ′′pω + m2π2ω + f ′′′

⎛
⎝∑

j

cjhj

⎞
⎠ p2

2

⎤
⎦+ O(ε3).(B.13)

As ε → 0, we have ω(xj + ε·) → c0jΩ in C2
loc(R) just as in the proof of Lemma 3.2,

where Ω satisfies

LΩ = f ′′HtP − (mπ)2Ht + const, Ω is even, and Ω ⊥ Ht.(B.14)

Hence

LΩt = f ′′HtΩ + (f ′′Ht)tP + f ′′HtPt − (mπ)2Htt.(B.15)

Finally, we calculate 2g′(0). Since ϕ2
B = φ2(x) cos2(mπy), we decompose the

solution of (5.5) into

2g′(0)(x, y) =
g1(x)

2
+

g2(x) cos(2mπy)

2
,(B.16)

where g1 and g2 are solutions of the following two equations:

ε2g′′1 −f ′(u)g1+f ′(u)g1−εγG0[g1] = f ′′(u)φ2−f ′′(u)φ2, g′1(0) = g′1(1) = g1 = 0;
(B.17)

ε2(g′′2 − 4m2π2g2) − f ′(u)g2 − εγG2m[g2] = f ′′(u)φ2, g′2(0) = g′2(1) = 0.(B.18)

Both equations are uniquely solvable, since the eigenvalues of the two operators in
(B.17) and (B.18) are nonzero (the zero eigenvalue is associated with m); i.e., both
operators are invertible.

We write

2g′(0) = ψ1 + ε2ψ2,(B.19)

where

ψ1(x, y) =
∑
j

c2jHtt

(
x− xj

ε

)
cos2(mπy), ψ2 =

g11

2
+

g21

2
cos(2mπy).(B.20)

Here

g1 =
∑
j

c2jHtt

(
x− xj

ε

)
+ ε2g11, g2 =

∑
j

c2jHtt

(
x− xj

ε

)
+ g21.(B.21)
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The equation for g11 is

ε2g′′11 − f ′(u)g11 − εγG0[g11]

=
γc2j
ε

G0[Htt] +
1

ε2
[f ′′(u)φ2

m − c2jf
′′H2

t − f ′′(u)φ2
m]

=
γc2j
ε

G0[Htt] + c2jf
′′′H2

t p + 2f ′′Htcjω + c2jf
′′Http

+ε2
[
c2jf

(4)H2
t

p2

2
+ c2jf

′′′Htt
p2

2
+ 2cjf

′′′Htpω + f ′′ω2

]
+ O(ε4) + C1,(B.22)

where C1 = ε−2f ′′(u)φ2
m. By (B.15), it is easy to see that

C1 =
1

ε2

∫ 1

0

f ′′(u)φ2
m =

1

ε2

K∑
j=1

f ′′(H + ε2p)c2jH
2
t + o(1) = o(1).(B.23)

Similarly, the equation for g21 is

ε2g′′21 − 4m2π2g21 − f ′(u)g21 − εγG2m[g21]

= 4m2π2c2jHtt +
γc2j
ε

G2m[Htt] + c2jf
′′′H2

t p + 2f ′′Htcjω + c2jf
′′Http

+ε2
[
c2jf

(4)H2
t

p2

2
+ c2jf

′′′Htt
p2

2
+ 2cjf

′′′Htpω + f ′′ω2

]
+ O(ε4).(B.24)

We state the following lemma.
Lemma B.1. As ε → 0, near xj we have g11(xj + ε·) → (c0j )

2G11, g21(xj + ε·) →
(c0j )

2G21, where G11 satisfies

LG11 = f ′′′H2
t P + 2f ′′HtΩ + f ′′HttP, G11 is odd

and G21 satisfies

LG21 = f ′′′H2
t P + 2f ′′HtΩ + f ′′HttP + (2mπ)2Htt, G21 is odd.

Proof. We only prove the convergence of g11. The convergence of g21 is similar.
To this end, let us decompose

g11 =

K∑
j=1

αj(hj − hj) + G11 + ĝ11,

where ĝ11 ⊥ hj , j = 1, . . . ,K, and
∫ 1

0
ĝ11 = 0. The key is to show that αj = o(1).

Simple calculations show that ĝ11 satisfies

ε2ĝ′′11 − f ′(u)ĝ11 − εγG0[ĝ11] = O

⎛
⎝ε2

K∑
j=1

|αj |

⎞
⎠+ o(1).

Since ĝ11 ⊥ hj , j = 1, . . . ,K, and
∫
ĝ11 = 0, standard arguments show that

ĝ11 = O

⎛
⎝ K∑

j=1

|αj |ε2
⎞
⎠+ o(1).(B.25)
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We multiply (B.22) by hj and integrate over (0, 1) to find

εC1 + αj

∫ 1

0

(f ′ − f ′(u))H2
t =

∫ 1

0

[c2jf
′′′H2

t p + 2cjf
′′Htω + c2jf

′′Http]Ht + o(ε3)

=

∫ 1

0

[c2jf
′′′H2

t p + c2jf
′′Http]Ht + 2cj

∫ 1

0

LHttω + o(ε3)

=

∫ 1

0

[c2jf
′′′H2

t p + 3c2jf
′′Http]Ht + o(ε3)

= c2j

∫ 1

0

(LHttt)p + o(ε3) = o(ε3).

Thus we obtain the first identity

C1 + ε2αj

∫
R

f ′′PH2
t = o(ε2).(B.26)

Next, we integrate (B.22) over (0, 1) and make use of (B.25) to deduce that

0 =

∫ 1

0

f ′(u)g11 =

∫ 1

0

f ′(u)

⎛
⎝∑

j

αj(hj − hj) + ĝ11

⎞
⎠ .

Thus we obtain the second identity∑
j

αjf
′(0) = o(1).(B.27)

Substituting (B.27) into (B.26), we have that

C1 = o(ε2), αj = o(1),(B.28)

and hence ĝ11 = o(1).

Appendix C. Proof of Lemma 5.2.
In this appendix we omit

∑
j most of the time. When cj appears in a quantity,∑

j is usually implied. We use the notation A ≈ B for A−B = o(ε5).
Define a linear operator S by

Sψ := ε2Δψ − f ′(u)ψ + εγΔ−1ψ,(C.1)

where ψ is a function on D. Recall ψ1 and ψ2 defined in (B.20). Note

Sψ1 = c2j{(f ′ − f ′(u))Htt cos2(mπy) + f ′′H2
t cos2(mπy)

−2ε2(mπ)2Htt cos(2mπy) + εγΔ−1(Htt cos2(mπy))},(C.2)

Sψ2 = 2(mπ)2c2jHtt cos(2mπy) −
γc2j
ε

Δ−1(Htt cos2(mπy))

+
1

ε2
(f ′′(u)φ2 − c2jf

′′H2
t ) cos2(mπy) +

c2j
ε2

(f ′(u) − f ′)Htt cos2(mπy).(C.3)

Then ∫
D

f ′′(u)ϕ2(2g′(0)) =

∫
D

(S(2g′(0)))(2g′(0))

=

∫
D

(Sψ1)ψ1 + 2ε2
∫
D

(Sψ2)ψ1 + ε4
∫
D

(Sψ2)ψ2 := I1 + I2 + I3,(C.4)
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where the last equation defines I1, I2, and I3. To prove Lemma 5.2 we compute∫
D

f ′′(u)φ2(2g′(0)) +
1

3

∫
D

f ′′′(u)φ4 = I1 + I2 + I3 +
1

3

∫
D

f ′′′(u)φ4.(C.5)

We start with I2. From (C.3) we obtain

I2 ≈ 4ε3(mπ)2c4j

∫
R

H2
tt

∫ 1

0

cos2(mπy) cos(2mπy)

−2εγc4j

∫
D

(Δ−1(Htt cos2(mπy)))Htt cos2(mπy)

+2εc2j

∫
R

(f ′′(u)φ2 − c2jf
′′H2

t )Htt

∫ 1

0

cos4(mπy)

+2εc4j

∫
R

(f ′(u) − f ′)H2
tt

∫ 1

0

cos4(mπy)

≈ ε3(mπ)2c4j

∫
R

H2
tt + εγc4j

∫ 1

0

(2G0 + G2m)[Htt]
Htt

4

+
3εc2j
4

∫
R

(f ′′(u)φ2 − c2jf
′′H2

t )Htt +
3εc4j
4

∫
R

(f ′(u) − f ′)H2
tt.(C.6)

The last two terms in (C.6) are estimated as follows:

3ε

4

∫
R

(f ′′(u)φ2 − c2jf
′′H2

t )Htt

≈ 3ε3

4

∫
R

(
c2jf

′′′pH2
t + 2cjf

′′Htω + ε2f ′′ω2 + 2ε2cjf
′′′pω + ε2c2jf

(4) p
2

2
H2

t

)
Htt,

3ε

4

∫
R

(f ′(u) − f ′)H2
tt

≈ 3ε3

4

∫
R

(
f ′′H2

ttp + ε2f ′′′H2
tt

p2

2

)
.(C.7)

We substitute (C.7) into (C.6) to obtain

I2 ≈ ε3(mπ)2c4j

∫
R

H2
tt + εγc4j

∫ 1

0

(2G0 + G2m)[Htt]
Htt

4

+
3ε3c3j

4

∫
R

(cjf
′′′H2

t Http + cjf
′′H2

ttp + 2f ′′HtHttω)

+
3ε5c2j

4

∫
R

(
f ′′Httω

2 + 2cjf
′′′HtHttpω + c2j (f

(4)H2
t Htt + f ′′′H2

tt)
p2

2

)
.(C.8)

On the other hand,

1

3

∫
D

f ′′′(u)ϕ4 =
1

8

∫ 1

0

f ′′′(H + ε2p)(cjHt + ε2ω)4

≈
εc4j
8

∫
R

f ′′′H4
t +

ε3c3j
8

∫
R

(cjf
(4)H4

t p + 4f ′′′H3
t ω)

+
ε5c2j
8

∫
R

(
c2jf

(5)H4
t

p2

2
+ 4cjf

(4)H3
t pω + 6f ′′′H2

t ω
2

)
.
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We combine the last with (C.8) to deduce

I2 +
1

3

∫
D

f ′′′(u)ϕ4

≈
εc4j
8

∫
R

f ′′′H4
t + ε3(mπ)2c4j

∫
R

H2
tt + εγc4j

∫ 1

0

(2G0 + G2m)[Htt]
Htt

4

+
ε3c3j
8

∫
R

{cj(f (4)H4
t + 6f ′′′H2

t Htt + 6f ′′H2
tt)p + 4(f ′′′H3

t + 3f ′′HtHtt)ω}

+
ε5c2j
8

∫
R

{
(6f ′′′H2

t + 6f ′′Htt)ω
2 + cj(4f

(4)H3
t + 12f ′′′HtHtt)pω

+c2j (f
(5)H4

t + 6f (4)H2
t Htt + 6f ′′′H2

tt)
p2

2

}
.(C.9)

One term in the integral after ε3c3j/8 is simplified using (B.5) and (B.13):∫
R

(f ′′′H3
t + 3f ′′HtHtt)ω

=

∫
R

(LHttt)ω =

∫
R

(Lω)Httt =

∫
R

{(f ′(u) − f ′)Htttω + (ω′′ − f ′(u)ω)Httt}

= ε2
∫
R

f ′′Htttpω + ε2(mπ)2
∫
R

Htttω + εγ

∫ 1

0

Gm[ω]Httt − (mπ)2cj

∫
R

H2
tt

+
γcj
ε

∫ 1

0

Gm[Ht]Httt + cj

∫
R

(
f ′′HtHtttp + ε2f ′′′HtHttt

p2

2

)
+ o(ε2).(C.10)

Here we have dropped
∫ 1

0
Gm[ω]Httt =

∫ 1

0
Gm[Httt]ω = o(ε). Substituting (C.10) into

(C.9) we deduce

I2 +
1

3

∫
D

f ′′′(u)ϕ4

≈
εc4j
8

∫
R

f ′′′H4
t +

ε3(mπ)2c4j
2

∫
R

H2
tt +

ε5(mπ)2c4j
2

∫
R

Htttω

+εγc4j

∫ 1

0

{
(2G0 + G2m)[Htt]

Htt

4
+ Gm[Ht]

Httt

2

}

+
ε3c4j
8

∫
R

(f (4)H4
t + 6f ′′′H2

t Htt + 6f ′′H2
tt + 4f ′′HtHttt)p

+
ε5c2j
8

∫
R

{
(6f ′′′H2

t + 6f ′′Htt)ω
2 + cj(4f

(4)H3
t + 12f ′′′HtHtt + 4f ′′Httt)pω

+c2j (f
(5)H4

t + 6f (4)H2
t Htt + 4f ′′′HtHttt + 6f ′′′H2

tt)
p2

2

}
.(C.11)

Next we compute I1. From (C.2) we deduce

I1 ≈
3εc4j
8

∫
R

f ′′H2
t Htt +

3εc4j
8

∫
R

(f ′ − f ′(u))H2
tt −

ε3(mπ)2c4j
2

∫
R

H2
tt

+εγc4j

∫
D

(Δ−1(Htt cos2(mπy)))(Htt cos2(mπy))
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≈
3εc4j
8

∫
R

f ′′H2
t Htt −

3ε3c4j
8

∫
R

f ′′H2
ttp−

3ε5c4j
8

∫
R

f ′′′H2
tt

p2

2
−

ε3(mπ)2c4j
2

∫
R

H2
tt

−εγc4j

∫ 1

0

(2G0 + G2m)[Htt]
Htt

8
.(C.12)

(C.12) is added to (C.11). The ε order terms and the ε3(mπ)2 terms cancel out:

I1 + I2 +
1

3

∫
D

f ′′′(u)ϕ4

≈
ε5(mπ)2c3j

2

∫
R

Htttω + εγc4j

∫ 1

0

{
(2G0 + G2m)[Htt]

Htt

8
+ Gm[Ht]

Httt

2

}

+
ε3c4j
8

∫
R

(f (4)H4
t + 6f ′′′H2

t Htt + 3f ′′H2
tt + 4f ′′HtHttt)p

+
ε5c2j
8

∫
R

{
(6f ′′′H2

t + 6f ′′Htt)ω
2 + cj(4f

(4)H3
t + 12f ′′′HtHtt + 4f ′′Httt)pω

+c2j (f
(5)H4

t + 6f (4)H2
t Htt + 4f ′′′HtHttt + 3f ′′′H2

tt)
p2

2

}
.(C.13)

The integral after ε3c4j/8 is, by (B.6),∫
R

(f (4)H4
t + 6f ′′′H2

t Htt + 3f ′′H2
tt + 4f ′′HtHttt)p

=

∫
R

(LHtttt)p =

∫
R

(Lp)Htttt

=
γ

ε

∫
R

vHtttt + ε2
∫
R

f ′′Htttt
p2

2
+ o(ε2) = εγ

∫
R

vxxHtt + ε2
∫
R

f ′′Htttt
p2

2
+ o(ε2)

= −εγ

∫
R

(H + ε2p− a)Htt + ε2
∫
R

f ′′Htttt
p2

2
= εγ

∫
R

H2
t + ε2

∫
R

f ′′Htttt
p2

2
+ o(ε2).

Hence (C.13) becomes

I1 + I2 +
1

3

∫
D

f ′′′(u)ϕ4

≈ εγc4j

∫ 1

0

{
(2G0 + G2m)[Htt]

Htt

8
+ Gm[Ht]

Httt

2

}

+
ε4γc4j

8

∫
R

H2
t +

ε5(mπ)2c3j
2

∫
R

Htttω

+
ε5c2j
8

∫
R

{
(6f ′′′H2

t + 6f ′′Htt)ω
2 + cj(4f

(4)H3
t + 12f ′′′HtHtt + 4f ′′Httt)pω

+c2j (f
(5)H4

t + 6f (4)H2
t Htt + 4f ′′′HtHttt + 3f ′′′H2

tt + f ′′Htttt)
p2

2

}

= εγc4j

∫ 1

0

{
(2G0 + G2m)[Htt]

Htt

8
+ Gm[Ht]

Httt

2

}

+
ε4γc4j

8

∫
R

H2
t +

ε5(mπ)2c3j
2

∫
R

Htttω

+
ε5c2j
8

∫
R

{
6(f ′′Ht)tω

2 + 4cj(f
′′Ht)ttpω + c2j (f

′′Ht)ttt
p2

2

}
.(C.14)
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Finally, we compute I3. By (C.3) we find

I3 = ε4
∫
D

(Sψ2)ψ2

≈ ε4

{
c3j

∫
D

(cj(f
′′Ht)tp + 2f ′′Htω) cos2(mπy)

(g11

2
+

g21

2
cos(2mπy)

)

+2(mπ)2c4j

∫
D

Htt cos(2mπ)
(g11

2
+

g21

2
cos(2mπy)

)

−
γc4j
ε

∫
D

(Δ−1(Htt cos2(mπy)))
(g11

2
+

g21

2
cos(2mπy)

)}

≈
ε5(c0j )

4

8

∫
R

((f ′′(Ht)tP + 2f ′′HtΩ)(2G11 + G21)) +
ε5(mπ)2(c0j )

4

2

∫
R

HttG21,(C.15)

where we have used Lemma B.1. We have dropped the last integral of the second-last
line because it is of order o(ε2). Combining (C.14) and (C.15) we arrive at

I1 + I2 + I3 +
1

3

∫
D

f ′′′(u)ϕ4

≈ εγc4j

∫ 1

0

{
(2G0 + G2m)[Htt]

Htt

8
+ Gm[Ht]

Httt

2

}

+
ε4γc4j

8

∫
R

H2
t +

ε5(mπ)2(c0j )
4

2

∫
R

Htt(G21 − Ωt)(C.16)

+
ε5(c0j )

4

8

∫
R

{
6(f ′′Ht)tΩ

2 + 4(f ′′Ht)ttPΩ + (f ′′Ht)ttt
P 2

2

+3((f ′′Ht)tP + 2f ′′HtΩ)Γ

}
.

Here we have introduced

Γ :=
2G11 + G21

3
.(C.17)

We simplify the last integral in (C.16). Let

Ω = Pt + Π, Γ = Ptt + Ψ.(C.18)

Note that by (3.12) and λ(γB) = 0,

LΠ = (mπ)2Ht + const, LΨ = 2f ′′HtΠ +
4(mπ)2

3
Htt.(C.19)

The integral after ε5(c0j )
4/8 in (C.16) is

∫
R

{
(f ′′Ht)ttt

P 2

2
+ 6(f ′′Ht)tP

2
t + 4(f ′′Ht)ttPPt + 3((f ′′Ht)tP + 2f ′′HtPt)Ptt}

+

∫
R

{4(f ′′Ht)ttPΠ + 12(f ′′Ht)tPtΠ + 6(f ′′Ht)tΠ
2(C.20)

+3((f ′′H)tP + 2f ′′HtPt)Ψ + 6f ′′HtΠΨ + 6f ′′HtΠPtt

}
.
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The first integral in (C.20) is 0 after integration by parts. To calculate the second
integral note, by (B.9),

(C.21)∫
R

3((f ′′Ht)tP + 2f ′′HtPt)Ψ

= 3

∫
R

(LPtt)Ψ = 3

∫
R

(LΨ)Ptt = 6

∫
R

f ′′HtΠPtt + 4(mπ)2
∫
R

HttPtt,

(C.22)∫
R

6f ′′HtΠΨ

= 6

∫
R

(LΠt − (mπ)2Htt)Ψ = 6

∫
R

(
2f ′′HtΠ +

4(mπ)2

3
Htt

)
Πt − 6(mπ)2

∫
R

HttΨ

= −6

∫
R

(f ′′Ht)tΠ
2 + 8(mπ)2

∫
R

HttΠt − 6(mπ)2
∫
R

HttΨ.

Substituting (C.21) and (C.22) into the second integral in (C.20) we find, with the
help of (B.10) and (C.19),

(C.23)

(C.20) =

∫
R

(4(f ′Ht)ttP + 12(f ′′Ht)tPt + 12f ′′HtPtt)Π

+4(mπ)2
∫
R

HttPtt + 8(mπ)2
∫
R

HttΠt − 6(mπ)2
∫
R

HttΨ

= 4

∫
R

(LPttt)Π + 4(mπ)2
∫
R

HttPtt + 8(mπ)2
∫
R

HttΠt − 6(mπ)2
∫
R

HttΨ

= 4(mπ)2
∫
R

HtPttt + 4(mπ)2
∫
R

HttPtt + 8(mπ)2
∫
R

HttΠt − 6(mπ)2
∫
R

HttΨ

= 8(mπ)2
∫
R

HttΠt − 6(mπ)2
∫
R

HttΨ.

(C.24)

Substituting (C.24) back into (C.16) we find

I1 + I2 + I3 +
1

3

∫
D

f ′′′(u)ϕ4

≈ εγc4j

∫ 1

0

{
(2G0 + G2m)[Htt]

Htt

8
+ Gm[Ht]

Httt

2

}
+

ε4γc4j
8

∫
R

H2
t

+
ε5(mπ)2(c0j )

4

2

∫
R

Htt

(
G21 − Ωt + 2Πt −

3

2
Ψ

)
.(C.25)

Note that

L
(
G21 − Ωt + 2Πt −

3

2
Ψ

)
= 4(mπ)2Htt + f ′′′H2

t P + 2f ′′HtΩ + f ′′HttP(C.26)

−2f ′′HtΩ − (f ′′Ht)tP + f ′′HtΠ − (mπ)2Htt
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+2f ′′HtΠ + 2(mπ)2Htt −
(

3

2

)
2f ′′HtΠ −

(
3

2

)
4(mπ)2Htt

3

= 3(mπ)2Htt.

On the other hand, we may solve the last equation to find

G21 − Ωt + 2Πt −
3

2
Ψ =

3(mπ)2

2
tHt

since L( t
2Ht) = Htt. Hence the last integral in (C.25) is∫
R

Htt

(
G21 − Ωt + 2Πt −

3

2
Ψ

)
=

3(mπ)2

2

∫
R

tHtHtt = −3(mπ)2τ

4
.

Putting this back into (C.25) we deduce

I1 + I2 + I3 +
1

3

∫
D

f ′′′(u)ϕ4

≈ εγc4j

∫ 1

0

{
(2G0 + G2m)[Htt]

Htt

8
+ Gm[Ht]

Httt

2

}
+

ε4γc4j
8

∫
R

H2
t −

3ε5(mπ)2τ(c0j )
4

8
.

(C.27)

We now compute the first term in (C.27). Note that∫ 1

0

G0[Htt]Htt = ε3
∫
R

H2
t + o(ε4),(C.28)

since G0[Htt] = ε2(H(
·−xj

ε ) −H(
·−xj

ε )).
Recall that G2m is identified with the Green function of

−G′′
2m + (2mπ)2G2m = δ(· − y), G′

2m(0, y) = G′
2m(1, y) = 0.

G2m splits to the fundamental solution part and the regular part:

G2m(x, y) =
1

4mπ
e−2mπ|x−y| −R2m(x, y).

Note that R2m is smooth in both variables x and y. We write down G2m(x, y) explic-
itly:

G2m(x, y) =
cosh(2mπ(1 − |x− y|)) + cosh(2mπ(1 − x− y))

4mπ sinh(2mπ)
.

Thus

R2m(x, y) =
1

4mπ
e−2mπ|x−y| − cosh(2mπ(1 − |x− y|)) + cosh(2mπ(1 − x− y))

4mπ sinh(2mπ)
.

We need to compute

(C.29)

R2m,xy(y, y) :=
∂2R2m

∂x∂y

∣∣∣∣∣
x=y

= −mπ +
mπ cosh(2mπ) − 2mπ cosh(2mπ(1 − 2y))

sinh(2mπ)
.
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Then we have

G2m[Htt](x) =

∫ 1

0

G2m(x, y)Htt

(
y − xj

ε

)
dy.

By simple computations, we have that

G2m[Htt](xj + εt) = ε

∫ (1−xj)/e

−xj/ε

G2m(xj + εt, xj + εz)Htt(z) dz

= ε

∫
R

[
1

4mπ
e−2mπε|t−z| −R2m(xj + εt, xj + εz)

]
Hzzdz + o(ε4).(C.30)

We expand e−2mπε|t−z| to deduce∫
R

e−2mπε|t−z|Hzz dz =

∫
R

(1 − 2mπε|t− z| + 2(mπε)2|t− z|3 + O(ε3|t− z|3))Hzz dz

= −4mπεH(t) + 4(mπε)2t + O(ε3).

Hence (C.30) becomes

G2m[Htt](xj + εt) = −ε2H(t) + mπε3t− ε

∫
R

R2m(xj + εt, xj + εz)Hzz dz.(C.31)

Next we expand R2m(xj + εt, xj + εz) so that∫ 1

0

G2m[Htt]Htt = ε3
∫
R

H2
t −mπε4 − ε4R2m,xy(x

0
j , x

0
j ) + o(ε4).(C.32)

For the term involving Gm, by integrating by parts we obtain∫ 1

0

Gm[Ht]Httt = −
∫ 1

0

GD
m[Htt]Htt,

where GD
m[Htt] is the Green function of

−(GD
m)′′ + (mπ)2GD

m = δ(· − y), GD
m(0, y)(0) = GD

m(1, y) = 0.(C.33)

The superscript D emphasizes the Dirichlet boundary condition. Similar to the Neu-
mann boundary case we find

GD
m(x, y) =

cosh(mπ(1 − |x− y|)) − cosh(mπ(1 − x− y))

2mπ sinh(mπ)
,

RD
m(x, y) :=

1

2mπ
e−mπ|x−y| − cosh(mπ(1 − |x− y|)) − cosh(mπ(1 − x− y))

2mπ sinh(mπ)
,

RD
m,xy(y, y) :=

∂2RD
m

∂x∂y

∣∣∣∣∣
x=y

= −mπ

2
+

mπ cosh(mπ) + mπ cosh(mπ(1 − 2y))

2 sinh(mπ)
.

(C.34)

By the same argument leading to (C.32), we arrive at∫ 1

0

Gm[Ht]Httt = −ε3
∫
R

H2
t +

ε4mπ

2
+ ε4RD

m,xy(x
0
j , x

0
j ) + o(ε4).(C.35)
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Substituting (C.28), (C.32), and (C.35) into (C.27), we obtain

I1 + I2 + I3 +
1

3

∫
D

f ′′′(u)ϕ4

≈
K∑
j=1

c4j

[
ε5γmπ

8
− ε5γ

8
R2m,xy(x

0
j , x

0
j ) +

ε5γ

2
RD

m,xy(x
0
j , x

0
j ) −

3ε5(mπ)4τ

8

]

≈ ε5mπγ

K∑
j=1

(c0j )
4

[
2 + cosh(2mπ)

8 sinh(2mπ)
+

cosh(2mπ(1 − 2x0
j ))

8 sinh(2mπ)

+
cosh(mπ(1 − 2x0

j ))

4 sinh(mπ)
− 3(mπ)3τ

8γ

]

using (C.29) and (C.34) (restoring the
∑

j sign). This completes the proof.
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LARGE SOLUTIONS FOR A SYSTEM OF ELLIPTIC EQUATIONS
ARISING FROM FLUID DYNAMICS∗

J. I. DÍAZ† , M. LAZZO‡ , AND P. G. SCHMIDT§

Abstract. This paper is concerned with the elliptic system

Δv = φ, Δφ = |∇v|2(0.1)

posed in a bounded domain Ω ⊂ RN, N ∈ N. Specifically, we are interested in the existence and
uniqueness or multiplicity of “large solutions,” that is, classical solutions of (0.1) that approach
infinity at the boundary of Ω. Assuming that Ω is a ball, we prove that the system (0.1) has a
unique radially symmetric and nonnegative large solution with v(0) = 0 (obviously, v is determined
only up to an additive constant). Moreover, if the space dimension N is sufficiently small, there
exists exactly one additional radially symmetric large solution with v(0) = 0 (which, of course, fails
to be nonnegative). We also study the asymptotic behavior of these solutions near the boundary
of Ω and determine the exact blow-up rates; those are the same for all radial large solutions and
independent of the space dimension. Our investigation is motivated by a problem in fluid dynamics.
Under certain assumptions, the unidirectional flow of a viscous, heat-conducting fluid is governed by
a pair of parabolic equations of the form

vt − Δv = θ, θt − Δθ = |∇v|2,(0.2)

where v and θ represent the fluid velocity and temperature, respectively. The system (0.1), with
φ = −θ, is the stationary version of (0.2).

Key words. elliptic system, boundary blow-up, large solutions, radial solutions, existence and
multiplicity, asymptotic behavior

AMS subject classifications. 35J60, 35J55, 35Q35

DOI. 10.1137/S0036141004443555

1. Introduction and main results. This paper is a contribution to the study
of “explosive behavior” in certain systems of elliptic and parabolic PDEs. Our investi-
gation is motivated by a question regarding the dynamics of a viscous, heat-conducting
fluid.

In general, the flow of such a fluid is governed by a system of balance equations
for momentum, mass, and energy. Under the assumptions of the so-called Boussinesq
approximation, this system reduces to the Navier–Stokes equations for an incom-
pressible fluid, along with a heat equation; the equations are nonlinearly coupled
through the buoyancy force and viscous heating. If viscous heating (that is, the
production of heat due to internal friction) is neglected, the resulting boundary and
initial-boundary value problems are well posed in the same sense as for the classical
Navier–Stokes equations without thermal coupling; but if viscous heating is taken into
account, well-posedness is an open question. In fact, we conjecture that the solutions,
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in this case, may exhibit “explosive behavior.” Such behavior would have implications
for the viability of the Boussinesq approximation in situations where viscous heating
cannot be neglected.

To address this issue, we are studying a simple prototype problem, which can be
physically justified by considering a unidirectional flow, independent of distance in
the flow direction:

vt − Δv = θ, θt − Δθ = |∇v|2.(1.1)

Here, v (the velocity) and θ (the temperature) are scalar functions of time t and po-
sition x; the spatial variable x varies over a bounded domain Ω ⊂ R

N with N ∈ N

(N = 2 in the physically relevant case, where Ω is the cross-section of the flow chan-
nel). The source terms θ and |∇v|2 represent the buoyancy force and viscous heating,
respectively. The system (1.1) must be supplemented by suitable initial conditions at
time t = 0 and boundary conditions on the boundary ∂Ω of the domain Ω (for exam-
ple, a homogeneous Dirichlet condition for v and a homogeneous Neumann condition
for θ if the walls of the flow channel are impermeable and thermally insulated).

Note that we cannot hope to find weak solutions of the resulting initial-boundary
value problem in the usual Hilbert-space setting: if v takes values in H1(Ω), then
the right-hand side of the second equation in (1.1) maps, a priori, only into L1(Ω).
However, local-in-time existence and uniqueness of a strong solution can be established
by means of semigroup theory in a suitable Lp-space setting. We conjecture that
this solution may blow up in finite time, in the sense that a suitable norm of (v, θ)
approaches infinity as t → T−, for some T > 0. Preliminary analytical and numerical
results for the parabolic problem will appear in a forthcoming publication.

In the present paper, we consider the stationary version of (1.1), that is, the
elliptic system

−Δv = θ, −Δθ = |∇v|2(1.2)

posed in a domain Ω ⊂ R
N with N ∈ N. Specifically, we are interested in the

possibility of “boundary blow-up,” that is, the existence of classical solutions (v, θ)
of (1.2) with |(v(x), θ(x))| → ∞ as dist(x, ∂Ω) → 0 (so-called large solutions). Note
that the θ-component of any solution of (1.2) is superharmonic in Ω and thus cannot
approach ∞ at the boundary (maximum principle); for a similar reason, v and θ
cannot simultaneously approach −∞ at the boundary. We therefore expect any large
solution (v, θ) of (1.2) to satisfy v(x) → ∞ and θ(x) → −∞ as dist(x, ∂Ω) → 0.

The preceding observation implies that large solutions of (1.2) cannot be expected
to describe the asymptotics of explosive solutions of the parabolic system (1.1). As-
suming, for example, that the temperature θ in (1.1) satisfies a homogeneous Neumann
boundary condition on ∂Ω, the temperature minimum is a nondecreasing function of
time (parabolic maximum principle); thus, θ cannot approach −∞ at the boundary.
Nevertheless, boundary blow-up in the elliptic system (1.2) would have implications
for the dynamics of the parabolic system (1.1) and its controllability. For exam-
ple, large solutions of (1.2) may be used to construct “universal distributed bounds”
(that is, interior bounds independent of the boundary data) for solutions of associated
initial-boundary value problems and their steady states. We refer the reader to [3, 6, 7,
14, 23] and the references therein for similar arguments and applications in the context
of other semilinear or quasilinear parabolic problems with superlinear nonlinearities.

Henceforth, we assume that Ω is a ball in R
N, centered at the origin; that is,

Ω = BN
R (0) for some R > 0. For convenience, we introduce the function φ = −θ and
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seek radially symmetric large solutions of the problem

Δv = φ, Δφ = |∇v|2 in BN
R (0),(1.3)

that is, radial solutions (v, φ) with |(v(x), φ(x))| → ∞ as |x| → R−.
Remark 1.1. The problem (1.3) has a scaling property that we will exploit

repeatedly. Suppose (v1, φ1) is a (large) solution of (1.3) with R = R1. For λ ∈ (0,∞),
let Rλ := λ−1R1. For x ∈ BN

Rλ
(0), define

vλ(x) := λ2v1(λx) , φλ(x) := λ4φ1(λx) .

Then (vλ, φλ) is a (large) solution of (1.3) with R = Rλ.
Remark 1.2. If (v, φ) is a (large) solution of (1.3), then so is (v + c, φ), for any

constant c ∈ R. Thus, we may restrict attention to solutions with v(0) = 0.

We will now state our main results, the first of which guarantees the existence of
a unique (up to a shift in v) radially symmetric and nonnegative large solution for
any space dimension.

Theorem 1.3. For every N ∈ N and R > 0, the problem (1.3) has a unique
radially symmetric large solution (v, φ) with v(0) = 0 and φ(0) > 0. Both components
of this solution are increasing functions of the radial variable r.

If the space dimension is sufficiently small, there exists exactly one additional
radially symmetric large solution with v(0) = 0, which, of course, fails to be nonneg-
ative.

Theorem 1.4. For every N ∈ N with N ≤ 10 and every R > 0, the problem (1.3)
has a unique radially symmetric large solution (v, φ) with v(0) = 0 and φ(0) < 0. The
φ-component of this solution is an increasing function of the radial variable r, while
the v-component is decreasing to a negative minimum and increasing thereafter.

Let us note that the bound on N in the above result is not sharp. In fact, based
on numerical evidence (see Remarks 3.5 and 4.4), we conjecture that the solution of
Theorem 1.4 exists if and only if N ≤ 14.

With regard to asymptotic behavior, we find that, as expected, both components
of a large solution approach infinity at the boundary, and we determine the exact
blow-up rates; those are the same for all radially symmetric large solutions and inde-
pendent of the space dimension. Here and in what follows, we write f(x) ∼ g(x) if
the mappings f, g : BN

R (0) → R satisfy f(x)/g(x) → 1 as |x| → R−.
Theorem 1.5. Let (v, φ) be any radially symmetric large solution of (1.3), for a

given N ∈ N and R > 0. Then, as |x| → R−,

v(x) ∼ 30

(R− |x|)2 and φ(x) ∼ 180

(R− |x|)4 .

The study of “explosive behavior,” be it finite-time blow-up in evolutionary prob-
lems or boundary blow-up in stationary problems, has a long history going back to
seminal work by Keller [15] and Osserman [20] in the 1950s; we refer the reader to the
papers [2, 4, 8, 24] and the references therein. However, virtually all of the existing
literature is concerned with scalar equations. Coupled systems of equations have been
attacked only recently; see, for example, [5, 9, 10, 11, 16]. Due to the lack of variational
structure and comparison principles, methods that have proven successful for scalar
equations will, in general, fail to be useful for systems, even if the expected results are
analogous. For example, our existence and multiplicity result for the problem (1.3)
(existence of one large nonnegative solution for any space dimension, existence of a
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second large solution for sufficiently small space dimension) is analogous to a result
by McKenna, Reichel, and Walter [17] for a class of scalar equations with variational
structure. However, our method of proof is entirely different, and our result appears to
be the first of its kind for an elliptic system. We expect that our work, while currently
focussed on a very specific problem, will lead to general insights and new methods
with potential applications to a much wider class of elliptic and parabolic systems.

The rest of the paper is organized as follows. In section 2 we reduce our problem
to the study of a system of first-order ODEs, establish some basic properties of its so-
lutions, and prove the existence and uniqueness of a nonnegative large radial solution
for the problem (1.3); Theorem 1.3 is an immediate consequence of Proposition 2.5.
Section 3 is devoted to the proof of Theorem 1.4 (existence of a second large radial
solution for sufficiently small space dimension), which follows from Proposition 3.1.
This section also includes a discussion of numerical experiments, suggesting a sharper
version of Theorem 1.4, and observations about a related parameter-dependent fixed-
point equation, leading to a Liouville-type theorem for the Dirichlet problem associ-
ated with the elliptic system (1.2). In section 4 we analyze the asymptotic behavior
of large radial solutions of (1.3); Theorem 1.5 follows from Proposition 4.1, whose
proof relies on dynamical-systems theory applied to an asymptotically autonomous
and cooperative ODE system in R

3. In an appendix at the end of the paper, we
describe a Maple algorithm for the computer-aided construction of a priori bounds
needed in the proof of Proposition 3.1.

2. Preliminaries and nonnegative large solutions. Given N ∈ N and R > 0,
radially symmetric solutions of the problem (1.3) correspond to solutions of the ODE
system ⎧⎪⎨

⎪⎩
v′′ +

N − 1

r
v′ = φ,

φ′′ +
N − 1

r
φ′ = |v′|2

in (0, R)

with v′(0) = φ′(0) = 0; large solutions are those with |(v(r), φ(r))| → ∞ as r → R−.
In view of Remark 1.2, we may impose the initial condition v(0) = 0. Finding radially
symmetric large solutions of the problem (1.3) is therefore equivalent to finding initial
conditions φ(0) = p such that the solution of the Cauchy problem⎧⎪⎪⎨

⎪⎪⎩
v′′ +

N − 1

r
v′ = φ, v(0) = 0, v′(0) = 0,

φ′′ +
N − 1

r
φ′ = |v′|2, φ(0) = p, φ′(0) = 0

(2.1)

exists on the interval [0, R) and “blows up” at R.
Despite the singularity at r = 0 for N > 1, the Cauchy problem (2.1) is well

posed. Indeed, for every p ∈ R, there exists a unique maximal solution, which depends
continuously on p (in the usual sense); see Lemma 2.3 for details.

Remark 2.1. The scaling property of the elliptic problem (1.3), as described in
Remark 1.1, and the well-posedness of (2.1) imply that all solutions of the Cauchy
problem with p > 0 (p < 0) are “rescalings” of the solution with p = 1 (p = −1).
Indeed, if (v1, φ1) is the maximal solution with initial value p = 1 (p = −1), then the
maximal solution with initial value p > 0 (p < 0) is given by (vλ, φλ), as defined in
Remark 1.1, with λ = |p|1/4. Consequently, if the maximal solution with initial value
p = 1 (p = −1) blows up at R1, then the maximal solution with initial value p > 0
(p < 0) blows up at Rp = |p|−1/4R1.
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Remark 2.2. In light of the preceding remark, it is clear that the elliptic problem
(1.3) has large radial solutions, for any given R > 0, if and only if the solutions of the
Cauchy problem (2.1) with p = ±1 exhibit finite-time blow-up. More precisely, (1.3)
has exactly one large radial solution with v(0) = 0 and φ(0) > 0 if and only if the
solution of (2.1) with p = 1 blows up in finite time; (1.3) has exactly one large radial
solution with v(0) = 0 and φ(0) < 0 if and only if the solution of (2.1) with p = −1
blows up in finite time. In particular, (1.3) cannot have more than two large radial
solutions.

The Cauchy problem (2.1) is equivalent to the first-order system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′ = w, v(0) = 0,

w′ +
N − 1

r
w = φ, w(0) = 0,

φ′ = ψ, φ(0) = p,

ψ′ +
N − 1

r
ψ = w2, ψ(0) = 0.

Obviously, we can eliminate v and drop the first equation and initial condition; v is
recovered from w via antidifferentiation. Furthermore, we may replace the nonneg-
ative integer N − 1 with a continuous parameter μ ∈ R+. Thus, we are led to the
Cauchy problem ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w′ +
μ

r
w = φ, w(0) = 0,

φ′ = ψ, φ(0) = p,

ψ′ +
μ

r
ψ = w2, ψ(0) = 0.

(2.2)

Lemma 2.3. For every μ ∈ R+ and p ∈ R, the Cauchy problem (2.2) has a
unique maximal, that is, noncontinuable, solution (w, φ, ψ) ∈ C1([0, R),R3), for some
R ∈ (0,∞]. If R < ∞, then |(w(r), φ(r), ψ(r))| → ∞ as r → R−. Moreover, (w, φ, ψ)
depends continuously on μ and p.

Proof. What we claim is that, despite the singularity at r = 0 in the case μ > 0,
the Cauchy problem (2.2) has the usual, well-known properties of a regular initial-
value problem in R

3. Since we could not find a general result in the literature that
would cover our problem, we provide a few remarks on the proof.

Note that the first equation in (2.2) can be written as (rμw)′ = rμφ. Together
with the initial condition w(0) = 0, this is equivalent to the integral equation

w(r) =

∫ r

0

(s
r

)μ

φ(s) ds.(2.3)

Similarly, the remaining differential equations and initial conditions in (2.2) are equiv-
alent to the integral equations

φ(r) = p +

∫ r

0

ψ(s) ds(2.4)

and

ψ(r) =

∫ r

0

(s
r

)μ

w2(s) ds.(2.5)
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Since we have 0 < s/r < 1 for 0 < s < r, the “singular term” (s/r)μ does not
cause any difficulties in proving the existence and uniqueness of a solution (w, φ, ψ)
in C([0, ε],R3) of (2.3)–(2.5), for some ε > 0, by means of the contraction mapping
principle. Clearly, w, φ, and ψ are continuously differentiable on (0, ε] and satisfy the
differential equations and initial conditions in (2.2). In fact, all three components are
continuously differentiable on the closed interval [0, ε]. This is obvious for φ, but less
so for w and ψ. Note, however, that

lim
r→0+

w′(r) = lim
r→0+

(
φ(r) − μ

r
w(r)

)
= p− μ lim

r→0+

1

r

∫ r

0

(s
r

)μ

φ(s) ds

= p− μ lim
r→0+

1

rμ+1

∫ r

0

sμφ(s) ds = p− μ lim
r→0+

rμφ(r)

(μ + 1) rμ

= p− μ lim
r→0+

φ(r)

μ + 1
= p− μ

p

μ + 1
=

p

μ + 1
,

where we used l’Hôspital’s rule to get the fourth equality. Thus, w ∈ C1([0, ε],R) and
w′(0) = p/(μ + 1). Similarly, one shows that ψ ∈ C1([0, ε],R) with ψ′(0) = 0.

Once existence and uniqueness of a local C1-solution are established, the remain-
ing claims about maximal continuation and continuous dependence on parameters and
initial data can be proved in the same way as for regular initial-value problems.

Lemma 2.4. Let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal solution of the Cauchy
problem (2.2), for some μ ∈ R+ and p ∈ R with p 	= 0. Then the function φ is strictly
increasing on [0, R), and L := limr→R− φ(r) is either zero or infinity. In fact,

(a) if L < ∞, then R = ∞ and L = 0;
(b) if L = ∞, then R < ∞ and w(R−) = φ(R−) = ψ(R−) = ∞.
Proof. Taking into account the equations and initial conditions in (2.2), it is

easy to see that the function Ψ(r) := rμψ(r) is strictly increasing on [0, R). As a
consequence, Ψ (and thus ψ) is positive on (0, R), and this implies that φ is strictly
increasing on [0, R), with L := limr→R− φ(r) ∈ (p,∞].

(a) Assume L < ∞, that is, φ is bounded. By (2.3), w(r) grows at most linearly
with r, and, by (2.5), ψ(r) grows no faster than r3. In particular, |(w(r), φ(r), ψ(r))|
cannot go to infinity in finite time. Thus, R = ∞.

Now suppose that L 	= 0. If L > 0, choose a number r0 > 0 such that φ(r) ≥ L/2
for every r ≥ r0. It follows that

w(r) ≥
∫ r0

0

(s
r

)μ

φ(s) ds +
L

2

∫ r

r0

(s
r

)μ

ds

for every r ≥ r0, and we conclude that limr→∞ w(r) = ∞ (note that the last integral
is of order r). If L < 0, we infer in a similar way that limr→∞ w(r) = −∞. In any
case, we can choose a number r1 > 0 such that w2(r) ≥ 1 for every r ≥ r1. As a
consequence,

ψ(r) ≥
∫ r1

0

(s
r

)μ

w2(s) ds +

∫ r

r1

(s
r

)μ

ds

for every r ≥ r1, and thus limr→∞ ψ(r) = ∞. But this implies

L = lim
r→∞

φ(r) = p + lim
r→∞

∫ r

0

ψ(s) ds = ∞ ,
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a contradiction. It follows that L = 0.

(b) Assume L = ∞ and, by way of contradiction, suppose that R = ∞. Then
there exist c0, r0 > 0 such that φ(r) ≥ c0 for every r ≥ r0, and as in the proof of
part (a) it follows that w(r) → ∞ and ψ(r) → ∞ as r → ∞. In particular, we can
choose r∗ > 0 such that w(r), φ(r), ψ(r) > 0 for every r ≥ r∗. Define η := wφψ.
Then we have

η′ = φ2ψ + wψ2 + w3φ− 2μ

r
w φψ(2.6)

= Q
(
w, φ, ψ

)
η13/12 − 2μ

r
η in [r∗,∞),

where Q is defined by

Q(x, y, z) :=
y2z + xz2 + x3y

(xyz)13/12
,

for x, y, z > 0. Note that Q = Q1 + Q2 + Q3, with

Q1 :=
y2z

(xyz)13/12
, Q2 :=

xz2

(xyz)13/12
, Q3 :=

x3y

(xyz)13/12
.

It is easy to see that Q5
1 Q

4
2 Q

3
3 ≡ 1, which implies that max(Q1, Q2, Q3) ≥ 1. Hence,

we have Q(x, y, z) ≥ 1 for all x, y, z > 0, and (2.6) yields

η′ ≥ η
(
η1/12 − 2μ

r∗

)
in [r∗,∞).(2.7)

Recall that w(r), φ(r), ψ(r) → ∞ as r → ∞ and choose r∗ ≥ r∗ such that
η(r∗) > (2μ/r∗)

12. Then the maximal solution ζ of the initial-value problem

ζ ′ = ζ
(
ζ1/12 − 2μ

r∗

)
, ζ(r∗) = η(r∗)

approaches infinity in finite time. But due to (2.7), ζ is bounded from above by η on
[r∗,∞). This is a contradiction, and it follows that R is finite.

In order to prove our last claim, we first note that both w and ψ have (proper
or improper) limits as r → R−. Indeed, since φ is eventually positive, the function
W (r) := rμw(r) is eventually increasing, and thus has a limit as r → R−. As we
observed earlier, the same holds for the function Ψ(r) := rμψ(r). Since R is finite, it
follows that w(r) and ψ(r), too, have limits as r → R−. Moreover, since R is finite,
all three of the functions w, φ , ψ would be bounded if one of them were. But φ is
unbounded (by assumption) and thus w and ψ are unbounded as well. Clearly, this
implies that w(R−) = φ(R−) = ψ(R−) = ∞.

Proposition 2.5. For every μ ∈ R+, the maximal solution of the Cauchy prob-
lem (2.2) with p = 1 blows up in finite time.

Proof. Fix μ ∈ R+ and let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal solution of
(2.2) with p = 1. According to Lemma 2.4, φ is increasing and L := limr→R− φ(r) is
either zero or infinity. Since φ(0) > 0, we have L = ∞, and then part (b) of the same
lemma implies that R is finite.
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Proof of Theorem 1.3. Thanks to Remark 2.2, the preceding proposition guaran-
tees that the problem (1.3), for arbitrary N ∈ N and R > 0, has exactly one large
radial solution (v, φ) with v(0) = 0 and φ(0) > 0. By Lemma 2.4, φ is a strictly
increasing function of the radial variable r, and the same then holds for v. (Note
that, by Lemma 2.4, φ(r) approaches infinity as r → R−, and so do v′(r) and φ′(r).
That the same holds for v(r) is not obvious at this point, but will follow from the
blow-up estimates in section 4.)

Figure 1 shows computed profiles of the nonnegative large radial solutions (v, φ)
of the problem (1.3), with R = 1, for two values of the space dimension N (see
Remark 4.4 for comments regarding the numerical method).
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Fig. 1. Large radial solutions (v, φ) with v(0) = 0 and φ(0) > 0 of problem (1.3) with R = 1
for N = 1 (left) and N = 6 (right).

3. Existence of a second large solution. To prove Theorem 1.4, we need to
investigate for which values of μ ∈ R+ (if any) the maximal solution of the Cauchy
problem (2.2) with p = −1 blows up in finite time.

It is easy to see that blow-up occurs at least if μ ∈ [0, 1]. Indeed, suppose
that μ ∈ R+ and that the corresponding maximal solution (w, φ, ψ) of (2.2) with
p = −1 exists globally. Lemma 2.4 then implies that φ(r) → 0 as r → ∞; thus,∫∞
0

ψ(s) ds = 1, due to (2.4). On the other hand, since Ψ(r) := rμψ(r) is strictly
increasing for r ≥ 0, we have c := Ψ(1) > 0 and ψ(r) = Ψ(r) r−μ ≥ c r−μ for all r ≥ 1,
which implies

∫∞
0

ψ(s) ds ≥ c
∫∞
1

s−μ ds. Unless μ is greater than 1, this shows that∫∞
0

ψ(s) ds = ∞, and we arrive at a contradiction.
Recalling Remark 2.2, we conclude that the elliptic problem (1.3) has a second

large radial solution at least if the space dimension N is 1 or 2. The following propo-
sition allows us to draw the same conclusion for any space dimension up to and
including 10.

Proposition 3.1. For every μ ∈ [0, 9], the maximal solution of the Cauchy
problem (2.2) with p = −1 blows up in finite time.

Proof. Fix μ ∈ R+ and let (w, φ, ψ) ∈ C1([0, R),R3) be the corresponding max-
imal solution of (2.2) with p = −1. By Lemma 2.4, R is finite if and only if φ
is eventually positive. We will prove the proposition by constructing explicit lower
bounds for φ that are eventually positive if μ is small enough.
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Clearly, since φ is an increasing function, we have

φ(r) ≥ φ(0) = −1 =: φ
0
(r)

for all r ∈ [0, R). From this, we derive a lower bound for w; indeed,

w(r) =

∫ r

0

(s
r

)μ

φ(s) ds ≥
∫ r

0

(s
r

)μ

φ
0
(s) ds = − r

μ + 1
=: w1(r)

for all r ∈ [0, R). As long as w ≤ 0, a lower bound for w yields an upper bound for ψ;
in particular,

ψ(r) =

∫ r

0

(s
r

)μ

w2(s) ds ≤
∫ r

0

(s
r

)μ

w2
1(s) ds =

r3

(μ + 1)2(μ + 3)
=: ψ1(r)

for all r ∈ [0, R) with w(r) ≤ 0 (note that w(r) ≤ 0 implies w1 ≤ w ≤ 0 on [0, r]).
Next, we find an upper bound for φ, namely,

φ(r) = −1 +

∫ r

0

ψ(s) ds ≤ −1 +

∫ r

0

ψ1(s) ds = −1 +
r4

4(μ + 1)2(μ + 3)
=: φ1(r),

still valid for all r ∈ [0, R) with w(r) ≤ 0. Continuation of this process yields an
upper bound for w,

w(r) ≤
∫ r

0

(s
r

)μ

φ1(s) ds = − r

μ + 1
+

r5

4(μ + 1)2(μ + 3)(μ + 5)
=: w1(r),

valid for all r ∈ [0, R) with w(r) ≤ 0, and then a lower bound for ψ,

ψ(r) ≥
∫ r

0

(s
r

)μ

w2
1(s) ds =: ψ

1
(r),

valid for all r ∈ [0, r0], where r0 := (4(μ + 1)(μ + 3)(μ + 5))1/4 is the unique positive
root of w1 (note that r0 < R and w ≤ w1 ≤ 0 on [0, r0]). Finally, we obtain an
improved lower bound for φ,

φ(r) ≥ −1 +

∫ r

0

ψ
1
(s) ds =: φ

1
(r),

valid for all r ∈ [0, r0].
If φ

1
(r0) were nonnegative, the same would hold for φ(r0), and this would imply

blow-up. Now, φ
1
(r0) is easily seen to be a rational function of μ, with a unique

positive root μ1, near 3.512, and positive on the interval [0, μ1). Hence, blow-up does
occur if μ ≤ μ1.

To improve this result, we iterate the preceding estimates and construct the im-
proved bounds w2, ψ2, φ2, w2, ψ2

, and φ
2
; since w ≤ w2 ≤ w1 ≤ 0 on [0, r0], these

are still valid on the entire interval [0, r0]. The actual construction is best done with
the aid of a computer-algebra system. All the bounds being polynomials, the com-
putations amount to symbolic operations on the coefficients and can be implemented
very efficiently. (A more näıve approach, using symbolic antidifferentiation, is likely
to fail.) In an appendix at the end of the paper, we describe a Maple implementation
of the algorithm.



LARGE SOLUTIONS FOR AN ELLIPTIC SYSTEM 499

Once the improved lower bound φ
2

for φ is constructed, we may determine the
sign of φ

2
(r0); this is once again a rational function of μ, with a unique positive

root μ2, near 4.307, and positive on the interval [0, μ2). We conclude that blow-up
does occur if μ ≤ μ2.

Any attempt to push this method further by performing another round of esti-
mates turns out to be futile—the computational cost is prohibitive, the gain marginal
(the positive root of φ

3
(r0) is located near 4.311). Instead, we will extend the lower

bound φ
2

of φ beyond the interval [0, r0]. To this end, let r1 ∈ (r0, R) be such that

φ(r1) ≤ 0. Then we have φ ≤ φ2 on [0, r0] and φ ≤ 0 on [r0, r1]. It follows that for all
r ∈ [r0, r1],

w(r) ≤
∫ r0

0

(s
r

)μ

φ2(s) ds =
(r0
r

)μ
∫ r0

0

( s

r0

)μ

φ2(s) ds = α
(r0
r

)μ

,

where α := w2(r0) ≤ 0, and then

ψ(r) ≥
∫ r0

0

(s
r

)μ

w2
2(s) ds +

∫ r

r0

(s
r

)μ

α2
(r0
s

)2μ

ds = β
(r0
r

)μ

− γ
(r0
r

)2μ−1

,

where β := γ +ψ
2
(r0), γ := r0α

2/(μ− 1), and we have implicitly assumed that μ 	= 1
(the case μ = 1 will not be needed). Finally, we see that for all r ∈ [r0, r1],

φ(r) ≥ −1 +

∫ r0

0

ψ
2
(s) ds +

∫ r

r0

(
β
(r0
s

)μ

− γ
(r0
s

)2μ−1
)
ds

= α̃
(r0
r

)2(μ−1)

− β̃
(r0
r

)μ−1

+ γ̃ ,

with α̃ := (1/2)r0γ/(μ− 1), β̃ := r0β/(μ− 1), γ̃ := (1/2)r0(2β − γ)/(μ− 1) + φ
2
(r0),

and hence,

0 ≥ (μ− 1)2φ(r) ≥ a
(r0
r

)2(μ−1)

− b
(r0
r

)μ−1

+ c ,(3.1)

where

a := (μ− 1)2α̃ =
1

2
r2
0 w

2
2(r0) ,

b := (μ− 1)2β̃ = r2
0 w

2
2(r0) + (μ− 1)r0ψ2

(r0) ,

c := (μ− 1)2γ̃ =
1

2
r2
0 w

2
2(r0) + (μ− 1)r0ψ2

(r0) + (μ− 1)2φ
2
(r0) .

The estimate (3.1) holds for every r ∈ [r0, R), provided that φ(r) ≤ 0, and for any
value of μ (trivially if μ = 1). The coefficients a, b, and c are rational functions of μ
(note that r4

0 is a polynomial in μ, while r2w2
2(r), rψ2

(r), and φ
2
(r) are polynomials

in r4, whose coefficients are rational functions of μ); this facilitates their symbolic
computation and analysis. In particular, it is easily verified (see the appendix) that c
has a unique root, μ̄ ≈ 9.073, in the interval (1,∞) and is positive on (1, μ̄). It
follows that if μ ∈ (1, μ̄), the right-hand side of the inequality (3.1) becomes positive
as r → ∞. But then, the inequality cannot hold for all r ≥ r0, which implies
that R is finite. Since this is already known to be true if μ ∈ [0, 1], the proposition
is proved.
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Remark 3.2. We emphasize that the proof of Proposition 3.1, while relying heav-
ily on the use of a computer-algebra system, does not involve any numerical techniques
or floating-point arithmetic. In fact, all the computations amount to symbolic algebra
on the coefficients of certain polynomials. The crucial fact that the coefficient c in the
estimate (3.1), a rational function of μ, has a unique root, μ̄ ≈ 9.073, in the interval
(1,∞) can be verified by applying Descartes’s rule of signs (and the intermediate-value
theorem) to the numerator polynomial (the roots of the denominator polynomial are
negative integers). We refer the reader to the appendix for implementation details.

Remark 3.3. The estimates in the proof of Proposition 3.1 involve some delib-
erate choices, but are in some sense optimal. Of course, it is computationally much
less expensive to use the bounds w1, ψ1

, and φ
1

(instead of w2, ψ2
, and φ

2
) for the

“tail estimate” (3.1); also, the estimate itself is simpler in this case, since the coef-
ficient a vanishes. Again, the coefficient c has a unique root in the interval (1,∞),
but it is located near 5.606, leading to a much weaker result. A slight improvement is
achieved by using the polynomial bounds w1, ψ1

, and φ
1

only on the smaller interval

[0, r̃0] (instead of [0, r0]), where r̃0 := (4(μ+ 1)2(μ+ 3))1/4 is the unique positive root
of φ1. The coefficient c in (3.1) then has a unique positive root near 5.955. Using
the improved bounds w2, ψ2

, and φ
2

(as in the proof of Proposition 3.1), but on the
smaller interval [0, r̃0] (instead of [0, r0]), yields a coefficient c with a unique positive
root near 7.709. It is natural to ask whether it would make sense to construct the
bounds w3, ψ

3
, and φ

3
before proceeding with the “tail estimate.” The answer is

negative; in fact, the symbolic computations would require an enormous amount of
virtual memory, without leading to a tangibly improved result (the relevant root of
the coefficient c in (3.1) is located near 9.170).

Remark 3.4. The estimates in the proof of Proposition 3.1 yield explicit a priori
bounds for the zero z0 of φ (the φ-component of the maximal solution of the Cauchy
problem (2.2) with μ ∈ R+ and p = −1), assuming that it exists. Clearly, a lower
bound is given by r̃0 := (4(μ+1)2(μ+3))1/4, the unique positive root of φ1. To estab-
lish an upper bound, note that either z0 ≤ r0, where r0 := (4(μ + 1)(μ + 3)(μ + 5))1/4

is the unique positive root of w1, or z0 > r0. In the latter case, which can arise only
if μ > μ2 ≈ 4.307, (3.1) implies that

a

(
r0
z0

)2(μ−1)

− b

(
r0
z0

)μ−1

+ c ≤ 0

and thus

s1 ≤
(
r0
z0

)μ−1

≤ s2 ,

where s1,2 := (b ±
√
d)/(2a) with d := b2 − 4ac (the discriminant d is positive for

μ 	= 1, zero for μ = 1). As long as μ > 1 and s1 is positive (which is the case for

1 < μ < μ̄ ≈ 9.073), it follows that z0 ≤ r0s
1/(1−μ)
1 . Hence, an upper bound for z0

is given by r0 if 0 ≤ μ ≤ μ2 and by r0s
1/(1−μ)
1 if μ2 < μ < μ̄. A little computation

shows that this upper bound may be written, more concisely yet equivalently, as

r0 max(1, s
1/(1−μ)
0 ), where s0 := (b− sign(μ− 1)

√
d)/(2a). Summarizing, we have

r̃0 ≤ z0 ≤ r0 max(1, s
1/(1−μ)
0 )

for every μ ∈ [0, μ̄); the upper bound is a continuous function of μ, positive on [0, μ̄),
with a vertical asymptote at μ̄.
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Proof of Theorem 1.4. Due to Remark 2.2, Proposition 3.1 implies that the elliptic
problem (1.3), for arbitrary R > 0, has exactly one large radial solution (v, φ) with
v(0) = 0 and φ(0) < 0 if μ = N − 1 ≤ 9, that is, if N ≤ 10. Lemma 2.4 shows
that φ is a strictly increasing function of the radial variable r and crosses zero at
a point z0 ∈ (0, R). Hence, the function W (r) := rμw(r), with w = v′, is strictly
decreasing for r < z0 and strictly increasing for r > z0; it crosses zero at a point
z1 ∈ (z0, R). Thus, v′ is negative on (0, z1), positive on (z1, R), and consequently, v is
strictly decreasing to a negative minimum at z1, strictly increasing thereafter.

Remark 3.5. Numerical evidence suggests that Proposition 3.1 (and with it,
Theorem 1.4) may be significantly improved. In fact, there appears to be a number μ̃,
approximately equal to 13.755, such that the maximal solution of the Cauchy prob-
lem (2.2) with p = −1 blows up in finite time if and only if μ < μ̃. Consequently, we
conjecture that the large solution of Theorem 1.4 exists if and only if N ≤ 14.

Figure 2 depicts computed profiles of the large radial solutions (v, φ) with v(0) = 0
and φ(0) < 0 of the problem (1.3), with R = 1, for several values of the space
dimension N (see Remark 4.4 for comments on the numerical method). In particular,
the solution is shown for N = 10, the largest space dimension for which we proved
its existence, and for N = 14, the largest space dimension for which we found it
numerically. Of course, we can compute the large solution (v, φ) with v(0) = 0 and
φ(0) < 0 of the radial version of (1.3) for every value of μ = N − 1, not necessarily
integer, up to μ̃ ≈ 13.755. As μ → μ̃, the φ-component of the solution appears to
approach cRδR − c0δ0, for some positive constants c0 and cR, where δ0 and δR denote
the Dirac distributions centered at 0 and R, respectively.
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Fig. 2. Large radial solutions (v, φ) with v(0) = 0 and φ(0) < 0 of problem (1.3) with R = 1
for N = 1 (top left), N = 3 (top right), N = 10 (bottom left), and N = 14 (bottom right).
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We will now describe how the question of finite-time blow-up in the Cauchy prob-
lem (2.2) can be recast as a question regarding the existence of nontrivial solutions of
a related boundary-value problem or, equivalently, a parameter-dependent fixed-point
equation. This approach will allow us to exploit standard tools of nonlinear analysis
(such as the degree of mapping and bifurcation theory) and to gain some additional
information not otherwise available. As a corollary, we will obtain a Liouville-type
result (existence of a positive solution) for the Dirichlet problem associated with the
elliptic system (1.2), which is of independent interest.

Given μ ∈ R+, the maximal solution (w, φ, ψ) of the Cauchy problem (2.2) with
p = −1 blows up in finite time if and only if φ crosses zero at some point r > 0. Due to
the scaling property of the system (see Remark 2.1), this happens if and only if there
exists a (necessarily negative and unique) initial value p such that the φ-component
of the corresponding maximal solution of (2.2) crosses zero at r = 1. In other words,
the maximal solution of (2.2) with p = −1 blows up in finite time if and only if the
boundary-value problem ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w′ +
μ

r
w = φ, w(0) = 0,

φ′ = ψ, φ(1) = 0,

ψ′ +
μ

r
ψ = w2, ψ(0) = 0

(3.2)

has a (necessarily unique) nontrivial solution.
The problem (3.2) can be written as a parameter-dependent fixed-point equation

of the form

u = T (μ, u)(3.3)

in X := C([0, 1],R3), where T : R+ × X → X is a completely continuous operator,
defined by

T (μ, u)(r) :=

(∫ r

0

(s
r

)μ

φ(s) ds , −
∫ 1

r

ψ(s) ds ,

∫ r

0

(s
r

)μ

w2(s) ds

)
,

for μ ∈ R+, u = (w, φ, ψ) ∈ X, and r ∈ [0, 1]. We are interested in the structure of
the solution set

Σ := {(μ, u) ∈ R+ ×X : u = T (μ, u)}.

Clearly, Σ contains the branch of trivial solutions of (3.3), R+ × {0}. Also, as men-
tioned above, (3.3) cannot have more than one nontrivial solution for any μ ∈ R+;
hence, the set Σ \ (R+ × {0}) is the graph of a function μ �→ uμ. Let M denote the
domain of this function, that is,

M := {μ ∈ R+ : u = T (μ, u) for some u ∈ X \ {0}},(3.4)

and define

μ∗ := sup({μ ∈ R+ : [0, μ] ⊂ M}),(3.5)

with the understanding that sup(∅) = 0 and sup(A) = ∞ if A ⊂ R+ is unbounded.
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Remark 3.6. From the discussion leading to (3.3), it is evident that M , as
defined in (3.4), coincides with the set of all μ ∈ R+ for which the maximal solution
of the Cauchy problem (2.2) with p = −1 blows up in finite time. Thus, M contains
the interval [0, 9], by Proposition 3.1. The subsequent arguments will prove this once
again (we will only need the a priori estimates from Remark 3.4).

Remark 3.7. We can characterize M as the set of all μ ∈ R+ for which the
φ-component of the maximal solution of (2.2) with p = −1 is eventually positive.
Since the solution depends continuously on μ, this property is stable under small
perturbations of μ. It follows that the set M is open in R+ and, hence, μ∗ is not an
element of M . On the other hand, it is clear from the definition of μ∗ that M contains
the interval [0, μ∗).

Remark 3.8. Suppose that μ ∈ M , uμ = (wμ, φμ, ψμ) is the corresponding
nontrivial solution of (3.3), and u = (w, φ, ψ) is the corresponding maximal solution
of the Cauchy problem (2.2) with p = −1. Then, due to the scaling property of the
problem, uμ is a “rescaling” of u. In fact, denoting the unique zero of φ by zμ, we
have wμ(r) = z3

μ w(zμr), φμ(r) = z4
μ φ(zμr), and ψμ(r) = z5

μ ψ(zμr), for all r ∈ [0, 1].
Since u = (w, φ, ψ) depends continuously on μ, so does zμ. It follows that the function
μ �→ uμ is continuous as a mapping from M ⊂ R+ into X.

Lemma 3.9. Given μ ∈ M , let uμ denote the unique nontrivial solution of (3.3).
Then ‖uμ‖∞ ≥ 4(μ + 1)2(μ + 3) ≥ 12. Moreover, there exists a continuous function
f̄ : [0, μ̄) → R+, with μ̄ ≈ 9.073, such that ‖uμ‖∞ ≤ f̄(μ), provided that μ ∈ [0, μ̄).

Proof. Fix a number μ ∈ M , let uμ = (wμ, φμ, ψμ) denote the corresponding
nontrivial solution of (3.3), and let u = (w, φ, ψ) denote the corresponding maximal
solution of the Cauchy problem (2.2) with p = −1. According to Remark 3.8, we
have φμ(r) = z4

μ φ(zμr) for all r ∈ [0, 1], where zμ is the zero of φ; in particular,
|φμ(0)| = z4

μ. Recalling the a priori bounds in Remark 3.4, we obtain the estimate

|φμ(0)| ≥ 4(μ + 1)2(μ + 3) ≥ 12(3.6)

and, furthermore, the existence of a continuous function f : [0, μ̄) → [1,∞), with
μ̄ ≈ 9.073, such that

|φμ(0)| ≤ 4(μ + 1)(μ + 3)(μ + 5)f(μ) ,(3.7)

provided that μ ∈ [0, μ̄). Next, observe that

‖φμ‖∞ = |φμ(0)| , ‖wμ‖∞ ≤ |φμ(0)|
μ + 1

≤ |φμ(0)| ,

and

‖ψμ‖∞ ≤ |φμ(0)|2
(μ + 1)2(μ + 3)

≤ 1

3
|φμ(0)|2 ;

since |φμ(0)| ≥ 12 by (3.6), this implies that ‖(wμ, φμ, ψμ)‖∞ ≤ |φμ(0)|2. Conse-
quently, we have

|φμ(0)| ≤ ‖uμ‖∞ ≤ |φμ(0)|2,

and now the assertions of the lemma follow from (3.6) and (3.7).
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Proposition 3.10. For every μ ∈ [0, μ∗), with μ∗ defined by (3.5), the unique
nontrivial solution uμ of (3.3) has a fixed-point index of −1. The graph C := {(μ, uμ) :
μ ∈ [0, μ∗)} is an unbounded, continuous curve in R+ × X, and μ∗ is greater
than 9.

Proof. We begin by computing the (Leray–Schauder) fixed-point index of the map
T (0, ·) in u0, the nontrivial solution of (3.3) for μ = 0. (While the existence of u0 was
established previously, the following argument will prove it once again.) Inspired by
similar reasoning in [1], we define a completely continuous operator S : R+×X → X,
with X := C([0, 1],R3), by

S(λ, u)(r) :=
(∫ r

0
φ(s) ds , −

∫ 1

r
ψ(s) ds ,

∫ r

0

(
w2(s) + λ

)
ds
)
,

for λ ∈ R+, u = (w, φ, ψ) ∈ X, and r ∈ [0, 1], and consider the parameter-dependent
fixed-point problem in X,

u = S(λ, u).(3.8)

Note that S(0, ·) = T (0, ·); that is, if λ = 0, then (3.8) coincides with (3.3) with μ = 0.

Now let λ ∈ R+ and suppose that u0λ = (w0λ, φ0λ, ψ0λ) is a solution of (3.8).
Since φ′′

0λ = w2
0λ + λ ≥ 0, the function φ0λ is convex; thus, φ0λ(r) ≤ φ0λ(0)(1− r) for

all r ∈ [0, 1]. Arguing as in the proof of Proposition 3.1, we derive an upper bound for

w0λ, then a lower bound for ψ0λ. Since |φ0λ(0)| =
∫ 1

0
ψ0λ(s) ds, the lower bound for

ψ0λ yields a quadratic inequality for |φ0λ(0)|, namely, |φ0λ(0)|2−24 |φ0λ(0)|+12λ ≤ 0.
It follows that λ ≤ 12 and |φ0λ(0)| ≤ 24. This shows that (3.8) does not have any
solutions if λ > 12; moreover, the uniform bound on |φ0λ(0)| implies a uniform bound
on ‖u0λ‖∞.

Choosing a sufficiently large ρ > 0, we infer that deg
(
IdX − S(λ, ·), BX

ρ (0), 0
)

is
well defined for λ ∈ R+, independent of λ (due to homotopy invariance), and in fact
equal to zero (since (3.8) has no solutions for λ > 12). It follows that

deg
(
IdX − T (0, ·), BX

ρ (0), 0
)

= deg
(
IdX − S(0, ·), BX

ρ (0), 0
)

= 0 .

However, a routine homotopy argument shows that the index of T (0, ·) in the trivial
fixed point 0 equals 1. This proves, once again, the existence of the nontrivial fixed
point u0 (and thereby the fact that μ∗ > 0) and shows, more importantly, that the
index of T (0, ·) in u0 is −1. But then, by homotopy along the continuous curve
C := {(μ, uμ) : μ ∈ [0, μ∗)}, the fixed-point index of T (μ, ·) in uμ is −1 for every
μ ∈ [0, μ∗).

We are now in a position to complete the proof of the proposition by applying
a Rabinowitz-type argument (see [21]). Suppose that the curve C is bounded. Then
μ∗ < ∞ and there exists a constant ρ > 0 such that ‖uμ‖∞ < ρ for all μ ∈ [0, μ∗).
Also, due to Lemma 3.9, ‖uμ‖∞ ≥ 12 for all μ ∈ [0, μ∗) and, according to Re-
mark 3.7, the equation (3.3) has no nontrivial solution for μ = μ∗. It follows that
deg

(
IdX − T (μ, ·), BX

ρ (0) \BX
1 (0), 0

)
is well defined for μ ∈ [0, μ∗], independent of μ,

and in fact equal to zero. Clearly, this contradicts the fact that T (0, ·) has index −1
in u0. It follows that C is unbounded in R+ × X. In conjunction with Lemma 3.9,
according to which C ∩ ([0, μ̂]×X) is bounded for every μ̂ ∈ R+ with μ̂ < μ̄ ≈ 9.073,
this proves, once again, that μ∗ ≥ μ̄ and thus μ∗ > 9.
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Remark 3.11. In light of the numerical evidence described in Remark 3.5, we
conjecture that μ∗ ≈ 13.755, that the set M coincides with the interval [0, μ∗), and
that the solution branch C bifurcates from infinity at μ∗.

We conclude this section with a comment on the Dirichlet problem for the elliptic
system (1.2) on a ball in R

N,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− Δv = θ in BN
R (0),

− Δθ = |∇v|2 in BN
R (0),

v = θ = 0 on ∂BN
R (0).

(3.9)

Assuming that R = 1 (due to the scaling property, this entails no loss of general-
ity), there is a one-to-one correspondence between the radial solutions of (3.9) and
the solutions of the boundary-value problem (3.2) or the equivalent fixed-point equa-

tion (3.3), with μ = N − 1, θ = −φ, and v(r) = −
∫ 1

r
w(s) ds for r ∈ [0, 1]. Hence,

Proposition 3.10 implies that (3.9) has a unique nontrivial radial solution (v, θ) as
long as the space dimension N does not exceed 10; it is easily checked that both
components of this solution are positive and strictly decreasing functions of the radial
variable r.

Corollary 3.12. For every N ∈ N with N ≤ 10 and every R > 0, the Dirichlet
problem (3.9) has a unique nontrivial radially symmetric solution (v, θ). Both compo-
nents of this solution are positive and decreasing functions of the radial variable r.

Our numerical evidence (see Remark 3.5) suggests that the solution of Corol-
lary 3.12 exists, in fact, if and only if N ≤ 14. Figure 3 shows computed profiles of
this solution for R = 1 and the two extreme values of the space dimension, N = 1
and N = 14. Of course, we can compute the nontrivial solution (v, θ) of the radial
version of (3.9) for any μ ∈ [0, μ̃), with μ̃ ≈ 13.755, in place of the integer N − 1. As
μ → μ̃, the θ-component of the solution appears to approach a multiple of δ0 (the
Dirac distribution centered at 0).
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Fig. 3. Positive radial solutions (v, θ) of the Dirichlet problem (3.9) with R = 1 for N = 1
(left) and N = 14 (right).
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4. Asymptotic behavior. Let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal solu-
tion of the Cauchy problem (2.2) for a given μ ∈ R+ and p ∈ R. By Lemma 2.4, we
know that R is finite if and only if φ(r) is eventually positive and that in this case
w(r), φ(r), ψ(r) → ∞ as r → R−. In view of the existing literature on boundary
blow-up in elliptic equations (see, for example, [4, 24]), it is natural to expect asymp-
totic behavior of the form Q/(R− r)q, with positive constants Q and q. In fact, we
will prove the following result.

Proposition 4.1. Let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal solution of the
Cauchy problem (2.2), for a given μ ∈ R+ and p ∈ R, and suppose that R is finite.
Then, as r → R−,

w(r) ∼ 60

(R− r)3
, φ(r) ∼ 180

(R− r)4
, ψ(r) ∼ 720

(R− r)5
.

Let us note that if all three of the functions w, φ, ψ exhibit asymptotic behavior
of the form Q/(R− r)q, it is easy to see that the constants Q and q are necessarily
as above.

We will prove Proposition 4.1 under the assumption that R = 1; thanks to the
scaling property, this entails no loss of generality. The proof will be achieved by
analyzing a system of equations derived from (2.2) by a suitable change of variables.

Given any solution (w, φ, ψ) of (2.2), define functions α, β, γ by

α(r) :=
(1 − r)3

60
w(r) , β(r) :=

(1 − r)4

180
φ(r) , γ(r) :=

(1 − r)5

720
ψ(r) ;

then (α, β, γ) is a solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − r)
(
α′ +

μ

r
α
)

= 3(β − α) , α(0) = 0 ,

(1 − r)β′ = 4(γ − β) , β(0) =
p

180
,

(1 − r)
(
γ′ +

μ

r
γ
)

= 5(α2 − γ) , γ(0) = 0 .

(4.1)

Just like (2.2), the system (4.1) is singular at r = 0, but this does not affect the
well-posedness of the initial value problem; in addition, (4.1) is singular at r = 1.

Remark 4.2. Suppose that (w, φ, ψ) is the maximal solution of (2.2), for a given
μ ∈ R+ and p ∈ R, with interval of existence [0, Rp); let (α, β, γ) be the corresponding
solution of (4.1), as defined above. Clearly, if Rp < 1, then (α, β, γ) ceases to exist
before reaching the singularity at r = 1; in fact, α(r), β(r), γ(r) → ∞ as r → R−

p .
Also, if Rp > 1, then (α, β, γ) can be continued beyond the singularity at r = 1,
and α(r), β(r), γ(r) → 0 as r → 1−. Finally, if Rp = 1, then (α, β, γ) exists up to
the singularity at r = 1, but the behavior near the singularity is not obvious. The
assertion of Proposition 4.1 (with R = 1) is that, in this case, α(r), β(r), γ(r) → 1 as
r → 1−.

Remark 4.3. Recall that for every μ ∈ R+, there is exactly one initial value
p+
μ > 0 and at most one initial value p−μ < 0 such that the maximal solution of (2.2)

with p = p±μ blows up at r = 1. Let p∗μ denote one such value. Due to the scaling
property of the problem, all solutions with sign(p) = sign(p∗μ) blow up in finite time.
Moreover, there is a one-to-one correspondence between the initial value p and the
exit time Rp of the solution; in fact, R4

p = p∗μ/p (see Remark 2.1). It follows that
if p > p∗μ > 0 or p < p∗μ < 0, then Rp < 1, and consequently α(r), β(r), γ(r) → ∞
as r → R−

p . Also, if 0 < p < p∗μ or p∗μ < p < 0, then Rp > 1, and consequently
α(r), β(r), γ(r) → 0 as r → 1−.
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Remark 4.4. The observations in the preceding remark allow us to use a shooting
method to numerically approximate p+

μ and, if it exists, p−μ , that is, the critical initial
values p for which the maximal solution of (2.2), for a given μ ∈ R+, blows up at
r = 1. Solving the Cauchy problem (4.1) with p = p±μ , we can then construct the
solutions of (2.2) that blow up at r = 1, and thereby the large radial solutions of the
problem (1.3) with R = 1. All the graphs in the preceding sections were generated in
this way (with a suitable rescaling in the case of Figure 3).

Our experiments suggest that p−μ exists if and only if μ < μ̃, for some number
μ̃ ≈ 13.755, which, due to the scaling property, must coincide with the number μ∗

defined in (3.5). In fact, we find that p−μ is a strictly decreasing function of μ that
approaches −∞ as μ → μ̃.

To prove Proposition 4.1 for R = 1, we must show that all three components of
the maximal solution (α, β, γ) of the Cauchy problem (4.1) with μ ∈ R+ and p = p±μ
converge to 1 as r → 1− (recall Remarks 4.2 and 4.3). While our numerical experi-
ments leave no doubt about this (see Figure 4 for examples of computed solutions),
the proof requires a small detour in dynamical systems; we refer the reader to [22] for
terminology and basic properties.
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It is convenient to perform another change of variables in the system (4.1), letting
r = 1 − e−t and a(t) = α(r), b(t) = β(r), c(t) = γ(r). With this rescaling of the
independent variable, (4.1) is equivalent to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a′ +
μ

et − 1
a = 3(b− a), a(0) = 0,

b′ = 4(c− b), b(0) =
p

180
,

c′ +
μ

et − 1
c = 5(a2 − c), c(0) = 0.

(4.2)

Note that the singularity of (4.1) at r = 1 has been moved to t = ∞; moreover, the
system (4.2) is autonomous for μ = 0 and asymptotically autonomous for μ > 0. For
notational convenience, we write the system of differential equations in (4.2) as

x′ +
μ

et − 1
E(x) = F (x),(4.3)

where x = (a, b, c) takes values in R
3, E : R

3 → R
3 is the linear mapping defined by

E(a, b, c) := (a, 0, c), and F : R
3 → R

3 is the vector field defined by

F (a, b, c) :=
(
3(b− a), 4(c− b), 5(a2 − c)

)
.

Remark 4.5. For t > 0 and a ≥ 0, the system (4.3), with arbitrary μ ∈ R+,
satisfies the well-known Kamke condition and, thus, a comparison principle (see, for
example, [25]). To be precise, let t0, t1 ∈ [0,∞] with t0 < t1 and suppose that
x1, x2 ∈ C([t0, t1),R

3) ∩ C1((t0, t1),R
3). If x1 is a subsolution of (4.3) with a1 ≥ 0,

if x2 is a supersolution of (4.3), and if x1(t0) ≤ x2(t0) (x1(t0) < x2(t0)), then we have
x1(t) ≤ x2(t) (x1(t) < x2(t)) for all t ∈ [t0, t1).

By a subsolution (supersolution) of (4.3) we mean a function x = (a, b, c) satisfy-
ing the differential inequality obtained from (4.3) by replacing “=” with “≤” (“≥”).
Also, given vectors x1, x2 ∈ R

3, we write x1 ≤ x2 or x2 ≥ x1 (x1 < x2 or x2 > x1) if
the respective inequality holds componentwise, and we call a vector x ∈ R

3 nonnega-
tive (positive) if x ≥ 0̄ (x > 0̄), where 0̄ := (0, 0, 0).

Remark 4.6. For every λ ∈ [0,∞], let λ̄ denote the vector (λ, λ, λ). For arbitrary
μ ∈ R+, 0̄ is a solution of (4.3), and 1̄ is a supersolution (a solution if μ = 0).
More generally, for every λ ∈ [0, 1], λ̄ is a supersolution. Furthermore, for every
λ ∈ (1,∞), there exists a number τ ∈ [0,∞), depending only on λ and μ, such that
((λ + 1)/2, λ, λ) is a subsolution on the interval (τ,∞) (where τ = 0 if μ = 0).

Proposition 4.7. For a given μ ∈ R+, let x be a nonnegative maximal forward
solution of (4.3).

(a) If x is unbounded, then x blows up in finite time and approaches ∞.
(b) If x is bounded, then x converges to either 0̄ or 1̄.
Proof. Fix μ ∈ R+ and let x = (a, b, c) be a nonnegative maximal forward solution

of the system (4.3).
(a) Suppose that x = (a, b, c) is unbounded. First we will show that b is un-

bounded. By way of contradiction, suppose that b ≤ b0 for some positive constant b0.
Then we have

a′ ≤ a′ +
μ

et − 1
a = 3(b− a) ≤ 3(b0 − a) ,

which implies that a is bounded. A similar argument then shows that c is bounded as
well, and this contradicts the unboundedness of x = (a, b, c). Thus, b is unbounded.
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Now fix a number p0 > 0 such that the solution (w0, φ0, ψ0) of the initial-value
problem (2.2) with p = p0 blows up at a point R0 < 1. The corresponding solution
x0 = (a0, b0, c0) of the initial-value problem (4.2) then blows up at −log(1 − R0).
Recall that the b-component of the trajectory x = (a, b, c) is unbounded and choose a
point τ in the interval of existence of x such that b(τ) ≥ p0/180; define x̃ := x(τ + · ).
Then we have

x̃′ +
μ

et − 1
E(x̃) ≥ x̃′ +

μ

eτ+t − 1
E(x̃) = F (x̃)

and

x̃(0) = x(τ) =
(
a(τ), b(τ), c(τ)

)
≥

(
0,

p0

180
, 0
)

= x0(0) .

Thanks to the comparison principle in Remark 4.5, it follows that x̃ ≥ x0. In partic-
ular, x̃ blows up in finite time, and then so does x. By reasoning as in the proof of
Lemma 2.4(b), it is now easy to verify that all three components of x approach infinity.

(b) Suppose that x is bounded. First, consider the autonomous case, μ = 0. The
vector field F is cooperative in the half-space a ≥ 0 and, in particular, in the non-
negative cone R

3
+; moreover, div(F ) ≡ −12 and F has exactly two zeros, at 0̄ and 1̄.

Thus, F generates a monotone, volume-contracting semiflow Φ in R
3
+, with exactly

two equilibria, at 0̄ and 1̄. The equilibrium at 0̄ is a stable node; the equilibrium at 1̄
is a saddle point with a two-dimensional stable manifold (the eigenvalues are 1 and
−13/2 ± i

√
71/2).

Moreover, the system can be embedded into a cooperative system in all of R
3

by replacing the nonlinear term a2 in the third component of the vector field F
with a|a|; the extended system still has negative divergence, and it has equilibria at 0̄
and ±1̄. Morris Hirsch proved (see [13, Theorem 1]) that every compact limit set of a
cooperative or competitive system in R

3 is either a cycle or contains an equilibrium.
Another result of Hirsch’s (see [12, Theorem 7]) guarantees that a cooperative system
in R

3 with negative divergence cannot have any cycles. Moreover, for our particular
system, it is easy to see that any compact limit set containing one of the equilibria
is in fact a singleton. Combining these results we infer that every bounded (forward
or backward) trajectory of the system converges. In particular, the trajectory x
converges to either 0̄ or 1̄.

Now consider the nonautonomous case, μ > 0. As we observed before, the sys-
tem (4.3) is asymptotically autonomous. An old result of Markus [18] implies that
the ω-limit set K of the trajectory x is a nonempty compact and connected subset
of R

3
+; moreover, dist(x(t),K) → 0 as t → ∞, and K is invariant under the semi-

flow Φ of the autonomous limit system, that is, (4.3) with μ = 0. A more recent
result by Mischaikow, Smith, and Thieme (see [19, Theorem 1.8]) implies that K is
also chain-recurrent under Φ.

We claim that K ⊂ {0̄, 1̄}. By way of contradiction, suppose there is a point
z ∈ K \ {0̄, 1̄}. In light of what we proved for the autonomous case, since K is
compact and Φ-invariant, the Φ-trajectory through z must converge, both forward
and backward in time. Backward in time, it can only converge to 1̄ (since 0̄ is stable).
Thus, z belongs to the unstable manifold of 1̄, and it follows that, forward in time,
the Φ-trajectory through z can only converge to 0̄. Hence, K consists of the two
equilibria, 0̄ and 1̄, and a heteroclinic orbit connecting the two; such a set is obviously
not chain-recurrent. The contradiction proves that K ⊂ {0̄, 1̄}. In fact, since K is
nonempty and connected, we have either K = {0̄} or K = {1̄}; that is, x converges
to either 0̄ or 1̄.
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Corollary 4.8. Let μ ∈ R+ and p ∈ R be such that the maximal solution
(w, φ, ψ) of the Cauchy problem (2.2) blows up at r = 1. Then the maximal solution
(a, b, c) of (4.2) converges to 1̄.

Proof. Under the assumptions of the corollary, (w, φ, ψ) approaches ∞ at r = 1;
thus, the corresponding solution (α, β, γ) of (4.1) is eventually positive and exists
on [0, 1) (see Remark 4.2). This means that x = (a, b, c) is eventually positive and
exists on [0,∞). By part (a) of Proposition 4.7, it follows that x is bounded, and
then part (b) of the same proposition implies that x converges to either 0̄ or 1̄. Now
suppose that x(t) → 0̄ as t → ∞ and choose t0 ∈ (0,∞) such that 0̄ < x(t0) < 1̄.
Since the solution of (4.2) depends continuously on p, we can find a value p̃ close to
p, with |p̃| > |p| such that the corresponding maximal solution x̃ of (4.2) exists at
t = t0 and satisfies 0̄ < x̃(t0) < 1̄. Since 0̄ is a solution and 1̄ is a supersolution
of (4.3), the comparison principle in Remark 4.5 implies that 0̄ < x̃(t) < 1̄ for all
t ≥ t0, as long as x̃ exists. From Remark 4.3, however, we know that x̃ goes to ∞ (in
finite time). This contradiction proves that x does not converge to 0̄, and therefore
it must converge to 1̄.

Proof of Proposition 4.1. Due to the scaling property of the system (2.2) (see
Remark 2.1), it suffices to prove the assertion of the proposition for R = 1; in this
case, it is an immediate consequence of Corollary 4.8 (see Remark 4.2).

Proof of Theorem 1.5. Since every large radial solution (v, φ) of the problem (1.3),
for a given R > 0, corresponds to a solution (w, φ, ψ) of (2.2) that blows up at R,
the asymptotic behavior of φ is clear from Proposition 4.1. Moreover, the asymp-
totic behavior of v, given by v(r) =

∫ r

0
w(s) ds for 0 ≤ r < R, follows readily from

that of w.
In closing, we note that Hirsch’s results on cooperative systems in R

3 (see [12, 13])
allow us to completely describe the dynamics of the monotone, volume-contracting
semiflow Φ in R

3
+, induced by the vector field F . First, it is easily verified that Φ is,

in fact, strongly monotone (even though F is irreducible only for a > 0). As shown
in the first part of the proof of Proposition 4.7(b), Hirsch’s results imply that every
forward trajectory of Φ either converges to 0̄ (a stable node) or to 1̄ (a saddle point),
or it approaches ∞, necessarily in finite time. Clearly, both 0̄ and ∞ are stable
attractors. In fact, using the sub- and super-solutions constructed in Remark 4.6,
we see that the open order intervals (0̄, 1̄) and (1̄,∞) are positively invariant and
contained in the basins of attraction of 0̄ and ∞, respectively. The two basins of
attraction are separated by the (two-dimensional) stable manifold Ws(1̄) of the saddle
point. The (one-dimensional) unstable manifold Wu(1̄) has a positive tangent vector
at 1̄, which implies that Wu(1̄) \ {1̄} is contained in the union of the order intervals
(0̄, 1̄) and (1̄,∞). Thus, every forward trajectory on Wu(1̄) \ {1̄} either converges to
0̄ or approaches ∞. It follows that Wu(1̄) \ {1̄} consists of two heteroclinic orbits
connecting 1̄ to 0̄ and ∞, respectively.

Appendix. The following algorithm allows the construction of increasing se-
quences of polynomial lower bounds and decreasing sequences of polynomial upper
bounds for the maximal solution (w, φ, ψ) of the Cauchy problem (2.2) with p = −1
and arbitrary μ ∈ R+. The bounds being polynomials, the computations amount to
symbolic algebra on the coefficients. We used Maple (Version 9.5) to perform these
computations; the relevant commands are provided below.

Given a polynomial P in r (whose coefficients are rational functions of another
variable), the command

L:=normal(CoefficientList(P,r)):
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generates the list of coefficients of P (in increasing order, starting with the zero-
order term) and writes each coefficient in “normal form” (that is, as a quotient of
polynomials). The command

n:=nops(L):

gives the number of entries in the list L; that is, n− 1 is the degree of P .
Algorithm: Construction of Polynomial Bounds.

0. Specify a lower (or an upper) bound φ0 for φ (φ0 a suitable polynomial in r).

with(PolynomialTools):

phi0:=-1; # Other choices are possible.

1. Compute a lower (upper) bound w0 for w: w0 :=
∫ r

0
(s/r)

μ
φ0(s) ds.

L:=normal(CoefficientList(phi0,r)): n:=nops(L):

w0:=sum(L[i]*r^i/(mu+i),i=1..n);

2. Compute an upper (lower) bound ψ0 for ψ, valid as long as max(w,w0) ≤ 0:
ψ0 :=

∫ r

0
(s/r)

μ
w2

0(s) ds.

L:=normal(CoefficientList(w0^2,r)): n:=nops(L):

psi0:=sum(L[i]*r^i/(mu+i),i=1..n);

3. Compute an upper (lower) bound φ0 for φ: φ0 := −1 +
∫ r

0
ψ0(s) ds.

L:=normal(CoefficientList(psi0,r)): n:=nops(L):

phi0:=-1+sum(L[i]*r^i/i,i=1..n);

4. Return to Step 1 (or proceed to “Computation of coefficient c” below).

Starting with the trivial lower bound φ
0

:= −1 for φ, the algorithm produces the

bounds w1, ψ1, φ1, w1, ψ1
, φ

1
, . . . , referred to in the proof of Proposition 3.1; these

bounds are valid on the interval [0, r0], where r0 := (4(μ+ 1)(μ+ 3)(μ+ 5))1/4 is the
unique positive root of w1 (note that for all k ∈ N, w1 ≤ wk ≤ w ≤ wk ≤ w1 ≤ 0 on
[0, r0]).

Now suppose that w0, ψ0, and φ0 have been constructed according to Steps 1–3
of the algorithm, starting with an initially negative upper bound for φ. Then we
have w ≤ w0 ≤ 0, ψ ≥ ψ0 ≥ 0, and φ ≥ φ0 on some interval [0, r0] with r0 > 0.
The arguments in the proof of Proposition 3.1 show that the following “tail estimate”
holds for every r > r0, provided that φ(r) ≤ 0:

0 ≥ (μ− 1)2φ(r) ≥ a
(r0
r

)2(μ−1)

− b
(r0
r

)μ−1

+ c ,

where

a :=
1

2
r2
0 w

2
0(r0) , b := r2

0 w
2
0(r0) + (μ− 1)r0ψ0(r0) ,

c :=
1

2
r2
0 w

2
0(r0) + (μ− 1)r0ψ0(r0) + (μ− 1)2φ0(r0) .

If we use the bounds w0 = wk, ψ0 = ψ
k
, and φ0 = φ

k
, for some k ∈ N, and choose r0

to be the positive root of w1 (or the positive root of φ1), the coefficients a, b, c,
and various other relevant quantities, such as φ0(r0), are rational functions of μ; in
fact, r4

0 is a polynomial in μ, while r2w2
0(r), rψ0(r), and φ0(r) are polynomials in r4,
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whose coefficients are rational functions of μ. This facilitates the symbolic compu-
tation of these quantities and allows us to locate their positive roots by inspecting
the coefficients of the respective numerator polynomials (the roots of the denomina-
tor polynomials are negative integers). Recall that finding the positive roots of c, in
particular, is a crucial step in the proof of Proposition 3.1.

Algorithm: Computation of Coefficient c.

0. Specify ρ := r4
0 (ρ a suitable polynomial in μ).

rho:=4*(mu+1)*(mu+3)*(mu+5):

# Alternatively: rho:=4*(mu+1)^2*(mu+3):

1. Compute coefficients of (1/2)r2w2
0(r) + (μ− 1)rψ0(r) + (μ− 1)2φ0(r).

P:=r^2*w0^2/2+(mu-1)*r*psi0+(mu-1)^2*phi0:

L:=normal(CoefficientList(P,r)): n:=(nops(L)-1)/4+1:

2. Compute coefficient c = c1/c2, with numerator polynomial c1 and denominator
polynomial c2.

c:=normal(sum(L[4*i-3]*rho^(i-1),i=1..n)):

c1:=sort(numer(c)); c2:=denom(c);

If we choose w0 = w2, ψ0 = ψ
2
, φ0 = φ

2
, and ρ = 4(μ + 1)(μ + 3)(μ + 5), as in

the proof of Proposition 3.1, then the numerator polynomial c1 of c has exactly two
positive roots (by Descartes’s rule of signs and the intermediate-value theorem), one
near 0.747 and the other near 9.073.
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GIUSEPPE BUTTAZZO† AND FILIPPO SANTAMBROGIO‡

Abstract. We propose a model to describe the optimal distributions of residents and services in
a prescribed urban area. The cost functional takes into account the transportation costs (according
to a Monge–Kantorovich-type criterion) and two additional terms which penalize concentration of
residents and dispersion of services. The tools we use are the Monge–Kantorovich mass transportation
theory and the theory of nonconvex functionals defined on measures.
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1. Introduction. The efficient planning of a city is a tremendously complicated
problem, both for the high number of parameters which are involved as well as for
the several relations which intervene among them (price of the land, kind of indus-
tries working in the area, quality of the life, prices of transportations, geographical
obstacles, etc.). Perhaps a careful description of the real situations could be only
obtained through evolution models which take into account the dynamical behavior
of the different parameters involved.

An interesting mathematical model for the description of the equilibrium structure
of a city is presented by Carlier and Ekeland in [3], where Monge–Kantorovich optimal
transport theory plays an important role.

In the present paper we consider a geographical area as given, and we represent
it through a subset Ω of R

n (n = 2 in the applications to concrete urban planning
problems). We want to study the optimal location in Ω of a mass of inhabitants,
which we denote by μ, as well as of a mass of services (working places, stores, offices,
etc.), which we denote by ν. We assume that μ and ν are probability measures on Ω.
This means that the total amounts of population and production are fixed as problem
data, and this is a difference from the model in [3]. The measures μ and ν represent
the unknowns of our problem that have to be found in such a way that a suitable
total cost functional F(μ, ν) is minimized. The definition of this total cost functional
takes into account some criteria we want the two densities μ and ν to satisfy:

(i) there is a transportation cost for moving from the residential areas to the
services areas;

(ii) people do not want to live in areas where the density of population is too
high;

(iii) services need to be concentrated as much as possible in order to increase
efficiency and decrease management costs.
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Fact (i) will be described through a Monge–Kantorovich mass transportation
model; the transportation cost will indeed be given by using a p-Wasserstein distance
(p ≥ 1). We set

Tp(μ, ν) = W p
p (μ, ν) = inf

γ

(∫
Ω×Ω

|x− y|pγ(dx, dy)

)
,(1.1)

where the infimum is taken over all possible transport plans γ between μ and ν (i.e.,
probabilities on the product space having μ, ν as marginal measures). We refer to
[7] for the whole theory on mass transportation. When p = 1 we are in the classical
Monge case, and for this particular case we refer to [1] and [5].

Fact (ii) will be described by a penalization functional, a kind of total unhappiness
of citizens due to high density of population, obtained by integrating with respect to
the citizens’ density their personal unhappiness.

Fact (iii) is modeled by a third term representing costs for managing services once
they are located according to the distribution ν, taking into account that efficiency
depends strongly on how much ν is concentrated.

The cost functional we will consider is then

F
p(μ, ν) = Tp(μ, ν) + F (μ) + G(ν),(1.2)

and thus the optimal location of μ and ν will be determined by the minimization
problem

min
{
F
p(μ, ν) : μ, ν probabilities on Ω

}
.(1.3)

In this way, our model takes into consideration only the optimization of a total
welfare parameter of the city, disregarding the effects on each single citizen. In par-
ticular, no equilibrium condition is considered. This may appear as a fault in the
model, since the personal welfare of the citizens (depending on the population density
of their zone and on the cost of moving from home to services) could be noncon-
stant. As a consequence, nonstable optimal solutions may occur, where some citizens
would prefer to move elsewhere in the city in order to get better conditions. However,
this is not the case, since our model also disregards prices of land and houses in the
city, since they do not affect the total wealth of the area. It turns out that by a
proper, market-determined choice of prices, welfare differences could be compensated
and equilibrium recovered. This fact turns out to be a major difference between our
model and the model in [3], both for the importance given in [3] to the variable repre-
sented by the price of land and for the fact that Carlier and Ekeland specifically look
for an equilibrium solution instead of an optimal one.

The present paper, after this introduction, contains three sections. Section 2 is
devoted to presenting precise choices for the functionals F and G and justifying them
as reasonable choices. In the same section we also give a simple existence result for
an optimal solution (μ, ν) as a starting point for the rest of the paper. In section 3 we
consider the functional on μ obtained by keeping the measure ν as fixed: in this case
the functional G does not play any role, and we obtain a convex minimization problem,
which is interesting in itself. We also obtain some necessary optimality conditions in
the very general case where no assumption is taken on the fixed measure ν. In section
4 we apply these results to the case where G is of the particular form presented in
section 2, which forces ν to be atomic (i.e., services are concentrated in countably
many points of the city area Ω). In the case where Ω is bounded, we give a quite
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precise description of the solution (μ, ν), and then we give an existence result also for
the case Ω = R

n.
Both in the case Ω = R

n and Ω bounded, optimal choices for μ and ν are given
by the formation of a certain number of subcities, which are circular areas with a pole
of services in the center (an atom for the measure ν) around which the population is
distributed with a decreasing radial density.

Since we have considered only a very simplified model, our goal is neither to
suggest a realistic way to design the ideal city nor to describe in a variational way the
formation of existing cities. Nevertheless, from the analysis of our optimality results
(and in particular from the subcities phenomena we referred to), we can infer some
conclusions.

• Our model is not a proper choice to describe the shape of a single exist-
ing city, since the delocalization of services we find in an optimal solution
does not reflect what reality suggests (in fact, we find finitely many disjoint,
independent subcities with services only in the center).

• Our model is likely to be more realistic on a larger scale, when Ω represents
a large urban area composed of several cities: in this case every atom of the
optimal ν stands for the center of one of them and includes a complex system
of services, located downtown, whose complexity cannot be seen in this scale.

• In our model the concentrated measure ν gives a good representation of the
areas where services are offered to citizens and not of areas where commodi-
ties are produced (factories), due to the assumption that no land is actually
occupied by the service poles (since ν is atomic).

• We do not believe that our model may actually be used to plan a future
city or to improve the efficiency of an existing one, as a consequence of its
oversimplified nature. However, we do not exclude the possibility of using
it in the planning of less complex agglomerations, such as tourist villages,
university campuses, etc.

• We conclude by stressing that the same model may be applied as a first
simplified approach to other kinds of problems, where we have to choose
in some efficient way the distributions of two different parameters, the first
spread and the second concentrated, keeping them as close as possible to each
other in some mass transportation sense.

2. The model. We now define the three terms appearing in our functional Fp.
We must go through the definition of F and G, since the first term will be a Monge–
Kantorovich transport cost, as explained in the previous section. For the functional
F we take

F (μ) =

{∫
Ω
f(u(x)) dx if μ = u · Ln, u ∈ L1(Ω),

+∞ otherwise,
(2.1)

where the integrand f : [0,+∞] → [0,+∞] is assumed to be lower semicontinuous
and convex, with f(0) = 0 and superlinear at infinity, that is,

lim
t→+∞

f(t)

t
= +∞.(2.2)

In this form we have a local semicontinuous functional on measures. Without loss of
generality, by subtracting constants to the functional F , we can suppose f ′(0) = 0.
Due to the assumption f(0) = 0, the ratio f(t)/t is an incremental ratio of the convex
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function f and thus it is increasing in t. Then, if we write the functional F as∫
Ω

f(u(x))

u(x)
u(x) dx,

we can see the quantity f(u)/u, which is increasing in u, as the unhappiness of a
single citizen when he lives in a place where the population density is u. Integrating
it with respect to μ = u · Ln gives a quantity to be seen as the total unhappiness of
the population.

As far as the concentration term G(ν) is concerned, we set

G(ν) =

{∑∞
i=0 g(ai) if ν =

∑∞
i=0 aiδxi

,

+∞ if ν is not atomic.
(2.3)

We require the function g to be subadditive, lower semicontinuous, and such that
g(0) = 0 and

lim
t→0

g(t)

t
= +∞.(2.4)

Every single term g(ai) in the sum in (2.3) represents the cost of building and man-
aging a service pole of size ai, located at the point xi ∈ Ω.

In our model, as already pointed out, we fix as a datum the total production
of services; moreover, in each service pole the production is required as a quantity
proportionally depending on its size (or on the number of inhabitants making use of
such a pole). We may define the productivity P of a pole of mass (size) a as the
ratio between the production and the cost to get such a production. Then we have
P (a) = a/g(a) and

∞∑
i=0

g(ai) =

∞∑
i=0

ai
P (ai)

.

As a consequence of assumption (2.4) we have that the productivity in very small
service poles is near 0.

Notice that in the functional G we do not take into account distances between
service poles. It would be interesting to consider nonlocal functionals involving such
distances, taking into account possible cooperation and the consequent gain in effi-
ciency. Those functionals could be matters of investigation in a subsequent paper, in
which the results shown in the next section (since they do not depend on the choice
of G) could be useful as well as in the present setting.

For the problem introduced in (1.3), existence results are straightforward, espe-
cially when we use as an environment a compact set Ω. In fact, functionals of the form
of both F and G have been studied in a general setting by Bouchitté and Buttazzo
in [2], and lower semicontinuity results were proven.

Theorem 2.1. Suppose Ω is compact, p ≥ 1, and f and g satisfy the conditions
listed above. Then the minimization problem (1.3) has at least one solution.

Proof. By the direct method of calculus of variations, this result is an easy
consequence of the weak-* compactness of the space P(Ω), the space of probability
measures on Ω when Ω itself is compact, and of the weak-* semicontinuity of the
functional Fp. The second and third terms in (1.2) are, in fact, local semicontinuous
functionals (due to results in [2]), while the first term is nothing but a Wasserstein
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distance raised to a certain power. Since it is known that in compact spaces this
distance metrizes the weak-* topology, Tp is actually continuous.

In [6], where we first presented the model, other existence results were shown.
For instance, the case of a noncompact bounded convex set Ω ⊂ R

n was considered.
We will not go through this proof here and will discuss just one existence result in
a noncompact setting, obtained as a consequence of a proper use of the optimality
conditions presented in the next section.

3. A necessary condition of optimality. In this section we find optimality
conditions for probability measures on Ω minimizing the functional

F
p
ν(μ) = Tp(μ, ν) + F (μ).

It is clear that if (μ, ν) is an optimal pair for the whole functional Fp, μ is a minimizer
for Fp

ν . The goal of this section is to derive optimality conditions for Fp
ν , for any

ν, without any link to the minimization of Fp. The main part of the section will be
devoted to presenting an approach obtained by starting with the easier case p > 1 and
ν “regular” in some sense and then recovering the general case by an approximation
argument. The reason for doing so relies on some conditions ensuring uniqueness
properties of the Kantorovich potential. Similar approximation arguments were also
used in [6]: purely atomic probability measures (i.e., finite sums of Dirac masses) were
considered first, and then, by approximation, the result was extended to any measure
ν. At the end of the section we also provide a sketch of a different proof, suggested
to us by an anonymous referee, which is based on some convex analysis tools and
strongly uses the convex structure of the problem.

For simplicity, let us call domains those sets which are the closure of a nonempty
connected open subset of R

n with negligible boundary. From now on Ω will be a
bounded domain and its diameter will be denoted by D. The function f in (2.1) will
be assumed to be strictly convex and C1, and we will denote by k the continuous,
strictly increasing function (f ′)−1. Strict convexity of f will ensure uniqueness for
the minimizer of Fp

ν .
Lemma 3.1. If μ is optimal for Fp

ν , then for any other probability measure μ1

with density u1 such that Fp
ν(μ1) < +∞, the following inequality holds:

Tp(μ1, ν) − Tp(μ, ν) +

∫
Ω

f ′(u(x))[u1(x) − u(x)]dx ≥ 0.

Proof. For any ε > 0, due to the convexity of the transport term, it holds that

Tp(μ, ν) + F (μ) ≤ Tp(μ + ε(μ1 − μ)) + F (μ + ε(μ1 − μ), ν)

≤ Tp(μ, ν) + ε(Tp(μ1, ν) − Tp(μ, ν)) + F (μ + ε(μ1 − μ)).

Therefore the quantity Tp(μ1, ν) − Tp(μ, ν) + ε−1 [F (μ + ε(μ1 − μ)) − F (μ)] is non-
negative. If we let ε → 0, we obtain the thesis if we prove

lim
ε→0

∫
f(u + ε(u1 − u)) − f(u)

ε
dLn =

∫
f ′(u)(u1 − u) dLn.

By using the monotonicity of the incremental ratios of convex functions we can see
that, for ε < 1,

|f(u + ε(u1 − u)) − f(u)|
ε

≤ |f(u) − f(u1)|.
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This is sufficient in order to apply Lebesgue dominated convergence theorem, since
F (μ) and F (μ1) are finite.

Lemma 3.2. Let us suppose ν = νs + v · Ln, with v ∈ L∞(Ω), νs⊥Ln, v > 0 a.e.
in Ω. If μ is optimal for Fp

ν , then u > 0 a.e. in Ω.
Proof. The lemma will be proven by contradiction. We will find, if the set

A = {u = 0} is not negligible, a measure μ1 for which Lemma 3.1 is not verified. Let
N be a Lebesgue-negligible set where νs is concentrated and t is an optimal transport
map between μ and ν. Such an optimal transport exists, since μ 	 Ln. A proof of
this fact can be found in [7] as long as we deal with the case p > 1, while for p = 1
we refer to [1].

Let B = t−1(A). Up to modifying t on the μ-negligible set A, we may suppose
B ∩ A = ∅. Set μ1 = 1Bc · μ + 1A\N · ν; it is a probability measure with density u1

given by 1Bcu+1Av = 1Bc\Au+1Av (this equality comes from u = 0 on A). We have

F (μ1) =

∫
Bc\A

f(u) dLn +

∫
A

f(v) dLn ≤ F (μ) + ||f(v)||∞|Ω| < +∞.

Setting

t∗(x) =

{
t(x) if x ∈ (A ∪B)c,

x if x ∈ (A ∪B),

we can see that t∗ is a transport map between μ1 and ν. In fact, for any Borel
set E ⊂ Ω, we may express (t∗)−1(E) as the disjoint union of E ∩ A, E ∩ B, and
t−1(E) ∩Bc ∩Ac. Thus,

μ1((t
∗)−1(E)) = ν(E ∩A) + ν(E ∩B ∩A) + μ(t−1(E) ∩Bc ∩Ac)

= ν(E ∩A) + μ(t−1(E ∩Ac)) = ν(E),

where we used the fact that A ∩ B = ∅ and that Ac is a set of full measure for μ.
Consequently,

Tp(μ1, ν) ≤
∫

(A∪B)c
|x− t(x)|pu(x)dx <

∫
Ω

|x− t(x)|pu(x)dx = Tp(μ, ν).(3.1)

From this it follows that for μ1 Lemma 3.1 is not satisfied, since the integral term∫
Ω
f ′(u)(u1 − u)dLn is nonpositive, because u1 > u only on A, where f ′(u) vanishes.

The strict inequality in (3.1) follows from the fact that if
∫
A∪B

|x− t(x)|pu(x)dx = 0,
then for a.e. x ∈ B it holds u(x) = 0 or x = t(x), which, by definition of B, implies
x ∈ A; in both cases we are led to u(x) = 0. This would give ν(A) = μ(B) = 0,
contradicting the assumptions |A| > 0 and v > 0 a.e. in Ω.

We need some results from duality theory in mass transportation that can be
found in [7]. In particular, we point out the notation of c-transform (a kind of gener-
alization of the well-known Legendre transform): given a function χ on Ω we define
its c-transform (or c-conjugate function) by

χc(y) = inf
x∈Ω

c(x, y) − χ(x).

We will generally use c(x, y) = |x− y|p.
Theorem 3.3. Under the same hypotheses of Lemma 3.2, assuming also that

p > 1, if μ is optimal for Fp
ν and we denote by ψ the unique, up to additive constants,
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Kantorovich potential for the transport between μ and ν, there exists a constant l such
that the following relation holds:

u = k(l − ψ) a.e. in Ω.(3.2)

Proof. Let us choose an arbitrary measure μ1 with bounded density u1 (so that
F (μ1) < +∞) and define με = μ + ε(μ1 − μ). Let us denote by ψε a Kantorovich
potential between με and ν, chosen so that all the functions ψε vanish at a same point.
We can use the optimality of μ to write

Tp(με, ν) + F (με) − Tp(μ, ν) − F (μ) ≥ 0.

By means of the duality formula, as Tp(με, ν) =
∫
ψεdμε +

∫
ψc
εdν and Tp(μ, ν) ≥∫

ψεdμ +
∫
ψc
εdν, we can write∫

ψεd(με − μ) + F (με) − F (μ) ≥ 0.

Recalling that με − μ = ε(μ1 − μ) and that

F (με) − F (μ) =

∫
(f(u + ε(u1 − u)) − f(u)) dLn,

we can divide by ε and pass to the limit. We know from Lemma 3.4 that ψε converge
towards the unique Kantorovich potential ψ for the transport between μ and ν. For
the limit of the F part we use Lebesgue dominated convergence, as in Lemma 3.1.
We then obtain at the limit∫

Ω

(ψ(x) + f ′(u(x)))(u1(x) − u(x))dx ≥ 0.

This means that for every probability μ1 with bounded density u1 we have∫
(ψ(x) + f ′(u(x)))u1(x) dx ≥

∫
(ψ(x) + f ′(u(x)))u(x) dx.

Define first l = ess infx∈Ω ψ(x) + f ′(u(x)). The left-hand side, by properly choosing
u1, can be made as close to l as we want. Then we get that the function ψ + f ′(u),
which is Ln-a.e., and so also μ-a.e., greater than l, integrated with respect to the
probability μ gives a result less than or equal to l. It follows that

ψ(x) + f ′(u(x)) = l, μ-a.e.x ∈ Ω.

Together with the fact that, by Lemma 3.2, u > 0 a.e., we get an equality valid
Ln-a.e., and so it holds that

f ′(u) = l − ψ.

We can then compose with k and get the thesis.
To establish Lemma 3.4, which we used in the proof of Theorem 3.3, we have

first to point out the following fact. In the transport between two probabilities, if
we look at the cost c(x, y) = |x − y|p with p > 1, there exists just one Kantorovich
potential, up to additive constants, provided the absolutely continuous part of one of
the measures has strictly positive density a.e. in the domain Ω.



A MODEL FOR THE OPTIMAL PLANNING OF AN URBAN AREA 521

Lemma 3.4. Let ψε be Kantorovich potentials for the transport between με =
μ + ε(μ1 − μ) and ν, all vanishing at a same point x0 ∈ Ω. Suppose that μ = u · Ln

and u > 0 a.e. in Ω, and let ψ be the unique Kantorovich potential between μ and ν
vanishing at the same point; then ψε converge uniformly to ψ.

Proof. First, notice that the family (ψε)ε is equicontinuous since any c-concave
function with respect to the cost c(x, y) = |x − y|p is pDp−1-Lipschitz continuous
(and Kantorovich potentials are optimal c-concave functions in the duality formula).
Moreover, thanks to ψε(x0) = 0, we also get equiboundedness and thus, by the Ascoli–
Arzelà theorem, the existence of uniform limits up to subsequences. Let ψ be one of
these limits, arising from a certain subsequence. From the optimality of ψε in the
duality formula for με and ν we have, for any c-concave function ϕ,∫

ψε dμε +

∫
ψc
ε dν ≥

∫
ϕdμε +

∫
ϕc dν.

We want to pass to the limit as ε → 0: we have uniform convergence of ψε but we
need uniform convergence of ψc

ε as well. To get it, note that

ψc
ε(x) = inf

y
|x− y|p − ψε(y), ψ

c
(x) = inf

y
|x− y|p − ψ(y),

|ψc
ε(x) − ψ

c
(x)| ≤ ||ψε − ψ||∞.

Passing to the limit as ε → 0 along the considered subsequence we get, for any ϕ,∫
ψ dμ +

∫
ψ
c
dν ≥

∫
ϕdμ +

∫
ϕc dν.

This means that ψ is a Kantorovich potential for the transport between μ and ν.
Then, taking into account that ψ(x0) = 0, we get the equality ψ = ψ. Then we derive
that the whole sequence converges to ψ.

We now highlight that the relation we have proved in Theorem 3.3 enables us to
choose a density u which is continuous. Moreover, it is also continuous in a quantified
way, since it coincides with k composed with a Lipschitz function with a fixed Lipschitz
constant. As a next step we will try to extend such results to the case of general ν and
then to the case p = 1. The uniform continuity property we proved will be essential
for an approximation process.

In order to go through our approximation approach, we need the following lemma,
requiring the well-known theory of Γ-convergence. For all details about this theory,
we refer to [4].

Lemma 3.5. Given a sequence (νh)h of probability measures on Ω, supposing
νh ⇀ ν and p > 1, it follows that the sequence of functionals (Fp

νh
)h Γ-converges to

the functional Fp
ν with respect to weak-∗ topology on P(Ω). Moreover, if ν is fixed

and we let p vary, we have Γ-convergence, according to the same topology, of the
functionals Fp

ν to the functional (F1
ν) as p → 1.

Proof. For the first part of the statement, just notice that the Wasserstein distance
is a metrization of weak-∗ topology: consequently, since Tp(μ, ν) = W p

p (μ, ν), as
νh ⇀ ν we have uniform convergence of the continuous functionals Tp(·, νh). This
implies Γ-convergence and pointwise convergence. In view of Proposition 6.25 in [4],
concerning Γ-convergence of sums, we achieve the proof. The second assertion follows
the same scheme once we notice that, for each p > 1 and every pair (μ, ν) of probability
measures, it holds that

W1(μ, ν) ≤ Wp(μ, ν) ≤ D1− 1
pW

1
p

1 (μ, ν).
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This gives uniform convergence of the transport term, as

Tp(μ, ν) − T1(μ, ν) ≤ (Dp−1 − 1)T1(μ, ν)

≤ D(Dp−1 − 1) → 0.

Tp(μ, ν) − T1(μ, ν) ≥ T p
1 (μ, ν) − T1(μ, ν)

≥ (p− 1)c(T1(μ, ν)) ≥ c̄ (p− 1) → 0,

where c(t) = t log t, c̄ = inf c, and we used the fact T1(μ, ν) ≤ D.
We now state in the form of lemmas two extensions of Theorem 3.3
Lemma 3.6. Suppose p > 1 and fix an arbitrary ν ∈ P(Ω). If μ is optimal for

Fp
ν , then there exists a Kantorovich potential ψ for the transport between μ and ν such

that (3.2) holds.
Proof. We choose a sequence (νh)h approximating ν in such a way that each νh

satisfies the assumptions of Theorem 3.3. By Lemma 3.5 and the properties of Γ-
convergence, the space P(Ω) being compact and the functional Fp

ν having an unique
minimizer (see, for instance, Chapter 7 in [4]), we get that μh ⇀ μ, where each
μh is the unique minimizer of Fp

νh
. Each measure μh is absolutely continuous with

density uh. We use (3.2) to express uh in terms of Kantorovich potentials ψh and get
uniform continuity estimates on uh. We would like to extract converging subsequences
by the Ascoli–Arzelà theorem, but we also need equiboundedness. We may obtain
this by using together the integral bound

∫
uhdLn =

∫
k(−ψh)dLn = 1 and the

equicontinuity. So, up to subsequences, we have the following situation:

μh = uh · Ln, uh = k(−ψh),

uh → u, ψh → ψ uniformly,

μh ⇀ μ, μ = u · Ln, νh ⇀ ν,

where we have absorbed the constants l into the Kantorovich potentials. Clearly it
is sufficient to prove that ψ is a Kantorovich potential between μ and ν to reach our
goal.

To see this, we consider that for any c-concave function ϕ, it holds that∫
ψh dμh +

∫
ψc
h dνh ≥

∫
ϕdμh +

∫
ϕc dνh.

The thesis follows passing to the limit with respect to h, as in Lemma 3.4.
The next step is proving the same relation when ν is generic and p = 1. We are

in the same situation as before, and we simply need approximation results on Kan-
torovich potentials in the more difficult situation when the cost functions cp(x, y) =
|x− y|p vary with p.

Lemma 3.7. Suppose p = 1 and fix an arbitrary ν ∈ P(Ω). If μ is optimal for
F1
ν , then there exists a Kantorovich potential ψ for the transport between μ and ν with

cost c(x, y) = |x− y| such that (3.2) holds.
Proof. For any p > 1 we consider the functional Fp

ν and its unique minimizer μp.
Thanks to Lemma 3.6 we get the existence of densities up and Kantorovich potential
ψp between μp and ν with respect to the cost cp, such that

μp = up · Ln, up = k(−ψp).

By the Ascoli–Arzelà compactness result, as usual, we may suppose, up to subse-
quences,

up → u, ψp → ψ uniformly,
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and due to the Γ-convergence result in Lemma 3.5, since F1
ν has an unique minimizer

denoted by μ we also get

μp ⇀ μ, μ = u · Ln.

As in Lemma 3.6, we simply need to prove that ψ is a Kantorovich potential between
μ and ν for the cost c1. The limit function ψ is Lipschitz continuous with Lipschitz
constant less than or equal to lim infp→1 pD

p−1 = 1, since it is approximated by ψp.
Consequently ψ is c-concave for c = c1. We need to show that it is optimal in the
duality formula.

Let us recall that, for any real function ϕ and any cost function c, it holds that
ϕcc ≥ ϕ and ϕcc is a c-concave function whose c-transform is ϕccc = ϕc. Consequently,
by the optimality of ψp, we get∫

ψpdμp +

∫
ψcp
p dν ≥

∫
ϕcpcpdμp +

∫
ϕcpdν ≥

∫
ϕdμp +

∫
ϕcpdν.(3.3)

We want to pass to the limit in the inequality between the first and the last term.
We start by proving that, for an arbitrary sequence (ϕp)p, if ϕp → ϕ1, we have the
uniform convergence ϕ

cp
p → ϕc1

1 . Let us take into account that we have uniform
convergence on bounded sets of cp(x, y) = |x−y|p to c1(x, y) = |x−y|. Then we have

ϕcp
p (x) = inf

y
|x− y|p − ϕp(y), ϕc1

1 (x) = inf
y
|x− y| − ϕ1(y),

|ϕc,p
p (x) − ϕc,1

1 (x)| ≤ ||cp − c1||∞ + ||ϕp − ϕ1||∞,

which gives us the convergence we needed. We then obtain, passing to the limit as
p → 1 in (3.3), ∫

ψ dμ +

∫
ψc1 dν ≥

∫
ϕdμ +

∫
ϕc1 dν.

By restricting this inequality to all ϕ which are c1-concave, we get that ψ is a Kan-
torovich potential for the transport between μ and ν and the cost c1.

We can now state the main theorem of this section, whose proof consists only of
putting together all the results we have obtained above.

Theorem 3.8. Let Ω be a bounded domain in R
n, f be a C1 strictly convex

function, p ≥ 1, and ν be a probability measure on Ω. Then there exists a unique
measure μ ∈ P(Ω) minimizing Fp

ν and it is absolutely continuous with density u.
Moreover, there exists a Kantorovich potential ψ for the transport between μ and ν
and the cost c(x, y) = |x− y|p such that u = k(−ψ) holds, where k = (f ′)−1.

Consequences on the regularity of u come from this expression, which gives
Lipschitz-type continuity, and from the relationship between Kantorovich potentials
and optimal transport, which can be expressed through some PDEs. It is not difficult,
for instance, in the case p = 2, to obtain a Monge–Ampère equation for the density
u.

As we have already mentioned, we provide a sketch of an alternative proof to
Theorem 3.8. The idea of such a proof consists of looking at the subdifferential of the
functional Fp

ν in order to get optimality conditions on the unique minimizer measure μ
and its density u (here we will identify any absolutely continuous probability measure
with its density).
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Sketch of Proof. Step 1. Consider the minimizing probability μ with density
u ∈ L1(Ω) and define the vector space X = span (L∞(Ω), {u}), with dual

X ′ =

{
ξ ∈ L1(Ω) :

∫
Ω

|ξ|u dLn < +∞
}
.

Then we consider the minimization problem for the functional H defined on X by

H(v) =

{
Fp
ν(v) if v ∈ P(Ω),

+∞ otherwise.

It is clear that u minimizes H. We will prove

∂H(u) =

{
f ′(u) + ψ : ψ maximizes

∫
Ω

φdμ +

∫
Ω

φcdν for φ ∈ X ′
}

(3.4)

and then consider as an optimality condition 0 ∈ ∂H(u). The subdifferential ∂H of
the convex functional H is to be considered in the sense of the duality between X
and X ′. Notice that, in this setting, the c-transform φc of a function φ ∈ X ′ has to
be defined replacing the inf with an ess inf. Finally, in order to achieve the proof, it
is sufficient to recognize that for a function ψ attaining the maximum in the duality
formula, it necessarily holds that ψ = ψcc a.e. on {u > 0} and that this, together
with 0 = f ′(u) + ψ, implies ψ = ψcc ∧ 0. This means that ψ is an optimal c-concave
function (since it is expressed as an infimum of two c-concave functions) in the duality
formula between μ and ν, and so it is a Kantorovich potential. In this way the thesis
of Theorem 3.8 is achieved, provided (3.4) is proved.

Step 2. By using the same computations as in Lemma 3.1, for any u1 ∈ X∩P(Ω),
if we set uε = u + ε(u1 − u), we may prove that

lim
ε→0

F (με) − F (μ)

ε
=

∫
Ω

f ′(u)(u1 − u) dLn.

Notice that, since
∫
Ω
f ′(u)|u1 − u| dLn < +∞, by choosing u1 = 1/|Ω| it follows that

f ′(u) and f ′(u)u are L1 functions; i.e., f ′(u) ∈ X ′. Then it is possible to prove that
this implies ∂H(u) = f ′(u) + ∂T (u), where T is the convex functional Tp(·, ν).

Step 3. It remains to prove that

∂T (u) =

{
ψ : ψ maximizes

∫
Ω

φdμ +

∫
Ω

φcdν for φ ∈ X ′
}
.(3.5)

In fact, if we define K(φ) =
∫
Ω
φcdν, the key point is to prove that K is concave

and upper semicontinuous in φ. Then, by standard convex analysis tools, (3.5) is a
consequence of the equality T (v) = supφ v ·φ+K(φ), where v ·φ stands for the duality
product between X and X ′ and equals

∫
Ω
vφ dLn.

4. Applications to urban planning problems (with atomic services). In
this section we go through the consequences that Theorem 3.8 has in the problem
of minimizing Fp, when this functional is built by using a term G as in (2.3), which
forces the measure ν, representing services, to be purely atomic. We have two goals:
trying to have an explicit expression for u in the case of a bounded domain Ω and
proving an existence result in the case Ω = R

n.



A MODEL FOR THE OPTIMAL PLANNING OF AN URBAN AREA 525

Theorem 4.1. Suppose (μ, ν) is optimal for problem (1.3). Suppose also that the
function g is locally Lipschitz in ]0, 1]: then ν has finitely many atoms and is of the
form ν =

∑m
i=1 aiδxi .

Proof. It is clear that ν is purely atomic, i.e., a countable sum of Dirac masses.
We want to show their finiteness. Consider a = max ai (such a maximum exists since
limi ai = 0 and ai > 0) and let L be the Lipschitz constant of g on [a, 1]. Now consider
an atom with mass ai and modify ν by moving its mass onto the atom xj whose mass
aj equals a, obtaining a new measure ν′. The G-part of the functional decreases, while
it may happen that the transport part increases. Since we do not change μ, the F -part
remains the same. By optimality of ν we get Tp(μ, ν) +G(ν) ≤ Tp(μ, ν

′) +G(ν′) and
thus

g(ai) − Lai ≤ g(ai) + g(a) − g(a + ai) ≤ Tp(μ, ν
′) − Tp(μ, ν) ≤ aiD.

This implies

g(ai)

ai
≤ D + L,

and by the assumption on the behavior of g at 0, this gives a lower bound δ on ai.
Since we have proved that every atom of ν has a mass greater than δ, we may conclude
that ν has finitely many atoms.

Now we can use the results from last section.
Theorem 4.2. For any ν ∈ P(Ω) such that ν is purely atomic and composed by

finitely many atoms at the points x1, . . . , xm, if μ minimizes Fp
ν , there exist constants

ci such that

u(x) = k ((c1 − |x− x1|p) ∨ · · · ∨ (cm − |x− xm|p) ∨ 0) .(4.1)

In particular the support of u is the intersection with Ω of a finite union of balls
centered around the atoms of ν.

Proof. On the Kantorovich potential ψ appearing in Theorem 3.8, we know that

ψ(x) + ψc(y) = |x− y|p ∀(x, y) ∈ spt(γ),

ψ(x) + ψc(y) ≤ |x− y|p ∀(x, y) ∈ Ω × Ω,

where γ is an optimal transport plan between μ and ν. Taking into account that ν is
purely atomic we obtain, defining ci = ψc(xi),

−ψ(x) = ci − |x− xi|p μ-a.e.x ∈ Ωi,

−ψ(x) ≥ ci − |x− xi|p ∀x ∈ Ω, ∀i,

where Ωi = t−1(xi), where t is an optimal transport map between μ and ν. Since
μ−a.e. point in Ω is transported to a point xi, we know that u = 0 a.e. in the
complement of

⋃
i Ωi. Since, by f ′(u) = −ψ, it holds that −ψ(x) ≥ 0, one gets that

everywhere in Ω the function −ψ is greater than each of the terms ci−|x−xi|p and 0,
while a.e. it holds equality with at least one of them. By changing u on a negligible
set, one obtains (4.1). The support of μ, consequently, turns out to be composed of

the union of the intersection with Ω of the balls Bi = B(xi, c
1/p
i ).

Theorem 4.2 allows us to have an almost explicit formula for the density of μ.
Formula (4.1) becomes more explicit when the balls Bi are disjoint. We now give a
sufficient condition on ν under which this fact occurs.
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Lemma 4.3. There exists a positive number R, depending on the function k, such
that any of the balls Bi has a radius not exceeding R. In particular, for any atomic
probability ν such that the distance between any two of its atoms is larger than 2R,
the balls Bi are disjoint.

Proof. Set Ri = c
1/p
i and notice that

1 =

∫
Ω

u ≥
∫
Bi

k(ci − |x− xi|p) dx =

∫ Ri

0

k(Rp
i − rp)nωnr

n−1 dr,

where the number ωn stands for the volume of the unit ball in R
n. This inequality

gives the required upper bound on Ri, since

∫ Ri

0

k(Rp
i − rp)nωnr

n−1 dr ≥ C

∫ Ri−1

0

nrn−1 dr = C(Ri − 1)n.

When the balls Bi are disjoint, we have Bi = Ωi for every i and we get a simple
relation between radii and masses corresponding to each atom. The constants ci can

then be found by using Ri = c
1/p
i . In fact, by imposing the equality of the mass of μ

in the ball and of ν in the atom, the radius R(m) corresponding to a mass m satisfies

m =

∫ R(m)

0

k(R(m)p − rp)nωnr
n−1dr.(4.2)

For instance, if f(s) = s2/2, we have

R(m) =

(
m(n + p)

ωnp

) 1
n+p

.

The second aim of this section is to obtain an existence result for the problem (1.3)
when Ω = R

n. A difference from the bounded case is the fact that we must look
for minimization among all pairs of measures in Wp(R

n), the p-th Wasserstein metric
space (i.e., the space of measures λ ∈ P(Rn) such that

∫
|x|pλ(dx) < +∞, endowed

with the distance Wp), rather than in P(Rn).
We start with some simple results about the minimization problem for Fp

ν .
Lemma 4.4. For every fixed ν ∈ P(Rn) there exists a (unique if f is strictly

convex) minimizer μ for Fp
ν : it belongs to Wp(R

n) if and only if ν ∈ Wp(R
n), and

if ν does not belong to this space, the functional Fp
ν is infinite on the whole Wp(R

n).
Moreover, if ν is compactly supported, the same happens for μ.

Proof. The existence of μ comes from the direct method of the calculus of varia-
tions and the fact that if (Tp(μh, ν))h is bounded, then (μh)h is tight. The behavior of
the functional with respect to the space Wp(R

n) is trivial. Finally, the last assertion
can be proved by contradiction, supposing μ(B(0, R)c) > 0 for every R < +∞ and
replacing μ with

μR = 1BR
· μ +

μ(Bc
R)

|Br|
1Br · Ln,

where B(0, r) is a ball containing the support of ν. By optimality, we should have

Tp(μR, ν) + F (μR) ≥ Tp(μ, ν) + F (μ),(4.3)
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but we have

Tp(μR, ν) − Tp(μ, ν) ≤ −((R− r)p − (2r)p)μ(Bc
R),(4.4)

F (μR) − F (μ) ≤
∫
Br

[
f

(
u +

μ(Bc
R)

|Br|

)
− f(u)

]
dLn.(4.5)

By summing up (4.4) and (4.5), dividing by μ(Bc
R), and taking into account (4.3), we

get

−((R− r)p − (2r)p) +
1

μ(Bc
R)

∫
Br

[
f

(
u +

μ(Bc
R)

|Br|

)
− f(u)

]
dLn ≥ 0.(4.6)

Yet, by passing to the limit as R → +∞ and μ(Bc
R) → 0, the first term in (4.6) tends to

−∞, while the second is decreasing as R → +∞. This last one tends to
∫
Br

f ′(u)dLn,

provided it is finite for at least a value of R (which ensures the finiteness of the limit
as well). To conclude, it is sufficient to prove that∫

Br

[
f

(
u +

μ(Bc
R)

|Br|

)
− f(u)

]
dLn < +∞.

This is quite easy in the case f(z) = Azq with q > 1, while for general f the assertion
comes from the fact that u is continuous on Br and hence bounded. If u = 0 a.e. in Br,
this is trivial; otherwise take the probability measures μ′ = 1Br/μ(Br)·μ and ν′ = t�μ

′

for an optimal transport map t between μ and ν. It is clear that μ′ minimizes F
p
ν′ in

the new domain Ω′ = Br. Then we may apply Theorem 3.8 and get the continuity of
its density, which ensures the continuity of u on Br.

To go through our proof we need to manage minimizing sequences, in the sense
of the following lemma.

Lemma 4.5. It is possible to choose a minimizing sequence ((μh, νh))h in Wp(R
n)×

Wp(R
n) such that for every h the measure νh is finitely supported, and the density of

μh is given by (4.1), with disjoint balls centered at the atoms of νh.
Proof. First we start from an arbitrary minimizing sequence ((μ′

h, ν
′
h))h. Then we

approximate each ν′h in Wp by a finite support measure ν′′h . To do this we truncate
the sequence of its atoms and move the mass in excess to the origin. In this way, we
have G(ν′′h) ≤ G(ν′h), by the subadditivity of g, while the value of the transport term
increases by an arbitrary small quantity. Consequently, ((μ′

h, ν
′′
h))h is still a minimiz-

ing sequence. Then we replace μ′
h by μ′′

h, chosen in such a way that it minimizes F
p
ν′′
h
.

By Lemma 4.4, each μ′′
h has a compact support. Then we translate every atom of each

ν′′h , together with its own set Ωi, to some disjoint sets Ω∗
i . In this way we get new

measures μ′′′
h and ν′′′h . The value of the functional in this step has not changed. We

may choose to place the atoms of each ν′′′h so far from each other that each distance
between atoms is at least 2R. Then we minimize again in μ, getting a new sequence
of pairs ((μ′′′′

h , ν′′′h ))h, and we set νh = ν′′′h and μh = μ′′′′
h . Thanks to Theorem 4.2 and

Lemma 4.3 the requirements of the thesis are fulfilled.
It is clear now that if one can obtain a uniform estimate on the number of atoms of

the measures νh, the existence problem is easily solved. In fact we already know that
each ball belonging to the support of μh is centered at an atom of νh and has a radius
not larger than R. Provided we are able to prove an estimate like � {atoms of νh} ≤ N ,
it would be sufficient to act by translation on the atoms and their corresponding balls,
obtaining a new minimizing sequence (the value of Fp does not change) with supports
all contained in a same bounded set (for instance, the ball BNR).
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We now try to give sufficient conditions in order to find minimizing sequences
where the number of atoms stays bounded. Notice that on sequences of the form
given by Lemma 4.5, the functional Fp has the expression

F
p(μh, νh) =

k(h)∑
i=1

E(mi,h), if νh =

k(h)∑
i=1

mi,hδxi,h
,(4.7)

where the quantity E(m) is the total contribute given by an atom with mass m to
the functional. We may compute

(4.8) E(m) = g(m) +

∫ R(m)

0

[f(k(R(m)p − rp)) + k(R(m)p − rp)rp]nωnr
n−1dr,

taking into account the particular form of the density in the ball.
Theorem 4.6. Let us suppose f ∈ C2((0,+∞)), and g ∈ C2((0, 1]) ∩ C0([0, 1]),

in addition to all previous assumptions. Then the minimization problem for Fp in
Wp(R

n) ×Wp(R
n) has a solution, provided

lim sup
R→0+

g′′

(∫ R

0

k(Rp − rp)nωnr
n−1dr

)∫ R

0

k′(Rp − rp)nωnr
n−1dr < −1.

Proof. According to what has been previously proven, it is sufficient to produce
a minimizing sequence of the form of Lemma 4.5 with a bounded number of atoms.
We claim that it is enough to prove that the function E is subadditive on an interval
[0,m0]. In fact, having proven it, we start from a sequence ((μh, νh))h built as in
Lemma 4.5 and use the characterization of Fp given in (4.7). Then we modify our
sequence by replacing in each νh any pair of atoms of mass less than m0/2 with a
single atom with the sum of the masses. We keep atoms far away from each other in
order to use (4.7). We may perform such a replacement as far as we find more than
one atom whose mass is less than or equal to m0/2. At the end we get a new pair
((μ′

h, ν
′
h))h, where the number of atoms of ν′h is less than N = 1 + �2/m0�. The value

of the functional Fp has not increased, thanks to the subadditivity of E on [0,m0].
Taking into account that E(0) = 0 and that concave functions vanishing at 0

are subadditive, we look at concavity properties of the function E in an interval
[0,m0]. It is sufficient to compute the second derivative of E and find it negative in
a neighborhood of the origin.

By means of the explicit formula (4.8) and also taking into account (4.2), setting
E(m) = g(m) + K(R(m)), we start by computing dK/dr. Using the facts that
f ′ ◦ k = id and that k(0) = 0, we can obtain the formula

dK(R(m))

dm
(m) = R(m)p.

From another derivation and some standard computation we finally obtain

E′′(m) = g′′(m) +
1∫ R(m)

0
k′(R(m)p − rp)nωnrn−1dr

.

The assumption of this theorem ensures that such a quantity is negative for small m,
and so the proof is achieved.
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Remark 4.7. Notice that when the functions f and g are of the form f(t) =
atq, q > 1, g(t) = btr, r < 1, with a and b positive constants, it holds that

g′′

(∫ R

0

k(Rp − rp)nωnr
n−1dr

)
≤ −CR(n+ p

q−1 )(r−2),

∫ R

0

k′(Rp − rp)nωnr
n−1dr ≤ CRn+p 2−q

q−1 ,

and so the lim sup in Theorem 4.6 may be estimated from above by

lim
R→0+

−CR
p

q−1 (r−q)+n(r−1) = −∞.

Consequently the assumption in Theorem 4.6 is always verified when f and g are
power functions.

Remark 4.8. From the proof of the existence theorem it is clear that there exists a
minimizing pair (μ, ν) ∈ Wp(R

n)×Wp(R
n) where ν has finitely many atoms and μ is

supported in a finite, disjoint union of balls centered at the atoms of ν and contained
in a bounded domain Ω0, with a density given by Theorem 4.2. The same happens
if we look for the minimizers in a bounded domain Ω, provided Ω is large enough to
contain Ω0, and hence a solution to the problem in R

n. For example, all the open
sets containing N balls of radius R admit a minimizing solution supported in disjoint
balls.

We conclude by stressing the fact that in order to solve the problem in R
n, we

have only to look at the function E and find out the number of atoms and their
respective masses (mi)i=1...k. The problem to solve is then

min

{
k∑

i=1

E(mi) : k ∈ N,

k∑
i=1

mi = 1

}
.(4.9)

Typically, for instance when f and g are power functions, the function E involved in
(4.9) is a concave-convex function, as sketched in Figure 1. Due to such a concave-
convex behavior, in general it is not clear whether the values of the numbers mi

solving (4.9) and representing subcities’ sizes are all equal or may be different.

0 1 m

E

Fig. 1. Typical behavior of E.

Acknowledgments. The authors wish to thank an anonymous referee for point-
ing out the alternative proof sketched in section 3.
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STEADY STATES FOR A COAGULATION-FRAGMENTATION
EQUATION WITH VOLUME SCATTERING∗
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Abstract. A coagulation-fragmentation equation including volume scattering and collisional
breakage is considered. We prove that the equation admits steady states of arbitrary mass provided
that the kernels satisfy some suitable growth conditions. On the other hand, we also show that zero
is the only steady state in particular cases.
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1. Introduction. The aim of this paper is to investigate the existence of steady
states for a coagulation-fragmentation equation including a volume scattering effect.
Recall that coagulation-fragmentation models describe the time evolution of a system
consisting of a very large number of particles, which can either coalesce to form
larger particles or split into smaller ones. Usually, these particles are supposed to
be identified only by their size (mass, volume), which in the conventional continuous
models might be any positive real number. In the model considered in the present
paper, a critical particle size y0 ∈ (0,∞) is introduced beyond which no particle can
survive. This feature requires an additional mechanism, called scattering in what
follows, preventing the occurrence of particles of size larger than the maximal size y0

[6]. In addition to this scattering phenomenon, the subsequent model also includes
the possibility of collisional breakage.

Denoting by f(t, y) ≥ 0 the density of particles of size y ∈ Y := (0, y0) at time
t ≥ 0 (per unit volume), the evolution of the system of particles simultaneously
undergoing coagulation and fragmentation can be described by the equation

∂tf = L(f), (t, y) ∈ (0,∞) × Y,(1.1)

f(0, y) = f0(y), y ∈ Y,

where f0 is a given initial distribution. The reaction terms L(f) := Lb(f) + Lc(f) +
Ls(f) are defined by

Lb(f)(y) :=

∫ y0

y

γ(y′, y) f(y′) dy′ − f(y)

∫ y

0

y′

y
γ(y, y′) dy′,

Lc(f)(y) :=
1

2

∫ y

0

K(y′, y − y′) P (y′, y − y′) f(y − y′) f(y′) dy′

+
1

2

∫ y0

y

∫ y′

0

K(y′′, y′ − y′′) Q(y′′, y′ − y′′) βc(y
′, y) f(y′′) f(y′ − y′′) dy′′dy′
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− f(y)

∫ y0−y

0

K(y, y′)
{
P (y, y′) + Q(y, y′)

}
f(y′) dy′,

Ls(f)(y) :=
1

2

∫ 2y0

y0

∫ y0

y′−y0

K(y′′, y′ − y′′) βs(y
′, y) f(y′′) f(y′ − y′′) dy′′dy′

− f(y)

∫ y0

y0−y

K(y, y′) f(y′) dy′

for y ∈ Y and describe the following reactions:
• The linear operator Lb(f) accounts for the gain and loss of particles of size y

due to multiple spontaneous breakage, where γ(y, y′) ≥ 0 denotes the rate at
which a particle of size y ∈ Y decays into a particle of size y′ ∈ (0, y).

• Furthermore, two particles y and y′ with cumulative size y+ y′ < y0 can
collide at a rate K(y, y′) ≥ 0 and either nothing happens—meaning that
the involved particles remain unchanged, for instance in the case of grazing
particles—or they merge with probability P (y, y′) or, in the case of high-
energy collisions, shatter with probability Q(y, y′) into several particles ac-
cording to the shattering distribution βc(y+ y′, y′′) (the latter process is also
referred to as collisional breakage). Consistency of the model then demands

0 ≤ P (y, y′) +Q(y, y′) ≤ 1, y+ y′ < y0.(1.2)

These processes are reflected by the operator Lc(f).
• Finally, the scattering operator Ls(f) represents the interaction of two parti-

cles y and y′ with cumulative size beyond the maximal size y0. They can
coalesce but the resulting particle instantaneously splits into particles all
with size within the admissible range Y . The daughter particles are then
distributed according to βs(y+ y′, y′′) ≥ 0. We refer to [6], where the vol-
ume scattering mechanism was introduced (see also [5] for a more detailed
discussion on the modelling issue).

Since there is no particle inlet or outlet, one intuitively expects the total mass to
be preserved during time, i.e.,∫ y0

0

y f(t, y) dy =

∫ y0

0

y f0(y) dy, t ≥ 0.(1.3)

Provided that the shattering and the scattering processes are mass preserving (see
assumptions (1.10) and (1.12)), this is indeed the case.

From a mathematical viewpoint, some properties of the coagulation-fragmentation
equation with volume scattering (1.1) have been investigated recently; in particular,
results concerning the well-posedness of (1.1) are to be found in [3, 6, 14, 15], while
results on the large time behavior of the solutions in some cases have been obtained
in [16]. As for numerical simulations, we refer to [12]. We also mention at this point
that, formally, the classical coagulation-fragmentation model usually contemplated in
the literature can be derived from (1.1) by putting y0 := ∞ and P ≡ 1 (implying
Q ≡ 0 according to (1.2)). In particular, the shattering and scattering terms vanish
in this case. A survey of the present state of knowledge on the classical coagulation-
fragmentation equations and references to further literature for this case can be found
in [2, 11].

In the present paper, we will focus on existence of nontrivial steady states to
(1.1), that is, on nonzero solutions to the equation

L(f) = 0 in Y.(1.4)
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Addressing this issue is mainly motivated by the study of the asymptotic behavior
of solutions to (1.1). Note that the equality (1.3) entails a natural side condition,
namely, to solve (1.4) subject to

� =

∫ y0

0

y f(y) dy,(1.5)

where � > 0 is a given positive real number. Let us point out right now that (1.4), (1.5)
do not always possess solutions for � > 0. In particular, if γ ≡ 0 and merely binary
shattering and binary scattering are taken into account, zero is the only steady state
(see section 4). So far, existence of solutions to (1.4) apart from zero is known only
if the kernels satisfy an extended version of the so-called detailed balance condition
[15, 16], namely that there exists H ∈ L1(Y ) such that

γ(y+ y′, y) H(y+ y′) = P (y, y′) K(y, y′) H(y) H(y′)

for 0 < y+ y′ < y0, that

βc(y, y
′) Q(y′′, y − y′′) K(y′′, y − y′′) H(y′′) H(y − y′′)

= βc(y, y
′′) Q(y′, y − y′) K(y′, y − y′) H(y′) H(y − y′)

for 0 < y+ y′ , y+ y′′ < y0, and that

βs(y, y
′) K(y′′, y − y′′) H(y′′) H(y − y′′) = βs(y, y

′′) K(y′, y − y′) H(y′) H(y − y′)

for 0 < y − y0 < y′, y′′ < y0. In this case, each function fα(y):= H(y)αy, y ∈ Y ,
with α ≥ 0 satisfies (1.4). For the classical coagulation-fragmentation equation, that
is, (1.1) with y0 = ∞ and P ≡ 1, this condition has previously been used in various
papers (for instance, see [1, 7, 9, 10]) and the long-time behavior of solutions has been
investigated. That the latter equation admits nontrivial and smooth steady state
solutions of arbitrary mass without assuming the detailed balance condition has been
proven in [8] for constant fragmentation kernels γ and coagulation kernels

K(y, y′) = a+ b(y+ y′), y, y′ > 0,

with a, b ≥ 0. More recently, existence of nontrivial stationary solutions (in a weak
sense) is shown for kernels of the form

γ(y, y′) = yσB(y′/y), K(y, y′) = yα(y′)ν + yν(y′)α

with −1 ≤ α ≤ 0 ≤ ν ≤ 1, α+ ν ∈ [0, 1), σ ≥ −1, and some suitable function B
[4]. To the best of our knowledge, these are the only available results on existence of
steady states for the classical coagulation-fragmentation equation (y0 = ∞, P ≡ 1)
in the absence of the detailed balance condition.

As for (1.4), (1.5), no result seems to be known but the existence of steady states
is strongly supported by the numerical simulations in [12]. In this paper, we identify
a class of data (γ,K, βc, βs) for which (1.4), (1.5) has at least one solution for every
� > 0. Before stating precisely our assumptions, let us first outline the approach
we employ to solve (1.4), (1.5): in such a situation, a natural tool is the Schauder
fixed point theorem, but its application requires some strong compactness which is
not likely to be available here. Indeed, the operator L is an integral operator and
does not seem to be compact. To overcome this difficulty, we consider the regularised
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problem −ε f ′′ = L(f) in Y with suitable boundary conditions, where f ′′ denotes the
second derivative of f and ε ∈ (0, 1). It is then possible to use the Schauder fixed
point theorem to establish the existence of a solution fε to this problem which satisfies
(1.5). The next step is to show that (fε) is relatively weakly sequentially compact in
L1(Y ) and that its cluster points for this topology solve (1.4), (1.5). Let us further
mention that another way to remedy to the lack of strong compactness properties of
L has been developed in [4] and relies on the Tikhonov fixed point theorem which
only demands weak compactness.

The assumptions made throughout this paper are as follows. We suppose that
the coagulation kernel K belongs to L∞(Y × Y ) and satisfies

K�(yy
′)σ ≤ K(y, y′) = K(y′, y) ≤ K�(yy′)σ, (y, y′) ∈ Y × Y,(1.6)

for some K�,K
� > 0, σ ∈ [0, 1], and the monotonicity condition

K(y − y′, y′) ≤ K(y, y′) for 0 < y′ < y < y0.(1.7)

The probabilities P and Q are nonnegative symmetric functions defined on

Ξ := {(y, y′) ∈ Y × Y ; y+ y′ < y0}

obeying (1.2), and there is P� ∈ (0, 1) such that

P (y, y′) + 2 Q(y, y′) ≥ P� > 0 for a.a. (y, y′) ∈ Ξ.(1.8)

In addition, P satisfies the monotonicity condition

P (y − y′, y′) ≤ P (y, y′) for a.a. (y, y′) ∈ Ξ with 0 < y′ < y < y0.(1.9)

The fragmentation kernel γ and the shattering distribution βc are nonnegative mea-
surable functions defined on

Δ := {(y, y′) ∈ Y × Y ; 0 < y′ < y < y0} ,

and shattering is supposed to be a mass preserving process, that is,

Q(y, y′)

(∫ y + y′

0

y′′ βc(y+ y′, y′′) dy′′ − y − y′

)
= 0(1.10)

for a.a. (y, y′) ∈ Ξ. We also assume that shattering is suitably dominated by coagu-
lation, i.e., we assume that there exist z0 ∈ Y and κ0 > 0 with

Q(y, y′)

∫ y + y′

0

βc(y+ y′, y′′) dy′′ ≤ P (y, y′) + 2 Q(y, y′) − κ0(1.11)

for a.a. y+ y′ < z0. The scattering kernel βs is a nonnegative measurable function
defined on (y0, 2y0) × (0, y0) and satisfies∫ y0

0

y′ βs(y, y
′) dy′ = y for a.a. y ∈ (y0, 2y0).(1.12)

Finally, we suppose that there are p > 1 and μγ , μc, μs > 0 such that∫ y

0

(y′)σ(1−2p) γ(y, y′)p dy′ ≤ μγ for a.a. y ∈ Y,(1.13)
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Q(y, y′)

∫ y + y′

0

(y′′)σ(1−p) βc(y+ y′, y′′)p dy′′ ≤ μc for a.a. (y, y′) ∈ Ξ,(1.14)

∫ y0

0

(y′)σ(1−p) βs(y, y
′)p dy′ ≤ μs for a.a. y ∈ (y0, 2y0).(1.15)

Note that (1.13)–(1.15) and Hölder’s inequality imply∫ y

0

γ(y, y′) dy′ ≤ mγ yσ for a.a. y ∈ Y,(1.16)

Q(y, y′)

∫ y + y′

0

βc(y+ y′, y′′) dy′′ ≤ mc for a.a. (y, y′) ∈ Ξ,(1.17) ∫ y0

0

βs(y, y
′) dy′ ≤ ms for a.a. y ∈ (y0, 2y0)(1.18)

for some constants mγ ,mc,ms > 0.
Possible (and reasonable) choices of kernels obeying all of the assumptions above

are as follows: suppose that K is of the form

K(y, y′) := A+B(yy′)θ +C(y+ y′)μ

with A > 0 and B,C, θ, μ ≥ 0. In particular, the positivity of A and y0 ∈ (0,∞)
warrant that (1.6) holds true with σ := 0. Let P and Q be nonnegative functions
such that, for some τ, q > 0,

Q(y, y′) := q(y+ y)τ , y+ y′ < y0,

and such that (1.2), (1.8), and (1.9) hold. For γ̄, α > 0 and 0 ≥ ζ, ξ, ν > −1 define

γ(y, y′) := γ̄ yα−ζ−1 (y′)ζ ,

βc(y, y
′) := (ξ + 2) y−1−ξ (y′)ξ,

βs(y, y
′) := (ν + 2) y−2−ν

0 y (y′)ν .

We may then choose p ∈ (1, 1 + τ) with −1/p < min{ν, ξ, ζ, α−1} so that all assump-
tions are satisfied with σ = 0.

On the other hand, if K(y, y′) := K̃(yy′)σ, σ ∈ (0, 1], K̃ > 0, and if P,Q, γ, βc, βs

are as above with additionally α > σ and 1 + ζ > σ, we again find p > 1 which is
sufficiently close to 1 and such that (1.13)–(1.15) hold.

Our main result is the following theorem.
Theorem 1.1. Let (1.6)–(1.15) hold. Then, given any � > 0, there exists a

nonnegative function f ∈ L1
+(Y, yσdy) satisfying L(f) = 0 a.e. in Y and∫ y0

0

y f(y) dy = �,

where L1
+(Y, yσdy) denotes the positive cone of L1(Y, yσdy).

Recall that the positive cone L1
+(Y, yσdy) of L1(Y, yσdy) is the set of functions

of L1(Y, yσdy) which are nonnegative almost everywhere in Y.
The solution f to (1.4), (1.5) we construct in Theorem 1.1 actually belongs to

Lp(Y, yσdy), but it is yet unclear whether f enjoys additional regularity properties.
Also, uniqueness of a solution to (1.4), (1.5) does not seem to be obvious.
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As already mentioned, the main idea in order to prove this theorem is to consider
first a parameter-dependent regularized problem, which can be solved by a Schauder
fixed point argument, and to show afterwards that the family of solutions is weakly
compact in Lp(Y, yσdy). This then guarantees the existence of nontrivial steady
states. In the next section we state and solve the regularized problem. Subsequently,
we derive in section 3 some uniform estimates leading to the desired weak compactness.
In the concluding section, we show that problem (1.4), (1.5) does not necessarily have
a solution.

2. A regularized problem: Existence. Note that (1.6), (1.16), (1.17), and
(1.18) imply, for f ∈ L1(Y, yσ dy), that the reaction terms Lb(f), Lc(f), and Ls(f)
belong to L1(Y ). In addition, given ψ ∈ L∞(Y ), we have the identities (see [14,
Lemma 2.6] or [15, Lemma 2.7])∫ y0

0

ψ(y) Lb(f)(y) dy =

∫ y0

0

∫ y

0

[
ψ(y′) − y′

y
ψ(y)

]
γ(y, y′) dy′ f(y) dy,(2.1)

∫ y0

0

ψ(y) Lc(f)(y) dy =
1

2

∫ y0

0

∫ y0−y

0

ψc(y, y
′) K(y, y′) f(y) f(y′) dy′dy,(2.2) ∫ y0

0

ψ(y) Ls(f)(y) dy =
1

2

∫ y0

0

∫ y0

y0−y

ψs(y, y
′) K(y, y′) f(y) f(y′) dy′dy,(2.3)

where

ψc(y, y
′) := P (y, y′) ψ(y+ y′) − [P (y, y′) +Q(y, y′)] [ψ(y) +ψ(y′)]

+ Q(y, y′)

∫ y + y′

0

ψ(y′′) βc(y+ y′, y′′) dy′′,

ψs(y, y
′) :=

∫ y0

0

ψ(y′′) βs(y+ y′, y′′) dy′′ − ψ(y) − ψ(y′).

If f ∈ Lq(Y ; ykdy) for some q ∈ [1,∞) and k ∈ R, we define

Mk,q(f) :=

∫ y0

0

yk |f |q(y) dy and Mk(f) := Mk,1(f).

Given δ ∈ (0, 1), we set

Kδ(y, y
′) := K(y, y′) + δ

and notice that

‖Kδ‖∞ ≤ ‖K‖∞ + 1.

Hereafter, we denote by Lδ(f) the reaction terms L(f) but with Kδ instead of K. For
ε ∈ (0, δ) and � ∈ (0,∞) we define

ω2 :=
‖Kδ‖∞

ε
+mγ yσ0

and

R :=
1

4 ε y0

(
6 ε �+ 5 ω2 y2

0 �+ 3 ‖Kδ‖∞ y0 �2
)
.

(2.4)

We next introduce

F (f) := ϕε(f) Lδ(f) +ω2f
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for f ∈ L1
+(Y ), where

ϕε(f) :=
1

1 + εM0(f)
,

and observe that F (f) belongs to L1(Y ). We then denote by uf the unique solution
in W 2,1(Y ) to the boundary-value problem

−ε u′′
f +ω2 uf = F (f) in Y,(2.5)

uf (0) = y0 u′
f (y0) − uf (y0) = 0.(2.6)

Finally, let C be the subset of L1(Y ) defined by

C :=
{
f ∈ L1

+(Y ); M1(f) = �, M0(f) ≤ R
}
.(2.7)

Clearly, C is a nonempty, bounded, and closed convex subset of L1(Y ). In addition,
we have the following property.

Lemma 2.1. If f ∈ C, then uf ∈ C.
Proof. Since f ≥ 0, it follows from (1.2), (1.6), and (1.16) that

F (f)(y) ≥ ω2 f(y) − ϕε(f) f(y)

(∫ y

0

y′

y
γ(y, y′) dy′ +

∫ y0

0

Kδ(y, y
′) f(y′) dy′

)
≥ ω2 f(y) − ϕε(f) f(y) (mγ yσ0 + ‖Kδ‖∞ M0(f))

≥ 0.

The comparison principle then entails that uf ≥ 0. We next readily infer from (1.10),
(1.12), and (2.1)–(2.3) that∫ y0

0

y F (f)(y) dy = ω2 M1(f),

while (2.6) yields that

−ε

∫ y0

0

y u′′
f (y) dy = 0.

Consequently, we deduce from (2.5) after multiplication by y and integration over Y
the equality M1(uf ) = M1(f).

We now multiply (2.5) by y3 and integrate over Y. Observe first that

−
∫ y0

0

y3 u′′
f (y) dy = 2 y2

0 uf (y0) − 6 M1(uf )

by (2.6), while (1.2) and (1.10) entail that, for (y, y′) ∈ Ξ, the function
(
y3
)
c

(defined

in (2.2) with ψ(y) = y3) satisfies(
y3
)
c
(y, y′) = P (y, y′)

[
y3 + (y′)3 + 3 y2 y′ + 3 y (y′)2 − y3 − (y′)3

]
+ Q(y, y′)

[∫ y + y′

0

(y′′)3 βc(y+ y′, y′′) dy′′ − y3 − (y′)3

]

≤ 3 P (y, y′) y y′ (y+ y′) +Q(y+ y′)
[
(y+ y′)2 (y+ y′) − y3 − (y′)3

]
≤ 3 (P +Q)(y, y′) y y′ (y+ y′)

≤ 3 y y′ (y+ y′).
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We also infer from (1.12) that, for (y, y′) ∈ Y × Y \ Ξ, the function
(
y3
)
s

(defined in

(2.3) with ψ(y) = y3) satisfies

(
y3
)
s
(y, y′) ≤ y2

0

∫ y + y′

0

y′′ βs(y+ y′, y′′) dy′′ − y3 − (y′)3

≤ y2
0 (y+ y′) − y3 − (y′)3

≤ (y+ y′)3 − y3 − (y′)3

≤ 3 y y′ (y+ y′).

At last, we notice that, for (y, y′) ∈ Δ,

(y′)3 − y′

y
y3 = y′

(
(y′)2 − y2

)
≤ 0.

Now, since f ∈ C, it follows from (2.1) to (2.3) and the previous upper bounds that∫ y0

0

y3 F (f)(y) dy

≤ ω2 M3(f) +
3

2
ϕε(f)

∫ y0

0

∫ y0−y

0

(
y2 y′ + y (y′)2

)
Kδ(y, y

′) f(y) f(y′) dy′dy

+
3

2
ϕε(f)

∫ y0

0

∫ y0

y0−y

(
y2 y′ + y (y′)2

)
Kδ(y, y

′) f(y) f(y′) dy′dy

≤ ω2 y2
0 M1(f) +

3 ‖Kδ‖∞
2

ϕε(f)

∫ y0

0

∫ y0

0

(
y2 y′ + y (y′)2

)
f(y) f(y′) dy′dy

≤ ω2 y2
0 �+ 3 ‖Kδ‖∞ ϕε(f)

∫ y0

0

∫ y0

0

y2 y′ f(y) f(y′) dy′dy

≤ ω2 y2
0 �+ 3 ‖Kδ‖∞ y0 �2.

Therefore, we obtain

2 ε y2
0 uf (y0) ≤ 6 ε �+ω2 y2

0 �+ 3 ‖Kδ‖∞ y0 �2.(2.8)

On the other hand, due to∫ y0

0

y2 F (f)(y) dy

≥ −ϕε(f)

∫ y0

0

∫ y

0

y y′ γ(y, y′) dy′ f(y) dy

− ϕε(f)

2

∫ y0

0

∫ y0−y

0

(y2 + y′2) Kδ(y, y
′)

{
P (y, y′) +Q(y, y′)

}
f(y′) f(y) dy′dy

− ϕε(f)

2

∫ y0

0

∫ y0

y0−y

(y2 + y′2) Kδ(y, y
′) f(y′) f(y) dy′dy

≥ −mγ y1 +σ
0 M1(f) − � y0 ‖Kδ‖∞

M0(f)

1 + εM0(f)

and

−
∫ y0

0

y2 u′′
f (y) dy = y0 uf (y0) − 2 M0(uf ),
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we deduce from (2.5) that

ε y0 uf (y0) − 2 ε M0(uf ) +ω2 M2(uf ) ≥ −mγ y1 +σ
0 �− � y0

‖Kδ‖∞
ε

.

Consequently, taking into account (2.8) and the definition of ω, we end up with

2 ε M0(uf ) ≤ ε y0 uf (y0) +ω2 y0 M1(uf ) +mγ y1 +σ
0 �+ � y0

‖Kδ‖∞
ε

≤ 2 ε R,

and the proof is complete.
Proposition 2.2. There is a function f ∈ C ∩W 2,1(Y ) such that

−ε f ′′ = ϕε(f) Lδ(f) in Y,(2.9)

f(0) = y0 f ′(y0) − f(y0) = 0.(2.10)

Proof. By Lemma 2.1, the mapping f 	−→ uf maps C into itself. In addition, it is
clearly a continuous and compact mapping from C into itself for the norm-topology
of L1(Y ). Indeed, we recall that, for f ∈ L1(Y ), uf is given by

uf (y) =

(
λ−

∫ y

0

e−ω̄y′
F (f)(y′) dy′

)
eω̄y

2 ε ω̄
−

(
λ−

∫ y

0

eω̄y′
F (f)(y′) dy′

)
e−ω̄y

2 ε ω̄

for y ∈ [0, y0], where ω̄ := ω ε−1/2 and

λ := ϑ

∫ y0

0

e−ω̄y′
F (f)(y′) dy′ + (1 − ϑ)

∫ y0

0

eω̄y′
F (f)(y′) dy′

with

ϑ :=
y0 ω̄ − 1

y0 ω̄ − 1 + (y0 ω̄ + 1) e−2ω̄y0
.

In particular, there is a constant Γ depending on y0 and ε such that

‖uf‖W 1,∞(Y ) ≤ Γ ‖F (f)‖L1(Y ).

Since F is a locally Lipschitz continuous map from L1(Y ) into L1(Y ) (see [14, Lemma
2.1]), the claimed continuity and compactness of f 	−→ uf follow.

Now, since C is a nonempty, closed, and convex subset of L1(Y ), we are in a
position to apply the Schauder fixed point theorem and conclude that there is f ∈ C
such that uf = f . Proposition 2.2 readily follows.

3. A regularized problem: Uniform estimates. For δ ∈ (0, 1), ε ∈ (0, δ),
and � > 0, we denote by fε,δ the solution to (2.9), (2.10) given by Proposition 2.2. In
particular, we have ∫ y0

0

y fε,δ(y) dy = �.(3.1)

The aim of this section is to prove that (fε,δ) is weakly sequentially compact first
with respect to ε and subsequently with respect to δ. In the following, we denote by
C various positive constants which do neither depend on ε nor on δ. Dependence on
δ, for instance, will be indicated explicitly by writing C(δ).
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We first proceed as in Lemma 2.1 to bound fε,δ(y0).
Lemma 3.1. For δ ∈ (0, 1) and ε ∈ (0, δ), we have

f ′
ε,δ(0) ≥ 0 and ε fε,δ(y0) ≤ C.

Proof. Clearly, f ′
ε,δ(0) ≥ 0 since fε,δ(0) = 0 and fε,δ(y) ≥ 0 for y ∈ Y . We next

multiply (2.9) by y3 and integrate over Y . As in the proof of Lemma 2.1, we use
(2.10) and (3.1) to obtain

ε
(
2 y2

0 fε,δ(y0) − 6 �
)
≤ 3 ‖Kδ‖∞ y0 �2 ≤ 3 (‖K‖∞ + 1) y0 �2.

We next estimate the L1-norm of fε,δ using a different argument than in the
previous section.

Lemma 3.2. For δ ∈ (0, 1) and ε ∈ (0, δ), we have

δ1/2 M0(fε,δ) + Mσ(fε,δ) ≤ C.(3.2)

Proof. We integrate (2.9) over Y . We first notice that

−ε

∫ y0

0

f ′′
ε,δ(y) dy = −ε

(
f ′
ε,δ(y0) − f ′

ε,δ(0)
)
≥ −ε

fε,δ(y0)

y0
≥ −C

by (2.10) and Lemma 3.1, while the function (1)c (defined in (2.2) with ψ(y) = 1)
satisfies

(1)c (y, y′) = P (y, y′) − 2 (P + Q)(y, y′) + Q(y, y′)

∫ y+y′

0

βc(y + y′, y′′) dy′′

≤ −κ0 1[0,z0](y + y′) + Q(y, y′)

∫ y+y′

0

βc(y + y′, y′′) dy′′ 1[z0,y0](y + y′)

≤ −κ0 1[0,z0](y + y′) + mc 1[z0,y0](y + y′)

for (y, y′) ∈ Ξ by (1.11) and (1.17), since P and Q are nonnegative. Moreover, the
function (1)s (defined in (2.3) with ψ(y) = 1) satisfies

(1)s (y, y′) =

∫ y0

0

βs(y + y′, y′′) dy′′ − 2 ≤ ms − 2

for (y, y′) ∈ Y × Y \ Ξ by (1.18). Because of the above inequalities, we deduce from
(1.16), (2.1)–(2.3), and (2.9) that

− C

ϕε(fε,δ)
≤ − ε

ϕε(fε,δ)

∫ y0

0

f ′′
ε,δ(y) dy

≤
∫ y0

0

∫ y

0

(
1 − y′

y

)
γ(y, y′) dy′ fε,δ(y

′) dy

−κ0

2

∫ y0

0

∫ y0−y

0

1[0,z0](y + y′) Kδ(y, y
′) fε,δ(y

′) fε,δ(y) dy′dy

+
1

2
mc

∫ y0

0

∫ y0−y

0

1[z0,y0](y + y′) Kδ(y, y
′) fε,δ(y

′) fε,δ(y) dy′dy

+
1

2
(ms − 2)

∫ y0

0

∫ y0

y0−y

Kδ(y, y
′) fε,δ(y

′) fε,δ(y) dy′dy

≤ mγ Mσ(fε,δ) −
κ0

2

∫ y0

0

∫ y0

0

Kδ(y, y
′) fε,δ(y

′) fε,δ(y) dy′dy

+ C

∫ y0

0

∫ y0

0

1[z0,y0](y + y′) Kδ(y, y
′) fε,δ(y

′) fε,δ(y) dy′dy.



STEADY STATES FOR A COAGULATION-FRAGMENTATION MODEL 541

Owing to (1.6) and the definition of Kδ, we have

1[z0,y0](y + y′) Kδ(y, y
′) ≤ y + y′

z0

(
K�(yy′)σ + δ

)
, (y, y′) ∈ Y × Y,

and thus, thanks to (3.1),

− C

ϕε(fε,δ)
≤ mγ Mσ(fε,δ) −

κ0

2

(
K� Mσ(fε,δ)

2 + δ M0(fε,δ)
2
)

+ C

∫ y0

0

∫ y0

0

y (K� (y y′)σ + δ) fε,δ(y
′) fε,δ(y) dy′dy

≤ mγ Mσ(fε,δ) −
κ0

2

(
K� Mσ(fε,δ)

2 + δ M0(fε,δ)
2
)

+ C (K� � yσ0 Mσ(fε,δ) + � δ M0(fε,δ))

≤ C − κ0

4

(
K� Mσ(fε,δ)

2 + δ M0(fε,δ)
2
)

by the Young inequality. Since ε ≤ δ, a further application of the Young inequality
entails that

K� Mσ(fε,δ)
2 + δ M0(fε,δ)

2 ≤ C (1 + δ M0(fε,δ)) ≤ C +
δ

2
M0(fε,δ)

2,

whence (3.2).
We next turn to the cornerstone of the proof, that is, the weak compactness of

(fε,δ) with respect to ε. More precisely, the following result is true.
Lemma 3.3. For δ ∈ (0, 1) and ε ∈ (0, δ), we have∫ y0

0

(
fε,δ(y)

)p
dy ≤ C(δ).(3.3)

Proof. Owing to (2.10) and the Hölder inequality, we first notice that

(
fε,δ(y0)

)(1+p)/2
=

∫ y0

0

d

dy
[fε,δ(y)]

(1+p)/2
dy

=
1 + p

2

∫ y0

0

(
fε,δ(y)

)1/2 (
fε,δ(y)

)(p−2)/2
f ′
ε,δ(y) dy

≤ 1 + p

2
M0(fε,δ)

1/2

(∫ y0

0

(
fε,δ(y)

)p−2 |f ′
ε,δ(y)|2 dy

)1/2

and therefore

C(δ)
(
fε,δ(y0)

)1+p ≤
∫ y0

0

(
fε,δ(y)

)p−2 |f ′
ε,δ(y)|2 dy(3.4)

by Lemma 3.2. We now multiply (2.9) by p (fε,δ(y))
p−1 and integrate over Y . From

(2.10) and (3.4), we infer that

−ε p

∫ y0

0

(
fε,δ(y)

)p−1
f ′′
ε,δ(y) dy = − ε p

(
fε,δ(y0)

)p−1
f ′
ε,δ(y0)

+ ε p (p−1)

∫ y0

0

(
fε,δ(y)

)p−2 |f ′
ε,δ(y)|2 dy

≥ − ε p

y0

(
fε,δ(y0)

)p
+ ε p (p− 1)C(δ)

(
fε,δ(y0)

)p+1
.(3.5)



542 PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

Since

rp ≤ p

p + 1
ξ rp+1 +

1

p + 1
ξ−p

for r ≥ 0 and ξ ∈ (0,∞) by the Young inequality, we use this inequality with r =
fε,δ(y0) and ξ = (p2 − 1) y0 C(δ)/p to bound from below the right-hand side of (3.5)
and obtain that

−ε p

∫ y0

0

(
fε,δ(y)

)p−1
f ′′
ε,δ(y) dy ≥ − ε p ξ−p

(p + 1) y0
≥ −ε C(δ).

Consequently,

− C(δ) ≤ − ε C(δ) ≤ − ε p

∫ y0

0

(
fε,δ(y)

)p−1
f ′′
ε,δ(y) dy

− C(δ) ≤ ϕε(fε,δ) (I1 + I2 + I3 + I4 − I5 − I6) ,(3.6)

where we put

I1 :=
p

2

∫ y0

0

∫ 2y0

y0

∫ y0

y′−y0

Kδ(y
′′, y′ − y′′) βs(y

′, y)

× fε,δ(y
′ − y′′) fε,δ(y

′′)
(
fε,δ(y)

)p−1
dy′′dy′dy,

I2 :=
p

2

∫ y0

0

∫ y0

y

∫ y′

0

βc(y
′, y) Kδ(y

′′, y′ − y′′) Q(y′′, y′ − y′′)

× fε,δ(y
′ − y′′) fε,δ(y

′′)
(
fε,δ(y)

)p−1
dy′′dy′dy,

I3 := p

∫ y0

0

∫ y0

y

γ(y′, y) fε,δ(y
′)

(
fε,δ(y)

)p−1
dy′dy,

I4 :=
p

2

∫ y0

0

∫ y

0

Kδ(y
′, y − y′) P (y′, y − y′) fε,δ(y − y′) fε,δ(y

′) (fε,δ(y))
p−1 dy′dy,

I5 := p

∫ y0

0

∫ y0−y

0

Kδ(y, y
′)

{
P (y, y′) + Q(y, y′)

}
fε,δ(y

′) (fε,δ(y))
p dy′dy,

I6 := p

∫ y0

0

∫ y0

y0−y

Kδ(y, y
′) fε,δ(y

′) (fε,δ(y))
p dy′dy.

Observe then that (1.15) and the Young inequality imply that, for ξ ∈ (0, 1), there is
a constant Cξ > 0 such that∫ y0

0

βs(y
′, y) p fε,δ(y)

p−1 dy ≤ Cξ μs+ξ

∫ y0

0

yσ
(
fε,δ(y)

)p
dy = Cξ μs+ξ Mσ,p

(
fε,δ

)
.

Therefore, (1.6) and Lemma 3.2 entail that

I1 =
1

2

∫ 2y0

y0

∫ y0

y′−y0

∫ y0

0

βs(y
′, y) p

(
fε,δ(y)

)p−1
dy

× Kδ(y
′′, y′ − y′′) fε,δ(y

′ − y′′) fε,δ(y
′′) dy′′dy′

≤
(
Cξ μs + ξ Mσ,p

(
fε,δ

)) ∫ y0

0

∫ y0

y0−y′
Kδ(y

′′, y′) fε,δ(y
′) fε,δ(y

′′) dy′′dy′

≤
(
Cξ μs + ξ Mσ,p

(
fε,δ

)) (
K� Mσ(fε,δ)

2 +
2

y0
� δ M0(fε,δ)

)
,
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I1 ≤ C
(
Cξ + ξ Mσ,p

(
fε,δ

))
.(3.7)

We estimate I2 analogously and thus obtain from (1.2), (1.6), (1.14), and Lemma 3.2
that, for ξ ∈ (0, 1),

I2 =
1

2

∫ y0

0

∫ y′

0

∫ y′

0

βc(y
′, y) p

(
fε,δ(y)

)p−1
dy Q(y′′, y′ − y′′)

× Kδ(y
′′, y′ − y′′) fε,δ(y

′ − y′′) fε,δ(y
′′) dy′′dy′

≤
(
Cξ μc + ξ Mσ,p

(
fε,δ

)) ∫ y0

0

∫ y0−y

0

Kδ(y, y
′) fε,δ(y) fε,δ(y

′) dy′dy

≤
(
Cξ μc + ξ Mσ,p

(
fε,δ

)) (
K� Mσ(fε,δ)

2 + δ M0(fε,δ)
2
)

I2 ≤ C
(
Cξ + ξ Mσ,p

(
fε,δ

))
.(3.8)

In a similar way, the Young inequality and (1.13) yield

I3 =

∫ y0

0

fε,δ(y
′)

∫ y′

0

γ(y′, y) p
(
fε,δ(y)

)p−1
dy dy′

≤
∫ y0

0

y′σ fε,δ(y
′)

∫ y′

0

p y−σ γ(y′, y)
(
fε,δ(y)

)p−1
dy dy′

≤
∫ y0

0

y′σ fε,δ(y
′)

∫ y′

0

p yσ(1−2p)/p γ(y′, y)
(
yσ/pfε,δ(y)

)p−1
dy dy′

≤
∫ y0

0

y′σ fε,δ(y
′)

(
Cξ μγ + ξ Mσ,p

(
fε,δ

))
dy′,

whence, by Lemma 3.2,

I3 ≤ C
(
Cξ + ξ Mσ,p

(
fε,δ

))
Mσ(fε,δ) ≤ C

(
Cξ + ξ Mσ,p

(
fε,δ

))
.(3.9)

We now estimate I4 − I5 − I6. For that purpose, observe first that, by the Young
inequality,

I4 =
1

2

∫ y0

0

∫ y

0

Kδ(y
′, y − y′) P (y′, y − y′) fε,δ(y − y′) fε,δ(y

′) p
(
fε,δ(y)

)p−1
dy′dy

≤ 1

2

∫ y0

0

∫ y0−y′

0

Kδ(y
′, y) P (y′, y) fε,δ(y)

(
fε,δ(y

′)
)p

dy dy′

+
1

2
(p− 1)

∫ y0

0

∫ y

0

Kδ(y − y′, y′) P (y − y′, y′) fε,δ(y
′)

(
fε,δ(y)

)p
dy′ dy.

Therefore, we derive that

I4 − I5 − I6 ≤ 1

2

∫ y0

0

∫ y0−y

0

Kδ(y, y
′) P (y, y′) fε,δ(y

′)
(
fε,δ(y)

)p
dy′dy

+
1

2
(p−1)

∫ y0

0

∫ y

0

Kδ(y − y′, y′) P (y − y′, y′) fε,δ(y
′)
(
fε,δ(y)

)p
dy′dy

− p

∫ y0

0

∫ y0−y

0

Kδ(y, y
′) (P + Q)(y, y′) fε,δ(y

′)
(
fε,δ(y)

)p
dy′dy
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− p

∫ y0

0

∫ y0

y0−y

Kδ(y, y
′) fε,δ(y

′)
(
fε,δ(y)

)p
dy′dy

≤ −1

2
p

∫ y0

0

∫ y0−y

0

Kδ(y, y
′) (P + 2 Q)(y, y′) fε,δ(y

′)
(
fε,δ(y)

)p
dy′dy

−1

2
(p + 1)

∫ y0

0

∫ y0

y0−y

Kδ(y, y
′) fε,δ(y

′)
(
fε,δ(y)

)p
dy′dy

≤ − 1

2
p P�

∫ y0

0

∫ y0

0

Kδ(y, y
′) fε,δ(y

′)
(
fε,δ(y)

)p
dy′dy,

where we have used the monotonicity conditions (1.7) and (1.9) to obtain the second
inequality and (1.8) for the last inequality (recall that P� ≤ 1). Since � = M1(fε,δ) ≤
y0 M0(fε,δ) and � = M1(fε,δ) ≤ y1−σ

0 Mσ(fε,δ), we deduce from (1.6) that

I4 − I5 − I6 ≤ − 1

2
p P�

(
K� Mσ

(
fε,δ

)
Mσ,p

(
fε,δ

)
+ δ M0

(
fε,δ

)
M0,p

(
fε,δ

))
,

I4 − I5 − I6 ≤ − 1

2
p � P�

(
K� yσ−1

0 Mσ,p

(
fε,δ

)
+ δ y−1

0 M0,p

(
fε,δ

))
.(3.10)

Gathering (3.6)–(3.10) we end up with

− C(δ)

ϕε(fε,δ)
≤ C

(
Cξ + ξ Mσ,p

(
fε,δ

))
− 1

2 y0
p P� � δ M0,p

(
fε,δ

)
.

Then choosing ξ ∈ (0, 1) sufficiently small and noticing that (ϕε(fε,δ))
−1 ≤ (1 +

δ M0(fε,δ)) ≤ C due to ε ∈ (0, δ) and Lemma 3.2, the assertion follows since Mσ,p(fε,δ) ≤
yσ0 M0,p(fε,δ).

The fact that the monotonicity condition (1.7) on the coagulation kernel K yields
Lp-estimates has already been used in [9] for the classical coagulation equation (see
also [11] and the references therein). In addition, the weak compactness in L1(Y ) of
the trajectories of (1.1) established in [15] relies on a similar observation. We adapt
here this strategy to estimate I4 − I5 − I6 under more general assumptions than the
one used in [15].

Now the proof of Theorem 1.1 is a consequence of the previous considerations.
Proof of Theorem 1.1. Keeping δ ∈ (0, 1) fixed, the set {fε,δ; ε ∈ (0, δ)} is

bounded in Lp(Y ) according to Lemma 3.3. Therefore, there are a sequence (fεn,δ)
and fδ ∈ Lp(Y ) such that

fεn,δ ⇀ fδ in Lp(Y ) as εn → 0.(3.11)

Since fεn,δ is nonnegative and satisfies M1(fεn,δ) = � by (3.1) for each n ≥ 1, it
readily follows from (3.11) that

fδ ≥ 0 a.e. in Y and M1(fδ) = �.(3.12)

We then claim that Lδ(fδ) = 0. Indeed, on the one hand, it is well known that Lδ

is weakly continuous in L1(Y ) (see either the pioneering work [13] or [15, Appendix A]
for a complete proof), and the convergence (3.11) ensures that Lδ(fεn,δ) ⇀ Lδ(fδ)
in L1(Y ). On the other hand, by (3.2), (−εn f

′′
εn,δ

) converges to zero in D′(Y ).
Consequently, ∫ y0

0

Lδ(fδ)(y) ψ(y) dy = 0 for each ψ ∈ C∞
0 (Y ),(3.13)
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whence,

Lδ(fδ) = 0 a.e. in Y.(3.14)

We may now test (3.14) with p
(
fδ
)p−1

and obtain

0 = p

∫ y0

0

(
fδ(y)

)p−1
Lδ(fδ)(y) dy ≤ I1 + I2 + I3 + I4 − I5 − I6,(3.15)

where the Ik’s are defined as in the proof of Lemma 3.3 but with fε,δ replaced by fδ.
Since (3.2) and (3.11) imply that

δ1/2 M0(fδ) ≤ C and Mσ(fδ) ≤ C,(3.16)

we can proceed as in the proof of (3.7), (3.8), (3.9), and (3.10) in Lemma 3.3 to deduce
that, for ξ ∈ (0, 1),

I1 + I2 + I3 ≤ C (Cξ + ξ Mσ,p(fδ))(3.17)

and

I4 − I5 − I6 ≤ − 1

2
p � P� K� yσ−1

0 Mσ,p

(
fδ
)
.(3.18)

Combining (3.15), (3.17), and (3.18) and choosing ξ ∈ (0, 1) sufficiently small, we
finally obtain that ∫ y0

0

yσ
(
fδ(y)

)p
dy ≤ C.

Therefore, we may extract a subsequence (fδn) and find f ∈ Lp(Y, yσ dy) such that

fδn ⇀ f in Lp(Y, yσ dy) as δn → 0.(3.19)

Clearly,

f ≥ 0 and M1(f) = �(3.20)

owing to (3.12) and σ ≤ 1. In particular, f �≡ 0 since � > 0.

It therefore remains to prove that L(f) = 0 a.e. in Y . For that purpose, we
observe that (3.14) also reads as

L(fδ) = L(fδ) − Lδ(fδ) a.e. in Y.(3.21)

On the one hand, we have L(fδ) = L̃(gδ), where gδ(y) := yσ fδ(y), y ∈ Y , and L̃
is defined as L with γ̃(y, y′) := y−σ γ(y, y′) and K̃(y, y′) := (y y′)−σ K(y, y′) instead
of γ and K. Owing to (1.6) and (1.16), L̃ is weakly continuous in L1(Y ) (see, e.g.,
[13, 15]). We then deduce from this property and the convergence (3.19) that

L(fδn) = L̃(gδn) ⇀ L̃(g) = L(f) in L1(Y )(3.22)

with g(y) := yσ f(y), y ∈ Y .
On the other hand, let ψ be an arbitrary function in C∞

0 (Y ) and choose a > 0
such that the support of ψ is contained in [a, y0−a]. Then, ψ(y) ≤ (‖ψ‖∞ y)/a. This
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fact, together with (1.2), (1.10), and (1.12) allow us to deduce that the functions ψc

and ψs defined in (2.2) and (2.3), respectively, satisfy

|ψc(y, y
′)| ≤ |ψ(y + y′)| + |ψ(y)| + |ψ(y′)|

+
‖ψ‖∞ Q(y, y′)

a

∫ y+y′

0

y′′ βc(y + y′, y′′) dy′′

≤ 3 ‖ψ‖∞
a

(y + y′),

|ψs(y, y
′)| ≤ ‖ψ‖∞

a

∫ y0

0

y′′ βs(y + y′, y′′) dy′′ + |ψ(y)| + |ψ(y′)| ≤ 2 ‖ψ‖∞
a

(y + y′).

We then infer from (2.2), (2.3), (3.12), and (3.16) that∣∣∣∣
∫ y0

0

ψ(y) (L(fδ) − Lδ(fδ))(y) dy

∣∣∣∣ ≤ δ

2

∫ y0

0

∫ y0−y

0

|ψc(y, y
′)| fδ(y) fδ(y

′) dy′dy

+
δ

2

∫ y0

0

∫ y0

y0−y

|ψs(y, y
′)| fδ(y) fδ(y

′) dy′dy

≤ 5 ‖ψ‖∞ δ

a

∫ y0

0

∫ y0

0

y fδ(y) fδ(y
′) dy′dy

≤ 5 � ‖ψ‖∞ δ1/2

a

(
δ1/2 M0(fδ)

)
≤ C ‖ψ‖∞

a
δ1/2.

Letting δ → 0 then implies that

L(fδ) − Lδ(fδ) → 0 in D′(Y )(3.23)

as δ → 0. As a consequence of (3.22) and (3.23), we may pass to the limit as δn → 0
in (3.21) and conclude that L(f) = 0 in D′(Y ). Since L(f) actually belongs to L1(Y ),
we conclude that L(f) = 0 a.e. in Y , which completes the proof of Theorem 1.1.

4. Nonexistence of nonzero solutions. In this concluding section we show
that the problem (1.4), (1.5) is not always well-posed if either (1.13)–(1.15) or (1.11)
is violated. To this end, we first assume that there is no spontaneous breakage, i.e.,
γ ≡ 0, and that K and P are strictly positive a.e. on their domains. Furthermore,
we suppose that shattering and scattering are mass preserving and binary processes,
that is, that (1.10) and (1.12) are satisfied and additionally that

βc(y, y
′) = βc(y, y − y′), 0 < y′ < y < y0,(4.1)

βs(y, y
′) = βs(y, y − y′) > 0, 0 < y − y0 < y′ < y0(4.2)

and

βs(y, y
′) = 0, 0 < y′ < y − y0 < y0.(4.3)

The latter assumption is due to consistency of the model since each of the daughter
particles y′ and y − y′ in (4.2) has to belong to Y . Note that (1.10), (1.12), and
(4.1)–(4.3) imply

Q(y, y′)

∫ y+y′

0

βc(y + y′, y′′) dy′′ = 2 Q(y, y′) for a.a. (y, y′) ∈ Ξ,
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and ∫ y0

y−y0

βs(y, y
′) dy′ = 2 for a.a. y ∈ (y0, 2y0);

in particular, (1.15) is violated due to the Hölder inequality.
Proposition 4.1. If γ ≡ 0, K and P are strictly positive a.e. on their domains

and if βc and βs satisfy (4.1)–(4.3), the only solution f ∈ L1
+(Y ) to (1.4) is f ≡ 0.

Proof. Let u ∈ L1
+(Y ) be a solution to (1.4). Then we deduce from (2.1)–(2.3)

with ψ ≡ 1 that

0 = −
∫ y0

0

L(u)(y) dy =
1

2

∫ y0

0

∫ y0−y

0

K(y, y′) P (y, y′) u(y) u(y′) dy′dy

≥ 1

2

∫ y0/2

0

∫ y0/2

0

K(y, y′) P (y, y′) u(y) u(y′) dy′dy ≥ 0,

whence u ≡ 0 on (0, y0/2) and Lc(u)(y) = 0 for a.e. y ∈ Y . Therefore,

0 = L(u)(y) =
1

2

∫ y0+y

y0

∫ y0

y′−y0

K(y′′, y′ − y′′) βs(y
′, y) u(y′′) u(y′ − y′′) dy′′dy′

− u(y)

∫ y0

y0−y

K(y, y′) u(y′) dy′(4.4)

for a.e. y ∈ Y . We claim that this implies that u ≡ 0 on (ξ ∨ (y0 − ξ), (y0 + ξ)/2)
for a.e. ξ ∈ (y0/3, y0) such that u(ξ) = 0 (recall that ξ ∨ (y0 − ξ) := max {ξ, y0 − ξ}).
Indeed, consider ξ ∈

(
y0/3, y0

)
such that u(ξ) = 0. Since

(
ξ ∨ (y0 − ξ), (y0 + ξ)/2

)2 ⊂
{
(y′′, y′) ; ξ < y′′ < y0, y0 < y′ + y′′ < y0 + ξ

}
,

we infer from (4.4) that

0 =

∫ y0+ξ

y0

∫ y0

y′−y0

K(y′′, y′ − y′′) βs(y
′, ξ) u(y′′) u(y′ − y′′) dy′′dy′

=

∫ y0

0

∫ y0+(y′′∧ξ)

y0

K(y′′, y′ − y′′) βs(y
′, ξ) u(y′′) u(y′ − y′′) dy′dy′′

=

∫ y0

ξ

∫ y0+ξ−y′′

y0−y′′
K(y′′, y′) βs(y

′ + y′′, ξ) u(y′′) u(y′) dy′dy′′

≥
∫ (y0+ξ)/2

ξ∨(y0−ξ)

∫ (y0+ξ)/2

ξ∨(y0−ξ)

K(y′′, y′) βs(y
′ + y′′, ξ) u(y′′) u(y′) dy′dy′′

≥ 0,

whence u ≡ 0 on
(
(ξ∨y0−ξ), (y0+ξ)/2

)
. Defining ξk := (1−2−k−1)y0, we inductively

infer that u ≡ 0 on (0, ξk) for k ∈ N by a density argument, whence u ≡ 0 on Y .
On the other hand, integrating (1.4) over Y and recalling that scattering produces

at least two daughter particles, i.e.,∫ y0

0

βs(y, y
′) dy′ ≥ 2, y ∈ (y0, 2y0),
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we easily see that zero is the only steady state provided that, in addition,

Q(y, y′)

∫ y+y′

0

βc(y + y′, y′′) dy′′ ≥ 2 Q(y, y′) + P (y, y′), y + y′ ∈ Y,

and ∫ y

0

(
1 − y′

y

)
γ(y, y′) dy′ > 0 , y ∈ Y.

Obviously, the former assumption contradicts (1.11).
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MICROLOCAL DISPERSIVE SMOOTHING FOR THE NONLINEAR
SCHRÖDINGER EQUATION∗

JÉRÉMIE SZEFTEL†

Abstract. We prove a dispersive smoothing result for the nonlinear Schrödinger equation. We
deal with the linear term by using the method of Craig, Kappeler, and Strauss. We rewrite the
nonlinear term as the sum of a paradifferential operator and a remainder using Bony’s theorem.
We prove an interpolation result between weighted L2 spaces and Sobolev spaces which enables us
to deal with the remainder. Finally, we deal with the paradifferential operator using the symbolic
calculus.

Key words. nonlinear Schrödinger equation, smoothing effect, interpolation, weighted L2 space,
paradifferential calculus

AMS subject classifications. 35Q55, 35A27, 35B65, 46B70, 35S50
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1. Introduction. Lascar [12] obtained the first propagation results for the linear
Schrödinger equation (see also Boutet de Monvel [3]). He introduced a parabolic wave
front set and proved its propagation along the flow of the Laplacian at any fixed time
t �= 0. However, we cannot use this result to link the initial data to the singularities
of the solution at a positive time. The following example illustrates the link between
u0 and u(t, .):

⎧⎪⎨
⎪⎩
i
∂u

∂t
+ Δu = 0, t > 0, x ∈ R

d,

u|t=0 = u0.

(1.1)

If we take u0 = δ, then the solution u(t, .) is in C∞(Rd) for all positive times. Con-

versely, if we take the smooth data u0 = e−i|x|2 , then the solution u(t, .) is singu-
lar at t = 1. We notice that the smoothness of u(t, .) for t > 0 depends on the
behavior of u0 at infinity. This idea has been extended (microlocalization, Lapla-
cians which are flat perturbation at infinity of the constant coefficient case) in many
recent works. See Craig, Kappeler, and Strauss [6]; Wunsch [17]; Robbiano and
Zuily [14], [15]; and Doi [7]; we refer the reader to [6] for a more complete bibliogra-
phy.

In the case of the nonlinear Schrödinger equation, there are several works proving
the existence of a smoothing effect (see, for instance, Hayashi, Nakamitsu, Tsut-
sumi [8], Kenig, Ponce, Vega [11], and Chihara [5]).

To our knowledge, there is no result on the microlocal smoothing effect for the
nonlinear Schrödinger equation, and this is the aim of this study. The present work
consists of four parts.
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• We first state our result of microlocal smoothing effect for the equation⎧⎪⎨
⎪⎩
i
∂u

∂t
+

1

2

d∑
j,l=1

∂xja
jl(x)∂xl

u = f(u, ū), 0 < t < T, x ∈ R
d,

u|t=0 = u0,

(1.2)

where
∑d

j,l=1 ∂xj
ajl(x)∂xl

is an asymptotically constant elliptic self-adjoint
operator and f is C∞ and vanishes at 0. We also give an outline of the proof.

• We recall technical tools obtained by Craig, Kappeler, and Strauss [6]. We
will use these tools to adapt the proof of [6] to our nonlinear equation.

• Then we prove technical lemmas which will be useful in what follows. Among
others, we establish interpolation results between Sobolev spaces and weighted
L2 spaces and we construct a paradifferential algebra well-suited to our prob-
lem.

• Finally, we prove the microlocal smoothing effect for (1.2) stated in the first
part. We paralinearize f(u, ū) using Bony’s theorem [2]. We get a para-
differential operator evaluated at u, a paradifferential operator evaluated at
ū, and a regular remainder. We treat the remainder like a right-hand side
using the result of the second part. As we do not know how to deal with the
paradifferential operator evaluated at ū, we introduce v = u − Qū, where Q
is chosen such that v satisfies the same kind of equation as u without term
evaluated at v̄. Then, we adapt the strategy of [6] to the operator evaluated

at v which is the sum of i∂t + 1/2
∑d

j,l=1 ∂xj
ajl(x)∂xl

and a paradifferential
operator. Finally, the smoothing effect for v implies a smoothing effect for u.

2. Statements of the main results and outline of the proof.

2.1. Statements of the main results. We first recall some usual definitions
and properties of microlocal analysis. A subset V of T ∗(Rd)\{0} is conic if (x, ξ) ∈ V
implies (x, λξ) ∈ V for all λ > 0. To a symbol a(x, ξ), we associate the operator
a(x,D) acting on functions u defined on R

d by

a(x,D)u(x) =

∫
Rd

∫
Rd

ei(x−y)ξa(x, ξ)u(y)dy dξ.

The usual pseudodifferential algebra Sm consists of the symbols a(x, ξ) such that∣∣∂α
x ∂

β
ξ a(x, ξ)

∣∣ ≤ Cαβ〈ξ〉m−|β|

for all multi-indices α, β in N
d, where 〈ξ〉 = (1 + |ξ|2)1/2. For a(x, ξ) in Sm, a(x,D)

is bounded from Hs to Hs−m for all real numbers s. Finally, let u be in S ′(Rd). u is
microlocally Hs at (x0, ξ0) if there is a(x, ξ) in S0 such that lim infλ→+∞ |a(x0, λξ0)| �=
0 and a(x,D)u ∈ Hs.

Let τ be an increasing function from N to R such that

τ(m) > m + 1 for m ≥ 0(2.1)

and let the C∞ coefficients ajl(x) satisfy

∣∣∂α
x

(
ajl(x) − ajl0

)∣∣ ≤ Cα

〈x〉τ(|α|) ∀α ∈ N
d,(2.2)
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where ajl0 are constants and where 〈x〉 = (1 + |x|2)1/2. The Schrödinger equation
studied in [6] is⎧⎪⎨

⎪⎩
i
∂u

∂t
+

1

2

d∑
j,l=1

∂xj
ajl(x)∂xl

u = 0, 0 < t < T, x ∈ R
d,

u|t=0 = u0.

(2.3)

The principal symbol a2(x, ξ) = 1/2
∑d

j,l=1 a
jl(x)ξjξl is elliptic:

a2(x, ξ) ≥ C|ξ|2, C > 0.(2.4)

The bicharacteristics are orbits of the flow ϕ(s, x, ξ) = (X(s, x, ξ),Ξ(s, x, ξ)) : T ∗(Rd)
→ T ∗(Rd) of the Hamiltonian system with Hamiltonian a2(x, ξ):

dX

ds
= ∂Ξa2(X,Ξ),

dΞ

ds
= −∂Xa2(X,Ξ).(2.5)

We will say that a point (x0, ξ0) ∈ T ∗(Rd), ξ0 �= 0, is not trapped by the backward
flow if

|X(s, x0, ξ0)| → +∞ when s → −∞.(2.6)

For such (x0, ξ0), we consider conic neighborhoods E of {ϕ(s, x0, ξ0), s ≤ 0} such that
there is a Ξ1 ∈ R

d and the asymptotic behavior of the neighborhood E as |x| → +∞
is given by

E �
{

(x, ξ)

/ ∣∣∣∣ ξ.Ξ1

|ξ||Ξ1|
− 1

∣∣∣∣ < ε,

∣∣∣∣ x.ξ

|x||ξ| + 1

∣∣∣∣ < ε

}
(2.7)

for some ε > 0.
Definition 2.1. The C∞ function a(x, ξ) is a symbol of class S(m, k) if∣∣∂α

x ∂
β
ξ a(x, ξ)

∣∣ ≤ Cαβ〈ξ〉m−|β|〈x〉k−|α|(2.8)

for all multi-indices α, β in N
d.

We will adapt the results of [6] to the following equation:⎧⎪⎨
⎪⎩
i
∂u

∂t
+

1

2

d∑
j,l=1

∂xja
jl(x)∂xl

u = f(u, ū), 0 < t < T, x ∈ R
d,

u|t=0 = u0,

(2.9)

where the coefficients satisfy (2.1), (2.2), and (2.4) and where f is in C∞(C2) and
vanishes at (0, 0). In that follows, we consider functions u belonging to spaces of the
type L∞(0, T,Hs). We choose s > d/2 such that s − d/2 is not an integer to be
in the frame of Bony’s paradifferential calculus. Moreover, to construct a function
v = u−Qū satisfying an equation of type (2.9) without term evaluated at v̄, we ask
that for any integer k such that 2k < s− d/2 + 2, s− 2k ≥ 0.

Lemma 2.2. The set of real numbers s such that s > d/2, s − d/2 is not an
integer, and s − 2k ≥ 0 for all integer k satisfying 2k < s − d/2 + 2 is the subset Id
of R given by
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if d = 1, Id =
⋃
k≥1

[2k, 2k + 1/2[,

if d = 2, Id =
⋃
k≥1

]2k, 2k + 1[,

if d = 3, Id =
⋃
k≥1

[2k, 2k + 1/2[ ∪ ]2k + 1/2, 2k + 3/2[,

if d ≥ 4, Id =
⋃
k≥0

]k + d/2, k + 1 + d/2[.

(2.10)

Proof. If 2k < s− d/2 + 2, s− 2k > d/2 − 2, so s− 2k > 0 for d ≥ 4. Therefore,
when d ≥ 4, Id is the set of s > d/2 such that s−d/2 is not an integer, which is given
by

Id =
⋃
k≥0

]k + d/2, k + 1 + d/2[.

We suppose now that 1 ≤ d ≤ 3. It suffices to consider the biggest integer k such
that 2k < s− d/2 + 2. As s− d/2 is not an integer, k satisfies

2k < s− d/2 + 2 < 2(k + 1),

which together with s ≥ 2k yields

2k ≤ s < 2k + d/2.

Thus, for 1 ≤ d ≤ 3, we have

Id = {s > d/2 / s− d/2 /∈ N} ∩
⋃
k≥1

[2k, 2k + d/2[,

which yields (2.10) for 1 ≤ d ≤ 3.
The following theorems describe the microlocal smoothing effect for the nonlinear

Schrödinger equation. We will prove them in section 5.
Theorem 2.3. Let (x0, ξ0) not be trapped backwards. Let there exist a conic

neighborhood E of {ϕ(s, x0, ξ0), s ≤ 0} satisfying (2.7). Let T > 0, s in Id, and u in
C(0, T, L2(Rd)) be a solution of (2.9). Assume that there exists θ(x) in S(0, 0) equal
to 1 on E such that θu is in L∞(0, T,Hs) and 〈x〉sθu is in L∞(0, T, L2). Moreover,
assume that there exists s(x, ξ) in S(0, 2s− d/2) such that 〈x〉2(2s−d/2) ≤ s2(x, ξ) on
the set E. Assume that u0 satisfies

〈s(x,D)u0, s(x,D)u0〉 < +∞,(2.11)

〈s(x,D)u0, s(x,D)u0〉 < +∞.(2.12)

If u(t, .) is microlocally Hσ at (x0,−ξ0) for a time t, 0 < t ≤ T , then u(t, .) is
microlocally Hmin(σ+2,2s−d/2) at (x0, ξ0).

If there exists a pseudodifferential operator with a symbol c(x, ξ) in S0 elliptic at
(x0,−ξ0) such that

∫ T

0

t2(2s−d/2)+δ‖c(x,D)u(t, .)‖2
Hσdt < +∞(2.13)
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for a δ > 0, then there exists a pseudodifferential operator with a symbol c1(x, ξ) in
S0 elliptic at (x0, ξ0) such that

∫ T

0

t2(2s−d/2)+δ‖c1(x,D)u(t, .)‖2
Hmin(σ+2,2s−d/2+1/2)dt < +∞.(2.14)

Finally, assume that ∂ūf(0, 0) = 0. Then, we do not need assumption (2.12).
Remark. The assumptions (2.11) and (2.12) mean that u0 and u0 are decreasing

like 〈x〉−(2s−d/2) along {ϕ(s, x0, ξ0), s ≤ 0} when |x| converges towards infinity.
Theorem 2.4. Let (x0, ξ0) be such that (x0, ξ0) and (x0,−ξ0) are not trapped

backwards. Let a conic neighborhood E1 of {ϕ(s, x0, ξ0), s ≤ 0} and a conic neighbor-
hood E2 of {ϕ(s, x0,−ξ0), s ≤ 0} be such that E1 and E2 satisfy (2.7). Let T > 0, s in
Id, and u in C(0, T, L2(Rd)) be a solution of (2.9). Assume there exists θ(x) in S(0, 0)
equal to 1 on E1 ∪ E2 such that θu is in L∞(0, T,Hs) and 〈x〉sθu is in L∞(0, T, L2).
Moreover, assume that for j = 1, 2, there exists sj(x, ξ) in S(0, 2s − d/2) such that
〈x〉2(2s−d/2) ≤ s2

j (x, ξ) on the set Ej. Assume that u0 satisfies

〈sj(x,D)u0, sj(x,D)u0〉 < +∞, j = 1, 2,(2.15)

〈sj(x,D)u0, sj(x,D)u0〉 < +∞, j = 1, 2.(2.16)

Then, u(t, .) is microlocally H2s−d/2 at (x0, ξ0) for all 0 < t ≤ T . Moreover, there
exists a pseudodifferential operator with symbol c(x, ξ) in S0 elliptic at (x0, ξ0) such
that ∫ T

0

t2(2s−d/2)+δ‖c(x,D)u(t, .)‖2
H2s−d/2+1/2dt < +∞(2.17)

for all δ > 0. Finally, suppose that ∂ūf(0, 0) = 0. Then, we do not need assump-
tion (2.16).

Theorem 2.4 implies, in particular, the following corollary.
Corollary 2.5. Assume that no point of T ∗(Rd)\{0} is trapped backwards. Let

T > 0, s in Id, and u in C(0, T, L2(Rd)) be a solution of (2.9). Assume that u is in
L∞(0, T,Hs) and 〈x〉su is in L∞(0, T, L2). Moreover, assume that 〈x〉2s−d/2u0 is in

L2. Then, u(t, .) is in H
2s−d/2
loc for all 0 < t ≤ T . Moreover, for any φ in C∞

0 (Rd),

∫ T

0

t2(2s−d/2)+δ‖φu(t, .)‖2
H2s−d/2+1/2dt < +∞(2.18)

for all δ > 0.
The reader interested in other applications of Theorem 2.4 is referred to [16],

where we combine it with a reflection of singularities result to compute the Dirichlet-
to-Neumann map of the nonlinear Schrödinger equation with the flat Laplacian outside
a convex obstacle.

2.2. Outline of the proof. For the sake of simplicity, we assume here that u
is in L∞(0, T,Hs) and 〈x〉su is in L∞(0, T, L2). The proof contains three steps.

• First step. We define

λ1 = ∂uf(0, 0), λ2 = ∂ūf(0, 0), g(u, ū) = f(u, ū) − λ1u− λ2ū,(2.19)
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g vanishes to the second order at 0, and u is a solution of

i
∂u

∂t
+

1

2

d∑
j,l=1

∂xja
jl(x)∂xl

u = λ1u + λ2ū + g(u, ū), 0 < t < T, x ∈ R
d.

(2.20)

We paralinearize g(u, ū) using Bony’s theorem [2]:

g(u, ū) = T ∂g
∂u (u,ū)u + T ∂g

∂ū (u,ū)ū + r(u, ū).

T ∂g
∂u (u,ū) and T ∂g

∂ū (u,ū) are linear operators and r(u, ū) is a smooth remainder

in the sense that it belongs to L∞(0, T,H2s−d/2). Moreover, as 〈x〉su is
in L∞(0, T, L2) and as g vanishes to the second order at 0, we prove that
〈x〉2s−d/2r(u, ū) is in L∞(0, T, L2). Finally, u is a solution of

i
∂u

∂t
+

1

2

d∑
j,l=1

∂xj
ajl(x)∂xl

u = λ1u + λ2ū + T ∂g
∂u (u,ū)u + T ∂g

∂ū (u,ū)ū + r(u, ū).

(2.21)

• Second step. We want to adapt the strategy of [6] to (2.21). However, we do
not know how to deal with the terms λ2ū and T ∂g

∂ū (u,ū)ū. In fact a microlocal

information on u at (x0, ξ0) implies for ū a microlocal information at (x0,−ξ0),
but not at (x0, ξ0). Therefore, we introduce v = u − Qū and we choose the
operator Q such that v satisfies the same kind of equation as u without term
evaluated at v̄:

i
∂v

∂t
+

1

2

d∑
j,l=1

∂xja
jl(x)∂xl

v = Lv + r(u, ū),(2.22)

where L is a paradifferential operator.
• Third step. We adapt the strategy of [6], which relies on energy estimates,

to (2.22). We have to check that the terms Lv and r(u, ū) coming from the
nonlinearity do not perturb the energy estimates of [6] to obtain a smoothing
effect for v. Finally, using the smoothing effect for v, the fact that u =
v + Qū and the fact that Q is bounded from Hσ to Hσ+2 for any σ implies
a smoothing effect for u.

Remark. Kenig, Ponce, and Vega [11] and Chihara [5] prove a smoothing effect
for the nonlinear Schrödinger equation. Unlike Theorems 2.3 and 2.4, these results
are not microlocal, but we would like to compare them with Corollary 2.5. In [11],
the authors consider the second order operator

∑
j≤k ∂

2
xj

−
∑

j>k ∂
2
xj
, 1 ≤ k ≤ d (i.e.,

a constant coefficient not necessarily elliptic operator), and the nonlinearity contains
also gradient terms, but they prove a gain of 1/2 derivative, whereas we prove a gain
of s − d/2 derivatives. The results in [5] give a gain of m derivatives for any integer
m and the nonlinearity contains also gradient terms, but the results apply to the flat
Laplacian with a nonlinearity vanishing at least at order 3 at 0, which in addition
satisfies a gauge invariance. We rely on Bony’s theorem, whereas these works rely
on sharp estimates for linear nonhomogeneous Schrödinger equations. However, there
are some similarities in these methods. For instance, Chihara [5] uses an argument
similar to the second step of our proof to get rid of the term in ū, and Kenig, Ponce,
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and Vega [11] use a construction of symbols which has a link with that of Craig,
Kappeler, and Strauss [6], reviewed in the following section, to obtain their sharp
estimates.

3. Review of the results of Craig, Kappeler, and Strauss. The results in
[6] rely on the construction of symbol pairs (b(x, ξ), c(x, ξ)) satisfying

{a2, b} =

d∑
j=1

∂ξja2∂xj
b− ∂xj

a2∂ξj b = −c(3.1)

({ , } is the Poisson bracket) and

b(x, ξ) ≥ 0, c(x, ξ) ≥ 0.(3.2)

The following proposition is proved in [6] and gives the existence of pairs of symbols
(b(x, ξ), c(x, ξ)) satisfying (3.1) and (3.2).

Proposition 3.1. Let m and k be real and positive and let (x0, ξ0) not be trapped
backwards. Let there be a conic neighborhood E of {ϕ(s, x0, ξ0), s ≤ 0} satisfying (2.7).
There is a conic neighborhood E0 ⊂ E of {ϕ(s, x0, ξ0), s ≤ 0} satisfying (2.7) with a
smaller ε0 < ε and a pair of symbols b(x, ξ) ∈ S(m, k) and c(x, ξ) ∈ S(m + 1, k − 1)
with support in E such that (3.1) and (3.2) hold and b(x0, ξ0) = c(x0, ξ0) = 1. We
can choose b and c such that

√
b ∈ S(m/2, k/2) and

√
c ∈ S((m + 1)/2, (k − 1)/2).

Moreover, there is a constant C such that on the set E0 ∩ {|ξ| ≥ 1} they satisfy

〈ξ〉m〈x〉k ≤ b(x, ξ),
1

C
〈ξ〉m+1〈x〉k−1 ≤ c(x, ξ).(3.3)

If k = 0, then there is the exception that for any ν < −1 we may choose c(x, ξ) in
S(m + 1,−1) such that 1/C〈ξ〉m+1〈x〉ν ≤ c(x, ξ).

We recall some properties of the algebra S(m, k) that we use in what follows (see
[6] or [9] for a more general treatment). As S(m, 0) ⊂ Sm, where Sm is the usual
pseudodifferential algebra, a(x,D) is bounded from Ht to Ht−m and from Ct to Ct−m

for all a(x, ξ) in S(m, 0) and for all t (when t is an integer, Ct is the Zygmund class
Ct

∗ [10]). The following proposition is on the composition of operators.
Proposition 3.2. Let a in S(m, k) and b in S(m1, k1) be two symbols. Let N

be an integer. Then

a(x,D)b(x,D) =
∑

|α|<N

1

i|α|α!

(
∂α
ξ a∂

α
x b
)
(x,D) + rN (x,D),(3.4)

where rN is in S(m1 +m2 −N, k1 + k2 −N). Moreover, the seminorms of rN can be
estimated by a sum of products of seminorms of ∂α

ξ a in S(m1 −N, k1) and of ∂α
x b in

S(m2, k2 −N), where |α| = N .
We prove this proposition as it is more precise than the result established in [6].
Proof. From the usual procedures in the pseudodifferential calculus, we have

a(x,D)b(x,D)u =

∫ ∫
eiη(x−z)

∫ ∫
eiξ(z−y)a(x, η)b(z, ξ)u(y)dy dξ dz dη(3.5)

=
∑

|α|<N

1

i|α|α!

∫ ∫
ei(x−y)ξ∂α

ξ a(x, ξ)∂
α
x b(x, ξ)u(y)dy dξ

+ rN (x,D)u,
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where

rN [a, b](x, ξ) = rN (x, ξ)(3.6)

=
∑

|α|=N

N

i|α|α!

∫ 1

0

∫ ∫
ei(ξ−η)(z−x)tN−1∂α

ξ a(x, ξ + t(η − ξ))∂α
x b(z, ξ)dz dη dt.

As ∂xrN [a, b] = rN [∂xa, b] + rN [a, ∂xb] and ∂ξrN [a, b] = rN [∂ξa, b] + rN [a, ∂ξb], it
suffices to prove that

|rN [a, b](x, ξ)| ≤ C〈ξ〉m1+m2−N 〈x〉k1+k2−N ,(3.7)

where C is estimated by sums of products of seminorms of ∂α
ξ a in S(m1 −N, k1) and

of ∂α
x b in S(m2, k2 −N) with |α| = N . Then let χ be in C∞

0 (Rd) such that χ(s) = 1
if |s| ≤ 1/9 and χ(s) = 0 if |s| ≥ 1/4. Using

1 = χ(|ξ − η|2/〈ξ〉2)χ(|x− z|2/〈x〉2)
+χ(|ξ − η|2/〈ξ〉2)(1 − χ(|x− z|2/〈x〉2))
+ (1 − χ(|ξ − η|2/〈ξ〉2))χ(|x− z|2/〈x〉2)
+ (1 − χ(|ξ − η|2/〈ξ〉2))(1 − χ(|x− z|2/〈x〉2)),

it suffices to prove (3.7) for each of the following cases:

|ξ − η| ≤ 1/2〈ξ〉 and |x− z| ≤ 1/2〈x〉,(3.8)

|ξ − η| ≤ 1/2〈ξ〉 and |x− z| ≥ 1/3〈x〉,(3.9)

|ξ − η| ≥ 1/3〈ξ〉 and |x− z| ≤ 1/2〈x〉,(3.10)

|ξ − η| ≥ 1/3〈ξ〉 and |x− z| ≥ 1/3〈x〉.(3.11)

When |x − z| ≤ 1/2〈x〉, we have 〈z〉 � 〈x〉. Let P be an integer, P > d/2. We
use (1 + |x − z|2P )−1(1 + (−Δη)

P )ei(ξ−η)(z−x) = ei(ξ−η)(z−x), integrations by parts,
and the fact that

∫
(1 + |x− z|2P )−1dz < +∞.

When |x − z| ≥ 1/3〈x〉, we have 〈z〉 ≤ 〈x〉 + 〈z − x〉. Let P > d/2. We use
|x− z|−2P (−Δη)

P ei(ξ−η)(z−x) = ei(ξ−η)(z−x), integrations by parts, and the fact that∫
|x−z|≥1/3〈x〉

|x− z|−2P dz ≤ C〈x〉d−2P .

We deal with the integrations in η in the same way, replacing x by ξ and z by η.
Moreover, for 0 ≤ t ≤ 1, 〈ξ + t(η − ξ)〉 ≤ 〈ξ〉 + 〈η − ξ〉 and 〈ξ + t(η − ξ)〉 � 〈ξ〉 when
|ξ − η| ≤ 1/2〈ξ〉. Finally, for an integer P > d/2 + max(|k2 −N |, |m1 −N |)/2,

|rN [a, b](x, ξ)| ≤ C〈ξ〉m1+m2−N 〈x〉k1+k2−N in (3.8),

|rN [a, b](x, ξ)| ≤ C〈ξ〉m1+m2−N 〈x〉k1+2|k2−N |+d−2P in (3.9),

|rN [a, b](x, ξ)| ≤ C〈ξ〉2|m1−N |+d−2P+m2〈x〉k1+k2−N in (3.10),

|rN [a, b](x, ξ)| ≤ C〈ξ〉2|m1−N |+d−2P+m2〈x〉k1+2|k2−N |+d−2P in (3.11),

which yields (3.7) by taking P ≥ d/2 + 3/2 max(|k2 −N |, |m1 −N |).
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Proposition 3.3. Let a be in S(m, k). The adjoint operator satisfies

a(x,D)∗ =
∑

|α|<N

1

i|α|α!

(
∂α
ξ ∂

α
x ā
)
(x,D) + RN ,(3.12)

where N is an integer such that N ≥ max(k,m) and RN is a bounded operator on
L2.

The following lemmas are proved in [6].
Lemma 3.4. Let b(x, ξ) be in S(m, k) such that b(x, ξ) = s2(x, ξ) with s(x, ξ) in

S(m/2, k/2). Then there exists e(x, ξ) in S(m−1, k−1) with supp(e) ⊂ supp(b) such
that

Re〈u, b(x,D)u〉 ≥ ‖s(x,D)u‖2
L2 + Re〈u, e(x,D)u〉 − C‖u‖2

L2 ,

where 〈, 〉 is the scalar product in L2(Rd).
Lemma 3.5. Let b0(x, ξ) be in S(m, k) such that 0 ≤ b0(x, ξ) = s2

0(x, ξ) with s0

in S(m/2, k/2). Define the set

E0 = {(x, ξ)/〈x〉−k〈ξ〉−mb0(x, ξ) ≥ 1}.

Suppose that b in S(m, k) has support in E0. Then there exists c(x, ξ) in S(0, 0)
and R bounded on L2 such that

b(x,D) = s∗0(x,D)c(x,D)s0(x,D) + R.

4. Technical lemmas. In this section, we prove, among other things, Lemma
4.7 and Proposition 4.12, which are useful for bounding the terms coming from the
nonlinearity in the energy estimates of the third step of the proof. Moreover, in order
to construct the operator Q in the second step of the proof, we define a paradifferential
algebra and study its properties in Proposition 4.11. In what follows, the various
spaces are all defined on R

d.
The following proposition will be used when proving Proposition 4.3, Lemma 4.7,

and Proposition 4.8.
Proposition 4.1. Let k and l be two real numbers with l ≥ 0 and let p be an

integer. Let θ ∈ C∞
0 (Rd), let a(x) be in S(0, k) and let j be an integer such that j ≥ l.

Then

θ(2−pD)a(x) =
∑

0≤|α|<j

2−p|α|

i|α|α!
∂α
x a(x)

(
∂α
ξ θ
)
(2−pD) +

〈x〉k−j

2p(j−l)
R1(4.1)

and

a(x)θ(2−pD) =
∑

0≤|α|<j

2−p|α|i|α|

α!

(
∂α
ξ θ
)
(2−pD)∂α

x a(x) +
〈x〉k−j

2p(j−l)
R2,(4.2)

where R1 and R2 are continuous from Ht to Ht+l and from Ct to Ct+l for all t with
norms independent of p.

Proof. 2p(j−l)〈x〉j−kθ(2−pξ) is in S(j − l, j − k) and a(x) is in S(0, k). Therefore,
Proposition 3.2 implies

2p(j−l)〈x〉j−kθ(2−pD)a(x)

=
∑

0≤|α|<j

2−p|α|

i|α|α!
2p(j−l)〈x〉j−k∂α

x a(x)
(
∂α
ξ θ
)
(2−pD) + r(x,D),(4.3)
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where r is in S(−l, 0) with its seminorms bounded by sums of products of seminorms
of ∂α

ξ (2p(j−l)〈x〉j−kθ(2−pξ)) in S(−l, j − k) and of ∂α
x a(x) in S(0, k− j) with |α| = j.

For |α| = j, ∂α
ξ (2p(j−l)〈x〉j−kθ(2−pξ)) = 2−pl〈x〉j−k(∂α

ξ θ)(2
−pξ) has its seminorms

in S(−l, j − k) bounded independently of p. Therefore, r(x, ξ) has its seminorms
in S(−l, 0) (and hence in S−l) bounded independently of p. Multiplying (4.3) by
2p(l−j)〈x〉k−j ,

θ(2−pD)a(x) =
∑

0≤|α|<j

2−p|α|

i|α|α!
∂α
x a(x)

(
∂α
ξ θ
)
(2−pD) +

〈x〉k−j

2p(j−l)
r(x,D).(4.4)

Thus, (4.1) is satisfied with R1 = r(x,D). Moreover, R1 is continuous from Ht to
Ht+l and from Ct to Ct+l for all t with norms independent of p since the seminorms
of r(x, ξ) in S−l are bounded independently of p.

Equation (4.4) with ā and θ gives

θ(2−pD)ā(x) =
∑

0≤|α|<j

2−p|α|

i|α|α!
∂α
x ā(x)

(
∂α
ξ θ
)
(2−pD) +

〈x〉k−j

2p(j−l)
r1(x,D),(4.5)

where r1(x, ξ) has seminorms in S(−l, 0) bounded independently of p. Using Propo-
sition 3.2, 〈x〉k−jr1(x,D)〈x〉j−k = r2(x,D) and r2(x, ξ) has seminorms in S(−l, 0)
bounded independently of p. Equation (4.5) becomes

θ(2−pD)ā(x) =
∑

0≤|α|<j

2−p|α|

i|α|α!
∂α
x ā(x)

(
∂α
ξ θ
)
(2−pD) + 2−p(j−l)r2(x,D)〈x〉k−j(4.6)

and, taking the adjoint,

a(x)θ(2−pD) =
∑

0≤|α|<j

2−p|α|i|α|

α!

(
∂α
ξ θ
)
(2−pD)∂α

x a(x) +
〈x〉k−j

2p(j−l)
r2(x,D)∗.(4.7)

Thus, (4.2) is satisfied with R2 = r2(x,D)∗. The properties of S−l imply r2(x,D)∗ =
r3(x,D) with r3 in S−l. R2 is continuous from Ht to Ht+l and from Ct to Ct+l

for all t with norms independent of p since r3(x, ξ) has seminorms in S−l bounded
independently of p.

Following Meyer [13], we introduce a positive function ϕ in C∞
0 (Rd) equal to 1 for

|ξ| ≤ 1/2 and to 0 for |ξ| ≥ 1. For all integers p we define Sp by Ŝpu(ξ) = ϕ(2−pξ)û(ξ).

We also define Δp by Δp = Sp+1 − Sp, i.e., by Δ̂pu(ξ) = ψ(2−pξ)û(ξ), where ψ(ξ) =
ϕ(ξ/2) − ϕ(ξ). Littlewood–Paley decomposition of u ∈ S ′(Rd) is

u =
∑
p≥−1

Δp(u),

where the sum converges for the topology of S ′(Rd) and Δ−1 = S0. We have a simple
characterization of the spaces Hs and Cs (see, for example, [4]),

Hs =

⎧⎨
⎩u ∈ S ′(Rd)

/ ∑
p≥−1

4ps‖Δpu‖2
L2 < +∞

⎫⎬
⎭(4.8)
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and (
∑

p≥−1 4ps‖Δpu‖2
L2)1/2 is equivalent to the usual norm on Hs.

Cs =

{
u ∈ S ′(Rd)

/
sup
p≥−1

2ps‖Δpu‖L∞ < +∞
}
,(4.9)

and supp≥−1 2ps‖Δpu‖L∞ is equivalent to the usual norm on Cs. Moreover, let 0 <

r1 < r2 and suppose (uq)q∈N is a sequence in S ′(Rd). Then

supp ûq ⊂ {r12q ≤ |ξ| ≤ r22
q} and

∑
q≥0

4qs‖uq‖2
L2 < +∞ ⇒ u =

∑
q≥0

uq ∈ Hs,

(4.10)

and if s > 0,

supp ûq ⊂ {|ξ| ≤ r22
q} and

∑
q≥0

4qs‖uq‖2
L2 < +∞ ⇒ u =

∑
q≥0

uq ∈ Hs.(4.11)

The following definition will be useful in defining a paradifferential algebra well-
suited to our problem.

Definition 4.2. Let s and s′ be two real numbers such that s > 0. The space
Hs

s′ is defined by

Hs
s′ =

{
u ∈ Hs+s′

/
〈x〉su ∈ Hs′

}
.

The following proposition, among others, will be used in the third step of the
proof to bound the remainder term in the energy estimates.

Proposition 4.3. Let s and s′ be two real numbers such that s > 0. Let u in
Hs

s′ . Then for all 0 ≤ θ ≤ 1, 〈x〉θsu is in H(1−θ)s+s′ .
Proof. Using (4.1) with k = θs, l = (s+s′)−, where (s+s′)− = max(−(s+s′), 0),

j = [max(s, |s + s′|)] + 1, a(x) = 〈x〉θs, and χ = ψ yields

Δp〈x〉θs =
∑

0≤|α|<j

2−p|α|

i|α|α!
∂α
x 〈x〉θs

(
∂α
ξ ψ
)
(2−pD) +

〈x〉θs−j

2p(j−l)
R,(4.12)

where R is bounded from Hs+s′ to L2 with a norm independent of p. Thus

2p(1−θ)s+ps′‖Δp〈x〉θsu‖L2

≤
∑

0≤|α|<j

2p((1−θ)s+s′−|α|)

α!
‖∂α

x 〈x〉θs
(
∂α
ξ ψ
)
(2−pD)u‖L2

+ 2−p(j−l−(1−θ)s−s′)‖〈x〉θs−jRu‖L2 .

(4.13)

As θs− [s] − 1 ≤ 0,

2−p(j−l−(1−θ)s−s′)‖〈x〉θs−jRu‖L2 ≤ 2p(s+s′−[|s+s′|]−1)C‖Ru‖L2 ≤ Cεp‖u‖Hs+s′ ,(4.14)

where (εp)p≥−1 is in l2(N) because s+ s′− [|s+ s′|]− 1 < 0. Moreover, by Hölder and
Young inequalities

2p((1−θ)s+s′)‖∂α
x 〈x〉θs

(
∂α
ξ ψ
)
(2−pD)u‖L2

≤ 2p((1−θ)s+s′)‖
(
∂α
x 〈x〉θs

)1/θ(
∂α
ξ ψ
)
(2−pD)u‖θL2‖

(
∂α
ξ ψ
)
(2−pD)u‖1−θ

L2

≤ C2ps
′‖〈x〉s−|α|/θ(∂α

ξ ψ
)
(2−pD)u‖L2 + C2ps+ps′‖

(
∂α
ξ ψ
)
(2−pD)u‖L2 .

(4.15)
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Looking at the support of ∂α
ξ ψ we have

(
∂α
ξ ψ
)
(2−pD) =

(
∂α
ξ ψ
)
(2−pD)(Δp−1 + Δp + Δp+1).

Thus, as u is in Hs+s′ ,

(4.16) 2p(s+s′)
∥∥(∂α

ξ ψ
)
(2−pD)u

∥∥
L2 ≤ C2p(s+s′)(‖Δp−1u‖L2

+ ‖Δpu‖L2 + ‖Δp+1u‖L2) ≤ εp,

where (εp)p≥−1 is in l2(N) by (4.8).

∥∥〈x〉s−|α|/θ(∂α
ξ ψ
)
(2−pD)u

∥∥
L2 ≤ C

∥∥〈x〉s(∂α
ξ ψ
)
(2−pD)u

∥∥
L2 .

Using (4.8), (4.13), (4.14), (4.15), and (4.16), it suffices to prove

2ps
′∥∥〈x〉s(∂α

ξ ψ
)
(2−pD)u

∥∥
L2 ≤ εp,(4.17)

where (εp)p≥−1 is in l2(N). Using (4.2) with k = s, l = s′−, j = [max(s, |s′|)] + 1,
a(x) = 〈x〉s, and χ = ∂α

ξ ψ,

〈x〉s
(
∂α
ξ ψ
)
(2−pD) =

∑
0≤|β|<j

2−p|β|i|β|

β!

(
∂α+β
ξ ψ

)
(2−pD)∂β

x 〈x〉s(4.18)

+ 2−p(j−l)〈x〉s−jR,

where R is bounded from Hs′ to L2 with a norm independent of p. Thus

2ps
′∥∥〈x〉s(∂α

ξ ψ
)
(2−pD)u

∥∥
L2(4.19)

≤
∑

0≤|β|<j

2−p|β|+ps′

β!

∥∥(∂α+β
ξ ψ

)
(2−pD)∂β

x (〈x〉s)u
∥∥
L2

+ 2−p(j−l−s′)‖〈x〉s−jRu‖L2 .

As s− j ≤ 0,

2−p(j−l−s′)‖〈x〉s−jRu‖L2 ≤ C2−p([|s′|]+1−|s′|)‖Ru‖L2(4.20)

≤ C2−p([|s′|]+1−|s′|)‖u‖Hs′ ≤ εp,

where (εp)p≥−1 is in l2(N). Looking at the support of ∂α+β
ξ ψ we have

2ps
′∥∥(∂α+β

ξ ψ
)
(2−pD)∂β

x (〈x〉s)u
∥∥
L2 ≤ C2ps

′(∥∥Δp−1∂
β
x (〈x〉s)u

∥∥
L2(4.21)

+
∥∥Δp∂

β
x (〈x〉s)u

∥∥
L2 +

∥∥Δp+1∂
β
x (〈x〉s)u

∥∥
L2

)
.

Since 〈x〉su is in Hs′ and the multiplication by (∂β
x 〈x〉s)〈x〉−s is bounded on L2, we

have from (4.8) and (4.21) that

2ps
′∥∥(∂α+β

ξ ψ
)
(2−pD)∂β

x (〈x〉s)u
∥∥
L2 ≤ εp,(4.22)

where (εp)p≥−1 is in l2(N). Finally, (4.19), (4.20), and (4.22) imply (4.17).
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We study the action of operators with symbol in S(m, k) on the spaces Hs
s′ .

Lemma 4.4. Let m and k with k ≤ 0 be two real numbers, and let b(x, ξ) be in
S(m, k). Then b(x,D) is bounded from Hs

s′ to Hs−k
s′−m+k.

Proof. As k ≤ 0, S(m, k) is included in Sm. So b(x,D) is bounded from
Hs+s′ to Hs+s′−m. As Hs+s′−m is included in Hs+s′−m+k, b(x,D) is bounded
from Hs+s′ to Hs+s′−m+k. Moreover, 〈x〉s−kb(x,D)〈x〉−s = b1(x,D) with b1(x, ξ)
in S(m, 0) by using Proposition 3.2. Thus, 〈x〉s−kb(x,D)〈x〉−s is bounded from Hs′

to Hs′−m. As Hs′−m is included in Hs′−m+k, 〈x〉s−kb(x,D)〈x〉−s is bounded from
Hs′ to Hs′−m+k.

The following corollary gives an example of a solution u of the nonlinear Schrö-
dinger equation (4.23) such that u is in L∞(0, T,Hs) and 〈x〉su is in L∞(0, T, L2),
therefore satisfying the assumptions of Corollary 2.5.

Corollary 4.5. Let s > d/2 and let u0 be in Hs(Rd). Then, for T > 0
sufficiently small, there exists a unique solution u in C(0, T,Hs) of⎧⎪⎨

⎪⎩
i
∂u

∂t
+

1

2

d∑
j,l=1

∂xja
jl(x)∂xl

u = f(u, ū), 0 < t < T, x ∈ R
d,

u|t=0 = u0,

(4.23)

where A = −1/2
∑d

j,l=1 ∂xj
ajl(x)∂xl

is an elliptic self-adjoint operator and f is C∞

and vanishes at 0. Moreover, assume the symbol of A is in S(2, 0) and 〈x〉su0 is in
L2. 〈x〉su is then in L∞(0, T, L2).

Proof. The local existence and uniqueness in C(0, T,Hs) of the u solution of (4.23)
is well known. We recall the proof. Since A is an unbounded self-adjoint operator,
−iA is the generator of a semigroup of isometry on L2. Let L be the operator on
C(0, T,Hs) defined by

Lu(t) = e−itAu0 − i

∫ t

0

e−i(t−τ)Af(u(τ), ū(τ))dτ

for 0 ≤ t ≤ T . As e−iAt commutes with (I + A)s/2 on Hs and as

C1‖u‖Hs ≤
∥∥(I + A)

s
2u
∥∥
L2 ≤ C2‖u‖Hs

for u in Hs,

‖Lu‖C(0,T,Hs) ≤ C
(
‖u0‖Hs + T‖f(u, ū)‖C(0,T,Hs)

)
,

‖Lu− Lv‖C(0,T,Hs) ≤ CT‖f(u, ū) − f(v, v̄)‖C(0,T,Hs).
(4.24)

Moreover, f is C∞ and vanishes at 0 and Hs is embedded in L∞. Thus (see, for
example, [1])

‖f(u, ū)‖Hs ≤ θ(‖u‖Hs),(4.25)

where θ is an increasing function. We define the C∞ function g by

g(u, ū) = f(u, ū) − ∂uf(0, 0)u− ∂ūf(0, 0)ū.

Hs is an algebra and ∂ug and ∂ūg vanish at 0. Thus, by (4.25),

‖g(u, ū) − g(v, v̄)‖Hs ≤ C

∫ 1

0

(‖∂ug(ru + (1 − r)v, rū + (1 − r)v̄)‖Hs(4.26)

+ ‖∂ūg(ru + (1 − r)v, rū + (1 − r)v̄)‖Hs)dr‖u− v‖Hs

≤ θ(‖u‖Hs + ‖v‖Hs)‖u− v‖Hs ,
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where θ is an increasing function. We have

‖∂uf(0, 0)u + ∂ūf(0, 0)ū− ∂uf(0, 0)v − ∂ūf(0, 0)v̄‖Hs ≤ C‖u− v‖Hs ,

which together with (4.26) yields

‖f(u, ū) − f(v, v̄)‖Hs ≤ θ(‖u‖Hs + ‖v‖Hs)‖u− v‖Hs ,(4.27)

where θ is an increasing function. Inequalities (4.24), (4.25), and (4.27) imply

‖Lu‖C(0,T,Hs) ≤ C
(
‖u0‖Hs + Tθ(‖u‖C(0,T,Hs))

)
,

‖Lu− Lv‖C(0,T,Hs) ≤ CTθ
(
‖u‖C(0,T,Hs) + ‖v‖C(0,T,Hs)

)
‖u− v‖C(0,T,Hs).

(4.28)

We choose

0 < T ≤ min(‖u0‖Hs(1 + θ(2C‖u0‖Hs))−1, (1 + Cθ(4C‖u0‖Hs))−1),

and we use the contraction mapping principle with the operator L and the function
space

{
v ∈ C(0, T,Hs) / ‖v‖C(0,T,Hs) ≤ 2C‖u0‖Hs

}
.

So, we have the existence and uniqueness in C(0, T,Hs) of the solution u of (4.23).

Moreover, suppose that the symbol of A is in S(2, 0) and 〈x〉su0 is in L2. For any
operator B,

∂t〈Bu, u〉 = 〈B∂tu, u〉 + 〈Bu, ∂tu〉 +

〈
∂B

∂t
u, u

〉
(4.29)

= 〈B(−iAu− if(u, ū)), u〉 + 〈Bu,−iAu− if(u, ū)〉 +

〈
∂B

∂t
u, u

〉

= −i〈[B,A]u, u〉 − i〈Bf(u, ū), u〉 + i〈Bu, f(u, ū)〉 +

〈
∂B

∂t
u, u

〉
.

Choosing Bu = 〈x〉2su and integrating (4.29) between 0 and t, we obtain

‖〈x〉su(t)‖2
L2 ≤ ‖〈x〉su0‖2

L2 +

∫ t

0

|〈[B,A]u(τ), u(τ)〉|dτ

+2

∫ t

0

‖〈x〉sf(u(τ), ū(τ))‖L2‖〈x〉su(τ)‖L2dτ.

(4.30)

The mean value theorem and the fact that f vanishes at 0 imply

|f(u(t, x), ū(t, x))| ≤ θ
(
‖u‖L∞(0,T,L∞(Rd))

)
|u(t, x)|.

Thus ∫ t

0

‖〈x〉sf(u(τ), ū(τ))‖L2‖〈x〉su(τ)‖L2dτ(4.31)

≤ θ(‖u‖L∞)

∫ t

0

‖〈x〉su(τ)‖2
L2dτ.
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As A is in Op(S(2, 0)) and B is in Op(S(0, 2s)), [A,B] is in Op(S(1, 2s − 1)) by
Proposition 3.2. Therefore, by Proposition 3.2, 〈x〉−s+1/2[A,B]〈x〉−s+1/2 = R, where
R is in Op(S(1, 0)). Thus,

|〈[B,A]u(τ), u(τ)〉| = |〈R〈x〉s−1/2u(τ), 〈x〉s−1/2u(τ)〉|(4.32)

≤ ‖R〈x〉s−1/2u(τ)‖H−1/2‖〈x〉s−1/2u(τ)‖H1/2

≤ C‖〈x〉s−1/2u(τ)‖2
H1/2 .

Moreover, as s > d/2 ≥ 1/2, Proposition 4.3 implies

∥∥〈x〉s−1/2u(τ)
∥∥2

H1/2 ≤ C
(
‖〈x〉su(τ)‖2

L2 + ‖u(τ)‖2
Hs

)
.(4.33)

〈x〉su0 is in L2 and u is in C(0, T,Hs) and in C(0, T, L∞) as s > d/2. Thus, (4.30),
(4.31), (4.32), and (4.33) imply

‖〈x〉su(t)‖2
L2 ≤ C + C

∫ t

0

‖〈x〉su(τ)‖2
L2dτ.(4.34)

Therefore, 〈x〉su is in L∞(0, T, L2) by Gronwall’s lemma.
The following corollary will be useful to construct the operator Q in the second

step of the proof.
Corollary 4.6. Let s > d/2 and T > 0 be two real numbers, and let there be a

solution u of (4.23). We assume that the symbol of A is in S(2, 0) and that there exists
two real functions θ1(x) and θ2(x) in S(0, 0) such that θ2 ≡ 1 in a neighborhood of
the support of θ1, and that θ2u is in L∞(0, T,Hs

0). Then, θ1∂
k
t u is in L∞(0, T,Hs

−2k)
for all integers k such that 2k < s− d/2 + 2. Moreover, assume g is in C∞(C2) and
vanishes at 0 and s in Id defined by (2.10). Then ∂k

t g(θ1u, θ1u) is in L∞(0, T,Hs
−2k)

for all integers k such that 2k < s− d/2 + 2.
Proof. As u is a solution of (4.23), ∂k

t u satisfies for k ≥ 1 at least formally

(4.35) ∂k
t u = ikAku

+
∑

|α1|+···+|αp|+|β1|+···+|βq|≤2(k−1)

gα1,...,βq
(x)∂α1

x u · · · ∂αp
x u∂β1

x ū · · ·

× ∂βq
x ūfα1,...,βq

(u, ū),

where the gα1,...,βq
(x) are in S(0, 0) and where fα1,...,βq

are C∞ functions. As θ2 ≡ 1
in a neighborhood of the support of θ1, (4.35) implies

(4.36) θ1∂
k
t u = ikθ1A

kθ2u

+
∑

|α1|+···+|αp|+|β1|+···+|βq|≤2(k−1)

gα1,...,βq (x)∂α1
x θ2u · · ·

× ∂βq
x θ2ufα1,...,βq

(
θ2u, θ2u

)
.

For all |α| ≤ 2(k− 1), ∂α
x θ2u is in L∞(0, T,Hs−2(k−1)). As s− 2(k− 1) > d/2, we get

∑
|α1|+···+|αp|+|β1|+···+|βq|≤2(k−1)

gα1,...,βq (x)∂α1
x θ2u · · · ∂βq

x θ2ufα1,...,βq

(
θ2u, θ2u

)
is in L∞(0, T,Hs−2(k−1))

(4.37)
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(see, for example, [13]). Ak has its symbol in S(2k, 0) by Proposition 3.2. This implies
that Akθ2u is in L∞(0, T,Hs

−2k) by Lemma 4.4. Thus, Akθ2u is in L∞(0, T,Hs−2k),

and (4.36) and (4.37) imply that θ1∂
k
t u is in L∞(0, T,Hs−2k).

We prove now that 〈x〉sθ1∂
k
t u is in L∞(0, T,H−2k).

gα1,...,βq (x)∂α2
x θ2u · · · ∂βq

x θ2ufα1,...,βq (θ2u, θ2u) is in L∞(0, T,Hs−2(k−1)+|α1|),(4.38)

since |α2| + · · · + |βq| ≤ 2(k − 1) − |α1|. Moreover, Bony’s decomposition in the
paraproduct and remainder of uv yields

‖uv‖Hr1 ≤ C‖u‖Hr1‖v‖Hr2 ∀r2 > d/2 and − r2 ≤ r1 ≤ r2(4.39)

(see, for example, [4] for the properties of the paraproduct and of the remainder). As
〈x〉s∂α1θ2u is in L∞(0, T,H−|α1|) by Lemma 4.4, (4.38) and (4.39) with r1 = −|α1|
and r2 = s− 2(k − 1) + |α1| imply that

〈x〉sgα1,...,βq (x)∂α1
x θ2u · · · ∂βq

x θ2ufα1,...,βq

(
θ2u, θ2u

)
is in L∞(0, T,H−|α1|).

(4.40)

As 〈x〉sAkθ2u is in L∞(0, T,H−2k), (4.36) and (4.40) imply that 〈x〉sθ1∂
k
t u is in

L∞(0, T,H−2k).
We assume in addition that g is in C∞(C2) and vanishes at 0, that s is in Id, and

that k is an integer satisfying 2k < s − d/2 + 2. Lemma 2.2 shows that s − 2k ≥ 0.
Moreover, we have

∂k
t g(θ1u, θ1u)

=
∑

j1+···+jp+l1+···+lq=k

∂j1
t θ1u · · · ∂jp

t θ1u∂
l1
t θ1u · · · ∂lq

t θ1u
∂p+qg

∂up∂ūq
(θ1u, θ1u).

(4.41)

As θ1u is in L∞(0, T,Hs), and as s > d/2,

∂p+qg

∂up∂ūq
(θ1u, θ1u) − ∂p+qg

∂up∂ūq
(0, 0) is in L∞(0, T,Hs).

As ∂j2
t θ1u, . . . , ∂

lq
t θ1u are in L∞(0, T,Hs−2(k−j1)), and as s − 2(k − j1) > d/2, the

product

∂j2
t θ1u · · · ∂jp

t θ1u∂
l1
t θ1u · · · ∂lq

t θ1u
∂p+qg

∂up∂ūq

(
θ1u, θ1u

)
is in L∞(0, T,Hs−2(k−j1)

)
.

(4.42)

Moreover, ∂j1
t θ1u is in L∞(0, T,Hs−2j1). Therefore, ∂k

t g(θ1u, θ1u) is inL∞(0, T,Hs−2k)
by using (4.39) with r2 = s − 2(k − j1) and r1 = s − 2j1 and by using (4.41). In
the same way, (4.42) and the fact that 〈x〉s∂j1

t θ1u belongs to L∞(0, T,H−2j1) imply
that 〈x〉s∂k

t g(θ1u, θ1u) is in L∞(0, T,H−2k) by using (4.39) with r2 = s − 2(k − j1)
and r1 = −2j1. So, ∂k

t g(θ1u, θ1u) is in L∞(0, T,Hs
−2k) for all integers k such that

2k < s− d/2 + 2.
Bony [2] defines the paraproduct of v by u as the following bilinear operator:

Tuv =
∑
q≥2

Sq−2(u)Δq(v).(4.43)
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Let R(u, v) be the following bilinear operator:

R(u, v) =
∑

|p−q|≤2

Δp(u)Δq(v).(4.44)

We have uv = Tuv + Tvu + R(u, v). Let s > d/2. Then for all u in Hs and all
functions f in C∞(R) such that f(0) = 0, Bony’s paralinearization theorem with the
improvement of Meyer [13] is

f(u) = Tf ′(u)u + r(u),(4.45)

where r(u) ∈ H2s−d/2. The generalization to several variables of (4.45) implies, for
f ∈ C∞(C2) such that f(0, 0) = 0,

f(u, ū) = T ∂f
∂u (u,ū)u + T ∂f

∂ū (u,ū)ū + r(u, ū),(4.46)

where r(u, ū) ∈ H2s−d/2.
The following lemma will be used in the first step of the proof to show moreover

that the remainder satisfies that 〈x〉2s−d/2r(u, ū) is in L2.
Lemma 4.7. Let s > d/2 and let u be in Hs

0 . Let f ∈ C∞(C2) such that f
vanishes to the second order at 0 and let r(u, ū) be defined by (4.46). 〈x〉2s−d/2f(u, ū)
and 〈x〉2s−d/2r(u, ū) are in L2.

Proof. Since f vanishes to the second order at 0 and u is in L∞, we have

|f(u(x), ū(x))| ≤ C|u(x)|2,

which, using the Sobolev embedding of Hd/4 in L4, yields

‖〈x〉2s−d/2f(u, ū)‖L2 ≤ C
∥∥〈x〉s−d/4u

∥∥2

L4 ≤ C
∥∥〈x〉s−d/4u

∥∥2

Hd/4 .(4.47)

Since u is in Hs
0 , 〈x〉s−d/4u is in Hd/4 by Proposition 4.3. This implies that

〈x〉2s−d/2f(u, ū) is in L2 using (4.47).
By (4.46), r(u, ū) is equal to

f(u, ū) − T ∂f
∂u (u,ū)u− T ∂f

∂ū (u,ū)ū.(4.48)

In order to prove that 〈x〉2s−d/2r(u, ū) is in L2, it remains to establish

〈x〉2s−d/2
(
T ∂f

∂u (u,ū)u + T ∂f
∂ū (u,ū)ū

)
∈ L2.(4.49)

It suffices to prove

〈x〉2s−d/2T ∂f
∂u (u,ū)u ∈ L2,(4.50)

since we can use the same argument for T∂ūf(u,ū)ū. As ∂uf vanishes at 0 and u is in
L∞, ∣∣∣∣∂f∂u (u(x), ū(x))

∣∣∣∣ ≤ C|u(x)|.

This implies that 〈x〉s∂uf(u, ū) is in L2. Moreover, as u is in Hs and ∂uf is C∞

and vanishes at 0, ∂uf(u, ū) is in Hs. Therefore, 〈x〉s−d/4∂uf(u, ū) is in Hd/4 by
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Proposition 4.3. Let b = ∂uf(u, ū). Thus, 〈x〉s−d/4b is in C−d/4 using the Sobolev
embedding from Hd/4 to C−d/4. To prove (4.50), it suffices to establish that

〈x〉2s−d/2Tbu ∈ L2 if 〈x〉s−d/4b ∈ C−d/4.(4.51)

Using (4.2) with k = s− d/4, l = 0, j = [s− d/4] + 2, a(x) = 〈x〉s−d/4, and χ = ψ,

〈x〉s−d/4Δp =
∑

0≤|α|<j

2−p|α|i|α|

α!

(
∂α
ξ ψ
)
(2−pD)∂α

x 〈x〉s−d/4 +
〈x〉s−d/4−j

2pj
R,(4.52)

where R is bounded on L2 with a norm independent of p. Using (4.2) with k = s−d/4,
l1 = d/4 + 1, j1 = [s− d/4] + 3, a(x) = 〈x〉s−d/4, and χ = ϕ,

〈x〉s−d/4Sp =
∑

0≤|β|<j1

2−p|β|i|β|

β!

(
∂β
ξ ϕ
)
(2−pD)∂β

x 〈x〉s−d/4 +
〈x〉s−d/4−j1

2p(j1−l1)
R1,(4.53)

where R1 is bounded from C−d/4 to L∞ with a norm independent of p since C1 ⊂ L∞

and R1 is bounded from C−d/4 to C1. Then, we get

〈x〉2s−d/2Tbu(x) =
∑
p≥2

〈x〉s−d/4Sp−2b(x)〈x〉s−d/4Δpu(x)(4.54)

=
∑

0≤|α|<j

∑
0≤|β|<j1

i|α|+|β|

α!β!
4|β|
∑
p≥2

apα,β(x)

+
∑

0≤|α|<j

i|α|

α!
4j1−l1〈x〉s−d/4−j1

∑
p≥2

apα(x)

+
∑

0≤|β|<j1

i|β|

β!
4|β|〈x〉s−d/4−j

∑
p≥2

apβ(x)

+
∑
p≥2

4j1−l1〈x〉2s−d/2−j−j1ap(x),

where

apα,β = 2−p|β|(∂β
ξ ϕ
)(

2−(p−2)D
)
∂β
x (〈x〉s−d/4)b2−p|α|(∂α

ξ ψ
)
(2−pD)∂α

x (〈x〉s−d/4)u,

apα = 2−p(j1−l1+|α|)R1b
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉s−d/4)u,

apβ = 2−p(|β|+j)
(
∂β
ξ ϕ
)(

2−(p−2)D
)
∂β
x (〈x〉s−d/4)bRu,

ap = 2−p(j1−l1+j)R1bRu.

We have ∑
p≥2

‖ap‖L2 ≤
∑
p≥2

2−p(j1−l1+j)‖R1b‖L∞‖Ru‖L2(4.55)

≤ C
∑
p≥2

2−2p‖b‖C−d/4‖u‖L2 < +∞,

∑
p≥2

‖apα‖L2 ≤
∑
p≥2

2−p(j1−l1+|α|)‖R1b‖L∞‖
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉s−d/4)u‖L2(4.56)

≤ C
∑
p≥2

2−p‖b‖C−d/4‖∂α
x (〈x〉s−d/4)u‖L2 ≤ C‖〈x〉s−d/4u‖L2 < +∞,
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and ∑
p≥2

‖apβ‖L2 ≤
∑
p≥2

2−p(|β|+j)‖
(
∂β
ξ ϕ
)
(2−(p−2)D)∂β

x (〈x〉s−d/4)b‖L∞‖Ru‖L2(4.57)

≤ C
∑
p≥2

2−p(|β|+j−d/4)‖∂β
x (〈x〉s−d/4)b‖C−d/4‖u‖L2

≤ C
∑
p≥2

2−p‖〈x〉s−d/4b‖C−d/4 < +∞.

Moreover,

‖apα,β‖L2 ≤ 2−p(|β|+|α|)‖
(
∂β
ξ ϕ
)
(2−(p−2)D)∂β

x (〈x〉s−d/4)b‖L∞(4.58)

‖(∂α
ξ ψ)(2−pD)∂α

x (〈x〉s−d/4)u‖L2

≤ C2pd/4‖∂β
x (〈x〉s−d/4)b‖C−d/4(‖Δp−1∂

α
x (〈x〉s−d/4)u‖L2

+‖Δp∂
α
x (〈x〉s−d/4)u‖L2 + ‖Δp+1∂

α
x (〈x〉s−d/4)u‖L2)

≤ C‖〈x〉s−d/4b‖C−d/4‖∂α
x (〈x〉s−d/4)u‖Hd/4εp ≤ Cεp,

where (εp) is in l2(N). Let F be the Fourier transform on R
d. As Fapα,β has support

in {2p−2 ≤ |ξ| ≤ 9.2p−2}, (4.10) and (4.58) imply that
∑

p≥2 a
p
α,β is in L2, which

together with (4.54), (4.55), (4.56), and (4.57) yield (4.51).
When l(x, ξ) is homogeneous of degree m in ξ, C∞ in ξ for ξ �= 0, and Cρ in x

(i.e., all the derivatives ∂α
ξ l(x, ξ) are Cρ in x), Bony [2] defines the operator Tl by

Tl(x,D)u =
∑
p≥2

Sp−2(φl)(x,D)Δpu,

where φ is a C∞ function of ξ vanishing in a neighborhood of 0 and equal to 1 outside
a compact and where the Fourier multiplier Sp acting on φl with respect to x gives
Sp(φl)(x, ξ).

The following proposition will be used when proving Propositions 4.11 and 4.12.
Proposition 4.8. Let m, k, l, and ρ be real numbers such that l ≥ 0 and ρ �= 0.

Let b(x, ξ) be such that 〈x〉lb is homogeneous of degree m in ξ, C∞ in ξ for ξ �= 0,
and Cρ in x.

When ρ < 0, 〈x〉kTb〈x〉l−k is bounded from Ht to Ht+ρ−m for all t.
When ρ > 0, 〈x〉kTb〈x〉l−k is bounded from Ht to Ht−m for all t. Moreover, we

have

〈x〉kTb〈x〉l−k =
∑
|α|≤ρ

1

i|α|α!
T∂α

x (〈x〉l−k)〈x〉k∂α
ξ
b + R,(4.59)

where R is bounded from Ht to Ht+ρ−m for t > −ρ + m.
Proof. We start with the case m = 0 and b(x, ξ) = b(x), b in Cρ. Using (4.2) with

k = k− l, l = (t+ρ)+ − t, where (t+ρ)+ = max(t+ρ, 0), j = [max(k− l, |ρ+ t|)]+2,
a(x) = 〈x〉k−l, and χ = ψ,

〈x〉k−lΔp =
∑

0≤|α|<j

2−p|α|i|α|

α!

(
∂α
ξ ψ
)
(2−pD)∂α

x 〈x〉k−l +
〈x〉k−l−j

2p(j−(t+ρ)++t)
R1,(4.60)
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where R1 is bounded from Ht to H(t+ρ)+ with a norm independent of p. Using (4.2)
with k = l, l = (t + ρ)+ + 1 − ρ, j1 = [max(l, |ρ + t|)] + 2, a(x) = 〈x〉l, and χ = ϕ,

〈x〉lSp =
∑

0≤|β|<j1

2−p|β|i|β|

β!

(
∂β
ξ ϕ
)
(2−pD)∂β

x 〈x〉l +
〈x〉l−j1

2p(j1−(t+ρ)+−1+ρ)
R2,(4.61)

where R2 is bounded from Cρ to C(t+ρ)++1 with a norm independent of p. We have

〈x〉kTb〈x〉l−ku(x) =
∑
p≥2

〈x〉lSp−2b(x)〈x〉k−lΔp〈x〉l−ku(x)(4.62)

=
∑

0≤|α|<j

∑
0≤|β|<j1

i|α|+|β|

α!β!
4|β|
∑
p≥2

apα,β(x)

+
∑

0≤|α|<j

i|α|

α!
4j1−(t+ρ)+−1+ρ〈x〉l−j1

∑
p≥2

apα(x)

+
∑

0≤|β|<j1

i|β|

β!
4|β|〈x〉k−l−j

∑
p≥2

apβ(x)

+
∑
p≥2

4j1−(t+ρ)+−1+ρ〈x〉k−j−j1ap(x),

where

apα,β = 2−p|β|(∂β
ξ ϕ
)
(2−(p−2)D)∂β

x (〈x〉l)b2−p|α|(∂α
ξ ψ)(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku,

apα = 2−p(j1−(t+ρ)+−1+ρ+|α|)R2b
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku,

apβ = 2−p(|β|+j−(t+ρ)++t)
(
∂β
ξ ϕ
)
(2−(p−2)D)∂β

x (〈x〉l)bR1u,

ap = 2−p(j1−(t+ρ)+−1+ρ+j−(t+ρ)++t)R2bR1u.

The operator T defined by (4.43) is bounded from L∞ × Ht+ρ to Ht+ρ and the
operator R defined by (4.44) is bounded from C1 ×H(t+ρ)+ to H(t+ρ)+ since we have
1 + (t + ρ)+ > 0 (see, for example, [4]). Moreover, (4.9) implies

‖Tuv‖Ht+ρ ≤
∑
p≥2

‖Sp−2uΔpv‖Ht+ρ ≤ C
∑
p≥2

2p(t+ρ)‖Sp−2u‖L2‖Δpv‖L∞

≤ C
∑
p≥2

2−p‖u‖L2‖v‖Ct+ρ+1 ≤ C‖u‖L2‖v‖Ct+ρ+1 .

Thus, T is bounded from Ct+ρ+1 ×L2 to Ht+ρ. As uv = Tuv + Tvu+R(u, v), we get

‖uv‖Ht+ρ ≤ C‖u‖
H(t+ρ)+ ‖v‖C(t+ρ)++1 ,

which implies∑
p≥2

‖ap‖Ht+ρ ≤
∑
p≥2

2−p(j1+j−1−|t+ρ|)‖R2b‖C(t+ρ)++1‖R1u‖H(t+ρ)+(4.63)

≤ C
∑
p≥2

2−p(1+[|t+ρ|]−|t+ρ|)‖b‖Cρ‖u‖Ht < +∞,
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∑
p≥2

‖apα‖Ht+ρ ≤
∑
p≥2

2−p(j1−(t+ρ)+−1+ρ+|α|)‖R2b‖C(t+ρ)++1(4.64)

×2p((t+ρ)+−t)‖
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku‖Ht

≤ C
∑
p≥2

2−p([|ρ+t|]+1−|ρ+t|)‖b‖Cρ‖∂α
x (〈x〉k−l)〈x〉l−ku‖Ht

≤ C‖u‖Ht < +∞,

and ∑
p≥2

‖apβ‖Ht+ρ ≤
∑
p≥2

2−p(|β|+j−(t+ρ)++t)‖
(
∂β
ξ ϕ
)
(2−(p−2)D)(4.65)

×∂β
x (〈x〉l)b‖

C(t+ρ)++1‖R1u‖H(t+ρ)+

≤ C
∑
p≥2

2−p(|β|+j−(t+ρ)++t)2p((t+ρ)++1−ρ)‖∂β
x (〈x〉l)b‖Cρ‖u‖Ht

≤ C
∑
p≥2

2−p([|t+ρ|]+1−|t+ρ|)‖〈x〉lb‖Cρ < +∞.

If ρ < 0,

2p(t+ρ)‖apα,β‖L2 ≤ 2p(t+ρ)2−p(|β|+|α|)‖
(
∂β
ξ ϕ
)
(2−(p−2)D)∂β

x (〈x〉l)b‖L∞(4.66)

‖
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku‖L2

≤ C2p(t+ρ)2−pρ‖∂β
x (〈x〉l)b‖Cρ2−pt‖∂α

x (〈x〉k−l)〈x〉l−ku‖Htεp

≤ C‖〈x〉lb‖Cρ‖u‖Htεp ≤ Cεp,

where (εp) is in l2(N). As Fapα,β has its support in {2p−2 ≤ |ξ| ≤ 9.2p−2}, (4.10) and
(4.66) imply that ∑

p≥2

apα,β is in Ht+ρ ∀t and ∀(α, β).(4.67)

Then (4.62), (4.63), (4.64), (4.65), and (4.67) show that 〈x〉kTb〈x〉l−k is bounded from
Ht to Ht+ρ for all t if ρ < 0.

If ρ > 0,

2pt‖apα,β‖L2 ≤ 2pt2−p(|β|+|α|)‖
(
∂β
ξ ϕ
)
(2−(p−2)D)∂β

x (〈x〉l)b‖L∞(4.68)

‖
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku‖L2

≤ C2pt‖∂β
x (〈x〉l)b‖Cρ2−pt‖∂α

x (〈x〉k−l)〈x〉l−ku‖Htεp

≤ C‖〈x〉lb‖Cρ‖u‖Htεp ≤ Cεp,

where (εp) is in l2(N). As Fapα,β has its support in {2p−2 ≤ |ξ| ≤ 9.2p−2}, (4.10) and
(4.68) imply ∑

p≥2

apα,β is in Ht ∀t and ∀(α, β).(4.69)

Then (4.62), (4.63), (4.64), (4.65), and (4.69) show that 〈x〉kTb〈x〉l−k is bounded from
Ht to Ht for all t if ρ > 0.
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Assume now that ρ > 0 and t + ρ > 0. From∑
p≥2

ap0,0 =
∑
p≥2

ϕ(2−(p−2)D)(〈x〉lb)ψ(2−pD)u = T〈x〉lbu,

(4.62), (4.63), (4.64), and (4.65), we get (4.59) if we can prove∑
p≥2

apα,β ∈ Ht+ρ, 0 ≤ |α| ≤ j, 0 ≤ |β| ≤ j1, and (α, β) �= 0.(4.70)

When |β| ≥ 1, ∂β
ξ ϕ has its support in {1/2 ≤ |ξ| ≤ 1}. Thus, for |β| ≥ 1,

2p(t+ρ)‖apα,β‖L2 ≤ 2p(t+ρ)2−p(|β|+|α|)‖
(
∂β
ξ ϕ
)
(2−(p−2)D)∂β

x (〈x〉l)b‖L∞(4.71)

‖
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku‖L2

≤ C2p(t+ρ)2−pρ‖∂β
x (〈x〉l)b‖Cρ2−pt‖∂α

x (〈x〉k−l)〈x〉l−ku‖Htεp

≤ C‖〈x〉lb‖Cρ‖u‖Htεp ≤ Cεp,

where (εp) is in l2(N). As Fapα,β has its support in {2p−2 ≤ |ξ| ≤ 9.2p−2}, (4.10)

and (4.71) imply that
∑

p≥2 a
p
α,β is in Ht+ρ for |β| ≥ 1. In order to prove (4.70), it

remains to show the case β = 0 and |α| ≥ 1. For |α| ≥ 1,

(∂α
ξ ϕ)(ξ) +

∑
p≥0

2−p|α|(∂α
ξ ψ
)
(2−pξ) = ∂α

ξ

⎛
⎝ϕ(ξ) +

∑
p≥0

ψ(2−pξ)

⎞
⎠ = ∂α

ξ 1 = 0.

Thus, (
∂α
ξ ϕ
)
(D) +

∑
p≥0

2−p|α|(∂α
ξ ψ
)
(2−pD) = 0,

which yields

0 =
∑
q≥−1

Δq(〈x〉lb)
((
∂α
ξ ϕ
)
(D)(∂α

x (〈x〉k−l)〈x〉l−ku)

+
∑
p≥0

2−p|α|(∂α
ξ ψ
)
(2−pD)(∂α

x (〈x〉k−l)〈x〉l−ku)
)

=
∑
p≥2

Sp−2(〈x〉lb)2−p|α|(∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku

+
∑
q≥2

Δq(〈x〉lb)2−(q−2)|α|(∂α
ξ ϕ
)
(2−(q−2)D)∂α

x (〈x〉k−l)〈x〉l−ku

+
∑

|p−q|≤2

Δq(〈x〉lb)2−p|α|(∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku.

Finally, for |α| ≥ 1,∑
p≥2

apα,0 =
∑
p≥2

Sp−2(〈x〉lb)2−p|α|(∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku(4.72)

= −
∑
q≥2

Δq(〈x〉lb)2−(q−2)|α|

×
(
∂α
ξ ϕ
)
(2−(q−2)D)∂α

x (〈x〉k−l)〈x〉l−ku

−
∑

|p−q|≤2

Δq(〈x〉lb)2−p|α|(∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku.
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As ∂α
ξ ϕ has its support in {1/2 ≤ |ξ| ≤ 1},

‖Δq(〈x〉lb)2−(q−2)|α|(∂α
ξ ϕ
)
(2−(q−2)D)∂α

x (〈x〉k−l)〈x〉l−ku‖L2(4.73)

≤ C2−q|α|‖Δq(〈x〉lb)‖L∞

‖
(
∂α
ξ ϕ
)
(2−(q−2)D)∂α

x (〈x〉k−l)〈x〉l−ku‖L2

≤ C2−qρ‖〈x〉lb‖Cρ2−qt‖u‖Htεq ≤ C2−q(t+ρ)εq,

where (εq) is in l2(N). Moreover, for |q − p| ≤ 2,

‖Δq(〈x〉lb)2−p|α|(∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku‖L2(4.74)

≤ C2−p|α|‖Δq(〈x〉lb)‖L∞

‖
(
∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku‖L2

≤ C2−qρ‖〈x〉lb‖Cρ2−pt‖u‖Htεp ≤ C2−p(t+ρ)εp,

where (εq) is in l2(N).
The Fourier transform of the term from which we take the L2 norm in (4.73)

(resp., in (4.74)) has support in {|ξ| ≤ 9.2q−2} (resp., in {|ξ| ≤ 10.2p}). Therefore,
(4.11) yields∑

q≥2

Δq(〈x〉lb)2−(q−2)|α|(∂α
ξ ϕ
)
(2−(q−2)D)∂α

x (〈x〉k−l)〈x〉l−ku ∈ Ht+ρ,

∑
|p−q|≤2

Δq(〈x〉lb)2−p|α|(∂α
ξ ψ
)
(2−pD)∂α

x (〈x〉k−l)〈x〉l−ku ∈ Ht+ρ

as t + ρ > 0. This implies that
∑

p≥2 a
p
α,0 is in Ht+ρ by (4.72). Finally, we have

(4.70), which ends the proof of (4.59) when m = 0 and b(x, ξ) = b(x) with b in Cρ.
We prove now the general case. Let b(x, ξ) be such that 〈x〉lb is homogeneous of

degree m in ξ, C∞ in ξ for ξ �= 0, and Cρ in x. We decompose b(x, ξ) in spherical
harmonics

b(x, ξ) =
∑
ν

bν(x)hν(ξ),

where 〈x〉lbν(x) belong to Cρ with ‖〈.〉lbν‖Cρ ≤ 1 and where hν are homogeneous of
degree m, C∞ for ξ �= 0, and the sequence ‖hν‖CM (Sd−1) is rapidly decreasing for any
M . Then,

〈x〉kTb〈x〉l−k =
∑
ν

〈x〉kTbν (φhν)(D)〈x〉l−k(4.75)

=
∑
ν

〈x〉kTbν 〈x〉l−k〈x〉k−l(φhν)(D)〈x〉l−k.

If ρ < 0, the first part of the proof yields

‖〈x〉kTbν 〈x〉l−k‖L(Ht,Ht+ρ) ≤ C ∀t ∀ν(4.76)

since ‖〈x〉lbν‖Cρ ≤ 1. Moreover, Proposition 3.2 yields 〈x〉k−l(φhν)(D)〈x〉l−k =
h1
ν(x,D) with h1

ν(x,D) in S(m, 0). As ‖hν‖CM (Sd−1) is rapidly decreasing for any
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M , the seminorms of h1
ν(x, ξ) in S(m, 0) are rapidly decreasing. Therefore, the se-

quence

‖〈x〉k−l(φhν)(D)〈x〉l−k‖L(Ht,Ht−m) is rapidly decreasing.(4.77)

Formulas (4.75), (4.76), and (4.77) show that 〈x〉kTb〈x〉l−k is bounded from Ht to
Ht+ρ−m for all t.

Assume now ρ > 0. The first part of the proof yields

‖〈x〉kTbν 〈x〉l−k‖L(Ht) ≤ C ∀t ∀ν.(4.78)

So, (4.75), (4.78), and (4.77) imply that 〈x〉kTb〈x〉l−k is bounded from Ht to Ht−m

for all t. From (4.59) we get

〈x〉kTbν 〈x〉l−k = T〈x〉lbν + R1
ν ,(4.79)

where R1
ν is continuous from Ht to Ht+ρ for all t > −ρ with a norm bounded by a

constant independent of ν since ‖〈x〉lbν‖Cρ ≤ 1. Moreover, Proposition 3.2 and the
fact that φ is equal to 1 outside a compact imply that

〈x〉k−l(φhν)(D)〈x〉l−k

=
∑
|α|≤ρ

1

i|α|α!
∂α
x (〈x〉l−k)〈x〉k−l((∂α

ξ hν)φ)(D) + R2
ν ,

(4.80)

where R2
ν = r2

ν(x,D) with r2
ν(x, ξ) in S(m − [ρ] − 1,−[ρ] − 1). The seminorms of

r2
ν(x, ξ) in S(m− [ρ],−[ρ]) are rapidly decreasing. Therefore, ‖R2

ν‖L(Ht,Ht−m+[ρ]+1) is
rapidly decreasing.

〈x〉lbν(x) belongs to Cρ, which implies that Tbν (φhν)(D) is bounded from Ht to
Ht (see [2]). As ‖〈.〉lbν‖Cρ ≤ 1, the norms of Tbν (φhν)(D) are bounded by a constant
independent of ν. Moreover, the sequence of operators

∑
|α|≤ρ

1

i|α|α!
∂α
x (〈x〉l−k)〈x〉k−l((∂α

ξ hν)φ)(D)

is bounded from Ht to Ht−m with rapidly decreasing norms. Together with the
properties of R1

ν and R2
ν , this implies that

∑
ν

T〈x〉lbνR
2
ν + R1

ν

⎛
⎝∑

|α|≤ρ

1

i|α|α!
∂α
x (〈x〉l−k)〈x〉k−l((∂α

ξ hν)φ)(D) + R2
ν

⎞
⎠

is bounded from Ht to Ht−m+ρ for t > −ρ + m.

(4.81)

Therefore, (4.75), (4.79), (4.80), and (4.81) yield

(4.82) 〈x〉kTb〈x〉l−k

=
∑
ν

T〈x〉lbν
∑
|α|≤ρ

1

i|α|α!
∂α
x (〈x〉l−k)〈x〉k−l((∂α

ξ hν)φ)(D) + R3

= T〈x〉lb +
∑
ν

T〈x〉lbν
∑

0<|α|≤ρ

1

i|α|α!
∂α
x (〈x〉l−k)〈x〉k−l((∂α

ξ hν)φ)(D) + R3,
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where R3 is bounded from Ht to Ht−m+ρ for t > −ρ + m. As ∂α
x (〈x〉l−k)〈x〉k−l is

in S0, ∂α
x (〈x〉l−k)〈x〉k−l − T∂α

x (〈x〉l−k)〈x〉k−l is bounded from Ht to H+∞ for all t in R

(see, for example, [10]). Together with (4.82), this yields

∑
ν

T〈x〉lbν
∑

0<|α|≤ρ

1

i|α|α!
∂α
x (〈x〉l−k)〈x〉k−l((∂α

ξ hν)φ)(D)

=
∑
ν

∑
0<|α|≤ρ

1

i|α|α!
T〈x〉lbνT∂α

x (〈x〉l−k)〈x〉k−l((∂α
ξ hν)φ)(D) + R4,

(4.83)

where R4 is continuous from Ht to H+∞. As 〈x〉lb is in Cρ and the symbol ∂α
x

(〈x〉l−k)〈x〉k−l is in Cρ, the symbolic calculus for the paradifferential operators (see,
for example, [2]) implies

T〈x〉lbνT∂α
x (〈x〉l−k)〈x〉k−l = T∂α

x (〈x〉l−k)〈x〉kbν + R5,(4.84)

where R5 is bounded from Ht to Ht+ρ for all t with a norm bounded by a constant
independent of ν since ‖〈.〉lbν‖Cρ ≤ 1. Equations (4.82), (4.83), and (4.84) yield
(4.59).

When ρ > 0 is not an integer, Bony [2] defines the class Σm
ρ of symbols l(x, ξ) =∑

j<ρ lm−j(x, ξ), where lm−j(x, ξ) is homogeneous of degree m− j in ξ, C∞ in ξ for

ξ �= 0, and Cρ−j in x. We define two other classes of symbols allowing us to construct
the operator Q in the second step of the proof.

Definition 4.9. Let there exist two real numbers m and s. We call Σm
s,s′ the

class symbols l(x, ξ), where l(x, ξ) is homogeneous of degree m in ξ, C∞ in ξ for ξ �= 0,
and Hs

s′ in x.
Let there exist two real numbers m and s > d/2 such that s−d/2 is not an integer.

We call Σ̃m
s the class of symbols l(x, ξ) =

∑
j<s−d/2 lm−j(x, ξ), where lm−j(x, ξ) is in

Σm−j
s,−j .

Lemma 4.10.

(a) Let m and s be two real numbers. Assume l(x, ξ) is in Σm
s,s′ . Then, ∂α

x l(x, ξ)
is in Σm

s,s′−|α| for all |α|.
(b) Let m, m′, s, s′, and s′′ be real numbers such that s′ ≤ 0, s′′ ≤ 0, s +

max(s′, s′′) > d/2, and s + s′ + s′′ ≥ 0. Let p be in Σm
s,s′ and q in Σm′

s,s′′ .

Then, pq is in Σm+m′

s,s′+s′′ .
(c) Let m, m′, s, and s′ be two real numbers. Let p be in Σm

s,s′ and q in S(m′, 0).

Then, pq is in Σm+m′

s,s′ .
Proof. (a) ∂α

x has its symbol in S(|α|, 0) and l(x, ξ) is Hs
s′ in x. So, ∂α

x l(x, ξ) is
Hs

s′−|α| in x by Lemma 4.4. Thus, ∂α
x l(x, ξ) is in Σm

s,s′−|α|.

(b) We may assume that s′′ ≥ s′, which yields s + s′′ > d/2. So, as p is Hs+s′ in
x and q is Hs+s′′ in x, pq is Hs+s′ in x using (4.39) with r1 = s+ s′ and r2 = s+ s′′.
Moreover, as 〈x〉sp is Hs′ in x and q is Hs+s′′ in x, 〈x〉spq is Hs′ in x using (4.39)

with r1 = s′ and r2 = s+s′′. So, pq is Hs
s′+s′′ in x, which yields that pq is in Σm+m′

s,s′+s′′ .

(c) q is C∞ in x with bounded derivatives. So, pq is in Hs+s′ and 〈x〉spq is in

Hs′ . Therefore, pq is in Σm+m′

s,s′ .
The following proposition states the symbolic calculus properties needed to con-

struct the operator Q in the second step of the proof.
Proposition 4.11. Let m, m′, and s be real numbers such that s > d/2 and

s− d/2 is not an integer.
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(i) Let p be in Σ̃m
s . Then, Tp is bounded from Ht

t′ to Ht
t′−m for all t and t′.

Moreover, 〈x〉s−d/4+kTp〈x〉−k is bounded from Ht to Ht−d/4−m for all t.

(ii) Let p be in Σ̃m
s and q in Σ̃m′

s . Then

Tp ◦ Tq =
∑

j+k+|α|<s−d/2

1

iαα!
T∂α

ξ
pm−j∂α

x qm′−k
+ R,

where R is bounded from Ht
t′ to H

t+s−d/2
t′−m−m′ for all t and t′.

(iii) Let p be in Σ̃m
s and let q(x, ξ) =

∑
j<s−d/2 qm′−j(x, ξ) with qm′−j(x, ξ) in

S(m′ − j, 0) homogeneous of degree m′ − j in ξ. Then

Tp ◦ q(x,D) =
∑

j+k+|α|<s−d/2

1

iαα!
T∂α

ξ
pm−j∂α

x qm′−k
+ R,

where R is bounded from Ht
t′ to H

t+s−d/2
t′−m−m′ for all t and t′.

(iv) Let p =
∑

j<s−d/2 pm−j(x, ξ) with pm−j(x, ξ) in S(m− j, 0) homogeneous of

degree m− j in ξ, and q is in Σ̃m′

s . Then

p(x,D) ◦ Tq =
∑

j+k+|α|<s−d/2

1

iαα!
T∂α

ξ
pm−j∂α

x qm′−k
+ R,

where R is bounded from Ht
t′ to H

t+s−d/2
t′−m−m′ for all t and t′.

Proof. (i) As Σ̃m
s ⊂ Σm

s−d/2, Tp is bounded from Ht to Ht−m using the symbolic

calculus of paradifferential operators (see [2]). Moreover, 〈x〉kTp〈x〉−k is bounded
from Ht to Ht−m for all t and k by using Proposition 4.8 for each pm−j . Thus, Tp is
bounded from Ht

t′ to Ht
t′−m for all t and t′. Finally, as 〈x〉s−d/4pm−j is in C−d/4−j ,

〈x〉s−d/4+kTp〈x〉−k is bounded from Ht to Ht−d/4−m for all t, using Proposition 4.8
for each pm−j .

(ii) As Σ̃m
s ⊂ Σm

s−d/2 and Σ̃m′

s ⊂ Σm′

s−d/2, R is s − d/2 −m −m′-regularizing by

using the symbolic calculus of paradifferential operators (see [2]).
It remains to prove that 〈x〉t+s−d/2Ru is in Ht′−m−m′

for u in Ht
t′ . By Propo-

sition 4.3, it suffices to prove that 〈x〉t+s−d/2R〈x〉−t+d/4 is bounded from Ht′+d/4

to Ht′−m−m′
. As

∑
j+k+|α|<s−d/2

1
iαα!∂

α
ξ pm−j∂

α
x qm′−k is in Σ̃m+m′

s by (b) of Lemma

4.10, 〈x〉t+s−d/2
∑

j+k+|α|<s−d/2
1

iαα!T∂α
ξ
pm−j∂α

x qm′−k
〈x〉−t+d/4 is bounded from Ht′+d/4

to Ht′−m−m′
by (i). It remains to show that the operator 〈x〉t+s−d/2TpTq〈x〉−t+d/4

is bounded from Ht′+d/4 to Ht′−m−m′
.

As

〈x〉t+s−d/2TpTq〈x〉−t+d/4 = 〈x〉t+s−d/2Tp〈x〉−t+d/4〈x〉t−d/4Tq〈x〉−t+d/4,

〈x〉t+s−d/2TpTq〈x〉−t+d/4 is bounded from Ht′+d/4 to Ht′−m−m′
by using (i) with

〈x〉t+s−d/2Tp〈x〉−t+d/4 and with 〈x〉t−d/4Tq〈x〉−t+d/4.

(iii) As q(x, ξ) is in Sm′
, q(x,D) − Tq is bounded from Ht to H+∞ (see, for

example, [10]). As Σ̃m
s ⊂ Σm

s−d/2 and Sm′ ⊂ Σm′

s−d/2, the symbolic calculus for the

paradifferential operators (see [2]) implies that

Tp ◦ Tq −
∑

j+k+|α|<s−d/2

1

iαα!
T∂α

ξ
pm−j∂α

x qm′−k
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is s− d/2 −m−m′-regularizing. Thus, Ru is in Ht+s−d/2−m−m′
.

It remains to prove that 〈x〉t+s−d/2Ru is in Ht′−m−m′
for u in Ht

t′ . By Propo-

sition 4.3, it suffices to show that 〈x〉t+s−d/2R〈x〉−t+d/4 is bounded from Ht′+d/4

to Ht′−m−m′
. As

∑
j+k+|α|<s−d/2

1
iαα!∂

α
ξ pm−j∂

α
x qm′−k is in Σ̃m+m′

s by (c) of Lemma

4.10, 〈x〉t+s−d/2
∑

j+k+|α|<s−d/2
1

iαα!T∂α
ξ
pm−j∂α

x qm′−k
〈x〉−t+d/4 is bounded fromHt′+d/4

to Ht′−m−m′
by (i). It remains to show that the operator 〈x〉t+s−d/2Tpq(x,D)〈x〉−t+d/4

is bounded from Ht′+d/4 to Ht′−m−m′
.

We have

〈x〉t+s−d/2Tpq(x,D)〈x〉−t+d/4 = 〈x〉t+s−d/2Tp〈x〉−t+d/4〈x〉t−d/4q(x,D)〈x〉−t+d/4,

〈x〉t−d/4q(x,D)〈x〉−t+d/4 = q1(x,D) with q1(x, ξ) in S(0,m′) by Proposition 3.2.
〈x〉t−d/4q(x,D)〈x〉−t+d/4 is bounded from Ht′+d/4 to Ht′+d/4−m′

since q1(x, ξ) is in
S(0,m′), and 〈x〉t+s−d/2Tp〈x〉−t+d/4 is bounded from Ht′+d/4−m′

to Ht′−m−m′
by (i).

Thus, 〈x〉t+s−d/2Tpq(x,D)〈x〉−t+d/4 is bounded from Ht′+d/4 to Ht′−m−m′
.

The proof of (iv) is similar to the proof of (iii).
The following proposition will be used to bound the terms coming from the non-

linearity in the energy estimates of the third step of the proof.
Proposition 4.12. Let s > d/2 such that s− d/2 is not an integer. Let m ≥ 0

and k ≥ 0 such that k+m = 2s−d/2. Let p(x, ξ) be in S(m, k) and q in Σ̃0
s. Let u be

in Hs
0 . Then, there exist N symbols pj , 1 ≤ j ≤ N , in S(m, k) with support included

in the support of p(x, ξ) such that

‖p(x,D)Tqu‖L2 ≤ C

⎛
⎝ ∑

1≤j≤N

‖pj(x,D)u‖L2 + 1

⎞
⎠ .(4.85)

Moreover, when m = 0 or when q ≡ 0 in a neighborhood of the support of p, we can
take pj(x, ξ) = 0 for all 1 ≤ j ≤ N .

Proof. By Proposition 3.2, p(x,D) = p1(x,D)〈x〉k, where p1(x, ξ) is in S(m, 0). If
m = 0, p1(x,D) is bounded on L2. It remains to show that 〈x〉2s−d/2Tqu belongs to L2.
As u is in Hs

0 , 〈x〉s−d/4u is in Hd/4 by Proposition 4.3. Moreover, 〈x〉2s−d/2Tq〈x〉d/4−s

is bounded from Hd/4 to L2 by (i) of Proposition 4.11. This concludes the case m = 0.
If 0 < m ≤ 2s− d/2, we choose a real number ζ such that max(0, k − s) ≤ ζ ≤ k

and s− ζ − d/2 is not an integer. Then

p(x,D)Tqu = p1(x,D)〈x〉kTq〈x〉−k+ζ〈x〉k−ζu.(4.86)

As 0 ≤ k − ζ ≤ s and u is in Hs
0 , 〈x〉k−ζu is in Hs−k+ζ by Proposition 4.3. Let

0 ≤ j < s−d/2. As s−ζ−d/2 is not an integer, we consider the cases s−ζ−d/2−j < 0
and s− ζ − d/2− j > 0. If s− ζ − d/2− j < 0, 〈x〉kTq−j 〈x〉−k+ζ is bounded from Ht

to Ht+s−ζ−d/2 for all t by Proposition 4.8. Thus, 〈x〉kTq−j 〈x〉−k+ζ is bounded from
Hs−k+ζ to Hm. As 〈x〉k−ζu is in Hs−k+ζ , and p1(x,D) is bounded from Hm to L2,
we get

‖p(x,D)Tq−ju‖L2 ≤ C, s− ζ − d/2 < j.(4.87)

If s− ζ − d/2 − j > 0, then Proposition 4.8 implies

〈x〉kTqj 〈x〉−k+ζ =
∑

|α|≤s−ζ−d/2−j

1

iαα!
T∂α

x (〈x〉−k+ζ)〈x〉k∂α
ξ
q−j

+ Rj
1,(4.88)



576 JÉRÉMIE SZEFTEL

where Rj
1 is bounded from Hs−k+ζ to Hm. As 〈x〉k−ζu is in Hs−k+ζ , and p1(x,D) is

bounded from Hm to L2, we get

‖p1(x,D)〈x〉k−ζRj
1u‖L2 ≤ C.

Moreover, as p1 is in Sm,

∀t in R, p1(x,D) − Tp1 is bounded from Ht to H+∞(4.89)

(see, for example, [10]). So, it suffices to look at

Tp1T∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ
q−j

.

As p1 is Cs−ζ−d/2−j in x and ∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ q−j is Cs−ζ−d/2−j in x, the symbolic
calculus for the paradifferential operators (see, for example, [10]) yields

Tp1T∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ
q−j

=
∑

|β|<s−ζ−d/2−j

1

iββ!
T
∂β
ξ
p1∂

β
x

(
∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ
q−j

) + Rj
2,

(4.90)

where Rj
2 is s − ζ − d/2 − m-regularizing. When q ≡ 0 in a neighborhood of the

support of p, (4.86), (4.87), (4.88), and (4.90) imply (4.85) with pj(x, ξ) = 0 for all
1 ≤ j ≤ N .

It remains to prove the general case. Let cγ , γ ∈ R
d, be defined by

c0 = 1, cγ = −
∑

0<ω≤γ

1

i|ω|ω!
cγ−ω.

The equalities

∑
0≤ω≤γ

1

i|ω|ω!
cγ−ω = δγ0

and the symbolic calculus for the paradifferential operators imply that∑
|γ|<s−ζ−d/2−j−|β|

cγT
∂γ
ξ
∂β
x

(
∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ
q−j

)T∂γ
x∂β

ξ
p1

= T
∂β
ξ
p1∂

β
x

(
∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ
q−j

) + Rj
3,

(4.91)

where Rj
3 is s− ζ− d/2−m-regularizing. By using the analogue of (4.89) for ∂γ

x∂
β
ξ p1,

(4.91) becomes ∑
|γ|<s−ζ−d/2−j−|β|

cγT
∂γ
ξ
∂β
x

(
∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ
q−j

)∂γ
x∂

β
ξ p1(x,D)

= T
∂β
ξ
p1∂

β
x

(
∂α
x (〈x〉−k+ζ)〈x〉k∂α

ξ
q−j

) + Rj
4,

(4.92)

where Rj
4 is s−ζ−d/2−m-regularizing. As Rj

2 and Rj
4 are s−ζ−d/2−m-regularizing,

we have

‖Rj
2〈x〉k−ζu‖L2 + ‖Rj

4〈x〉k−ζu‖L2 ≤ C,(4.93)
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since 〈x〉k−ζu is in Hs−k+ζ . Finally, (4.86), (4.87), (4.88), (4.90), (4.92), and (4.93)
imply

‖p(x,D)Tqu‖L2 ≤ C

( ∑
max(j+|α|,j+|β|+|γ|)<s−ζ−d/2

×
∥∥∥T∂γ

ξ
∂β
x (∂α

x (〈x〉−k+ζ)〈x〉k∂α
ξ
q−j)

∂γ
x∂

β
ξ p1(x,D)〈x〉k−ζu

∥∥∥
L2

+ 1

)
.

(4.94)

As j + |β|+ < s − ζ − d/2, ∂γ
ξ ∂

β
x (∂α

x (〈x〉−k+ζ)〈x〉k∂α
ξ q−j) is in Σ

−j−|γ|
s−ζ−d/2−j−|β| and

the paradifferential operator T∂γ
ξ
∂β
x (∂α

x (〈x〉−k+ζ)〈x〉k∂α
ξ
q−j)

is bounded on L2. Inequality

(4.94) becomes

‖p(x,D)Tqu‖L2

≤ C

⎛
⎝ ∑

max(j+|α|,j+|β|+|γ|)<s−ζ−d/2

‖∂γ
x∂

β
ξ p1(x,D)〈x〉k−ζu‖L2 + 1

⎞
⎠.

(4.95)

Proposition 3.2 implies that ∂γ
x∂

β
ξ p1(x,D)〈x〉k−ζ = pj,α,β,γ(x,D) with pj,α,β,γ(x, ξ)

in S(m − |β|, k − |γ| − ζ). As ζ ≥ 0, pj,α,β,γ(x, ξ) is in S(m, k), which together with
(4.95) implies (4.85).

5. Proof of the main theorems. We extend the results of [6] to the following
equation: ⎧⎪⎨

⎪⎩
i
∂u

∂t
+

1

2

d∑
j,l=1

∂xja
jl(x)∂xl

u = f(u, ū), 0 < t < T, x ∈ R
d,

u|t=0 = u0,

(5.1)

where the coefficients satisfy (2.1), (2.2), and (2.4) and where f is in C∞(C2) and
vanishes at (0, 0). Then

−1

2

d∑
j,l=1

∂xja
jl(x)∂xl

u = Au = a2(x,D)u + a1(x,D)u,(5.2)

where

a2(x, ξ) = 1/2

d∑
j,l=1

ajl(x)ξjξl ∈ S(2, 0)(5.3)

and

a1(x, ξ) = −i

d∑
j,l=1

∂xja
jl(x)ξl ∈ S(1,−1).(5.4)

By eventually shrinking E and the size of the support of θ, we may assume in the
following the existence of a real function θ1(x) in S(0, 0) such that θ1 is equal to 1 on
the support of θ and θ1u is in L∞(0, T,Hs

0).
We now start with the first step of the proof. We define

λ1 = ∂uf(0, 0), λ2 = ∂ūf(0, 0), g(u, ū) = f(u, ū) − λ1u− λ2ū,(5.5)



578 JÉRÉMIE SZEFTEL

g vanishes to the second order at 0, and θu is a solution of

i
∂θu

∂t
−Aθu = λ1θu + λ2θu + θg

(
θ1u, θ1u

)
+ [θ,A]u, 0 < t < T, x ∈ R

d.(5.6)

As θ1u is in L∞(0, T,Hs
0), and as g vanishes to the second order at 0, (4.46) and

Lemma 4.7 imply that θu is a solution of

i
∂θu

∂t
−Aθu = λ1θu + λ2θu + θT ∂g

∂u

(
θ1u,θ1u

)θ1u + θT ∂g
∂ū

(
θ1u,θ1u

)θ1u(5.7)

+ θr
(
θ1u, θ1u

)
+ [θ,A]u, 0 < t < T, x ∈ R

d,

where r(θ1u, θ1u) is in L∞(0, T,H
2s−d/2
0 ). As θ1u is in L∞(0, T,Hs

0) and as g vanishes
to the second order at 0, we have seen when proving Lemma 4.7 that ∂ug(θ1u, θ1u)
and ∂ūg(θ1u, θ1u) are in L∞(0, T,Hs

0). Therefore, ∂ug(θ1u, θ1u) and ∂ūg(θ1u, θ1u) are

in L∞(0, T, Σ̃0
s). Items (iii) and (iv) of Proposition 4.11 yield

[θ, T ∂g
∂u (θ1u,θ1u)] = Tlθ + R,(5.8)

[θ, T ∂g
∂ū (θ1u,θ1u)] = T

l̃θ
+ R̃,

where lθ and l̃θ are in L∞(0, T, Σ̃0
s) with support included in the support of ∇θ, and

where R and R̃ are bounded from L∞(0, T,Ht
t′) to L∞(0, T,H

t+s−d/2
t′ ). We define

r1(u, ū) = Rθ1u + R̃θ1u + θr(θ1u, θ1u). Then, (5.7) becomes

i
∂θu

∂t
−Aθu = λ1θu + λ2θu + T ∂g

∂u (θ1u,θ1u)θu + T ∂g
∂ū (θ1u,θ1u)θu(5.9)

+ r1(u, ū) + Tlθθ1u + T
l̃θ
θ1u + [θ,A]u, 0 < t < T, x ∈ R

d,

where r1(u, ū) is in L∞(0, T,H
2s−d/2
0 ).

We want to adapt the strategy of [6] to (5.9). However, we do not know how to
deal with the terms evaluated at θu. In fact, if Jz = z̄ for any complex number z and
if b(x, ξ) is a symbol, we have

Jb(x,D) = bJ(x,D)J, where bJ(x, ξ) = b̄(x,−ξ).(5.10)

So, microlocal information on θu at (x0, ξ0) implies for θu microlocal information at
(x0,−ξ0), but not at (x0, ξ0). Therefore, we now proceed with the second step of the
proof. We look for an operator Q such that v = θu − Qθu satisfies an equation of
type (5.9) without term evaluated at v̄. This is the aim of the following proposition.

Proposition 5.1. Let u be the solution of (5.1) and let s be in Id defined by
(2.10). Assume there exist real functions θ(x) and θ1(x) in S(0, 0) such that θ1 is
equal to 1 on the support of θ and θ1u is in L∞(0, T,Hs

0). Then, there exists an
operator Q with Q = q1(x,D) + Tq2 such that q1(x, ξ) is in S(−2, 0) and q2(t, x, ξ) is

in L∞(0, T, Σ̃−2
s ). Moreover, v = θu−Qθu is in L∞(0, T,Hs

0) and satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩
i
∂v

∂t
−Av = (l1(x,D) + Tl2)v + r2(u, ū)

+(l1θ(x,D) + Tl2
θ
)θ1u + (l̃1θ(x,D) + T

l̃2
θ

)θ1u, 0 < t < T, x ∈ R
d,

v|t=0 = θu0 − (q1(x,D) + Tq2(0,.))θu0 = v0,

(5.11)
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where r2(u, ū) is in L∞(0, T,H
2s−d/2
0 ), l1(x, ξ) is in S(0, 0), l1θ(x, ξ) and l̃1θ(x, ξ) are

in S(1,−1), l2(t, x, ξ), l2θ(t, x, ξ), and l̃2θ(t, x, ξ) are in L∞(0, T, Σ̃0
s), and where the

support of l1θ, l̃1θ, l2θ and of l̃2θ are included in the support of ∇θ. Finally, when
λ2 = ∂ūf(0, 0) = 0, we may take q1(x, ξ) ≡ 0.

The proof of Proposition 5.1 is a consequence of the following lemmas.

Lemma 5.2. Let u be the solution of (5.1) and let s > d/2 such that s−d/2 is not
an integer. Assume there exist real functions θ(x) and θ1(x) in S(0, 0) such that θ1

is equal to 1 on the support of θ and θ1u is in L∞(0, T,Hs
0). Let an operator Q with

Q = q1(x,D)+Tq2 be such that q1(x, ξ) is in S(−2, 0), q2(t, x, ξ) is in L∞(0, T, Σ̃−2
s ),

and ∂tq2(t, x, ξ) is in L∞(0, T, Σ̃0
s). Then, v = θu − Qθu is in L∞(0, T,Hs

0) and
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
i
∂v

∂t
−Av = (l1(x,D) + Tl2)v + (l̃1(x,D) + T

l̃2
)v̄ + r2(u, ū)

+ (l1θ(x,D) + Tl2
θ
)θ1u + (l̃1θ(x,D) + T

l̃2
θ

)θ1u, 0 < t < T, x ∈ R
d,

v|t=0 = θu0 − (q1(x,D) + Tq2(0,.))θu0 = v0,

(5.12)

where r2(u, ū) is in L∞(0, T,H
2s−d/2
0 ), l1(x, ξ) and l̃1(x, ξ) are in S(0, 0), l1θ(x, ξ)

and l̃1θ(x, ξ) are in S(1,−1), l2(t, x, ξ), l̃2(t, x, ξ), l2θ(t, x, ξ), and l̃2θ(t, x, ξ) are in

L∞(0, T, Σ̃0
s), and where the support of l1θ, l̃

1
θ, l

2
θ and of l̃2θ are included in the support

of ∇θ.

Lemma 5.3. There exists q1(x, ξ) in S(−2, 0) such that v satisfies (5.12) with

l̃1(x, ξ) = 0. Moreover, when λ2 = ∂ūf(0, 0) = 0, we may take q1(x, ξ) ≡ 0.

Lemma 5.4. We make the assumptions of Lemma 5.2 and we assume furthermore
that s is in Id defined by (2.10). With the choice of q1(x, ξ) made in Lemma 5.3, there

exists q2(t, x, ξ) in L∞(0, T, Σ̃−2
s ) with ∂tq2(t, x, ξ) in L∞(0, T, Σ̃0

s) such that v satisfies
(5.11).

Proof of Lemma 5.2. ϕ and ψ are real functions and may be chosen even in ξ.
So, J commutes with Sp and Δp. Therefore, (5.10) yields JTp = TpJJ .

As θu is in L∞(0, T,Hs
0) and as v = θu−Qθu, v is in L∞(0, T,Hs

0) by Lemma 4.4
and (i) of Proposition 4.11. As θu satisfies (5.9), v is a solution of

i
∂v

∂t
−Av = λ1θu + λ2θu + T ∂g

∂u (θ1u,θ1u)θu + T ∂g
∂ū (θ1u,θ1u)θu(5.13)

+ r1(u, ū) + Tlθθ1u + T
l̃θ
θ1u + [θ,A]θ1u

− iT∂tq2θu−Qi∂tθu−AQθu, 0 < t < T, x ∈ R
d.

Taking the conjugate of (5.9), we have

i
∂θu

∂t
−Aθu = λ1θu + λ2θu + T ∂g

∂u (θ1u,θ1u)
θu + T ∂g

∂ū (θ1u,θ1u)
θu(5.14)

+ r1(u, ū) + TlJ
θ
θ1u

+T
l̃θ

J θ1u + [θ,A]θ1u, 0 < t < T, x ∈ R
d,
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which together with (5.13) yields

i
∂v

∂t
−Av = (λ1 + T ∂g

∂u (θ1u,θ1u) + Q(λ2 + T ∂g
∂ū (θ1u,θ1u)

))θu(5.15)

+
(
λ2 + T ∂g

∂ū (θ1u,θ1u) − iT∂tq2 −QA + Q
(
λ1 + T ∂g

∂u (θ1u,θ1u)

)
−AQ

)
θu + r1(u, ū) + Qr1(θ1u, θ1u) +

(
Tlθ + QT

l̃θ
J

)
θ1u

+ (T
l̃θ

+ QTlJ
θ
)θ1u + [θ,A]θ1u

+Q[θ,A]θ1u, 0 < t < T, x ∈ R
d.

Proposition 3.2 implies that

[θ,A] = l1θ(x,D) and q1(x,D)[θ,A] = l̃1θ(x,D),

where l1θ(x, ξ) is in S(1,−1) and l̃1θ(x, ξ) is in S(−1,−1), and where l1θ(x, ξ) and l̃1θ(x, ξ)
have their support included in the support of ∇θ. Items (iii) and (iv) of Proposition
4.11 imply that

Tlθ + QT
l̃θ

J = Tl2
θ

+ R,

T
l̃θ

+ QTlJ
θ

+ Tq2 [θ,A] = T
l̃2
θ

+ R̃,
(5.16)

where l2θ and l̃2θ are in L∞(0, T, Σ̃0
s) with support included in the support of ∇θ and

where R and R̃ are bounded from L∞(0, T,Ht
t′) to L∞(0, T,H

t+s−d/2
t′ ). We define

r2(u, ū) = Rθ1u + R̃θ1u + r1
(
θ1u, θ1u

)
+ Qr1

(
θ1u, θ1u

)
.

Equation (5.15) becomes

i
∂v

∂t
−Av =

(
λ1 + T ∂g

∂u (θ1u,θ1u) + Q(λ2 + T ∂g
∂ū (θ1u,θ1u)

)
)
θu(5.17)

+
(
λ2 + T ∂g

∂ū (θ1u,θ1u) − iT∂tq2 −QA + Q
(
λ1 + T ∂g

∂u (θ1u,θ1u)

)
−AQ

)
θu + r2(u, ū) +

(
l1θ(x,D) + Tl2

θ

)
θ1u

+
(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u, 0 < t < T, x ∈ R

d,

where r2(u, ū) is in L∞(0, T,H
2s−d/2
0 ).

Taking the conjugate of v = θu−Qθu, we get v̄ = θu−QJθu. So

(1 −QQJ)θu = v + Qv̄,

(1 −QJQ)θu = v̄ + QJv.
(5.18)

By Propositions 3.2 and 4.11, there exist two operators P and P̃ , with P = p1(x,D)+

Tp2 and P̃ = p̃1(x,D)+T
p̃2

, such that p1(x, ξ) is in S(0, 0), p2(t, x, ξ) is in L∞(0, T, Σ̃0
s),

p̃1(x, ξ) is in S(0, 0), and p̃2(t, x, ξ) is in L∞(0, T, Σ̃0
s) with

P (1 −QQJ) = 1 + R1,

P̃ (1 −QJQ) = 1 + R2,
(5.19)
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where R1 and R2 are bounded from L∞(0, T,Ht
t′) to L∞(0, T,H

t+s−d/2
t′ ). Then, (5.17)

becomes

i
∂v

∂t
−Av = L3v + L̃3v̄ + r3(u, ū) +

(
l1θ(x,D) + Tl2

θ

)
θ1u(5.20)

+
(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u, 0 < t < T, x ∈ R

d,

where

(5.21)

L3 =
(
λ1 + T ∂g

∂u (θ1u,θ1u) + Q(λ2 + T ∂g
∂ū (θ1u,θ1u)

)
)
P

+
(
λ2 + T ∂g

∂ū (θ1u,θ1u) − iT∂tq2 + QA + Q
(
λ1 + T ∂g

∂u (θ1u,θ1u)

)
+ AQ

)
P̃QJ ,

L̃3 =
(
λ2 + T ∂g

∂ū (θ1u,θ1u) − iT∂tq2 + QA + Q(λ1 + T ∂g
∂u (θ1u,θ1u)

) + AQ
)
P̃

+
(
λ1 + T ∂g

∂u (θ1u,θ1u) + Q(λ2 + T ∂g
∂ū (θ1u,θ1u)

)
)
PQ,

r3(u, ū) = r2(u, ū) −
(
λ1 + T ∂g

∂u (θ1u,θ1u) + Q(λ2 + T ∂g
∂ū (θ1u,θ1u)

)
)
R1θu

−
(
λ2 + T ∂g

∂ū (θ1u,θ1u) − iT∂tq2 + QA + Q(λ1 + T ∂g
∂u (θ1u,θ1u)

) + AQ
)
R2θu.

By assumption, ∂tq2(t, x, ξ) is in L∞(0, T, Σ̃0
s). r3(u, ū) is then in L∞(0, T,H

2s−d/2
0 )

by Lemma 4.4 and by (i) of Proposition 4.11. Moreover, by (ii), (iii), and (iv) of
Proposition 4.11, we have

L3 = l1(x,D) + Tl2 + R3,

L̃3 = l̃1(x,D) + T
l̃2

+ R4,
(5.22)

where l1(x, ξ) and l̃1(x, ξ) are in S(0, 0), l2(t, x, ξ) and l̃2(t, x, ξ) are in L∞(0, T, Σ̃0
s),

and R3 and R4 are bounded from L∞(0, T,Ht
t′) to L∞(0, T,H

t+s−d/2
t′ ). Then, (5.20)

becomes

(5.23)

i
∂v

∂t
−Av = l1(x,D)v + Tl2v + l̃1(x,D)v̄ + T

l̃2
v̄ + r4(u, ū)

+
(
l1θ(x,D) + Tl2

θ

)
θ1u +

(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u, 0 < t < T, x ∈ R

d,

where r4(u, ū) = r3(u, ū)+R3θu+R4θu is in L∞(0, T,H
2s−d/2
0 ). This ends the proof

of (5.12).

Proof of Lemma 5.3. To obtain l̃1(x, ξ) = 0, it suffices by (5.19), (5.21), and (5.22)

to find p1(x, ξ) and p̃1(x, ξ) in S(0, 0) and q1(x, ξ) in S(−2, 0) satisfying

p1(x,D)
(
1 − q1(x,D)qJ1 (x,D)

)
= 1 + r1(x,D),

p̃1(x,D)
(
1 − qJ1 (x,D)q1(x,D)

)
= 1 + r2(x,D),(

λ2 + q1(x,D)A + λ1q1(x,D) + Aq1(x,D)
)
p̃1(x,D)

+
(
λ1 + λ2q1(x,D)

)
p1(x,D)q1(x,D) = r3(x,D),

(5.24)
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where r1(x, ξ), r2(x, ξ), and r3(x, ξ) belong to S(−(s − d/2),−(s − d/2)). We look

for p1(x, ξ), p̃1(x, ξ), and q1(x, ξ) with p1(x, ξ) =
∑

j<s−d/2 p
1
−j(x, ξ), p̃1(x, ξ) =∑

j<s−d/2 p̃
1
−j(x, ξ), and q1(x, ξ) =

∑
j<s−d/2 q

1
−j(x, ξ), where p1

j (x, ξ) and p̃1
j (x, ξ)

are in S(−j,−j) and q1
−j(x, ξ) is in S(−2 − j,−j). By Proposition 3.2, it suffices to

look for p1
j (x, ξ), p̃

1
j (x, ξ), and q1

−j(x, ξ), 0 ≤ j < s− d/2, satisfying

p1
−j −

∑
|α|+|β|+k+l+m=j

1

i|α|+|β|α!β!
∂α
ξ p

1
−k∂

α
x

(
∂β
ξ q

1
−l∂

β
x q

1J
−m

)
= δj0,(5.25)

p̃1
−j −

∑
|α|+|β|+k+l+m=j

1

i|α|+|β|α!β!
∂α
ξ p̃

1
−k∂

α
x

(
∂β
ξ q

1J
−l∂

β
x q

1
−m

)
= δj0,(5.26)

and

(5.27)

λ2p̃1
−j −

∑
|α|+|β|+k+l+m=j

1

i|α|+|β|α!β!

(
∂α
ξ q

1
−k∂

α
x

(
∂β
ξ a2−l∂

β
x p̃

1
−m

)

+ ∂α
ξ a2−k∂

α
x

(
∂β
ξ q

1
−l∂

β
x p̃

1
−m

))
+

∑
|α|+k+l=j

1

i|α|α!

(
λ1∂

α
ξ q

1
−k∂

α
x p̃

1
−l + λ1∂

α
ξ p

1
−k∂

α
x q

1
−l

)

+
∑

|α|+|β|+k+l+m=j

1

i|α|+|β|α!β!
λ2∂

α
ξ q

1
−k∂

α
x

(
∂β
ξ p

1
−l∂

β
x q

1
−m

)
= 0.

For j = 0, (5.25), (5.26), and (5.27) imply

(i) p1
0

(
1 − q1

0q
1J
0

)
= 1,

(ii) p̃1
0

(
1 − q1J

0 q1
0

)
= 1,

(iii)
(
λ2 + q1

0a2 + λ1q
1
0 + a2q

1
0

)
p̃1
0 +
(
λ1 + λ2q

1
0

)
p1
0q

1
0 = 0.

(5.28)

(i) and (ii) imply p1
0 = p̃1

0 �= 0. Thus, (iii) yields

λ2

(
q1
0

)2
+ 2(a2 + Re(λ1))q

1
0 + λ2 = 0.(5.29)

We set

q1
0(x, ξ) =

−Re(λ1) − a2(x, ξ) +
(
(Re(λ1) + a2(x, ξ))

2 − |λ2|2
)1/2

λ2

.(5.30)

Thus, q1
0(x, ξ) is in S(−2, 0) and satisfies (5.29). Then, p1

0(x, ξ) is in S(0, 0) by (i) and

˜p1
0(x, ξ) is in S(0, 0) by (ii).

Let 1 ≤ j < s − d/2. Assume we have found q1
−l, p

1
−l, and p̃1

−l, 0 ≤ l ≤ j − 1,
satisfying (5.25), (5.26), and (5.27) for 0 ≤ l ≤ j − 1 and such that q1

−l belongs to

S(−2 − l,−l), and p1
−l and p̃1

−l are in S(−l,−l). Equations (5.25), (5.26), and (5.27)
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for j yield

(i)j
(
1 − q1

0q
1J
0

)
p1
−j − p1

0q
1
0q

1J
−j − p1

0q
1
−jq

1J
0 = α1

j ,

(ii)j
(
1 − q1

0q
1J
0

)
p̃1
−j − p̃1

0q
1
0q

1J
−j − p̃1

0q
1
−jq

1J
0 = α2

j ,

(iii)j
(
λ2 + 2q1

0a2 + λ1q
1
0

)
p̃1
−j +

(
λ1 + λ2q

1
0

)
q1
0p

1
−j

+ s
(
2a2 + 2Re(λ1) + 2λ2q

1
0

)
p1
0q

1
−j = α3

j ,

(5.31)

where α1
j , α2

j , and α3
j are polynomials of the derivatives of q1

−l, p1
−l, and p̃1

−l, 0 ≤
l ≤ j − 1, and are in S(−j,−j) since q1

−l is in S(−2 − l,−l), and p1
−l and p̃1

−l are in

S(−l,−l). Since p1
0 = p̃1

0, (i)j and (ii)j yield

(
1 − q1

0q
1J
0

)(
p1
−j − p̃1

−j

)
= α1

j − α2
j .

So, p1
−j − p̃1

−j = α4
j , where α4

j is a polynomial of the derivatives of q1
−l, p

1
−l, and p̃1

−l,
0 ≤ l ≤ j − 1, and is in S(−j,−j). Using (5.29), we get

(
λ2 + 2q1

0a2 + λ1q
1
0

)
p̃1
−j +

(
λ1 + λ2q

1
0

)
q1
0p

1
−j =

(
λ2 + 2q1

0a2 + λ1q
1
0

)(
p̃1
−j − p1

−j

)
= −

(
λ2 + 2q1

0a2 + λ1q
1
0

)
α4
j = α5

j ,

(5.32)

where α5
j is a polynomial in the derivatives of q1

−l, p
1
−l, and p̃1

−l, 0 ≤ l ≤ j − 1, and is
in S(−j,−j). (iii)j and (5.32) imply that(

2a2 + 2Re(λ1) + 2λ2q
1
0

)
p1
0q

1
−j = α3

j − α5
j .(5.33)

Equation (5.33) gives q1
−j in S(−2− j,−j) as a function of the derivatives of q1

−l, p
1
−l,

and p̃1
−l, 0 ≤ l ≤ j − 1. Then, (i)j gives p1

−j in S(−j,−j) as a function of q1
−j and the

derivatives of q1
−l, p

1
−l, and p̃1

−l, 0 ≤ l ≤ j − 1, and (ii)j gives p̃1
−j in S(−j,−j) as a

function of q1
−j and the derivatives of q1

−l, p
1
−l, and p̃1

−l, 0 ≤ l ≤ j − 1. So, we obtain

p1(x, ξ) and p̃1(x, ξ) in S(0, 0) and q1(x, ξ) in S(−2, 0) satisfying (5.24) by iteration.
Finally, when λ2 = ∂ūf(0, 0) = 0, q1(x, ξ) = 0 and p1(x, ξ) = p̃1(x, ξ) = 1 is a

solution of (5.24). So, we may take q1(x, ξ) ≡ 0.

Proof of Lemma 5.4. Assume that p1(x, ξ), p̃1(x, ξ), and q1(x, ξ) are given as

above. In particular, p1(x, ξ), p̃1(x, ξ), and q1(x, ξ) satisfy (5.24). Moreover, we see
from (5.30) that q1

0(x, ξ) has an asymptotic expansion of the form

q1
0(x, ξ) =

∑
l<s−d/2

q1h
0,−2−l(x, ξ) + r(x, ξ), r(x, ξ) ∈ S(−(s− d/2) − 2, 0),

where q1h
0,−2−l(x, ξ) is in S(−2− l, 0) and is homogeneous of degree −2− l in ξ outside

a neighborhood of ξ = 0. Then, (i) and (ii) of (5.28) imply that

p1
0(x, ξ) =

∑
l<s−d/2

p1h
0,−l(x, ξ) + r(x, ξ), r(x, ξ) ∈ S(−(s− d/2), 0),

p̃1
0(x, ξ) =

∑
l<s−d/2

˜p1h
0,−l(x, ξ) + r(x, ξ), r(x, ξ) ∈ S(−(s− d/2), 0),
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where p1h
0,−l(x, ξ) and ˜p1h

0,−l(x, ξ) are in S(−l, 0) and are homogeneous of degree −l in
ξ outside a neighborhood of ξ = 0.

Similarly, we show by iteration on 0 ≤ j < s− d/2 that

p1
−j(x, ξ) =

∑
l<s−d/2

p1h
j,−l(x, ξ) + r(x, ξ), r(x, ξ) ∈ S(−(s− d/2), 0),

p̃1
−j(x, ξ) =

∑
l<s−d/2

˜p1h
j,−l(x, ξ) + r(x, ξ), r(x, ξ) ∈ S(−(s− d/2), 0),

q1
−j(x, ξ) =

∑
l<s−d/2

q1h
j,−2−l(x, ξ) + r(x, ξ), r(x, ξ) ∈ S(−(s− d/2) − 2, 0),

where p1h
j,−l(x, ξ) and ˜p1h

j,−l(x, ξ) are in S(−l, 0) and are homogeneous of degree −l

in ξ outside a neighborhood of ξ = 0, and q1h
j,−2−l(x, ξ) is in S(−2 − l, 0) and is

homogeneous of degree −2 − l in ξ outside a neighborhood of ξ = 0. Grouping the
various expansions, we obtain that p1(x, ξ), p̃1(x, ξ), and q1(x, ξ) have asymptotic
expansions of the form

p1(x, ξ) =
∑

j<s−d/2

p1h
−j(x, ξ) + r1(x, ξ), r1(x, ξ) ∈ S(−(s− d/2), 0),

p̃1(x, ξ) =
∑

j<s−d/2

p̃1h
−j(x, ξ) + r2(x, ξ), r2(x, ξ) ∈ S(−(s− d/2), 0),

q1(x, ξ) =
∑

j<s−d/2

q1h
−2−j(x, ξ) + r3(x, ξ), r3(x, ξ) ∈ S(−(s− d/2) − 2, 0),

(5.34)

where p1h
−j(x, ξ) and p̃1h

−j(x, ξ) are in S(−j, 0) and are homogeneous of degree −j in ξ

outside a neighborhood of ξ = 0 and q1h
−2−j(x, ξ) is in S(−2−j, 0) and is homogeneous

of degree −2 − j in ξ outside a neighborhood of ξ = 0. In particular, we have

p1h
0 (x, ξ) = 1, p̃1h

0 (x, ξ) = 1, q1h
−2(x, ξ) = − λ2

2a2
.(5.35)

We look for p2(t, x, ξ) and p̃2(t, x, ξ) in L∞(0, T, Σ̃0
s) and q2(t, x, ξ) in

L∞(0, T, Σ̃−2
s ) such that Q, P , and P̃ satisfy (5.19) and l̃2(t, x, ξ) = 0, and such

that ∂tq2(t, x, ξ) is in L∞(0, T, Σ̃0
s). It suffices to find q2

−2−j , p
2
−j , and p̃2

−j , 0 ≤ j <

s − d/2, such that ∂k
t q

2
−2−j(t, x, ξ) is in L∞(0, T,Σ−2−j

s,−j−2k), and ∂k
t p

2
−j(t, x, ξ) and

∂k
t p̃

2
−j(t, x, ξ) are in L∞(0, T,Σ−j

s,−j−2k+4) for 2k < s+ 2− d/2− j. Moreover, by (ii),

(iii), and (iv) of Proposition 4.11, q2
−2−j , p

2
−j , and p̃2

−j must satisfy for 0 ≤ j < s−d/2
the following equalities:

p2
−j = α1

j

(
∂α
x ∂

β
ξ p

1h
−l, ∂

α
x ∂

β
ξ p

2
−l, ∂

α
x ∂

β
ξ q

1h
−2−l, ∂

α
x ∂

β
ξ q

2
−2−l, 0 ≤ l ≤ j − 4

)
,(5.36)

p̃2
−j = α2

j

(
∂α
x ∂

β
ξ p̃

1h
−l, ∂

α
x ∂

β
ξ p̃

2
−l, ∂

α
x ∂

β
ξ q

1h
−2−l, ∂

α
x ∂

β
ξ q

2
−2−l, 0 ≤ l ≤ j − 4

)
,(5.37)
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and

(5.38)

2a2

(
1 + p̃2

0

)
q2
−2−j = α3

j

(
∂α
x ∂

β
ξ a2−l, ∂

α
x ∂

β
ξ p̃

1h
−l, ∂

α
x ∂

β
ξ p̃

2
−l, ∂

α
x ∂

β
ξ q

1h
−2−l, 0 ≤ l ≤ j

)
+α4

j

(
∂α
x ∂

β
ξ a2−l, ∂

α
x ∂

β
ξ p̃

1h
−l, ∂

α
x ∂

β
ξ p̃

2
−l, ∂

α
x ∂

β
ξ q

1h
−2−l, ∂

α
x ∂

β
ξ q

2
−2−l, 0 ≤ l ≤ j − 1

)
+α5

j

(
∂α
x ∂

β
ξ p̃

1h
−l, ∂

α
x ∂

β
ξ p̃

2
−l, ∂

α
x ∂

β
ξ ∂tq

2
−2−l, 0 ≤ l ≤ j − 2

)
+α6

j

(
∂α
x ∂

β
ξ p

1h
−l, ∂

α
x ∂

β
ξ p

2
−l, ∂

α
x ∂

β
ξ p̃

1h
−l, ∂

α
x ∂

β
ξ p̃

2
−l, ∂

α
x ∂

β
ξ q

1h
−2−l, ∂

α
x ∂

β
ξ q

2
−2−l, 0 ≤ l ≤ j − 2

)
+α7

j

(
∂α
x ∂

β
ξ p̃

1h
−l, ∂

α
x ∂

β
ξ p̃

2
−l, ∂

α
x ∂

β
ξ q

1h
−2−l, ∂

α
x ∂

β
ξ q

2
−2−l, 0 ≤ l ≤ j − 4, ∂α

x

∂g

∂u
, ∂α

x

∂g

∂ū

)
,

where the αl
j , 1 ≤ l ≤ 7, are given polynomials with complex coefficients.

Remark. In (5.36), (5.37), and (5.38), we do not write the terms containing
r1(x, ξ), r2(x, ξ), and r3(x, ξ) defined in (5.34). In fact, when r(x, ξ) is in S(−(s −
d/2), 0) and q(x, ξ) is in Σ̃0

s, q(x,D)r(x,D) and r(x,D)q(x,D) are continuous from

Ht
t′ to H

t+s−d/2
t′ by Lemma 4.4 and (i) of Proposition 4.11. So, the terms containing

r1(x, ξ), r2(x, ξ), and r3(x, ξ) can be incorporated in the remainder r2(u, ū) of (5.12).
For j = 0, (5.36), (5.37), and (5.38) imply

p2
0 = 0, p̃2

0 = 0 and 2a2q
2
−2 =

∂g

∂ū

(
θ1u, θ1u

)
.(5.39)

∂k
t p

2
0(t, x, ξ) and ∂k

t p̃
2
0(t, x, ξ) are in L∞(0, T,Σ0

s,−2k+4) for 2k < s + 2 − d/2. By
restricting the support of θ1, we may assume there exists θ2(x) in S(0, 0) equal to
1 on the support of θ1 such that θ2u is in L∞(0, T,Hs

0). Therefore, as s is in Id
and ∂ūg(0, 0) = 0, Corollary 4.6 implies that ∂k

t ∂ūg(θ1u, θ1u) is in L∞(0, T,Hs
−2k) for

2k < s− d/2 + 2. As a2(x, ξ) is in S(2, 0), homogeneous of degree 2 in ξ, and elliptic,
∂k
t q

2
−2(t, x, ξ) is in L∞(0, T,Σ−2

s,−2k) for 2k < s − d/2 + 2 by (5.39), which ends the

construction of p2
0(t, x, ξ), p̃

2
0(t, x, ξ), and q2

−2.

Let 1 ≤ j < s − d/2. Assume q2
−2−l, p

2
−l, and p̃2

−l are given for 0 ≤ l ≤ j − 1
such that they satisfy (5.36), (5.37), and (5.38) for 0 ≤ l ≤ j − 1, and such that
∂k
t q

2
−2−l(t, x, ξ) is in L∞(0, T,Σ−2−l

s,−l−2k), and ∂k
t p

2
−l(t, x, ξ) and ∂k

t p
2
−l(t, x, ξ) are in

L∞(0, T,Σ−l
s,−l−2k+4) for 2k < s + 2 − d/2 − l. Equations (5.36) and (5.37) for j

give p2
−j and p̃2

−j and (5.38) gives q2
−2−j . It remains to show that ∂k

t q
2
−2−j(t, x, ξ)

is in L∞(0, T,Σ−2−j
s,−j−2k), and that ∂k

t p
2
−j(t, x, ξ) and ∂k

t p
2
−j(t, x, ξ) are in L∞(0, T,

Σ−j
s,−j−2k+4) for 2k < s+ 2− d/2− j. By (5.36), (5.37), and (5.38), it suffices to show

that ∂k
t α

1
j (t, x, ξ) and ∂k

t α
2
j (t, x, ξ) are in L∞(0, T,Σ−j

s,−j−2k+4) and that ∂k
t α

l
j(t, x, ξ),

3 ≤ l ≤ 7, is in L∞(0, T,Σ−j
s,−j−2k) for 2k < s + 2 − d/2 − j. Furthermore, αl

j(t, x, ξ),
1 ≤ l ≤ 7, is the sum of the following terms:

1. ∂α
ξ p−k∂

α
x (∂β

ξ q−2−l∂
β
x (q−2−m)) and ∂α

ξ q−2−k∂
α
x ( ∂g

∂ū (θ1u, θ1u)∂β
ξ (p−l)∂

β
x q−2−m),

where |α| + |β| + k + l + m = j − 4,

2. ∂α
ξ ∂tq

2
−2−k∂

α
x p̃−l, ∂

α
ξ q−2−k∂

α
x p−l, and ∂α

ξ q−2−k∂
α
x ( ∂g

∂u (θ1u, θ1u)p−m),

where |α| + k + l = j − 2,

3. ∂α
ξ q−2−k∂

α
x (∂β

ξ a2−l∂
β
xp−m), where |α| + |β| + k + l + m = j,

4. p2
−j and ∂g

∂ū p̃−j ,
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where p−l is either p1h
−l, p

2
−l, p̃

1h
−l, or p̃2

−l, and q−2−l is either q1h
−2−l or q2

−2−l. It suffices
to consider the products of two terms, and using Leibniz rule we have to prove that

S(m′, 0)Σm′′

s,−l′′−2k′′ ⊂ Σ−j
s,−l′′−2k′′ ,

where m′ + m′′ = −j, k′′ ≤ k, l′′ ≤ j,

and Σm′

s,−l′−2k′Σm′′

s,−l′′−2k′′ ⊂ Σ−j
s,−l′−l′′−2k,

where m′ + m′′ = −j, k′ + k′′ = k, l′ + l′′ = j − 2, or j − 4.

(5.40)

By (c) of Lemma 4.10,

S(m′, 0)Σm′′

s,−l′′−2k′′ ⊂ Σm′+m′′

s,−l′′−2k′′ = Σ−j
s,−l′′−2k′′ .(5.41)

We set s′ = −l′ − 2k′ and s′′ = −l′′ − 2k′′. Then, since l′ + l′′ ≤ j − 2 we have

s + s′ + s′′ = s− l′ − l′′ − 2k ≥ s− j − 2k + 2 > 0

and

s+max(s′, s′′) = s+max(−l′−2k′,−l′′−2k′′) ≥ s− l′− l′′−2k ≥ s−j−2k+2 > d/2.

Item (b) of Lemma 4.10 implies that

Σm′

s,−l′−2k′Σm′′

s,−l′′−2k′′ ⊂ Σm′+m′′

s,−l′−l′′−2k′−2k′′ = Σ−j
s,−l′−l′′−2k.(5.42)

Equations (5.41) and (5.42) yield (5.40). So, ∂k
t q

2
−2−j(t, x, ξ) is in L∞(0, T,Σ−2−j

s,−j−2k),

and ∂k
t p

2
−j(t, x, ξ) and ∂k

t p
2
−j(t, x, ξ) are in L∞(0, T,Σ−j

s,−j−2k+4) for 2k < s+2−d/2−j.

Finally, we obtain q2(t, x, ξ) in L∞(0, T, Σ̃−2
s ) such that ∂tq2(t, x, ξ) is in

L∞(0, T, Σ̃0
s) and l̃2(t, x, ξ) = 0 by iteration. Moreover, l̃1(x, ξ) = 0 by Lemma 5.3.

Since v satisfies (5.12) with l̃1(x, ξ) = l̃2(t, x, ξ) = 0, v satisfies (5.11).

We finally proceed with the third and last step of the proof. Adapting the strategy
of [6] to (5.11), we prove a microlocal smoothing effect result for v which in turn yields
a result of microlocal smoothing effect for u.

Let b(x, ξ) be in S(m, k). Proposition 3.2 yields

i[A, b(x,D)] = i[a(x,D), b(x,D)] + i[a1(x,D), b(x,D)](5.43)

= {a, b}(x,D) + e(x,D) + RL,

where L = [max(m + 2, k)] + 1. RL is a bounded operator on L2 and e(x, ξ) in
S(m, k − 2) is defined by

e(x, ξ) =
∑

2≤|α|<L

1

i|α|−1α!

(
∂α
ξ a∂

α
x b− ∂α

x a∂
α
ξ b
)

(5.44)

+
∑

1≤|α|<L

1

i|α|−1α!

(
∂α
ξ a1∂

α
x b− ∂α

x a1∂
α
ξ b
)
.
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Let v a solution of (5.11) and B an operator. Then,

(5.45)

∂t〈Bv, v〉 = 〈B∂tv, v〉 + 〈Bv, ∂tv〉 +

〈
∂B

∂t
v, v

〉
= 〈−iB

(
Av + l1(x,D)v + Tl2v + r2(u, ū) +

(
l1θ(x,D) + Tl2

θ

)
θ1u

+
(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u
)
, v〉 + 〈Bv,−i

(
Av + l1(x,D)v + Tl2v

+r2(u, ū) +
(
l1θ(x,D) + Tl2

θ

)
θ1u +

(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u
)
〉 +

〈
∂B

∂t
v, v

〉
= −i〈[B,A]v, v〉 − i〈B

(
l1(x,D)v + Tl2v + r2(u, ū)

+
(
l1θ(x,D) + Tl2

θ

)
θ1u +

(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u
)
, v〉 + i〈Bv, l1(x,D)v + Tl2v

+r2(u, ū) +
(
l1θ(x,D) + Tl2

θ

)
θ1u +

(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u〉 +

〈
∂B

∂t
v, v

〉
.

Integrating (5.45) for B = b(x,D) between 0 and t and taking the real part,

Re〈b(x,D)v(t), v(t)〉 +

∫ t

0

Re〈c(x,D)v(τ), v(τ)〉dτ(5.46)

≤ Re〈b(x,D)v0, v0〉 +

∫ t

0

Re〈e(x,D)v(τ), v(τ)〉dτ

+

∫ t

0

(|〈b(x,D)(l1(x,D)v + Tl2v + r2(u, ū) +
(
l1θ(x,D) + Tl2

θ

)
θ1u

+
(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u), v〉| + |〈b(x,D)v, l1(x,D)v + Tl2v + r2(u, ū)

+ (l1θ(x,D) + Tl2
θ
)θ1u + (l̃1θ(x,D) + T

l̃2
θ

)θ1u〉|)dτ + C

∫ t

0

‖v‖2
L2dτ,

where c = −{a2, b}. Let μ > 0. Integrating (4.29) for B = tμb(x,D) between 0 and t
and taking the real part,

(5.47)

tμRe〈b(x,D)v(t), v(t)〉 +

∫ t

0

τμRe〈c(x,D)v(τ), v(τ)〉dτ

≤
∫ t

0

τμRe〈e(x,D)v(τ), v(τ)〉dτ +

∫ t

0

μτμ−1〈b(x,D)v(τ), v(τ)〉dτ

+

∫ t

0

τμ(|〈b(x,D)
(
l1(x,D)v + Tl2v + r2(u, ū) +

(
l1θ(x,D) + Tl2

θ

)
θ1u

+
(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u
)
, v〉| + |〈b(x,D)v, l1(x,D)v + Tl2v + r2(u, ū)

+
(
l1θ(x,D) + Tl2

θ

)
θ1u +

(
l̃1θ(x,D) + T

l̃2
θ

)
θ1u〉|)dτ + C

∫ t

0

‖v‖2
L2dτ.

Theorem 5.5 shows that if v0 decreases along the backward bicharacteristic through
(x0, ξ0), then v(t, .) decreases at the same speed for all t > 0 along this curve. The-
orem 5.6 uses the decrease established in Theorem 5.5 to prove a result of regularity
for v at (x0, ξ0) by iteration.
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Theorem 5.5. Let (x0, ξ0) not be trapped backwards. Let there exist two conic
neighborhoods E0 ⊂ E of {ϕ(s, x0, ξ0), s ≤ 0}. Let T > 0, s in Id, and u in
C(0, T, L2(Rd)) be a solution of (5.1). Suppose there is θ(x) in S(0, 0) equal to
1 on E such that θu is in L∞(0, T,Hs

0). Let v in L∞(0, T,Hs
0) be a solution of

(5.11). Moreover, suppose there exists s0(x, ξ) in S(0, 2s − d/2) with support in E
such that (s2

0,−{a2, s
2
0}) satisfies (3.1) and (3.2) and 〈x〉2(2s−d/2) ≤ s2

0(x, ξ) on the
set E0 ∩ {|ξ| ≥ 1}. Suppose v0 satisfies

〈s0(x,D)v0, s0(x,D)v0〉 < +∞.(5.48)

Then, there exists a neighborhood D0 ⊂ E0 containing the backward bicharacteristic
{ϕ(s, x0, ξ0), s ≤ 0} and a pair of symbols (b0, c0),

0 ≤ b0(x, ξ) ∈ S(0, 2(2s− d/2)),
0 ≤ c0(x, ξ) = −{a2, b

0}(x, ξ) ∈ S(1, 2(2s− d/2) − 1),
(5.49)

such that {
(x, ξ) / c0(x, ξ) ≥ 〈x〉2(2s−d/2)−1〈ξ〉

}
(5.50)

∩
{
(x, ξ) / b0(x, ξ) ≥ 〈x〉2(2s−d/2)

}
= D0,

and for all T > 0,

sup
0≤t≤T

‖
√
b0(x,D)v(t)‖2

L2 +

∫ T

0

‖
√
c0(x,D)v(t)‖2

L2dt < +∞.(5.51)

Theorem 5.6. Let (x0, ξ0) not be trapped backwards. Let there exist two conic
neighborhoods E0 ⊂ E of {ϕ(s, x0, ξ0), s ≤ 0}. Let T > 0, s in Id, and u in
C(0, T, L2(Rd)) be a solution of (5.1). Suppose there is θ(x) in S(0, 0) equal to
1 on E such that θu is in L∞(0, T,Hs

0). Let v in L∞(0, T,Hs
0) be a solution of

(5.11). Moreover, suppose there exists s0(x, ξ) in S(0, 2s − d/2) with support in E
such that (s2

0,−{a2, s
2
0}) satisfies (3.1) and (3.2) and 〈x〉2(2s−d/2) ≤ s2

0(x, ξ) on the
set E0∩{|ξ| ≥ 1}. Suppose v0 satisfies (5.48). We define κ = 2(2s−d/2)−[2(2s−d/2)]
and there are nested neighborhoods Dl ⊂ Dl−1 ⊂ · · · ⊂ D0 ⊂ E0 containing the back-
ward bicharacteristic {ϕ(s, x0, ξ0), s ≤ 0} and symbol pairs (bl, cl),

0 ≤ bl(x, ξ) ∈ S(l + κ, 2(2s− d/2) − l − κ),
0 ≤ cl(x, ξ) = −{a2, bl}(x, ξ) ∈ S(l + κ + 1, 2(2s− d/2) − l − κ− 1),

(5.52)

with 0 ≤ l ≤ [2(2s− d/2)] such that for l > 0,

(5.53)

supp(bl(x, ξ)) ⊂
{
(x, ξ)/cl−1(x, ξ) ≥ 〈x〉2(2s−d/2)−l−κ〈ξ〉l+κ

}
∩
{
(x, ξ)/bl−1(x, ξ) ≥ 〈x〉2(2s−d/2)−l−κ+1〈ξ〉l+κ−1

}
= Dl−1,

and for all T > 0,

sup
0≤t≤T

tμl‖
√
bl(x,D)v(t)‖2

L2 +

∫ T

0

tμl‖√cl(x,D)v(t)‖2
L2dt < +∞.(5.54)

The exponents can be chosen μl = l + κ(1 + δ) for any δ > 0. When l = [2(2s −
d/2)] there is an exception to (5.53) that for any choice of ν < −1, we may take
c[2(2s−d/2)](x, ξ) such that

D[2(2s−d/2)] =
{
(x, ξ)/c[2(2s−d/2)](x, ξ) ≥ 〈x〉ν〈ξ〉2(2s−d/2)

}
�= ∅.(5.55)
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Remarks.

1. Suppose u0 is in Hs
0(Rd). Then, the solution u of (5.1) is in L∞(0, T,Hs

0) by
Corollary 4.5. In this case, we can choose θ(x) = 1 in Theorem 5.6.

2. Let b(x, ξ) be one of the symbols in the statement of Theorem 5.5 or 5.6. We
will construct those symbols using Proposition 3.1. Therefore, we can choose
b and c such that

√
b is in S(m/2, k/2) and

√
c is in S((m + 1)/2, (k − 1)/2)

for b ∈ S(m, k) and c ∈ S(m + 1, k − 1).

Proof of Theorem 5.5. Let L be an integer defined by L = [2s − d/2] + 1 and
0 < η < 1/2 defined by η = (2s−d/2)/(2L). Starting with (s2

0,−{a2, s
2
0}) and E0 and

using Proposition 3.1, we construct a sequence of conic neighborhoods E l ⊂ E l−1 ⊂
· · · ⊂ E0 containing the backward bicharacteristic {ϕ(s, x0, ξ0), s ≤ 0} for 1 ≤ l ≤ 2L
and pairs of symbols (b0l , c

0
l ) satisfying (3.1) and (3.2) with b0l (x, ξ) in S(0, 2lη), c0l (x, ξ)

in S(1, 2lη − 1), and

supp(b0l (x, ξ)) ⊂ {(x, ξ) / b0l−1(x, ξ) ≥ 〈x〉2(l−1)η} = E l−1.(5.56)

Equation (5.46) implies

Re 〈 b0l (x,D)v(t), v(t)〉 +

∫ t

0

Re〈c0l (x,D)v(τ), v(τ)〉dτ(5.57)

≤ Re〈b0l (x,D)v0, v0〉 +

∫ t

0

Re〈e(x,D)v(τ), v(τ)〉dτ

+

∫ t

0

(|〈b0l (x,D)(l1(x,D)v + Tl2v + r2(u, ū) + (l1θ(x,D) + Tl2
θ
)θ1u

+ (l̃1θ(x,D) + T
l̃2
θ

)θ1u), v〉| + |〈b0l (x,D)v, l1(x,D)v + Tl2v + r2(u, ū)

+ (l1θ(x,D) + Tl2
θ
)θ1u + (l̃1θ(x,D) + T

l̃2
θ

)θ1u〉|)dτ + C,

where e(x, ξ) is in S(0, 2lη − 2) and hence in S(0, 2(l − 1)η). As suppb0l (x, ξ) ⊂
{s0(x, ξ) ≥ 〈x〉2s−d/2}, Lemma 3.5 and (5.48) yield

|〈b0l (x,D)v0, v0〉| ≤ C(‖s0(x,D)v0‖2
L2 + ‖v0‖2

L2) < +∞.(5.58)

As θ = 1 on the support of b0l (x, ξ), and as the support of l1θ(x, ξ) and of l̃1θ(x, ξ) are
included in the support of ∇θ, Proposition 3.2 implies

∫ t

0

(|〈b0l (x,D)(l1θ(x,D)θ1u(τ) + l̃1θ(x,D)θ1u(τ)), v(τ)〉|

+ |〈b0l (x,D)v(τ), l1θ(x,D)θ1u(τ) + l̃1θ(x,D)θ1u(τ)〉|)dτ

≤ C

∫ T

0

‖u(τ)‖2
L2 < +∞.

(5.59)

Using Proposition 3.2, we have

b0l (x,D) =
√
b0l (x,D)∗

√
b0l (x,D) + e1(x,D),

b0l (x,D)l1(x,D) =
√
b0l (x,D)∗l1(x,D)

√
b0l (x,D) + e2(x,D),

(5.60)
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where e1(x, ξ) and e2(x, ξ) are in S(−1, 2lη − 1) and, hence, in S(0, 2(l − 1)η). So

|〈b0l (x,D)((l1(x,D) + Tl2)v + r2(u, ū) + Tl2
θ
θ1u + T

l̃2
θ

θ1u), v(τ)〉|(5.61)

≤ C(‖
√
b0l (x,D)v(τ)‖2

L2 + ‖
√

b0l (x,D)(Tl2v + r2(u, ū) +Tl2
θ
θ1u+T

l̃2
θ

θ1u)‖2
L2)

+ |〈e1(x,D)(Tl2v + r2(u, ū) + Tl2
θ
θ1u + T

l̃2
θ

θ1u), v(τ)〉|

+ |〈e2(x,D)v(τ), v(τ)〉|.

Moreover, as
√
b0l (x,D)〈x〉−(2s−d/2) is bounded on L2 and 〈x〉2s−d/2r2(u, ū) is in

L∞(0, T, L2), we get

∥∥√b0l (x,D)r2(u, ū)
∥∥2

L2 ≤ C.(5.62)

As l2, l
2
θ , and l̃2θ are in L∞(0, T, Σ̃0

s), as
√
b0l (x, ξ) is in S(0, 2s− d/2) for all l, and as

v and θ1u are in L∞(0, T,Hs
0), Proposition 4.12 implies

∥∥√b0l (x,D)(Tl2v + Tl2
θ
θ1u + T

l̃2
θ

θ1u)
∥∥2

L2 ≤ C.(5.63)

Finally, Lemma 3.4 with b0l and c0l yields

‖
√
b0l (x,D)v(t)‖2

L2 +

∫ t

0

‖
√
c0l (x,D)v(τ)‖2

L2dτ

≤ Re〈b0l (x,D)v(t), v(t)〉 +

∫ t

0

Re〈c0l (x,D)v(τ), v(τ)〉dτ

+ Re〈e3(x,D)v(t), v(t)〉 +

∫ t

0

Re〈e4(x,D)v(τ), v(τ)〉dτ + C,

(5.64)

where e3(x, ξ) and e4(x, ξ) are in S(0, 2(l − 1)η).

When l = 1, e(x,D), e1(x,D), e2(x,D), e3(x,D), and e4(x, ξ) are bounded on
L2. Thus, (5.57), (5.58), (5.59), (5.61), (5.62), (5.63), and (5.64) imply

‖
√

b01(x,D)v(t)‖2
L2 +

∫ t

0

‖
√
c01(x,D)v(τ)‖2

L2dτ(5.65)

≤ C

∫ t

0

‖
√
b01(x,D)v(τ)‖2

L2dτ + C.

Gronwall’s lemma yields

sup
0≤t≤T

‖
√
b01(x,D)v(t)‖2

L2 +

∫ T

0

‖
√
c01(x,D)v(t)‖2

L2dt < +∞.(5.66)

Assume

sup
0≤t≤T

‖
√
b0l−1(x,D)v(t)‖2

L2 +

∫ T

0

‖
√
c0l−1(x,D)v(t)‖2

L2dt < +∞(5.67)



SMOOTHING FOR THE NONLINEAR SCHRÖDINGER EQUATION 591

for 2 ≤ l ≤ L. As e1(x, ξ) and e2(x, ξ) are in S(0, 2(l − 1)η) with support in
{b0l−1(x, ξ) ≥ 〈x〉2(l−1)η} by (5.56), Lemma 3.5 implies

|〈e1(x,D)(Tl2v + r2(u, ū) + Tl2
θ
θ1u + T

l̃2
θ

θ1u), v(τ)〉|
+ |〈e2(x,D)v(τ), v(τ)〉|

≤ C(‖
√
b0l−1(x,D)v‖2

L2 + ‖
√
b0l−1(x,D)r2(u, ū)‖2

L2

+ ‖
√
b0l−1(x,D)(Tl2v + Tl2

θ
θ1u + T

l̃2
θ

θ1u)‖2
L2) + C.

(5.68)

As for (5.62) and (5.63), we have

∥∥√b0l−1(x,D)r2(u, ū)
∥∥2

L2 ≤ C,∥∥√b0l−1(x,D)(Tl2v + Tl2
θ
θ1u + T

l̃2
θ

θ1u)
∥∥2

L2 ≤ C.
(5.69)

Inequality (5.67) implies

∥∥√b0l−1(x,D)v(τ)
∥∥2

L2 ≤ C.(5.70)

Then (5.57), (5.58), (5.59), (5.61), (5.62), (5.63), (5.64), (5.68), (5.69), and (5.70)
yield

‖
√
b0l (x,D)v(t)‖2

L2 +

∫ t

0

‖
√
c0l (x,D)v(τ)‖2

L2dτ

≤ C

∫ t

0

‖
√
b0l (x,D)v(τ)‖2

L2dt + C + Re〈e3(x,D)v(t), v(t)〉(5.71)

+

∫ t

0

Re〈e5(x,D)v(τ), v(τ)〉dt,

where e5(x, ξ) = e(x, ξ) + e4(x, ξ) is in S(0, 2(l − 1)η) with support included in
{b0l−1(x, ξ) ≥ 〈x〉2(l−1)η}. Lemma 3.5 and (5.67) imply

|〈e3(x,D)v(t), v(t)〉| +
∫ t

0

|〈e5(x,D)v(τ), v(τ)〉|dτ

≤ C

(
‖
√
b0l−1(x,D)v(t)‖2

L2 +

∫ t

0

‖
√
b0l−1(x,D)v(τ)‖2

L2dτ

)
+ C < +∞,(5.72)

which together with (5.71) yields

sup
0≤t≤T

‖
√
b0l (x,D)v(t)‖2

L2 +

∫ T

0

‖
√
c0l (x,D)v(t)‖2

L2dt < +∞,(5.73)

using Gronwall’s lemma. Hence, (5.73) is true for 1 ≤ l ≤ 2L by induction. It suffices
to define (b0, c0) = (b0l , c

0
l ) with l = 2L.

Proof of Theorem 5.6. Starting with (b0, c0) given by Theorem 5.5 and

D0 ={(x, ξ)/b0(x, ξ) ≥ 〈x〉2(2s−d/2)} ∩ {(x, ξ)/c0(x, ξ) ≥ 〈x〉2(2s−d/2)−1〈ξ〉},(5.74)

and using Proposition 3.1, we construct a sequence of conic neighborhoods Dl ⊂
Dl−1 ⊂ · · · ⊂ D0 ⊂ D0 ⊂ E0 containing {ϕ(s, x0, ξ0), s ≤ 0} for 0 ≤ l ≤ [2(2s− d/2)]
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and pairs of symbols (bl, cl) satisfying (3.1), (3.2), (5.52), and (5.53). For μl > 0,
(5.47) implies

(5.75)

tμRe〈bl(x,D)v(t), v(t)〉 +

∫ t

0

τμRe〈cl(x,D)v(τ), v(τ)〉dτ

≤
∫ t

0

τμRe〈e(x,D)v(τ), v(τ)〉dτ +

∫ t

0

μτμ−1〈bl(x,D)v(τ), v(τ)〉dτ

+

∫ t

0

τμ(|〈bl(x,D)(l1(x,D)v + Tl2v + r2(u, ū) + (l1θ(x,D) + Tl2
θ
)θ1u + (l̃1θ(x,D)

+T
l̃2
θ

)θ1u), v〉| + |〈bl(x,D)v, l1(x,D)v + Tl2v + r2(u, ū) + (l1θ(x,D) + Tl2
θ
)θ1u

+ (l̃1θ(x,D) + T
l̃2
θ

)θ1u〉|)dτ + C,

where e(x, ξ) is in S(κ+l, 2(2s−d/2)−l−κ−2) and hence in S(κ+l, 2(2s−d/2)−l−κ).

As θ = 1 on the support of bl(x, ξ), and as the support of l1θ(x, ξ) and of l̃1θ(x, ξ) are
included in the support of ∇θ, Proposition 3.2 yields∫ t

0

(|〈τμlbl(x,D)(l1θ(x,D)θ1u(τ) + l̃1θ(x,D)θ1u(τ)), v(τ)〉|

+ |〈τμlbl(x,D)v(τ), l1θ(x,D)θ1u(τ)(5.76)

+ l̃1θ(x,D)θ1u(τ)〉|)dτ ≤ C

∫ T

0

‖u(τ)‖2
L2 < +∞.

Moreover, Lemma 3.4 with bl and cl implies

tμl‖
√
bl(x,D)v(t)‖2

L2 +

∫ t

0

τμl‖√cl(x,D)v(τ)‖2
L2dτ

≤ Re〈tμlbl(x,D)v(t), v(t)〉 +

∫ t

0

Re〈τμlcl(x,D)v(τ), v(τ)〉dτ(5.77)

+ Re〈tμle2(x,D)v(t), v(t)〉 +

∫ t

0

Re〈τμle3(x,D)v(τ), v(τ)〉dτ + C,

where e2(x, ξ) belongs to S(l + κ− 1, 2(2s− d/2)− l− κ− 1) and e3(x, ξ) belongs to
S(l + κ, 2(2s− d/2) − l − κ− 2).

We define a symbol dl(x, ξ). If l = 0, as b0(x, ξ) is in S(κ, 2(2s−d/2)−κ) and its
support is in D0 defined by (5.74), there exists d0(x, ξ) in S(κ, 2(2s− d/2) − κ) with√
d0(x, ξ) ∈ S(κ/2, (2s− d/2) − κ/2) such that d0(x, ξ) has its support in D0 and

supp(b0(x, ξ)) ⊂ {(x, ξ)/d0(x, ξ) ≥ 〈x〉2(2s−d/2)−κ〈ξ〉κ}.(5.78)

If l ≥ 1, as bl(x, ξ) is in S(l+κ, 2(2s−d/2)− l−κ) and has its support in {cl−1(x, ξ) ≥
〈x〉2(2s−d/2)−l−κ〈ξ〉l+κ}, there exists dl(x, ξ) in S(l + κ, 2(2s − d/2) − l − κ) with√
dl(x, ξ) ∈ S((l + κ)/2, (2s− d/2) − (l + κ)/2) such that

supp(bl(x, ξ)) ⊂ {(x, ξ) / dl(x, ξ) ≥ 〈x〉2(2s−d/2)−l−κ〈ξ〉l+κ}(5.79)

and

supp(dl(x, ξ)) ⊂ {(x, ξ) / cl−1(x, ξ) ≥ 〈x〉2(2s−d/2)−l−κ〈ξ〉l+κ}.(5.80)
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By (5.78) and (5.79), Lemma 3.5 implies

(5.81)

|〈bl(x,D)(l1(x,D)v + Tl2v + r2(u, ū) + Tl2
θ
)θ1u + T

l̃2
θ

)θ1u), v(τ)〉|

≤ C(‖
√
dl(x,D)v(τ)‖2

L2 + ‖
√
dl(x,D)r2(u, ū)‖2

L2

+ ‖
√
dl(x,D)Tl2v‖2

L2 + ‖
√
dl(x,D)(Tl2

θ
θ1u + T

l̃2
θ

θ1u)‖2
L2).

Moreover,
√
dl(x,D)〈x〉(κ+l)/2−(2s−d/2)(1 + |D|2)−(κ+l)/4 is bounded on L2, and (1 +

|D|2)(κ+l)/4〈x〉2s−d/2−(κ+l)/2r2(u, ū) is in L2 using Proposition 4.3 and the fact that

r2(u, ū) is in L∞(0, T,H
2s−d/2
0 ). So

‖
√
dl(x,D)r2(u, ū)‖2

L2 ≤ C.(5.82)

l2θ and l̃2θ are in L∞(0, T, Σ̃0
s) and they vanish in a neighborhood of the support of√

dl(x, ξ),
√
dl(x, ξ) is in S((l + κ)/2, (2s − d/2) − (l + κ)/2), and v and θ1u are in

L∞(0, T,Hs
0). Therefore, Proposition 4.12 implies that

‖
√
dl(x,D)(Tl2

θ
θ1u + T

l̃2
θ

θ1u)‖2
L2 ≤ C.(5.83)

Finally, Proposition 4.12 implies that

‖
√
dl(x,D)Tl2v‖2

L2 ≤ C

⎛
⎝ ∑

1≤j≤N

‖
√
djl (x,D)v‖2

L2 + 1

⎞
⎠ ,(5.84)

where djl (x, ξ) is in S((l + κ)/2, (2s− d/2)− (l + κ)/2) and its support is included in
the support of

√
dl(x, ξ). Inequalities (5.81), (5.82), (5.83), and (5.84) yield

(5.85)

|〈bl(x,D)(l1(x,D)v + Tl2v + r2(u, ū) + Tl2
θ
θ1u + T

l̃2
θ

θ1u), v(τ)〉|

≤ C

⎛
⎝‖
√
dl(x,D)v(τ)‖2

L2 +
∑

1≤j≤N

‖djl (x,D)v(τ)‖2
L2

⎞
⎠+ C.

First we prove (5.54) when l = 0. Propositions 3.2 and 3.3 imply the existence of
e4(x, ξ) in S(κ, 2(2s− d/2) − κ) with support in D0 such that√

d0(x,D)∗
√
d0(x,D) +

∑
1≤j≤N

dj0(x,D)∗dj0(x,D) = e4(x,D),(5.86)

which together with (5.75), (5.76), (5.77), and (5.85) yields

tμ0‖
√
b0(x,D)v(t)‖2

L2 +

∫ t

0

τμ0‖√c0(x,D)v(τ)‖2
L2dτ(5.87)

≤ Re〈tμ0e2(x,D)v(t), v(t)〉+

∫ t

0

Re〈τμ0e5(x,D)v(τ), v(τ)〉dτ

+

∫ t

0

μ0Re〈τμ0−1b0(x,D)v(τ), v(τ)〉dτ + C,
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where e5(x, ξ) = e(x, ξ)+e3(x, ξ)+e4(x, ξ). As e2(x, ξ) is in S(κ−1, 2s−d/2−κ−1)
and has its support in D0, Lemma 3.5 and Theorem 5.5 yield

Re〈e2(x,D)v(t), v(t)〉 ≤ C‖
√
b0(x,D)v(t)‖2

L2 + C < +∞.(5.88)

We choose μ0 such that κ < μ0 < 1, which implies that t−(1−μ0)/(1−κ) is locally
integrable in t. As e5(x, ξ) and b0(x, ξ) have their support in D0 defined by (5.74), we
have

|tμ0e5(x, ξ)| ≤ C(b0(x, ξ))1−κ(tμ0/κc0(x, ξ))κ ≤ C(b0(x, ξ) + tμ0/κc0(x, ξ)),

|tμ0−1b0(x, ξ)| ≤ C(t−(1−μ0)/(1−κ)b0(x, ξ))1−κ(c0(x, ξ))κ

≤ C(t−(1−μ0)/(1−κ)b0(x, ξ) + c0(x, ξ)),

and Lemma 3.4 with C(b0(x, ξ) + tμ0/κc0(x, ξ)) − tμ0e5(x, ξ) and C(b0(x, ξ) +
t(1−μ0)/(1−κ)c0(x, ξ)) − tκ/(1−κ)(1−μ0)b0(x, ξ) implies

∫ t

0

Re〈τμ0e5(x,D)v(τ), v(τ)〉dτ +

∫ t

0

μ0Re〈τμ0−1b0(x,D)v(τ), v(τ)〉dτ(5.89)

≤ C sup
0≤t≤T

Re〈b0(x,D)v(t), v(t)〉+C

∫ t

0

Re〈c0(x,D)v(τ), v(τ)〉dτ

+C sup
0≤t≤T

Re〈e6(t, x,D)v(t), v(t)〉 + C,

where e6(t, x, ξ) is in S(0, 2(2s − d/2)) with seminorms bounded independently of t
for 0 ≤ t ≤ T and with support in D0. Lemma 3.5 and Theorem 5.5 yield

sup
0≤t≤T

Re〈b0(x,D)v(t), v(t)〉 +

∫ T

0

Re〈c0(x,D)v(τ), v(τ)〉dτ(5.90)

+ sup
0≤t≤T

Re〈e6(t, x,D)v(t), v(t)〉 < +∞,

which together with (5.87), (5.88), and (5.89) implies

sup
0≤t≤T

tμ0‖
√
b0(x,D)v(t)‖2

L2 +

∫ T

0

tμ0‖√c0(x,D)v(t)‖2
L2dt < +∞.(5.91)

We define μl = μ0 + l. Assume

sup
0≤t≤T

tμl−1‖
√
bl−1(x,D)v(t)‖2

L2 +

∫ T

0

tμl−1‖√cl−1(x,D)v(t)‖2
L2dt < +∞(5.92)

for 1 ≤ l ≤ [2(2s − d/2)]. As
√
dl(x,D)∗

√
dl(x,D) +

∑
1≤j≤N djl (x,D)∗djl (x,D) is

in Op(S(l + κ, 2(2s − d/2) − l − κ)) and as its symbol is supported in {cl−1(x, ξ) ≥
〈x〉2(2s−d/2)−l−κ〈ξ〉l+κ}, Lemma 3.5 and (5.92) imply

∫ t

0

τμl

⎛
⎝‖
√
dl(x,D)v(τ)‖2

L2 +
∑

1≤j≤N

‖djl (x,D)v(τ)‖2
L2

⎞
⎠ dτ

≤ C

∫ t

0

τμl−1‖√cl−1(x,D)v(τ)‖2
L2dτ + C < +∞.

(5.93)
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Then (5.75), (5.76), (5.77), (5.85), and (5.93) yield

tμl‖
√
bl(x,D)v(t)‖2

L2 +

∫ t

0

τμl‖√cl(x,D)v(τ)‖2
L2dτ(5.94)

≤ Re〈tμle2(x,D)v(t), v(t)〉+

∫ t

0

Re〈τμle5(x,D)v(τ), v(τ)〉dτ

+

∫ t

0

μlRe〈τμl−1bl(x,D)v(τ), v(τ)〉dτ + C.

bl(x, ξ) and e5(x, ξ) are in S(l + κ, 2(2s − d/2) − l − κ) and have their support in
{cl−1(x, ξ) ≥ 〈x〉2(2s−d/2)−l−κ〈ξ〉l+κ}. e2(x, ξ) is in S(l+κ−1, 2(2s−d/2)− l−κ−1)
and has its support in {bl−1(x, ξ) ≥ 〈x〉2(2s−d/2)−l−κ+1〈ξ〉l+κ−1}. Thus, Lemma 3.5
implies

Re〈tμle2(x,D)v(t), v(t)〉+

∫ t

0

Re〈τμle5(x,D)v(τ), v(τ)〉dτ(5.95)

+

∫ t

0

μlRe〈τμl−1bl(x,D)v(τ), v(τ)〉dτ ≤ C sup
0≤t≤T

tμl−1‖
√
bl−1(x,D)v‖2

L2

+C

∫ t

0

τμl−1‖√cl−1(x,D)v(τ)‖2
L2dτ + C,

which together with (5.94) and (5.92) implies

tμl‖
√
bl(x,D)v(t)‖2

L2 +

∫ t

0

τμl‖√cl(x,D)v(τ)‖2
L2dτ ≤ C.(5.96)

Thus, (5.54) is true for all 0 ≤ l ≤ [2(2s− d/2)] by induction.
We can now prove Theorems 2.3 and 2.4.
Proof of Theorem 2.3. We first check that v0 satisfies (5.48). As E satisfies

(2.7), Proposition 3.1 implies the existence of a conic neighborhood E0 ⊂ E of
{ϕ(s, x0, ξ0), s ≤ 0} and of s0(x, ξ) in S(0, 2s − d/2) with support in E such that
(s2

0,−{a2, s
2
0}) satisfies (3.1) and (3.2) and 〈x〉2(2s−d/2) ≤ s2

0(x, ξ) on the set E0∩{|ξ| ≥
1}. As θu0 is in Hs

0 , as q2(0, x, ξ) is in Σ̃0
s and as s0(x, ξ) is in S(0, 2s− d/2), we have

‖s0(x,D)Tq2(0,.)θu0‖L2 ≤ C(5.97)

by Proposition 4.12. Moreover, by the assumptions of Theorem 2.3, s(x, ξ) is in
S(0, 2s− d/2) and 〈x〉2(2s−d/2) ≤ s2(x, ξ) on the set E . As θ is in S(0, 0), Lemma 3.5
and (2.11) yield

‖s0(x,D)θu0‖L2 ≤ C‖s(x,D)u0‖L2 ≤ C,(5.98)

and as q1(x, ξ) and θ are in S(0, 0), Lemma 3.5 and (2.12) yield

‖s0(x,D)q1(x,D)θu0‖L2 ≤ C‖s(x,D)u0‖L2 ≤ C.(5.99)

Finally, as v0 = θu0 − (q1(x,D) +Tq2(0,.))θu0, (5.98), (5.97), and (5.99) imply that v0

satisfies (5.48). So, the assumptions of Theorem 5.6 are satisfied.
For l = [2(2s − d/2)], the symbol bl(x, ξ) of Theorem 5.6 is in S(2(2s − d/2), 0).

Therefore,
√
bl(x, ξ) is in S(2s−d/2, 0) and hence in S2s−d/2. Inequality (5.54) yields

for all 0 < t ≤ T ,

‖
√
bl(x,D)v(t)‖L2 < +∞,(5.100)
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which implies that v(t, .) is microlocally H2s−d/2 in (x0, ξ0) for all 0 < t ≤ T since√
bl(x, ξ) is elliptic at (x0, ξ0).

Moreover, for l = [2(2s− d/2)], the symbol cl(x, ξ) of Theorem 5.6 is in S(2(2s−
d/2) + 1,−1). Therefore,

√
cl(x, ξ) is in S(2s − d/2 + 1/2,−1/2) and hence in

S2s−d/2+1/2. Inequality (5.54) yields for all 0 < t ≤ T and for all δ > 0

∫ T

0

t2(2s−d/2)+δ‖√cl(x,D)v(t, .)‖2
L2dt < +∞.(5.101)

Assume that u(t, .) is microlocally Hσ at (x0,−ξ0) for a time t, 0 < t ≤ T .
So, θu(t, .) is microlocally Hσ at (x0, ξ0). As q1(x, ξ) is in S−2 and q2(t, x, ξ) is in
Bony’s class Σ−2

s−d/2, (q1(x,D)+Tq2(t,.))θu is microlocally Hσ+2 at (x0, ξ0). Therefore,

u(t, .) is microlocally Hmin(σ+2,2s−d/2) at (x0, ξ0) since v(t, .) is microlocally H2s−d/2

at (x0, ξ0) and θu = v + (q1(x,D) + Tq2)θu.
Assume there exists a pseudodifferential operator whose symbol c(x, ξ) is in S0

and is elliptic at (x0,−ξ0) such that

∫ T

0

t2(2s−d/2)+δ‖c(x,D)u(t, .)‖2
Hσdt < +∞(5.102)

for a δ > 0. We may assume that c(x, ξ) is equal to 1 in a conic neighborhood of
(x0,−ξ0) and that θ is equal to 1 in a neighborhood of the support of cJ(x, ξ). We
choose c1(x, ξ) in S(0, 0) with compact support in x, such that

√
cl(x, ξ) is elliptic

and cJ(x, ξ) ≡ 1 in a neighborhood of the support of c1(x, ξ). Lemma 3.5 and (5.101)
yield ∫ T

0

t2(2s−d/2)+δ‖c1(x,D)v(t, .)‖2
H2s−d/2+1/2dt(5.103)

≤
∫ T

0

t2(2s−d/2)+δ‖√cl(x,D)v(t, .)‖2
L2dt < +∞.

Moreover,

c1(x,D)Qθu = c1(x,D)QcJ(x,D)θu + c1(x,D)Q(1 − cJ(x,D))θu(5.104)

= c1(x,D)Qθc(x,D)u + c1(x,D)Q[cJ(x,D), θ]ū

+ c1(x,D)Q(1 − cJ(x,D))θu.

θ is equal to 1 in a neighborhood of the support of cJ(x, ξ) and cJ(x, ξ) ≡ 1 in a
neighborhood of the support of c1(x, ξ). Thus, [cJ(x,D), θ] and c1(x,D)q1(x,D)(1 −
cJ(x,D)) are bounded from L2 to H2s−d/2+1/2. Moreover, the symbolic calculus of
Bony implies that c1(x,D)Tq2(1 − cJ(x,D)) is bounded from L2 to H2s−d/2+2. So,
(5.104) yields

∫ T

0

t2(2s−d/2)+δ‖c1(x,D)Qθu‖2
Hmin(σ+2,2s−d/2+1/2)dt(5.105)

≤
∫ T

0

t2(2s−d/2)+δ‖c1(x,D)Qθc(x,D)u‖2
Hσ+2dt + C

≤ C

(∫ T

0

t2(2s−d/2)+δ‖c(x,D)u‖2
Hσdt + 1

)
< +∞.
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As θu = v + (q1(x,D) + Tq2)θu, (5.103) and (5.105) imply that∫ T

0

t2(2s−d/2)+δ‖c1(x,D)u(t, .)‖2
Hmin(σ+2,2s−d/2+1/2)dt < +∞,(5.106)

since θ is equal to 1 in a neighborhood of the support of c1(x, ξ).
Finally, assume that ∂ūf(0, 0) = 0. Then, we may choose q1(x, ξ) ≡ 0 by Proposi-

tion 5.1. Therefore, inequality (5.99) is always satisfied. So, we do not need assump-
tion (2.12).

Proof of Theorem 2.4. As θu is in L∞(0, T,Hs), u(t, .) is microlocally Hs in
(x0, ξ0) and in (x0,−ξ0) for all 0 < t ≤ T . Moreover, there exists c1(x, ξ) and c2(x, ξ)
in S0, with c1(x, ξ) elliptic in (x0, ξ0) and c2(x, ξ) elliptic in (x0,−ξ0), such that∫ T

0

t2(2s−d/2)+δ‖cj(x,D)u(t, .)‖2
Hsdt < +∞, j = 1, 2.(5.107)

Starting from σ = s, it suffices to use Theorem 2.3 with (x0, ξ0) and with (x0,−ξ0)
as many times as needed.
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EXISTENCE, UNIQUENESS, AND VARIATIONAL METHODS FOR
SCATTERING BY UNBOUNDED ROUGH SURFACES∗

SIMON N. CHANDLER-WILDE† AND PETER MONK‡

Abstract. In this paper we study, via variational methods, the problem of scattering of time
harmonic acoustic waves by an unbounded sound soft surface. The boundary ∂D is assumed to lie
within a finite distance of a flat plane and the incident wave is that arising from an inhomogeneous
term in the Helmholtz equation whose support lies within some finite distance of the boundary
∂D. Via analysis of an equivalent variational formulation, we provide the first proof of existence
of a unique solution to a three-dimensional rough surface scattering problem for an arbitrary wave
number. Our method of analysis does not require any smoothness of the boundary which can, for
example, be the graph of an arbitrary bounded continuous function. An attractive feature is that all
constants in a priori bounds, for example the inf-sup constant of the sesquilinear form, are bounded
by explicit functions of the wave number and the maximum surface elevation.

Key words. nonsmooth boundary, radiation condition, a priori estimate, inf-sup constant,
Helmholtz equation
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1. Introduction. This paper is concerned with the development and analysis
of a variational formulation for scattering by unbounded surfaces, in particular, with
the study of what are termed rough surface scattering problems in the engineering
literature. We shall use the phrase rough surface to denote surfaces which are a (usu-
ally nonlocal) perturbation of an infinite plane surface such that the whole surface
lies within a finite distance of the original plane. Such problems arise frequently in
applications, for example in modeling acoustic and electromagnetic wave propagation
over outdoor ground and sea surfaces, and are the subject of intensive studies in the
engineering literature, with a view to developing both rigorous methods of computa-
tion and approximate, asymptotic, or statistical methods (see, e.g., the reviews and
monographs by Ogilvy [23], Voronovich [26], Saillard and Sentenac [24], Warnick and
Chew [27], and de Santo [13]).

In this paper we will focus on a particular, typical problem of the class, which
models time harmonic acoustic scattering by a sound soft rough surface. In particular,
we seek to solve the Helmholtz equation with wave number k > 0, Δu + k2u = g, in
the perturbed half-plane or half-space D⊂R

n, n = 2, 3. We suppose that the homo-
geneous Dirichlet boundary condition u = 0 holds on ∂D, and a suitable radiation
condition is imposed to select a unique solution to this problem. We shall give in
the next section complete details about our assumptions on D and on the radiation
condition, but we now note that the inhomogeneous term g might be in L2(D) with
bounded support, or be a more general distribution. In addition the boundary ∂D
may or may not be the graph of a function.
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The main results of the paper are the following. In the next section we formulate
the boundary value problem precisely, in the case when g ∈ L2(D) with support
lying within a finite distance of ∂D. We also establish the equivalent variational
formulation that we use and study in this paper. As part of the boundary value
problem formulation we require the radiation condition often used in a formal manner
in the rough surface scattering literature (e.g., [13]) that, above the rough surface and
the support of g, the solution can be represented in integral form as a superposition of
upward traveling and evanescent plane waves. This radiation condition is equivalent
to the upward propagating radiation condition proposed for two-dimensional (2D)
rough surface scattering problems in [11], and has recently been analyzed carefully
in the 2D case by Arens and Hohage [5]. Arens and Hohage also propose a further
equivalent radiation condition (a “pole condition”).

In section 3 we analyze the variational formulation in the long wavelength case,
showing that the sesquilinear form is then elliptic, so that unique existence of solution
and explicit bounds on the solution in terms of the data g follow from the Lax–Milgram
lemma.

In section 4 we show that, for an arbitrary wave number k, the variational prob-
lem and the equivalent boundary value problem remain well-posed in the case when
the rough surface has the property that if x lies in D, then every point above x lies in
D. Our methods of argument, which depend on an a priori estimate established via a
Rellich-type identity, application of the generalized Lax–Milgram theory of Babuška,
and results on approximation of nonsmooth by smooth domains, lead to simple, ex-
plicit lower bounds on the inf-sup constant of the sesquilinear form and corresponding
explicit bounds on the solution in terms of the data g. We note that, in contrast to
earlier uniqueness and existence results for rough surface scattering problems, no ad-
ditional regularity conditions on the boundary are required; our theorem applies, for
example, whenever the boundary ∂D is the graph of a bounded continuous function.

The results and methods of our paper are closest to those of Kirsch [20] and
Elschner [16]. These authors study the same problem tackled in this paper, but con-
sider the 2D diffraction grating case when ∂D= {(x1, f(x1)) : x1 ∈ R} with f periodic
and g quasi-periodic (i.e., g(x)eiαx1 is periodic with the same period as f for some
α ∈ R). The variational formulation we propose for the rough surface scattering prob-
lem is analogous to that considered for the periodic case in [20, 16]. We note, however,
that the periodicity simplifies the mathematical arguments considerably compared to
the case we study; the variational formulation is over a bounded region, part of a sin-
gle period of the domain, so that compact embedding arguments can be applied and
the sesquilinear form which arises satisfies a G̊arding inequality for all wave numbers.
We note, moreover, that the methods of [20, 16] require f to be at least Lipschitz
continuous, and do not lead to explicit bounds on stability constants.

The methods of argument used to prove uniqueness in [20, 16] derive, in part,
from Alber [2] and Cadilhac [7]. In fact the argument outlined in [7] for the 2D
diffraction grating problem could be adapted to prove uniqueness of solution for our
boundary value problem in the case when ∂D is the graph of a sufficiently smooth
function. However, we will prefer to establish uniqueness via an a priori bound which
also leads to an existence result.

In the general 2D case when f is not periodic, existence of a unique solution to the
boundary value problem we study has been established via integral equation methods
in the case that f ∈ C2(R) (∂D is C2), and well-posedness of the integral equation
formulation has been established in a variety of function spaces [11, 10, 9, 3, 4]. The
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extension to the case when ∂D is Lipschitz is outlined in Zhang [28]. To date, however,
the only existence result [8] for the three-dimensional rough surface problem, derived
via integral equation methods, applies only to the Dirichlet boundary value problem
for the Helmholtz equation when the rough surface is the graph of a sufficiently smooth
function with sufficiently small surface slope, and deals only with the case when the
wave number is sufficiently small.

In another, somewhat related body of work existence of solution to the Dirichlet
problem for the Helmholtz equation, with ∂D unbounded, is established by the lim-
iting absorption method, via a priori estimates in weighted Sobolev spaces (see Eidus
and Vinnik [14], Vogelsang [25], Minskii [22], and references therein). The results
obtained apply to the problem considered in this paper, but only if we assume that
the rough surface approaches a flat boundary sufficiently rapidly at infinity and/or
that the sign of x · ν(x) is constant on ∂D outside a large sphere, where ν(x) denotes
the unit normal at x ∈ ∂D. Moreover, this body of work requires that g decrease
sufficiently rapidly at infinity so that a Rellich–Sommerfeld radiation condition is
satisfied.

An attractive feature of our results is the explicit bounds we obtain on the solution
in terms of the data g, which exhibit explicitly dependence of constants on the wave
number and on the geometry of the domain. In part our methods of argument to
obtain our bounds are inspired by the work of Melenk [21] and by the closely related
work of Cummings and Feng [12]. In these publications bounds, exhibiting explicit
dependence on the wave number, are developed for the impedance boundary value
problem for the Helmholtz equation in a bounded domain which is either convex or
smooth and star-like.

In this paper we propose a variational formulation and exploit it as a theoretical
tool to study the well-posedness of the boundary value problem. We anticipate that
the variational formulation will also be very suitable for numerical solution via finite
element discretization, as are similar formulations for the 2D diffraction grating case
[6, 15, 16]. Moreover, the explicit bounds we obtain should be helpful in establishing
the dependence, on the wave number and the domain, of the constants in a priori
error estimates for finite element schemes. These numerical analysis aspects will be
considered in a future paper.

2. The boundary value problem and variational formulation. In this
section we shall define some notation related to the rough surface scattering problem
and write down the boundary value problem and equivalent variational formulation
that will be analyzed in later sections. For x = (x1, . . . , xn) ∈ R

n (n = 2, 3) let
x̃ = (x1, . . . , xn−1) so that x = (x̃, xn). For H ∈ R let UH := {x : xn > H} and
ΓH := {x : xn = H}. Let D ⊂ R

n be a connected open set such that for some
constants f− < f+ it holds that

Uf+ ⊂ D ⊂ Uf− .(2.1)

This definition of D (the domain of the acoustic field) allows the rough surface Γ = ∂D
to be more general than the graph of a function. The variational problem will be posed
on the open set SH := D \ UH , for some H ≥ f+, and we denote the unit outward
normal to SH by ν.

Given a source g ∈ L2(D) of compact support, the problem we wish to analyze
is to find an acoustic field u such that

Δu + k2u = g in D,(2.2)
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u = 0 on Γ,(2.3)

and such that u satisfies an appropriate radiation condition.
This problem has been studied in a rigorous manner by integral equation methods

[10, 9, 30, 3, 4, 28, 8] in the case when Γ is the graph of a sufficiently smooth-bounded
function f so that

Γ =
{
(x̃, xn) : xn = f(x̃), x̃ ∈ R

n−1
}

(2.4)

with f at least bounded and continuous. The most general results are restricted to the
2D case [10, 9, 30, 3, 4, 28]. In the case n = 2 with (2.2) understood in a distributional
sense, a solution u ∈ C1(D) ∩ C(D) is sought such that u is bounded in every strip
SH , H > f+, and such that u satisfies the upward propagating radiation condition
(UPRC) proposed in [10], which states that

u(x) = 2

∫
ΓH

∂Φ(x, y)

∂yn
u(y) ds(y), x ∈ UH ,(2.5)

for all H such that the support of g is contained in SH . Here the fundamental solution
of the Helmholtz equation Φ is given by

Φ(x, y) =

⎧⎪⎨
⎪⎩

i

4
H

(1)
0 (k|x− y|), n = 2,

exp(ik|x− y|)
4π|x− y| , n = 3,

for x, y ∈ R
n, x �= y, where H

(1)
0 is the Hankel function of the first kind of order zero.

Under the assumption that Γ is Lipschitz (i.e., that f ∈ C0,1(Rn−1)), and that Γ is
piecewise Lyapunov, uniqueness of solution is shown in the 2D case in [11].

To show existence of solution to (2.2)–(2.5) one approach is to first convert the
boundary value problem to an equivalent Dirichlet boundary value problem. To do
this we need to split u into an incident and scattered field. Introducing the Dirichlet
Green’s function for the half-space Ua, defined by

Ga(x, y) = Φ(x, y) − Φ(x, y′a),

where y′a is the reflection of y in Γa, we define the incident field ui
a, for a < f−, by

ui
a(x) = −

∫
D

Ga(x, y)g(y) dy.

Then ui
a ∈ H2

loc(Ua) and satisfies (2.2) in a distributional sense in Ua. Choosing
a < f−, we write u as

u = ui
a + us,(2.6)

and seek the scattered field us ∈ C2(D) ∩ C(D) that satisfies

Δus + k2us = 0 in D,

us = G on Γ,

where G := −ui
a|Γ. Then u, given by (2.6), satisfies (2.2)–(2.5) provided us satisfies

(2.5).
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In the case n = 2 and f ∈ C1,1(R) it has been shown, for arbitrary bounded and
continuous data G, that this Dirichlet problem for us has exactly one solution that
satisfies the radiation condition (2.5) [10]. Moreover, in the case that G = −ui

a|Γ it
holds that G(x) = O(|x|−3/2) as |x| → ∞, and it is shown in [9, 3, 4] that us and u
inherit this property; precisely that u(x) = O(|x|−3/2) as |x1| → ∞ with x2 = O(1).
Thus G ∈ L2(Γ) and u ∈ L2(SH) for each H > f−. It follows from local regularity
estimates up to the boundary that u ∈ C1(D). Further, by an application of Green’s
theorem, the Helmholtz equation, and the a priori estimates up to the boundary of
[11, Theorem 3.1], it follows also that u ∈ H1(SH) for every H > f+. This in turn
implies that u|ΓH

∈ H1/2(ΓH) ⊂ L2(ΓH) for every H ≥ f+.
In the case that u|ΓH

∈ L2(ΓH) we can rewrite (2.5) in terms of the Fourier
transform of u|ΓH

. For φ ∈ L2(ΓH), which we identify with L2(Rn−1), we denote by

φ̂ = Fφ the Fourier transform of φ which we define by

Fφ(ξ) = (2π)−(n−1)/2

∫
Rn−1

exp(−ix̃ · ξ)φ(x̃) dx̃, ξ ∈ R
n−1.(2.7)

Our choice of normalization of the Fourier transform ensures that F is a unitary
operator on L2(Rn−1) so that, for φ, ψ ∈ L2(Rn−1),∫

Rn−1

φψ̄dx̃ =

∫
Rn−1

φ̂
¯̂
ψdξ.(2.8)

If FH := u|ΓH
∈ L2(ΓH), then (see [11, 5] in the case n = 2) (2.5) can be rewritten as

u(x) =
1

(2π)(n−1)/2

∫
Rn−1

exp(i[(xn −H)
√
k2 − ξ2 + x̃ · ξ])F̂H(ξ) dξ, x ∈ UH .(2.9)

In this equation
√
k2 − ξ2 = i

√
ξ2 − k2, when |ξ| > k.

Equation (2.9) is a representation for u, in the upper half-plane UH , as a super-
position of upward propagating homogeneous and inhomogeneous plane waves. A
requirement that (2.9) holds is commonly used (e.g., [13]) as a formal radiation con-
dition in the physics and engineering literature on rough surface scattering. The
meaning of (2.9) is clear when FH ∈ L2(Rn−1) so that F̂H ∈ L2(Rn−1); indeed the
integral (2.9) exists in the Lebesgue sense for all x ∈ UH . Recently Arens and Hohage
[5] have explained, in the case n = 2, in what precise sense (2.9) can be understood
when FH ∈ BC(ΓH), the space of bounded continuous functions on ΓH , so that F̂H

must be interpreted as a tempered distribution.
The above discussion motivates the following precise formulation of problem (2.2)–

(2.3). Let H1
0 (D) denote the standard Sobolev space, the completion of C∞

0 (D) in the
norm ‖ · ‖H1(D) defined by ‖u‖H1(D) = {

∫
D

(|∇u|2 + |u|2)dx}1/2. The main function
space in which we set our problem will be the Hilbert space VH , defined, for H ≥ f+,
by

VH :=
{
φ|SH

: φ ∈ H1
0 (D)

}
,

on which we impose the wave number dependent scalar product (u, v)VH
:=

∫
SH

(∇u ·
∇v + k2uv̄) dx and norm ‖u‖VH

= {
∫
SH

(|∇u|2 + k2|u|2)dx}1/2.

The boundary value problem. Given g ∈ L2(D), whose support lies in SH , for
some H ≥ f+, find u : D → C such that u|Sa

∈ Va for every a > f+,

Δu + k2u = g in D(2.10)
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in a distributional sense, and the radiation condition (2.9) holds with FH = u|ΓH
.

Remark 2.1. We note that, as one would hope, the solutions of the above problem
do not depend on the choice of H. Precisely, if u is a solution to the above problem
for one value of H ≥ f+ for which supp g ⊂ SH , then u is a solution for all H ≥ f+

with this property. To see that this is true is a matter of showing that if (2.9) holds
for one H with supp g ⊂ SH , then (2.9) holds for all H with this property. It is shown
in Lemma 2.2 that if (2.9) holds, with FH = u|ΓH

, for some H ≥ f+, then it holds for
all larger values of H. One way to show that (2.9) holds also for every smaller value
of H, H̃ say, for which H̃ ≥ f+ and supp g ⊂ SH̃ , is to consider the function

v(x) := u(x)− 1

(2π)(n−1)/2

∫
Rn−1

exp(i[(xn − H̃)
√
k2 − ξ2 + x̃ · ξ])F̂H̃(ξ) dξ, x ∈ UH̃ ,

with FH̃ := u|ΓH̃
, and show that v is identically zero. To see this we note that, by

Lemma 2.2, v satisfies the above boundary value problem with D = UH̃ and g = 0.
That v ≡ 0, then follows from Theorem 4.1.

As indicated in the above discussion, it is known that the above boundary value
problem has a solution in the case n = 2 when Γ is the graph of a sufficiently smooth
function. A main result of this paper is to prove that the boundary value problem
is uniquely solvable, both in two and three dimensions, under much more general
conditions on the boundary Γ. Moreover, we provide explicit estimates of the norm
of the solution in the strip SH as a function of the dimensionless wave number

κ = k(H − f−).(2.11)

We now derive a variational formulation of the boundary value problem above.
To derive this alternative formulation we require a preliminary lemma. In this lemma
and subsequently we use standard fractional Sobolev space notation, except that we
adopt a wave number dependent norm, equivalent to the usual norm, and reducing
to the usual norm if the unit of length measurement is chosen so that k = 1. Thus,
identifying ΓH with R

n−1, Hs(ΓH), for s ∈ R, denotes the completion of C∞
0 (ΓH) in

the norm ‖ · ‖Hs(ΓH) defined by

‖φ‖Hs(ΓH) =

(∫
Rn−1

(k2 + ξ2)s|Fφ(ξ)|2 dξ
)1/2

.

We recall [1] that, for all a > H ≥ f+, there exist continuous embeddings γ+ :
H1(UH \ Ua) → H1/2(ΓH) and γ− : VH → H1/2(ΓH) (the trace operators) such that
γ±φ coincides with the restriction of φ to ΓH when φ is C∞. In the case when H = f+,
when ΓH may not be a subset of the boundary of SH (if part of ∂D coincides with
ΓH) we understand this trace by first extending φ ∈ VH by zero to Uf− \ Ūf+ . We
recall also that if u+ ∈ H1(UH \ Ua), u− ∈ VH , and γ+u+ = γ−u−, then v ∈ Va,
where v(x) := u+(x), x ∈ UH \ Ua, := u−(x), x ∈ SH . Conversely, if v ∈ Va and
u+ := v|UH\Ua

, u− := v|SH
, then γ+v+ = γ−v−. We introduce the operator T , which

will prove to be a Dirichlet to Neumann map on ΓH (see (2.20)) defined by

T := F−1MzF ,(2.12)

where Mz is the operation of multiplying by

z(ξ) :=

{
−i

√
k2 − ξ2 if |ξ| ≤ k,√

ξ2 − k2 for |ξ| > k.
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We shall prove shortly in Lemma 2.4 that T : H1/2(ΓH) → H−1/2(ΓH) and is
bounded.

Lemma 2.2. If (2.9) holds, with FH ∈ H1/2(ΓH), then u ∈ H1(UH\Ua)∩C2(UH),
for every a > H,

Δu + k2u = 0 in UH ,

γ+u = FH , and∫
ΓH

v̄Tγ+u ds + k2

∫
UH

uv̄ dx−
∫
UH

∇u · ∇v̄ dx = 0, v ∈ C∞
0 (D).(2.13)

Further, the restrictions of u and ∇u to Γa are in L2(Γa) for all a > H, and

∫
Γa

[∣∣∣∣ ∂u∂xn

∣∣∣∣
2

− |∇x̃u|2 + k2|u|2
]
ds ≤ 2k

∫
Γa

ū
∂u

∂xn
ds.(2.14)

Moreover, for all a > H, where Fa ∈ H1/2(Γa) denotes the restriction of u to Γa,
(2.9) holds with H replaced by a.

Proof. If FH ∈ L2(ΓH), then, as a function of ξ, exp(i[(xn − H)
√

k2 − ξ2 +x̃ ·
ξ])F̂H(ξ)(1 + ξ2)s ∈ L1(Rn−1) for every x ∈ UH and s ≥ 0. It follows that (2.9)
is well-defined for every x ∈ UH , and that u ∈ C2(UH), with all partial derivatives
computed by differentiating under the integral sign, so that Δu + k2u = 0 in UH .
Thus, for a > H and almost all ξ ∈ R

n−1,

F(u|Γa
)(ξ) = exp

(
i(a−H)

√
k2 − ξ2

)
F̂H(ξ),(2.15)

F
(

∂u

∂xn

∣∣∣∣
Γa

)
(ξ) = i

√
k2 − ξ2 exp

(
i(a−H)

√
k2 − ξ2

)
F̂H(ξ),(2.16)

F(∇x̃u|Γa
)(ξ) = iξ exp

(
i(a−H)

√
k2 − ξ2

)
F̂H(ξ).

Therefore, by the Plancherel identity (2.8), u|Γa , ∇u|Γa
∈ L2(Γa) with∫

Γa

|u|2ds =

∫
Rn−1

| exp
(
2i(a−H)

√
k2 − ξ2

)
| |F̂H(ξ)|2 dξ ≤

∫
ΓH

|FH |2 ds

and ∫
Γa

|∇u|2ds ≤
∫

Rn−1

[|k2 − ξ2| + ξ2]| exp
(
2i(a−H)

√
k2 − ξ2

)
| |F̂H(ξ)|2 dξ,(2.17)

while ∫
Γa

[∣∣∣∣ ∂u∂xn

∣∣∣∣
2

− |∇x̃u|2 + k2|u|2
]
ds = 2

∫
|ξ|<k

(k2 − ξ2)|F̂H(ξ)|2 dξ

and


∫

Γa

ū
∂u

∂xn
ds =

∫
|ξ|<k

√
k2 − ξ2 |F̂H(ξ)|2 dξ.

Thus (2.14) holds and ∫
UH\Ua

|u|2 dx ≤ (a−H)

∫
ΓH

|FH |2 ds.(2.18)
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Further, from (2.17) it follows that∫
UH\Ua

|∇u|2 dx ≤ (a−H)k2

∫
|ξ|<k

|F̂H(ξ)|2 dξ(2.19)

+

∫
|ξ|>k

ξ2 1 − exp(−2[a−H]
√
ξ2 − k2 )√

ξ2 − k2
|F̂H(ξ)|2 dξ

≤
∫

Rn−1

(4(a−H)k2 +
√

2|ξ|)|F̂H(ξ)|2 dξ,

since 1−e−z ≤ z for z ≥ 0 and
√
ξ2 − k2 ≥ |ξ|/

√
2 for ξ2 ≥ 2k2. Thus u ∈ H1(UH\Ua)

if FH ∈ H1/2(ΓH). That u|ΓH
= FH is clear when FH ∈ C∞

0 (ΓH), and γ+u = FH

for all FH ∈ H1/2(ΓH) follows from the continuity of γ+, (2.18) and (2.19), and the
density of C∞

0 (ΓH) in H1/2(ΓH). Similarly, in the case that FH ∈ C∞
0 (ΓH) so that

u ∈ C∞(UH), it is easily seen that

Tγ+u = −∂u/∂xn|ΓH
,(2.20)

and (2.13) follows by Green’s theorem. The same equation for the general case follows
from the density of C∞

0 (ΓH) in H1/2(ΓH), (2.18) and (2.19), and the continuity of
the operator T .

That (2.9) holds with H replaced by a, for all a > H, is clear from (2.15).
Now suppose that u satisfies the boundary value problem. Then u|Sa

∈ Va for
every a > f+ and, by definition, since Δu + k2u = g in a distributional sense,∫

D

[gv̄ + ∇u · ∇v̄ − k2uv̄]dx = 0, v ∈ C∞
0 (D).(2.21)

Applying Lemma 2.2, and defining w := u|SH
, it follows that∫

SH

[gv̄ + ∇w · ∇v̄ − k2wv̄] dx +

∫
ΓH

v̄Tγ−w ds = 0, v ∈ C∞
0 (D).

From the denseness of {φ|SH
: φ ∈ C∞

0 (D)} in VH and the continuity of γ− and T , it
follows that this equation holds for all v ∈ VH .

Let ‖ · ‖2 and (·, ·) denote the norm and scalar product on L2(SH) so that ‖v‖2 =√∫
SH

|v|2 dx and

(u, v) =

∫
SH

uv dx,

and define the sesquilinear form b : VH × VH → C by

b(u, v) = (∇u,∇v) − k2(u, v) +

∫
ΓH

γ−v̄Tγ−u ds.(2.22)

Then we have shown that if u satisfies the boundary value problem, then w := u|SH

is a solution of the following variational problem: find u ∈ VH such that

b(u, v) = −(g, v), v ∈ VH .(2.23)

Conversely, suppose that w is a solution to the variational problem and define
u(x) to be w(x) in SH and to be the right-hand side of (2.9), with FH := γ−w, in
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UH . Then, by Lemma 2.2, u ∈ H1(UH \Ua) for every a > H with γ+u = FH = γ−w.
Thus u|Sa ∈ Va, a ≥ f+. Further, from (2.13) and (2.23) it follows that (2.21) holds
so that Δu + k2u = g in D in a distributional sense. Thus u satisfies the boundary
value problem.

We have thus proved the following theorem.
Theorem 2.3. If u is a solution of the boundary value problem, then u|SH

satisfies the variational problem, Conversely, if u satisfies the variational problem,
FH := γ−u, and the definition of u is extended to D by setting u(x) equal to the
right-hand side of (2.9), for x ∈ UH , then the extended function satisfies the boundary
value problem, with g extended by zero from SH to D.

It remains to prove the mapping properties of T .
Lemma 2.4. The Dirichlet-to-Neumann map T defined by (2.12) is a bounded

linear map from H1/2(ΓH) to H−1/2(ΓH) with ‖T‖ = 1.
Proof. From the definitions of T and the Sobolev norms we see that, as a map

from H1/2(ΓH) to H−1/2(ΓH),

‖T‖ = max
ξ∈Rn−1

|
√
k2 − ξ2|

|
√
k2 + ξ2|

= 1.

While the variational formulation (2.23) does not appear to have been studied
previously, the analogous weak formulation for the 2D diffraction grating case has
recently been studied in [16], as mentioned in the introduction. The diffraction grating
case, with f periodic and g quasi-periodic with the same period, is significantly simpler
because the variational problem can be formulated on a bounded domain (one period
of the strip SH) and the corresponding sesquilinear form on this bounded domain
satisfies a G̊arding inequality. Standard methods of analysis thus apply, in particular,
existence follows from uniqueness via the Fredholm alternative. But we note that, even
in the diffraction grating case, establishing uniqueness for arbitrary Lipschitz domains
D (f Lipschitz) requires careful and ingenious arguments [16] which are not required
for scattering by bounded domains. Indeed, uniqueness does not hold in all cases in
which ∂D is not the graph of a function, as is shown by the example in Gotlib [18].

3. Analysis of the variational problem for low frequency. In this section
we shall derive preliminary results and bounds used throughout, and will analyze
(2.23) when k is sufficiently small that b is VH -elliptic (we shall give an explicit bound
for k to guarantee this). An attraction of our results for low wave number, in contrast
to our results in section 4 for larger wave number, is that we require no additional
assumption on the domain, except that κ, given by (2.11), be sufficiently small. We
note also that the bounds we establish for κ small in Theorem 3.1 are somewhat
sharper than those which can be established as valid for general κ by the techniques
of the next section. From the point of view of numerical solution by, e.g., finite
element methods, the ellipticity we establish for small k is of course highly desirable,
guaranteeing, by Céa’s lemma, unique existence and stability of the numerical solution
method.

Let V ∗
H denote the dual space of VH , i.e., the space of continuous antilinear func-

tionals on VH . Then our analysis will also apply to the following slightly more general
problem: given G ∈ V ∗

H find u ∈ VH such that

b(u, v) = G(v), v ∈ VH .(3.1)

We shall prove the following theorem.
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Theorem 3.1. Suppose the wave number k satisfies k <
√

2/(H − f−) (equiv-
alently κ <

√
2). Then the sesquilinear form b is VH-elliptic so that the variational

problem (3.1) is uniquely solvable, and the solution satisfies the estimate

‖u‖VH
≤ C‖G‖V ∗

H
,(3.2)

where the constant C satisfies

C ≤ 1 + κ2/2

1 − κ2/2
.

In particular, the scattering problem (2.23) is uniquely solvable and the solution sat-
isfies the bound

k‖u‖VH
≤ κ√

2

1 + κ2/2

1 − κ2/2
‖g‖2.(3.3)

In order to prove Theorem 3.1 we establish a sequence of lemmas which are of
some independent interest and are used extensively in the rest of the paper. The first
two concern the Dirichlet to Neumann map T and the trace operator γ− and will be
proved using the Fourier transform (2.7).

Lemma 3.2. For all φ, ψ ∈ H1/2(ΓH),∫
ΓH

φTψ ds =

∫
ΓH

ψTφ ds.

For all φ ∈ H1/2(ΓH),

�
∫

ΓH

φ̄ Tφ ds ≥ 0, 
∫

ΓH

φ̄ Tφ ds ≤ 0.

Proof. Let φ̂ = Fφ, ψ̂ = Fψ. Then F(Tφ) = zφ̂. Thus, using the Plancherel

identity (2.8) and since ˆ̄ψ(ξ) = ψ̂(−ξ) and z is even,∫
ΓH

ψ Tφds =

∫
Rn−1

ψ̂(−ξ)z(ξ)φ̂(ξ) dξ =

∫
Rn−1

ψ̂(ξ)z(ξ)φ̂(−ξ) dξ =

∫
ΓH

φTψ ds.

In particular, putting ψ = φ̄,∫
ΓH

φ̄ Tφ ds =

∫
Rn−1

z(ξ)|φ̂(ξ)|2 dξ

=

∫
|ξ|>k

√
ξ2 − k2|φ̂(ξ)|2 dξ − i

∫
|ξ|<k

√
k2 − ξ2|φ̂(ξ)|2 dξ,

from which the second result follows.
The above lemma implies that b(·, ·) has the following important symmetry prop-

erty.
Corollary 3.3. For all u, v ∈ VH ,

b(v, u) = b(ū, v̄).
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Lemma 3.4. For all u ∈ VH ,

‖γ−u‖H1/2(ΓH) ≤ ‖u‖VH

and

‖u‖2 ≤ H − f−√
2

∥∥∥∥ ∂u

∂xn

∥∥∥∥
2

.

Proof. For u ∈ C∞
0 (D) ⊂ C∞

0 (Uf−) and defining û(ξ, xn) = (Fu(·, xn))(ξ), we
have

|û(ξ,H)|2 =

∫ H

f−

∂

∂xn
|û(ξ, xn)|2 dxn = 2�

∫ H

f−

û(ξ, xn)
∂

∂xn
û(ξ, xn) dxn.

Thus, if S = R
n−1 × (f−, H),

‖u‖2
H1/2(ΓH) =

∫
Rn−1

|
√
ξ2 + k2| |û(ξ,H)|2 dξ

≤ 2

∫
S

|
√
ξ2 + k2| |û(ξ, xn)|

∣∣∣∣ ∂

∂xn
û(ξ, xn)

∣∣∣∣ dξ dxn

≤ 2

{∫
S

|ξ2 + k2| |û(ξ, xn)|2 dξ dxn

}1/2
{∫

S

∣∣∣∣ ∂

∂xn
û(ξ, xn)

∣∣∣∣
2

dξ dxn

}1/2

.

Now, by Parseval’s theorem,∫
S

ξ2 |û(ξ, xn)|2 dξ dxn =

∫
S

|F(∇x̃u(·, xn))(ξ)|2 dξ dxn

=

∫
S

|∇x̃u(x)|2 dx.

Applying Parseval’s theorem again, and since 2
√
ab ≤ a + b for a, b ≥ 0,

‖u‖2
H1/2(ΓH) ≤ 2

{∫
S

{
k2|u(x)|2 + |∇x̃u(x)|2

}
dx

∫
S

∣∣∣∣ ∂

∂xn
u(x)

∣∣∣∣
2

dx

}1/2

≤ ‖u‖2
VH

.

Further, using the fact that u ∈ C∞
0 (Uf−), for x ∈ S,

|u(x)|2 =

∣∣∣∣∣
∫ xn

f−

∂

∂xn
u(x) dxn

∣∣∣∣∣
2

≤ (xn − f−)

∫ H

f−

∣∣∣∣ ∂

∂xn
u(x)

∣∣∣∣
2

dxn

so that, since
∫H

f−
(xn − f−) dxn = (H − f−)2/2,

∫
S

|u(x)|2 dx ≤ (H − f−)2

2

∫
S

∣∣∣∣ ∂

∂xn
u(x)

∣∣∣∣
2

dx.(3.4)

Since the set {v|SH
: v ∈ C∞

0 (D)} is dense in VH these bounds hold for all
u ∈ VH .

We are now in a position to prove that the sesquilinear form b(., .) is bounded,
establishing an explicit value for the bound.
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Lemma 3.5. For all u, v ∈ VH ,

|b(u, v)| ≤ 2‖u‖VH
‖v‖VH

so that the sesquilinear form b(., .) is bounded.
Proof. From the definition of the sesquilinear form b(., .) and the Cauchy–Schwarz

inequality, we have

|b(u, v)| ≤ ‖∇u‖2‖∇v‖2 + k2‖u‖2‖v‖2 + ‖γ−u‖H1/2(ΓH)‖T‖ ‖γ−v‖H1/2(ΓH).

Applying the Cauchy–Schwarz inequality and Lemmas 2.4 and 3.4 we obtain the
desired estimate.

Our last lemma of this section shows that the sesquilinear form b(., .) is VH -elliptic
provided the wave number k is not too large.

Lemma 3.6. For all u ∈ VH ,

� b(u, u) ≥ 1 − κ2/2

1 + κ2/2
‖u‖2

VH
.

Proof. By Lemma 3.2,

� b(u, u) ≥ ‖u‖2
VH

− 2k2‖u‖2
2.

The result follows from Lemma 3.4, implying that ‖u‖2
VH

≥ k2(2/κ2 + 1)‖u‖2
2.

Using Lemmas 3.5 and 3.6 we can now prove Theorem 3.1.
Proof. By Lemma 3.6 and under the assumption of the theorem that k <

√
2/(H−

f−) we see that b(., .) is VH -elliptic. Lemma 3.5 shows that b(., .) is bounded and hence
by the Lax–Milgram lemma the existence of a unique solution u to (3.1) is assured.
The estimate (3.2) also follows from the Lax–Milgram lemma. In the particular case
that G(v) := −(g, v), for some g ∈ L2(SH), we have further, by the Cauchy–Schwarz
inequality and Lemma 3.4, that

‖G‖V ∗
H

= sup
v∈VH

|(v, g)|
‖v‖VH

≤ sup
v∈VH

‖v‖2‖g‖2

‖v‖VH

≤ H − f−√
2

‖g‖2,

and (3.3) follows.

4. Analysis of the variational problem at arbitrary frequency. The ses-
quilinear form b(., .) is not VH -elliptic if the wave number k is large. In this section we
shall establish, with no restriction on the wave number but some additional constraint
on the domain, that the boundary value problem and the equivalent variational prob-
lem are uniquely solvable by using the generalized Lax–Milgram theory of Babuška.
The domains D for which we will establish this result are those which, in addition to
our assumption throughout that Uf+ ⊂ D ⊂ Uf− , satisfy the condition that

x ∈ D ⇒ x + sen ∈ D for all s > 0,(4.1)

where en denotes the unit vector in the direction xn. Condition (4.1) is satisfied if Γ
is the graph of a continuous function, but certainly does not require that this be the
case. Nor does (4.1) impose any regularity on ∂D. Our main result in this section is
the following.
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Theorem 4.1. If (4.1) holds, then the variational problem (3.1) has a unique
solution u ∈ VH for every G ∈ V ∗

H and

‖u‖VH
≤ C‖G‖V ∗

H
,(4.2)

where

C = 1 +
√

2κ (κ + 1)2.

In particular, the boundary value problem and the equivalent variational problem (2.23)
have exactly one solution, and the solution satisfies the bound

k‖u‖VH
≤ κ√

2
(κ + 1)

2 ‖g‖2.

To apply the generalized Lax–Milgram theorem (e.g., [19, Theorem 2.15]) we need
to show that b is bounded, which we have done in Lemma 3.5; to establish the inf-sup
condition that

β := inf
0 �=u∈VH

sup
0 �=v∈VH

|b(u, v)|
‖u‖VH

‖v‖VH

> 0;(4.3)

and to establish a “transposed” inf-sup condition. It follows easily from Corollary 3.3
that this transposed inf-sup condition follows automatically if (4.3) holds.

Lemma 4.2. If (4.3) holds, then for all nonzero v ∈ VH ,

sup
0 �=u∈VH

|b(u, v)|
‖u‖VH

> 0.

Proof. If (4.3) holds and v ∈ VH is nonzero, then

sup
0 �=u∈VH

|b(u, v)|
‖u‖VH

= sup
0 �=u∈VH

|b(v̄, u)|
‖u‖VH

≥ β‖v‖VH
> 0.

This proves the lemma.
The following result follows from [19, Theorem 2.15] and Lemmas 3.5 and 4.2.
Corollary 4.3. If (4.3) holds, then the variational problem (3.1) has exactly

one solution u ∈ VH for all G ∈ V ∗
H . Moreover,

‖u‖VH
≤ β−1‖G‖V ∗

H
.

To show (4.3) we will establish an a priori bound for solutions of (3.1), from which
the inf-sup condition will follow by the following easily established lemma (see [19,
Remark 2.20]).

Lemma 4.4. Suppose that there exists C > 0 such that for all u ∈ VH and G ∈ V ∗
H

satisfying (3.1) it holds that

‖u‖VH
≤ C‖G‖V ∗

H
.(4.4)

Then the inf-sup condition (4.3) holds with β ≥ C−1.
The following lemma reduces the problem of establishing (4.4) to that of estab-

lishing an a priori bound for solutions of the special case (2.23).
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Lemma 4.5. Suppose there exists C̃ > 0 such that for all u ∈ VH and g ∈ L2(SH)
satisfying (2.23) it holds that

‖u‖VH
≤ k−1C̃ ‖g‖2.(4.5)

Then, for all u ∈ VH and G ∈ V ∗
H satisfying (3.1), the bound (4.4) holds with

C ≤ 1 + 2 C̃.

Proof. Suppose u ∈ VH is a solution of

b(u, v) = G(v), v ∈ VH ,(4.6)

where G ∈ V ∗
H . Let b0 : VH × VH → C be defined by

b0(u, v) = (∇u,∇v) + k2(u, v) +

∫
ΓH

γ−v Tγ−u ds, u, v ∈ VH .

It follows from Lemma 3.2 that b0 is VH -elliptic, in fact that

� b0(v, v) ≥ ‖v‖2
VH

, v ∈ VH .

Thus the problem of finding u0 ∈ VH such that

b0(u0, v) = G(v), v ∈ VH ,(4.7)

has a unique solution which satisfies

‖u0‖VH
≤ ‖G‖V ∗

H
.(4.8)

Furthermore, defining w = u− u0 and using (4.6) and (4.7), we see that

b(w, v) = b(u, v) − b(u0, v) = G(v) − (G(v) − 2k2(u0, v)) = 2k2(u0, v)

for all v ∈ VH . Thus w satisfies (2.23) with g = −2k2u0. It follows, using (4.8), (4.5),
and Lemma 3.4, that

‖w‖VH
≤ 2kC̃‖u0‖2 ≤ 2C̃‖G‖V ∗

H
.(4.9)

The bound (4.4), with C ≤ 1 + 2 C̃, follows from (4.8) and (4.9).
Following these preliminary lemmas we turn now to establishing the a priori

bound (4.5), at first just for the case when Γ is the graph of a smooth function. We
recall that ν is the outward unit normal to SH and νn = ν · en is the nth (vertical)
component of ν.

Lemma 4.6. Suppose Γ is given by (2.4) with f ∈ C∞(Rn−1). Let H ≥ f+,
g ∈ L2(SH) and suppose w ∈ VH satisfies

b(w, φ) = −(g, φ) for all φ ∈ VH .(4.10)

Then

‖w‖VH
≤ k−1C̃‖g‖2,
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where C̃ = κ√
2
(κ + 1)2.

Proof. The proof of this lemma is motivated by [21, 12], where a Rellich identity
is used to prove estimates for solutions of the Helmholtz equation posed on bounded
domains, by the proofs of the basic inequalities for rough surface scattering problems
in [11, 29], and by the estimates derived for the diffraction grating problem in [16].

Let r = |x̃|. For A ≥ 1 let φA ∈ C∞
0 (R) be such that 0 ≤ φA ≤ 1, φA(r) = 1 if

r ≤ A and φA(r) = 0 if r ≥ A + 1 and finally such that ‖φ′
A‖∞ ≤ M for some fixed

M independent of A.

Extending the definition of w to D by defining w in UH by (2.9) with FH := γ−w,
it follows from Theorem 2.3 that w satisfies the boundary value problem with g
extended by zero from SH to D. By standard local regularity results [17] it holds,
since g ∈ L2(D), w = 0 on Γ, and the boundary is smooth, that w ∈ H2

loc(D). Further,
w ∈ H2(Ub \Uc) for c > b > f+ (though w ∈ H2(Sc) is not clear without some further
constraint on the behavior of Γ at infinity). Moreover, by Lemma 2.2, w is given by
the right-hand side of (2.9) in Ub for all b > H if H is replaced in (2.9) by b and Fb

denotes the restriction of w to Γb. Thus w satisfies the boundary value problem with
H replaced by b for all b > H, and so, by Theorem 2.3,∫

Sb

(∇w · ∇v̄ − k2wv̄) dx = −
∫

Γb

γ−v̄ Tγ−w ds−
∫
Sb

v̄g dx(4.11)

for all b ≥ H.

In view of this regularity and since w satisfies the boundary value problem, we
have, for all a > H,

2�
∫
Sa

φA(r)(xn − f−)g
∂w

∂xn
dx

= 2�
∫
Sa

φA(r)(xn − f−)(Δw + k2w)
∂w

∂xn
dx

=

∫
Sa

{
2�

{
∇ ·

(
φA(r)(xn − f−)

∂w

∂xn
∇w

)}
− 2φA(r)

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

−(xn − f−)φA(r)
∂|∇w|2
∂xn

−2φ′
A(r)(xn − f−)

x̃

|x̃| · �
(
∇x̃w

∂w

∂xn

)
+ k2(xn − f−)φA(r)

∂|w|2
∂xn

}
dx.

Using the divergence theorem and integration by parts,

2�
∫
Sa

φA(r)(xn − f−)g
∂w

∂xn
dx

= (a− f−)

∫
Γa

φA(r)

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds

−
∫

Γ

(xn − f−)φA(r)

{
νn|∇w|2 − 2�

(
∂w

∂xn

∂w

∂ν

)}
ds

+

∫
Sa

{
φA(r)

(
|∇w|2 − k2|w|2 − 2

∣∣∣∣ ∂w∂xn

∣∣∣∣
2
)

− 2φ′
A(r)(xn − f−)�

(
∂w

∂xn

∂w

∂r

)}
dx.
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Using the fact that w = 0 on Γ so that ∇w = (∂w/∂ν)ν and

∂w

∂xn
= en · ∇w = en · ν ∂w

∂ν
= νn

∂w

∂ν
,

and rearranging terms we find that

−
∫

Γ

φA(r)(xn − f−)νn

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds + 2

∫
Sa

φA(r)

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

dx

= (a− f−)

∫
Γa

φA(r)

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds

+

∫
Sa

{
φA(r)

(
|∇w|2 − k2|w|2

)
− 2φ′

A(r)(xn − f−)�
(

∂w

∂xn

∂w

∂r

)}
dx

−2�
∫
Sa

φA(r)(xn − f−)g
∂w

∂xn
dx.(4.12)

We now wish to let A → ∞. The only problem is the term involving φ′
A which we

estimate as follows. Let Sb
a = {x ∈ Sa : |x̃| < b} for b ≥ 1. Then∣∣∣∣

∫
Sa

{
2φ′

A(r)(xn − f−)�
(

∂w

∂xn

∂w

∂r

)}
dx

∣∣∣∣ ≤ 2M(a− f−)

∫
SA+1
a \SA

a

|∇w|2 dx → 0

as A → ∞, where the convergence follows from the fact that w ∈ H1(SH). In addition
since w ∈ H2(Ub \ Uc), for c > a > b > f+, ∇w|ΓH

∈ (H1/2(ΓH))n. Thus, taking
the limit as A → ∞ in (4.12), and applying the Lebesgue dominated convergence and
monotone convergence theorems, we see that

−
∫

Γ

(xn − f−)νn

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds + 2

∫
Sa

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

dx

= (a− f−)

∫
Γa

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds

+

∫
Sa

(
|∇w|2 − k2|w|2 − 2�

(
(xn − f−)g

∂w

∂xn

))
dx.(4.13)

Now, since w satisfies the boundary value problem, including the radiation condition
(2.9), applying Lemma 2.2 it follows that

∫
Γa

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds ≤ 2k
∫

Γa

w
∂w

∂xn
ds

= −2k
∫

Γa

γ−wTγ−w ds(4.14)

on applying the Plancherel identity (2.8), noting (2.15) and (2.16). Further, setting
v = w in (4.11), we get∫

Sb

(
|∇w|2 − k2|w|2

)
dx = −

∫
Γb

γ−wTγ−w ds−
∫
Sb

gw dx(4.15)
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for b ≥ H, so that, by Lemma 3.2,∫
Sb

[|∇w|2 − k2|w|2] dx ≤ −�
∫
Sb

gw dx(4.16)

and

−2k
∫

Γb

γ−wTγ−w ds = 2k
∫
Sb

gw dx.(4.17)

Using (4.17) in (4.14) and then using the resulting equation and (4.16) in (4.13) and
noting that supp g ⊂ SH , we get that

−
∫

Γ

(xn − f−)νn

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds + 2

∫
SH

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

dx ≤ 2(a− f−)k
∫
SH

gw̄ dx

−�
∫
SH

[
gw̄ + 2(xn − f−)g

∂w̄

∂xn

]
dx.

Since this equation holds for all a > H and νn < 0 on Γ, it follows by the Cauchy–
Schwarz inequality that

2

∥∥∥∥ ∂w

∂xn

∥∥∥∥
2

2

≤
(

2κ‖w‖2 + ‖w‖2 + 2(H − f−)

∥∥∥∥ ∂w

∂xn

∥∥∥∥
2

)
‖g‖2.

Now using Lemma 3.4 to estimate ‖w‖2 we obtain∥∥∥∥ ∂w

∂xn

∥∥∥∥
2

≤ (H − f−)

(
1√
2
κ +

1

2
√

2
+ 1

)
‖g‖2(4.18)

and use of Lemma 3.4 again shows that

‖w‖2 ≤ (H − f−)2
(

1

2
κ +

1

4
+

1√
2

)
‖g‖2.

Using the above inequality in (4.16) shows that

‖w‖2
VH

≤ 2k2‖w‖2
2 + ‖g‖2‖w‖2

≤ (H − f−)2

4

(
κ2

2
(2κ + 1 + 2

√
2)2 + 2κ + 1 + 2

√
2

)
‖g‖2

2.

Thus, for κ ≥ 1,

‖w‖2
VH

≤ (H − f−)2

2
(κ + 1)4‖g‖2

2.

The same bound holds for κ < 1 by Theorem 3.1.
Remark 4.7. The above argument works under milder assumptions on the bound-

ary Γ, in particular that Γ is the graph of a function f ∈ C2(Rn−1), so that Γ is of
class C2. This assumption is enough [17] to deduce the necessary local regularity result
that w ∈ H2

loc(D).
Combining Lemmas 4.6, 4.5, and 4.4 with Corollary 4.3, we have the following

result.
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Lemma 4.8. If Γ satisfies the conditions of Lemma 4.6, then the variational
problem (3.1) has a unique solution u ∈ VH for every G ∈ V ∗

H and the solution
satisfies the estimate (4.2).

Remark 4.9. The above result, combined with Lemma 4.4, implies that β, the inf-
sup constant for b(·, ·), satisfies β−1 ≤ C = O(k3) as k → ∞. This high power of the
wave number is, we suspect, not optimal. For an interior problem in a smooth starlike
and bounded domain in R

2 or R
3 with impedance boundary data it is known that the

constant in the corresponding bound satisfies the estimate C = O(k) (for example,
this can be proved by combining estimate (2) of Theorem 1 of [12] with the argument
of Lemma 4.5, involving a function corresponding to u0). For a somewhat analogous
one-dimensional problem the inf-sup constant is also O(k) as k → ∞ (Theorem 4.2
of [19]).

We proceed now to establish that Lemmas 4.6 and 4.8 hold for much more general
boundaries, namely those satisfying (4.1). To establish this we first prove the following
technical lemma.

Lemma 4.10. If (4.1) holds, then, for every φ ∈ C∞
0 (D), there exists f ∈

C∞(Rn−1) such that

suppφ ⊂ D′ := {x ∈ R
n : xn > f(x̃), x̃ ∈ R

n−1}

and Uf+ ⊂ D′ ⊂ D.
Proof. Let S := suppφ \ Uf+ . Then either S = ∅, in which case f(x̃) ≡ f+ has

the properties claimed, or S �= ∅.
Thus, suppose S �= ∅ and let δ := dist(S, ∂D)/2. Then δ > 0 and, defining

G := {x + sen : x ∈ S, s ≥ 0}, dist(G, ∂D) = dist(S, ∂D) = 2δ. Let Gδ := {x ∈ R
n :

dist(x,G) < δ} and let A and Aδ denote the projections of G and Gδ, respectively,
onto the Ox1 · · ·xn−1 plane.

Let N ∈ N and Sj ⊂ R
n−1, j = 1, . . . , N , be such that each Sj is measurable and

nonempty, Sj ∩ Sm = ∅ for j �= m,

Aδ ⊂
N⋃
j=1

Sj ,

and diam(Sj) ≤ δ/2, j = 1, . . . , N . For j = 1, . . . , N choose x̃j ∈ Sj and let

fj := inf{xn ∈ R : x = (x̃j , xn) ∈ Gδ ∪ Γf+
}.

Then f− ≤ fj ≤ f+, j = 1, . . . , N . Define f̃ : R
n−1 → R by

f̃(x̃) :=

{
fj if x̃ ∈ Sj , j = 1, . . . , N,
f+ otherwise.

Then f̃ ∈ L∞(Rn−1); in fact f̃ is a simple function and f− ≤ f̃(x̃) ≤ f+, x̃ ∈ R
n−1.

Choose ε with 0 < ε < δ/2 and let J ∈ C∞
0 (Rn−1) be such that J ≥ 0, J(x̃) = 0 if

|x̃| ≥ ε, and
∫

Rn−1 J(x̃) dx̃ = 1. Define f ∈ C∞(Rn−1) by

f(x̃) :=

∫
Rn−1

J(x̃− ỹ)f̃(ỹ) dỹ, x̃ ∈ R
n−1,

and let D′ be defined as in the statement of the lemma. Then f and D′ have the
properties claimed.
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To see that this is true note first that

min
|ỹ−x̃|<ε

|f̃(ỹ)| ≤ f(x̃) ≤ max
|ỹ−x̃|<ε

|f̃(ỹ)|, x̃ ∈ R
n−1,(4.19)

so that Uf+
⊂ D′. If x̃ ∈ A, then |ỹ− x̃| < ε implies that ỹ ∈ Aδ and so (4.19) implies

that

f(x̃) ≤ max
j=1,...,N, |x̃j−x̃|<ε+δ/2

fj

so that f(x̃) ≤ fm for some m for which |x̃m − x̃| < ε + δ/2. Now let x = (x̃, fm),
y = (x̃m, fm). Then |x− y| = |x̃− x̃m| < ε + δ/2 and dist(y,G) = δ so that

dist(x,G) ≥ dist(y,G) − |x− y| ≥ δ − (ε + δ/2) > 0.

Thus x �∈ G and so (x̃, f(x̃)) �∈ G. Thus S ⊂ G ⊂ D′ and so suppφ ⊂ Uf+ ∪ S ⊂ D′.
Arguing similarly, for all x̃ ∈ R

n−1, either f(x̃) = f+, in which case (x̃, xn) ∈ D
for xn > f(x̃), or f(x̃) ≥ fm for some m for which |x̃m − x̃| < ε + δ/2. In this latter
case, defining x = (x̃, fm) and y = (x̃m, fm), it holds that

dist(x,G) ≤ dist(y,G) + |x− y| ≤ δ + ε + δ/2 < 2δ

so that x ∈ D and hence (x̃, f(x̃)) ∈ D. Thus, for all x̃ ∈ R
n−1, (x̃, xn) ∈ D for

xn > f(x̃), i.e., D′ ⊂ D.
With this preliminary lemma we can proceed to show that Lemma 4.6 holds

whenever (4.1) holds.
Lemma 4.11. Suppose (4.1) holds, H ≥ f+, g ∈ L2(SH), and w ∈ VH satisfies

b(w, φ) = −(g, φ) for all φ ∈ VH .(4.20)

Then

‖w‖VH
≤ k−1C̃‖g‖2,

where C̃ = κ√
2
(κ + 1)2.

Proof. Let Ṽ := {φ|SH
: φ ∈ C∞

0 (D)}. Then Ṽ is dense in VH . Suppose w
satisfies (4.20) and choose a sequence (wm) ⊂ Ṽ such that ‖wm − w‖VH

→ 0 as
m → ∞. Then wm = φm|SH

, with φm ∈ C∞
0 (D), and, by Lemma 4.10, there exists

fm ∈ C∞(Rn−1) such that suppφm ⊂ Dm and Uf+ ⊂ Dm ⊂ D, where Dm := {x ∈
R

n : xn > fm(x̃), x̃ ∈ R
n−1}. Let V

(m)
H and bm denote the space and sesquilinear

form corresponding to the domain Dm. That is, where S
(m)
H := Dm \ UH , V

(m)
H is

defined by V
(m)
H := {φ|

S
(m)

H

: φ ∈ H1
0 (Dm)} and bm is given by (2.22) with SH and

VH replaced by S
(m)
H and V

(m)
H , respectively. Then S

(m)
H ⊂ SH and, if vm ∈ V

(m)
H

and v denotes vm extended by zero from S
(m)
H to SH , it holds that v ∈ VH . Via this

extension by zero, we can regard V
(m)
H as a subspace of VH and regard wm as an

element of V
(m)
H .

For all v ∈ V
(m)
H ⊂ VH , we have

bm(wm, v) = b(wm, v) = −(g, v) − b(w − wm, v).
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By Lemma 4.8, there exist unique w′
m, w′′

m ∈ V
(m)
H such that

bm(w′
m, v) = −(g, v), v ∈ V

(m)
H ,

and

bm(w′′
m, v) = −b(w − wm, v), v ∈ V

(m)
H .

Clearly wm = w′
m + w′′

m and, by Lemma 4.6,

‖w′
m‖

V
(m)

H

≤ k−1C̃‖g‖2

while, by Lemmas 4.8 and 3.4,

‖w′′
m‖

V
(m)

H

≤ 2C‖w − wm‖VH
.

Thus

‖w‖VH
= lim

m→∞
‖wm‖

V
(m)

H

≤ k−1C̃‖g‖2.

Theorem 4.1 now follows by combining Lemmas 4.11, 4.5, and 4.4 with Corollary
4.3.
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Abstract. We define and investigate variational (weak) solutions of the initial-boundary-value
problem for the Navier–Stokes–Fourier system with the general pressure law. We prove that the set
of these solutions is weakly sequentially stable.
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1. Introduction. The state of a fluid in classical continuum mechanics is char-
acterized through the value of three macroscopic quantities: the density � = �(t, x),
the velocity field u = u(t, x), and the absolute temperature ϑ = ϑ(t, x), where t ∈
(0, T ) ⊂ R is the time, and x ∈ Ω ⊂ R3 denotes the coordinate in the ambient Eu-
clidean space. The basic axioms of physics, written in the spatial (Eulerian) reference
system, assert the following:

(i) conservation of mass

∂t� + divx(�u) = 0;(1.1)

(ii) balance of (linear) momentum

∂t(�u) + divx(�u ⊗ u) + ∇xp = divx S + �f ;(1.2)

(iii) balance of entropy

∂t(�s) + divx(�su) + divx

(q

ϑ

)
= σ.(1.3)

In accordance with the commonly accepted mathematical definition of a fluid,
the total stress is expressed by Stokes’ law S − pI, where S denotes the viscous stress
tensor, and p is the pressure. The symbol s stands for the specific entropy, q is the
heat flux, and σ denotes the entropy production rate (see, for example, Chapter 1
in [21]). The quantity f represents the external body force density—a given function
of the time t and the position x.

One of the fundamental assumptions of the present theory is the requirement that
the system is both thermally and mechanically isolated. One of the possible ways to
meet this stipulation is to postulate

(iv) no-flux boundary conditions

q · n|∂Ω = 0, where n denotes the outer normal vector,(1.4)
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together with
(v) no-slip boundary conditions

u|∂Ω = 0.(1.5)

Consequently, the total energy

E ≡ 1

2
�|u|2 + �e, with e being the specific internal energy,

has to be a conserved quantity; more precisely, we have
(vi) total energy balance

d

dt

∫
Ω

E dx =

∫
Ω

�f · udx.(1.6)

The field equations (1.1)–(1.3), together with the boundary conditions (1.4) and
(1.5), supplemented with the total energy balance (1.6), form a suitable platform
for the mathematical theory based on the concept of variational (weak) solutions.
This concept will be developed in section 2. Note that we have deliberately opted for
the “entropy form” (1.3) of the energy equation. Moreover, the total energy balance
(1.6), which follows from (1.1) to (1.5) provided s and σ are related to the state
variables through the basic thermodynamic equations and all fields are smooth, has
been appended to the system (cf. section 2.1). Note that for weak solutions this
equality may provide new information. The reason for this particular choice of the
governing equations will become clear in section 2.

Of course, the general physical laws introduced above do not suffice to determine
the motion of a specific fluid subject to the given loading. Before a concrete mathe-
matical problem can be formulated, it is necessary to specify the constitutive equations
relating the pressure p, the viscous stress S, the heat flux q, the entropy density s,
the entropy production rate σ, and the internal energy density e to the state variables
�, u, and ϑ. Here again, the reader will have noticed, there is freedom of choice of
the basic state variables, yielding a variety of “equivalent” formulations provided the
motion is smooth.

The constitutive equations, reflecting the microscopic structure of a given fluid,
may be regarded as averages or expected values of molecular actions and as such they
can be evaluated by the methods of statistical mechanics. When doing so, one often
tacitly assumes the changes on the microscopic level to be so fast that the system at
any “macroscopic” time t can be considered as being in thermodynamic equilibrium.
In particular, the constitutive equations coincide with those obtained by the methods
of thermostatics (cf. [20]).

The most important constitutive relation in fluid dynamics—the state equation—
relates the pressure p to the values of the density � and the absolute temperature ϑ.
The best-known example is provided by Boyle’s law for the perfect gas:

p = R�ϑ with a material constant R > 0.(1.7)

In light of arguments of modern statistical mechanics, however, relation (1.7)
cannot be accepted without criticism even in the case of a “real perfect” gas, which
means a large ensemble of identical particles with no interactive forces. Indeed there
is a threshold temperature Θc = Θc(�) below which the gas exhibits degeneration
phenomena due to quantum effects (see section 2.2 and Chapter 3 in [20]). Accordingly,
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for gases in low-temperature (or high-density) regimes, the dominant component of
the macroscopic pressure results from the phenomenon of pressure ionization, with

p = a�
5
3 for ϑ < Θc(�)(1.8)

the pressure of a completely degenerate electron gas (see, for instance, Chapter 15
in [14]).

These observations can be graphically visualized in Figure 1.1.
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Fig. 1.1. p = p(�, ϑ).

Motivated by the previous example, the main objective of this paper is to identify
the class of physically relevant constitutive equations for which the set of all suitable
variational solutions of problem (1.1)–(1.6) enjoys the property of weak sequential sta-
bility. That is to say that any sequence of (physically) admissible solutions bounded
by the available a priori estimates possesses an accummulation point—another admis-
sible solution of problem (1.1)–(1.6). Such a property was established in [16] under the
main hypothesis that the pressure p = p(�, ϑ) is an affine function of the temperature,
which means

p(�, ϑ) = pe(�) + ϑpϑ(�)

for suitable functions pe, pϑ. In particular, the internal energy density e can be written
in the form

e(�, ϑ) = Pe(�) + Q(ϑ), where Pe(�) ≡
∫ �

1

pe(z)

z2
dz, and Q is a given function.

The possibility of separating the “elastic” part Pe from the thermal component Q
gives rise to a family of rescaled (renormalized) energy equations yielding (i) suitable
a priori estimates on the temperature ϑ and (ii) compatibility of the corresponding
Navier–Stokes–Fourier system with the so-called biting limit procedure applied to the
thermal energy equation (see Chapter 6 in [16]). Such an approach is of no use in the
case of the more realistic and physically relevant pressure–density–temperature state
equations considered in this paper.
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Leaving aside the vast amount of literature devoted to problems in the one-
dimensional space geometry (see, for instance, the monograph by Antontsev, Kazhikhov,
and Monakhov [1]) as well as the “small data” problems and the problems of exis-
tence of “local in time smooth solutions” (cf. the papers by Hoff [23], Matsumura and
Nishida [26], [25], among others), the most relevant references to be quoted here are
represented by the monograph by Lions [24] together with the results of Vaigant and
Kazhikhov [38]. In both cases, the “large data” problems are addressed concerning
the so-called barotropic flows for which p can be taken as a function of � only. In
particular, the fundamental property of “weak continuity” of the effective viscous flux
established in [24] (cf. also [22], [33]) will play a significant role in the analysis of the
present problem (see section 5).

After an introductory section 2 defining the class of admissible variational solu-
tions to problem (1.1)–(1.6), the paper is divided into three major parts as follows.

• Section 3 presents a general class of constitutive equations, based upon phys-
ical principles, for which the main result—the weak sequential stability of the
solution set of problem (1.1)–(1.6)—is established (see Theorem 3.1).

• Section 4 concerns the available estimates on the state variables �, u, and ϑ
resulting from boundedness of the total energy and entropy. The role of these
bounds is to prevent possible concentration phenomena that may develop in
a sequence of admissible solutions. As a by-product, we deduce the weak
sequential stability of the convective terms �u, �u ⊗ u, and �su.

• The central issue of compatibility of the (nonlinear) constitutive equations
with weak convergence is treated in section 5. In particular, we establish
a weak “continuity” property of the effective viscous flux for a general lin-
early viscous fluid with temperature-dependent shear and bulk viscosity co-
efficients. Moreover, a new class of renormalized solutions to the continuity
equation is introduced in order to show strong L1-compactness of the temper-
ature field. Finally, the technique of [16] based on the concept of “oscillations
defect measure” is adopted in order to show strong L1-compactness of the
density.

2. Admissible variational solutions. The purpose of this section is to intro-
duce a suitable concept of admissible solutions to problem (1.1)–(1.6) to be dealt with
in what follows. Unfortunately, the most natural choice of smooth solutions lies out
of reach of the presently available mathematical tools. More specifically, the set of
smooth solutions is not (known to be) closed with respect to a priori bounds resulting
mostly from the rather poor energy or entropy estimates.

Instead our analysis is based on the concept of variational (weak) solutions, where
the original system of partial differential equations is replaced by a family of integral
identities to be satisfied when the equations are “tested” (multiplied) on a suitable
smooth function. Although such an approach seems to be much closer to the under-
lying physical principles, the fundamental question whether or not it yields a definite
theory in the sense of existence, uniqueness, and stability of solutions of meaningful
initial-value problems is far from being settled.

Nonetheless, our aim is to develop a mathematical theory of (1.1)–(1.6) which
conforms with the following stipulations, the rigorous verification of which is the
objective of this paper and/or of future research.

• Compatibility. Any smooth solution of problem (1.1)–(1.6) supplemented with
a suitable set of constitutive equations is an admissible solution in the sense
specified later in this section. Conversely, any admissible solution which is
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smooth represents a classical solution of the problem.
• Physical admissibility. The class of admissible solutions meets all restrictions

imposed by the underlying physical principles, in particular, the second law
of thermodynamics.

• Existence. The results obtained in this paper combined with the approxi-
mation scheme developed in Chapter 7 in [16] should yield rigorous existence
results (in the class of weak solutions) for the corresponding initial-boundary-
value problem without any essential restriction on the size of initial data.

• Equilibrium states (Prigogine’s principle). Minimization of the entropy pro-
duction rate σ over the set of all admissible states of the system yields an
equilibrium solution (cf. [30]).

• Large time relaxation. Any admissible solution resulting from the action of a
conservative body force f = ∇xF tends to an equilibrium for large values of
time.

2.1. General thermodynamics relations. In accordance with the common
strategy delineated in section 1, the thermodynamic functions p, e, and s will be
expressed in terms of the instantaneous values of the scalar state variables � and ϑ.
Consequently, by virtue of the basic principles of thermodynamics, the entropy density
s is determined, up to an additive constant, through

∂s

∂�
=

1

ϑ

(∂e
∂�

− p

�2

)
,

∂s

∂ϑ
=

1

ϑ

∂e

∂ϑ
(2.1)

imposing Maxwell’s relation (a compatibility condition) on e and p in the form

∂e

∂�
=

1

�2

(
p− ϑ

∂p

∂ϑ

)
.(2.2)

By the same token, the entropy production rate σ is a nonnegative quantity given
by

σ = S :

(
∇xu

ϑ

)
− q ·

(
∇xϑ

ϑ2

)
≥ 0(2.3)

provided the flow is smooth (see, for instance, Chapter 1 in [21]).
Here, the assumption of smoothness is crucial since it is well known that dis-

continuous solutions (shock waves) of the inviscid system do increase entropy even if
S = q = 0 (see, for example, the classical text by Smoller [34]). As a matter of fact, a
kind of “mechanical energy defect” cannot be legitimately excluded even in the case of
a viscous incompressible flow described by the classical Navier–Stokes system in three
space dimensions (see Duchon and Robert [11], Eyink [15], Nagasawa [28], Caffarelli,
Kohn, and Nirenberg [6], among others). If such a scenario really occurs, and if we
want, at the same time, to keep the total energy balance (1.6) in force, it is necessary
to replace the equality in (2.3) by a more general stipulation:

σ ≥ S :

(
∇xu

ϑ

)
− q ·

(
∇xϑ

ϑ2

)
.(2.4)

On the other hand, it is a routine matter to check that (2.4) together with (1.1)–(1.6)
implies, in fact, (2.3), provided s, e satisfy (2.1) and (2.2) and all quantities in question
are smooth (see also section 2.3).
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As the field equations are supposed to describe a system far from equilibrium, a
more natural way would be to postulate the existence of the entropy s as a function of �
and e and to define the absolute temperature ϑ−1 ≡ ∂es > 0 (see, for example, [21]).
However, we have chosen the more “classical” family of the state variables as the
constitutive equations we discuss below seem much more transparent in this setting.

2.2. Admissible solutions. Motivated by the previous discussion we are now
ready to introduce the class of admissible solutions of problem (1.1)–(1.6).

Definition 2.1. Let Ω ⊂ R3 be a domain. We shall say that a quantity {�,u, ϑ}
represents an admissible solution of problem (1.1)–(1.6) on a time interval (0, T ) pro-
vided the following conditions are fulfilled.

• The density � and the velocity u,

� ≥ 0, � ∈ L∞(0, T ;Lγ(Ω)), u ∈ L2(0, T ;W 1,2
0 (Ω;R3)), γ >

3

2
,

solve a renormalized continuity equation in D′((0, T )×R3) provided they were
extended to be zero outside Ω. Specifically, the integral identity

∫ T

0

∫
Ω

(�H(�)∂tϕ + �H(�)u · ∇xϕ) dxdt(2.5)

=

∫ T

0

∫
Ω

h(�)divxu ϕdxdt

holds for any test function ϕ ∈ D((0, T ) ×R3) and any

h ∈ BC[0,∞), H(�) ≡ H(1) +

∫ �

1

h(z)

z2
dz.(2.6)

• The momentum equation (1.2) is satisfied in D′((0, T ) × Ω).
• The absolute temperature ϑ,

ϑ, log(ϑ) ∈ L2(0, T ;W 1,2(Ω)),

is positive a.a. on (0, T ) × Ω). The specific entropy s = s(�, ϑ), related to p
and e through (2.1) and (2.2), satisfies (1.3) in D′((0, T )×Ω) with the entropy
production rate σ—a positive measure on [0, T ]×Ω such that inequality (2.4)
holds. More specifically, the integral identity

∫ T

0

∫
Ω

(
�s ∂tϕ + �su · ∇xϕ +

q

ϑ
· ∇xϕ

)
dxdt(2.7)

+

∫ T

0

∫
Ω

[
S :

(
∇xu

ϑ

)
− q ·

(
∇xϑ

ϑ2

)]
ϕdxdt ≤ 0

is valid for any test function

ϕ ∈ D((0, T ) ×R3), ϕ ≥ 0.

• The total energy balance (1.6) is satisfied in D′(0, T ).
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• The “thermal” energy inequality

d

dt

∫
Ω

�(e− ec)dx ≥
∫

Ω

(S : ∇xu − (p− pc) divxu) dx(2.8)

holds in D′(0, T ) with

pc(�) ≡ p(�, 0), ec(�) ≡
∫ �

0

pc(z)

z2
dz.

2.3. Remarks. A few comments are in order.
(i) To begin with, the reader will have noticed that all quantities appearing in

the integral identities introduced in Definition 2.1, and this is to be viewed as an
inseparable part of the definition, are tacitly assumed to be at least locally integrable
on (0, T ) × Ω.

(ii) The renormalized solutions in the spirit of (2.5) were introduced by DiPerna
and Lions in [10]. Here, it is easy to check that the choice h ≡ 0 yields the validity of
(1.1) in D′((0, T ) × Ω) together with the total mass conservation law

∫
Ω

�(t) dx = M for any t ∈ [0, T ].(2.9)

As a matter of fact, we shall make use of a slightly stronger formulation of (2.5),
namely,

∂t(�H(�,Θ)) + divx(�H(�,Θ)u) + h(�,Θ) divxu(2.10)

= �
∂H(�,Θ)

∂Θ
(∂tΘ + ∇xΘ · u)

in D′((0, T ) × Ω) for any Θ ∈ C1([0, T ] × Ω), where

∂H

∂Θ
, h ∈ BC([0,∞) × Θ([0, T ] × Ω)),(2.11)

H(�,Θ) = H(1,Θ) +

∫ �

1

h(z,Θ)

z2
dz.

However, as we show in section 5, (2.5) and (2.10) are equivalent in the class of
admissible solutions.

(iii) Seemingly, the “correct” statement of (2.8) should read as

d

dt

∫
Ω

�edx ≥
∫

Ω

(S : Dxu − p divxu) dx.(2.12)

Unfortunately, the available a priori estimates are not strong enough to render the
“cold” pressure term pc square integrable—in other words, to legalize the product
pcdivxu. Note, however, that for smooth solutions, both (2.8) and (2.12) (with equality
sign) are equivalent to (1.3).

(iv) In order to conclude, we shall show that any smooth admissible solution solves
problem (1.1)–(1.6) in the classical sense. Obviously, the only nonstandard part is to
show that (1.3) holds with σ given by (2.3) and that q satisfies the boundary condition
(1.4).
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If ϑ is smooth, one can take the product ϕϑ as a test function in (2.7) to deduce

∫ T

0

∫
Ω

ϑ(∂t(�s) + divx(�su))ϕ dxdt−
∫ T

0

∫
Ω

q · ∇xϕdxdt

≥
∫ T

0

∫
Ω

S : ∇xu ϕ dxdt for any ϕ ∈ D((0, T ) ×R3), ϕ ≥ 0,

where, thanks to (1.1) and (2.1),

ϑ ∂t(�s) + ϑdivx(�su) = ϑ �∂ts + ϑ�u · ∇xs = ∂t(�e) + divx(�eu) + p divxu.

Thus, we have obtained the internal energy balance

∫ T

0

∫
Ω

�e ∂tϕ + �eu · ∇xϕ + q · ∇xϕdxdt(2.13)

≤
∫ T

0

∫
Ω

(p divxu − S : ∇xu)ϕdxdt for any ϕ ∈ D((0, T ) ×R3), ϕ ≥ 0.

On the other hand, we have the kinetic energy equation

∂t

(
1

2
�|u|2

)
+ divx

(
1

2
�|u|2u

)
+ divx(pu)(2.14)

= divx(Su) + p divxu − S : ∇xu + �f · u,

which can be deduced from (1.1) and (1.2).

Now it is easy to observe that (2.13) and (2.14) are compatible with the total
energy balance (1.6) if and only if (2.13) holds as equality for any choice of ϕ. Conse-
quently, it is a routine matter to deduce the internal energy equation

∂t(�e) + divx(�eu) + divx q = S : ∇xu − p divxu in (0, T ) × Ω(2.15)

together with the boundary condition (1.4) to be satisfied by the heat flux q. Of
course, (2.15) is equivalent to (1.3) provided all the relevant quantities are smooth.

3. Hypotheses and main results. The field equations (1.1)–(1.3), being linear
with respect to partial derivatives, can be viewed as a family of constraints in the
Fourier variable x → ξ to be satisfied by any physically admissible flow while the
constitutive equations represent, in general, nonlinear functional relations associated
with the material properties of a given fluid. The fundamental idea advocated in the
celebrated work of Tartar [35] and DiPerna [8] and [9], to name only a few, asserts that
compatibility or rather incompatibility of these stipulations may result in substantial
restrictions imposed on the whole set of possible solutions. One can say, very roughly
indeed, that the problem will enjoy the property of weak sequential stability, which
means that any sequence of admissible solutions in the sense of Definition 2.1 possesses
an accumulation point, with respect to the topologies induced by the available a priori
estimates, that represents another solution of the same problem (see Theorem 3.1).
Given the rather poor estimates currently available, this is a nontrivial and usually
decisive piece of information that can be directly used to build up a rigorous existence
theory.
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3.1. The pressure–density–temperature state equation. The constitutive
equation relating the pressure p to the state variables � and ϑ will play a central
role in our analysis. In accordance with general principles of statistical mechanics, the
pressure should obey the following hypotheses.

• In the regime of moderate densities and high temperatures, the perfect gas
law (1.7) is always applicable.

• The pressure p = p(�, ϑ) is a monotone nondecreasing function of � for any
fixed ϑ (see Chapter 5 in [20]).

• There is a critical temperature Θc(�) below which the fluid exhibits degener-
ation phenomena. Equivalently, one can say that for any ϑ there is a critical
density �c(ϑ) so that the “remaining” part �− �c corresponds to fluid parti-
cles with no contribution to the pressure nor to the specific heat at constant
volume (see section 2.2 and Chapter 3 in [20]). On the other hand, one can
assume the pressure in the “supercritical region” to be that of a degenerate
(cold) electron gas given by (1.8) (see Chapter 15 in [14]).

• The pressure is augmented by an intensive radiation component pR when
the temperature is extremely high and the density is low (see, for instance,
Chapter 15 in [14], [5], and [27]).

Accordingly, the principal mathematical hypotheses imposed on the total pressure
p can be formulated as follows.

The total pressure p can be decomposed as

p(�, ϑ) ≡ pG(�, ϑ) + pR(ϑ),(3.1)

where pR is the pressure due to radiation,

pR(ϑ) =
d

3
ϑ4, d > 0.(3.2)

The extensive component pG ∈ C2((0,∞) × (0,∞)) satisfies

∂pG(�, ϑ)

∂�
≥ 0,

∣∣∣∣∂pG(�, ϑ)

∂ϑ

∣∣∣∣ ≤ c(M) for all 0 < �, ϑ < M,(3.3)

where c(M) is bounded for bounded M .
Moreover,

lim
�→0+

pG(�, ϑ) = 0 for any ϑ > 0, lim
ϑ→0+

pG(�, ϑ) = pc(�) for any � > 0.(3.4)

The “cold” pressure pc dominates its thermal complement in the neighborhood of
the �-axis bounded above by a graph of a continuous function Θc = Θc(�) : [0,∞) →
[0,∞); more specifically,∣∣∣∣∂pG(�, ϑ)

∂ϑ

∣∣∣∣ ≤ c
(
1 + p

1
3
c (�) + ϑ3

)
for all 0 < ϑ < Θc(�).(3.5)

Finally, we impose a rather technical but, as we have seen above, physically rele-
vant growth condition:

a�γ − k ≤ pc(�) ≤ a�γ + k for any � ≥ 0 with a > 0, k > 0, γ >
3

2
.(3.6)

An overall picture of hypotheses imposed on the state equation can be seen in
Figure 3.1.
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Fig. 3.1. pG = pG (�, ϑ).

3.2. The internal energy and entropy. The specific internal energy e is
uniquely determined, modulo a function depending solely on ϑ, by the pressure p
through Maxwell’s equation (2.2). In addition, writing

e(�, ϑ) = eG(�, ϑ) + eR(�, ϑ), with the radiation component eR =
dϑ4

�
,(3.7)

we require eG to satisfy

eG(�, ϑ) ≥ 0, lim
[�,ϑ]→[0,0]

eG(�, ϑ) = 0,(3.8)

cv ≡ ∂eG(�, ϑ)

∂ϑ
≥ 0, cv ∈ C([0,∞) × [0,∞)),(3.9)

c1(1 + ϑω) ≤ cv(�, ϑ) ≤ c2(1 + ϑω), with c1 > 0, ω ≥ 0,(3.10)

for all � > 0, ϑ > 0.
The growth condition (3.10) is in agreement with physical experiments predicting

ω ∈ [0, 1/2] (cf. [40]). The quantities eG, pG being interrelated through (2.2) and
hypotheses (3.8)–(3.10) implicitly impose certain restrictions on pG as well.

Now it is easily seen, with p and e given, that the specific entropy s is determined,
up to an additive constant, by the thermodynamic equations (2.1).

3.3. Viscosity and thermal conductivity. The fluids considered in this paper
are Newtonian, which means that the viscous stress tensor S is a linear function
of the velocity gradient ∇xu. As a consequence of the principle of material frame-
indifference, the only physically admissible form of S must read

S ≡ 2μ

(
Dxu − 1

N
divxu I

)
+ ζ divxu I(3.11)
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with

Dxu =
1

2
(∇xu +t ∇xu) being the symmetric part of the velocity gradient,

where μ and ζ are the shear and bulk viscosity coefficients (see section C.1 in [37]).
In general, the quantities μ and ζ are functions of both � and ϑ. Here, mainly

because of technical difficulties, we restrict ourselves to the (physically relevant—see,
for instance, [2]) case when μ and ζ depend only on the absolute temperature ϑ. More
specifically, we suppose μ = μ(ϑ), ζ = ζ(ϑ) ∈ C1[0,∞) such that

m1(1 + ϑβ) ≤ μ(ϑ), |μ′(ϑ)| ≤ m2(ϑ
β−1 + 1), m1 > 0, β ≥ 0,(3.12)

ζ ≥ 0, m1ϑ
β − 1 ≤ ζ(ϑ), |ζ ′(ϑ)| ≤ m2(ϑ

β−1 + 1).(3.13)

The requirement that the bulk viscosity coefficient ζ must be positive at least for
large values of ϑ may be viewed as slightly restrictive from the physical viewpoint.
As a matter of fact, this hypothesis could be dropped at the expense of more severe
restrictions imposed on the pressure p. Note, however, that Stokes’ relation ζ ≡ 0
inferred from questionable hypotheses is considered unsustainable in light of current
theory (cf. section E.1 in [37]).

By virtue of the second law of thermodynamics, expressed through (2.3), the
scalar product q · ∇xϑ must be nonpositive. For simplicity, we shall assume the heat
flux vector q to be given by Fourier’s law

q = −κ∇xϑ(3.14)

with the heat conductivity coefficient κ > 0. To be more precise, the quantity κ itself
is allowed to be a continuous function of � and ϑ satisfying the growth condition

k1(1 + ϑα) ≤ κ(�, ϑ) ≤ k2(1 + ϑα), with k1 > 0, for a certain α ≥ 3.(3.15)

The lower bound on the exponent α is motivated by the presence of “radiative”
heat conductivity κR proportional to ϑ3 (cf. [5] or [31], [32]). On the other hand, even
larger values of α ≈ 4.5–5.5 can be considered as physically relevant (see [40]).

In agreement with the previous discussion, we shall suppose that the coefficients
α and β satisfy

0 ≤ β ≤ 4

3
, α ≥ 16

3
− β.

These (technical) assumptions make it possible to derive the bounds for dissipation
from the thermal energy balance. So far, it is an open question whether they can be
relaxed.

3.4. The main result. Having introduced all the necessary hypotheses we are
now in a position to state our main result.

Theorem 3.1. Let Ω ⊂ R3 be a bounded domain with a Lipschitz boundary.
Assume that the quantities p, e, s are the given functions of �, ϑ satisfying hypothe-
ses (3.1)–(3.10). Furthermore, let S and q be determined through (3.11) and (3.14),
respectively, where μ, ζ satisfy (3.12), (3.13) and κ obeys (3.15). Finally, let

γ >
3

2
, 0 ≤ ω ≤ 1

2
, 0 ≤ β ≤ 4

3
, α ≥ 16

3
− β,(3.16)
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and

Θc(�) ≥ c�
γ
4 − 1 for a certain c > 0,(3.17)

where Θc is the critical temperature appearing in (3.5).
Suppose that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{�n}∞n=1 ⊂ L∞(0, T ;Lγ(Ω)) ∩ C([0, T ];L1(Ω)),

{un}∞n=1 ⊂ L2(0, T ;W 1,2
0 (Ω;R3)),

{ϑn}∞n=1 ⊂ L2(0, T ;W 1,2(Ω))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

is a sequence of admissible solutions of problem (1.1)–(1.6) on the time interval (0, T )
in the sense of Definition 2.1 such that

�n(0, ·) → �0 in L1(Ω),(3.18)

ess lim sup
t→0+

∫
Ω

�n(|un|2 + e(�n, ϑn))(t) dx ≤ E0,(3.19)

ess lim inf
t→0+

∫
Ω

�nsn(t)dx ≥ S0,

and with

fn → f weakly (*) in L∞((0, T ) × Ω),(3.20)

where E0 and S0 are constants independent of n.
Then, passing to a subsequence as the case may be, we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�n → � in C([0, T ];L1(Ω)),

un → u weakly in L2(0, T ;W 1,2
0 (Ω;R3)),

ϑn → ϑ weakly in L2(0, T ;W 1,2(Ω)) and strongly in L2((0, T ) × Ω),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where the limit quantity {�,u, ϑ} represents another admissible solution of problem
(1.1)–(1.6) on the time interval (0, T ).

One of the first weak stability results for the reduced barotropic model, where
p = p(�) and the temperature is completely eliminated from the system, was obtained
by Lions [24]. Some of the ingredients of his approach can be traced back to the work
of Hoff [22] and Serre [33]. Another interesting result in this direction is due to Vaigant
and Kazhikhov [38].

The same question as well as the closely related problem of global existence for
the full Navier–Stokes–Fourier system with constant viscosity coefficients is studied
in [16]; the case of temperature sensitive viscosity is dealt with in [17]; and, finally,
these results are extended in [13] in order to include the radiation phenomena.

As already pointed out in section 1, the common feature of the above-mentioned
results is that the fluid pressure pG is always taken to be an affine function of the
absolute temperature, whence the internal energy density e admits a decomposition
into purely “elastic” and “thermal” components yielding a family of “renormalized”
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energy equations (see section 4.3.3 in Chapter 4 in [16]). Since these rescaled equations
provide additional a priori estimates on the temperature, the technique based on
Chacon’s biting limit can be used in order to compensate for the lack of integrability of
the heat flux q (see section 6.8.1 in Chapter 6 in [16]). Apparently, such an approach is
no longer applicable in the present setting, where the pressure is a general function of �
and ϑ, which means that the elastic and thermal contributions to e act simultaneously.

In this work, we introduce a method which makes it possible to treat this general
situation. It ranges from nontrivial modifications of approaches introduced in [12],
[13], [16], [17], [18] (cf. section 4) to delicate new issues including the temperature-
dependent renormalized continuity equation (treated in section 5), which is needed to
pass to the limit in the general pressure term.

Regardless of the rather technical hypotheses (3.16) and (3.17), the applicability
of the present approach leans essentially on the following characteristic features of the
problem.

• The total pressure p is coercive at both extremes of the “phase space,” which
means that on both axes {� = 0}, {ϑ = 0}. From the physical viewpoint, this
amounts to taking both radiation and the ionization pressure components
into account.

• The viscosity coefficients depend effectively on the temperature; in particular,

μ(ϑ) → ∞ for ϑ → ∞.

This is a very natural hypothesis, especially for gases.
• The heat conductivity coefficient κ is a superquadratic (“supercubic,” as a

matter of fact) function of ϑ under large temperature regimes. Such a stipu-
lation seems to be in good agreement with experimental results.

As already pointed out, satisfaction of these conditions does not seem to be at
odds with the constitutive laws obtained by the methods of statistical mechanics
or empirically, in particular, for real gases. We refer the interested reader to the
monographs [2], [20], [27], [39], [40], among others, for the physical background of the
present theory.

4. Estimates. The bounds imposed on the family of admissible solutions by
hypotheses (3.18)–(3.20) are, very often but rather incorrectly, referred to as a priori
estimates. Let us stress, to begin with, that all estimates discussed in this section
are “real” estimates to be satisfied by any admissible solution of problem (1.1)–(1.6)
in the sense of Definition 2.1 while the term a priori estimates is usually related to
smooth solutions of a given problem.

4.1. Total mass conservation. As already observed in (2.9), the total mass
M of the fluid is a constant of motion thanks to the conservative boundary conditions
(1.5). Seeing that � is always nonnegative we infer, in particular, that

{�n}∞n=1 is bounded in L∞(0, T ;L1(Ω)).(4.1)

4.2. Energy estimates. Since the internal energy density e obeys Maxwell’s
equation (2.2), one can write

eG(�, ϑ) = Pc(�) + Q(ϑ) +

∫ �

1

(
pG(z, ϑ) − pG(z, 0) − ϑ

∂pG(z, ϑ)

∂ϑ

)
1

z2
dz(4.2)

with

Pc(�) ≡
∫ �

0

pc(z)

z2
dz, Q(ϑ) ≡

∫ ϑ

0

cv(1, s) ds.(4.3)
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Note that eG(ρ, 0) = Pc(ρ), and therefore the integral
∫ 1

0
pc(z)/z

2 dz is convergent in
order to comply with hypotheses (3.8) and (3.9).

The total energy balance (1.6) integrated with respect to time yields∫
Ω

En(τ)dx ≤ E0 +

∫ τ

0

∫
Ω

�nfn · un dx for a.a. τ ∈ (0, T )

with

En ≡ �n

(1

2
|un|2 + e(�n, ϑn)

)
and E0 independent of n.

Thus, a straightforward application of Gronwall’s lemma gives rise to

{√�nun}∞n=1 bounded in L∞(0, T ;L2(Ω;R3))(4.4)

together with the estimate

sup
n=1,2,...

(
ess sup

t∈(0,T )

∫
Ω

�ne(�n, ϑn)dx
)
< ∞.(4.5)

Now, in accordance with hypotheses (3.7) and (3.8), we get

{ϑn}∞n=1 bounded in L∞(0, T ;L4(Ω)).(4.6)

Moreover, writing eG(ρ, ϑ) = eG(ρ, 0) +
∫ ϑ

0
∂eG(ρ,s)

∂ϑ ds, by virtue of (3.9) and (3.10),
we obtain

{�nϑ1+ω
n }∞n=1 bounded in L∞(0, T ;L1(Ω)).(4.7)

On the other hand, hypotheses (3.8) and (3.9) and formula (4.2) imply

Q(ϑ) +

∫ �

1

(
pG(z, ϑ) − pG(z, 0) − ϑ

∂pG(z, ϑ)

∂ϑ

) 1

z2
dz ≥ 0,

whence (4.5) together with (4.2) and hypothesis (3.6) yields

{�n}∞n=1 bounded in L∞(0, T ;Lγ(Ω)).(4.8)

Finally, as the pressure pG is a nondecreasing function of the density, we obtain

0 ≤ pG(�, ϑ) ≤ pG(�c(ϑ), ϑ) for any 0 ≤ � ≤ �c(ϑ) ≤ c(1 + ϑ
4
γ ),(4.9)

where �c is the critical density evaluated on the basis of Θc (cf. hypothesis (3.17)).
On the other hand, making use of hypotheses (3.5) and (3.17), we deduce

pG(�, ϑ) = pc(�) +

∫ ϑ

0

∂pG(�, s)

∂ϑ
ds(4.10)

≤ c1(�
γ + ϑ4 + ϑ�

γ
3 ) ≤ c2(1 + ϑ4 + �γ)

whenever

0 < ϑ < Θc(�) or, equivalently, � > �c(ϑ).(4.11)

Relation (4.10) together with (4.9) implies

0 ≤ pG(�, ϑ) ≤ c(1 + �γ + ϑ4) for all � ≥ 0, ϑ ≥ 0;(4.12)

therefore, estimates (4.6) and (4.8) can be used in combination with (4.12) in order
to conclude that

{p(�n, ϑn)}∞n=1 is bounded in L∞(0, T ;L1(Ω)).(4.13)
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4.3. Dissipation estimates I. The active dissipative mechanism manifested
through viscosity and thermal conductivity of the fluid under consideration represents
an important source of additional estimates involving the spatial derivatives of the
velocity field u and the temperature ϑ.

The entropy production inequality (2.7), integrated with respect to time, yields∫
Ω

�nsn(τ)dx ≥ S0 +

∫ τ

0

∫
Ω

(
Sn : ∇xun

ϑn
+

κ(�n, ϑn)

ϑ2
n

|∇xϑn|2
)

dxdt

for a.a. τ ∈ (0, T ), where Fourier’s law (3.14) and hypothesis (3.19) have been taken
into account.

On the other hand, in accordance with the thermodynamic equations (2.1), the
specific entropy s may be written in the form

s(�, ϑ) = sR(�, ϑ) + sG(�, ϑ), sG(�, ϑ) ≡ sG(�, 1) +

∫ ϑ

1

cv(�, s)

s
ds,(4.14)

where

sR(�, ϑ) ≡ 4

3
d
ϑ3

�
, sG(�, 1) = −

∫ �

1

∂pG(z, 1)

∂ϑ

1

z2
dz.(4.15)

Parallel to (4.10), hypotheses (3.3) and (3.5) can be used in order to deduce

|sG(�, 1)| ≤ c
(
1 + �−1 + �

γ
3 −1

)
,(4.16)

while (3.9) and (3.10) yield[ ∫ ϑ

1

cv(�, s)

s
ds

]+

≤
{

c(1 + ϑω), (ω > 0)
c(1 + [lnϑ]+), (ω = 0)

}
for all ϑ > 0.

Consequently, having already proved (4.6)–(4.8) we are allowed to conclude that

ess sup
t∈(0,T )

∫
Ω

�nsn(t)dx ≤ c(T ),(4.17)

whence

(4.18){
Sn : ∇xun

ϑn

}∞

n=1

,

{
κ(�n, ϑn)

ϑ2
n

|∇xϑn|2
}∞

n=1

are bounded in L1((0, T ) × Ω)

and

{
�n

[ ∫ ϑn

1

cv(�n, s)

s
ds

]−}∞

n=1

is bounded in L∞(0, T ;L1(Ω)).(4.19)

In particular, by virtue of hypothesis (3.15), estimate (4.18) yields

{∇x log(ϑn)}∞n=1,
{
∇xϑ

α
2
n

}∞
n=1

bounded in L2(0, T ;L2(Ω, R3)),(4.20)

while by virtue of hypothesis (3.10), (4.19) implies

{�n log(ϑn)}∞n=1 bounded in L∞(0, T ;L1(Ω)).(4.21)
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At this stage, we pause to report an auxiliary result which may be viewed as a
straightforward modification of the Poincaré inequality (see, for instance, Lemma 4.1
in [12]).

Lemma 4.1. Let Ω ⊂ RN , N ≥ 2, be a bounded Lipschitz domain, and Γ ≥ 1 be
a constant. Let � ≥ 0 be a given function such that

0 < M ≤
∫

Ω

�dx,

∫
Ω

�γdx ≤ K,

where

γ >
2N

N + 2
.

Then there exists a constant c = c(M,K, γ,Γ) such that the inequality

‖v‖L2(Ω) ≤ c(M,K)

(
‖∇xv‖L2(Ω) +

[ ∫
Ω

�|v| 1
Γ dx

]Γ)

holds for any v ∈ W 1,2(Ω).
The total mass being conserved, more specifically,

Mn ≡
∫

Ω

�n(t)dx =

∫
Ω

�n(0)dx →
∫

Ω

�0dx ≡ M > 0,

Lemma 4.1 applies, together with estimates (4.7), (4.20), and (4.21), in order to
conclude

{log(ϑn)}∞n=1, {ϑ
α
2
n }∞n=1 bounded in L2(0, T ;W 1,2(Ω)).(4.22)

4.4. Dissipation estimates II. A short examination of the “thermal” energy
inequality (2.8) yields∫ τ

0

∫
Ω

Sn : ∇xun dxdt(4.23)

≤ 2E0 +

∫
Ω

�n(en − ec(�n))(τ) dx +

∫ τ

0

∫
Ω

(pn − pc(�n)) divxun dxdt

for a.a. τ ∈ (0, T ).
We claim, keeping in mind hypotheses (3.4) and (3.5), that there is a positive

constant c such that

|p(�, ϑ) − pc(�)| ≤ c(1 + ϑ4 + ϑ�
γ
3 ) for all � > 0, ϑ > 0.(4.24)

Indeed, similar to (4.10), we have

|pG(�, ϑ) − pc(�)| =

∣∣∣∣
∫ ϑ

0

∂pG(�, s)

∂ϑ
ds

∣∣∣∣ ≤ c(1 + ϑ4 + ϑ�
γ
3 )

provided � ≥ �c(ϑ). Moreover, as pG is a nondecreasing function of �,

|pG(�, ϑ) − pc(�)| ≤ pG(�c(ϑ), ϑ) − pc(�c(ϑ)) + 2pc(�c(ϑ)) ≤ c(1 + ϑ4)

for all 0 ≤ � ≤ �c(ϑ); cf. estimate (4.9).
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Now, by virtue of Hölder’s inequality and the imbedding theorem W 1,2(Ω) ⊂
L6(Ω), the integral in the extreme right of (4.23) can be estimated as∣∣∣∣

∫ τ

0

∫
Ω

(pn − pc(�n))divxun dxdt

∣∣∣∣(4.25)

≤ c
(
‖(1 + ϑ4

n)divxun‖L1((0,T )×Ω) + ‖ϑn�
γ
3
n divxun‖L1((0,T )×Ω)

)
,

where

‖ϑn�
γ
3
n divxun‖L1(Ω) ≤ ‖ϑn‖W 1,2(Ω)‖�γn‖

1
3

L1(Ω)‖∇xun‖L2(Ω;RN ).

Furthermore, writing

ϑ4divxu = ϑ4− β
2 ϑ

β
2 divxu,

we get, by interpolation,

‖ϑ4− β
2 ‖2

L2(Ω) ≤ ‖ϑ‖
3α(β−4)

4−3α

L3α(Ω) ‖ϑ‖
8−β− 3α(β−4)

4−3α

L4(Ω) ,(4.26)

where, in accordance with hypothesis (3.16), 3α(β − 4)/(4 − 3α) ≤ α. Consequently,
by virtue of estimates (4.6) and (4.22),

{ϑ4− β
2

n }∞n=1 is bounded in L2((0, T ) × Ω).(4.27)

Due to (3.11), S : ∇xu = 2μ〈Dxu〉 : 〈Dxu〉 + ζ|divxu|2, where 〈Dxu〉i,j = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) − 1

3divxuδi,j . Moreover, the Korn-type inequality

‖∇xu‖Lp(Ω;R3×3) ≤ c(p)‖〈Dx(u)〉‖Lp(Ω;R3×3
sym)(4.28)

holds true for any 1 < p < ∞ and for any u ∈ W 1,p
0 (Ω, RN ) (cf. Proposition 2.4 in [36]

or section 5.1 in [18]). Finally, by virtue of (4.25)–(4.27), (4.8), and (4.22),∣∣∣∣
∫ T

0

∫
Ω

(pn − pc(ρn))divxun dxdt

∣∣∣∣(4.29)

≤ c(‖ϑ
β
2
n divxun‖L2((0,T )×Ω) + ‖∇un‖L2((0,T )×Ω)).

Moreover, by virtue of (4.5) and (4.8), integral
∫
Ω
�n(en − ec(�n)) dx is bounded

in L∞(0, T ).
Thus, combining estimate (4.23) with inequalities (4.28) and (4.29) and with

hypotheses (3.12), (3.13), and (3.16), we obtain, in particular,

{un}∞n=1 bounded in L2(0, T ;W 1,2
0 (Ω;R3)).(4.30)

Then, of course,

{Sn : ∇xun}∞n=1 is bounded in L1((0, T ) × Ω).(4.31)

Finally, from (3.11), taking into account bounds (4.27) and (4.30) and hypotheses
(3.12), (3.13), and (3.16), we can easily verify that

{Sn}∞n=1 is bounded in L
5
3 (0, T ;L

5
3 (Ω;R3×3

sym)).(4.32)
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4.5. Refined pressure and density estimates. Refined density estimates up
to the boundary can be obtained by using the quantities

ϕj = ψ

[
B
(
b(�) ∗ φε −

1

|Ω|

∫
Ω

b(�) ∗ φε dx

)]
j

as test functions in the variational formulation of the momentum equation (1.2). Here
ψ is a convenient function in C∞

0 (I), b ∈ C([0,∞) is a function with convenient growth
at infinity (see later), the symbol ∗ denotes convolution, φε → δ(0) is a regularizing
sequence in the variable t, and B is the Bogovskii operator satisfying

divB(v) = v, ‖B(v)‖Lq(Ω) ≤ c(q)‖g‖Lq(Ω), ‖∇B(v)‖Lp(Ω) ≤ c(p)‖v‖Lp(Ω),

with any 1 < q, p < ∞, g ∈ Lq(Ω;RN ), v = divg ∈ Lp(Ω), and g · n|∂Ω = 0

(cf., for instance, [3], [4], [19], or Lemma 3.17 in [29]).
With estimates (4.4), (4.8), (4.13), (4.30), and (4.32) at hand, such a procedure

yields, after a tedious but straightforward computation, a bound

sup
n=1,2,...

∫ T

0

∫
Ω

p(�n, ϑn)b(�n) dx dt < ∞,(4.33)

provided b(�) ≈ �ν , with ν = ν(γ) > 0 sufficiently small. Local (interior) pressure
estimate of type (4.33) was first established for the barotropic flow in [24], where the
optimal (largest) value of ν = (2/N)γ − 1 was obtained. For more details concerning
the techniques of the calculus leading to (4.33) see, for instance, section 7.9.5 in [29].

Now, writing

p(�n, ϑn) = pR(ϑn) +
(
pG(�n, ϑn) − pc(�n)

)
+ pc(�n),

we infer, with the help of (4.24), that the sequence∫ T

0

∫
Ω

�γ+ν
n dx dt is bounded.(4.34)

Indeed, by virtue of (4.6), (4.22) and a simple interpolation argument,

{ϑn}∞n=1 is bounded in Lp((0, T ) × Ω) for a certain p > 4,(4.35)

whence (4.34) follows easily from (4.24) and (4.33). Now, by using (3.1), (3.2), and
(4.12) it is easy to conclude that1

p(ρn, ϑn) is bounded in Lp((0, T ) × Ω) for some p > 1.(4.36)

1Note that, in contrast with (4.13), estimates (4.34) and (4.35) render the total pressure
{p(�n, ϑn)}∞

n=1 equi-integrable and thus precompact in the weak topology of the Lebesgue space
L1((0, T ) × Ω). This is the least information which can replace (4.36) in our proof. In the light of the
technical difficulties connected with the construction of B, it seems worth noting that a weaker, but
for our purposes still sufficient, result can be obtained via multipliers

wj , j = 1, ..., N, divx[w] = h, lim
dist(x,∂Ω)→0

h(x) = ∞,

where h ∈ Lp(Ω) with p = p(γ) >> 1 large enough. Indeed in such a way we can show that

{�γn}∞n=1 is equi-integrable in L1((0, T ) × Ω),

which means

lim
k→∞

∫
{�n≥k}

�γn dx dt → 0 uniformly for n = 1, 2, . . . .
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5. Weak sequential compactness. As �n satisfies (1.1) in the sense of distri-
butions, and since (4.4) and (4.8) hold, we may assume

�n → � in C([0, T ];Lγ
weak(Ω))(5.1)

passing to a subsequence as the case may be. (Here and in what follows, Lp
weak(Ω)

means Lp(Ω) endowed with the weak topology.)
Similarly, by virtue of (4.30),

un → u weakly in L2(0, T ;W 1,2
0 (Ω;R3)),(5.2)

and, in accordance with (4.6) and (4.22),

ϑn → ϑ weakly in L2(0, T ;W 1,2(Ω)) and weakly-(*) in L∞(0, T ;L4(Ω))(5.3)

at least for a suitable subsequence.
The main goal of this section is to show, in accordance with the conclusion of

Theorem 3.1, that �, u, and ϑ represent another admissible solutions of problem
(1.1)–(1.6) on the time interval (0, T ).

5.1. Convergence of the convective terms. The space Lγ(Ω) is compactly
imbedded into the dual space W−1,2(Ω) as soon as γ > 6/5. Consequently, by virtue
of (5.1) and (5.2) and hypothesis (3.16),

�nun → �u weakly-(*) in L∞(0, T ;L
2γ

γ+1 (Ω;R3)).(5.4)

Moreover, since (ρn,un, ϑn) satisfies (1.2) in the sense of distributions, keeping
in mind bounds (4.8), (4.30), (4.32), and (4.36), one can sharpen (5.4) to

�nun → �u in C([0, T ];L
2γ

γ+1

weak(Ω;R3)).(5.5)

Now, since γ > 3/2, we get, similar to the above, L
2γ

γ+1 (Ω;R3) compactly imbed-
ded into the dual space W−1,2(Ω;RN ), whence we are allowed to repeat the same
arguments as in (5.4) in order to deduce

�nun ⊗ un → �u ⊗ u weakly in L2(0, T ;L
6γ

4γ+3 (Ω;R3×3
sym)).(5.6)

In particular, it is possible to pass to the limit for n → ∞ in (1.1) and (1.2) to
obtain

∂t� + divx(�u) = 0 in D′((0, T ) ×R3),(5.7)

provided �, u were extended to be zero outside Ω, and

∂t(�u) + divx(�u ⊗ u) + ∇xp = divx S + �f in D′((0, T ) ×R3)3,(5.8)

where

p(�n, ϑn) → p(�, ϑ) weakly in L1((0, T ) × Ω),

Sn = S (Dxun, ϑn) → S(Dxu, ϑ) weakly in L
5
3 (0, T ;L

5
3 (Ω;R3)),

�nfn → �f weakly in L1(0, T ;L1(Ω;R3))

conformably to (4.32) and (4.36).
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5.2. Strong convergence of the temperature. Our aim is to show that the
sequence {ϑn}∞n=1 converges strongly in the Lebesgue space L1((0, T )×Ω), in partic-
ular, almost anywhere on (0, T ) × Ω for a suitable subsequence. This step represents
one of the most delicate issues to be discussed in this paper.

To begin with, let us record the following version of the celebrated Aubin–Lions
lemma (see Lemma 6.3 in Chapter 6 in [16]).

Lemma 5.1. Let Ω ⊂ RN , N ≥ 2, be a bounded Lipschitz domain. Let {vn}∞n=1

be a sequence of functions bounded in

L2(0, T ;Lq(Ω)) ∩ L∞(0, T ;L1(Ω)) with q >
2N

N + 2
.

Furthermore, assume that

∂tvn ≥ gn in D′((0, T ) × Ω),

where the distributions gn are bounded in the space L1(0, T ;W−m,p(Ω)) for certain
m ≥ 1, p > 1.

Then we have

vn → v in L2(0, T ;W−1,2(Ω))

passing to a subsequence as the case may be.
Since {ϑn}∞n=1 admits the bound established in (4.6), we have

{�nsR(�n, ϑn)}∞n=1 bounded in L∞(0, T ;L
4
3 (Ω)).(5.9)

Moreover, relation (4.16) yields

|�sG(�, 1)| ≤ c(1 + � + �
γ
3 ),

so we obtain, by virtue of (4.8), that

{�nsG(�n, 1)}∞n=1 is bounded in L∞(0, T ;Lp(Ω)) with p = min(3, γ)(5.10)

(cf. (4.14) and (4.15)).
Finally, hypotheses (3.9) and (3.10) together with estimates (4.6), (4.21), and

(4.22) can be used in order to conclude that

{�nΦ(�n, ϑn)}∞n=1 is bounded in L∞(0, T ;L1(Ω)) ∩ L2(0, T ;Lq(Ω))(5.11)

with at least any q such that q
γ + q

6 ≤ 1, where we have denoted

Φ(�, ϑ) ≡
∫ ϑ

1

cv(�, s)

s
ds.(5.12)

Then, of course,

{�nsnun}∞n=1 is bounded in L1(0, T ;Lp(Ω, R3)) with some p > 1.(5.13)

Consequently, the bounds obtained in (5.9)–(5.13) together with (4.18) and (4.22)
imply that the sequence vn = �nsn, satisfying the entropy production inequality (2.7),
complies with the hypotheses of Lemma 5.1, where we have taken gn = −divx(ρnsnun)−
divx(κ(�n, ϑn)∇ϑn

ϑn
) + Sn : ∇un

ϑn
+ κ(�n, ϑn) |∇ϑn|2

ϑ2
n

.
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Thus, we may assume

�nsn → 4

3
dϑ3 + �sG(�, 1) + �Φ(�, ϑ) in L2(0, T ;W−1,2(Ω)),(5.14)

where, as always, we have used the bar to denote the weak limits of composed func-
tions.

The functions �n, un solve the renormalized equation (2.5). Therefore, in partic-
ular, (5.10) implies

�nsG(�n, 1) → �sG(�, 1) in C([0, T ];Lq
weak(Ω)), q = min(3, γ).

Consequently, since ϑn are bounded by (4.22), we get

�nsG(�n, 1)ϑn → �sG(�, 1)ϑ weakly in L1((0, T ) × Ω).(5.15)

Furthermore, the function Φ is nondecreasing with respect to ϑ; in particular,

∫ T

0

∫
Ω

�n(Φ(�n, ϑn) − Φ(�n, ϑ))(ϑn − ϑ)ϕdxdt ≥ 0(5.16)

for any nonnegative test function ϕ ∈ D((0, T ) × Ω).
As we will show below,

∫ T

0

∫
Ω

�nΦ(�n, ϑ)(ϑn − ϑ)ϕdxdt → 0 as n → ∞;(5.17)

therefore, (5.16) reduces to

lim inf
n→∞

∫ T

0

∫
Ω

�nΦ(�n, ϑn)ϑn ϕ dxdt ≥
∫ T

0

∫
Ω

�Φ(�, ϑ)ϑ ϕdxdt(5.18)

for any nonnegative ϕ ∈ D((0, T ) × Ω).
Taking, for a moment, relation (5.17) for granted, one can deduce easily from

(5.3), (5.14), (5.15), and (5.18) that

∫ T

0

∫
Ω

(
4

3
dϑ3 + �sG(�, 1) + �Φ(�, ϑ)

)
ϑϕdxdt(5.19)

= lim
n→∞

∫ T

0

∫
Ω

�nsnϑnϕ dxdt

= lim
n→∞

∫ T

0

∫
Ω

(
4

3
dϑ3

n + �nsG(�n, 1) + �nΦ(�n, ϑn)

)
ϑnϕdxdt

≥ lim sup
n→∞

∫ T

0

∫
Ω

4

3
dϑ4

nϕdxdt

+

∫ T

0

∫
Ω

(�sG(�, 1) + �Φ(�, ϑ))ϑϕ dxdt.

In other words

lim sup
n→∞

∫ T

0

∫
Ω

ϑ4
nϕ dxdt ≤

∫ T

0

∫
Ω

ϑ3ϑϕdxdt, ϕ ∈ D((0, T ) × Ω), ϕ ≥ 0.
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On the other hand, passing to the limit n → ∞ in the evident inequality
∫ T

0

∫
Ω
(ϑ3

n −
ϑ3)(ϑn − ϑ)ϕdxdt ≥ 0, by using (5.3) one obtains

lim inf
n→∞

∫ T

0

∫
Ω

ϑ4
nϕdxdt ≤

∫ T

0

∫
Ω

ϑ3ϑϕdxdt, ϕ ∈ D((0, T ) × Ω), ϕ ≥ 0.

From the last two inequalities we deduce

ϑ4 = ϑ3ϑ,

and we conclude, making use of the standard argument of Minty (see, e.g., Lemmas
3.35 and 3.39 in [29]), that

ϑn → ϑ in L4((0, T ) × Ω).(5.20)

Consequently, by virtue of (5.2) and (5.20), one can write in (5.8)

S = S,(5.21)

where S is given by (3.11) with μ = μ(ϑ), ζ = ζ(ϑ).
It remains to show (5.17). To this end, we need the generalized form (2.10) of

the renormalized continuity equation (2.5). The following auxiliary result may be of
independent interest.

Lemma 5.2. Let

� ≥ 0, � ∈ L∞(0, T ;Lγ(Ω)), u ∈ L2(0, T ;W 1,2
0 (Ω;RN )), γ >

2N

N + 2
,

be a renormalized solution of (1.1) in the sense specified in Definition 2.1.
Then �, u satisfy (2.10) in D′((0, T ) × Ω) for any h, H as in (2.11), and Θ ∈

C1((0, T ) × Ω).
Proof. We shall use the truncation technique introduced in [16] along with the

regularizing procedure due to DiPerna and Lions [10]. To this end, consider the cutoff
functions Tk ∈ C∞(R),

Tk(�) = kT
(�
k

)
, k ≥ 1,(5.22)

where T ∈ C∞(R),⎧⎨
⎩

T (−z) = −T (z) for all z ∈ R,

T (z) = z for 0 ≤ z ≤ 1, T ′′(z) ≤ 0 if 1 ≤ z ≤ 3, T (z) = 2 for all z ≥ 3.

⎫⎬
⎭

As �, u satisfy (2.5), we get

∂tTk(�) + divx(Tk(�)u) +
(
T ′
k(�)�− Tk(�)

)
divxu = 0(5.23)

in D′((0, T ) × Ω).
Similar to [10], consider a family of Friedrichs’ mollifiers ηε = ηε(x) ∈ D(RN ),

ε > 0, ⎧⎪⎨
⎪⎩
ηε ≥ 0, ηε radially symmetric and radially decreasing,∫

RN

ηε dx = 1, supp[ηε] ⊂ {|x| < ε}.

⎫⎪⎬
⎪⎭
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Using ηε as a test function in the variational formulation of (5.23), we obtain

∂t[Tk(�)]
ε + divx([Tk(�)]

εu) + [(T ′
k(�)�− Tk(�))divxu]ε = rε(5.24)

with

[h]ε ≡ ηε ∗ h and rε ≡ divx([Tk(�)]
εu) − [divx(Tk(�)u)]ε,

where the symbol ∗ denotes the convolution with respect to x. Note that (5.24) holds,
in the sense of strong derivatives, for a.a. (t, x) ∈ (0, T )×Ω such that dist[x, ∂Ω] > ε.

Now we are allowed to multiply (5.24) on

H([Tk(�)]
ε,Θ) + [Tk(�)]

ε ∂H([Tk(�)]
ε,Θ)

∂�
,

with Θ ∈ C1((0, T ) × Ω), H as in (2.11), in order to obtain

∂t([Tk(�)]
εH([Tk(�)]

ε,Θ)) + divx([Tk(�)]
εH([Tk(�)]

ε,Θ)u) + h([Tk(�)]
ε,Θ) divxu

= [Tk(�)]
ε ∂H([Tk(�)]

ε,Θ)

∂Θ

(
∂tΘ + ∇xΘ · u

)
+ {rε − [(T ′

k(�)�− Tk(�))divxu]ε}
{
H([Tk(�)]

ε,Θ) + [Tk(�)]
ε ∂H([Tk(�)]

ε,Θ)

∂�

}
.

Seeing that, for k fixed,

rε → 0 in Lp((0, T ) ×K) for any compact K ⊂ Ω as ε → 0, p ∈ [1, 2)

(see, for instance, [10]), we deduce

∂t(Tk(�)H(Tk(�),Θ)) + divx(Tk(�)H(Tk(�),Θ)u)(5.25)

+h(Tk(�),Θ) divxu = Tk(�)
∂H(Tk(�),Θ)

∂Θ
(∂tΘ + ∇xΘ · u)

+ (Tk(�) − T ′
k(�)�)

{
H(Tk(�),Θ) + Tk(�)

∂H(Tk(�),Θ)

∂�

}
divxu

in D′((0, T ) × Ω). Assume, in addition to (2.11), that

H(�,Θ) = 0 for all � ≥ M, Θ ∈ R, and a certain M > 0.(5.26)

Now it is easy to let k → ∞ in (5.25) to conclude, with the help of the Lebesgue
theorem, that

∂t
(
�H(�,Θ)

)
+ divx

(
�H(�,Θ)u

)
+ h(�,Θ)divxu(5.27)

= �
∂H(�,Θ)

∂Θ

(
∂tΘ + ∇xΘ · u

)
in D′((0, T ) × Ω).

Finally, approximating

H(�,Θ) ≈ Hm(�,Θ) = χ

(
�

m

)
H(�,Θ), with χ ∈ D(R), χ(z) = 1 for |z| ≤ 1,

and letting m → ∞ in (5.27), we obtain (2.10) for any choice of h, H, and Θ compatible
with (2.11).
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Now we come back to (5.17). We can easily verify that the function H(ρ, ϑ̃) =
Φ(Tk(ρ), ϑ̃), where

ϑ̃ ∈ C1([0, T ] × Ω), inf
t∈(0,T ),x∈Ω

ϑ̃(t, x) > 0,(5.28)

satisfies assumptions (2.11). Consequently, it verifies renormalized continuity equa-
tion (5.27) with ϑ̃ in place of Θ. From this fact, by using (5.12), (3.9), (3.10), (5.22),
and (4.8) we conclude that

ρnΦ(Tk(�n), ϑ̃) → ρΦ(Tk(�), ϑ̃)

in C([0, T ];Lγ
weak(Ω)) as well as in L2(0, T ;W−1,2(Ω)).

(5.29)

Now we can write∫ T

0

∫
Ω

�nΦ(�n, ϑ)(ϑn−ϑ)ϕ dxdt =

∫ T

0

∫
Ω

[�nΦ(�n, ϑ)−�nΦ(Tk(�n), ϑ̃)](ϑn−ϑ)ϕdxdt

+

∫ T

0

∫
Ω

[�nΦ(Tk(�n), ϑ̃) − �Φ(Tk(�), ϑ̃)(ϑn − ϑ)ϕdxdt

+

∫ T

0

∫
Ω

�Φ(Tk(�), ϑ̃)(ϑn − ϑ)ϕ dxdt.

Consequently, in view of (5.3), (5.20), and (5.29), in order to show (5.17), it is
enough to find, for arbitrary ε > 0, a function ϑ̃ satisfying (5.28) and k large enough
so that

sup
n=1,2,...

∥∥�n(Φ(�n, ϑ) − Φ(Tk(�n), ϑ̃)
)∥∥

L2(0,T ;W−1,2(Ω))
< ε.(5.30)

To this end, we compute

Φ(Tk(�n), ϑ) − Φ(Tk(�n), ϑ̃) =

∫ ϑ

ϑ̃

cv(Tk(�n), s)

s
ds,

whence, in accordance with hypothesis (3.10),

|Φ(Tk(�n), ϑ) − Φ(Tk(�n), ϑ̃)| ≤ c
(
|ϑ− ϑ̃| + | log(ϑ) − log(ϑ̃)|

)
with the constant c independent of n, k. From the last estimate, we infer

‖�n(Φ(Tk(�n), ϑ) − Φ(Tk(�n), ϑ̃))‖Lq(Ω) ≤ c‖ρn‖Lγ(Ω)(‖ϑ− ϑ̃‖L6(Ω)

+ ‖ log(ϑ) − log(ϑ̃)‖L6(Ω)),
q

γ
+

q

6
≤ 1.

Consequently, as ϑ, log(ϑ) belong to the space L2(0, T ;W 1,2(Ω)) induced by estimates
(4.22), and �n satisfy (4.8) with γ > 3/2, it is a routine matter to find ϑ̃ such that,
for a given ε > 0,

sup
n=1,2,...

∥∥�n(Φ(Tk(�n), ϑ) − Φ(Tk(�n), ϑ̃)
)∥∥

L2(0,T ;W−1,2(Ω))
<

ε

2
.(5.31)

On the other hand, by virtue of Hölder’s inequality,∥∥�n(Φ(�n, ϑ) − Φ(Tk(�n), ϑ)
)∥∥

Lq(Ω)
(5.32)

≤ c‖�n‖Lp({�n>k})‖(1 + ϑ + | log(ϑ)|)‖Lr(Ω),
1

q
=

1

p
+

1

r
,
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where we can choose

q >
6

5
, p < γ, r < 6 provided γ >

3

2
.

Since

‖�n‖Lp({�n>k}) ≤ k
p−γ
p ‖�n‖

γ
p

Lγ(Ω), W 1,2(Ω) ↪→ Lr(Ω), and Lq(Ω) ↪→ W−1,2(Ω),

relations (5.31) and (5.32) yield (5.30) under the condition that k = k(ε) is large
enough.

Thus, we have shown (5.17) and, consequently, the proof of (5.20) is now complete.

5.3. The effective viscous flux. In order to show pointwise convergence of the
sequence of densities {�n}∞n=1, we evoke the celebrated “weak continuity” property of
the so-called effective viscous flux,

p− (λ + 2μ)divxu, with the standard notation λ ≡ ζ − 2

3
μ,

established for the barotropic fluids with constants μ and λ in [24] and extended to
the general case μ = μ(ϑ), λ = λ(ϑ) in [17].

We start with an integral identity∫ T

0

∫
Ω

ψ
(
η p(�n, ϑn) −Ri,j [η Si,j

n ]
)
ξTk(�n)dxdt =

7∑
j=1

Ij(5.33)

+

∫ T

0

∫
Ω

ψuj
n

(
ξTk(�n)Ri,j [η�nu

i
n] − η�nu

i
nRi,j [ξTk(�n)]

)
dxdt,

where

I1 =

∫ T

0

∫
Ω

ψ ∂xjη Si,j
n (∂xiΔ

−1)[ξTk(�n)]dxdt,

I2 = −
∫ T

0

∫
Ω

ψη �nf
i
n(∂xi

Δ−1)[ξTk(�n)]dxdt,

I3 = −
∫ T

0

∫
Ω

ψ ∂xj
η �nu

i
nu

j
n(∂xi

Δ−1)[ξTk(�n)]dxdt,

I4 = −
∫ T

0

∫
Ω

∂tψη �nu
i
n(∂xiΔ

−1)[ξTk(�n)]dxdt,

I5 = −
∫ T

0

∫
Ω

ψη�nu
i
n(∂xi

Δ−1)[Tk(�n)un · ∇xξ]dxdt,

I6 =

∫ T

0

∫
Ω

ψη �nu
i
n(∂xiΔ

−1)
[
ξ
(
T ′
k(�n)�n − Tk(�n)

)
divxun

]
dxdt,

I7 = −
∫ T

0

∫
Ω

ψ pn∂xi
η(∂xi

Δ−1)[ξTk(�n)]dxdt,

Si,j
n ≡ μ(ϑn)

(
∂xiu

j
n + ∂xju

i
n

)
+ λ(ϑn) divxun δi,j ,

and Ri,j = ∂xiΔ
−1∂xj is a pseudodifferential operator corresponding to the Fourier

symbol ξiξj/|ξ|2. Formula (5.33) can be obtained through the choice of test functions

ϕi(t, x) = ψ(t)η(x)∂xi
Δ−1[ξTk(�n)], ψ ∈ D(0, T ), η, ξ ∈ D(Ω)
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in the variational formulation of (1.2) (see Lemma 5.3 in Chapter 5 in [16]).
On the other hand, one can take

ϕ(t, x) = ψη(∂xiΔ
−1)[Tk(�)], i = 1, 2, 3,

as test functions for (5.8), where

Tk(ρ) is a limit of Tk(ρn) in C([0, T ];Lp
weak(Ω)), 1 < p < ∞(5.34)

(cf. (5.22), (5.23)), to deduce∫ T

0

∫
Ω

ψ
(
η p(�, ϑ) −Ri,j [η Si,j ]

)
ξTk(�) dxdt(5.35)

=
7∑

j=1

Ij

∫ T

0

∫
Ω

ψuj
(
ξTk(�)Ri,j [η�u

i] − η�uiRi,j [ξTk(�)]
)
dxdt,

where

I1 =

∫ T

0

∫
Ω

ψ ∂xj
η Si,j(∂xiΔ

−1)[ξTk(�)]dx dt,

I2 = −
∫ T

0

∫
Ω

ψη �f i(∂xiΔ
−1)[ξTk(�)]dxdt,

I3 = −
∫ T

0

∫
Ω

ψ ∂xjη �uiuj(∂xiΔ
−1)[ξTk(�)]dxdt,

I4 = −
∫ T

0

∫
Ω

∂tψη �ui(∂xi
Δ−1)[ξTk(�)]dxdt,

I5 = −
∫ T

0

∫
Ω

ψη�ui(∂xiΔ
−1)[Tk(�)u · ∇xξ]dxdt,

I6 =

∫ T

0

∫
Ω

ψη �ui(∂xi
Δ−1)

[
ξ
(
T ′
k(�)�− Tk(�)

)
divxu

]
dxdt,

I7 = −
∫ T

0

∫
Ω

ψ p(�, ϑ)∂xiη(∂xiΔ
−1)[ξTk(�)]dxdt.

Note that

∂tTk(�) + divx(Tk(�)u) +
(
T ′
k(�)�− Tk(�)

)
divxu = 0 in D′((0, T ) × Ω),

and, in accordance with (5.21),

Si,j = μ(ϑ)
(
∂xiu

j + ∂xju
i
)

+ λ(ϑ)divxu δi,j .

It can be checked, in view of the results established in sections 5.2 and 5.3, that
all the integrals I1, . . . , I7 on the right-hand side of (5.33) converge for n → ∞ to
their counterparts in (5.35) (see, for example, section 6.3 in Chapter 6 in [16]).

Moreover, by virtue of Corollary 6.1 in [16], the bilinear form⎧⎪⎪⎨
⎪⎪⎩

[v,w] �→ viRi,j [w
j ] − wiRi,j [v

j ] is weakly

sequentially continuous with values in [Ls(RN )]Nweak on the

product [Lp(RN )]N × [Lq(RN )]N , 1
p + 1

q = 1
s < 1, s finite.

⎫⎪⎪⎬
⎪⎪⎭(5.36)
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Thus one can use (5.5), (5.34), and (5.36) in order to obtain(
ξTk(�n)Ri,j [η�nu

i
n] − η�nu

i
nRi,j [ξTk(�n)]

)
→

(
ξTk(�)Ri,j [η�u

i] − η�uiRi,j [ξTk(�)]
)
(t)

weakly in Ls(Ω), 1 < s <
2γ

γ + 1
, t ∈ [0, T ].

As the imbedding Ls(Ω) ↪→ W−1,2(Ω) is compact, we infer(
ξTk(�n)Ri,j [η�nu

i
n] − η�nu

i
nRi,j [ξTk(�n)]

)
→

(
ξTk(�)Ri,j [η�u

i] − η�uiRi,j [ξTk(�)]
)

in L2(0, T ;W−1,2(Ω)).

Subtracting the limit as n → ∞ of (5.33) and (5.35), we finally get

lim
n→∞

∫ T

0

∫
Ω

ψ
(
η p(�n, ϑn) −Ri,j [η Si,j

n ]
)
ξTk(�n)dxdt(5.37)

=

∫ T

0

∫
Ω

ψ
(
η p(�, ϑ) −Ri,j [η Si,j ]

)
ξTk(�)dxdt.

In order to conclude, let us recall the following result that may be viewed as a
variant of the abstract theory developed by Coifman et al. [7] (see Lemma 4.2 in [17]).

Lemma 5.3. Let

V ∈ L2(RN ;RN ), w ∈ W 1,r(RN ), r >
2N

N + 2
.

Then there exist constants c = c(r) > 0, ω = ω(r) ∈ (0, 1), p = p(r) > 1 such that

‖Ri,j [wVj ] − wRi,j [Vj ]‖Wω,p(RN ;RN ) ≤ c(r)‖w‖W 1,r(RN )‖V‖L2(RN ;RN ), i = 1, . . . , N.

Due to (3.12), (3.13), (3.16), and (4.22) and (5.3) and (5.20), we have at least for
a chosen subsequence

a(ϑn) → a(ϑ) weakly in L2(0, T ;W 1,2(Ω)),(5.38)

a(ϑn) → a(ϑ) in Lq((0, T ) × Ω), 1 ≤ q < 3,(5.39)

where a stands for μ and λ. Recalling that Ri,j is a continuous linear operator from
Lq(RN ) to Lq(RN ), 1 < q < ∞, and taking into account (4.6) and (4.30), we verify
that

Ri,j [a(ϑn)∂jun] − a(ϑn)Ri,j [∂jun] is bounded in L2(0, T ;L
6
5 (Ω, R3)).(5.40)

On the other hand, using Lemma 5.3 with w = a(ϑ), V = ∇uk, k = 1, 2, 3, we get
that

Ri,j [a(ϑn)∂jun] − a(ϑn)Ri,j [∂jun] is bounded in L1(0, T ;Wω′,s(Ω, R3))(5.41)

with suitable numbers ω′ ∈ (0, 1) and s > 1. Now we interpolate (5.40) and (5.41) to
get the boundedness of the sequence

Ri,j [a(ϑn)∂jun] − a(ϑn)Ri,j [∂jun]; in Lp(0, T ;Wω,p(Ω, R3))
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with suitable exponents p > 1 and ω ∈ (0, 1). Finally, since according to (5.2), (5.38),
and (5.40)

Ri,j [a(ϑn)∂jun] − a(ϑn)[Ri,j∂jun]

→ Ri,j [a(ϑ)∂ju] − a(ϑ)Ri,j [∂ju)] weakly in L2(0, T ;L
6
5 (Ω, R3)),

from the last bound we deduce

Ri,j [a(ϑn)∂jun] − a(ϑn)Ri,j [∂jun](5.42)

→ Ri,j [a(ϑ)∂ju] − a(ϑ)Ri,j [∂ju] weakly in Lp(0, T ;Wω,p(Ω;R3))

at least for a suitably chosen subsequence. On the other hand, as for a suitable q ∈
(1,∞) the imbedding Lq(Ω) ↪→ W−ω,p′

(Ω) is compact, formula (5.34) implies

Tk(ρn) → Tk(ρ) in Lp′
(0, T ;W−ω,p′

(Ω)).(5.43)

Employing the obvious properties of the Riesz operator, namely, Ri,j = Rj,i and

Ri,j(
∂uj

∂xi
) = divxu, and using (5.42) and (5.43) in (5.37), we arrive at

lim
n→∞

∫ T

0

∫
Ω

ϕ
(
p(�n, ϑn) − (λ(ϑn) + 2μ(ϑn)) divxun

)
Tk(�n)dxdt(5.44)

=

∫ T

0

∫
Ω

ϕ
(
p(�, ϑ) − (λ(ϑ) + 2μ(ϑ))divxu

)
Tk(�)dxdt× Ω)

for any ϕ ∈ D(0, T ). For more details see section 4 in [17].

5.4. Strong convergence of the density. To begin with, we show that the
limit functions �, u solve the renormalized continuity equation (2.5). Note that such
a result cannot be obtained via the regularization procedure developed in [10] as the
density is not (known to be) square integrable. Instead, following Chapter 6 in [16],
we introduce the oscillation defect measure

oscp[�n → �](Q) ≡ sup
k≥1

{
lim sup
n→∞

∫
Q

|Tk(�n) − Tk(�)|p dx dt
}
.

We report the following assertion (see Proposition 6.3 in Chapter 6 in [16]).
Lemma 5.4. Let Ω ⊂ RN , N = 2, 3, be a domain. Assume that {�n}∞n=1 is a

sequence of nonnegative functions such that

�n → � weakly (*) in L∞(0, T ;Lγ(Ω)), γ >
2N

N + 2
.

Furthermore, let �n satisfy the renormalized equation (2.5) with un,

un → u weakly in L2(0, T ;W 1,2
0 (Ω;RN )).

Finally, suppose

oscp[�n → �](Q) < c(Q) < ∞ for some p > 2,

for any bounded Q ⊂ (0, T ) × Ω.



WEAK SEQUENTIAL STABILITY TO NAVIER–STOKES–FOURIER SYSTEM 647

Then �, u solve the renormalized equation (2.5) for any h, H satisfying (2.6).
In the following lemma we show that the assumptions of Lemma 5.4 are satisfied.
Lemma 5.5. Under the hypotheses of Theorem 3.1, we have

oscγ+1[�n → �]((0, T ) × Ω) < ∞.

Proof. As already observed in (4.24), one can write

p(�n, ϑn) = a�γn + pb(�n, ϑn), where |pb(�, ϑ)| ≤ c(1 + ϑ4 + ϑ�
γ
3 ).(5.45)

Now relation (5.44) may be rephrased as

a lim
n→∞

∫ T

0

∫
Ω

�γnTk(�n) − �γ Tk(�)dxdt(5.46)

≤ lim
n→∞

∫ T

0

∫
Ω

pb(�n, ϑn)(Tk(�) − Tk(�n))dxdt

+ lim
n→∞

∫ T

0

∫
Ω

(λ(ϑn) + 2μ(ϑn))divxun(Tk(�n) − Tk(�))dxdt.

Exactly as in the proof of Proposition 6.2 in [16], via arguments based on the
convexity of � �→ �γ , the left-hand side of (5.46) is bounded from below as follows:

lim sup
n→∞

∫ T

0

∫
Ω

|Tk(�n) − Tk(�)|γ+1 dxdt(5.47)

≤ lim
n→∞

∫ T

0

∫
Ω

�γnTk(�n) − �γ Tk(�) dxdt.

On the other hand, by virtue of hypothesis (3.16), estimates (4.8), (4.22), (4.32),
and relation (4.26),

sup
n=1,2,...

‖pb(�n, ϑn)‖
L

5
3 ((0,T )×Ω)

< ∞

and

sup
n=1,2,...

‖(λ(ϑn) + 2μ(ϑn))divxun‖
L

5
3 ((0,T )×Ω)

< ∞.

Thus,

lim
n→∞

∫ T

0

∫
Ω

pb(�n, ϑn)(Tk(�) − Tk(�n)) dxdt

+ lim
n→∞

∫ T

0

∫
Ω

(λ(ϑn) + 2μ(ϑn))divxun(Tk(�n) − Tk(�)) dxdt

≤ c lim sup
n→∞

‖Tk(�n) − Tk(�)‖
L

5
2 ((0,T )×Ω)

,

and, consequently, relations (5.46) and (5.47) yield the desired conclusion since γ+1 >
5/2.

Combining Lemmas 5.4 and 5.5 we infer that �, u solve (2.5); in particular,

∂tLk(�) + divx(Lk(�)u) + Tk(�)divxu = 0 in D′((0, T ) ×R3)(5.48)
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provided �, u were extended to be zero outside Ω with

Lk(�) ≡ �

∫ �

1

Tk(z)

z2
dz.

Moreover, as �n, un solve (2.5) as well, it is easy to deduce

∂tLk(�) + divx(Lk(�)u) + Tk(�) divxu = 0 in D′((0, T ) ×R3).(5.49)

Equations (5.48) and (5.49) together with hypothesis (3.18) give rise to∫
Ω

(
Lk(�) − Lk(�)

)
(τ)dx(5.50)

+

∫ τ

0

∫
Ω

(
Tk(�) divxu − Tk(�) divxu

)
dxdt

=

∫ τ

0

∫
Ω

(
Tk(�) − Tk(�)

)
divxudxdt for all τ ∈ [0, T ].

Now it can be shown, with the help of Lemma 5.5, that∫ T

0

∫
Ω

(
Tk(�) − Tk(�)

)
divxudxdt → 0 for k → ∞

(see section 6.6 in [16]).
Moreover, in accordance with (5.44),(
Tk(�) divxu − Tk(�)divxu

)
= (λ(ϑ) + 2μ(ϑ))−1

(
p(�, ϑ)Tk(�) − p(�, ϑ) Tk(�)

)
,

where, by virtue of (3.1) and (5.20),(
p(�, ϑ)Tk(�) − p(�, ϑ) Tk(�)

)
=

(
pG(�, ϑ)Tk(�) − pG(�, ϑ) Tk(�)

)
.(5.51)

Since pG is a nondecreasing function of � and {ϑn}∞n=1 converges almost every-
where on (0, T ) × Ω, the most right expression in (5.51) is nonnegative. Thus, we
conclude, using (5.50), that

� log(�) = � log(�) on (0, T ) × Ω,

which means

�n → � in L1((0, T ) × Ω).(5.52)

5.5. Convergence. Having established the pointwise convergence of the se-
quences {�n}∞n=1, {ϑn}∞n=1, and with the estimates obtained in section 4, it is a
routine matter to complete the proof of Theorem 3.1, that is, to pass to the limit
for n → ∞ in all the integral identities appearing in the variational formulation of
problem (1.1)–(1.6) introduced in Definition 2.1.

Let us only remark that we can write

q

ϑ
= −κ(�, ϑ)∇x log(ϑ) and

q · ∇xϑ

ϑ2
= −κ(�, ϑ)|∇x log(ϑ)|2.

In particular, by virtue of hypothesis (3.15), and estimates (4.6) and (4.22), the quan-
tities ∣∣∣∣qn

ϑn

∣∣∣∣ =
√
κ(�n, ϑn)

√
κ(�n, ϑn)|∇x log(ϑn)| are bounded in Lp((0, T ) × Ω)
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for a certain p > 1 and independently of n = 1, 2, . . . .
In order to carry out the limit passage in the entropy production inequality (2.7),

we report the following observation (see Lemmas 5.3 and 5.4 in [13]).
Lemma 5.6.

(i) Let Ω ⊂ RN be a bounded Lipschitz domain. Suppose that � is a given non-
negative function satisfying

0 < M ≤
∫

Ω

�dx,

∫
Ω

�γ dx < K, γ >
2N

N + 2
.

Furthermore, let ϑ ∈ W 1,2(Ω).
Then the following two statements are equivalent.
• The function ϑ is strictly positive a.a. on Ω,

�| log(ϑ)| ∈ L1(Ω) and
∇xϑ

ϑ
∈ L2(Ω).

• The function log(ϑ) belongs to the Sobolev space W 1,2(Ω).
Moreover, if it is the case, then

∇x log(ϑ) =
∇xϑ

ϑ
a.a. on Ω.

(ii) Let

ϑn → ϑ in L2((0, T ) × Ω), and log(ϑn) → log(ϑ) weakly in L2((0, T ) × Ω).

Then ϑ is strictly positive a.a. on (0, T ) × Ω, and log(ϑ) = log(ϑ).
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EXISTENCE, UNIQUENESS, AND REGULARITY RESULTS FOR
PIEZOELECTRIC SYSTEMS∗

D. MERCIER† AND S. NICAISE†

Abstract. We investigate the time-harmonic piezoelectric system (a system coupling the elas-
ticity system with the full Maxwell’s equations) in polyhedral domains of the space. Existence and
uniqueness results of weak solutions are proved in different cases. We describe the corner and edge
singularities of that system and deduce some regularity results.
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1. Introduction. Smart structures made of piezoelectric and/or piezomagnetic
materials are gaining attention in applications since they are able to transform the
energy from one type to another (magnetic, electric, and mechanical), allowing them
to be used as sensors and/or actuators. Commonly used piezoelectric materials are
ceramics and quartz. The mathematical model of this system starts to be well estab-
lished [2, 8, 14, 24, 26] and corresponds to a coupling between the elasticity system
and Maxwell’s equations (see below). A full mathematical analysis is not yet done,
except in some particular cases [13, 19]. Namely, in these two works the electric field
E is assumed to be curl free, i.e., E = ∇ϕ, where ϕ is an electric potential and a two-
dimensional reduction is made. In [13], existence and uniqueness results in smooth
domains are obtained using integral equations, while in [19] a variational formulation
in polygonal domains is given and two-dimensional singularities are briefly described.

On the other hand, there exists an extensive list of papers from mechanics liter-
ature describing singularities of some particular piezoelectric materials with a plane
crack [25, 27, 30] or along wedges [29]. But to our knowledge, an exact description
of corner/edge singularities of the general piezoelectric system in three-dimensional
polyhedral domains is not yet obtained. Such a description is very important since
piezoelectric ceramics are very brittle, and therefore their fracture behavior must be
understood. The knowledge of such singularities also has numerical implications, such
as convergence speed.

This paper has, therefore, the following goals: We present a general piezoelectric
system, which includes standard models of ceramics like the PZT or the BaTiO3. We
further develop some variational formulations which are the natural ones because they
lead to solutions in the energy spaces (here called weak solutions). We prove existence
and uniqueness results of weak solutions of the time-harmonic system in two different
cases: the case when the magnetic permeability matrix is positive definite (BaTiO3)
and the case when the magnetic permeability matrix is zero (PZT ). In that second
case, we even give two different formulations and show that generically they give rise
to the same solutions. Moreover, we describe the corner and edge singularities of our
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general system and deduce some regularity results. Some edge singular exponents are
briefly described; more examples will be given in a forthcoming paper [20], where a
two-dimensional model and fracture criteria will be considered.

The analysis of more sophisticated models, like coupling between piezoelectric and
magnetostrictive materials [26] or piezoelectric and purely elastic materials [29, 9], will
be investigated in the future.

The paper is organized as follows. Section 2 introduces the nonstationary model
problem and its time-harmonic version. Existence and uniqueness results are given
in section 3 when the magnetic permeability matrix is positive definite. Section 4 is
devoted to existence and uniqueness results in the case of a zero magnetic permeability
matrix. There we consider two different formulations: for the first one (called the
E-formulation) the magnetic field H is eliminated, while for the second one (the H-
formulation) the electric field E is eliminated. For the latter formulation, like for
the eddy current problem, Gauge conditions are necessary. We further show their
generic equivalence. After a short description of corner and edge singularities of some
useful elliptic systems in section 5, we obtain the corner and edge singularities of our
system in section 6. Regularity results are deduced in section 7. Some edge singular
exponents are finally presented in section 8.

2. Setting of the problem. Let Ω be a bounded domain of R
3 with a Lipschitz

boundary Γ. For the sake of simplicity, we suppose that Γ is piecewise plane and
connected and that Ω is simply connected. In this domain, we consider the following
nonstationary piezoelectric system of constitutive equations [2, 8, 14, 24]:

σij = aijklγkl(u) − ekijEk ∀i, j = 1, 2, 3,(2.1)

Di = εijEj + eiklγkl(u) ∀i = 1, 2, 3,(2.2)

Bi = μijHj ∀i = 1, 2, 3.(2.3)

The equations of equilibrium are

∂2
t ui = ∂jσji + fi ∀i = 1, 2, 3(2.4)

for the elastic displacement and

∂tD + J = curlH, ∂tB = − curlE

for the electric/magnetic fields (Maxwell’s equations), where f is the body force
density and J is the vector current density function. As usual curlH = (∂2H3 −
∂3H2, ∂3H1 − ∂1H3, ∂1H2 − ∂2H1)

�, when H = (H1, H2, H3)
�.

This system models the coupling between Maxwell’s system and the elastic one
[2, 8, 14, 24], in which E(x, t), H(x, t) are the electric and magnetic fields at the point
x ∈ Ω at time t, u(x, t) is the displacement field at the point x ∈ Ω at time t, and
(γij(u))3i,j=1 is the strain tensor given by

γij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Here (σij)
3
i,j=1, D = (D1, D2, D3)

�, and B = (B1, B2, B3)
� are the stress tensor,

electric displacement, and magnetic induction, respectively. ε, μ are the electric per-
mittivity and magnetic permeability, respectively, and are supposed to be real, sym-
metric 3×3 matrices. In what follows the matrix ε is supposed to be positive definite,
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while μ is only supposed to be nonnegative. The elasticity tensor (aijkl)i,j,k,l=1,2,3 is
made of constant entries such that

aijkl = ajikl = aklij ,

and satisfies the ellipticity condition

aijklγijγkl ≥ αγijγij ,(2.5)

for every symmetric tensor (γij) and some α > 0. The piezoelectric tensor ekij is also
made of constant entries such that

ekij = ekji.

The system is completed with the Dirichlet boundary conditions for the displace-
ment field,

u = 0 on Γ,(2.6)

and those of a perfect conductor,

E × n = 0 on Γ.(2.7)

As usual n is the exterior unit normal vector along Γ.
In order to write the above problem in a more compact form, the strain and stress

tensors are expressed as 6 × 1 vectors, namely

γ(u) = (γ11(u), γ22(u), γ33(u), 2γ23(u), 2γ31(u), 2γ12(u))
�
,

σ = (σ11, σ22, σ33, σ23, σ31, σ12)
�.

With this notation, the constitutive equations (2.1)–(2.3) may be equivalently written
as ⎛

⎝ σ
D
B

⎞
⎠ = M

⎛
⎝ γ(u)

E
H

⎞
⎠ ,(2.8)

where M is a 12 × 12 matrix given by

M =

⎛
⎝ C −e� 0

e ε 0
0 0 μ

⎞
⎠ ,

where C is a 6 × 6 symmetric matrix depending on the elasticity tensor, e is a 3 × 6
matrix depending on the piezoelectric tensor, and ε, μ are as described above. Note
that the ellipticity assumption (2.5) is equivalent to the fact that C is a positive
definite matrix.

For a monoclinic material with poling direction in the x3-axis, the material con-
stant matrices are expressed by (see, for instance, [26])

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 c16
c12 c22 c23 0 0 c26
c13 c23 c33 0 0 c36
0 0 0 c44 c45 0
0 0 0 c45 c55 0
c16 c26 c36 0 0 c66

⎞
⎟⎟⎟⎟⎟⎟⎠

, e =

⎛
⎝ 0 0 0 e14 e15 0

0 0 0 e24 e25 0
e31 e32 e33 0 0 e36

⎞
⎠ ,

ε =

⎛
⎝ ε11 ε12 0

ε12 ε22 0
0 0 ε33

⎞
⎠ , μ =

⎛
⎝ μ11 μ12 0

μ12 μ22 0
0 0 μ33

⎞
⎠ .
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For the orthotropic piezoelectric PZT -4, the material coefficients are given by
(cij in 109N/m2, eij in C/m2, εij in 10−9C2/Nm2):

c11 = c22 = 23.8 c33 = 10.6 c44 = 2.15 c55 = 4.4 c66 = c11−c12
2 = 6.43

c12 = 3.98 c13 = 2.19 c23 = 1.92 ε11 = ε22 = 0.110625 ε33 = 0.106023
e31 = −0.13 e32 = −0.14 e33 = −0.28 e24 = e15 = −0.01.

Here and below, nongiven coefficients are equal to zero.

For the piezoelectric BaTiO3, the material coefficients are given by (cij in
109N/m2, eij in C/m2, εij in 10−9C2/Nm2, μij in 10−6Ns2/C2):

c11 = c22 = 166 c33 = 162 c44 = c55 = 43 c66 = c11−c12
2 = 44.5

c12 = 77 c13 = c23 = 78 ε11 = ε22 = 11.2 ε33 = 12.6
e31 = e32 = −4.4 e33 = −18.6 e24 = e15 = 11.6 μ11 = μ22 = 5 μ33 = 10

With the above notation, the equation of equilibrium (2.4) is also equivalent to

∂2
t u = Divσ + f,

where Div is the operator-valued matrix defined by

Div =

⎛
⎝ ∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0

⎞
⎠ .

Assuming that u,E,H are of the form

u(x, t) = e−iωtu(x), E(x, t) = e−iωtE(x), H(x, t) = e−iωtH(x),

for some real constant ω (the data being of the same form), the above system is
reduced to the time-harmonic piezoelectric system in Ω consisting of the constitutive
equation (2.8), the time-harmonic equilibrium equation

Divσ + ω2u = −f in Ω,(2.9)

and the time-harmonic Maxwell’s equations

curlH + iωD = J in Ω,(2.10)

curlE − iωμH = 0 in Ω.(2.11)

In the whole paper we consider the nonstationary case; namely, we assume that
ω > 0. In other words we assume that the variation in time of u, E, and H is periodic
in time with a frequency equal to 2π/ω. The stationary case ω = 0 requires the use
of Gauss’ law

divD = ρ,

where ρ is the charge density function. This case is treated as in section 4.1 below
and is then left to the reader.
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3. Existence and uniqueness results when μ is positive definite. Replac-
ing D by its expression (2.2) in the first Maxwell equation (2.10), we get

curlH + iω(εE + eγ(u)) = J in Ω.

This identity is clearly equivalent to

iωεE = J − curlH − iωeγ(u) in Ω.(3.1)

With this identity, the second Maxwell equation (2.11) is then equivalent to

curl(ε−1(curlH + iωeγ(u))) − ω2μH = curl(ε−1J) in Ω.(3.2)

In the same way using the constitutive equation (2.8) in the equation of motion
(2.9), we obtain

Div
(
Cγ(u) − e�E

)
+ ω2u = −f in Ω.(3.3)

Using the identity (3.1), we arrive at

Div

(
Cγ(u) + e�ε−1eγ(u) +

1

iω
e�ε−1(curlH)

)
(3.4)

+ω2u = −f +
1

iω
Div

(
eT ε−1J

)
in Ω.

The two equations (3.2) and (3.4) constitute the system of partial differential
equations that we will study and whose unknowns are u and H. Due to the boundary
conditions (2.6) and (2.7), this system is completed with (2.6) and

ε−1(curlH + iωeγ(u)) × n = J × n, (μH) · n = 0 on Γ.(3.5)

The weak formulation of the above problem is obtained in the following way: We
introduce the space (see [4, 5])

XT (Ω, μ) = {v ∈ L2(Ω)3 : div(μv) ∈ L2(Ω), curl v ∈ L2(Ω)3 and (μv) · n = 0 on Γ}

equipped with its natural norm. Then we multiply the system (3.2) by a test function
H̄ ′ ∈ XT (Ω, μ), integrate the result in Ω, and integrate by parts to get (assuming that
u and H are regular enough)∫

Ω

{
ε−1(curlH + iωeγ(u)) · curl H̄ ′ − ω2μH · H̄ ′} dx

=

∫
Ω

ε−1J · curl H̄ ′ dx +

∫
Γ

(J × n) · H̄ ′ ds ∀H ′ ∈ XT (Ω, μ).

Since from the second Maxwell equation (2.11) div(μH) = 0 in Ω, the above identity
is equivalent to∫

Ω

{
ε−1(curlH + iωe · γ(u)) · curl H̄ ′ + div(μH)div(μH̄ ′) − ω2μH · H̄ ′} dx(3.6)

=

∫
Ω

ε−1J · curl H̄ ′ dx +

∫
Γ

(J × n) · H̄ ′ ds ∀H ′ ∈ XT (Ω, μ).

This last equation may be called the regularized formulation of the system (3.2).
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Similarly multiplying (3.4) by v̄ ∈ H1
0 (Ω)3, integrating the result in Ω, and using

Green’s formula ∫
Ω

(Divγ) · v̄ dx = −
∫

Ω

γ · γ(v̄) dx,

obtained by componentwise integration by parts in Ω, we arrive at∫
Ω

{(
Cγ(u) + e�ε−1eγ(u) +

1

iω
e�ε−1 curlH

)
· γ(v̄) − ω2u · v̄

}
dx(3.7)

=

∫
Ω

(
f · v̄ − 1

iω
eT ε−1J · γ(v̄)

)
dx ∀v ∈ H1

0 (Ω)3.

As these two identities are coupled, multiplying the second one by iω and summing
the result we arrive at the following problem:∫

Ω

{
ε−1(curlH + iωeγ(u)) · curl H̄ ′ + div(μH)div(μH̄ ′) − ω2μH · H̄ ′

+iω

(
Cγ(u) + e�ε−1eγ(u) +

1

iω
e�ε−1 curlH

)
· γ(v̄) − iω3u · v̄

}
dx = F (v,H ′),

where we have set

F (v,H ′) =

∫
Ω

(
ε−1J · curl H̄ ′ − eT ε−1J · γ(v̄) + iωf · v̄

)
dx +

∫
Γ

(J × n) · H̄ ′ ds.

(3.8)

In order to get a well-posed problem we set uω = iωu. Then we see that the above
problem is equivalent to finding a solution (uω, H) ∈ V of

a((uω, H), (v,H ′)) = F (v,H ′) ∀(v,H ′) ∈ V,(3.9)

where we set

V = H1
0 (Ω)3 ×XT (Ω, μ),

a((u,H), (v,H ′)) =

∫
Ω

{
ε−1(curlH + eγ(u)) · curl H̄ ′ + div(μH)div(μH̄ ′) − ω2μH · H̄ ′

+
(
Cγ(u) + e�ε−1eγ(u) + e�ε−1 curlH

)
· γ(v̄) − ω2u · v̄

}
dx.

In summary we have shown the following lemma.
Lemma 3.1. If u,E,H are solutions of (2.8), (2.9), (2.10), and (2.11) with the

boundary conditions (2.6) and (2.7), then (iωu,H) is a solution of (3.9).
We now remark that the bilinear form a may be equivalently written

a ((u,H), (v,H ′))

=

∫
Ω

{
A
(

curlH
γ(u)

)
·
(

curl H̄ ′

γ(v̄)

)
+ div(μH)div(μH̄ ′) − ω2μH · H̄ ′ − ω2u · v̄

}
dx,

where A is the 9 × 9 symmetric matrix defined by

A =

(
ε−1 ε−1e

e�ε−1 C + e�ε−1e

)
.
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One easily checks that this matrix is positive definite for the material coefficients
of the PZT -4 and BaTiO3, for instance. In fact this is always true if ε and C
are positive definite (always true in our setting), independently of the piezoelectric
coefficients.

Lemma 3.2. If ε and C are positive definite matrices, then the matrix A defined
above is also positive definite.

Proof. We only need to show that

A
(

X
γ

)
·
(

X
γ

)
≥ 0,∀

(
X
γ

)
∈ R

9,

A
(

X
γ

)
·
(

X
γ

)
= 0 ⇒

(
X
γ

)
= 0.

By the definition of A we see that

A
(

X
γ

)
·
(

X
γ

)
= X�ε−1X + 2X�ε−1eγ + γ�Cγ + γ�e�ε−1eγ.

Setting X̃ = ε−1/2X and Ỹ = ε−1/2eγ (note that both vectors are in R
3), we see that

A
(

X
γ

)
·
(

X
γ

)
= X̃�X̃ + 2X̃�Ỹ + γ�Cγ + Ỹ �Ỹ

= ‖X̃ + Ỹ ‖2
2 + γ�Cγ,

where ‖ · ‖2 clearly means the Euclidean norm of R
3. This identity directly implies

the first assertion by the positive definitiveness of C.
For the second assertion, if

A
(

X
γ

)
·
(

X
γ

)
= 0,

then the above identity and again the positive definitiveness of C imply that

‖X̃ + Ỹ ‖2
2 = γ�Cγ = 0.

Therefore γ = 0 and, consequently, Ỹ = 0 in view of its definition (independently of
e). We then obtain that X̃ = 0 and, by the positive definitiveness of ε, we conclude
that X = 0.

This lemma allows us to show that problem (3.9) enters within the framework of
the Fredholm alternative. Indeed, we shall prove the following lemma.

Lemma 3.3. There exists a discrete set S such that for 1 + ω2 �∈ S, the problem
(3.9) has a unique solution for any F ∈ V ′.

Proof. Introduce the sesquilinear form

b((u,H), (v,H ′)) := a((u,H), (v,H ′)) + (1 + ω2)

(∫
Ω

μH · H̄ ′ dx +

∫
Ω

u · v̄ dx
)
.

Then the above considerations yield

b ((u,H), (v,H ′))

=

∫
Ω

{
A
(

curlH
γ(u)

)
·
(

curl H̄ ′

γ(v̄)

)
+ div(μH)div(μH̄ ′) + μH · H̄ ′ + u · v̄

}
dx.
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It is coercive on V, since by Lemma 3.2 we have

b((u,H), (u,H)) �
∫

Ω

{
| curlH|2 + |γ(u)|2 + |div(μH)|2 + |H|2 + |u|2

}
dx.

Therefore by Korn’s inequality we get

b((u,H), (u,H)) � ‖u‖2
1,Ω + ‖H‖2

XT (Ω,μ).

Since the space XT (Ω, μ) is compactly embedded into L2(Ω)3 [28], and since by the
Rellich–Kondrasov theorem H1

0 (Ω) is compactly embedded into L2(Ω), we deduce that
V is compactly embedded into H := L2(Ω)3 × L2(Ω)3. These facts imply that the
Friedrichs extension B from H into H induced by the triple (V,H, b) is invertible with
a compact inverse. Now denote by A the Friedrichs extension of the triple (V,H, a).
The relation between a and b implies that A = B − (1 + ω2)Iμ, where the operator
Iμ is defined by

Iμ(u,H)� = (u, μH)�

and is clearly continuous from H into H. Using this operator we may write

(1 + ω2)−1B−1A = (1 + ω2)−1I −B−1Iμ,

where I is the identity operator from H into H. Since B−1Iμ is a compact operator,
it has a discrete spectrum with positive eigenvalues. If we denote by S the set of the
inverses of these eigenvalues, then for (1+ω2) �∈ S, the operator (1+ω2)−1I−B−1Iμ
is invertible and consequently A is as well.

Remark 3.4. Note that in the case μ = 0, problem (3.9) does not enter in
the Fredholm framework since XT (Ω, 0) is reduced to H(curl,Ω) and is no more
compactly embedded into L2(Ω)3. This drawback will be avoided by introducing
Gauge conditions; see section 4.2.

Let us now show that the converse of Lemma 3.1 holds under some conditions on
ω (compare with Theorem 0.1 of [4]).

Theorem 3.5. Assume that ω2 is not an eigenvalue of −ΔNeu
μ := −div(μ∇·),

the (nonnegative) Laplace operator with Neumann boundary conditions in Ω. If
(uω, H) ∈ V is a solution of (3.9) with F defined by (3.8), then div(μH) = 0 and
u,E,H are solutions of (2.9), (2.10), and (2.11) with the boundary conditions (2.6)
and (2.7) when u = uω

iω , E is given by (3.1), and σ,D,B are defined by (2.8).
Proof. In (3.9) we take v = 0 and H ′ = ∇Φ̄, with Φ ∈ D(ΔNeu

μ ). This yields∫
Ω

{
div(μH)div(μ∇Φ) − ω2μH · ∇Φ

}
dx = 0.

By Green’s formula we obtain∫
Ω

div(μH)(ΔDir
μ Φ + ω2Φ) dx = 0 ∀Φ ∈ D(ΔNeu

μ ).

Since D(ΔNeu
μ ) is dense in L2(Ω), we conclude that div(μH) = 0 in Ω.

The equations (2.9), (2.10), and (2.11) are obtained using Green’s formula with
test functions H ′ ∈ D(Ω)3 or v ∈ D(Ω)3. It then remains to show the boundary
condition

ε−1(curlH + iωeγ(u)) × n = J × n on Γ,
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which then implies (2.7), by the definition of E.
We first remark that the above arguments show that

w = ε−1(curlH + iωeγ(u)) − J

belongs to H(curl,Ω).
We now state the next Green’s formula, which is a variant of the “standard” one

(see Theorem I.2.11 of [10] or the identity (2.5) from [1]). A face F of Ω being fixed
we denote by

VF = {ϕ ∈ H1(Ω) : ϕ = 0 on Γ \ F}.

We recall that for ϕ ∈ VF , Theorem 2.2 of [21] implies that the trace of ϕ on F

belongs to H
1/2
00 (F ). By standard Green’s formula∫

Ω

(w · curlϕ− ϕ · curlw) dx =

∫
Γ

(w × n) · ϕ,

valid for any w,ϕ ∈ H1(Ω)3; from the fact that the above left-hand side is continuous
on H(curl,Ω) × (VF )3, we deduce that if w ∈ H(curl,Ω), then w × n belongs to

(H
1/2
00 (F )′)3, and that Green’s identity∫

Ω

(w · curlϕ− ϕ · curlw) dx = 〈w × n, ϕ〉F ∀ϕ ∈ (VF )3(3.10)

holds (where 〈., .〉F means the duality pairing between (H
1/2
00 (F )′)3 and H

1/2
00 (F )3).

Now for a fixed face F , we temporarily assume that the z-axis is perpendicular
to F and that F is included in the plane z = 0. For ϕ1, ϕ2 ∈ D(F ), we take

H ′(x, y, z) = η(z)μ−1 ·

⎛
⎝ ϕ1

ϕ2

0

⎞
⎠

with a cut-off function η ∈ D(R) such that η(0) = 1 and a sufficiently small support so
that H ′ is zero on Γ\F . By construction the function H ′ belongs to XT (Ω, μ)∩(VF )3.
Therefore in (3.9), taking as a test function v = 0 and this function H ′, by Green’s
formula (3.10) we get

〈w × n,H ′〉F = 0.

As the third component of w × n is zero and the two first components of

μ−1 ·

⎛
⎝ ϕ1

ϕ2

0

⎞
⎠

are arbitrary in H
1/2
00 (F ), we deduce that

w × n = 0 in (H
1/2
00 (F )′)3.

By the definition of w, the requested boundary condition is proved.
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4. Existence and uniqueness results when μ = 0.

4.1. The E-formulation. In the case μ = 0, the second Maxwell equation
(2.11) and the boundary condition (2.7) imply that

iωE = ∇ϕ,(4.1)

for some ϕ ∈ H1
0 (Ω). Therefore, in order to eliminate the vector field H, we take the

divergence of the first Maxwell equation (2.10) to get

div(iωD) = div J,

and by the constitutive equation (2.8) we obtain

div(iωeγ(u) + εiωE) = div J.

As before setting uω = iωu, the above identity is equivalent to

div(eγ(uω) + ε∇ϕ) = div J.(4.2)

This equation is now coupled with (3.3) or, equivalently, with

Div
(
Cγ(uω) − e�∇ϕ

)
+ ω2uω = −iωf in Ω(4.3)

to form our system of partial differential equations. Clearly, its weak formulation is
in finding a solution (uω, ϕ) ∈ H1

0 (Ω)4 of

a((uω, ϕ), (v, ψ)) = F (v, ψ),∀(v, ψ) ∈ H1
0 (Ω)4,(4.4)

where the bilinear form a is defined by

a((u, ϕ), (v, ψ)) =

∫
Ω

{
(eγ(u) + ε∇ϕ) · ∇ψ + (Cγ(u) − e�∇ϕ) · γ(v) − ω2u · v

}
dx,

and the linear form F is given by

F (v, ψ) =

∫
Ω

(iωf · v − J · ∇ψ) dx.(4.5)

The above considerations show the following lemma.
Lemma 4.1. If u,E,H are solutions of (2.8), (2.9), (2.10), and (2.11) with the

boundary conditions (2.6) and (2.7), then (iωu, ϕ), with ϕ given by (4.1), is a solution
of (4.4).

As in the previous section, problem (4.4) satisfies the Fredholm alternative; name-
ly, we shall prove the following lemma.

Lemma 4.2. There exists a discrete set S0 such that for ω2 �∈ S0, the problem
(4.4) has a unique solution for any F ∈ H−1(Ω)4.

Proof. Introduce the bilinear form

b((u, ϕ), (v, ψ)) =

∫
Ω

{
(eγ(u) + ε∇ϕ) · ∇ψ + (Cγ(u) − e�∇ϕ) · γ(v)

}
dx.

This form is coercive on H1
0 (Ω)4 since

b((u, ϕ), (u, ϕ)) =

∫
Ω

{ε∇ϕ · ∇ϕ + Cγ(u) · γ(u)} dx � ‖ϕ‖2
1,Ω + ‖u‖2

1,Ω,

thanks to the positive definiteness of ε and C and Korn’s inequality.
We conclude as in Lemma 3.3.
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We end this subsection by the converse result of Lemma 4.1.
Theorem 4.3. If (uω, ϕ) ∈ H1

0 (Ω)4 is the solution of (4.4) with F defined by
(4.5), then u,E are solutions of (2.9) and (2.11) with the boundary conditions (2.6)
and (2.7) when u = uω

iω , E is given by (4.1), and σ,D,B are defined by (2.8) (implying
B = 0 since μ = 0). Moreover, there exists H ∈ H1(Ω)3 such that (2.10) holds.

Proof. The first part of the lemma follows from Green’s formula. For the second
part we simply remark that D defined by (2.8) satisfies

div(iωD) = div J in Ω,

or, equivalently, J − iωD is divergence free. Therefore the existence of H such that
curlH = J − iωD follows from Theorem I.3.4 of [10].

In the above lemma, we may notice that the magnetic field H is not unique, but
this is not important since, in the case μ = 0, only u and E are of practical interest.

4.2. The H-formulation. Following the arguments of section 3, we may elimi-
nate the electric field E and keep as unknowns u and H. Unfortunately H is no more
uniquely determined, since the condition div(μH) = 0 and the boundary condition
μH · n = 0 on Γ are trivially satisfied. Therefore as for eddy current problems [3] we
impose the following Gauge conditions:

divH = 0 in Ω,(4.6)

H · n = 0 on Γ.(4.7)

These conditions may be justified by an asymptotic argument, namely by taking
μ = ηI, with η > 0 and letting η tends to 0 (cf. [6]).

These arguments imply the following lemma.
Lemma 4.4. If u,E,H are solutions of (2.8), (2.9), (2.10), and (2.11) with the

boundary conditions (2.6) and (2.7), assume that H satisfies the Gauge conditions
(4.6)–(4.7). Then (iωu,H) belongs to V = H1

0 (Ω)3 × XT (Ω, I) and is solution of
(3.9), with the sesquilinear form here defined by

a((u,H), (v,H ′)) =

∫
Ω

{
ε−1(curlH + eγ(u)) · curl H̄ ′ + div(H)div(H̄ ′)

+
(
Cγ(u) + e�ε−1eγ(u) + e�ε−1 curlH

)
· γ(v̄) − ω2u · v̄

}
dx.

Again, the above problem enters in the Fredholm alternative.
Lemma 4.5. There exists a discrete set S1 such that for 1+ω2 �∈ S1, the problem

(3.9), with a and V defined in Lemma 4.4, has a unique solution for any F ∈ V ′.
Proof. Introduce the sesquilinear form

b((u,H), (v,H ′)) := a((u,H), (v,H ′)) + (1 + ω2)

∫
Ω

u · v̄ dx.

Using Lemma 3.2, Korn’s inequality, and the compact embedding of XT (Ω, I) into
L2(Ω)3 [28], the bilinear form b is coercive on V . Consequently, the Friedrichs ex-
tension B associated with the triple (V,H, b) (with H defined as in the proof of
Lemma 3.3) is invertible with a compact inverse. Again denote by A the Friedrichs
extension of the triple (V,H, a). Clearly A = B − (1 + ω2)K, where the continuous
operator K is defined by

K(u,H)� = (u, 0)�.
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Writing

(1 + ω2)−1B−1A = (1 + ω2)−1I −B−1K,

we conclude as in Lemma 3.3, since B−1K is a compact operator.
Similarly to Theorem 3.5, the converse of Lemma 4.4 holds under some conditions

on ω.
Theorem 4.6. Assume that ω2 is not an eigenvalue of −ΔNeu

I . If (uω, H) ∈ V
is a solution of (3.9) with F defined by (3.8) and a, V defined in Lemma 4.4, then
divH = 0 and u,E,H are solutions of (2.9), (2.10), and (2.11) with the boundary
conditions (2.6) and (2.7) when u = uω

iω , E is given by (3.1), and σ,D,B = 0 are
defined by (2.8).

4.3. Equivalence between the E-formulation and the H-formulation.
The goal of this section is to show that the displacement and electric fields obtained
by the E-formulation and the H-formulation are identical.

Theorem 4.7. Let u1, E1, H1 (resp., u2, E2, H2) be the solutions of (2.9), (2.10),
and (2.11) with the boundary conditions (2.6) and (2.7) obtained by the E-formulation
(resp., H-formulation). If ω2 �∈ S0 (cf. Lemma 4.2), then u1 = u2 and E1 = E2.

Proof. Denote u = u1 − u2 and E = E1 − E2. Since u1, E1 and u2, E2 satisfy
(2.9) and (2.11), u,E satisfy

Divσ + ω2u = 0 in Ω,

curlH + iωD = 0 in Ω,

curlE = 0 in Ω,

where σ = σ1 − σ2, andD = D1 − D2 are given by (2.8). Therefore E = ∇χ, with
χ ∈ H1

0 (Ω) and the pair (u, χ) ∈ H1
0 (Ω)4 is a solution of (4.4) with F = 0. By

Lemma 4.2, we conclude that u = 0 and χ = 0.
Remark 4.8. The magnetic fields obtained by the E-formulation and the H-

formulation cannot be identical, since the one obtained by the E-formulation does
not necessarily satisfy the Gauge conditions.

5. Singularities of some elliptic systems. It is well known that the singu-
larities of elliptic systems in Ω are produced by the corners and edges of Ω. Here we
briefly describe the corner and edge singularities of the operator ΔNeu

μ and of the 4×4
system (4.2)–(4.3) with Dirichlet boundary conditions. For the sake of brevity we re-
strict ourselves to a minimal description and refer the reader to the pioneer work [15]
or standard books [11, 7, 18] for more details.

5.1. Corner singularities. Fix a corner c ∈ C of Ω and denote by (ρc, ϑc) the
spherical coordinates centered at c. Denote by Γc the infinite polyhedral cone which
coincides with Ω near c. Let Gc be the intersection of Γc with the unit sphere centered
at c.

For any λ ∈ C, let us set

Sλ(Γc) =

{
ψ(x) = ρλc

Q∑
q=0

(log ρc)
qψq(ϑc) : ψq ∈ H1(Gc)

}
.

The set ΛNeu
μ (Γc) of corner singular exponents of the operator ΔNeu

μ in Γc is the

set of λ ∈ C such that there exists a nonpolynomial solution Ψ ∈ Sλ(Γc) of

ΔμΨ = div(μ∇Ψ) = 0 in Γc,(5.1)

μ∇Ψ · n = 0 on ∂Γc .(5.2)
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We denote by Zλ
Neu(Γc, μ) the space of these solutions.

Similarly for the 4× 4 system (4.2)–(4.3) with Dirichlet boundary conditions, its
set ΛDir

C,ε,e(Γc) of corner singular exponents is the set of λ ∈ C such that there exists

a nonpolynomial solution (u, χ) ∈ Sλ(Γc)
4 of

⎧⎨
⎩

div(ε∇χ + eγ(u)) = 0 in Γc,
Div

(
Cγ(u) − e�∇χ

)
= 0 in Γc,

χ = 0, u = 0 on ∂Γc.
(5.3)

The space of these solutions is denoted by Zλ
Dir(Γc, C, ε, e).

5.2. Edge singularities. Fix an edge a ∈ A of Ω and denote by Γa × R the
infinite polyhedral cone which coincides with Ω near a (Γa is then a two-dimensional
sector). Denote by (ra, θa, za) the cylindrical coordinates along a. Let Ga be the
intersection of Γa with the unit sphere ra = 1.

As before, for any λ ∈ C let us set

Sλ(Γa) =

{
ψ(x) = rλa

Q∑
q=0

(log ra)
qψq(θa) : ψq ∈ H1(Ga)

}
.

The set ΛNeu
μ (Γa) of corner singular exponents of the operator ΔNeu

μ in Γa is the

set of λ ∈ C such that there exists a nonpolynomial solution Ψ ∈ Sλ(Γa) of

div2(μ2∇2Ψ) = 0 in Γa,

μ2∇2Ψ · n = 0 on ∂Γa,

where div2 (resp., ∇2) means the two-dimensional divergence (resp., gradient) and μ2

is the 2 × 2 matrix obtained from μ by dropping the third line and the third column
of μ.

We denote by Zλ
Neu(Γa, μ) the space of these solutions.

In the same way, the set ΛDir
C,ε,e(Γa) of edge singular exponents of the 4×4 system

(4.2)–(4.3) with Dirichlet boundary conditions is the set of λ ∈ C such that there
exists a nonpolynomial solution (u, χ) ∈ Sλ(Γa)

4 of

⎧⎪⎨
⎪⎩

d̃iv(ε∇̃χ + eγ̃(u)) = 0 in Γa,

D̃iv
(
Cγ̃(u) − e�∇̃χ

)
= 0 in Γa,

χ = 0, u = 0 on ∂Γa,

(5.4)

where the sign ˜ means that all derivatives in the za-variable are replaced by zero.
The space of these solutions is denoted by Zλ

Dir(Γa, C, ε, e).

6. Corner and edge singularities when μ is positive definite. Our goal is
to describe the corner and edge singularities of the (regularized) problem (3.9). These
singularities are obtained using some ideas from [4, 5, 6].

Let us start with the corner singularities.

6.1. Corner singularities. Fix a corner c ∈ C of Ω. We drop the index c in
the above considerations. As usual we are looking for solutions of the homogeneous
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problem in the space

Sλ
T (Γ, μ) =

{
(u,H) ∈ H1

0,loc(Γ)3 ×XT,loc(Γ, μ) :div(μH) ∈ H1
loc(Γ),

u(x) = ρλ
Q∑

q=0

(log ρ)qUq(ϑ),

H(x) = ρλ
Q∑

q=0

(log ρ)qHq(ϑ)

}
,

the index loc meaning that the properties hold in all bounded domains far from c.
This means that we look for a nonpolynomial solution (u,H) ∈ Sλ

T (Γ, μ) of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

curl
(
ε−1 (curlH + eγ(u))

)
− μ∇ div(μH) = 0 in Γ,

Div
(
Cγ(u) + e�ε−1eγ(u) + e�ε−1 curlH

)
= 0 in Γ,

u = 0 on ∂Γ,
μH · n = 0 on ∂Γ,
μ∇(div(μH)) · n = 0 on ∂Γ,
ε−1 (curlH + eγ(u)) × n = 0 on ∂Γ.

(6.1)

If a nontrivial solution exists, then we say that λ is a corner exponent.
Inspired by [4, 5, 6], this problem is split up into three subproblems by introducing

the auxiliary unknowns

ψ = −ε−1 (curlH + eγ(u))

and

q = div(μH).

With this notation, problem (6.1) is equivalent to looking for q, (ψ, u), H successive
solutions of {

div(μ∇q) = 0 in Γ,
μ∇q · n = 0 on ∂Γ,

(6.2)

⎧⎪⎪⎨
⎪⎪⎩

curlψ = −μ∇q in Γ,
div(εψ + eγ(u)) = 0 in Γ,
Div

(
Cγ(u) − e�ψ

)
= 0 in Γ,

ψ × n = 0, u = 0 on ∂Γ,

(6.3)

⎧⎨
⎩

curlH = −εψ − eγ(u) in Γ,
div(μH) = q in Γ,
μH · n = 0 on ∂Γ.

(6.4)

This means that three types of singularities may appear:
Type 1: q = 0, ψ = u = 0, and H is a general solution of (6.4).
Type 2: q = 0, (ψ, u) is a general solution of (6.3), and H is a particular solution

of (6.4).
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Type 3: q is a general solution of (6.2), (ψ, u) is a particular solution of (6.3), and
H is a particular solution of (6.4).

These three types of singularities may be described with the help of the corner
singularities of the operator ΔNeu

μ and of the 4 × 4 elliptic system (4.2)–(4.3) with
Dirichlet boundary conditions described in subsection 4.1.

Since for our problem (3.9) div(μH) = 0 and is then regular, we do not describe
the singularities of Type 3 because they cannot occur for any solution of (3.9).

The singularities of Type 1 are obtained exactly as in Lemma 5.1 of [5] since only
the magnetic field H is involved.

Lemma 6.1. Assume that λ �= −1. Then (u,H) ∈ Sλ
T (Γ, μ) is a singularity of

type 1 if and only if λ + 1 belongs to ΛNeu
μ (Γ) and H = ∇Φ, with Φ ∈ Zλ+1

Neu(Γ, μ).
The situation is different for singularity of Type 2 since the coupling between the

elasticity system and Maxwell’s equations appear via problem (6.3).
Lemma 6.2. Assume that λ �= −1. Then (u,H) ∈ Sλ

T (Γ, μ) is a singularity of
type 2 if and only if λ belongs to ΛDir

C,ε,e(Γ), ψ = ∇χ, with (u, χ) ∈ Zλ
Dir(Γ, C, ε, e),

and H is given by

H =
1

λ + 1
(a× x + ∇r) ,(6.5)

where a = −(εψ + eγ(u)) and r ∈ Sλ+1(Γ) is solution of{
div(μ∇r) = −div(μ(a× x)) in Γ,
μ∇r · n = −μ(a× x) · n on ∂Γ.

(6.6)

Proof. As

curlψ = 0 in Γ,

there exists χ ∈ Sλ(Γ) such that

ψ = ∇χ in Γ.

From (6.3) we deduce that⎧⎨
⎩

div(ε∇χ + eγ(u)) = 0 in Γ,
Div

(
Cγ(u) − e�∇χ

)
= 0 in Γ,

χ = 0, u = 0 on ∂Γ.

In view of section 5, we deduce that (u, χ) ∈ Zλ
Dir(Γ, C, ε, e).

Now we readily check that H in the form (6.5) is a solution of (6.4) if and only
if r is a solution of (6.6), whose solution exists by Theorem 4.14 of [23] and because
curl(a× x) = (λ + 1)a.

Lemma 6.3. There is no corner singularity of Type 2 in the strip �λ ∈ ]−1, 0].
Proof. By Theorem 1 of [16] (see Remark 2 of [16], or Theorem 2 of [17]), the set

ΛDir
C,ε,e(Γ) ∩ [−1, 0] is empty. We conclude by Lemma 6.2.

Since the singularities of our problem (3.9) have to be locally in XT (Γ, μ), among
the singular exponents described above we select the subset Λc of λ > − 3

2 such that
there exists (u,H) ∈ Sλ

T (Γ, μ) solution of (6.1) such that

χ(u,H) ∈ XT (Γ, μ),
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where χ is a cut-off function equal to 1 near c. This last condition implies the following
constraints for our first two types of singularities (see [5, 6]):

Type 1: λ + 1 ∈ ΛNeu
μ (Γ) and since ΛNeu

μ (Γ) ∩ [−1, 0] is empty, by Lemma 5.4
of [5] we get the condition λ > −1.

Type 2: λ ∈ ΛDir
C,ε,e(Γ) and by the condition χu ∈ H1(Γ)3, we get λ > − 1

2 . By
Lemma 6.3, we arrive at the condition λ > 0.

In conclusion, the set of corner singular exponents is

Λc = {λ > −1 : λ + 1 ∈ ΛNeu
μ (Γc)} ∪ {λ > 0 : λ ∈ ΛDir

C,ε,e(Γc)}.

6.2. Edge singularities. Fix an edge a ∈ A of Ω and drop the index a. As
before, we are looking for solutions of the homogeneous piezoelectric system (6.1) in
Γ × R. For the elasticity system or Maxwell’s equations, the system obtained in the
Cartesian coordinates (x, y, z) (according to the notation introduced in section 5, the
z-axis contains the edge a) is split up into two independent problems in Γa. Here the
coupling between these systems prevents this splitting. Therefore we simply follow
the approach of the previous subsection. Namely, we search nonpolynomial solutions
(u,H) of (6.1) independent of the z-variable and in the space

Sλ
T (Γ, μ) =

{
(u,H) ∈ H1

0,loc(Γ × R)3 ×XT,loc(Γ × R, μ) : div(μH) ∈ H1
loc(Γ × R),

u(x, y, z) = rλ
Q∑

q=0

(log r)qUq(θ),

H(x, y, z) = rλ
Q∑

q=0

(log r)qHq(θ)

}
;

the index loc here means that the properties hold in all bounded domains far from a.
Then we introduce the auxiliary unknowns ψ and q defined as before but here

independent of the variable z. This leads to the successive problems (6.2), (6.3), and
(6.4) (where all derivatives in z are equal to zero). As before, singularities of Types
1, 2, and 3 appear. The singularities of Type 3 are not studied for the same reason
as before. We now describe the singularities of Type 1 (compare with Lemma 6.1).

Lemma 6.4. Assume that λ �= −1. Then (u,H) ∈ Sλ
T (Γ, μ) is an edge singularity

of type 1 if and only if λ + 1 belongs to ΛNeu
μ (Γ), u = 0 and

H = (∇2Φ, 0)�,

with Φ ∈ Zλ+1
Neu(Γ, μ).

Proof. As

curlH =

⎛
⎝ ∂2H3

−∂1H3

∂1H2 − ∂2H1

⎞
⎠ = 0,

the third component H3 is constant and the field

h =

(
H1

H2

)
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has a two-dimensional zero curl. Therefore there exists Φ such that h = ∇2Φ, and we
conclude as in Lemma 6.1.

Let us continue with singularities of Type 2.
Lemma 6.5. Assume that λ �= −1 and λ �= 0. Then (u,H) ∈ Sλ

T (Γ, μ) is an
edge singularity of Type 2 if and only if λ belongs to ΛDir

C,ε,e(Γ), ψ = (∇2χ, 0)�, with

(u, χ) ∈ Zλ
Dir(Γ, C, ε, e) and H given by

H =

⎛
⎝ a3x2

λ
a3x1

λ
a1x2−a2x1

λ+1

⎞
⎠ + (∇2r, 0)�,(6.7)

where a = −(εψ + eγ(u)) and r ∈ Sλ+1(Γ) is the solution of⎧⎪⎪⎨
⎪⎪⎩

div2(μ∇2r) = −div2

(
μ

( a3x2

λ

a3x1

λ

))
in Γ,

μ∇r · n = −μ

(
a3x2

λ
a3x1

λ

)
· n on ∂Γ.

(6.8)

Proof. As in the previous lemma, since curlψ = 0 in Γ, there exists χ ∈ Sλ(Γ)
such that

ψ = (∇2χ, 0)� in Γ.

From (6.3) we deduce that⎧⎨
⎩

div(ε∇χ + eγ(u)) = 0 in Γ,
Div

(
Cγ(u) − e�∇χ

)
= 0 in Γ,

χ = 0, u = 0 on ∂Γ.

This means that (u, χ) ∈ Zλ
Dir(Γ, C, ε, e) owing to section 5 (recalling that u and χ

are independent of the z-variable).
As in Lemma 6.2, we easily check that H in the form (6.7) is a solution of (6.4)

if and only if r is a solution of (6.8), whose existence follows from Theorem 4.14
of [23].

In summary we may formulate the following corollary.
Corollary 6.6. The set Λa of edge exponents associated with a is given by

Λa = {λ > −1 : λ + 1 ∈ ΛNeu
μ (Γa)} ∪ {λ > 0 : λ ∈ ΛDir

C,ε,e(Γa)}.

7. Regularity results. In this section, we describe regularity results of a so-
lution u,H,E of our time-harmonic piezoelectric system. These results use its weak
formulation obtained above, are based on the knowledge of corner and edge singulari-
ties of these formulation described in the previous section, and rely on the application
of Mellin’s techniques as in [4, 5].

For the sake of brevity, we do not describe singular decomposition of such a
solution. Using the techniques from [4, 5], for sufficiently smooth data we may obtain
a decomposition of u,H,E into a regular part and a singular one.

7.1. The case μ positive definite. Before stating our regularity results, let us
introduce the following notation: For any corner c ∈ C introduce

λc,u = min{λ > 0 : λ ∈ ΛDir
C,ε,e(Γc)},

λc,H = min{λ : λ ∈ Λc}.
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Similarly, for any edge a ∈ A define

λa,u = min{λ > 0 : λ ∈ ΛDir
C,ε,e(Γa)},

λa,H = min{λ : λ ∈ Λa}.

Finally, we set

τu := min

(
min
a∈A

λa,u,
1

2
+ min

c∈C
λc,u

)
,

τH := min

(
min
a∈A

λa,H ,
1

2
+ min

c∈C
λc,H

)
.

We remark that τu does not depend on μ.
Theorem 7.1. Let (uω, H) ∈ H1

0 (Ω)3 ×XT (Ω, μ) be a solution of problem (3.9),
with J and f smooth enough. Then we have

uω ∈ H1+τ (Ω)3 ∀τ < τu,(7.1)

H ∈ Hτ (Ω)3 ∀τ < τH .(7.2)

Proof. Mellin’s techniques directly imply that

(uω, H) ∈ Hτ (Ω)6 ∀τ < τH .

The extra regularity for uω follows from the description of the singularities of problem
(3.9) made in section 6, where we see that the regularity of uω is only determined by
the singularity of type 2.

Corollary 7.2. Assume that J and f are smooth. Let u,E,H be solutions of
(2.8), (2.9), (2.10), and (2.11) with the boundary conditions (2.6) and (2.7) obtained
by Theorem 3.5. Then u has the regularity (7.1), H has the regularity (7.2), and E
satisfies

E ∈ Hτ (Ω)3 ∀τ < τu.(7.3)

Proof. The previous lemma directly yields the regularity for u and H. By (3.1),
E has the regularity of curlH + iωeγ(u). Since the singularities of type 1 for H are
gradient, the regularity of E is only determined by the singularities of type 2.

7.2. The case μ = 0. Here, to solve our piezoelectric system we may use
either the E-formulation or the H-formulation. Both formulations give the same
regularity for u and E, which is quite natural since generically they are identical (see
Theorem 4.7).

Theorem 7.3. Let (uω, ϕ) ∈ H1
0 (Ω)4 be a solution of problem (4.4) with J and

f smooth enough; then we have

(uω, ϕ) ∈ H1+τ (Ω)4 ∀τ < τu,(7.4)

where τu is defined as before.
Proof. Since the system associated with (4.4) is the strongly elliptic system

(4.2)–(4.3) with Dirichlet boundary conditions, the mentioned regularity result fol-
lows from Theorem 5.11 of [7].

Corollary 7.4. Assume that J and f are smooth. Let u,E,H be solutions of
(2.8), (2.9), (2.10), and (2.11) with the boundary conditions (2.6) and (2.7) obtained
by Theorem 4.3. Then u has the regularity (7.1) and E satisfies (7.3).
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Proof. This is a direct consequence of the previous theorem since E = 1
iω∇ϕ.

For the H-formulation, the arguments of the previous subsection directly give the
next results.

Theorem 7.5. Let (uω, H) ∈ H1
0 (Ω)3 ×XT (Ω, I) be a solution of problem (3.9)

in the sense of Lemma 4.4 with J and f smooth enough. Then the regularity results
(7.1)–(7.2) hold, τH being defined as before but with μ = I.

Corollary 7.6. Assume that J and f are smooth. Let u,E,H be solutions of
(2.8), (2.9), (2.10), and (2.11) with the boundary conditions (2.6) and (2.7) obtained
by Theorem 4.6. Then u has the regularity (7.1), H has the regularity (7.2), and E
satisfies (7.3).

8. Numerical examples of edge singular exponents. To illustrate our the-
oretical results, we give some edge singular exponents of our piezoelectric system cor-
responding to some illustrative materials when c45 = c16 = c26 = c36 = 0, c11 = c22,
c44 = c55, c66 = c11−c12

2 , ε11 = ε22, and ε12 = 0. We further consider a dihedral cone
Γa × R such that the edge a of this cone (corresponding to the axis z = 0) is parallel
to the poling direction x3. In that case, the system (5.4) reduces to the following 4×4
system (see, for instance, [19]):(

c11∂
2
1 + c11−c12

2 ∂2
2

c11+c12
2 ∂1∂2

c11+c12
2 ∂1∂2

c11−c12
2 ∂2

1 + c11∂
2
2

)(
u1

u2

)
=

(
0
0

)
in Γa,(

c44Δ e15Δ
−e15Δ ε11Δ

)(
u3

χ

)
=

(
0
0

)
in Γa,

χ = 0, u = 0 on ∂Γa,

where, as usual, Δ = ∂2
1 + ∂2

2 . Setting v = c44u3 + e15χ and w = −e15u3 + ε11χ, this
system is equivalent to(

c11∂
2
1 + c11−c12

2 ∂2
2

c11+c12
2 ∂1∂2

c11+c12
2 ∂1∂2

c11−c12
2 ∂2

1 + c11∂
2
2

)(
u1

u2

)
=

(
0
0

)
in Γa,

Δv = 0 in Γa,

Δw = 0 in Γa,

u1 = u2 = v = w = 0 on ∂Γa.

This last system is decoupled into a 2×2 system of the isotropic elasticity for the
pair (u1, u2) (with Lamé coefficients given by λ = c12 and μ = c11−c12

2 ) with Dirichlet
boundary conditions and two Dirichlet problems for v and w. For this last Dirichlet
problem, it is well known that the singular exponents are given by lπ

ω , with l ∈ N,
when ω is the interior opening of Γa. On the other hand, the singular exponents of
the isotropic elasticity are also well known and are the set of λ ∈ C such that (see,
for instance, [12])

k2 sin(λω)2 = λ2 sin(ω)2,

with k = 3c11−c12
c11+c12

.
The zeros of this equation can be easily computed using a Newton method. Fig-

ures 8.1 and 8.2 show the real part of the singular exponents in the strip �λ ∈ (0, 2)
for all values of ω ∈ (0, 2π] for the piezoelectric materials PZT -4 and BaTiO3 in
black lines. In these figures, the gray lines correspond to the curves lπ

ω , for l = 1, 2, 3.
From these figures, we may conclude that for these materials the strongest singular
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Fig. 8.1. The edge exponents for the PZT -4.
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Fig. 8.2. The edge exponents for the BaTiO3.

exponent λ0 (strongest in the sense that �λ0 is minimal) is always the one coming
from the 2×2 system of elasticity and that �λ0 > 1/2 (see Theorem 2.2 of [22]). This
last property implies the H3/2-regularity (resp., H1/2-regularity) for u (resp., for E)
along the edge. Note further that the curves obtained for the PZT -4 are similar to the
ones shown in Figure 4b of [29] (in that paper, the singular exponents are obtained
using an extension of Lekhnitskii’s representation for elastic solids).

Remark 8.1. If the edge is not parallel to the poling direction, then the above
decoupling phenomenon does not appear. The calculation of the edge singular expo-
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nents is then more complicated and will be done using a finite element method. This
will be done in a forthcoming paper [20].

9. Conclusions. We have investigated a general time-harmonic piezoelectric
system, which contains as special cases standard models like ceramics. We devel-
oped the appropriate formalism in order to get existence and uniqueness results of
weak solutions in the case when the magnetic permeability matrix is positive definite
(case of the BaTiO3) and the case when the magnetic permeability matrix is equal
to zero (case of the PZT ). In the latter case, we gave two different formulations:
the E-formulation and the H-formulation. For this second one, Gauge conditions are
introduced as for eddy current problem. We further show that generically these two
formulations yield the same solutions. We described the corner and edge singulari-
ties of our general system and deduced some regularity results. Some edge singular
exponents were given in order to illustrate our theoretical results.

Acknowledgments. We thank C. Courtois and A. Leriche from the laboratory
LMP (UVHC) for valuable discussions about these topics.

REFERENCES

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-
dimensional nonsmooth domains, Math. Methods Applied Sci., 21 (1998), pp. 823–864.

[2] D. A. Berlincourt, D. R. Curran, and H. Jaffe, Piezoelectric and piezomagnetic materials
and their function in transducers, Physical Acoustics, 1 (1964), pp. 169–270.

[3] A. Bossavit, Electromagnétisme en vue de la modélisation, Springer-Verlag, Paris, 1993.
[4] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains,

Arch. Ration. Mech. Anal., 151 (2000), pp. 221–276.
[5] M. Costabel, M. Dauge, and S. Nicaise, Singularities of Maxwell interface problems, RAIRO

Modél. Math. Anal. Numér., 33 (1999), pp. 627–649.
[6] M. Costabel, M. Dauge, and S. Nicaise, Singularities of eddy current problems, RAIRO

Modél. Math. Anal. Numér., 37 (2003), pp. 807–831.
[7] M. Dauge, Elliptic Boundary Value Problems in Corner Domains. Smoothness and Asymp-

totics of Solutions, L. N. in Math. 1341, Springer-Verlag, Berlin, 1988.
[8] A. C. Eringen and G. A. Maugin, Electrodynamics of Continua, Vols. 1, 2, Springer-Verlag,

New York, 1990.
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Abstract. Molecule spaces have been introduced by Furioli and Terraneo [Funkcial. Ekvac., 45
(2002), pp. 141–160] to study some local behavior of solutions to the Navier–Stokes equations. In this
paper we give a new characterization of these spaces and simplify Furioli and Terraneo’s result. Our
analysis also provides a persistence result for Navier–Stokes in a subspace of L2(R3, (1 + |x|2)αdx),
α < 5/2, which fills a gap between previously known results in the weighted-L2 setting and those on
the pointwise decay of the velocity field at infinity. Our main tool is the realization of homogeneous
Sobolev spaces introduced by Bourdaud.
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1. Introduction. Consider the Navier–Stokes equations for a viscous incom-
pressible fluid in the three-dimensional space and not submitted to external forces:⎧⎪⎨

⎪⎩
∂tu + (u · ∇)u = Δu−∇p,

∇ · u = 0,

u(x, 0) = a(x).

(NS)

Here u = (u1, u2, u3) is the velocity field and p is the pressure, both defined in R
3 ×

[0,∞[ . Moreover, ∇ · u =
∑3

j=1 ∂juj and (u · ∇)u =
∑3

j=1 uj∂ju.

If a ∈ L2(R3), then we have known for a very long time that a weak solution
to (NS) exists such that u ∈ L∞(]0,∞[ , L2(R3)) and ∇u ∈ L2(]0,∞[ , L2(R3)). If
we know, in addition, that the initial datum is well localized in R

3, then these con-
ditions, of course, do not give us so much information on the spatial localization
of u(t) during the evolution. Then the natural problem arises of finding the func-
tional spaces that would provide the good setting for obtaining such information.
Several papers have been written on this topic; see, e.g., [14], [9], [10], [13], [1], [16]
and the references therein. In particular, it was shown in [14] that the condition
a ∈ L2(R3, (1+ |x|2)δdx) (0 ≤ δ ≤ 3

2 ) is conserved during the evolution, for a suitable
class of weak solutions. Here and below, this weighted-L2 space is equipped with the

natural norm
(∫

|a(x)|2(1 + |x|2)δ dx
)1/2

. As far as we deal with data belonging to
general weighted-L2 spaces, it seems difficult to improve the upper bound on δ.

When dealing with strong solutions to (NS) one can obtain sharper conclusions
on the localization of u. For example, assuming that a ∈ L1 ∩L2(R3), He [13] proves,
among other things, that u(t) belongs to L2(R3, (1 + |x|2)2dx) at least in some time
interval [0, T ], T > 0 (and uniformly in [0,+∞[ , under a supplementary smallness
assumption). In a slightly different context, we would also like to mention the work of
Miyakawa [17], in which it is shown that u(x, t) ∼ |x|−αt−β/2 as |x| → ∞ or t → ∞,

∗Received by the editors June 15, 2004; accepted for publication (in revised form) April 6, 2005;
published electronically November 9, 2005.

http://www.siam.org/journals/sima/37-2/44440.html
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for all α, β ≥ 0 and 1 ≤ α + β ≤ 4, under suitable assumptions on a. The main tool
here is the application of the contraction mapping theorem to the integral equation

u(t) = etΔa−
∫ t

0

∇ · e(t−s)Δ
P(u⊗ u)(s) ds,(IE)

where etΔ is the heat semigroup and P is the Leray–Hopf projector onto the solenoidal
vector fields, defined by Pf = f−∇Δ−1(∇·f), where f = (f1, f2, f3). Note that (IE),
together with the divergence-free condition ∇·a = 0, is equivalent to (NS) under very
general assumptions (see [11]).

If we compare the results on the spatial localization contained in [13] and [17],
we see that Miyakawa’s results seem to give a slightly better conclusion. Indeed,
[17] tells us that the condition a(x) ∼ |x|−4 at infinity is conserved during the evolution
(furthermore, |x|−4 is known to be the optimal decay in the generic case), whereas,
according to [13], the condition u(t) ∈ L2(R3, (1 + |x|2)2dx) only tells us, formally,
that u(t) ∼ |x|−7/2 at infinity. Then there is a small gap between the results on the
pointwise decay and those in the weighted-L2 setting.

The first purpose of this paper is to obtain a persistence result in suitable sub-
spaces of L2(R3, (1 + |x|2)αdx), for all 0 ≤ α < 5

2 , which, at least formally, will allow
us to recover the optimal decay of the velocity field. To do this, rather than establish-
ing a new theorem we shall give a new interpretation of a known result by Furioli and
Terraneo on the molecules of the Hardy space [12]. More precisely, let us introduce
the space Zδ of functions (or vector fields) f such that

f ∈ L2(R3, (1 + |x|2)δ−2dx),(1.1)

∇f ∈ L2(R3, (1 + |x|2)δ−1dx),(1.2)

Δf ∈ L2(R3, (1 + |x|2)δdx).(1.3)

We provide such space with its natural norm. We will prove the following theorem
(announced, in a weaker form, in [5]).

Theorem 1.1. Let 1
2 ≤ δ < 9

2 and let a ∈ Zδ be a solenoidal vector field. Then
there exists T > 0 such that (IE) possesses a unique strong solution u ∈ C([0, T ], Zδ).

The restriction δ < 9
2 is consistent with the spatial spreading effect of the velocity

field described, e.g., in [6]: we cannot have u ∈ C([0, T ], Z9/2) unless the initial data

have some symmetry properties. As we shall see, the elements of Zδ are o(|x|−δ+1/2)
at infinity. Hence the correspondence between this result and those on the pointwise
decay is not merely formal. The condition δ ≥ 1

2 is physically reasonable since it
prevents u → ∞ as |x| → ∞.

In section 3 we show that Theorem 1.1 is essentially equivalent to (but slightly
improves) the result by Furioli and Terraneo [12]. Their motivation was different
and this is probably the reason why the relation between their space of molecules Xδ

(defined below) and the more natural space Zδ is not found in [12]; motivated by the
problem of the unicity of mild solutions in critical spaces (i.e., homogeneous spaces
of degree −1), they studied the Navier–Stokes equations in Δ−1H1, which is the
space made of all distributions vanishing at infinity and such that their Laplacian
belongs to the Hardy space H1(R3). As discussed also in [15], such space gives a
useful insight of solutions to the Navier–Stokes equations. Indeed, if a solution u
satisfies Δu ∈ H1(R3), then u ∈ L3(R3), ∇ ⊗ u ∈ L3/2, and (u · ∇)u ∈ H1(R3)
(this is a consequence of the so-called div-curl lemma as stated in [7]). Furthermore,

∇p ∈ H1(R3) (this follows from the classical relation Δp =
∑3

h,k=1 ∂h∂k(uhuk) and
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the boundedness of the Riesz transforms in the Hardy space). Thus, the three terms
which contribute to ∂tu in (NS) have the same regularity.

Moreover, the Hardy space has a very simple structure, due to its well-known
atomic decomposition. Hence, solving the equations in Δ−1H1 yields a natural de-
composition of the flow into simple “building blocks.” Furioli and Terraneo consid-
ered the converse problem of studying the evolution of each building block. The
result of [12] essentially states that if Δu is a molecule of the Hardy space (in a sense
close to that of Coifman and Weiss [8]) at the beginning of the evolution, then this
property remains true for a certain time. To do this they introduced, for δ > 3

2 ,
the space Xδ defined as the set of all tempered distributions f vanishing at infinity
such that Δf ∈ L2(R3, (1 + |x|2)δdx) and

∫
xαΔf(x) dx = 0 for all α ∈ N

3 such that
α1 + α2 + α3 < δ − 3

2 . The norm of Xδ is defined by

||f ||2Xδ
≡

∫
|Δf(x)|2(1 + |x|2)δ dx.

Furioli and Terraneo’s theorem then is stated as Theorem 1.1, with Xδ instead
of Zδ, and with the additional restrictions 3

2 < δ < 9
2 and δ �= 5

2 ,
7
2 . The condition

δ > 3
2 is important for the embedding Xδ ⊂ Δ−1H1. However, P.-G. Lemarié-Rieusset

noticed that the condition δ �= 5
2 ,

7
2 can be removed. Their paper is technical and relies

on the theory of local Muckenhoupt weights.

The second purpose of this paper is to provide a simpler proof of their result.
Indeed, in section 4 we remark that the Fourier transform of Xδ is closely related
to the realization “à la Bourdaud” [3] of the homogeneous Sobolev space Ḣδ. The
operators involved in (IE) turn out to be Fourier pointwise multipliers of the realized
spaces. Therefore the estimates that are needed to establish the boundedness of the
bilinear operator B(u, v)(t) =

∫ t

0
∇ · e(t−s)Δ

P(u ⊗ v)(s) ds in C([0, T ], Xδ) become
very natural. The conclusion of the proof is a simple application of the contraction
mapping theorem.

The idea of using Bourdaud’s results on realized spaces in this way (or analogous
results by Youssfi [20] for the realized homogeneous Besov spaces) seems to be new.
Since this argument does not directly rely on the divergence-free condition or the
matricial structure of P, it can be easily applied to more general equations. Moreover,
we feel that providing evidence of the relation between the localization problem of the
velocity field and Furioli and Terraneo’s molecules provides a better understanding
of [12].

The spatial localization of the velocity field in different weighted-Lebesgue spaces
is studied in [19]. After the first version of this paper was completed, the author was
notified by H.-O. Bae and B. J. Jin that their preprint [2] also improves the spatial
decay results of [13] and [14] and provides solutions to (NS) in L2(R3, (1 + |x|2)αdx),
0 ≤ α < 5

2 . Their method is a refinement of the weighted estimates of He and Xin
[14] and is quite different than ours. The assumptions on the data are also different:
Bae and Jin deal with less regular data, but they put more stringent assumptions on
their spatial localization.

2. Some properties of the space Zδ. For δ ≥ 0 we introduce the space L2
δ

of all functions f ∈ L2(R3, (1 + |x|2)δdx) such that
∫
xαf(x) dx = 0 for all α ∈ N

3,
with 0 ≤ |α| < δ − 3

2 (where |α| = α1 + α2 + α3). There are of course no moment
conditions for 0 ≤ δ ≤ 3

2 . Note that L2
δ is well defined because of the embedding of

L2(R3, (1 + |x|2)δdx) into L1(R3, wδ(x)dx), for δ > 3
2 . Here and below, for δ > 3

2 ,
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we set wδ(x) = (1 + |x|)[δ−3/2] if δ − 3
2 �∈ N (where [·] denotes the integer part), and

wδ(x) = (1 + |x|)δ−5/2 otherwise.
Lemma 2.1. Let δ ≥ 0. We have f ∈ L2

δ if and only if f can be decomposed as

f = g +
∞∑
j=0

fj ,

where g and fj belong to L2(R3), supp g ⊂ {|x| ≤ 1}, supp fj ⊂ {2j−1 ≤ |x| ≤ 2j+1},
and

||fj ||2 ≤ εj2
−jδ, with εj ∈ �2(N),∫

xαg(x) dx =

∫
xαfj(x) dx = 0, if α ∈ N

3, 0 ≤ |α| < δ − 3

2
,

(2.1)

and where the series converges a.e. in R
3 and in L2

δ.
Proof. The result is obvious for 0 ≤ δ ≤ 3

2 , so we may assume δ > 3
2 . We start

with a bad choice, namely

g̃(x) = f(x)I|x|≤1 and f̃j(x) = f(x)I2j≤|x|≤2j+1 (j = 0, 1, . . .),

where I denotes the indicator function. Letting f̃−1 = g̃, we set

J(j, α) =

∫
xαf̃j(x) dx.

Since |α| < δ − 3
2 , the series

∑
j J(j, α) converges and

∑∞
j=−1 J(j, α) = 0. We now

introduce a family of functions ψβ ∈ C∞
0 (R3), supported in 1

2 ≤ |x| ≤ 1 and such that∫
xαψβ(x) dx = δα,β (α, β ∈ N

3, |α|, |β| < δ − 3
2 ),

with δα,β = 0 or 1 if α �= β or α = β, respectively (we may define ψβ , e.g., through
the tensorial product of suitable C∞

0 (R) functions).
Now let

c(j, α) ≡ J(j, α) + J(j + 1, α) + · · · ,

and set, for j = −1, 0, . . . ,

fj(x) = f̃j(x) −
∑
β

(
c(j, β)2−(3+|β|)jψβ(2−jx) − c(j + 1, β)2−(3+|β|)(j+1)ψβ(2−j−1x)

)
,

the summation being taken over all β ∈ N
3 such that 0 ≤ |β| < δ − 3

2 .

Since |J(j, α)| ≤ 2j|α|23j/2−jδ ε̃j for some ε̃j ∈ �2(N), we have |c(j, α)| ≤
2j|α|23j/2−jδ ε̄j , with ε̄j ∈ �2(N). One now easily checks that

∑∞
j=−1 fj =

∑∞
j=−1 f̃j =

f a.e. in R
3 and that g and fj satisfy (2.1).

The converse is immediate. Note that if g and fj satisfy the above conditions, then∑
fj must converge also in the L1(R3, wδ(x)dx) norm (δ > 3

2 ) by Hölder’s inequality,
and this ensures the condition on the moments of f . Lemma 2.1 follows.

A similar decomposition applies to Zδ.
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Lemma 2.2. Let δ ≥ 0. We have f ∈ Zδ if and only if

f = g +

∞∑
j=0

fj ,

with

supp g ⊂ {|x| ≤ 1}, supp fj ⊂ {2j−2 ≤ |x| ≤ 2j+2},
g,∇g,Δg ∈ L2(R3), ||fj ||2 ≤ εj2

2j2−jδ, εj ∈ �2(N),

||∇fj ||2 ≤ ε̄j2
j2−jδ, ||Δfj ||2 ≤ ε̃j2

−jδ, ε̄j , ε̃j ∈ �2(N),

(2.2)

and where the series converges a.e. in R
3 and in Zδ.

If δ > 7
2 , then Zδ is continuously embedded in L1(R3). In this case we have∫

f = 0 if and only if we may choose g and fj satisfying, in addition,
∫
g =

∫
fj = 0

(j = 0, 1, . . .).
Proof. It is obvious that if (2.2) holds, then f = g +

∑∞
j=0 fj belongs to Zδ.

Conversely, let ϕ and ψ be two compactly supported smooth functions, such that
0 does not belong to the support of ψ and 1 ≡ ϕ(x) +

∑∞
j=0 ψ(2−jx). If we set

g(x) = f(x)ϕ(x) and fj(x) = f(x)ψ(2−jx), then we have ∇fj(x) = ψ(2−jx)∇f(x) +
2−j(∇ψ)(2−jx)f(x) and

Δfj(x) = ψ(2−jx)Δf(x) + 2−j+1(∇ψ)(2−jx) · ∇f(x) + 2−2j(Δψ)(2−jx)f(x).

Decomposition (2.2) then directly follows from the definition of Zδ.
If δ > 7

2 , then Zδ ⊂ L1(R3) as checked with Hölder’s inequality. In this case,
when

∫
f = 0, we can modify the definition of g and fj reproducing the proof of

Lemma 2.1 (with |α| = |β| = 0) and get the vanishing integral conditions. Lemma 2.2
follows.

We finish our study of Zδ with the following lemma.
Lemma 2.3. Let δ ≥ 1

2 . Then Zδ is an algebra with respect to the pointwise
product. More precisely, if f and h belong to Zδ, then fh ∈ Z2δ−1/2 ⊂ Zδ.

Proof. The condition δ ≥ 1
2 ensures that if f ∈ Zδ, then f vanishes at infinity.

Indeed, we have the following bound:

|f(x)| ≤ C(1 + |x|)−δ+1/2ε(x),(2.3)

where ε(x) is a bounded function vanishing at infinity. This is seen by applying
Lemma 2.2 and writing, for x ∈ supp fj , fj(x) =

∫
|x−y|−1Δfj(y) dy. Then applying

Hölder’s inequality and the last of (2.2) we get for x ∈ supp fj , |fj(x)| ≤ εj2
−jδ2j/2

with εj ∈ �2(N) and our claim follows.
Another useful estimate (which follows interpolating ∇fj between ||Δfj ||2 and

||fj ||∞) is

(∫
2j≤|x|≤2j+1

|∇f(x)|4dx
)1/4

≤ εj2
j/4−jδ, with εj ∈ �2(N).

Using this, we immediately see that if f and h belong to Zδ, then fh ∈
L2(R3, (1 + |x|2)2δ−5/2dx), ∇(fh) ∈ L2(R3, (1 + |x|2)2δ−3/2dx), and Δ(fh) ∈
L2(R3, (1 + |x|2)2δ− 1

2 dx). Therefore fh ∈ Z2δ−1/2 ⊂ Zδ and, moreover,

||fh||Z2δ−1/2
≤ C||f ||Zδ

||h||Zδ
.



678 LORENZO BRANDOLESE

3. Characterization of molecule spaces. We defined the molecule space Xδ

in the introduction for δ > 3
2 . These spaces can be defined also for 1

2 < δ ≤ 3
2

by simply dropping the moment conditions on Δf (it should be observed that the
embedding Xδ ⊂ Δ−1H1(R3) breaks down for δ ≤ 3

2 , but for the sake of brevity we
refer to Xδ as a “molecule space” also in this case). In this section we study the
relation between the spaces Zδ and Xδ.

Proposition 3.1. We have

Xδ = Zδ, if
1

2
< δ <

7

2
and δ �= 3

2
,
5

2
,(3.1)

Xδ = Zδ ∩
{
f ∈ L1(R3) :

∫
f = 0

}
, if

7

2
< δ <

9

2
(3.2)

(with norm equivalence).
Note that δ = 3

2 ,
5
2 ,

7
2 are excluded. The proof of Proposition 3.1 will only give

Zδ ⊂ Xδ in this case. Let us shed some light on this point with an example. Let
j, k = 1, 2, 3 and f ∈ L2(R3) such that Δf = ∂j∂kg, where g(x) = (4π)−3/2e−|x|2/4.
Then f ∈ X7/2 but f �∈ Xδ for δ > 7

2 , since
∫
xjxkΔf(x) dx �= 0. Moreover, computing

the inverse Fourier transform as in [17] from the identity f̂(ξ) = ξjξk|ξ|−2e−|ξ|2 , one
checks after some computations that the integral

∫
|f(x)|2(1 + |x|2)3/2 dx diverges so

that f �∈ Z7/2.
Proof of Proposition 3.1. Throughout the proof α ∈ N

3. Note that because of
our restrictions δ − 3

2 is not an integer.
First step: The embedding Xδ ⊂ Zδ. Let f ∈ Xδ. Applying Lemma 2.1 to Δf

and using the fact that f vanishes at infinity, we see that we may write

f =
c

|x| ∗ p +
∞∑
j=0

c

|x| ∗ qj ,(3.3)

c being an absolute constant. Here p and qj are compactly supported L2-functions,
satisfying

supp p ⊂ {|x| ≤ 1},
supp qj ⊂ {2j−1 ≤ |x| ≤ 2j+1},
||qj ||2 ≤ εj2

−jδ, εj ∈ �2(N),∫
xαp(x) dx =

∫
xαqj(x) dx = 0, if |α| < δ − 3

2
.

(3.4)

Let us show that, for all f ∈ Xδ and 2j ≤ |x| ≤ 2j+1, we have

|f(x)| ≤ ε̄j2
j/22−jδ, with ε̄j ∈ �2(N).(3.5)

To prove (3.5) we set P = 1
|·| ∗ p, Qj = 1

|·| ∗ qj (j = 0, 1, . . .), and d = [δ − 3
2 ] (we

set d = −1 if 1
2 < δ < 3

2 ). Then we have

|Qj(x)| ≤ Cεj2
−j(δ−1/2), if |x| ≤ 4 · 2j ,(3.6)

|Qj(x)| ≤ C|x|−(d+2)εj2
(d+5/2−δ)j , if |x| ≥ 4 · 2j .(3.7)

The first bound follows from the localization of qj and Hölder’s inequality. Let us
prove (3.7); we start by introducing the Taylor polynomial y �→ Tx(y) of degree d
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centered at x of the function 1/|y| (we set Tx(y) ≡ 0 for 1
2 < δ < 3

2 ). Then for
|x| ≥ 4 · 2j and y ∈ supp qj we may write, using the last of (3.4),

|Qj(x)| =

∣∣∣∣
∫ (

1

|x− y| − Tx(−y)

)
qj(y) dy

∣∣∣∣ ≤ C|x|−d−2

∫
|y|d+1|qj(y)| dy.

Here the inequality follows from the Taylor formula and the fact that the (d+1)-order
derivatives of y �→ 1/|y| are bounded in a ball centered at x and radium |x|/2, up to
a constant, by |x|−d−2. The bound (3.7) now follows from Hölder’s inequality.

Similar arguments allow us to see that |P (x)| ≤ C(1 + |x|)−(d+2). Summing up
on these inequalities immediately yields (3.5).

Condition (3.6) also ensures that
∫
|x|≤1

|f |2 is finite. Then using (3.5) we get

∫
|f(x)|2(1 + |x|2)δ−2 dx < ∞.(3.8)

We now need some bounds for ∇f . We start from −∇f(x) = cx
|x|3 ∗p+

∑∞
j=0

cx
|x|3 ∗

qj , and we set Rj = (x/|x|3)∗qj (j = 0, 1, . . .) and R−1 = (x/|x|3)∗p. Then for j ≥ −1,

|Rj(x)| ≤ C|x|−(d+3)εj2
(d+5/2−δ)j , if |x| ≥ 4 · 2j ,(3.9) (∫

|x|≤4·2j

|Rj(x)|4 dx
)1/4

≤ Cεj2
j/42−jδ.(3.10)

Indeed, (3.9) again easily follows using the vanishing of the moments of qj and the
Taylor formula. The proof of (3.10) deserves a more detailed explanation: for |x| ≤
4 · 2j we write

x

|x|3 ∗ qj(x) = θj ∗ qj(x), where θj(x) =
x

|x|3 I{|x|≤6·2j}.

Then (3.10) comes from ||θj ∗ qj ||4 ≤ ||θj ||4/3||qj ||2 ≤ C2j/4||qj ||2.
Now, for j ≥ 1 we write − 1

c∇f =
∑j−2

k=−1 Rk +
∑∞

k=j−1 Rk ≡ Aj + Bj . Using
(3.9) we get

(∫
2j≤|x|≤2j+1

|Aj(x)|2 dx
)1/2

≤ Cε̃j2
j2−jδ, with ε̃j ∈ �2(N).

On the other hand, applying Hölder and Minkowski inequalities and (3.10) yields

(∫
2j≤|x|≤2j+1

|Bj(x)|2 dx
)1/2

≤ C ′ε̃j2
j2−jδ, with ε̃j ∈ �2(N).

Since we obviously have
∫
|x|≤2

|∇f |2 < ∞, we thus see that

∫
|∇f(x)|2(1 + |x|2)δ−1 dx < ∞.(3.11)

This last inequality, condition (3.8), and the definition of the Xδ norm yield the
injection Xδ ⊂ Zδ.

Second step: The elements of Xδ,
7
2 < δ < 9

2 have vanishing integral. Assume
now 7

2 < δ < 9
2 . Then the moments of p and qj vanish up to the order two. Moreover,
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our previous estimates imply that P and Qj belong to L1(R3). We thus see, e.g., via
the Fourier transform (using the fact that p̂(ξ) and q̂j(ξ) vanish at the origin together
with their derivatives up to the order two and letting ξ → 0) that

∫
P (x) dx =∫

Qj(x) dx = 0 for all positive integers j. Moreover, the series
∑

Qj converges in the
L1-norm by (3.6)–(3.7) yielding

∫
f = 0.

Third step: The converse inclusion. Let f ∈ Zδ. In the case 7
2 < δ < 9

2 we assume∫
f = 0. The bound ||f ||Xδ

< ∞ is obvious. By Lemma 2.2 we have f = g+
∑∞

j=0 fj ,

such that (2.2) holds (with
∫
g =

∫
fj = 0 for all j ≥ 0 if 7

2 < δ < 9
2 ).

We claim that∫
xαΔg(x) dx =

∫
xαΔfj(x) dx = 0, 0 ≤ |α| < δ − 3

2 ,

for all j ≥ 0 (there are no moment conditions for 1
2 < δ < 3

2 ). Indeed, since g and fj
are compactly supported, when applying the Green formula all the boundary terms
vanish and we obtain (e.g., for fj , when 7

2 < δ < 9
2 )

∫
xαΔfj(x) dx = 2

∫
fj(x) dx, if xα = x2

1, x
2
2, or x2

3,

and
∫
xαΔfj(x) dx = 0; otherwise (|α| ≤ [δ − 3

2 ]). Our claim then follows.
Moreover, by Hölder’s inequality,

∞∑
j=0

||xαΔfj ||1 < ∞, 0 ≤ |α| < δ − 3
2 .

Summing on j we get
∫
xαΔf(x) dx = 0.

To conclude that f ∈ Xδ it remains to check that f vanishes at infinity. This was
done in (2.3).

4. Proof of Theorem 1.1. The boundedness of the operator ∇etΔP in Xδ

( 3
2 < δ < 9

2 ), δ �= 5
2 ,

7
2 is a fundamental step of [12]. Lemma 4.1 provides a short proof

of this fact. Our main tool will be the realization of homogeneous Sobolev spaces
introduced by Bourdaud. Note that ∇etΔP is a matrix operator acting on vector
fields. But its matricial structure has no special role in what follows, since we shall
establish all the relevant estimates componentwise.

Lemma 4.1. Let 1
2 < δ < 9

2 , δ �= 3
2 ,

5
2 ,

7
2 . The operator ∇etΔP is bounded from

Zδ to Xδ for all t > 0, with operator norm O(t−1/2) as t → 0.
Proof. Let f ∈ Zδ. If 7

2 < δ < 9
2 , then we introduce a function h such that

f(x) = cg(x) + h(x), where g(x) = (4π)−3/2e−|x|2/4

and the constant c is chosen in a such way that
∫
h(x) dx = 0. If, instead, 1

2 < δ < 7
2 ,

δ �= 3
2 ,

5
2 , then we simply set f(x) = h(x). In any case, we deduce from Proposition 3.1

that h ∈ Xδ and ||h||Xδ
≤ C||f ||Zδ

for some constant C depending only on δ.
We start showing that ∇etΔPg belongs to Xδ for all 0 ≤ δ < 9

2 . Note that the

components of (∇etΔPg)̂(ξ) are given by

iξh

(
δj,k − ξjξk

|ξ|2

)
exp(−(t + 1)|ξ|2) (j, h, k = 1, 2, 3, δj,k = 0 or 1),
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and the inverse Fourier transform can be easily computed (see, e.g., [17]). We imme-
diately find that ∇etΔPg is a smooth function in R

3, such that

|∂α∇etΔPg(x)| ≤ Cα(1 + |x|)−(4+|α|) for all α ∈ N
3.

This bound implies that etΔP∇g ∈ Zδ, for 0 ≤ δ < 9
2 . But

∫
∇etΔPg = 0 (the Fourier

transform of the integrand vanishes at the origin) and thus ∇etΔPg belongs, more
precisely, to Xδ.

Let us now prove that ∇etΔPh does also belong to Xδ. The only difficulty is
for 3

2 < δ < 9
2 , δ �= 5

2 ,
7
2 . Indeed, if 1

2 < δ < 3
2 , then one observes that the weight

(1 + |x|2)δ belongs to the Muckenhoupt class A2; see [18]. This implies that P, and
more generally the Riesz transforms, are bounded in L2(R3, (1 + |x|2)δdx). Since
∇etΔP and the Laplacian commute, the result easily follows applying this remark
to Δh.

To deal with the case δ > 3
2 , we start by recalling that the Sobolev space Hδ is

defined by

||q||2Hδ ≡
∫

|q̂(ξ)|2(1 + |ξ|2)δ dξ

and that Hδ ⊂ Cδ−3/2 (the Hölder–Zygmund space). Thus, stating that h belongs to
Xδ is equivalent to stating that

q(ξ) ≡ |ξ|2ĥ(ξ) ∈ Hδ and ∂αq(0) = 0 for all 0 ≤ |α| ≤
[
δ − 3

2

]
.

These two conditions on q can be expressed by saying that q belongs to L2(R3)∩Ḣδ
rel,

where Ḣδ
rel is the realization of the homogeneous Sobolev space Ḣδ (see Bourdaud

[3]). Recall that Ḣδ
rel can be injected into S ′(R3) (this would not be true for Ḣδ,

which is instead a space of tempered distributions modulo polynomials) and hence
the notion of pointwise multipliers makes sense in the realized space. It follows from
the result of [3] that m(ξ) ≡ ξj/|ξ| is a multiplier for Ḣδ

rel (any homogeneous function
of degree 0 which is smooth outside the origin is indeed a multiplier for this space).

Since h ∈ Xδ, the components of |ξ|2P̂h(ξ), which are given by (δj,k−ξjξk|ξ|−2)q(ξ),

belong to L2(R3)∩ Ḣδ
rel. Hence, Ph ∈ Xδ. Moreover, iξhe

−t|ξ|2 ∈ S(R3) is also a mul-

tiplier of Ḣδ
rel (with norm c/

√
t). Then we get ||∇etΔPf ||Xδ

≤ Ct−1/2||f ||Zδ
and

Lemma 4.1 is thus proven.
Our last lemma deals with the case δ = 1

2 .
Lemma 4.2. The operator ∇etΔP is bounded in Z1/2 for all t > 0, with operator

norm O(t−1/2) as t → 0.
Proof. Following Miyakawa’s notations, we denote by F (x, t) the kernel of the

operator ∇etΔP. Then we know that F (x, t) = t−2Φ(x/
√
t), where Φ is smooth in

R
3 and |Φ(x)| ≤ C(1 + |x|)−4 (see again [17] for more details). Let us show that

||Φ ∗ f ||Z1/2
≤ C||f ||Z1/2

. Then the conclusion will follow from a simple rescaling
argument.

Let f ∈ Z1/2 and write f = g +
∑∞

j=0 fj , where g and fj satisfy (2.2). We also
know that |fj(x)| ≤ εj for all x ∈ supp fj (we saw this right after (2.3)), with εj ∈
�2(N). We obviously have Φ ∗ g ∈ Z1/2 and Φ ∗ f ∈ L∞(R3). Now let 2k ≤ |x| ≤ 2k+1

(k ∈ N, k ≥ 3). Using the decay of Φ we see that Φ ∗ fj is bounded by Cεj2
−4k23j

(j ≤ k − 3) and Cεj2
−j (j ≥ k + 3). Thus |Φ ∗ f(x)| ≤ ε̃k, with ε̃k ∈ �2(N), and we

conclude that
∫
|Φ ∗ f(x)|2(1 + |x|2)−3/2 dx is finite.
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Moreover, by Young’s inequality,∫
|∇Φ ∗ f(x)|2(1 + |x|2)−1/2dx

≤ C

(∫
|Φ(x)|(1 + |x|)1/2dx

)2∫
|∇f(x)|2(1 + |x|2)−1/2dx,∫

|ΔΦ ∗ f(x)|2(1 + |x|2)1/2dx

≤ C

(∫
|Φ(x)|(1 + |x|)1/2dx

)2∫
|Δf(x)|2(1 + |x|2)1/2dx

(we also used (1 + |x|)−1/2 ≤ c(1 + |y|)−1/2(1 + |x− y|)1/2 in the first inequality and
(1 + |x|)1/2 ≤ c(1 + |y|)1/2(1 + |x− y|)1/2 in the second inequality). Lemma 4.2 now
follows.

Proof of Theorem 1.1. The proof is based on the application of Kato’s standard
iteration argument in the space C([0, T ], Zδ). Let us write (IE) in the compact form

u(t) = etΔa−B(u, u), where B(u, v) =
∫ t

0
∇ · e(t−s)Δ

P(u⊗ v)(s) ds.
By Lemmas 4.1 and 4.2, and using the fact that Zδ is a pointwise algebra for

δ ≥ 1
2 , we see that the bilinear operator B is bounded in C([0, T ], Zδ) for 1

2 ≤ δ < 9
2 ,

δ �= 3
2 ,

5
2 ,

7
2 , (the continuity with respect to the time variable is straightforward).

Moreover, |||B(u, v)|||δ ≤ CT |||u|||δ |||v|||δ, where |||w|||δ ≡ supt∈[0,T ] ||w(t)||Zδ
and CT =

O(T 1/2) as t → 0. We get the same conclusion for δ = 3
2 ,

5
2 ,

7
2 if we use the continuous

embedding Zδ ⊂ Zδ′ (δ ≥ δ′) and the stronger version of Lemma 2.3. For example,

|||B(u, v)|||3/2 ≤ C|||B(u, v)|||2 ≤ CT 1/2|||u|||5/4|||v|||5/4 ≤ CT 1/2|||u|||3/2|||v|||3/2,

and a similar argument can be used for δ = 5
2 ,

7
2 .

Since etΔa belongs to C([0, T ], Zδ) if a ∈ Zδ for all δ ≥ 0, as is easily checked, we
see that the fixed point argument applies in C([0, T ], Zδ), at least if T > 0 is small
enough.

We state as a corollary a slight improvement of Furioli and Terraneo’s theorem.
Corollary 4.3. Let 1

2 < δ < 9
2 and a ∈ Xδ. Then there exists T > 0 such that

(IE) can be uniquely solved in C([0, T ], Xδ).
Proof. The result is true for 1

2 < δ < 7
2 and δ �= 3

2 ,
5
2 because of the identification

between Xδ and Zδ. For 7
2 < δ < 9

2 we use the fact that every divergence-free vector
field which is in L1(R3) must have a vanishing integral. Hence the existence and
unicity result for (IE) in Xδ again follows from the corresponding result in Zδ and
the last conclusion of Proposition 3.1.

In the case δ = 3
2 we can observe that if u, v ∈ C([0, T ], X3/2), then B(u, v) be-

longs, e.g., to C([0, T ], Z2), which is contained in C([0, T ], X3/2). A similar argument

can be used for δ = 5
2 ,

7
2 and the conclusion easily follows.

As claimed in the introduction, the restriction δ < 9
2 cannot be removed in The-

orem 1.1. Indeed, if u is a solution to (IE) such that u ∈ C([0, T ], Z9/2), for some
T > 0, then the initial datum must satisfy the conditions of Dobrokhotov and Sha-
farevich:

∫
(ajak) = 0 if j �= k and

∫
a2
1 =

∫
a2
2 =

∫
a2
3. This is due to the fact

that the localization condition a ∈ L2(R3, (1+ |x|2)5/2dx) is not conserved during the
evolution (see [6]). For the same reason, the condition a ∈ Xδ, δ > 9

2 breaks down (in
general). But we do not know if the condition a ∈ X9/2 (or a ∈ X1/2) propagates.

We conclude by observing that spatially localized flows u(t), belonging to Zδ and
Xδ with δ > 9

2 , do, however, exist. Examples of such flows can be found in [4].
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Abstract. Motivated by a recent generalization of the Balian–Low theorem and by new research
in wireless communications, we analyze the construction of Wilson bases for general time-frequency
lattices. We show that orthonormal Wilson bases for L2(R) can be constructed for any time-frequency
lattice whose volume is 1

2
. We then focus on the spaces �2(Z) and CL which are the preferred settings

for numerical and practical purposes. We demonstrate that with a properly adapted definition of
Wilson bases the construction of orthonormal Wilson bases for general time-frequency lattices also
holds true in these discrete settings. In our analysis we make use of certain metaplectic transforms.
Finally, we discuss some practical consequences of our theoretical findings.
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1. Introduction. Gabor systems have become a popular tool, both in theory
and in applications; e.g., see [12, 18, 13]. However, one drawback is that due to
the Balian–Low theorem it is impossible to construct (orthogonal) Gabor bases for
L2(R) with good time-frequency localization [18]. In [33, 9] it has been shown that a
modification of Gabor bases, so-called Wilson bases, provide a means to circumvent
the Balian–Low theorem. Indeed, there exist orthogonal Wilson bases for L2(R) whose
basis functions have exponential decay in time and frequency. These Wilson bases
can be constructed from certain tight Gabor frames with redundancy 2.

Gabor frames are usually associated with rectangular time-frequency lattices, but
they can also be defined for general nonseparable lattices; see, e.g., [10, 17, 11, 28].
Recently it has been shown that such a generalization of Gabor frames to general
time-frequency lattices does not enable us to overcome the Balian–Low theorem [19, 2].
This leads naturally to the question of whether it is possible to extend the construction
of Wilson bases to general time-frequency lattices.

Another motivation for the research presented in this paper has its origin in
wireless communication. Orthogonal frequency division multiplexing (OFDM) is a
wireless transmission technology employing a set of transmission functions which is
usually associated with a rectangular time-frequency lattice [14]. The connection to
Gabor theory is given by the fact that the collection of transmission pulses in OFDM
can be interpreted as a Gabor system; see [27, 30]. The density of the associated
rectangular time-frequency lattice can be seen as a measure of the spectral efficiency
in terms of number of bits transmitted per Hertz per second. The necessary condition
of linear independence of the transmission functions implies that we are dealing with
either an undersampled or a critically sampled Gabor system.
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For wireless channels that are time-dispersive (due to multipath) and frequency-
dispersive (due to the Doppler effect), good time-frequency localization of the trans-
mission pulses is essential to mitigate the interferences caused by the dispersion of
the channel [27, 30]. The ideal set of transmission pulses should therefore possess
(i) good time-frequency localization and (ii) maximize the spectral efficiency; i.e.,
the transmission functions should correspond to a (critically sampled) Gabor basis
for L2(R). As we know, the Balian–Low theorem prohibits these conditions to be
fulfilled simultaneously.

Recently it has been shown that in case of time-frequency dispersive channels the
performance of OFDM can be improved when using general time-frequency lattices,
in particular hexagonal-type lattices [31]. In a nutshell, lattices that are adapted to
the shape of the Wigner distribution of the transmission pulses allow for a better
“packing” of the time-frequency plane, which in turn can be used to either achieve
higher data rates or improve interference robustness of the associated so-called Lattice-
OFDM system.

One variation of OFDM (for rectangular lattices) is called offset quadrature am-
plitude modulation (OQAM) OFDM. It corresponds to using a Wilson basis as a
set of transmission functions [4]. OQAM-OFDM achieves maximal spectral efficiency
and allows for transmission functions with good time-frequency localization. As in
the case of standard OFDM, it would be potentially useful for time-frequency dis-
persive channels to extend OQAM-OFDM to general time-frequency lattices in order
to improve the robustness of OQAM-OFDM against interference even further. Thus
we again arrive at the problem of constructing Wilson bases for general nonseparable
time-frequency lattices.

Yet another motivation comes from filter bank theory, more precisely cosine-
modulated filter banks [6]. We know that discrete-time Wilson bases correspond to a
special class of cosine-modulated filter banks (see [6]). In light of the improvements
gained by using general time-frequency lattices in OFDM [31], it would be interesting
to analyze if the construction of cosine-modulated filter banks can be extended to
general time-frequency lattices. A positive answer to this question might lead to a
more efficient encoding of signals and images.

Since our goal to construct Wilson bases for general time-frequency lattices is
in part motivated by applied problems and since any numerical implementation of
Wilson bases is based on a discrete model, our analysis will not only concern L2(R)
but also comprise the spaces �2(Z) and C

L. Furthermore, �2(Z) is the appropriate
setting when Wilson bases are utilized as filter banks, since in this case one deals with
sampled, thus discrete-time, signals.

1.1. Notation. We assume that the reader is familiar with the theory of Gabor
frames and refer to [18] for background and details.

A lattice Λ in R
d is a discrete subgroup with compact quotient; i.e., there exists

a matrix A ∈ GL(d,R) such that Λ = AZ
d. The matrix A is called the (nonunique)

generator matrix for Λ. The volume of Λ is vol(Λ) = |det(A)|. Two lattices, which
play a crucial role in OFDM design (see [31]), are the rectangular lattice ΛR and the
hexagonal lattice ΛH . A generator matrix for ΛR is given by

AR =

[
T 0
0 F

]
,
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and a generator matrix for ΛH is given by

AH =

⎡
⎣

√
2

4√3
T

√
2

2 4√3
T

0
4√3√
2
F

⎤
⎦ ,

where T, F > 0. An easy calculation shows that both lattices ΛR and ΛH have the
same volume TF . A normal form for matrices, which we will use in the following, is
the so-called Hermite normal form [20]. We say that a matrix A = [ac

b
d ] is in Hermite

normal form if c = 0, a, d > 0, and 0 ≤ b < a. For example, both matrices AR and
AH are in Hermite normal form.

For (x, y) ∈ R
2 and g ∈ L2(R), let gx,y be defined by

gx,y(t) = e2πiytg(t− x).

We denote by G(g,Λ) the system of functions given by

gλ,μ(t) = g(t− λ)e2πitμ, (λ, μ) ∈ Λ.

As usual, the redundancy of G(g,Λ) is given by 1
vol(Λ) .

As in [18], we define the Schrödinger representation ρ : H → U(L2(R)) by

ρ(x, y, z)g(t) = e2πize−πixye2πiytg(t− x).

Note that

gx,y = eπixyρ(x, y, 1)g.(1.1)

Furthermore, we use the following notation from [18] (with slight changes):

J =

[
0 −1
1 0

]
, Bb =

[
b 0
0 1

b

]
, Cc =

[
1 0
c 1

]
.

F and ∧ denote the Fourier transform, F−1 and ∨ denote the inverse Fourier trans-
form. The dilation is given by Dbf(t) = |b| 12 f(bt) and the “chirp” operator is defined

via Ncf(t) = e−πict2f(t), where b, c ∈ R and f ∈ L2(R).
Metaplectic transforms will turn out to be a very useful tool in our analysis.

For the study of the discrete and finite case, we need a result on metaplectic trans-
forms from [24]. Since this thesis is not easy to access, we present the result here in
the slightly weaker version we will use, together with the necessary definitions and
notations. The result will be stated in the situation of a general locally compact
abelian group G with dual group Ĝ, group multiplication denoted by +, and action
of Ĝ on G denoted by 〈x, χ〉 for x ∈ G and χ ∈ Ĝ. The cases we are interested in
later on are G = Z and G = ZL. We will usually write a metaplectic transform σ
in the matrix notation σ = [αγ

β
δ ] ∈ Hom(G × Ĝ), which means that α ∈ Hom(G),

β ∈ Hom(Ĝ,G), γ ∈ Hom(G, Ĝ), and δ ∈ Hom(Ĝ). Then the adjoint σ∗ is defined

by 〈(x, χ), σ∗(y, π)〉 = 〈σ(x, χ), (y, π)〉 for all (x, χ), (y, π) ∈ G × Ĝ. Let η be defined

by η = [ 0
IG

−I
Ĝ

0
] ∈ Hom(G × Ĝ, Ĝ × G), where the above definition concerning the

matrix notation has to be adapted in an obvious way, and where IG and I
Ĝ

denote

the identity on G and Ĝ, respectively. Then σ is called symplectic if σ∗ησ = η. If
ζ ∈ Hom(G× Ĝ, Ĝ×G), then ψ is a second degree character of G× Ĝ associated to
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ζ if ψ((x, χ) + (y, π)) = ψ(x, χ)ψ(y, π) 〈(x, χ), ζ(y, π)〉 for all (x, χ), (y, π) ∈ G × Ĝ.

Moreover, for (x, χ) ∈ G× Ĝ and g ∈ L2(G), let gx,χ be defined by

gx,χ(t) = χ(t)g(t− x),

which generalizes the previous definition.
We can now state the version of [24, Theorem 1.1.28] which we will employ in

sections 3 and 4.
Theorem 1.1. Let σ := [αγ

β
δ ] ∈ Hom(G×Ĝ) be symplectic and let ψζ be a second

degree character of G× Ĝ associated to

ζ := σ∗
[

0 0
IG 0

]
σ −

[
0 0
IG 0

]
∈ Hom(G× Ĝ, Ĝ×G).

If U is defined by

Uf(t) :=

∫
Ĝ

f(αt + βω)ψ−1
ζ (t, ω)dω,

then we have

(Uf)x,χ(t) = ψ−1
ζ (x, χ)Ufσ(x,χ)(t), (x, χ) ∈ G× Ĝ.

2. Wilson bases for general lattices—the continuous case. We first show
that all lattices in R

2 which are important for applications, such as the rectangular
lattice, the hexagonal lattice, and lattices whose generator matrix has rational entries,
possess a uniquely determined matrix in Hermite normal form, which we will call the
canonical generator matrix. In particular, we characterize exactly those lattices which
possess a generator matrix in Hermite normal form.

We then show that it is possible to construct orthonormal Wilson bases for time-
frequency lattices Λ with vol(Λ) = 1

2 which possess a generator matrix in Hermite
normal form. In principle Wilson systems can be defined for lattices Λ with vol(Λ) �=
1
2 ; however, so far all known constructions of orthogonal Wilson bases for L2(R) are
strictly tied to lattices with volume 1

2 . In light of this fact, throughout this paper a
Wilson system will always be associated with a time-frequency lattice of volume 1

2 .
Lemma 2.1. Let Λ be a lattice in R

2. Then the following conditions are equiva-
lent.

(i) P2(Λ) is discrete, where P2 : R
2 → R, (x, y) �→ y.

(ii) There exists a generator matrix A for Λ which is in Hermite normal form.
If one of these conditions is satisfied, the matrix A is uniquely determined.

Proof. Let

A′ =

[
a′ b′

c′ d′

]

be an arbitrary generator matrix for Λ.
First we prove that (ii) implies (i). By (ii), there exists a matrix

A =

[
a b
0 d

]
,

which is in Hermite normal form and which satisfies AZ
2 = Λ. Thus P2(Λ) = dZ,

which yields (i).
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Next we show (i) ⇒ (ii). For this, we construct a matrix

A =

[
a b
0 d

]
,

which satisfies the claimed properties. Without loss of generality we assume that
d′ �= 0 (if d′ = 0 and c′ �= 0 we could change the columns of A′). We begin with

the following observation. Assume that c′

d′ is not rational. Since P2(Λ) is a nontrivial
discrete, additive subgroup of R, hence a lattice, there exists s ∈ R\{0} such that
P2(Λ) = sZ. Thus c′ = sm and d′ = sn for some m,n ∈ Z, a contradiction. This

implies that the quotient c′

d′ is rational. Setting c′

d′ = k
l , k, l ∈ Z with gcd(k, l) = 1,

and factoring out d′

l , without loss of generality we can assume that A′ is of the form

A′ = r

[
a′ b′

c′ d′

]
,

with a′, b′, r ∈ R and c′, d′ ∈ Z. Now we proceed as follows. First we set p :=
gcd(c′, d′) > 0. We then obtain

A′

[
±d′

p

∓ c′

p

]
=

[
± r det(A′)

p

0

]
∈ Λ,

since c′

p ,
d′

p ∈ Z. Hence we can define a by a :=
∣∣∣ r det(A′)

p

∣∣∣ > 0.

In a second step we compute b and d. Since c′

p and d′

p are relative prime, there

exist m,n ∈ Z such that c′

p m+ d′

p n = 1 (see [22, Theorem 4.4]). Hence c′m+ d′n = p
and we obtain

A′
[
m
n

]
=

[
r(a′m + b′n)

rp

]
∈ Λ.

Now let k ∈ Z be chosen in such a way that 0 ≤ r(a′m + b′n) + ka < a and define
b := ka + r(a′m + b′n) and d := rp. Without loss of generality we can assume that
d > 0, since otherwise we just take −m and −n instead of m and n. Then[

b
d

]
=

[
r(a′m + b′n)

rp

]
+ k

[
a
0

]
∈ Λ

and |ad| = | r det(A′)
p |rp = |r2 det(A′)|. This proves that A generates Λ and is in

Hermite normal form.
At last we prove that the matrix in condition (ii) is uniquely determined. For this,

assume there exist a, b, d, a′, b′, d′ ∈ R with a, a′, d, d′ > 0, 0 ≤ b < a, and 0 ≤ b′ < a′

such that

Λ = AZ
2 = A′

Z
2,(2.1)

where

A =

[
a b
0 d

]
and A′ =

[
a′ b′

0 d′

]
.

By (2.1), there exist m,n ∈ Z with a′ = ma + nb and 0 = nd, which implies that
a′ = ma. Again by (2.1), we can find k, l ∈ Z such that b′ = ka+ lb and d′ = ld. Since
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vol(Λ) = |ad| = |a′d′|, we obtain |ml| = 1. Now a, a′, d, d′ > 0 implies that a = a′,
d = d′, and l = 1. Finally, applying this to b′ = ka+ lb and using that 0 ≤ b < a and
0 ≤ b′ < a′ yields b = b′. Thus, we have shown that A = A′, which completes the
proof.

In the following, we restrict our attention to lattices which possess a generator
matrix in Hermite normal form. All results in the situation L2(R) could be derived
(in the same manner, but with much more technical effort) for general lattices, but
with little or no practical benefit.

Definition 2.2. Let Λ be a lattice in R
2 which satisfies the conditions of Lemma

2.1. Then the uniquely determined generator matrix A of Lemma 2.1 is called the
canonical generator matrix for Λ.

Now let Λ be a lattice with vol(Λ) = 1
2 which possesses a generator matrix in

Hermite normal form. Using the definition of a canonical generator matrix, we define
a Wilson system associated with Λ as follows.

Definition 2.3. If G(g,Λ) ⊆ L2(R) is a Gabor system of redundancy 2 and

A =

[
a b
0 d

]

is the canonical generator matrix for the lattice Λ, then the associated Wilson system
W(g,Λ, L2(R)) = {ψΛ

m,n}m∈Z,n≥0 consists of the functions

ψΛ
m,0 = g2ma,0 if n = 0,

ψΛ
m,n = 1√

2
e−πibdn2

(gma+nb,nd + gma−nb,−nd) if n �= 0, m + n even,

ψΛ
m,n = i√

2
e−πibdn2

(gma+nb,nd − gma−nb,−nd) if n �= 0, m + n odd.

If the system W(g,Λ, L2(R)) is an orthonormal basis for L2(R) we call it a Wilson
(orthonormal) basis.

We will see that this definition reduces to the usual definition of Wilson systems.
For this, we consider the rectangular lattice

Γ = {(m2 , n)}m,n∈Z.

It is an easy calculation to show that the canonical generator matrix for Γ is

A =

[
1
2 0
0 1

]
.

Thus, for each g ∈ L2(R), the Wilson system W(g,Γ, L2(R)) consists indeed of the
functions

ψΓ
m,0 = gm,0 if n = 0,

ψΓ
m,n = 1√

2
(gm/2,n + gm/2,−n) if m + n is even,

ψΓ
m,n = i√

2
(gm/2,n − gm/2,−n) if m + n is odd,

which coincides with the usual definition of Wilson systems; cf., for instance, [18,
Definition 8.5.1]. Notice that we will fix the notation Γ for the remainder.

We will make use of the following well-known theorem about a Wilson system for
rectangular lattices to constitute an orthonormal basis (e.g., cf. [3, Theorem 4.1]).

Theorem 2.4. Suppose that g ∈ L2(R) is such that
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(i) ĝ is real-valued and
(ii) {gm/2,n}m,n∈Z is a tight Gabor frame for L2(R) with frame bound 2.

Then the system W(g,Γ, L2(R)) is a Wilson orthonormal basis for L2(R).
We are now ready to extend the construction of Wilson bases for time-frequency

lattices which possess a generator matrix in Hermite normal form.
Theorem 2.5. Let Λ be a lattice in R

2 with vol(Λ) = 1
2 and canonical generator

matrix

A =

[
a b
0 d

]
.

Define U by

U := D1/d ◦ F ◦ N−b/d ◦ F−1.(2.2)

Let g ∈ L2(R) be such that

(i) Ûg is real-valued and
(ii) {gma+nb,nd}m,n∈Z is a tight frame for L2(R) with frame bound 2.

Then the system W(g,Λ, L2(R)) is a Wilson orthonormal basis for L2(R).
Proof. We will reduce our claim to Theorem 2.4 by using a metaplectic transform.

We define A by

A =

[
d −b
0 2a

]
.

Then, for all m,n ∈ Z, we have

A(ma + nb, nd) =
(

1
2m,n

)
.(2.3)

Since A ∈ Sp(2,R), we can apply [15, Theorem 4.51] and write

A = Bd(−J )Cb/dJ .

By [18, Example 9.4.1] we obtain

ρ(x, y, 1)g = U−1ρ(A(x, y), 1)(Ug),(2.4)

with U defined in (2.2). Using (1.1), (2.3), and (2.4), we compute

gma+nb,nd = eπi(ma+nb)ndρ(ma + nb, nd, 1)g

= eπi(ma+nb)ndU−1ρ(A(ma + nb, nd), 1)(Ug)

= eπi(ma+nb)ndU−1ρ( 1
2m,n, 1)(Ug).

Using (1.1) again, we obtain

gma+nb,nd = eπi(ma+nb)nde−πi 1
2mnU−1(Ug)m

2 ,n = eπibdn
2

U−1(Ug)m
2 ,n.(2.5)

Since multiplication by a phase factor and applying a unitary operator to a tight
frame preserves tightness (and frame bounds), it follows that condition (ii) is equiv-
alent to {(Ug)m/2,n}m,n∈Z being a tight frame with frame bound 2. We need not

deal with condition (i), since this states already that Ûg is real-valued. Applying
Theorem 2.4 yields that the Wilson system W(Ug,Γ, L2(R)) is an orthonormal basis.
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Using now the metaplectic transform, i.e., (2.5), and the fact that U is a unitary
operator, finishes the proof.

We will conclude this section by providing an example which shows how we can
compute a Wilson basis with excellent time-frequency localization for a special lattice,
but this calculation can also be done for an arbitrary lattice.

Here we consider the hexagonal lattice ΛH with generator matrix

AH =

⎡
⎣

√
2

4√3

√
2

2 4√3

0
4√3√
2

⎤
⎦ .

This lattice was also used in [31]. Observe that since we have 0 ≤
√

2
2 4√3

<
√

2
4√3

, the

matrix AH is already the canonical generator matrix for ΛH . First we define the
function h ∈ L2(R) by

h(x) = (2ν)
1
4 e−νπx2

.

By [18, Theorem 7.5.3], the set {hm/2,n}m,n∈Z is a frame for L2(R). Let S denote its
frame operator and consider the function ϕ ∈ L2(R) given by

ϕ =
√

2F ◦ S− 1
2h.(2.6)

Using [3, Theorem 4.6], this function coincides with the function considered in [9,
section 4]. There it was shown that ϕ satisfies conditions (i) and (ii) of Theorem 2.4
and hence yields a Wilson basis in the sense of Theorem 2.4. Moreover, ϕ has expo-
nential decay in time and frequency. To obtain a generating function for a Wilson
basis with respect to ΛH in the sense of Theorem 2.5, first observe that by the proof
of Theorem 2.5, we only need to compute the function g = U−1ϕ, where U is defined
in (2.2). Then g automatically satisfies conditions (i) and (ii) of Theorem 2.5, and
hence the system W(g,AH , L2(R)) is a Wilson orthonormal basis by Theorem 2.5.
Thus we define g ∈ L2(R) by

g = F ◦ N 1√
3
◦ F−1 ◦ D 4√

3√
2

ϕ =
√

2F ◦ N 1√
3
◦ D √

2
4√

3

◦ S− 1
2h.

Let us mention that the function g has exponential decay in time and frequency.
Thus we obtain a Wilson basis with respect to the lattice Λ with very good time-
frequency localization. As already mentioned above, this procedure can be applied
to an arbitrary lattice, hence we obtain a Wilson basis with excellent time-frequency
localization for any lattice.

3. Wilson bases for general lattices—the discrete case. In this section
we analyze the construction of Wilson bases for general time-frequency lattices for
functions defined on �2(Z). The reasons for considering the setting �2(Z) are that,
on the one hand, several applications such as filter bank design in digital signal pro-
cessing deal directly with a discrete setting [6] and, on the other hand, even those
problems that arise in the “continuous” setting of L2(R) require a discrete model for
their numerical treatment. Thus, with these practical aspects in mind, throughout
this section we naturally consider only lattices whose generator matrices have rational
entries, since any implementation is intrinsically restricted to such “rationally” gen-
erated lattices. Another natural setting for numerical implementations is of course
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C
L (which can be identified with the space of L-periodic sequences). We will analyze

that case in the next section.
Before we proceed we define Gabor systems and Wilson systems on �2(Z) for

general time-frequency lattices Λ with vol(Λ) = 1
2 . First we prove that each lattice

possesses a generator matrix of some particular form.
Lemma 3.1. Let Λ be a lattice in Z × R with generator matrix A given by

A =

[
a b
c d

]
with a, b ∈ Z, c, d ∈ Q, and det(A) =

1

2
,

and denote c = p
q , d = p′

q′ with gcd(p, q) = gcd(p′, q′) = 1, p, q, p′, q′ ∈ Z. Then Λ
possesses a uniquely determined generator matrix of the form

A′ =

[
N
2 b′

0 1
N

]
,(3.1)

where N = qq′

gcd(pq′,p′q) and b′ ∈ Z, 0 ≤ b′ < N
2 .

Proof. We assume that c �= 0, otherwise (3.1) is automatically satisfied. We first
show that A can be written as

A =

[
a b
r
N

s
N

]
,(3.2)

with integers r, s,N , such that gcd(r, s) = 1.

Let c = p
q , d = p′

q′ with p, p′, q, q′ ∈ Z, denote N ′ := qq′, c̃ := pq′, d̃ := p′q, and

write z = gcd(c̃, d̃). Since a, b, c̃, d̃ ∈ Z and since

vol(Λ) =
1

2
⇒ ad̃− bc̃ =

N ′

2
,

it follows that N ′

2 ∈ Z. A necessary and sufficient condition for the equation ad̃−bc̃ =
N ′

2 to have an integer solution in a and b is that gcd(c̃, d̃)|N ′

2 (see [22, Theorem 8.1]),

hence z|N ′

2 . Denote z′ := N ′

2z , r := c̃
z , s := d̃

z . Then c = r
2z′ , d = s

2z′ with z′ ∈ Z, and
gcd(r, s) = 1. By a proper choice of the signs of c and d we can always assume that z′

is positive. By writing N := 2z′ ∈ Z we see that A can indeed be written as in (3.2).
Now, assuming that A is of the form (3.2), we compute[

a b
c d

] [
Nd
−Nc

]
=

[
N(ad− bc)

0

]
=

[
N
2
0

]
.

Since gcd(r, s) = 1 there exist integers m,n with mr+ns = 1. For such a pair (m,n)
we denote b′ = am + bn and obtain[

a b
c d

] [
m
n

]
=

[
am + bn
r
Nm + s

N n

]
=

[
b′
1
N

]
.

If b′ < 0 or b′ ≥ N
2 , we substitute the vector obtained by

[
b′
1
N

]
+ k

[
N
2
0

]
=

[
b′ + kN

2
1
N

]
,
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where k ∈ Z is chosen in such a way that 0 ≤ b′ + kN
2 < N

2 . Consequently the matrix[
N
2 b′

0 1
N

]
(3.3)

generates the lattice Λ. Finally, since N
2 and b′ are integers and 0 ≤ b′ < N

2 , the
generator matrix in (3.3) is indeed of the form (3.1).

The fact that this is a unique representation follows immediately from the condi-
tion 0 ≤ b′ < N

2 .
Definition 3.2. Let Λ be a lattice in Z × R. Then the uniquely determined

matrix A′ of Lemma 3.1 is called the canonical generator matrix for Λ.
In the following we will regard such a lattice as being in Z × T by considering

Λ = {N
2 m + bn, e2πi n

N }m∈Z,n=0,... ,N−1. This is a very natural approach since, for all
k ∈ Z, we have

(N2 m + bn, 1
N n + k) = (N2 (m− 2bk) + b(n + kN), 1

N (n + kN)).

Hence the lattice A′
Z

2 is invariant under adding integers to the second component.
Moreover, it is sufficient to restrict to the index set Z × {0, . . . , N − 1} since, for all
0 ≤ n′ < N and k ∈ Z,

(N2 m + b(n′ + kN), (n′ + kN) mod N) = (N2 (m + 2bk) + bn′, n′),

which implies

{(N2 m + bn, n mod N)}m,n∈Z = {(N2 m + bn, n)}m∈Z,n=0,... ,N−1

in the sense of sets.
Using the definition of canonical generator matrices we can now define Gabor

systems for �2(Z).
Definition 3.3. Let Λ be a lattice in Z × T with canonical generator matrix A

given by

A =

[
N
2 b
0 1

N

]
,

and let g ∈ �2(Z). Then the associated Gabor system {gmN
2 +nb,n 1

N
}m∈Z,n=0,...,N−1 is

given by

gmN
2 +nb,n 1

N
(l) = g(l − (mN

2 + nb))e
2πiln

N , l ∈ Z.

We first give the definition of a Wilson basis associated with a lattice with diagonal
canonical generator matrix, i.e., with b = 0 (in this special case the definition coincides
with the one given in [5]).

Definition 3.4. Let Λ be a lattice in Z × T with canonical generator matrix A
given by

A =

[
N
2 0
0 1

N

]
,

and let g ∈ �2(Z). Then the Wilson system W(g,Λ, �2(Z)) = {ψm,n}m∈Z,n=0,... ,N2
is

given by

ψΛ
m,n = gmN,n 1

N
if m ∈ Z, n = 0, N

2 ,
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and for m ∈ Z, n = 1, . . . , N
2 − 1,

ψΛ
m,n = 1√

2
(gmN

2 ,n 1
N

+ gmN
2 ,−n 1

N
) if m + n is even,

ψΛ
m,n = i√

2
(gmN

2 ,n 1
N
− gmN

2 ,−n 1
N

) if m + n is odd.

The Zak transform, which can be defined for any locally compact abelian group
(cf. [26]), will be employed to prove equivalent conditions for the Wilson system to
form an orthonormal basis. In particular, we need the Zak transform on T with
respect to the uniform lattice K = {e2πi 2k

N : k = 0, . . . , N
2 − 1} in T, which is defined

on the set of square-integrable functions on {e2πit : t ∈ [0, 2
N )} × {0, . . . , N

2 − 1} by

Zf(e2πit, y) =

N
2 −1∑
k=0

f(e2πi(t+ 2k
N ))e2πi 2k

N y.

The proof of the following proposition is inspired by the proof of [9, Proposition
5.2].

Proposition 3.5. Let g ∈ �2(Z) be such that ĝ is real-valued and consider the
lattice Λ with canonical generator matrix given by

[
N
2 0
0 1

N

]
.

Then the following conditions are equivalent.

(i) {gmN
2 ,n 1

N
}m∈Z,n=0,...,N−1 is a tight frame for �2(Z) with frame bound 2.

(ii) We have |Zĝ(e2πit, y)|2 + |Zĝ(e2πi(t+ 1
N ), y)|2 = N a.e.

(iii) For all j ∈ {0, . . . , N−1}, we have
∑N−1

l=0 ĝ(e2πi(t+ l
N ))ĝ(e2πi(t+ l+2j

N )) = Nδj,0
a.e.

(iv) W(g,Λ, �2(Z)) is an orthonormal basis for �2(Z).

Proof. Throughout this proof we choose the normalized Haar measure on T, i.e.,

m(E) =
∫ 1

0
1E(e2πit)dt, for all measurable E ⊆ T and the counting measure on its

dual group T̂ = Z. This choice ensures that the Plancherel formula for T holds.

Since we will mainly work in the Fourier domain, we first need to compute the
Fourier transform of the elements of the Gabor system for the following calculations:

̂gmN
2 ,n 1

N
(e2πit) =

∑
l∈Z

e2πi n
N lg(e2πi(l−mN

2 ))e−2πilt

= e2πimn
2 e−2πitmN

2

∑
l∈Z

g(e2πil)e−2πil(t− n
N )

= (−1)mnĝn 1
N ,−mN

2
(e2πit).

(i) ⇔ (ii): Since the Fourier transform is a unitary operator, the Gabor system
{gmN

2 , 1
N n}m∈Z,n=0,...,N−1 is a tight frame for �2(Z) with frame bound 2 if and only

if the Gabor system {ĝn 1
N ,mN

2
}m∈Z,n=0,...,N−1 is a tight frame for L2(T) with frame

bound 2. Then we write this set as the disjoint union {ĝn 2
N ,mN

2
}m∈Z,n=0,...,N2 −1 ∪

{(T− 1
N
ĝ)n 2

N ,mN
2
}m∈Z,n=0,...,N2 −1 =: G1 ∪ G2, and let Si denote the frame operator

for Gi, i = 1, 2.
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First we compute the frame operator S1. For all f ∈ L2(T), using the Poisson

summation formula [16, Theorem 4.42] applied to H = {e2πik 2
N : k = 0, . . . , N

2 − 1},
we obtain

S1f(e2πit) =
∑
m∈Z

N
2 −1∑
n=0

〈
f, ĝn 2

N ,mN
2

〉
ĝn 2

N ,mN
2
(e2πit)

=
∑
m∈Z

N
2 −1∑
n=0

∫ 1

0

f(e2πis)ĝ(e2πi(s−n 2
N ))e−2πimN

2 sds ĝ(e2πi(t−n 2
N ))e2πimN

2 t

=

N
2 −1∑
n=0

[∑
m∈Z

̂(fTn 2
N
ĝ)(mN

2 )e2πimN
2 t

]
ĝ(e2πi(t−n 2

N ))

=

N
2 −1∑
n=0

2
N

N
2 −1∑
k=0

(fTn 2
N
ĝ)(e2πi(t+k 2

N ))ĝ(e2πi(t−n 2
N )).

Applying now the Zak transform yields

Z(S1f)(e2πit, y) =

N
2 −1∑
l=0

2
N

N
2 −1∑

n,k=0

f(e2πi(t+ 2k+2l
N ))ĝ(e2πi(t+ 2k+2l−2n

N ))ĝ(e2πi(t+ 2l−2n
N ))e2πi 2l

N y

= 2
N

N
2 −1∑

l,n,k=0

f(e2πi(t+ 2l+2n
N ))ĝ(e2πi(t+ 2l

N ))ĝ(e2πi(t+ 2l−2k
N ))e2πi

2(l−k+n)
N y

= 2
N

N
2 −1∑
l=0

ĝ(e2πi(t+ 2l
N ))

⎡
⎣N

2 −1∑
k=0

ĝ(e2πi(t+ 2l−2k
N ))e−2πi 2k

N y

⎤
⎦

·

⎡
⎣N

2 −1∑
n=0

f(e2πi(t+ 2n+2l
N ))e2πi 2n

N y

⎤
⎦ e2πi 2l

N y

= 2
NZ(ĝ)(e2πit, y)Z(ĝ)(e2πit, y)Z(f)(e2πit, y).

To compute the Zak transform of S2, we can use the previous calculation, which
yields

Z(S2f)(e2πit, y) = 2
NZ(f)(e2πit, y)|Z(T− 1

N
ĝ)(e2πit, y)|2

= 2
NZ(f)(e2πit, y)|Z(ĝ)(e2πi(t+ 1

N ), y)|2,

since

Z(T− 1
N
ĝ)(e2πit, y) =

N
2 −1∑
k=0

ĝ(e2πi(t+ 2k
N + 1

N ))e2πi 2k
N y = Z(ĝ)(e2πi(t+ 1

N ), y).

Hence (i) is equivalent to

2Z(f)(e2πit, y) = Z((S1 + S2)f)(e2πit, y)

= 2
NZ(f)(e2πit, y)

[
|Z(ĝ)(e2πit, y)|2 + |Z(ĝ)(e2πi(t+ 1

N ), y)|2
]

a.e.,
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which holds if and only if (ii) is satisfied.
(ii) ⇔ (iii): The following properties of the Zak transform will be exploited several

times. The reconstruction formula

N
2 −1∑
y=0

Zf(e2πit, y) =

N
2 −1∑
k=0

f(e2πi(t+ 2k
N ))

N
2 −1∑
y=0

e2πi 2k
N y = N

2 f(e2πit)

holds a.e., since
∑N

2 −1
y=0 e2πi 2k

N y �= 0 if and only if k = 0 by [21, Lemma 23.29] and, if

k = 0, then
∑N

2 −1
y=0 e2πi 2k

N y = N
2 . Moreover, we will use that

Zĝ(e2πi(t+ 2l
N ), y) =

N
2 −1∑
k=0

f(e2πi(t+ 2k+2l
N ))e2πi 2k

N y = e−2πi 2l
N yZĝ(e2πit, y).

The idea is to write the equation in (iii) in terms of the Zak transform. Using the
fact that ĝ is real-valued, we compute

N−1∑
l=0

ĝ(e2πi(t+ l
N ))ĝ(e2πi(t+ l+2j

N ))

=
4

N2

N−1∑
l=0

N
2 −1∑
x=0

Zĝ(e2πi(t+ l
N ), x)

N
2 −1∑
y=0

Zĝ(e2πi(t+ l+2j
N ), y)

=
4

N2

N
2 −1∑

k,x,y=0

[
Zĝ(e2πi(t+ 2k

N ), x)Zĝ(e2πi(t+ 2k+2j
N ), y)

+Zĝ(e2πi(t+ 2k+1
N ), x)Zĝ(e2πi(t+ 2k+2j+1

N ), y)
]

=
4

N2

N
2 −1∑

x,y=0

⎡
⎣N

2 −1∑
k=0

e−2πi 2k
N (x−y)

⎤
⎦ e2πi 2j

N y
[
Zĝ(e2πit, x)Zĝ(e2πit, y)

+Zĝ(e2πi(t+ 1
N ), x)Zĝ(e2πi(t+ 1

N ), y)
]

=
2

N

N
2 −1∑
x=0

[
|Zĝ(e2πit, x)|2 + |Zĝ(e2πi(t+ 1

N ), x)|2
]
e2πi 2j

N x

=
2

N

[
|Zĝ(e2πit, ·)|2 + |Zĝ(e2πi(t+ 1

N ), ·)|2
]∨

(j),

where the inverse Fourier transform is taken in ZN/2. This shows that (iii) is equivalent
to

2

N

[
|Zĝ(e2πit, ·)|2 + |Zĝ(e2πi(t+ 1

N ), ·)|2
]∨

(j) = Nδj,0.(3.4)

If (ii) holds, then

2

N

[
|Zĝ(e2πit, ·)|2 + |Zĝ(e2πi(t+ 1

N ), ·)|2
]∨

(j) =
2

N
N

N
2 −1∑
x=0

e2πi 2j
N x = Nδj,0,
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which is (3.4). On the other hand, the inverse Fourier transform is injective. This
proves that (3.4) holds if and only if (ii) is true and thus (ii) ⇔ (iii).

(iii) ⇔ (iv): First we remark that W(g,Λ, �2(Z)) is an orthonormal basis if and
only if the set

Ψ := {TnNfm : m = 1, . . . , N, n ∈ Z},

where

f1(x) = g(x),

fN (x) = g0,N2
(x),

f2l+k(x) =
(−1)kl√

2
(gkN

2 , l
N

+ (−1)k+lgkN
2 ,− l

N
), l = 1, . . . , N

2 − 1, k = 0, 1,

is an orthonormal basis, since these elements differ from the elements in W(g,Λ, �2(Z))
only by factors of absolute value 1. Next, notice that to prove (iv) it is sufficient and
necessary that

‖TnNfm‖2 = 1, m = 1, . . . , L, n ∈ Z(3.5)

and

L∑
m=1

∑
n∈Z

〈h1, TnNfm〉 〈TnNfm, h2〉 = 〈h1, h2〉 for all h1, h2 ∈ �2(Z).(3.6)

We start by dealing with (3.5). Using the Plancherel theorem, we compute

1 = ‖TnNf1‖2
2 = ‖ĝ‖2

2 =

∫ 1

0

ĝ(e2πit)ĝ(e2πit)dt,

1 = ‖TnNfN‖2
2 = ‖ĝN

2 ,0‖2 =

∫ 1

0

ĝ(e2πit)ĝ(e2πit)dt,

and, for m = 2, . . . , N − 1,

1 = ‖TnNfm‖2
2

= ‖ 1√
2
(ĝ l

N ,−kN
2

+ (−1)k+lĝ− l
N ,−kN

2
)‖2

2

=
1

2

∫ 1

0

|e−2πi kN
2 t|2|ĝ(e2πi(t− l

N )) + (−1)k+lĝ(e2πi(t+ l
N ))|2dt

=
1

2

∫ 1

0

[
|ĝ(e2πi(t− l

N ))|2 + |ĝ(e2πi(t+ l
N ))|2 + (−1)k+lĝ(e2πi(t− l

N ))ĝ(e2πi(t+ l
N ))

+(−1)k+lĝ(e2πi(t− l
N ))ĝ(e2πi(t+ l

N ))
]
dt.

Since ĝ is real-valued, we can continue the last computation and obtain that

1 = ‖TnNfm‖2
2 = ‖ĝ‖2

2 + (−1)k+l

∫ 1

0

ĝ(e2πit)ĝ(e2πi(t+ 2l
N ))dt.
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Combining the above computations, we have proved that (3.5) holds if and only if∫ 1

0

ĝ(e2πit)ĝ(e2πi(t+ 2j
N ))dt = δj,0 for all j ∈ {0, . . . , N − 1}.(3.7)

Now we turn to the study of condition (3.6). Using the Plancherel formula and

the Poisson summation formula [16, Theorem 4.42] applied to H = {e2πi k
N : k =

0, . . . , N − 1}, we obtain

N∑
m=1

∑
n∈Z

〈h1, TnNfm〉 〈TnNfm, h2〉

=

N∑
m=1

∑
n∈Z

〈
ĥ1, T̂nNfm

〉〈
T̂nNfm, ĥ2

〉

=

N∑
m=1

∑
n∈Z

∫ 1

0

(ĥ1f̂m)(e2πit)

∫ 1

0

(f̂mĥ2)(e
2πis)e−2πisNnds e2πitNndt

=

N∑
m=1

∫ 1

0

(ĥ1f̂m)(e2πit)

[∑
n∈Z

(f̂mĥ2)̂(Nn)e2πitNn

]
dt

=

N∑
m=1

∫ 1

0

(ĥ1f̂m)(e2πit) 1
N

N−1∑
r=0

(f̂mĥ2)(e
2πi(t+ r

N )) dt,

which equals 〈h1, h2〉 if and only if

N∑
m=1

f̂m(e2πit)f̂m(e2πi(t+ r
N )) = Nδr,0 for all r ∈ {0, . . . , N − 1}.(3.8)

Setting L := {−N
2 + 1, . . . ,−1, 1, . . . , N

2 − 1}, we compute

N∑
m=1

f̂m(e2πit)f̂m(e2πi(t+ r
N ))

= ĝ(e2πit)ĝ(e2πi(t+ r
N )) + ĝN

2 ,0(e
2πit)ĝN

2 ,0(e
2πi(t+ r

N )) +
1

2

N
2 −1∑
l=1

1∑
k=0

[ĝ l
N ,−kN

2
(e2πit)

+(−1)k+lĝ− l
N ,−kN

2
(e2πit)][ĝ l

N ,−kN
2
(e2πi(t+ r

N )) + (−1)k+lĝ− l
N ,−kN

2
(e2πi(t+ r

N ))]

= ĝ(e2πit)ĝ(e2πi(t+ r
N )) + ĝ(e2πi(t−N

2 ))ĝ(e2πi(t+ r
N −N

2 ))

+
1

2

N
2 −1∑
l=1

1∑
k=0

e−2πikN
2

r
N [ĝ(e2πi(t− l

N ))

+(−1)k+lĝ(e2πi(t+ l
N ))][ĝ(e2πi(t− l

N + r
N )) + (−1)k+lĝ(e2πi(t+ l

N + r
N ))]

= ĝ(e2πit)ĝ(e2πi(t+ r
N )) + ĝ(e2πi(t−N

2 ))ĝ(e2πi(t+ r
N −N

2 ))

+
1

2

N
2 −1∑
l=1

1∑
k=0

(−1)kr[ĝ(e2πi(t− l
N ))ĝ(e2πi(t− l

N + r
N )) + ĝ(e2πi(t+ l

N ))ĝ(e2πi(t+ l
N + r

N ))

+(−1)k+l(e2πi(t− l
N ))ĝ(e2πi(t+ l

N + r
N )) + ĝ(e2πi(t+ l

N ))ĝ(e2πi(t− l
N + r

N )))]
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= ĝ(e2πit)ĝ(e2πi(t+ r
N )) +

∑
l∈L

ĝ(e2πi(t+ l
N ))ĝ(e2πi(t+ l

N + r
N ))

[
1 + (−1)r

2

]

+
∑
l∈L

(−1)lĝ(e2πi(t+ l
N ))ĝ(e2πi(t− l

N + r
N ))

[
1 + (−1)r+1

2

]

+ĝ(e2πi(t−N
2 ))ĝ(e2πi(t+ r

N −N
2 )).

If r is even, i.e., r = 2j, we obtain

N∑
m=1

f̂m(e2πit)f̂m(e2πi(t+ r
N )) =

N−1∑
l=0

ĝ(e2πi(t+ l
N ))ĝ(e2πi(t+ l

N + 2j
N )),

and if r is odd, i.e., r = 2j + 1, we obtain

N∑
m=1

f̂m(e2πit)f̂m(e2πi(t+ r
N ))

= ĝ(e2πit)ĝ(e2πi(t+ r
N )) + ĝ(e2πi(t−N

2 ))ĝ(e2πi(t+ r
N −N

2 ))

+
∑
l∈L

(−1)lĝ(e2πi(t+ l
N ))ĝ(e2πi(t− l

N + r
N ))

= 0.

This shows that (3.6) holds if and only if

N−1∑
l=0

ĝ(e2πi(t+ l
N ))ĝ(e2πi(t+ l+2j

N )) = Nδj,0.

Moreover, this equation implies equation (3.7), since

∫ 1

0

ĝ(e2πit)ĝ(e2πi(t+ 2j
N ))dt =

∫ 1
N

0

N−1∑
l=0

ĝ(e2πi(t+ l
N ))ĝ(e2πi(t+ l+2j

N ))dt

=

∫ 1
N

0

Nδj,0dt = δj,0.

This shows (iii) ⇔ (iv), and hence the theorem is proved.
Now we will study the case of a general time-frequency lattice.
Proposition 3.6. Let Λ be a lattice in Z × T with vol(Λ) = 1

2 with canonical
generator matrix A given by

A =

[
N
2 b
0 1

N

]
.

Let g ∈ �2(Z), let m0, n0 ∈ Z be chosen such that N
2 m0 + bn0 = gcd(N2 , b) =: c, and

let U be defined on �2(Z) by

Uf(k) = f(k)eπi
n0
cN k2

.

Then

gmN
2 +nb,n 1

N
(l) = C(m,n)U(U−1g)

mN
2 +nb,−m

n0
2c −n

bn0
cN +n 1

N

(l), l ∈ Z,
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where C(m,n) = eπi
n0
cN (mN

2 +nb)2 .
Proof. Let σ ∈ Hom(Z × T) be defined by

σ =

[
IZ 0

− n0

cN IT

]
.

It is easy to check that σ is symplectic on Z × T. In order to apply Theorem 1.1, we
need to compute a second degree character of Z × T associated to ζ = σ∗κ0σ − κ0,
where κ0 is defined by

κ0 =

[
1 1
IZ 0

]
∈ Hom(Z × T,T × Z).

First we note that σ∗(z, n) = (ze2πi(− n0
cN )n, n), since

〈(m, t), σ∗(z, n)〉 = 〈σ(m, t), (z, n)〉 = zm(e2πi(− n0
cN )mt)n =

〈
(m, t), (ze2πi(− n0

cN )n, n)
〉
.

Thus

ζ(n, z) = (σ∗κ0σ − κ0)(n, z) = σ∗κ0(n, e
2πi(− n0

cN )nz) − (1, n) = (e2πi(− n0
cN )n, 0).

The map

ψ : Z × T → T, ψ(m, t) = e−πi
n0
cN m2

is a second degree character associated to ζ as the following calculation shows:

ψ(m, t)ψ(n, z) 〈(m, t), ζ(n, z)〉 = e−πi
n0
cN m2

e−πi
n0
cN n2

e2πi(− n0
cN )mn

= e−πi
n0
cN (m+n)2

= ψ((m, t) + (n, z)).

Next notice that

σ(mN
2 + nb, n 1

N ) = (mN
2 + nb,−mn0

2c − n bn0

cN + n 1
N ).(3.9)

Now we can apply Theorem 1.1, which proves the claim.
Next we define a Wilson basis associated with a lattice with arbitrary canonical

generator matrix. For this, the following mapping will turn out to be very useful.
Lemma 3.7. Let N

2 , b ∈ Z with 0 ≤ b < N
2 , and let m0, n0 ∈ Z be chosen such

that N
2 m0 + bn0 = gcd(N2 , b) =: c. Further, let d := lcm(N2 , b). Then the mapping

ϕ : Z
2 → Z

2 defined by

ϕ(m,n) =

{
(m,n) : b = 0,

(mm0 − 2d
N n,mn0 + d

bn) : b �= 0

is bijective and, for all m ∈ Z, we have

{(m,n mod 2c) : (m,n) ∈ ϕ−1(Z × {0, . . . , N − 1})} = {m} × {0, . . . , 2c− 1}

with

|{n : (m,n) ∈ ϕ−1(Z × {0, . . . , N − 1})}| = 2c.
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Proof. We only need to study the case b �= 0. For this, let (m,n), (m′, n′) ∈ Z
2

be such that ϕ(m,n) = ϕ(m′, n′). Then

N
2 (mm0 − 2d

N n) + b(mn0 + d
bn) = N

2 (m′m0 − 2d
N n′) + b(m′n0 + d

bn
′),

which holds if and only if

m(N2 m0 + bn0) = m′(N2 m0 + bn0),

and hence m = m′. This implies

(− 2d
N n, d

bn) = (− 2d
N n′, d

bn
′),

which yields n = n′. This proves that ϕ is injective.
To show that ϕ is surjective, let (k, l) ∈ Z

2 and consider M := N
2 k + bl. It is well

known that there exists some m ∈ Z with M = mc. Furthermore, we have

{(p, q) ∈ Z
2 : N

2 p + bq = mc} = {(mm0 − 2d
N n,mn0 + d

bn) : n ∈ Z},

since N
2 p+bq = N

2 p
′+bq′ if and only if N

2 (p−p′) = b(q′−q). This yields the existence
of some n ∈ Z with

ϕ(m,n) = (mm0 − 2d
N n,mn0 + d

bn) = (k, l).

Secondly, we will prove the second part of the lemma. First observe that m,n ∈ Z

satisfy

ϕ(m,n) ∈ Z × {0, . . . , N − 1}(3.10)

if and only if they satisfy

− b
dn0m ≤ n ≤ − b

dn0m + b
d (N − 1) = 2c− b

dn0m− b
d .

Hence, for each fixed m ∈ Z, the set of n ∈ Z such that (3.10) is satisfied equals

Sm := {�− b
dn0m�, . . . , �2c− b

dn0m− b
d�}.

To finish the proof we claim that

|Sm| = 2c for all m ∈ Z.(3.11)

For this, fix m ∈ Z and let k ∈ Z and l ∈ {0, . . . , d
b − 1} be such that −n0m = k d

b + l.

Then we obtain �− b
dn0m� = k if l = 0 and otherwise �− b

dn0m� = k + 1. Moreover,
we have

�2c− b
dn0m− b

d� =
⌊
2c + k + l−1

d
b

⌋
,

which equals 2c + k − 1 if l = 0 and otherwise 2c + k. Thus the second part of the
lemma is proved.

Note that the following definition reduces to Definition 3.4 in the case of a diagonal
canonical generator matrix.

Definition 3.8. Let Λ be a lattice in Z × T with canonical generator matrix A
given by

A =

[
N
2 b
0 1

N

]
.
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Let g ∈ �2(Z), and let ϕ be defined as in Lemma 3.7. Then the Wilson system
W(g,Λ, �2(Z)) = {ψm,n}m∈Z,n=0,... ,N2

is given by

ψΛ
m,n = gϕ1(2m,n)N

2 +ϕ2(2m,n)b,ϕ2(2m,n) 1
N

if m ∈ Z, n = 0, N
2 ,

and for m ∈ Z, n = 1, . . . , N
2 − 1,

ψΛ
m,n = 1√

2
(gϕ1(m,n)N

2 +ϕ2(m,n)b,ϕ2(m,n) 1
N

+gϕ1(m,−n)N
2 +ϕ2(m,−n)b,ϕ2(m,−n) 1

N
) if m + n is even,

ψΛ
m,n = i√

2
(gϕ1(m,n)N

2 +ϕ2(m,n)b,ϕ2(m,n) 1
N

−gϕ1(m,−n)N
2 +ϕ2(m,−n)b,ϕ2(m,−n) 1

N
) if m + n is odd.

The following theorem gives an equivalent condition for a Wilson system with
respect to an arbitrary time-frequency lattice to form an orthonormal basis in terms
of a frame condition for the associated Gabor system.

Theorem 3.9. Let Λ be a lattice in Z × T with canonical generator matrix A
given by

A =

[
N
2 b
0 1

N

]
.

Let g ∈ �2(Z) be such that Û−1g is real-valued, let M := 2c, and let U and ϕ be defined
as in Proposition 3.6 and Lemma 3.7, respectively. Then the following conditions are
equivalent.

(i) {gmN
2 +nb,n 1

N
}m∈Z,n=0,...,N−1 is a tight frame for �2(Z) with frame bound 2.

(ii) {(U−1g)mM
2 ,n 1

M
}m∈Z,n=0,...,M−1 is a tight frame for �2(Z) with frame bound

2.
(iii) W(U−1g, M

2 Z × 1
M {0, . . . ,M − 1}, �2(Z)) is an orthonormal basis for �2(Z).

(iv) W(g,Λ, �2(Z)) is an orthonormal basis for �2(Z).
Proof. Let σ be defined as in the proof of Proposition 3.6 and let ϕ = (ϕ1, ϕ2).

Then we compute

σ(ϕ1(m,n)N2 + ϕ2(m,n)b, ϕ2(m,n) 1
N )

= (ϕ1(m,n)N2 + ϕ2(m,n)b,−ϕ1(m,n)n0

2c − ϕ2(m,n) bn0

cN + ϕ2(m,n) 1
N )

= (m(N2 m0 + bn0) + n(− 2d
N

N
2 + d

b b),m(−n0

2cm0 − bn0

cN n0 + 1
N n0)

+n( 2d
N

n0

2c − d
b
bn0

cN + d
b

1
N ))

= (mc,mn0(
1
N − 1

cN (N2 m0 + bn0)) + n d
bN )

= (mM
2 , n 1

M ),

where in the last step we used cd = N
2 b. Using Lemma 3.7, the equivalence of (i)

and (ii) now follows immediately from Proposition 3.6 and (3.9), since U is unitary
and |C(m,n)| = 1. Proposition 3.5 proves (ii) ⇔ (iii). Therefore it remains to prove
the equivalence of (iii) and (iv). For this, we will use the following implication of
Proposition 3.6:

U(U−1g)mM
2 ,n 1

M
= U(U−1g)σ(ϕ1(m,n)N

2 +ϕ2(m,n)b,ϕ2(m,n) 1
N )

= C(ϕ(m,n))−1gϕ1(m,n)N
2 +ϕ2(m,n)b,ϕ2(m,n) 1

N
.
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Further, notice that C(ϕ(m,n))−1 does not depend on the sign of n, since

C(ϕ(m,n))−1 = e−πi
n0
cN (ϕ1(m,n)N

2 +ϕ2(m,n)b)2 = e−πi
n0
cN m2(m0

N
2 +n0b)

2

= e−πi
n0
N m2c2 .

The definition of a Wilson basis, the fact that U is a unitary operator, and the fact
that |C(ϕ(m,n))| = 1 yields the result.

4. Wilson bases for general lattices—the finite case. The space C
L has

several advantages over �2(Z) when constructing numerical methods for practical time-
frequency analysis, which often allow a further acceleration of numerical algorithms;
e.g., see [1, 29, 32].

Before defining Gabor systems and Wilson systems for C
L for general time-

frequency lattices, we first prove that each such lattice not only possesses a uniquely
determined generator matrix in Hermite normal form (which was already proved in
[20]), but in our situation this matrix attains a special form.

Lemma 4.1. Let Λ be a lattice in ZL × ZL with generator matrix A given by

A =

[
a b
c d

]
with a, b, c, d ∈ N, and det(A) =

L

2
,

and denote p = gcd(c, d) if c �= 0 and p = d if c = 0. Then Λ possesses a uniquely
determined generator matrix of the form

A′ =

[
L
2p b′

0 p

]
,(4.1)

where p = gcd(c, d) and 0 ≤ b′ < L
2p .

Proof. Let p = gcd(c, d) with c = qp, d = rp and note that p|L2 since det(A) =

ad− bc = (ar − bq)p = L
2 . Since d

p = r and −c
p = −q, we have

A

[
r
−q

]
=

[
L
2p

0

]
.(4.2)

Furthermore, we claim that there exists a z ∈ Z with 0 ≤ z < L
2p such that the point

[ zp ] belongs to Λ. This can be seen as follows: The condition [ zp ] ∈ Λ is equivalent to
the existence of m,n ∈ Z such that[

a b
c d

] [
m
n

]
=

[
z
p

]
.(4.3)

Consider the equation cm+dn = p and substitute c = qp, d = rp, then qpm+rpn = p,
hence qm + rn = 1. Since r and q are relative prime, there exist m,n ∈ Z such that
qm + rn = 1 (see, e.g., [22, Theorem 4.4]). Thus (4.3) holds for z ∈ Z, but we still
have to show that it holds under the condition 0 ≤ z < L

2p . We can write z = b′ +k L
2p

with 0 ≤ b′ < L
2p and k ∈ Z. Hence[

z
p

]
=

[
b′

p

]
+ k

[
L
2p

0

]
.

Since [
L
2p

0
] = A[ r

−q ] by (4.2), it follows that [ b
′

p ] ∈ Λ. Consequently the matrix

A′ =

[
L
2p b′

0 p

]
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(which satisfies det(A′) = L
2 ) generates Λ.

The fact that this matrix is uniquely determined is an immediate consequence
from the condition 0 ≤ b′ < L

2p .
Definition 4.2. Let Λ be a lattice in ZL × ZL. Then the uniquely determined

matrix A′ of Lemma 4.1 is called the canonical generator matrix for Λ.
Using the notion of a canonical generator matrix, we first give the definition of a

Gabor system.
Definition 4.3. Let Λ be a lattice in ZL × ZL with canonical generator matrix

A given by

A =

[
L
2p b

0 p

]
.

Set M = 2p,N = L
p and let g be some L-periodic function on Z. Then the associated

Gabor system is given by {gma+nb,nd}m=0,...,M−1,n=0,...,N−1, where

gma+nb,nd(l) = g(l − (ma + nb))e2πilnd/L, l = 0, . . . , L− 1.

Next we define a Wilson basis associated with a lattice with diagonal canonical
generator matrix in the following way.

Definition 4.4. Let Λ be a lattice in ZL × ZL with canonical generator matrix
A given by

A =

[
L
2p 0

0 p

]

and let g be some L-periodic function on Z. Then the Wilson system W(g,Λ,CL) =
{ψm,n}(m,n)∈I , where I = {0, . . . , p− 1}×{0, L

2p}∪ {0, . . . , 2p− 1}×{1, . . . , L
2p − 1},

is given by

ψΛ
m,n = gmL

p ,np if m = 0, . . . , p− 1, n = 0, L
2p ,

and for m = 0, . . . , 2p− 1, n = 1, . . . , L
2p − 1,

ψΛ
m,n = 1√

2
(gm L

2p ,np
+ gm L

2p ,−np) if m + n is even,

ψΛ
m,n = i√

2
(gm L

2p ,np
− gm L

2p ,−np) if m + n is odd.

Also in the finite case we will employ the Zak transform. This time we will use
the Zak transform on the group ZL with respect to the uniform lattice K = {2pk :
k = 0, . . . , L

2p − 1} in ZL, which is defined on the set of square-integrable functions

on the set {0, . . . , 2p− 1} × {0, . . . , L
2p − 1} by

Zf(x, y) =

L
2p−1∑
k=0

f(x + 2pk)e2πi 2pk
L y,

where we associate ZL with {0, . . . , L− 1}.
The following proposition is the analogue to Proposition 3.5 for the space C

L.
Proposition 4.5. Let g be some L–periodic function on Z such that ĝ is real-

valued and consider the lattice Λ with canonical generator matrix given by[
L
2p 0

0 p

]
.

Then the following conditions are equivalent.
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(i) {gm L
2p ,np

}m=0,... ,2p−1,n=0,...,Lp −1 is a tight frame for C
L with frame bound 2.

(ii) We have |Zĝ(x, y)|2 + |Zĝ(x + p, y)|2 = 1
p a.e.

(iii) For all j = 0, . . . , L
2p−1 and y ∈ ZL, we have

∑L
p −1

l=0 ĝ(y+lp)ĝ(y+lp+2jp) =
1
pδj,0.

(iv) W(g,Λ,CL) is an orthonormal basis for C
L.

Proof. The proof, while lengthy, is very similar to the proof of Proposition 3.5. In
fact, with obvious adaptations, such as using the normalized Haar measure on ZL, i.e.,
m(E) = 1

L

∑
x∈ZL

1E(x) for all E ⊆ ZL, and replacing Zak transforms and Fourier
transforms by their corresponding finite counterparts, the proof carries over almost
line by line. We therefore leave this part to the reader.

Now we will turn our attention to general time-frequency lattices. Here the situ-
ation is slightly more involved compared to �2(Z).

Let Λ be a lattice in ZL × ZL with canonical generator matrix A given by

A =

[
L
2p b

0 p

]
.

Then we choose α, β,m0, n0 ∈ Z such that

α L
2pm0 + αbn0 + βpn0(4.4)

attains its minimal positive value. Assume that there exists a choice of α, β,m0, n0

such that ( L
2pm0 + bn0)(pn0) < 0 and (α L

2p )(αb+ βp) > 0. In the other cases we have
to change the signs of the later defined γ and δ accordingly. In the following we will
restrict our analysis to the case where |α| = 1. For the remainder of this section let
α, β,m0, n0 be defined in this way. Now we regard α and β as elements of ZL. For
the sake of brevity we set

c := gcd(α L
2p , αb + βp), d := lcm(α L

2p , αb + βp),

and

s := gcd( L
2pm0 + bn0, pn0), t := lcm( L

2pm0 + bn0, pn0).

The minimality condition for (4.4) shows that

α L
2pm0 + αbn0 + βpn0 = c = s.(4.5)

We further define γ, δ ∈ ZL by

γ :=
t

L
2pm0 + bn0

and δ := − t

pn0
,

and σ ∈ Hom(ZL × ZL) by

σ =

[
α β
γ δ

]
.

Proposition 4.6. Let Λ be a lattice in ZL×ZL with canonical generator matrix
A given by

A =

[
L
2p b

0 p

]
.
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Let σ be defined as in the preceding paragraph, and let U on the space of L-periodic
functions on Z be defined by

Uf(k) =
∑
l∈ZL

f(αk + βl)e−πi(αγk2+βδl2)(L+1)/Le−2πiβγkl/L.

Then

gm L
2p+nb,np(l) = C(m,n)U(U−1g)σ(m L

2p+nb,np)(l),

where C(m,n) = e−πi(αγm2+βδn2)(L+1)/Le−2πiβγmn/L.
Before moving on to the proof of this statement we point out that the operator U

in Proposition 4.6 is no longer a simple chirp operator as for the case �2(Z); cf. Propo-
sition 3.6. This difference and the different form of σ necessitate a somewhat different
proof for the case C

L.
Proof. In order to apply Theorem 1.1 we need to check whether σ = (σ1, σ2) is

symplectic. For this, we have to show that, for all (x, y), (x′, y′) ∈ ZL × ZL,

e−2πiσ2(x,y)σ1(x
′,y′)/Le2πiσ2(x

′,y′)σ1(x,y)/L = e−2πix′y/Le2πixy′/L.(4.6)

We have

e−2πiσ2(x,y)σ1(x
′,y′)/Le2πiσ2(x

′,y′)σ1(x,y)/L

= e−2πi(γx+δy)(αx′+βy′)/Le2πi(γx′+δy′)(αx+βy)/L

= e2πi(αδ−βγ)(xy′−x′y)/L

and

αδ − βγ = − αt

pn0
− βt

L
2pm0 + bn0

=
−t

( L
2pm0 + bn0)(pn0)

(α( L
2pm0 + bn0) + βpn0).

By (4.5),

αδ − βγ =
−st

( L
2pm0 + bn0)(pn0)

= 1,

since ( L
2pm0 +bn0)(pn0) < 0. This proves that (4.6) is satisfied, which shows that σ is

indeed symplectic. Moreover, a short computation analogous to the one in the proof
of Proposition 3.6 shows that

ζ(k, l) = (σ∗κ0σ − κ0)(k, l) = (αγk + βγl, βγk + βδl).

Now it is easy to check (compare also [24, Example 1.1.34 (iii)]) that

ψ : Z
2
L → T, ψ(k, l) = eπi(αγk

2+βδl2)(L+1)/Le2πiβγkl/L

is a second degree character associated to ζ. Applying Theorem 1.1 now finishes the
proof.
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As in the discrete case we need to define a special bijective map in order to give
the definition of a Wilson basis associated with a lattice with arbitrary canonical
generator matrix.

Lemma 4.7. Let L
2p , b ∈ ZL with 0 ≤ b < L

2p and let α, β,m0, n0, c, d be defined

as before. Then the mapping ϕ : Z
2 → Z

2 defined by

ϕ(m,n) =

{
(m,n) : b = 0,

(mm0 − 2pd
αL n,mn0 + d

αb+βpn) : b �= 0

is bijective and we have

{(m mod L
c , n mod 2c) : (m,n) ∈ ϕ−1({0, . . . , 2p− 1} × {0, . . . , L

p − 1})}

= {0, . . . , L
c − 1} × {0, . . . , 2c− 1}.

Proof. The proof of this lemma is very similar to the proof of Lemma 3.7; we
therefore omit it.

Note that the following definition reduces to Definition 4.4 in the case of a diagonal
canonical generator matrix.

Definition 4.8. Let Λ be a lattice in ZL × ZL with canonical generator matrix
A given by

A =

[
L
2p b

0 p

]
.

Let g be some L-periodic function on Z, and let ϕ be defined as in Lemma 4.7. Then
the Wilson system W(g,Λ,CL) = {ψm,n}(m,n)∈I , where I = {0, . . . , p−1}×{0, L

2p}∪
{0, . . . , 2p− 1} × {1, . . . , L

2p − 1}, is given by

ψΛ
m,n = gϕ1(2m,n) L

2p+ϕ2(2m,n)b,ϕ2(2m,n)p if m = 0, . . . , p− 1, n = 0, L
2p ,

and for m = 0, . . . , 2p− 1, n = 1, . . . , L
2p − 1,

ψΛ
m,n = 1√

2
(gϕ1(m,n) L

2p+ϕ2(m,n)b,ϕ2(m,n)p

+gϕ1(m,−n) L
2p+ϕ2(m,−n)b,ϕ2(m,−n)p) if m + n is even,

ψΛ
m,n = i√

2
(gϕ1(m,n) L

2p+ϕ2(m,n)b,ϕ2(m,n)p

−gϕ1(m,−n) L
2p+ϕ2(m,−n)b,ϕ2(m,−n)p) if m + n is odd.

The following theorem is the analogue to Theorem 3.9 for the space C
L.

Theorem 4.9. Let Λ be a lattice in ZL × ZL with canonical generator matrix A
given by

A =

[
L
2p b

0 p

]
.

Let g be some L-periodic function on Z such that Û−1g is real-valued, let M := 2p,
N := L

p , q := L
2c , M̃ := 2q, Ñ := L

q , and let U and ϕ be defined as in Proposition 4.6
and Lemma 4.7, respectively. Then the following conditions are equivalent.
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(i) {gm L
2p+nb,np}m=0,... ,M−1,n=0,... ,N−1 is a tight frame for C

L with frame bound

2.
(ii) {(U−1g)m L

2q ,nq
}m=0,... ,M̃−1,n=0,... ,Ñ−1 is a tight frame for C

L with frame

bound 2.
(iii) W(U−1g, L

2qZL × qZL,C
L) is an orthonormal basis for C

L.

(iv) W(g,Λ,CL) is an orthonormal basis for C
L.

Proof. Let σ be defined as before and let ϕ = (ϕ1, ϕ2). Then we compute

σ(ϕ1(m,n) L
2p + ϕ2(m,n)b, ϕ2(m,n)p)

= (α(ϕ1(m,n) L
2p + ϕ2(m,n)b) + βϕ2(m,n)p, γ(ϕ1(m,n) L

2p + ϕ2(m,n)b) + δϕ2(m,n)p)

= (m(α L
2pm0 + αbn0 + βpn0) + n(−α L

2p
2pd
αL + αb d

αb+βp + βp d
αb+βp ),

m(γ L
2pm0 + γbn0 + δpn0) + n(−γ L

2p
2pd
αL + γb d

αb+βp + δp d
αb+βp ))

= (mc,m( t
L
2pm0+bn0

( L
2pm0 + bn0) − t

pn0
pn0)

+n(− t
L
2pm0+bn0

d
α + t

L
2pm0+bn0

bd
αb+βp − t

pn0

pd
αb+βp ))

= (mc, ntd(
−αbpn0−βp2n0+αbpn0−αp L

2pm0−αpbn0

α( L
2pm0+bn0)(αb+βp)pn0

))

= (mc,−ntdp
α L

2pm0+αbn0+βpn0

α( L
2pm0+bn0)(αb+βp)pn0

)

= (mc,−ntp cd
α( L

2pm0+bn0)(αb+βp)pn0
)

= (mc,−nt
L
2

( L
2pm0+bn0)pn0

)

= (mc, n L
2c ),

where in the last step we used (4.5) and st = −( L
2pm0 + bn0)pn0. Since |α| = 1, we

have c = s = gcd(α L
2p , αb + βp) is a factor of L

2p and hence of L
2 . Using Lemma 4.7,

the equivalence of (i) and (ii) follows immediately from Proposition 4.6, since U is
unitary and |C(m,n)| = 1. Proposition 4.5 proves (ii) ⇔ (iii). Therefore it remains to
prove the equivalence of (iii) and (iv). For this, we will use the following implication
of Proposition 4.6:

U(U−1g)m L
2q ,nq

= U(U−1g)σ(ϕ1(m,n) L
2p+ϕ2(m,n)b,ϕ2(m,n)p)

= C(ϕ(m,n))−1gϕ1(m,n) L
2p+ϕ2(m,n)b,ϕ2(m,n)p.

An easy but tedious calculation shows that C(ϕ(m,n))−1 does not depend on the sign
of n. The definition of a Wilson basis, the fact that U is a unitary operator, and the
fact that |C(ϕ(m,n))| = 1 yields the result.

Tight Gabor frames in C
L can be constructed in the same way as for �2(Z) and

L2(R) by using the “inverse square root trick.” Furthermore, it has been shown in [25]
that for properly localized windows the dual window constructed in C

L by “sampling
and periodization” of the frame {gma,nb} converges to the dual window S−1g with
increasing sampling rate and increasing periodization interval; see [25] for details.
This result can be easily extended to tight windows. We refer also to [23, 30, 7] for
related results and leave the details to the reader. To obtain tight Gabor frames in
C

L that satisfy the required conditions of the theorem above and have good time-
frequency localization, one can thus essentially proceed analogous to the example at
the end of section 2.
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5. Conclusion. We have demonstrated that orthonormal Wilson bases for L2(R)
(with excellent time-frequency localization) can be constructed for general time-fre-
quency lattices. Of course any numerical implementation has to be done in a discrete
setting. Somewhat longer proofs establish a similar result for the spaces �2(Z) and C

L

for nonrectangular time-frequency lattices. The approach based on metaplectic trans-
forms used in this paper suggests that the main results can be extended to the setting
of symplectic time-frequency lattices on general locally compact abelian groups.

Furthermore, our results imply that from a practical viewpoint it is indeed possible
to extend OQAM-OFDM or cosine-modulated filter banks to general time-frequency
lattices. Moreover, we expect that the benefits of using general time-frequency lat-
tices will be even more pronounced for images and higher-dimensional signals. Our
expectation is based on the fact that in the theory of sphere packings (and sphere
coverings) the advantages of the optimal sphere packing over the packing associated
with the rectangular lattices increases significantly with the dimension of the space [8].

An interesting research problem is thus to investigate how to extend the results
in this paper to L2(Rd) for nonsymplectic lattices as well as to find optimal time-
frequency lattices in R

2d for d > 1. One possibility for defining an “optimal” time-
frequency lattice is to fix the function g to be a Gaussian, say, and then find that
time-frequency lattice of fixed density which minimizes the condition number of the
associated Gabor frame operator as indicated in [31].

Acknowledgment. We thank the referees for valuable comments and sugges-
tions which led to an improvement of the results and presentation in this paper.
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[18] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser Boston, Cambridge, MA,
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Abstract. An asymptotic analysis of a family of functionals used in the van der Waals–Cahn–
Hilliard theory of phase transitions gives rise to a generalized area functional in the limit. We
examine a family of related higher order functionals on a three-dimensional domain. The expected
limit in this case is a generalization of the Willmore functional. An analysis of the problem under a
monotonicity assumption supports this conjecture.
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1. Introduction. Suppose Ω ⊂ R
3 is an open domain. For ε > 0 and u ∈

H1
loc(Ω), consider the functional

Eε(u) =

∫
Ω

(
ε

2
|∇u|2 +

1

4ε
(1 − u2)2

)
dx.

These and similar functionals are used in the van der Waals–Cahn–Hilliard theory of
phase transitions as a model for the energy of phase interfaces. In this context, but
also as an independent problem, it is interesting to study the asymptotic behavior of
Eε as ε ↘ 0. Such an analysis was first done by Modica and Mortola [14, 15] in the
framework of Γ-convergence. Related results have been obtained by Modica [12, 13],
Sternberg [22], and many others. The limit functional for this asymptotic problem
turns out to be (up to a constant multiple) an area functional for generalized surfaces
(or generalized submanifolds for similar problems in other dimensions) in Ω.

The asymptotic behavior of critical points of Eε under a volume constraint—in
other words, solutions of

εΔu +
1

ε
(1 − u2)u = λ in Ω,(1.1)

where λ is a constant—have been studied by Hutchinson and Tonegawa [9]. This
theory again identifies the area functional as the limit of Eε, but it also gives some
information about the behavior of the left-hand side of (1.1) as ε ↘ 0. In fact, the
quantity

τε(u) = εΔu +
1

ε
(1 − u2)u

converges to the mean curvature of the limit surface in some sense, at least if solu-
tions of (1.1) or similar equations are considered. The results have been extended by
Tonegawa [23] to the case of sufficiently regular nonconstant right-hand sides in (1.1).
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If the limit of τε corresponds to the mean curvature, then one might expect that
the functionals

Tε(u) =
1

4ε

∫
Ω

(τε(u))2 dx

for u ∈ H2
loc(Ω) converge to a generalized version of the Willmore functional. (For an

immersed C2-surface Σ ⊂ Ω with mean curvature vector H, the Willmore functional
is defined by

W (Σ) =
1

4

∫
Σ

|H|2 dH2,

where H2 is the two-dimensional Hausdorff measure; see Willmore [24] for a discus-
sion.) We study the asymptotic behavior of Tε as ε ↘ 0 in this paper. Although
we cannot answer the question implied above in full generality, our results indicate
strongly that the Willmore functional is indeed the limit of Tε.

This problem is related to a conjecture of De Giorgi [6] about the Γ-convergence
of similar functionals. A problem of this type has also been studied in a paper by
Bellettini and Mugnai [5] for two-dimensional domains and under the assumption of
radial symmetry.

For technical reasons, we assume that Ω = Ω′ × R for our main result, where
Ω′ ⊂ R

2 is an open domain. We then work in the space of all functions u ∈ H2
loc(Ω)

satisfying

∂u

∂x3
≥ 0.

This condition simplifies the analysis of the problem. Some of the tools we use also
work without this restriction, but it appears that a satisfactory analysis of the full
problem also requires some additional arguments.

Before we state our results, we introduce some notation and terminology. We
denote the Lebesgue measure in Ω by L3 and the m-dimensional Hausdorff measure
by Hm. If we have a countably m-rectifiable set Σ ⊂ Ω, then TxΣ denotes the
approximate tangent space of Σ at x. This approximate tangent space exists Hm-
almost everywhere on Σ. If φ ∈ C1(Ω,R3), then divΣ φ denotes the divergence of φ
with respect to Σ. That is, if we write projV for the (3× 3)-matrix of the orthogonal
projection onto a linear subspace V of R

3, then

divΣ φ(x) = trace(projTxΣ∇φ(x))

wherever the approximate tangent space exists. We also write proj⊥V for the matrix
of the orthogonal projection onto the orthogonal complement of V .

Theorem 1.1. Suppose Ω = Ω′ × R for some open set Ω′ ⊂ R
2. For ε > 0,

suppose uε ∈ H2
loc(Ω) such that

∂uε

∂x3
≥ 0

L3-almost everywhere in Ω. If

lim inf
ε↘0

(Eε(uε) + Tε(uε)) < ∞,

then there exists a sequence εk ↘ 0 with the following properties.
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(i) There exist a relatively closed, countably 2-rectifiable set Σ ⊂ Ω and an upper
semicontinuous function θ : Σ → [2

√
2/3,∞) such that

lim
k→∞

εk
2

∫
Ω

η|∇uεk |2 dx = lim
k→∞

1

4εk

∫
Ω

η(1 − u2
εk

)2 dx =
1

2

∫
Σ

ηθ dH2

for every η ∈ C0
0 (Ω).

(ii) The sequence {uεk} converges L3-almost everywhere to a function u : Ω →
{−1, 1} that is locally constant in Ω\Σ.

(iii) There exists an H2-measurable function H : Σ → R
3 with H(x) ⊥ TxΣ for

H2-almost every x ∈ Σ, such that∫
Σ

(divΣ φ + φ ·H)θ dH2 = 0

for every φ ∈ C1
0 (Ω,R3) and

1

4

∫
Σ

|H|2θ dH2 ≤ lim inf
k→∞

Tεk(uεk).

The proof of Theorem 1.1 rests on two pillars: a theory of a generalized Willmore
functional on the one hand, and estimates of the terms of Eε on the other hand.
The generalized Willmore functional we use gives in particular a direct link between
the functionals Tε and the classical Willmore functional. But to apply the theory
successfully, it is important to show that the terms

ε

2
|∇uε|2

are bounded by the other contribution to Eε(uε),

1

4ε
(1 − u2

ε)
2,

in an appropriate sense, at least in the limit. Such estimates are also important in the
works of Hutchinson and Tonegawa [9], Tonegawa [23], and Bellettini and Mugnai [5].
Apart from these estimates, however, we use relatively little information about the
structure of the problem. This means that our methods can also be applied to other
problems. For instance, it is not difficult to see that similar results can be obtained if
the potential given by the function (1−u2)2 is replaced by another two-well potential.
(We leave it to the reader to verify the details.) Similar tools as we use here have also
been applied to a problem related to harmonic maps in [17].

We conclude the introduction by pointing out that the Willmore functional can
always be approximated by Tε for sufficiently smooth surfaces. Suppose, e.g., that
U ⊂ R

3 is a bounded, open set with C2-regular boundary. Choose a function χ ∈
C2(R3) with χ ≡ 1 on Σ = ∂U , such that the distance function dist( · ,Σ) is of class
C2 in a neighborhood of suppχ. Then the functions

uε(x) =

⎧⎨
⎩

χ(x) tanh
(

dist(x,Σ)√
2ε

)
if x ∈ U,

−χ(x) tanh
(

dist(x,Σ)√
2ε

)
if x ∈ U

satisfy

lim
ε↘0

ε

2

∫
Ω

η|∇uε|2 dx = lim
ε↘0

1

4ε

∫
Ω

η(1 − u2
ε)

2 dx =

√
2

3

∫
Σ

η dH2
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for any η ∈ C0
0 (R3) and

2
√

2

3
W (Σ) = lim

ε↘0
Tε(uε).

The proof consists of the obvious computations and the observation that the function
v(s) = tanh(s/(

√
2ε)) solves

v′′ + (1 − v2)v = 0.

2. A generalization of the Willmore functional. We need a few tools from
geometric measure theory, among them some concepts from [16, 18, 17] that can be
regarded as variants of the notion of varifolds (cf. Simon [20] and Allard [1]). Similar
tools have been developed by Ambrosio and Soner [4] and Lin [10]. Yet in none of
these papers are they quite in the right form for the problem we study here; therefore
we present the theory from the beginning. Because it might also be of independent
interest, we consider arbitrary dimensions n ≥ 2. In this section, we assume that Ω
is an open set in R

n.
Let S be the set of all symmetric, positive semidefinite real (n×n)-matrices. We

write M(Ω) for the set of all pairs M = (μ, ν), such that
• μ is a Radon measure on Ω (with nonnegative values),
• ν is a Radon measure on Ω with values in S, and
• there exists a function σ ∈ L∞(μ,S) such that ν = μ σ.

If M = (μ, ν) ∈ M(Ω), we define the linear functional

δM(φ) =

∫
Ω

(
div φdμ− ∂φα

∂xβ
dναβ

)

on C1
0 (Ω,Rn). Here and throughout the paper we use a summation convention: a

repeated Greek index indicates a summation over its range.
Examples.

(i) Suppose Σ ⊂ Ω is a countably m-rectifiable set and

θ ∈ L1
loc(Hm Σ, [0,∞)).

Define M = (μ, ν), where

μ = (Hm Σ) θ(2.1)

and

ν = μ σ(2.2)

for σ(x) = proj⊥TxΣ. Then

δM(φ) =

∫
Σ

(divΣ φ)θ dHm.

(ii) If ε > 0 and u ∈ H2
loc(Ω), define

μ = Ln

(
ε

2
|∇u|2 +

1

4ε
(1 − u2)2

)
(2.3)
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(where Ln is the Lebesgue measure in Ω), and

ναβ = εLn

(
∂u

∂xα

∂u

∂xβ

)
.(2.4)

Then the pair M = (μ, ν) satisfies

δM(φ) =

∫
Ω

φ · ∇u τε(u) dx.

(iii) Other examples of possible applications are given in [16, 18, 17].
The examples indicate that the space M(Ω) can provide a connection between

the functionals Eε and the (generalized) area functional. The following notion also
gives a relation between Tε and the Willmore functional.

Definition 2.1. The functional W on M(Ω) given by

W (M) =
1

4
sup

{
(δM(φ))2 : φ ∈ C1

0 (Ω,Rn) with

∫
Ω

φαφβ dναβ ≤ 1

}

is called the generalized Willmore functional. We write

W(Ω) = {M ∈ M(Ω) : W (M) < ∞}.

Examples.
(i) Suppose Σ ⊂ Ω is countably m-rectifiable and θ ∈ L1

loc(Hm Σ, [0,∞)),
such that there exists an Hm-measurable function H : Σ → R

n with

H(x) ⊥ TxΣ(2.5)

for Hm-almost every x ∈ Σ and∫
Σ

(divΣ φ + φ ·H)θ dHm = 0

for every φ ∈ C1
0 (Ω,Rn). If M = (μ, ν) is defined by (2.1) and (2.2), then

W (M) =
1

4

∫
Σ

|H|2θ dHm.

But if (2.5) is not satisfied Hm-almost everywhere, then W (M) = ∞.
(ii) If ε > 0 and u ∈ H2

loc(Ω), and if M = (μ, ν) is given by (2.3) and (2.4), then

(δM(φ))2 =

(∫
Ω

φ · ∇u τε(u) dx

)2

≤
(∫

Ω

(τε(u))2 dx

)(∫
Ω

(φ · ∇u)2 dx

)
= 4Tε(u)

∫
Ω

φαφβ dναβ .

Thus W (M) ≤ Tε(u).
In the rest of the section we analyze measure pairs in W(Ω). We first show that

a representation of δM by an R
n-valued function H as in the first example always

exists for M ∈ W(Ω).
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Proposition 2.2. Suppose that M = (μ, ν) ∈ W(Ω), and let σ ∈ L∞(μ,S)
be the function such that ν = μ σ. Then there exists a μ-measurable function
H = (H1, . . . , Hn) : Ω → R

n with Hβσαβ ∈ L1
loc(μ) for α = 1, . . . , n, such that

δM(φ) = −
∫

Ω

φαHβ dναβ(2.6)

for every φ ∈ C1
0 (Ω,Rn) and

H(x) ⊥ kerσ(x)(2.7)

for μ-almost every x ∈ Ω. Moreover,

W (M) =
1

4

∫
Ω

HαHβ dναβ .(2.8)

Any other function satisfying (2.6) and (2.7) agrees with H except possibly on a μ-null
set.

Proof. The functional δM on C1
0 (Ω,Rn) satisfies

|δM(φ)| ≤ 2

(
W (M)

∫
Ω

φαφβ dναβ

)1/2

(2.9)

≤ 2‖φ‖C0(Ω)(W (M)‖σ‖L∞(μ)μ(suppφ))1/2.

Hence there exists a continuous extension to C0
0 (Ω,Rn), represented by an R

n-valued
Radon measure h on Ω. Moreover, this measure is absolutely continuous with respect
to μ. By the Radon–Nikodým theorem there exists a unique function Ĥ ∈ L1

loc(μ,R
n)

such that h = μ Ĥ. In other words, we have

δM(φ) =

∫
Ω

φ · Ĥ dμ

for any φ ∈ C1
0 (Ω,Rn). Now we consider the first inequality in (2.9) again. Any

ψ ∈ L∞(μ,Rn) ∩ L2(μ,Rn) with ∫
Ω

ψαψβ dναβ = 0

can be approximated by a sequence of vector fields ψi ∈ C1
0 (Ω,Rn) such that, as

i → ∞, ‖ψi − ψ‖L2(μ) → 0 (because μ is a Radon measure). Hence

∣∣∣∣
∫

Ω

ψ · Ĥ dμ

∣∣∣∣ = lim
i→∞

∣∣∣∣
∫

Ω

ψi · Ĥ dμ

∣∣∣∣ ≤ 2
√
W (M) lim sup

i→∞

(∫
Ω

ψα
i ψ

β
i dναβ

)1/2

= 0.

It follows that Ĥ(x) ⊥ kerσ(x) for μ-almost every x ∈ Ω. In particular there is a
function H : Ω → R

n, unique up to a μ-null set, such that (2.7) holds and

X · Ĥ(x) = −XαHβ(x)σαβ(x)

for μ-almost every x ∈ Ω and every X ∈ R
n. This H satisfies (2.6). Only (2.8)

remains to be proved.
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The inequality

W (M) ≤ 1

4

∫
Ω

HαHβ dναβ

follows directly from the definition of the functional W . To show the converse in-
equality, we approximate H by a sequence of functions Hi ∈ C1

0 (Ω,Rn) such that

lim
i→∞

∫
Ω

(Hα −Hα
i )(Hβ −Hβ

i ) dναβ = 0.

Then we have

W (M) ≥

(∫
Ω
HαHβ

i dναβ

)2

4
∫
Ω
Hα

i H
β
i dναβ

for every i (provided that the denominator on the right-hand side does not vanish).
For i → ∞, we obtain the desired inequality.

Definition 2.3. If M = (μ, ν) is in W(Ω) and H : Ω → R
n satisfies (2.6)

and (2.7), then H is called the generalized mean curvature of M . For any Borel set
A ⊂ Ω, we write

W (M ;A) =
1

4

∫
A

HαHβ dναβ .

Definition 2.4. Suppose M (k) = (μ(k), ν(k)) ∈ W(Ω) for k ∈ N, and M =
(μ, ν) ∈ W(Ω). We say that M (k) converges weakly to M and we write M (k) ⇀ M if

sup
k∈N

W (M (k)) < ∞

and, for every η ∈ C0
0 (Ω),∫

Ω

η dμ = lim
k→∞

∫
Ω

η dμ(k) and

∫
Ω

η dν = lim
k→∞

∫
Ω

η dν(k).

We say that M (k) converges strongly to M and we write M (k) → M if M (k) ⇀ M
and

W (M) ≥ lim sup
k→∞

W (M (k)).

Remark. The following is an immediate consequence of the definition of W : if
M (k) ⇀ M , then

W (M) ≤ lim inf
k→∞

W (M (k)).

Thus if M (k) → M , then

W (M) = lim
k→∞

W (M (k)).

The space W(Ω) is quite large. For instance, it contains measure pairs corre-
sponding to countably rectifiable sets in Ω of any dimension. For some of the results
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in this section we have to consider a smaller subspace. We write Wm(Ω) for the set
of all pairs M = (μ, ν) ∈ W(Ω) that satisfy

trace ν ≤ (n−m)μ.(2.10)

In order to obtain some idea of what this condition means, consider an M that
belongs to a rectifiable set Σ as in the examples above. Then (2.10) is satisfied if and
only if the dimension of Σ is at least m.

For M = (μ, ν) ∈ Wm(Ω), in particular if m = 2, we want to examine the behavior
of quantities of the form r−mμ(Br(x0)) as r ↘ 0, where Br(x0) denotes the open ball
in R

n of center x0 and radius r. The following lemma gives an inequality which is
useful for that purpose. It is a variant of a result that is well known for many related
theories. (Cf. Allard [1], Price [19], and Simon [21]. There are many other papers
with results of this kind.)

Lemma 2.5. Suppose M = (μ, ν) ∈ Wm(Ω) has the generalized mean curvature
H. For x0 ∈ Ω and 0 < ρ < dist(x0, ∂Ω), set

ΦM (x0, ρ) = ρ−m

(
μ(Bρ(x0)) +

1

m

∫
Bρ(x0)

(xα − xα
0 )Hβ(x) dναβ(x)

)
.

If 0 < s ≤ r < dist(x0, ∂Ω), then

ΦM (x0, s) ≤ ΦM (x0, r) + I,

where

I =

∫
Br(x0)\Bs(x0)

(
(xα − xα

0 )(xβ − xβ
0 )

|x− x0|m+2
+

(xα − xα
0 )Hβ(x)

m|x− x0|m

)
dναβ(x).

Proof. We assume for simplicity that x0 = 0. Suppose ψ ∈ C1
0 (B1(0)) is a

nonnegative function. For ρ > 0, set ψρ(x) = ψ(x/ρ). Insert now φ(x) = ψρ(x)x into
(2.6). The resulting equation is∫

Ω

ψρ(ndμ− trace dν) +
1

ρ

∫
Ω

x · ∇ψ(x/ρ) dμ(x)

−
∫

Ω

(
xα

ρ

∂ψ

∂xβ
(x/ρ) − xαHβ(x)ψρ(x)

)
dναβ(x) = 0.

Thus (2.10) implies

m

∫
Ω

ψρdμ +
1

ρ

∫
Ω

x · ∇ψ(x/ρ) dμ(x)

−
∫

Ω

(
xα

ρ

∂ψ

∂xβ
(x/ρ) − xαHβ(x)ψρ(x)

)
dναβ(x) ≤ 0.

It follows that

d

dρ

(
ρ−m

∫
Ω

ψρ dμ +
1

m

∫
Ω

ψρ(x)xαHβ(x) dναβ(x)

)
(2.11)

≥ −ρ−m−2

∫
Ω

(
xα ∂ψ

∂xβ
(x/ρ) +

1

m
x · ∇ψ(x/ρ)xαHβ(x)

)
dναβ(x).
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If ψ is of the form ψ(x) = η(|x|) for some η ∈ C1(R) with η ≡ 0 in [1,∞), the
right-hand side of (2.11) is

−ρ−m−2

∫
Ω

η′(|x|/ρ)
(
xαxβ

|x| +
1

m
|x|xαHβ(x)

)
dναβ(x).

For

Φψ(ρ) = ρ−m

(∫
Bρ(x0)

ψρdμ +
1

m

∫
Bρ(x0)

ψρx
αHβ(x) dναβ(x)

)
,

it follows that

Φψ(r) − Φψ(s) ≥ −
∫ r

s

ρ−m−2

∫
Ω

η′(|x|/ρ)
(
xαxβ

|x| +
1

m
|x|xαHβ(x)

)
dναβ(x) dρ

=

∫
Ω

∫ r

s

ρ−m d

dρ
η(|x|/ρ) dρ

(
xαxβ

|x|2 +
1

m
xαHβ(x)

)
dναβ(x).

We have∫ r

s

ρ−m d

dρ
η(|x|/ρ) dρ = r−mη(|x|/r) − s−mη(|x|/s) + m

∫ r

s

ρ−m−1η(|x|/ρ) dρ.(2.12)

If we approximate the characteristic function of the interval (−∞, 1) by a sequence of
C1-functions and insert these approximations instead of η into (2.12), the right-hand
side converges to 0 if |x| ≥ r or |x| < s and to

r−m + m

∫ r

|x|
ρ−m−1 dρ = |x|−m

if |x| ∈ [s, r). The claim of the lemma now follows from Lebesgue’s convergence
theorem.

Lemma 2.6. Suppose M = (μ, ν) ∈ W2(Ω) and σ ∈ L∞(μ,S) such that ν =
μ σ. Then for any δ > 0 and for any pair of concentric balls Bs(x0) ⊂ Br(x0) ⊂ Ω,
the inequality

(1 − δ)s−2μ(Bs(x0)) ≤ (1 + δ)r−2μ(Br(x0)) +

(
1

4
+

‖σ‖L∞(μ)

2δ

)
W (M ;Br(x0))

holds.
Proof. We use Lemma 2.5 and the estimates

1

2ρ2

∣∣∣∣∣
∫
Bρ(x0)

(xα − xα
0 )Hβ(x) dναβ(x)

∣∣∣∣∣
≤ 1

2ρ2

(∫
Bρ(x0)

(xα − xα
0 )(xβ − xβ

0 ) dναβ(x)

)1/2 (∫
Bρ(x0)

HαHβ dναβ

)1/2

≤ δρ−2μ(Bρ(x0)) +
‖σ‖L∞(μ)

4δ
W (M ;Bρ(x0))

and∣∣∣∣∣
∫
Br(x0)\Bs(x0)

(xα − xα
0 )Hβ(x)

2|x− x0|2
dναβ(x)

∣∣∣∣∣
≤

∫
Br(x0)\Bs(x0)

(xα − xα
0 )(xβ − xβ

0 )

|x− x0|4
dναβ(x) +

1

16

∫
Br(x0)\Bs(x0)

HαHβ dναβ .
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It now suffices to combine the inequalities.
If M = (μ, ν) ∈ W2(Ω), we conclude from Lemma 2.6 that μ({x}) = 0 for every

x ∈ Ω. Hence

lim
r↘0

W (M ;Br(x)) = 0.

Thus it also follows from Lemma 2.6 that the 2-density

ΘM (x) = lim
r↘0

r−2μ(Br(x))(2.13)

exists for every x ∈ Ω. Moreover, the function ΘM defined by (2.13) has the following
property.

Lemma 2.7. Let M (k) = (μ(k), ν(k)) ∈ W2(Ω) for k ∈ N, and M = (μ, ν) ∈
W2(Ω) such that M (k) → M . Suppose σ(k) ∈ L∞(μ(k),S) are the functions such that
ν(k) = μ(k) σ(k). Let xk ∈ Ω with xk → x0 ∈ Ω as k → ∞. If

sup
k∈N

‖σ(k)‖L∞(μ(k)) < ∞,

then

ΘM (x0) ≥ lim sup
k→∞

ΘM(k)(xk).

Remark. It follows in particular that ΘM is upper semicontinuous.
Proof. Let ε > 0. There exists a radius r > 0 such that

ΘM (x0) ≥ r−2μ(Br(x0)) − ε

and

W (M ;Br(x0)) ≤ ε.

Hence

ΘM (x0) ≥ r−2 lim sup
k→∞

μ(k)(Br(x0)) − ε

and

lim sup
k→∞

W (M (k);Br(x0)) ≤ ε.

Now Lemma 2.6 implies that

ΘM(k)(x0) ≤ (1 + δ)r−2μ(k)(Br(x0)) + C

(
1 +

1

δ

)
ε

for any δ ∈ (0, 1] and any sufficiently large k, where C is a number that depends only
on

sup
k∈N

‖σ(k)‖L∞(μ(k)).

Thus

lim sup
k→∞

ΘM(k)(x0) ≤ (1 + δ)(ΘM (x0) + ε) + C

(
1 +

1

δ

)
ε.

Since ε and δ are arbitrary, the claim follows.
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For a fixed M = (μ, ν) ∈ W2(Ω) and a fixed point x0 ∈ Ω, we now consider the
rescaled measure pairs Mx0,r = (μx0,r, νx0,r) ∈ W2(Ω

x0,r), where Ωx0,r = r−1(Ω−x0),
defined by ∫

Ωx0,r

η dμx0,r = r−2

∫
Ω

η((x− x0)/r) dμ(x)

and ∫
Ωx0,r

η dνx0,r = r−2

∫
Ω

η((x− x0)/r) dν(x)

for all η ∈ C0
0 (Ωx0,r). We have

lim
r↘0

μx0,r(BR(0)) = lim
r↘0

r−2μ(BRr(x0)) = R2ΘM (x0)

for almost any R > 0. If φ ∈ C1
0 (Rn,Rn), then

δMx0,r(φ) = r−1δM(φ((x− x0)/r))

for any r that is large enough so that suppφ ⊂ Ωx0,r. If R > 0 is such that suppφ ∈
BR(0), then it follows that

|δMx0,r(φ)| ≤ 2 sup
Rn

|φ|
(
‖σ‖L∞(μ)r

−2μ(BRr(x0))W (M ;BRr(x0))
)1/2 → 0

as r ↘ 0 (where σ ∈ L∞(μ,S) is such that ν = μ σ).
We infer that we can choose a sequence rk ↘ 0 such that Mx0,rk → M∗ for some

M∗ = (μ∗, ν∗) ∈ W2(R
n) with δM∗ = 0 (in the sense that the restrictions of Mx0,rk

to any bounded domain in R
n converge strongly to the corresponding restrictions of

M∗). Moreover, any given sequence rk ↘ 0 has a subsequence with this property.
Definition 2.8. Any measure pair M∗ ∈ W2(Ω) obtained by a limit process as

described above is called a tangent measure pair of M at x0.
Lemma 2.9. Suppose M∗ = (μ∗, ν∗) is a tangent measure pair of M = (μ, ν) ∈

W2(Ω) at x0 ∈ Ω. Then r−2μ∗(Br(0)) = ΘM (x0) for any r > 0.
Proof. For all but countably many r > 0, we have

μ∗(Br(0)) = lim
k→∞

μx0,rk(Br(0)) = lim
k→∞

r−2
k μ(Brrk(x0)) = r2ΘM (x0).

By Lemma 2.5, the quantity r−2μ∗(Br(0)) is nondecreasing; hence the identity holds
even for all r > 0.

Lemma 2.10. Suppose M∗ = (μ∗, ν∗) ∈ W2(R
n) satisfies δM∗ = 0 and

r−2μ∗(Br(0)) = s−2μ∗(Bs(0))(2.14)

for every pair of positive numbers r, s. Then the set

S(M∗) = {x ∈ R
n : ΘM∗(x) ≥ ΘM∗(0)}

is a linear subspace of R
n. If μ∗ = 0, then dimS(M∗) ≤ 2, and the following three

conditions are equivalent:
(i) dimS(M∗) = 2,
(ii) μ∗(Rn\S(M∗)) = 0,
(iii) μ∗ = π−1ΘM∗(0)H2 S(M∗) and ν∗ = proj⊥S(M∗)μ

∗.
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Proof. We may assume μ∗ = 0. Let σ∗ ∈ L∞(μ∗,S) be the function such that
ν∗ = μ∗ σ∗. Then (2.14) and Lemma 2.5 imply that x ∈ kerσ∗(x) for μ∗-almost
every x ∈ R

n. If x0 ∈ R
n and r > 0, Lemma 2.5 also implies

ΘM∗(x0) +

∫
Br(x0)

(xα − xα
0 )(xβ − xβ

0 )

|x− x0|4
dν∗αβ(x)

≤ r−2μ∗(Br(x0)) ≤ r−2μ∗(Br+|x0|(0)) =

(
1 +

|x0|
r

)−2

ΘM∗(0).

Letting r → ∞, we see that ΘM∗(x0) ≤ ΘM∗(0), and ΘM∗(x0) = ΘM∗(0) only if
x− x0 ∈ kerσ∗(x) for μ∗-almost every x ∈ R

n.
Let x0 ∈ S(M∗). Then it follows that x0 ∈ kerσ∗(x) for μ∗-almost every x ∈ R

n.
Let η ∈ C1

0 (Rn); then

d

dt

∫
Rn

η(x + tx0) dμ
∗(x) =

∫
Rn

x0 · ∇η(x + tx0) dμ
∗(x)

=

∫
Rn

xα
0

∂η

∂xβ
(x + tx0) dν

∗
αβ(x) = 0,

because δM∗ = 0. That is, the measure μ∗ is invariant under translations in the
direction of x0. It follows that S(M∗) is a linear subspace of R

n. Moreover, this
translation invariance and (2.14) imply dimS(M∗) ≤ 2, and they also imply the
equivalence of (i) and (ii). Obviously, (iii) implies (ii). Thus it remains to show that
(ii) implies (iii).

For the rest of the proof, we assume that S(M∗) = R
2 × {0} for simplicity. We

also assume that μ∗(Rn\S(M∗)) = 0. We already know that ν∗1α = ν∗2α = 0 for
α = 1, . . . , n. Now for ξ ∈ C1

0 (R2) and ζ ∈ C1
0 (Rn−2), consider a vector field of the

form

φ(x1, . . . , xn) = ξ(x1, x2)ζ(x3, . . . , xn)eα,

where α ≥ 3 and eα is the αth standard unit vector in R
n. Because δM∗ = 0, we

have ∫
R2×{0}

ξ(x1, x2)

(
∂ζ

∂xα
(0) dμ∗(x) − ∂ζ

∂xβ
(0) dν∗αβ(x)

)
= 0.

If we choose ζ such that (0, 0, ∂ζ
∂x3 , . . . ,

∂ζ
∂xn ) = eβ , it follows that ν∗αβ = 0 for α = β

and

ν∗33 = · · · = ν∗nn = μ∗.

This shows (iii) and concludes the proof.
Proposition 2.11. If M = (μ, ν) ∈ W2(Ω), then the set

Σ = {x ∈ Ω : ΘM (x) > 0}

is countably 2-rectifiable. If σ ∈ L∞(μ,S) is such that ν = μ σ, then σ(x) =
proj⊥TxΣ(x) for μ-almost every x ∈ Σ.

Proof. Let Σ0 be the set of all points x ∈ Σ such that σ and ΘM are approximately
continuous at x with respect to μ. Then μ(Σ\Σ0) = 0. Suppose x0 ∈ Σ0. Let



724 ROGER MOSER

M∗ = (μ∗, ν∗) be a tangent measure pair of M at x0. From Lemmas 2.7 and 2.9 it
follows that

ΘM∗(x) ≥ ΘM (x0) = ΘM∗(0) > 0

for μ∗-almost every x ∈ R
n. Thus the set S(M∗) defined in Lemma 2.10 is a two-

dimensional linear subspace of R
n. Moreover,

μ∗ = π−1ΘM (x0)H2 S(M∗)

and

ν∗ = proj⊥S(M∗)μ
∗.

Because σ is approximately continuous at x0, we have σ(x0) = proj⊥S(M∗). In partic-
ular the tangent measure pair M∗ is unique. The claims now follow from standard
arguments from geometric measure theory (cf. Federer [7] or Simon [20]).

3. Energy estimates. We now assume again that Ω is a three-dimensional
domain, that is, Ω ⊂ R

3. For ε > 0, we examine functions u ∈ H2
loc(Ω) such that

Eε(u) and Tε(u) are finite. We first derive a few inequalities that will be useful when
we consider the limit ε ↘ 0 later in this section.

All of the inequalities we prove here are of a local character. Throughout the
section, we assume that Ω0 ⊂ Ω is an open, bounded set such that its closure is
contained in Ω.

Lemma 3.1. There exists a constant C such that for any ε > 0 and any u ∈
H2

loc(Ω), the set

Ω1 = {x ∈ Ω0 : |u(x)| ≥ 1}

satisfies ∫
Ω1

(
ε

2
|∇u|2 +

1

4ε
(1 − u2)2

)
dx ≤ Cε2(Tε(u) + Eε(u)).

Proof. Choose a cutoff function η ∈ C∞
0 (Ω) with 0 ≤ η ≤ 1 and η ≡ 1 in Ω0.

Define

Ω+
1 = {x ∈ Ω : u(x) ≥ 1}

and

Ω−
1 = {x ∈ Ω : u(x) ≤ −1}.

Then

ε

∫
Ω+

1

η2|∇u|2 dx = ε

∫
Ω+

1

η2∇(u− 1) · ∇u dx

=
1

ε

∫
Ω+

1

η2(u− 1)(1 − u2)u dx−
∫

Ω+
1

η2(u− 1)τε(u) dx

− 2ε

∫
Ω+

1

η(u− 1)∇η · ∇u dx

≤ ε2Tε(u) +
1

ε

∫
Ω+

1

η2[(u− 1)2 + (u− 1)(1 − u2)u] dx

+
ε

2

∫
Ω+

1

η2|∇u|2 dx + 2ε‖∇η‖L∞(Ω)

∫
Ω+

1

(u− 1)2 dx.
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In Ω+
1 , we have (u− 1)2 ≤ 1

4 (1 − u2)2 and

(u− 1)2 + (u− 1)(1 − u2)u = (1 − u2)2
[

1

(u + 1)2
− u

u + 1

]
≤ −1

4
(1 − u2)2.

Thus ∫
Ω+

1

η2

(
ε

2
|∇u|2 +

1

4ε
(1 − u2)2

)
dx ≤ ε2Tε(u) + 2ε2‖∇η‖L∞(Ω)Eε(u).

The same computations work for Ω−
1 instead of Ω+

1 , and the claim follows.
Lemma 3.2. There exists a constant C such that for every x0 ∈ Ω0 and ε > 0

with B2ε(x0) ⊂ Ω0, and for every u ∈ H2
loc(Ω),∫

Bε(x0)

(
ε

2
|∇u|2 +

1

4ε
(1 − u2)2

)
dx ≤ Cε2(Eε(u) + Tε(u) + 1).

Proof. Set

ũ(x) =

⎧⎨
⎩

1 if u(x) ≥ 1,
u(x) if −1 < u(x) < 1,
−1 if u(x) ≤ −1.

In view of Lemma 3.1, it suffices to show that∫
Bε(x0)

(
ε

2
|∇ũ|2 +

1

4ε
(1 − ũ2)2

)
dx ≤ Cε2(Eε(u) + Tε(u) + 1).

Choose a cutoff function η ∈ C∞
0 (B2ε(x0)) with 0 ≤ η ≤ 1 and η ≡ 1 in Bε(x0), such

that |∇η| ≤ 2/ε. Then

ε

∫
Ω

η2|∇ũ|2 dx = ε

∫
Ω

η2∇ũ · ∇u dx

=
1

ε

∫
Ω

η2ũ(1 − u2)u dx−
∫

Ω

η2ũτε(u) dx− 2ε

∫
Ω

ηũ∇η · ∇u dx.

We have

−
∫

Ω

η2ũτε(u) dx ≤ ε2Tε(u) +
1

ε

∫
B2ε(x0)

ũ2 dx ≤ ε2Tε(u) +
32

3
πε2

and

−2ε

∫
Ω

ηũ∇η · ∇u dx = −2ε

∫
Ω

ηũ∇η · ∇ũ dx− 2ε

∫
Ω1

ηũ∇η · ∇u dx,

where

Ω1 = {x ∈ Ω : |u(x)| ≥ 1}.

Moreover,

−2ε

∫
Ω

ηũ∇η · ∇ũ dx ≤ ε

2

∫
Ω

η2|∇ũ|2 dx + 2ε

∫
B2ε(x0)

|∇η|2 dx

≤ ε

2

∫
Ω

η2|∇ũ|2 dx +
256

3
πε2
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and

−2ε

∫
Ω1

ηũ∇η · ∇u dx ≤ ε

∫
Ω1

η2|∇u|2 dx + ε

∫
B2ε(x0)

|∇η|2 dx

≤ C1ε
2(Eε(u) + Tε(u) + 1)

by Lemma 3.1 for a constant C1 that depends only on Ω and Ω0. Finally, we have
ũ(1 − u2)u ≤ 1 in Ω; hence

1

ε

∫
Ω

η2ũ(1 − u2)u dx ≤ 32

3
πε2.

We also have

1

ε

∫
Bε(x0)

(1 − ũ2)2 dx ≤ 4

3
πε2.

Combining all the estimates, we obtain the desired inequality.
Lemma 3.3. For any K > 0 there exist two constants C, r > 0 with the following

properties. Suppose u ∈ H2
loc(Ω) and 0 < ε ≤ 1

2 dist(Ω0, ∂Ω) such that

Eε(u) + Tε(u) ≤ K.(3.1)

Then

sup
Ω0

|u| ≤ C.

Moreover,

osc
Brε(x0)

u ≤ 1

4

for any x0 ∈ Ω0.
Proof. Suppose x0 ∈ Ω and 0 < ε ≤ 1

2 dist(Ω0, ∂Ω). If (3.1) is satisfied, then by
Lemma 3.2 (applied to a different Ω0),∫

Bε(x0)

(
ε

2
|∇u|2 +

1

4ε
(1 − u2)2

)
dx ≤ C1ε

2

for a constant C1 that depends only on Ω, Ω0, and K. Define

v(x) = u(εx + x0).

Then

1

2

∫
B1(0)

(
|∇v|2 +

1

2
(1 − v2)2

)
dx ≤ C1(3.2)

and

1

4

∫
B1(0)

(Δv + (1 − v2)v)2 dx ≤ Tε(u) ≤ K.(3.3)

It follows from (3.2) that

‖v‖H1(B1(0)) ≤ C2 = C2(Ω,Ω0,K).
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According to the Sobolev embedding theorem,

‖v‖L6(B1(0)) ≤ C3 = C3(Ω,Ω0,K).

Then (3.3) implies

‖Δv‖L2(B1(0)) ≤ C4 = C4(Ω,Ω0,K).

Hence

‖v‖H2(B1/2(0)) ≤ C5 = C5(Ω,Ω0,K),

and therefore

‖v‖
C0,1/2(B1/2(0))

≤ C6 = C6(Ω,Ω0,K)

by the Sobolev embedding theorem. Now both inequalities in the claim of the lemma
follow from the last inequality.

The next lemma provides two of the key estimates for the proof of Theorem 1.1.
The first inequality of the lemma is related to estimates of what is called the “dis-
crepancy function” by Hutchinson and Tonegawa [9], Bellettini and Mugnai [5], and
others. The second one will help to exploit the condition ∂uε

∂x3 ≥ 0 in Theorem 1.1.
Lemma 3.4. For any δ > 0 and any K > 0 there exist three numbers ε0 > 0,

c > 0, and R > 0 with the following property. Suppose 0 < ε ≤ ε0 and η ∈ C1
0 (Ω0)

with 0 ≤ η ≤ K and

sup
Ω0

|∇η| ≤ c

ε
.

Suppose further u ∈ H2
loc(Ω) such that

Eε(u) + Tε(u) ≤ K

and

sup
x0∈supp η

(
1

ε

∫
BRε(x0)∩Ω

(τε(u))2 dx

)
≤ c.

Then ∫
Ω0

η

[
ε

2
|∇u|2 − 1

4ε
(1 − u2)2

]
dx ≤ δ.(3.4)

Furthermore, there exists a universal constant C such that∫
Ω0

η(ε|∇u| − C)

∣∣∣∣ ∂u∂x3

∣∣∣∣ dx ≤ δ.(3.5)

Proof. We argue by contradiction. Suppose that the first claim (about inequality
(3.4)) were false for two given numbers δ > 0 and K > 0. Then there would exist
three sequences εk ↘ 0, ck ↘ 0, and Rk → ∞, as well as corresponding functions
ηk ∈ C1

0 (Ω0) with 0 ≤ ηk ≤ K and

sup
Ω0

|∇ηk| ≤
ck
εk

,
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and uk ∈ H2
loc(Ω) with

Eεk(uk) + Tεk(uk) ≤ K

and

sup
x0∈supp ηk

(
1

εk

∫
BRkεk

(x0)∩Ω

(τεk(uk))
2 dx

)
≤ ck,

such that

lim sup
k→∞

∫
Ω0

ηk

[
εk
2
|∇uk|2 −

1

4εk
(1 − u2

k)
2

]
dx > δ.

Define

Ω+
k =

{
x ∈ Ω : uk(x) >

1

2

}
, Ω−

k =

{
x ∈ Ω : uk(x) < −1

2

}
,

and

Ω0
k =

{
x ∈ Ω : −1

2
≤ uk(x) ≤ 1

2

}
.

Suppose x0 ∈ Ω0
k. By Lemma 3.3, there exists some r > 0, depending only on Ω, Ω0,

and K, such that |uk| ≤ 3/4 in Brεk(x0). Thus

1

4εk

∫
Bεk

(x0)

(1 − u2
k)

2 dx ≥ C1ε
2
k(3.6)

for a constant C1 > 0 that depends only on Ω, Ω0, and K. By Vitali’s covering
lemma, there exists a finite set of points xk

1 , . . . , x
k
Ik

∈ Ω0
k ∩ supp ηk, such that

Ω0
k ∩ supp ηk ⊂

Ik⋃
i=1

B5εk(xk
i ),

but

Bεk(xk
i ) ∩Bεk(xk

j ) = ∅ for i = j.

By (3.6), we have

Ik ≤ C2

ε2k

for a constant C2 that depends only on Ω, Ω0, and K.
Fix now some R ≥ 5. For k ∈ N and 1 ≤ i ≤ Ik, choose two cutoff functions ξki ∈

C∞
0 (B2Rεk(xk

i )) with 0 ≤ ξki ≤ 1 and ξki ≡ 1 in BRεk(xk
i ), and ζki ∈ C∞

0 (B4Rεk(xk
i ))

with 0 ≤ ζki ≤ 1 and ζki ≡ 1 in B2Rεk(xk
i ), such that

|∇ξki | ≤
2

Rεk
and |∇ζki | ≤

1

Rεk
.
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Set

ξk = max
1≤i≤Ik

ξki .

This is a Lipschitz function with 0 ≤ ξk ≤ 1 and ξk ≡ 1 on Ω0
k ∩ supp ηk. Moreover,

supp ξk is contained in the set

Uk =
{
x ∈ Ω : dist(x,Ω0

k ∩ supp ηk) < 2Rεk
}
.

We also have

|∇ξk| ≤ 2

Rεk
.

Next, we define

ψk
i =

ζki [1 − (1 − ξk)2]∑Ik
j=1 ζ

k
j

in Uk and ψk
i = 0 in Ω\Uk. Then we have

Ik∑
i=1

ψk
i = 1 − (1 − ξk)2.

Moreover,

|∇ψk
i | ≤

C3

εk

for a constant C3 that depends only on R.
We have

εk

∫
Ω+

k

ηk(1 − ξk)2|∇uk|2 dx =
1

εk

∫
Ω+

k

ηk(1 − ξk)2(uk − 1)(1 − u2
k)uk dx

−
∫

Ω+
k

ηk(1 − ξk)2(uk − 1)τεk(uk) dx

− εk

∫
Ω+

k

(1 − ξk)2(uk − 1)∇ηk · ∇uk dx

+ 2εk

∫
Ω+

k

ηk(1 − ξk)(uk − 1)∇ξk · ∇uk dx.

It is easy to see that

lim
k→∞

(
εk

∫
Ω+

k

(1 − ξk)2(uk − 1)∇ηk · ∇uk dx

)
= 0

and

lim sup
k→∞

(
2εk

∫
Ω+

k

ηk(1 − ξk)(uk − 1)∇ξk · ∇uk dx

)
≤ C4

R
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for a constant C4 that depends only on K. Moreover,

lim
k→∞

∫
Ω+

k

ηk(1 − ξk)2(uk − 1)τεk(uk) dx = 0.

We also have

1

εk

∫
Ω+

k

ηk(1 − ξk)2(uk − 1)(1 − u2
k)uk dx ≤ − 1

3εk

∫
Ω+

k

ηk(1 − ξk)2(1 − u2
k)

2 dx

for every k. Similar estimates hold for Ω−
k instead of Ω+

k . It follows that

lim sup
k→∞

∫
Ω0

ηk(1 − ξk)2
[
εk
2
|∇uk|2 +

1

4εk
(1 − u2

k)
2

]
dx ≤ C5

R

for a constant C5 that depends only on K. If we choose R such that

R ≥ 2C5

δ
,

then we have

lim sup
k→∞

Ik∑
i=1

∫
Ω0

ηkψ
k
i

[
εk
2
|∇uk|2 −

1

4εk
(1 − u2

k)
2

]
dx ≥ δ

2
.

Hence for infinitely many values of k (we may assume without loss of generality: for
any k) there is an index i0(k) ∈ {1, . . . , Ik} such that∫

Ω0

ηkψ
k
i0(k)

[
εk
2
|∇uk|2 −

1

4εk
(1 − u2

k)
2

]
dx ≥ δε2k

2C2
.

Define x̃k = xk
i0(k) and

vk(x) = uk(εkx + x̃k).

Moreover, define

ψ̃k(x) = ψk
i0(k)(εkx + x̃k).

Let r > 0. By Lemma 3.2, we have

1

2

∫
Br(0)

(
|∇vk|2 +

1

2
(1 − v2

k)
2

)
dx ≤ C6r

3

for a constant C6 that depends only on Ω, Ω0, and K, whenever k is large enough.
Furthermore,∫

Br(0)

(Δvk + (1 − v2
k)vk)

2 dx ≤ 1

εk

∫
BRkεk

(x̃k)

(τεk(uk))
2 dx ≤ ck → 0

as k → ∞. By Lemma 3.3, there exists a number C7, depending only on K, such that
|vk| ≤ C7 in Br(0) for any sufficiently large k. The number r > 0 is arbitrary. Thus
a subsequence of {vk} converges to a bounded solution of

Δv + (1 − v2)v = 0 in R
3.(3.7)
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The convergence is strong in H1(Br(0)) for every r > 0. Because ∇ψ̃k is uniformly
bounded, we may assume that ψ̃k → ψ uniformly, where ψ : B4R(0) → [0, 1] is a
continuous function. Moreover, we may assume x̃k → x0 ∈ Ω0. Because of the
gradient bound for ηk, the functions ηk(εkx + x̃k) converge uniformly to a constant
a ∈ [0,K] after we have picked another subsequence. It follows that

a

2

∫
Q

ψ

(
|∇v|2 − 1

2
(1 − v2)2

)
dx ≥ δ

2C2
> 0.

However, it was proved by Modica [11] that a bounded solution of (3.7) satisfies

|∇v|2 ≤ 1

2
(1 − v2)2

pointwise. This gives a contradiction, and (3.4) follows.
To prove (3.5), we use the same method. There exists a constant C such that any

bounded solution of (3.7) satisfies

|∇v| ≤ C.

(To prove this, one can first estimate the energy in balls of radius 1 with the methods
from the proof of Lemma 3.2 and then apply standard regularity results for elliptic
equations.) In particular

(|∇v| − C)

∣∣∣∣ ∂v∂x3

∣∣∣∣ ≤ 0.

The rest of the proof is similar to the above. We omit the details.

4. Proof of Theorem 1.1. In this section we prove Theorem 1.1. Some of the
facts we establish are also true without the assumption ∂uε

∂x3 ≥ 0; therefore we work
first without this condition and impose it only later.

We assume that uε ∈ H2
loc(Ω) are functions such that

lim inf
ε↘0

(Eε(uε) + Tε(uε)) < ∞.

We can choose a sequence εk ↘ 0 such that

lim sup
k→∞

(Eε(uε) + Tε(uε)) < ∞.

We will choose a subsequence of {εk} several times in the proof. We will always denote
the subsequence by {εk} again for convenience.

We consider the measure pairs M (k) = (μ(k), ν(k)) ∈ W(Ω) defined by

μ(k) = L3

(
εk
2
|∇uεk |2 +

1

4εk
(1 − u2

εk
)2
)

and

ν
(k)
αβ = εkL3

(
∂uεk

∂xα

∂uεk

∂xβ

)
.

We have

lim sup
k→∞

(μ(k)(Ω) + W (M (k))) < ∞;
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thus we may assume that (after passing to a subsequence)

M (k) ⇀ M

for some M = (μ, ν) ∈ W(Ω) with

W (M) ≤ lim inf
k→∞

W (M (k)) ≤ lim inf
k→∞

Tεk(uεk).

(The second inequality follows from the same computations as in the examples of
section 2.) We also consider the Radon measures

hk =
1

εk
L3 (τεk(uεk))2

on Ω. We have

lim sup
k→∞

hk(Ω) < ∞;

hence we may assume that hk → h for a Radon measure h on Ω.
Lemma 4.1. Every x0 ∈ Ω satisfies μ({x0}) = 0.
Proof. Suppose we have μ({x0}) > 0 for some x0 ∈ Ω. For φ ∈ C1

0 (B1(0),R3)
and r > 0, set

φr(x) = φ((x− x0)/r).

We have ∫
Ω

(
div φr dμ− ∂φα

r

∂xβ
dναβ + φα

rH
β dναβ

)
= 0,

where H is the generalized mean curvature of M . Hence∫
Ω

(
div φ((x− x0)/r) dμ(x) − ∂φα

∂xβ
((x− x0)/r) dναβ(x)

)

= −r

∫
Ω

φα((x− x0)/r)H
β(x) dναβ(x) → 0

as r ↘ 0. On the other hand, the left-hand side converges to

div φ(0)μ({x0}) −
∂φα

∂xβ
(0) ναβ({x0}).

It follows that trace ν({x0}) = 3μ({x0}). But this is impossible because

trace ν(k) ≤ 2μ(k),

and this contradiction completes the proof.
Lemma 4.2. M ∈ W2(Ω).
Proof. We need to prove that

trace ν ≤ μ.(4.1)

To this end, we choose a function φ ∈ C1
0 (Ω) with φ ≥ 0. For a fixed δ > 0, let ε0, c,

and R be the numbers from Lemma 3.4 belonging to δ and

K = sup
k∈N

(Eεk(uεk) + Tεk(uεk)) + sup
Ω

φ.
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Define

V
c/2
0 = {x ∈ Ω : h({x}) ≥ c/2}

and

V c/2
r =

⋃
x∈V

c/2
0

Br(x)

for r > 0. The set V
c/2
0 is finite. Because of Lemma 4.1, there exists a number r0 > 0

such that μ(V
c/2
r0 ) ≤ δ. Moreover, we have

1

εk

∫
BRεk

(x0)

(τεk(uεk))2 dx < c

for any x0 ∈ suppφ\V c/2
r0/2

and any sufficiently large k. If ψ ∈ C1(Ω) is a function

with 0 ≤ ψ ≤ 1, ψ ≡ 0 in V
c/2
r0/2

, and ψ ≡ 1 outside of V
c/2
r0 , we can apply Lemma 3.4

to εk, uk, and η = φψ for every sufficiently large k. It follows that∫
Ω

φψ trace dν ≤
∫

Ω

φψ dμ + δ.

Thus ∫
Ω

φ trace dν ≤
∫

Ω

φdμ + δ(1 + K).

Since δ is arbitrary, we conclude that (4.1) holds.
We now consider the functions

vε =
1√
2

(
uε −

u3
ε

3

)
.

We have

∇vε =
1√
2
(1 − u2

ε)∇uε;

thus ∫
Ω

|∇vε| dx ≤
∫

Ω

(
ε

2
|∇uε|2 +

1

4ε
(1 − u2

ε)
2

)
dx = Eε(uε)

by Young’s inequality. From the theory of functions of bounded variation and sets
of bounded perimeter (see, e.g., Giusti [8] or Ambrosio, Fusco, and Pallara [3]), it
follows that there exists a subsequence of {εk} such that L3-almost everywhere in Ω,

vεk → v,

where v : Ω → {−
√

2/3,
√

2/3} is a function such that the set

U =

{
x ∈ Ω : v(x) = −

√
2

3

}
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is of finite perimeter (in Ω). Moreover, the reduced boundary ∂∗U satisfies

2
√

2

3
H2 ∂∗U ≤ μ.

For every point x ∈ ∂∗U , we have

lim
r↘0

r−2H2(∂∗U ∩Br(x0)) = π.

Hence

ΘM (x) ≥ 2
√

2

3
π.

By Lemma 2.7, the same inequality holds for any point in the relative closure of ∂∗U
in Ω, which we denote by ∂∗U . Thus

∂∗U ⊂ Σ =

{
x ∈ Ω : ΘM (x) ≥ 2

√
2

3
π

}
.

The set Σ is relatively closed. According to Proposition 2.11, it is countably
2-rectifiable. If ν = μ σ, then

σ(x) = proj⊥TxΣ

μ-almost everywhere on Σ (which is also H2-almost everywhere on Σ). In particular,

trace ν Σ = μ Σ.

The function v is locally constant on Ω\Σ after we have changed it on an L3-null set.

The most difficult part of the proof of Theorem 1.1 is to show that μ(Ω\Σ) = 0.
To this end, we now use the additional assumption Ω = Ω′ × R and

∂uε

∂x3
≥ 0(4.2)

L3-almost everywhere in Ω. Then we use arguments based on an idea of Ambrosio
and Cabré [2].

Lemma 4.3. μ(Ω\Σ) = 0.

Proof. Suppose η ∈ C2
0 (Ω\Σ) is a nonnegative function, the support of which is

contained in one of the connected components of Ω\Σ. Then we have either uεk(x) →
−1 for L3-almost every x ∈ supp η or uεk(x) → 1 for L3-almost every x ∈ supp η. We
may assume without loss of generality that the limit is 1. Thus∫

supp η

uεk dx → L3(supp η)

by Lebesgue’s convergence theorem.

For t ≥ 0, define

ηt(x
1, x2, x3) = η(x1, x2, x3 − t).
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We calculate

d

dt

∫
Ω

ηt dμ = −
∫

Ω

∂η

∂x3
(x1, x2, x3 − t) dμ(x)

= −
∫

Ω

∂η

∂xβ
(x1, x2, x3 − t) dν3β(x) +

∫
Ω

ηtH
β dν3β .

We have∣∣∣∣
∫

Ω

∂η

∂xβ
(x1, x2, x3 − t) dν3β(x)

∣∣∣∣ ≤ lim
k→∞

(
εk

∫
Ω

|∇η(x1, x2, x3 − t)||∇uεk |
∂uεk

∂x3
dx

)
.

Using Lemma 3.4 and arguments similar to those in the proof of Lemma 4.2, we find
that the right-hand side is at most

C‖∇η‖L∞(Ω) lim
k→∞

∫
supp ηt

∂uεk

∂x3
dx

for a universal constant C. Moreover, for any λ > 0, we have∣∣∣∣
∫

Ω

ηtH
β dν3β

∣∣∣∣ ≤
(∫

Ω

η2
t dν33

)1/2 (∫
Ω

HαHβ dναβ

)1/2

≤ λW (M) +
1

λ
lim
k→∞

(
εk

∫
Ω

η2
t

(
∂uεk

∂x3

)2

dx

)

≤ λW (M) +
C

λ
‖η‖2

L∞(Ω) lim
k→∞

∫
supp ηt

∂uεk

∂x3
dx.

Because of (4.2), ∫ ∞

0

∫
supp ηt

∂uεk

∂x3
dx dt ≤

∫
supp η

(1 − uεk) dx.

Thus for T > 0, we have a number C1 such that∫
Ω

η dμ ≤
∫

Ω

ηT dμ + λTW (M) + C1

(
1 +

1

λ

)
lim
k→∞

∫
supp η

(1 − uεk) dx

=

∫
Ω

ηT dμ + λTW (M).

Because λ is arbitrary and because μ(Ω) < ∞, it follows that∫
Ω

η dμ ≤ lim inf
T→∞

∫
Ω

ηT dμ = 0.

We conclude that μ(Ω\Σ) = 0.
It follows from Lemma 4.3 and the existence of the 2-density ΘM that μ is abso-

lutely continuous with respect to H2 Σ. More precisely,

μ = π−1(H2 Σ) ΘM .

Together with trace ν = μ, this implies part (i) of Theorem 1.1 for θ = ΘM . We have
already proved (ii). Part (iii) follows from Proposition 2.2 and the facts we know
about the structure of M . This concludes the proof of Theorem 1.1.
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Abstract. We show that the gradient flow u on L2 generated by the energy functional I[u] :=∫
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1. Introduction.

1.1. Gradient flows for quasi-convex energies. This paper is a contribution
to the mostly unsolved problem of understanding the gradient flow dynamics on L2

generated by integral functionals having the form

I[v] :=

∫
U

F (Dv) dx,(1.1)

defined for functions v : U → R
m, where U is an open subset of R

n. The gradient
Dv belongs to M

m×n, the space of m×n matrices, and we are given the nonlinearity
F : M

m×n → (−∞,+∞].

Quasi convexity. As is well known, the critical assumption for the existence of
minimizers of I[·], subject to appropriate boundary conditions, is that F be quasi-
convex in the sense of C. B. Morrey, Jr. This is the condition that∫

U

F (A) dx ≤
∫
U

F (A + Dv) dx(1.2)

for all matrices A ∈ M
m×n and all C1 functions v : U → R

m vanishing on ∂U .

Dynamics. As the existence and (partial) regularity theories for minimizers are
fairly well understood, it has long seemed natural to turn attention to related dy-
namical problems. The corresponding flow on L2 generated by I[·] is the initial-value
problem for the system of PDEs{

ut = div(DF (Du)) (t > 0),

u = u0 (t = 0),
(1.3)
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with appropriate boundary conditions.
Given the quasi-convexity hypothesis (1.2), the system (1.3) is parabolic, at least

in some weak sense. However, it is extremely nonlinear, so much so that it remains
to date a challenging open problem to prove existence of even weak solutions, to
understand uniqueness issues, and/or to show partial regularity.

Time-step approximations. One obvious approach is to approximate by an
implicit time-step approximation. For this, we fix a step size h > 0 and recursively
find uk+1 to minimize

Ik[v] :=
1

2

∫
U

|v − uk|2 dx + h

∫
U

F (Dv) dx,(1.4)

with appropriate boundary conditions, given uk. The Euler–Lagrange equations read{
uk+1−uk

h = div(DF (Duk+1)) (k = 0, 1, . . . ),

u0 = u0.
(1.5)

This procedure generates a strong candidate for an approximation to the full dynamics
(1.3). The fundamental point is that under our quasi-convexity assumption we can in
fact iteratively find minimizers of (1.4).

The really hard task is passing to limits as h → 0. Since our approximations
uk are minimizers, and not just critical points, of Ik[·], the expectation and hope is
that we obtain in the limit some sort of reasonable weak solution of (1.3). It has,
however, proved in practice impossible to carry out this program in general, owing to
the usual problem in nonlinear PDE that we do not have very good uniform estimates
on the approximate solutions uk. (The paper [E] demonstrates a completely different
minimization principle, but we have not been able to exploit this usefully.)

1.2. Nonlinearities depending only on the determinant. This paper doc-
uments some progress in this matter for the case m = n and nonlinearities F with
the special structure

F (P ) = Φ(detP ) (P ∈ M
n×n),(1.6)

where Φ is a convex function and “det” means determinant. Such a nonlinearity is
quasi-convex, and it has long been known that for the static calculus of variations the
particular hypothesis (1.6) has strong implications; see, for instance, Dacorogna [D].

We begin by reviewing the issue of minimizing the functional

I[v] :=

∫
U

F (Dv) dx =

∫
U

Φ(detDv) dx(1.7)

among mappings v = (v1, . . . , vn) from a connected, open set U ⊂ R
n into R

n. We
write the gradient matrix of v as

Dv =

⎛
⎜⎝
v1
x1

. . . v1
xn

...
. . .

...
vnx1

. . . vnxn

⎞
⎟⎠ .

If u = (u1, . . . , un) is a smooth minimizer of I[·], subject to boundary conditions
which for the moment we do not specify, then u solves the Euler–Lagrange system
of PDEs

div(DF (Du)) = div(Φ′(detDu)(cof Du)T ) = 0,(1.8)
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where cof Du is the cofactor matrix formed from Du. To derive (1.8) we employed
the formula

∂ detP

∂pki
= (cof P )ki (1 ≤ i, k ≤ n)(1.9)

for the n × n matrix P , whose (i, k) entry is denoted pki . Likewise, (cof P )ki means
the (i, k) entry of cof P . Formula (1.9) is a consequence of the matrix identity

(cof P )TP = I detP,(1.10)

but for any C2 function w = (w1, . . . , wn) we have

div((cof Dw)T ) ≡ 0;(1.11)

that is,

(cof Dw)ki,xi
= 0 (k = 1, . . . , n).

Therefore (1.8) implies

0 = Φ′′(detDu)D(detDu)(cof Du)T .(1.12)

In view of (1.10), our multiplying (1.10) by Du gives

0 = Φ′′(detDu)D(detDu)(detDu) =
1

2
Φ′′(detDu)D(detDu)2.

Assuming next the strict convexity condition that Φ′′ > 0, we deduce that (detDu)2

is constant within U . Thus, if u is smooth, we conclude that

detDu ≡ C within U(1.13)

for some constant C.

1.3. A gradient flow. We study in this paper the corresponding “heat flow”
governed by the function I[·], that is, the system of PDEs

ut = div(DF (Du)) = div(Φ′(detDu)(cof Du)T ),(1.14)

plus appropriate initial and boundary conditions, detailed later.
We are especially interested in the case that Φ(d) < ∞ for d > 0, Φ(d) = ∞ for

d < 0, and limd→0+ Φ(d) = +∞. Then (1.14) enforces the constraint

detDu > 0.

We can hope therefore that for each time t the mapping x �→ y = u(x, t) is a diffeo-
morphism, with inverse y �→ x = v(y, t). And since the static problem, recalled in
section 1.1, is so simple, we hope as well that the analysis of the system (1.14) may
not be so complicated.

This is in fact so, for as we will see in section 2, the quantity

β := (detDu)−1 > 0,(1.15)
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regarded as a function of y and t, solves the nonlinear parabolic PDE

βt = div

(
Φ′′

(
1

β

)
Dβ

β2

)
= div (βΨ′(β)Dβ)(1.16)

with Neumann boundary conditions, where

Ψ(d) := dΦ

(
1

d

)
for d > 0.

Now (1.16) is singular in regimes where β → 0 or ∞, but the maximum principle
implies that if the initial data β0 is bounded away from 0 and ∞, then so is the
solution.

We will show furthermore that given β, the solution of (1.16) with appropriate
initial conditions, we can then recover the mappings u by solving a system of ODEs
governed by β and proving then that the PDE (1.14) holds. In this sense, we can
regard the parabolic system of PDEs (1.14) as being somehow “integrable.”

1.4. Outline. Our paper introduces in section 2 the formal computations show-
ing how (1.16) results from (1.14). Section 3 then reverses this process to provide
careful proofs: we start with the solution β of the nonlinear diffusion equation and
build from it the mappings u(·, t) for t > 0.

Section 4 introduces some interesting variants of our construction, the first for
more general integrands than in (1.7). We discuss also a situation when the range of
the initial mapping u0 is a proper subset W0 of the target V . In this case we can
design Φ so that the flow “fills up” V in finite time. Interesting complications occur
if U and V are not in fact diffeomorphic.

The concluding section 5 introduces and analyzes a related “time-stepping” dy-
namic variational principle. This discussion will make much clearer the connections
between our PDE (1.16) and (1.14).

2. Calculations for smooth solutions. Suppose now U is a smooth, open,
bounded, connected subset of R

n, and

u : Ū × [0,∞) → R
n

is smooth, u = (u1, . . . , un). In this section we suppose as well that u solves the
system (1.14). Let u0 = u(·, 0) denote the initial mapping.

2.1. Changing variables. Suppose that for each time t ≥ 0, the mapping

u(·, t) : Ū → V̄

is a diffeomorphism, where V ⊂ R
n is a fixed open subset of R

n. We can then invert
the relationship

y = u(x, t) (x ∈ Ū , y ∈ V̄ )(2.1)

to give

x = v(y, t) for v := u−1.(2.2)

Set

β(y, t) := detDv(y, t) = (detDu(x, t))−1.(2.3)
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2.2. A PDE for β. Our main observation is that β solves a scalar, nonlinear
diffusion equation.

Theorem 2.1. We have{
βt = div

(
Φ′′

(
1
β

)
1
β2Dβ

)
in V × (0,∞),

∂β
∂ν = 0 on ∂V × (0,∞),

(2.4)

ν denoting the unit outward-pointing normal vectorfield to ∂V .
Proof. 1. Fix any time T > 0 and select a smooth function ζ : V̄ × [0, T ] → R

such that

ζ(·, 0) ≡ ζ(·, T ) ≡ 0.(2.5)

Then, employing (2.1), we compute∫ T

0

∫
V

βζt + Dy

(
Φ′

(
1

β

))
·Dyζ dydt

=

∫ T

0

∫
U

[
β(u, t)ζt(u, t) + Dx

(
Φ′

(
1

β

))
(Du)−1 ·Dyζ

]
dx

β(u, t)
dt(2.6)

=

∫ T

0

∫
U

∂

∂t
(ζ(u, t)) −Dyζ · ut + Dx

(
Φ′

(
1

β

))
(Du)−1

β
·Dyζ dxdt

= −
∫ T

0

∫
U

Dyζ ·
[
ut −Dx

(
Φ′

(
1

β

))
(Du)−1

β

]
dxdt.

Now our PDE (1.14) reads

ut = divx(Φ′(detDu) detDu(Du)−1) = Dx

(
Φ′

(
1

β

))
(Du)−1

β
,

since div((detDu)(Du)−1) = div(cof DuT ) ≡ 0. Consequently the expression within
the square brackets in the last term of (2.6) vanishes. So∫ T

0

∫
V

βζt + Dy

(
Φ′

(
1

β

))
·Dyζ dydt = 0

for all test functions ζ as above.
2. If also ζ ≡ 0 on ∂V × [0, T ], we may integrate by parts to deduce

βt + divy

(
DyΦ

′
(

1

β

))
≡ 0,(2.7)

and this is the PDE in (2.4). Now drop the assumption that ζ = 0 on the boundary
and again integrate by parts:∫ T

0

∫
∂V

∂

∂ν

(
Φ′

(
1

β

))
ζ dHn−1 dt = 0.

It follows that

∂

∂ν

(
Φ′

(
1

β

))
= −Φ′′

(
1

β

)
∂β

∂ν
≡ 0 on ∂V × (0, T ).

Since Φ′′ > 0, the proof is done.



742 L. C. EVANS, O. SAVIN, AND W. GANGBO

2.3. Recovering the mapping u from β. We next address the question of
how to recover the mapping u from knowledge of β. One possibility is for each time
t to try to find x �→ u(x, t) solving{

β(u(x, t), t) detDu(x, t) ≡ 1 in Ū ,

u(·, t) ∈ Diff(Ū , V̄ ),
(2.8)

where Diff(Ū , V̄ ) denotes the set of all diffeomorphisms of Ū onto V̄ . As we will
discuss later in section 5, this approach works, provided U and V are convex sets.

However, there is a simpler construction available. First, define the new nonlin-
earity

Ψ(d) := dΦ

(
1

d

)
(d > 0).(2.9)

Then

Ψ′(d) = Φ

(
1

d

)
− 1

d
Φ′

(
1

d

)
, Ψ′′(d) =

1

d3
Φ′′

(
1

d

)
;(2.10)

and so Ψ : (0,∞) → R is convex.
Next, perform these calculations:

ut = divx(Φ′(detDu) detDu(Du)−1)

= Dx(Φ′(detDu)) · (detDu(Du)−1)

= Φ′′(detDu)Dx(detDu) · (detDu(Du)−1)

= Φ′′
(

1

β

)
1

β
Dx

(
1

β

)
(Du)−1(2.11)

= −Φ′′
(

1

β

)
1

β3
Dxβ(Du)−1

= −Ψ′′(β)Dyβ = −DyΨ
′(β).

This computation suggests that we fix a point x ∈ Ū and then solve the ODE{ .
y(t) = −Ψ′′(β(y(t), t))Dβ(y(t), t) for t > 0,

y(0) = y = u0(x),
(2.12)

where . = d
dt . Then by uniqueness of solutions we have u(x, t) = y(t) for t ≥ 0.

3. Building diffeomorphisms. The formal calculations from the previous sec-
tion done with, we turn now to building rigorously a smooth solution

u : Ū × [0,∞) → V̄

of our system ⎧⎪⎨
⎪⎩

ut = div(Φ′(detDu)(cof Du)T ) in Ū × (0,∞),

u = u0 on Ū × {t = 0},
u(·, t) ∈ Diff(Ū , V̄ )

(3.1)

under some additional assumptions.
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3.1. Hypotheses. We require that the initial mapping u0 : Ū → V̄ be a diffeo-
morphism, mapping ∂U onto ∂V . We write

β0 := detDv0(3.2)

for v0 := (u0)−1 and assume that there exist positive constants 0 < C1 ≤ C2 such
that

(H1) C1 ≤ β0 ≤ C2 on V̄ .

We ask also that the following compatibility condition hold:

(H2)
∂β0

∂ν
= 0 on ∂V.

Finally we require that Φ be smooth and convex on (0,∞), with the lower bound

(H3) Φ′′
(

1

β

)
> 0 for C1 ≤ β ≤ C2.

3.2. Solving PDE and ODE. In view of (H1), (H2), the initial/boundary-
value problem ⎧⎪⎪⎨

⎪⎪⎩
βt = div

(
Φ′′

(
1
β

)
Dβ
β2

)
in V × (0,∞),

∂β
∂ν = 0 on ∂V × [0,∞),

β = β0 on V̄ × {t = 0}

(3.3)

has a unique, smooth solution β, with

0 < C1 ≤ β ≤ C2 in V̄ × [0,∞).(3.4)

Next, for each y ∈ V̄ , solve the ODE (2.12):{ .
y(t) = −Ψ′′(β(y(t), t))Dβ(y(t), t) for t > 0,

y(0) = y.
(3.5)

We write y(t) = y(t, y) to display dependence on the initial point y.
Theorem 3.1. (i) For each given x ∈ Ū , the ODE (3.5) has a unique solution

y : [0,∞) → V̄ , existing for all times t ≥ 0.
(ii) If y ∈ ∂V , then y(t) ∈ ∂V for all times t ≥ 0.
(iii) For each t ≥ 0, the mapping

u(x, t) := y(t,u0(x)) (x ∈ Ū , t ≥ 0)(3.6)

is a smooth diffeomorphism from Ū to V̄ , mapping ∂U onto ∂V .
Proof. Since ∂β

∂ν = 0 on ∂V , Dβ is tangent to ∂V and consequently the flow does
not leave V̄ . In particular, if u0(x) ∈ ∂V , then x(t) ∈ ∂V for times t ≥ 0.

Assertion (iii) is standard.
Define u : Ū × [0,∞) → V̄ by (3.6) and set v(·, t) := u−1(·, t) for each time t ≥ 0.
Theorem 3.2. (i) We have

β ≡ detDv.(3.7)
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(ii) Furthermore, u solves the system of PDEs (2.1), and the mapping

t �→
∫
U

Φ(detDu)(x, t) dx

is nonincreasing.
Proof. 1. As before, set α = detDu, α = α(x, t). Then

αt = αDxut(Du)−1.(3.8)

Now

ut = −DyΨ
′(β)

and so

Dxut = −D2
yΨ

′(β)(Dxu).

Hence

αt = −αΔyΨ
′(β).(3.9)

Next, regarding β = β(u, t) as a function of (x, t), we have

(αβ)t = αtβ + αβt + αDyβ · ut

= −αβΔyΨ
′(β) + α div(Ψ′′(β)βDyβ) − αDyβ · (Ψ′′(β)Dyβ)

= 0.

Since αβ ≡ 1 at t = 0, we deduce that

β = α−1 = detDv.

2. We have shown that β ≡ detDv, where v = u−1 and u is defined by (3.6).
We then return to the computation (2.11) to deduce that

ut =
.
x = −Ψ′′(β)Dβ = div(Φ′(detDu)(cof Du)T ).(3.10)

Finally let us calculate

d

dt

∫
U

Φ(detDu) dx =
d

dt

∫
V

Φ

(
1

β

)
β dy

=

∫
V

(
Φ

(
1

β

)
− 1

β
Φ′

(
1

β

))
βt dy

=

∫
V

Ψ′(β) div(βΨ′′(β)Dβ) dy

= −
∫
V

Ψ′′(β)2β|Dβ|2 dy ≤ 0.

4. Some variants.

4.1. More general nonlinearities. Our methods extend with little difficulty
to the functional

I[v] :=

∫
U

Φ(f(v) detDv) dx(4.1)

for Φ as before and f : V̄ → (0,∞).
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Euler–Lagrange equation. The corresponding Euler–Lagrange equation is

−div(Φ′(f detDu)f(cof Du)T ) + Φ′(f detDu)(detDu)Df = 0,

which simplifies to read

Φ′′(f detDu)D(f detDu)f(cof Du)T = 0.(4.2)

As in section 1.1 this implies that

f(u) detDu ≡ C within U

for some constant C.

A gradient flow. The evolution associated with (4.1) is

ut − div(Φ′(f detDu)f(cof Du)T ) + Φ′(f detDu)(detDu)Df = 0,(4.3)

plus initial and boundary conditions.
As before, assume v := u−1 exists and write

β := detDv.

Theorem 4.1. We have⎧⎨
⎩
βt = −div

(
Φ′′

(
f
β

)
fD

(
f
β

))
in V × (0,∞),

∂
∂ν

(
f
β

)
= 0 on ∂V × (0,∞).

(4.4)

Proof. 1. Fix any time T > 0 and select a smooth function ζ : V̄ × [0, T ] → R

satisfying (2.5).
Then ∫ T

0

∫
V

βζt + Dy

(
Φ′

(
f

β

))
·Dyζf dydt

=

∫ T

0

∫
U

[
β(u, t)ζt(u, t) + Dx

(
Φ′

(
f

β

))
(Du)−1 ·Dyζf

]
dx

β(u, t)
dt(4.5)

=

∫ T

0

∫
U

∂

∂t
(ζ(u, t)) −Dyζ · ut + Dx

(
Φ′

(
f

β

))
(Du)−1

β
·Dyζf dxdt

= −
∫ T

0

∫
U

Dyζ ·
[
ut −Dx

(
Φ′

(
f

β

))
(Du)−1

β
f

]
dxdt.

But according to (4.3), we have

ut = D(Φ′(f detDu))f(detDu)(Du)−1

= D

(
Φ′

(
f

β

))
f

β
(Du)−1.

(4.6)

Consequently the expression within the square brackets in the last term of (4.5) van-
ishes.
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4.2. “Filling up” the target domain. An interesting variant of our construc-
tion is as follows. Select u0 : Ū → W̄0 to be a diffeomorphism, where W0 ⊂⊂ V is
given. We will choose Φ and u so that{

W (t) := u(U, t) (t ≥ 0),

W (0) = W0

(4.7)

expands to “fill up” the target V in finite time.
For this, let us take m > 0 and

Φ(d) :=

{
1
md−m (d > 0),

+∞ (d ≤ 0).

Therefore

Ψ(d) = dΦ

(
1

d

)
=

1

m
dm+1

for d > 0. Then β solves the porous medium equation

βt = div(Ψ′′(β)βDβ) = Δ(βm+1).

5. Connections with optimal mass transfer problems. As noted in the in-
troduction, the time-step minimization method (1.4) and (1.5) provides an extremely
natural approximation method, but one which we have not been able to prove con-
verges. This section recalls more about this procedure, to highlight the connections
with Monge–Kantorovich mass transfer theory.

We are primarily motivated by Otto [O] and Jordan, Kinderlehrer, and Otto
[J-K-O]. The novelty of Otto’s paper [O] was to interpret (5.8) as a gradient flux of
the “entropy” S(β) :=

∫
V

Ψ(β)dy with respect to the Wasserstein distance.

5.1. Time-step approximations. Assume for this section that U and V are
two bounded, open, convex sets with smooth boundaries.

We discuss a time-discrete algorithm for the flow⎧⎪⎨
⎪⎩

ut = div(DF (Du)),

u(·, 0) = u0,

u(·, t) ∈ Diff(Ū , V̄ ),

(5.1)

where, as before,

F (P ) =

{
Φ(detP ), detP > 0,
+∞, detP ≤ 0.

The system (5.1) is a gradient flux of the functional I[·] with respect to the L2-
metric. In section 2 we have shown that (5.1) is related to (1.16), which, as we will
recall below, is the gradient flow governed by

∫
V

Ψ(β) dy with respect to the Wasser-
stein distance. The algorithm which we discuss is another way to view that relation.

A discrete-time approximation. First, let us fix a time-step size h > 0. We
introduce the implicit scheme of recursively finding uk+1 to solve{

uk+1−uk

h = div(DF (Duk+1)),

uk+1 ∈ Diff(Ū , V̄ ),
(5.2)
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given uk. More precisely, set

Ik[v] :=
1

2

∫
U

|v − uk|2 dx + h

∫
U

F (Dv) dx.(5.3)

We intend to find uk+1 to be the unique minimizer of

min
v

{Ik[v] | v ∈ Diff(Ū , V̄ )}.(5.4)

Changing variables. Since our nonlinearity F is neither coercive nor convex,
standard calculus of variations methods do not apply. However, recent papers by
Gangbo and Van der Putten [G-VP] and Maroofi [Ma] demonstrate how to exploit
the special structure of F (P ) = Φ(detP ) to find minimizers.

Indeed, if we apply a change of variables y = u(x) and set β := det(Du−1),
βk := det(Du−1

k ), we discover that

Ik[v] =
1

2

∫
V

|y − uk(v
−1(y))|2dy + h

∫
V

Ψ(β) dy.

Consequently

min
v∈Diff(Ū,V̄ )

Ik[v]

= inf
β

{
h

∫
V

Ψ(β) dy + inf
v

{
1

2

∫
V

|y − uk(v
−1(y))|2dy | β = det(Dv−1)

}}
(5.5)

= inf
β

{
h

∫
V

Ψ(β) dy + inf
w

{
1

2

∫
V

|y − w(y)|2dy | βk = β(w) detDw

}}

= inf
β

{
h

∫
V

Ψ(β) dy + W 2
2 (βk, β)

}
,

where W2, the Wasserstein distance between two Borel measures μ and ν, is defined
as

W 2
2 (μ, ν) :=

1

2
inf

γ∈Γ(μ,ν)

∫∫
|x− y|2dγ(x, y).

Here Γ(μ, ν) is the set of Borel measures γ on R
2n that have μ and ν as their marginals.

The notation W 2
2 (βk, β) means that we have identified β with the measure whose

density is β.
We assume for k = 0 that ∫

V

β0 dy = 1,

where β0 = detDu−1
0 . This reduces the last three problems in (5.5) to minimization

problems over Pa(V ), the set of probability densities supported in V .
Define the new functional

Jk(β) := W 2
2 (β, βk) + h

∫
V

Ψ(β) dy.(5.6)

Now W 2
2 (βk, ·) is convex and is weakly-∗ lower semicontinuous. Since Ψ is strictly

convex, we see also that β →
∫
V

Ψ(β) dy is a strictly convex functional of β and is
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weakly-∗ lower semicontinuous on subsets of L1 that are weakly-∗ compact. Conse-
quently, the minimization problem

inf
β∈Pa(V )

Jk(β)(5.7)

has a unique solution βk+1.

5.2. Time-step approximations for β. This subsection quickly reviews a
time-discrete algorithm based on the Wasserstein distance for solving{

βt = div
(
βD[Ψ′(β)]

)
,

β(·, 0) = β0.
(5.8)

Let us now deal with the following nonlinear problem appearing in (5.5), where
we replace β by βk+1. We study the minimization problem

inf
v

{∫
V

|y − v(y)|2dy | βk = βk+1(v) detDv

}
,(5.9)

which, thanks to the Monge–Kantorovich theory, is known to admit a unique mini-
mizer vk+1 (see Brenier [B]). Furthermore, vk+1 is the gradient of a convex function
ψk+1 : V̄ → R, satisfying the Monge–Ampere problem

βk = βk+1(Dψk+1) detD2ψk+1, Dψk+1(V̄ ) = V̄(5.10)

in the sense that

Dψk+1 : V̄ → V̄ a.e. and

∫
V

f(Dψk+1)βk dx =

∫
V

fβk+1 dy(5.11)

for all f ∈ C(Rn). Equivalently, if φk+1 is the Legendre transform of ψk+1, then

Dφk+1 : V̄ → V̄ a.e. and

∫
V

g(Dφk+1)βk+1 dy =

∫
V

gβk dx(5.12)

for all g ∈ C(Rn). We write that

(Dψk+1)#βk = βk+1, (Dφk+1)#βk+1 = βk,

the symbol # denoting push-forward. Agueh [A] has shown that

C1 ≤ βk+1 ≤ C2,(5.13)

provided

C1 ≤ βk ≤ C2(5.14)

for constants 0 < C1 ≤ C2

The Euler–Lagrange equations of (5.7) read

Dφk+1(y) = y + hD[Ψ′(βk+1(y))],(5.15)

and we conclude from (5.15) that

βk+1(y) = (Ψ∗)′
((

φk+1(y) −
|y|2
2

)
/h

)
,(5.16)
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where Ψ∗ is the Legendre transform of Ψ.
Assume that βk ∈ Cl,α(V̄ ) for some α > 0 and some integer l ≥ 0. By (5.16),

βk+1 ∈ W 1,∞(V ) ⊂ C0,α(V̄ ). Regularity theory for the Monge–Ampere equations
(see [C1], [C2], [C3], [C4]) and (5.10) imply that ψk+1, φk+1 ∈ C2,α(V̄ ). This and
(5.16) demonstrate that βk+1 ∈ C2,α(V̄ ). Thus

γk+1 := Dφk+1 ◦Dφk ◦ · · · ◦Dφ1 ∈ Cl+1,α(V̄ , V̄ ).

The map

uk+1 = γk+1 ◦ u0

is then the unique solution to (5.2), and uk+1 ∈ Cl+1,α(Ū , V̄ ) if u0 ∈ Cl+1,α(Ū , V̄ ).
We record next that the time-step approximations converge as h → 0.
Theorem 5.1. For h > 0, inductively define βk+1 to be the unique minimizer of

Jk[·] over Pa(V ). Set

βh(y, t) =

{
β0(y) if t = 0,
βk(y) if t ∈ ((k − 1)h, kh].

Fix T > 0 and assume that T = Mh for an integer M > 0.
Then the following hold:
(i) For each test function η ∈ C2

c , we have∣∣∣∣
∫
VT

∂h
t η(β

h − β0) dxdt +

∫
VT

div
(
βhD[Ψ′(βh)]

)
dxdt

∣∣∣∣ ≤ Cηh,

where ∂h
t η(x, t) = (η(x, t + h) − η(x, t))/h and VT = V × (0, T ).

(ii) There exists a subsequence {hm}∞m=1 converging to 0 and β ∈ L1(VT ) such
that {βhm}∞m=1 converges to β. Furthermore, β satisfies the parabolic equation (5.8).

5.3. Time-step approximations for u. Finally, we return to the approxima-
tion scheme (5.2) and consider the convergence problem as h → 0.

We first record some uniform estimates.
Theorem 5.2. Fix h > 0 and inductively define uk+1 to be the unique minimizer

of Ik[·] over Diff(Ū , V̄ ). Define

uh(·, t) =

{
u0(·) if t = 0,
uk(·) if t ∈ ((k − 1)h, kh].

Fix T > 0 and assume that T = Mh for an integer M > 0. Set UT = U × (0, T ).
Then the following hold:
(i) For each t ∈ [0, T ] we have that uh(·, t) ∈ Diff(Ū , V̄ )∩Cl+1,α(Ū ,Rn) and there

are constants C1, C2 > 0 depending only on u0 such that

C1 ≤ detD(uh)−1 ≤ C2.

(ii) There exists a constant C > 0, depending only on u0, such that

M−1∑
k=0

∫
U

|uk+1 − uk|2 dx ≤ Ch.
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(iii) For each test function v ∈ C2, we have

∣∣∣∣
∫
UT

uh · vt −DF (Duh) : Dv dxdt +

∫
U

u0 · v(·, 0) dx

∣∣∣∣ ≤ h

2
C
√
T ||vt||L∞(UT ).

(5.17)

Proof. 1. Set β0 = detDu−1
0 . Since u0 ∈ Diff(Ū , V̄ ) we have that

0 < C1 := min
V̄

β0, C2 := max
V̄

β0 < +∞.

According to the discussion above, we can choose inductively uk+1 to be the unique
minimizer of Ik over Diff(Ū , V̄ ).

2. The inequality Ik(uk+1) ≤ Ik(uk) implies that

M−1∑
k=0

Ik(uk+1) ≤
M−1∑
k=0

Ik(uk).

Therefore

1

2

M−1∑
k=0

∫
V

|uk+1 − uk|2dx ≤ h

∫
U

Φ(detDu0) − Φ(detDuM )dx ≤ 2h|U | max
[ 1
C2

, 1
C1

]
|Φ|.

(5.18)

This proves (ii).
3. Suppose now that v ∈ C2, and set tk = kh, vk = v(·, kh), and Uk = U ×

(tk, tk+1). Then

∫
UT

uh · vt −DF (Duh) : Dv dxdt =

M−1∑
k=0

∫
Uk

uk+1 · vt dxdt−DF (Duk+1) : Dv dxdt.

We recall that (uk+1 − uk)/h = div(DF (Duk+1)) and continue to calculate that

∫
UT

uh · vt −DF (Duh) : Dv dxdt =

M−1∑
k=0

∫
Uk

uk+1 · vt +

(
uk+1 − uk

h

)
· v dxdt

=
M−1∑
k=0

∫
U

uk+1 · (vk+1 − vk) dx

+

∫
U

(uk+1 − uk) · vk dx

+

M−1∑
k=0

∫
U

(
uk+1 − uk

h

)
·
(∫ tk+1

tk

v − vk dt

)
dx

=

∫
U

uM · vM − u0 · v0 dx

+

M−1∑
k=0

∫
U

(
uk+1 − uk

h

)
·
(∫ tk+1

tk

v − vk dt

)
dx.
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Taking into account vM = v(T ) = 0 and∣∣∣∣
∫ tk+1

tk

v − vk dt

∣∣∣∣ ≤ h2

2
max
UT

|vt|,

we conclude that∣∣∣∣
∫
UT

uh · vt −DF (Duh) : Dv dxdt +

∫
U

u0 · v(·, 0) dx

∣∣∣∣
≤ h

2
||vt||L∞

M−1∑
k=0

∫
U

|uk+1 − uk| dx

≤ h

2
||vt||L∞(UT )

(
M−1∑
k=0

∫
U

|uk+1 − uk|2 dx
) 1

2

M
1
2 .(5.19)

We combine (5.18) and (5.19) to finish up the proof of (iii).
This theorem provides some uniform estimates, but it remains an unsolved prob-

lem to show that as h → 0, the approximation uh converges somehow to a solution u
of (1.3). One particular issue is that we do not know if the gradients Duh converge
strongly in L2.

Our belief is that although the scheme (5.2), (5.3), and (5.4) is obviously extremely
natural, we do not currently know how fully to exploit the minimization structure.
We have here a problem in the “time-dependent calculus of variations,” but we do not
have enough experience to understand, for instance, the proper choices of comparison
functions to employ in our variational principles. The direct PDE and ODE methods
in sections 2 and 3 provide a way around this difficulty for the special case of the
nonlinearity (1.6).
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Abstract. We study solutions of some supercritical parabolic equations which blow up in finite
time but continue to exist globally in the weak sense. We show that the minimal continuation
becomes regular immediately after the blow up time, and if it blows up again, it can only do so
finitely many times.
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1. Introduction. We consider the problem⎧⎨
⎩
ut = Δu + f(u), x ∈ B1, t > 0,
u = 0, x ∈ ∂B1, t > 0,
u(x, 0) = u0(x) (= U0(|x|) ), x ∈ B1,

(P)

where B1 = {x ∈ R
N : |x| < 1}, U0 ∈ C([0, 1]), U0 ≥ 0 with U0(1) = 0, and either

f(u) = λeu, λ > 0, 3 ≤ N ≤ 9(1.1)

or

f(u) = up,
N + 2

N − 2
< p < p∗, N ≥ 3,(1.2)

where

p∗ =

{
∞ if N ≤ 10,

1 + 4
N−4−2

√
N−1

if N > 10.

In the case of the exponential nonlinearity (1.1), we shall further assume that
U0(r) is a nonincreasing function on [0, 1].

We shall show that if a solution blows up in a finite time t = T < ∞ but continues
to exist as a weak solution for t > T , then this extended solution becomes regular
immediately after the blow up time T , that is, it possesses no singularity in the time
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interval T < t < T ∗ for some T ∗ ∈ (T,∞]. Here, by an extended solution we mean
the so-called minimal continuation, whose meaning will be clarified later.

Let us now give a more detailed description of the result together with some
history of the problem. Global unbounded weak solutions of (P) with f(u) = up,
p ≥ N+2

N−2 , were discovered in [16]. These solutions are characterized as the limit of
an increasing sequence of global classical solutions 0 < u1 < u2 < u3 < · · · such that
each uk belongs to the domain of attraction of the stable stationary solution u = 0
(that is, uk → 0 as t → ∞) and such that limk→∞ uk lies on the boundary of this
domain of attraction.

The monotonicity of the sequences and the standard Kaplan-type estimate for the
approximating classical solutions yield uniform bounds on certain integrals; hence the
limit functions are indeed time-global weak solutions. Moreover, these weak solutions
are necessarily unbounded on the time interval [0, ∞), since otherwise they would
remain classical for all t > 0 and converge to some positive stationary solution as
t → ∞, but the assumption p ≥ N+2

N−2 and the Pohozaev identity imply nonexistence
of positive stationary solutions. Consequently, one of the following alternatives occurs
for each of these global weak solutions:

(a) the solution blows up in finite time;
(b) the solution remains smooth for all t > 0 and tends to infinity as t → ∞.
For a long time it was not known which of the two alternatives really occurs. Much

later Galaktionov and Vázquez [4] concluded that (a) is always the case, provided that

N + 2

N − 2
< p

(
< 1 +

6

N − 10
if N > 10

)
.

It follows from [4] and a recent result of Mizoguchi [15] that (a) holds for all p >
(N + 2)/(N − 2), N > 2. By blow up in finite time we mean that there is T ∈ (0,∞)
such that

lim
t→T

‖u(·, t)‖L∞(B1) = ∞,

and we call T the blow up time of solution u. The above-mentioned global weak
solutions thus have continuation beyond the blow up time in a certain sense.

Note that such continuation is not possible if 1 < p ≤ N+2
N−2 . Indeed it is known

that in this range of p every blow up is complete in the sense that the minimal (proper)
continuation for t larger than the blow up time T is infinite everywhere in B1×(T,∞).
See [1, 4] for details. Note also that the same is true for any p > 1 if ut ≥ 0.

In the case of exponential nonlinearity (1.1), global unbounded weak solutions
were constructed in [9] for a certain range of λ and later in [3] for a larger range of λ.
It was also proved in [3] that global unbounded weak solutions blow up in finite time.

For both (1.1) and (1.2), it is still an open question whether the weak continuation
beyond the blow up time is unique or not. However, one can define uniquely the so-
called minimal continuation, and this is what we study in the present paper.

Now, given a global weak solution u, we define the set of regular time moments
by

R := {t0 > 0 : u is a classical solution on some
time interval around t = t0}

and the set of singular time moments by S = (0,∞)\R. By Lemma 2.6 in subsection
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2.1, we see that S = B, where

B :=

{
t0 > 0 : lim sup

t→t0

‖u(·, t)‖L∞(B1) = ∞
}
.

Our main goal is to show that B is a finite set. This in particular implies that
the solution recovers smoothness immediately after blow-up, and it remains smooth
until t = ∞ or until the next blow-up occurs. We also give an example of a limit
L1-solution for which B is a singleton.

Previously some examples of “peaking solutions”—that is, solutions which blow
up at t = T and become smooth for t > T— have been known for the Cauchy problem
in R

N (see [9, 4, 12]). In [9] and [4], examples of peaking solutions are constructed
by simply gluing backward self-similar solutions (i.e., self-similar solutions that are
defined for −∞ < t < T and blow up at t = T ) and forward self-similar solutions (i.e.,
self-similar solutions that are defined for T < t < ∞ and blow up at t = T ) sharing
the same blow up profile at the blow up time T . However, this method does not work
for problems in bounded domains since self-similar solutions do not satisfy reasonable
boundary conditions on a fixed boundary. In [13, 14], examples of solutions with multi-
ple blow up time are constructed for the power case (1.2). These earlier works only give
some examples of peaking solutions, and it has not been known whether or not global
weak solutions in general behave like peaking solutions—more precisely, whether or
not immediate regularization always occurs after blow-up. Our result in the present
paper shows that every minimal continuation beyond blow-up has this property.

It should be noted that our result does not follow from standard parabolic es-
timates. Indeed, once a solution u blows up, say at t = T , then its blow up profile
u(x, T ) may no longer belong to the function space in which problem (P) is well-posed;
therefore, a standard bootstrap argument does not improve the regularity so much.
See Remark 3.4 for details.

This paper is organized as follows. In section 2, we define limit L1-solutions and
derive various estimates for these solutions. Among other things we show that limit
L1-solutions belong to C([0,∞);H1(B1)).

In section 3, we state our main result (Theorem 3.1). We then prove the main
theorem in sections 4 and 5. The proof relies heavily on the zero-number properties
of parabolic equations. Note that, as we are dealing with solutions with singularities,
the zero-number is no longer monotone nonincreasing but a slightly weaker property
holds (see Lemma 4.1 and Remark 4.3).

In section 6, we consider the case of exponential nonlinearity (1.1) and prove
the existence of a peaking solution that blows up exactly once and remains smooth
thereafter (Theorem 6.1). This result is proved by showing that a singular heteroclinic
connection between certain equilibrium solutions of (P) has this property. As far
as the authors know, no example of peaking solution was known previously for the
exponential nonlinearity (1.1) in a bounded domain.

2. Preliminaries. Hereafter, for notational simplicity, we sometimes write the
solution of (P) as u(r, t) rather than u(x, t), where r stands for |x|. This is the case
in some part of subsections 2.3–2.5 and much of section 3.

2.1. Definition of L1-solutions.

Definition 2.1. By an L1-solution on an interval [0, T0] we mean a function
u ∈ C([0, T0]; L

1(B1)) such that f(u) ∈ L1(QT0
), QT0

:= B1 × (0, T0) and such that
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the equality ∫
B1

(u(x, t)Ψ(x, t) − u0(x)Ψ(x, 0)) dx−
∫ t

0

∫
B1

uΨt dx ds

=

∫ t

0

∫
B1

(uΔΨ + f(u)Ψ) dx ds

holds for any 0 < t ≤ T0 and Ψ ∈ C2(QT0
) with Ψ = 0 on ∂Ω × [0, T0]. By a global

L1-solution we mean a function u ∈ C([0,∞); L1(B1)) which is an L1-solution on
[0, T0] for every T0 > 0.

Definition 2.2. By a limit L1-solution we mean a global L1-solution which can
be approximated by global classical solutions in the following way: There is a sequence
{u0,n} in C(B1) such that

u0,n → u0 in C(B1)(2.1)

and that the solution un of (P) with u(·, 0) = u0,n exists globally for t ≥ 0 and satisfies

(2.2) un(·, t) → u(·, t) in L1(B1) for every t > 0,

f(un) → f(u) in L1((B1) × (0, t)) for every t > 0.

We refer to any such sequence {un} as an approximating sequence for u. We call a
limit L1-solution a minimal L1-solution if it has an approximating sequence that is
pointwise nondecreasing in n.

Remark 2.3. We do not need to assume in Definition 2.2 that u(x, t) is a global L1-
solution. In fact, by condition (2.2), the limit function u(x, t) automatically satisfies
the integral identity in Definition 2.1. To see that u belongs to C([0,∞); L1(B1)),
recall that any approximating sequence of classical solutions un satisfies

un(·, t) = etΔ u0,n +

∫ t

0

e(t−τ)Δf(un(·, τ)) dτ.

Letting n → ∞ and using (2.2), we obtain

u(·, t) = etΔ u0 +

∫ t

0

e(t−τ)Δf(u(·, τ)) dτ.

This proves the continuity t �→ u(·, t) in L1(B1).
Remark 2.4. Condition (2.2) is automatically fulfilled if the approximating se-

quence un is monotone nondecreasing in n. In fact, the standard Kaplan estimate
gives uniform bounds for ‖un(·, t)‖L1(B1) and ‖f(un)‖L1(B1×[0,T0]); hence (2.2) follows
from the monotone convergence theorem.

Though we require only (2.1) and (2.2) for the approximating sequence un, the
actual convergence takes place in a much stronger sense, as we shall see in Proposition
2.12.

The next lemma shows that any limit L1-solution is a classical solution until it
blows up.

Lemma 2.5. Let u and ũ be, respectively, a limit L1-solution and a classical
solution of (P) sharing the same initial data u0, and denote by [0, T ) the maximal
interval of existence for ũ. Then u = ũ for 0 ≤ t < T . Moreover, any approximating
sequence {un} for u satisfies

un(·, t) → u(·, t) in C2(B1) for each t ∈ (0, T ).
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Proof. By the well-posedness of (P) in the space C(B1), convergence (2.1) implies
un(·, t) → ũ(·, t) in C(B1) locally uniformly in t ∈ (0, T ). This, together with (2.2),
yields ũ(x, t) = u(x, t) for 0 ≤ t < T . The C2 convergence is a consequence of
parabolic estimates.

Lemma 2.6. Let u be a limit L1-solution and suppose that

sup
t1<t<t2

‖u(·, t)‖L∞(B1) < ∞(2.3)

for some 0 ≤ t1 < t2. Then u is “regular” (i.e., a classical solution) in the interval
t1 < t < t2.

Proof. By the same limiting argument as in Remark 2.3, we get

u(·, t) = e(t−t1)Δ u(·, t1) +

∫ t

t1

e(t−τ)Δf(u(·, τ))dτ

for t ∈ [t1, t2). Since u is bounded we obtain u ∈ C((t1, t2); C
1(B1)); hence f(u) ∈

C((t1, t2); C
1(B1)). Using the parabolic estimates again, we see that u is a classical

solution for t1 < t < t2.
Another consequence of parabolic estimates is the following.
Lemma 2.7. Let u be a minimal L1-solution satisfying (2.3) for some 0 ≤ t1 < t2.

Then any nondecreasing approximating sequence {un} satisfies

un(·, t) → u(·, t) in C2(B1)

for each t ∈ (t1, t2).

2.2. A pointwise Kaplan-type bound. It is well known that all global classi-
cal solutions of (P) satisfy certain integral estimates called Kaplan estimates (see [8]).
In this subsection we introduce a multiscale version of Kaplan’s technique and derive a
useful pointwise bound for global weak solutions of (P). Our technique, which applies
to radially decreasing solutions, is a slightly modified version of the one found in [11].
Note that, in the case of power nonlinearity (1.2), the same pointwise bound can also
be derived by a totally different technique and it holds for any radially symmetric
solutions that are not necessarily decreasing in r (see subsection 2.4 and also [10]).

To begin with, let us consider problem (P) where u0(x) ≥ 0 is a continuous
function on B1 vanishing on ∂B1 and f : R → R is a C2 function satisfying

f ′′ > 0,

∫ ∞

L

du

f(u)
< ∞(2.4)

for some L ≥ 0.
Next let μ be the second eigenvalue (the first positive eigenvalue) for the Laplacian

in B1 under the Neumann boundary conditions and under radial symmetry:⎧⎨
⎩
η′′(r) +

N − 1

r
η′(r) = −μη(r), 0 < r < 1,

η′(0) = η′(1) = 0.

(2.5)

More precisely, μ is a positive number such that there exists a function η = η(r)
satisfying (2.5) along with the condition

η′(r) < 0, 0 < r < 1, η(0) = 1, 0 > η(1).
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Clearly these conditions determine both μ and η uniquely. For each R ∈ (0, 1], we set

ψ
R
(x) = η(R−1|x|) − η(1).

Then it is easily seen that ψ
R

satisfies⎧⎪⎪⎨
⎪⎪⎩

Δψ
R

= − μ

R2
(ψ

R
− C), x ∈ BR,

ψ
R
> 0, x ∈ BR,

ψ
R

=
∂ψ

R

∂n
= 0, x ∈ ∂BR.

Here the constant C := −η(1) satisfies∫
BR

ψ
R
(x) dx = C|BR|,

where

BR := {x ∈ R
N : |x| < R}, |BR| :=

∫
BR

dx.

Now we define a function hR(t) by

hR(t) =
1∫

BR
ψ

R
dx

∫
BR

ψ
R
(x)u(x, t) dx.

Then a simple computation shows that(∫
BR

ψ
R
dx

)
h′
R(t) =

∫
ψ

R
ut dx

=

∫
ψ

R
(Δu + f(u)) dx

=

∫
(Δψ

R
)u + ψ

R
f(u) dx

=

∫
BR

ψ
R
f(u) dx− μ

R2

∫
(ψ

R
− C)u dx,

provided that u is smooth. Thus, by Jensen’s inequality, we get

h′
R(t) ≥ f(hR(t)) − μ

R2
hR(t) +

μ

R2

1

|BR|

∫
BR

u(x, t) dx.(2.6)

If, in particular, u ≥ 0, we have

h′
R(t) ≥ f(hR(t)) − μ

R2
hR(t).

The above inequality yields the following lemma.
Lemma 2.8. Let f satisfy (2.4). If u is a nonnegative classical solution of (P)

defined for all t ≥ 0, then

h
R
(t) ≤ ρ

R
, t ≥ 0, 0 < R ≤ 1,

where ρ
R

is the largest root of the equation

f(ρ) − μ

R2
ρ = 0.
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The well-known Kaplan’s eigenfunction method (see [8]) consists in testing the
equation in (P) by the first eigenfunction ϕ1 of the Laplacian under the Dirichlet
boundary condition where one chooses ϕ1 > 0 such that

∫
B1

ϕ1(x) dx = 1. This

yields a bound for
∫
B1

u(x, t)ϕ1(x) dx. In our case, testing by ψR with various R > 0
gives a localized version of such a bound.

Example 1. If f(u) = λeu, where λ > 0, then one easily sees

ρ
R
≤ log

μ

λR2
+ log log

μ

λR2
+ log

e

e− 1
.(2.7)

Example 2. If f(u) = up, where p > 1, then

ρ
R

=

(
μ

R2

)1/(p−1)

.(2.8)

Remark 2.9. Mizoguchi [11] uses ϕ1(R
−1x) instead of ψR (for the power case

(1.2)). This gives a slightly better constant μ, provided that solution u is radially
decreasing. On the other hand, our choice of ψR has an advantage of yielding a more
refined bound in subsection 2.5.

2.3. Basic estimates for the exponential. In this subsection we assume that

f(u) = λeu, N > 2,(2.9)

and that u0(x) = U0(|x|) with

U0 ∈ C1([0, 1]), U ′
0 ≤ 0, U0(1) = 0.(2.10)

Then ∂u/∂r ≤ 0 for r ≥ 0 and t > 0; hence Lemma 2.8 and (2.7) yield

0 ≤ u(r, t) ≤ log
μ

λr2
+ log log

μ

λr2
+ log

e

e− 1
,(2.11)

since u(r, t) ≤ hr(t). Consequently, for each 1 ≤ q < N/2, there is a constant Mq > 0
such that

‖u‖Lq(B1) ≤ Mq, ‖λeu‖Lq(B1) ≤ Mq.(2.12)

Next we recall that, for each 0 < β < 1,

‖etΔϕ‖Xβ
≤ Cβ t

−β‖ϕ‖Lq , t > 0,

where Xβ = W 2β,q
0 (B1) and Δ denotes the Laplace operator in B1 under the Dirichlet

boundary conditions. Therefore, if v is a solution of the equation

vt = Δv + g(x, t), x ∈ B1, t ≥ 0(2.13)

under the Dirichlet boundary conditions, then from the expression

v(·, t + δ) = eδΔv(·, t) +

∫ δ

0

e(δ−τ)Δg(·, t + τ) dτ

we get the estimate

‖v(·, t + δ)‖Xβ
≤ Cβ δ

−β‖v(·, t)‖Lq +
Cβ

1 − β
δ1−β sup

τ∈(0,δ)

‖g(·, t + τ)‖Lq .
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Combining this and (2.12), we obtain

‖u(·, t + δ)‖Xβ
≤ CβMq

(
δ−β +

δ1−β

1 − β

)
, t ≥ 0,

for any 0 < β < 1. Hence the following lemma holds.
Lemma 2.10. Assume (2.9) and (2.10). Let u be a classical solution of (P)

defined for all t ≥ 0. Then for each δ > 0 there is a (universal) constant Aδ,q,β > 0
independent of u such that

‖u(·, t)‖Xβ
≤ Aδ,q,β , δ ≤ t < ∞.

Now choose q close enough to N/2 and β close enough to 1 so that the embedding

W 2β,q
0 (B1) ⊂ H1

0 (B1)(2.14)

is compact. This is possible since N > 2. Then Lemma 2.10 implies the following
lemma.

Lemma 2.11. Let the assumptions of Lemma 2.10 be satisfied. Then for each
δ > 0 there exists a compact set Kδ ⊂ H1

0 (B1) independent of u such that

u(·, t) ∈ Kδ, δ ≤ t < ∞.

Consequently,

‖u(·, t)‖H1 ≤ Cδ, δ ≤ t < ∞,(2.15)

for some universal constant Cδ.
The next proposition shows that the convergence of approximating classical solu-

tions to a limit L1-solution takes place in a much stronger topology than (2.2).
Proposition 2.12. Assume (2.9) and (2.10). Let u be a limit L1-solution and

let {un} be an approximating sequence for u. Then
(i) for each t > 0

un(·, t) → u(·, t) in H1
0 (B1), eun(·,t) → eu(·,t) in Lq(B1)

for any 1 ≤ q < N/2. Consequently, the estimates (2.12), (2.15) hold for
limit L1-solutions;

(ii) u ∈ C((0,∞); H1
0 (B1));

(iii) for each t > 0

un(·, t) → u(·, t) in C2
loc(B1 \ {0}).

Proof. By Lemma 2.5 and assumption (2.10) we have ∂u/∂r < 0 for 0 < r ≤ 1
and for 0 < t < T , where T is the blow up time for u. Therefore, un satisfies
the same inequality for n sufficiently large and for t sufficiently small (hence for all
t > 0). Consequently the pointwise bound (2.11) holds for un with n sufficiently
large. Combining this bound, the Lebesgue convergence theorem, and the former half
of Lemma 2.11 (with u replaced by un), we obtain (i). Statement (ii) is a consequence
of the continuity of u(·, t) in L1(B1) and the fact that u(·, t) belongs to the compact
set Kδ ⊂ H1

0 (B1). Statement (iii) follows from bound (2.11) and local parabolic
estimates for un.
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Corollary 2.13. Let u and un be as in Proposition 2.12. Then

J [un] → J [u] as n → ∞;

hence J [u(·, t)] is monotone nonincreasing in t, where

J [u] =

∫
B1

(
1

2
|∇u|2 − λeu

)
dx.

Proof. Since un is a classical solution, J [un(·, t)] is monotone nonincreasing in t.
Letting n → ∞ and using Proposition 2.12(i), we obtain the desired result.

Next we show that (2.6) holds for any limit L1-solution u. This will play a key
role in subsection 2.5.

Proposition 2.14. Assume (2.9) and (2.10). Let u be a nonnegative limit
L1-solution of (P). Then

h′
R(t) ≥ λehR(t) − μ

R2
hR(t) +

μ

R2

1

|BR|

∫
BR

u(x, t) dx.(2.16)

Proof. By (2.12) and the standard a priori estimate for the linear problem (2.13)
with g ∈ L∞((0,∞);Lq), we have

u ∈ Cγ
loc((0,∞);W 2β,q(B1))

for any 0 < γ < 1−β and any 1 < q < N/2. Choosing q sufficiently close to N/2 and
using the Sobolev embedding theorem, we see that

u ∈ Cγ
loc((0,∞);Lr(B1))

for any 1 < r < ∞ and any 0 < γ < min{1, N/(2r)}. In view of this and the inequality

|eu − ev| ≤ (eu + ev)|u− v|

along with bound (2.12), we get

eu ∈ Cγ
loc((0,∞);Lq(B1))

for any 1 < q < N/2 and for some appropriate exponent 0 < γ < 1 depending on q.
Again using the standard a priori estimates for (2.13) with Hölder continuous g(·, t),
we obtain

u ∈ C1((0,∞);Lq(B1)) ∩ C((0,∞);W 2,q(B1))

for any 1 < q < N/2. Therefore all the computations we used to derive (2.6) for clas-
sical solutions can be justified for limit L1-solutions. This completes the proof.

2.4. Basic estimates for the power. In this subsection we assume

f(u) = up, N > 2, p >
N + 2

N − 2
,(2.17)

and that U0 ∈ C[0, 1]. Then Corollary 3.3 and Remark 3.5 in [10] show that any limit
L1-solution satisfies

|u(r, t)| ≤ Cr−2/(p−1) for 0 ≤ t < ∞(2.18)
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for some constant C > 0. In the special case where U0 satisfies (2.10), a similar but
more explicit pointwise bound

0 ≤ u(r, t) ≤
( μ

λr2

)1/(p−1)

(2.19)

follows also from Lemma 2.8 and (2.8). These bounds imply that for each 1 ≤ q <
N(p−1)

2p , there is a constant Mq > 0 such that

‖up‖Lq(B1) ≤ Mq,

which is an analogue of (2.12) in the exponential case. Arguing as before, we see that
Lemma 2.10 holds for the power case (1.2). Choosing q close enough to N(p− 1)/2p
and β close enough to 1 we obtain the compact embedding (2.14). Arguing as before,
we can derive the same results as Proposition 2.12 and Corollary 2.13. More precisely,
we have the following proposition.

Proposition 2.15. Assume (2.17) and that U0(r) is a continuous function on
[0, 1]. Let u be a limit L1-solution and let {un} be an approximating sequence for u.
Then for each t > 0,

un(·, t) → u(·, t) in H1
0 (B1) ∩ Lq(B1) ∩ C2

loc(B1 \ {0})

for any 1 ≤ q < N(p−1)
2 . Furthermore,

u ∈ C((0,∞); H1
0 (B1))

and J [u(·, t)] is monotone nonincreasing in t, where

J [u] =

∫
B1

(
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
dx.

Note that the monotonicity assumption in (2.10) is not needed in the above propo-
sition since (2.18) holds for any bounded initial data U0.

2.5. Refined bound for the exponential. The following lemma gives an up-
per bound sharper than (2.11).

Lemma 2.16. Assume (2.9) and (2.10). Let u be a limit L1-solution of (P).
Suppose for some 0 < R ≤ 1, C1 > 0, t0 ∈ R, and a > 0,

u(R, t) ≥ log
1

R2
− C1 for t0 ≤ t ≤ t0 + aR2.(2.20)

Then

u(R, t0) ≤ log
1

R2
+ α,(2.21)

where α is a constant given by∫ ∞

α

dk

λek − μ(k + C1)
= a.(2.22)

Proof. By the assumptions we have

1

|BR|

∫
BR

u dx ≥ log
1

R2
− C1.
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Combining this with (2.16), we obtain

h′
R ≥ λehR − μ

R2

(
hR − log

1

R2
+ C1

)
.

Setting k(t) := hR(t) − log(1/R2), we get

k′ ≥ 1

R2
(λek − μk − μC1).

It follows that ∫ k(t)

k(t0)

dk

λek − μ(k + C1)
≥ t− t0

R2
, t0 ≤ t ≤ t0 + aR2.

Consequently, we have either

k(t0) ≤ k∗,

where k∗ is the largest zero of the function

k �→ λek − μ(k + C1),

or k(t0) > k∗ and ∫ ∞

k(t0)

dk

λek − μ(k + C1)
≥ a.

Here we understand k∗ = −∞ if the function λek−μ(k+C1) has no zero. Now define
α ∈ R by (2.22). From the previous inequality it is clear that

k(t0) ≤ α.

This proves (2.21).

2.6. Characterization of the singular set. Now recall the definition of the
sets R,S,B introduced in Introduction. Namely, R denotes the set of t0 > 0 such that
solution u stays classical around t = t0, S := (0,∞) \ R denotes the set of “singular
time moments,” and

B :=

{
t0 > 0 : lim sup

t→t0

‖u(·, t)‖L∞(B1) = ∞
}
.

By Lemma 2.6, we have S = B. If t0 > 0 is such that

lim sup
t↗t0

‖u(·, t)‖L∞(B1) < ∞,

then Lemma 2.6 and the local existence theorem for (P) imply that u can be continued
as a classical solution beyond t = t0; hence t0 �∈ B. Therefore, B coincides with the
set {

t0 > 0 : lim sup
t↗t0

‖u(·, t)‖L∞(B1) = ∞
}
.
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In the case where u is a minimal L1-solution, then it is easily seen that

‖u(·, t1)‖L∞(B1) < ∞

implies u is regular in some interval t1 ≤ t < t1 + δ, where δ > 0 depends only on
‖u(·, t1)‖L∞ . Therefore, if t0 > 0 is such that

lim inf
t↗t0

‖u(·, t)‖L∞(B1) < ∞,

then t0 �∈ B. Consequently the following lemma holds.
Lemma 2.17. If u is a minimal L1-solution of (P), then

B =

{
t0 > 0 : lim

t↗t0
‖u(·, t)‖L∞(B1) = ∞

}
.(2.23)

Finally, note that the pointwise bounds (2.11) and (2.18) show that singularity
can occur only near the origin, both in the exponential case (1.1) and the power case
(1.2). These pointwise bounds and local parabolic estimates for the approximating
sequence {un} imply that u(x, t) is smooth in (B1 \ {0}) × (0,∞).

3. Main result.

3.1. Statement and remarks. Let I be an interval (open, half-open, or closed)
with endpoints a, b, −∞ ≤ a < b ≤ ∞, and let f be a continuous function on I. We
define the zero-number of f by

ZI(f) = sup{n ∈ N : there are a < x0 < x1 < · · · < xn < b

such that f(xi)f(xi+1) < 0 for 0 ≤ i < n}

if f changes sign in I and ZI(f) = 0 otherwise.
Theorem 3.1. Let u be a minimal L1-solution of problem (P) which blows up in

a finite time T , and let either (1.1) or (1.2) be satisfied. Assume that the initial data
U0(|x|) satisfy

U0 ∈ C([0, 1]), U0(r) ≥ 0 (0 ≤ r ≤ 1).

In case (1.1), assume further that U0(r) is nonincreasing in 0 ≤ r ≤ 1. Then, there
exists a positive integer k such that

B = {ti}ki=1,

t1 = T < t2 < · · · < tk < ∞.

Consequently, the solution is regular except at t = ti (i = 1, 2, . . . , k). Moreover, the
following estimate holds:

2k − 1 ≤ j := min
0<t<T

Z[0,1]

(
ut(·, t)

)
.(3.1)

In particular, if U0 ∈ C2([0, 1]), then

2k − 1 ≤ j0 := Z[0,1]

(
U ′′

0 +
N − 1

r
U ′

0 + f(U0)

)
.(3.2)



764 MAREK FILA, HIROSHI MATANO, AND PETER POLÁČIK

Remark 3.2. Since w := ut satisfies w(1, t) = 0 and a parabolic equation of the
form

wt = wrr +
N − 1

r
wr + a(r, t)w,

the zero-number Z[0,1](ut(·, t)) is nonincreasing in t and is finite for every 0 < t < T .
See [2] for details. Consequently, the minimum on the right-hand side of (3.1) is
well-defined and is a finite integer. It is also clear that j ≤ j0.

Remark 3.3. In order for the solution u to be a global L1-solution, it should
necessarily hold that j > 0. Indeed, if j = 0, this means that the solution satisfies
ut(r, t) ≥ 0 (0 ≤ r ≤ 1) for t close to T . By the result of [1], this means a complete
blow-up; therefore, the solution cannot be continued as an L1-solution beyond the
blow up time T .

Remark 3.4. The above theorem means that the solution recovers smoothness im-
mediately after the blow up time. Note that this result does not follow from standard
parabolic estimates. Indeed, at the time of blow-up, some of the solutions may have
a singularity of the form log(1/|x|2) + C (in case (1.1)) or of the form C|x|−2/(p−1)

(in case (1.2)), as exemplified by certain self-similar solutions. When such singular-
ities occur, the solution profile u(x, T ) no longer belongs to the space where (P) is

well-posed (for example, Lq(B1) with q > (N−1)p
2 in case (1.2)); therefore, parabolic

regularization alone cannot bring the solution back to the space where (P) is well-
posed. Thus smoothness does not follow automatically. Indeed the singular stationary
solution ϕ∗ defined below is an example of a weak solution that never becomes regu-
lar. (Since ϕ∗ is not a minimal L1-solution, there is no contradiction with the above
theorem.)

Remark 3.5. By Lemma 2.17, we have limt↗t0 ‖u(·, t)‖L∞ = ∞ for every t0 ∈ B.
However, we do not know whether or not this always implies that ‖u(·, t0)‖L∞ = ∞.
Since our equation has a supercritical nonlinearity, some subtle behavior may occur
near the origin at the time of blow-up.

Incidentally, for an equation similar to (P), Pierre [17] found explicit examples of
peaking solutions that blow up arbitrarily many times. He observed that

u(x, t) :=
1

|x|2 + ψ(t)

is an L1-solution of the equation

ut = Δu + g(|x|, t)u2, g(r, t) := 2N − ψ′(t) − 8r2

r2 + ψ(t)
,

provided ψ is a nonnegative C1-function and N > 4. Obviously, u blows up at each
time t such that ψ(t) = 0.

4. Further preliminaries.

4.1. Singular stationary solutions. In the proof of Theorem 3.1, the so-called
singular stationary solution plays an important role. The equation

urr +
N − 1

r
ur + f(u) = 0, r > 0,(4.1)
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has an explicit singular solution ϕ∗ if either f(u) = λeu, N ≥ 3 or f(u) = up, N ≥ 3,
p > N/(N − 2). Namely,

ϕ∗(r) = log
2(N − 2)

λr2
(4.2)

in the former case, and

ϕ∗(r) = Kr−
2

p−1(4.3)

with

K =

(
2

(p− 1)2
((N − 2)p−N)

) 1
p−1

in the latter case. The assumption that N ≤ 9 in (1.1) or p < p∗ in (1.2) guarantees
the existence of a forward self-similar solution of the problem⎧⎪⎨

⎪⎩
ut = urr +

N − 1

r
ur + f(u), r, t > 0,

ur(0, t) = 0, t > 0,
u(r, 0) = ϕ∗(r), r > 0,

(S)

which is regular for r ≥ 0, t > 0 (cf. [4, 19, 18]). This forward self-similar solution is
needed in our proof of Theorem 3.1.

Another notable feature of the critical dimension N = 9 for f(u) = λeu and the
critical power p = p∗ for f(u) = up is that under assumption (1.1) or (1.2), it is
well known (cf. [7]) that the graph of any smooth solution of (4.1) intersects with the
graph of the singular solution ϕ∗ infinitely many times, while this is not the case if
N > 9 (in the exponential case) or p > p∗ (in the power case). This property will also
be used in our proof of Theorem 3.1.

4.2. Zero-number properties for singular solutions. It is well known that
if u and v are classical solutions of (P), then Z[0,1](u(·, t) − v(·, t)) is a nonincreasing
function of t. This is because w := u− v satisfies a parabolic equation of the form

wt = wrr +
N − 1

r
wr + a(r, t)w.

Moreover, each time the function r �→ u(r, t) − v(r, t) develops a degenerate zero
somewhere in [0, 1], the above zero-number drops at least by 1. See [2] for details.
It is easily seen that the same is true if u is a classical solution and v = ϕ∗, since
u(r, t) − ϕ∗(r) always have the same sign (i.e., negative) near r = 0. However, if u is
an L1-solution, then both u and ϕ∗ may have a singularity at r = 0, and this makes
the situation a bit more complicated. Nonetheless, a slightly weaker version of the
above property still holds.

Lemma 4.1. Let u(r, t) be a limit L1-solution of (P) and let ϕ∗(r) be the singular
stationary solution. Let t∗ > 0 and suppose that there exists a sequence 0 < τ1 < · · · <
τk < t∗ such that u(r, τi) − ϕ∗(r) has a degenerate zero in (0, 1] for i = 1, 2, . . . , k.
Then

Z[0,1](u(·, t∗) − ϕ∗) ≤ Z[0,1](u(·, 0) − ϕ∗) − k.(4.4)

Here we understand that k = 0 if there is no such τi in the interval (0, t∗).
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Proof. Let un be an approximating sequence for u, and let t0 ∈ (0, T ) be such
that t0 < τ1 and that u(r, t0) − ϕ∗(r) has no degenerate zero in the interval [0, 1].
Such t0 exists since u is a classical solution for 0 ≤ t < T ; therefore, the function
r �→ u(r, t) − ϕ∗(r) can have a degenerate zero at most for a discrete set of values of
t (see [2]). Then, since we have

un(·, t0) → u(·, t0) in C2(B1)

by Lemma 2.5, the simplicity of the zeros of u(r, t0) − ϕ∗(r) implies

Z[0,1](un(·, t0) − ϕ∗) = Z[0,1](u(·, t0) − ϕ∗)(4.5)

for n sufficiently large. On the other hand, Propositions 2.12 and 2.15 yield the
convergence

un(·, t∗) → u(·, t∗) in C2
loc(B1 \ {0}).

Consequently, we obtain

Z[0,1](un(·, t∗) − ϕ∗) ≥ Z[0,1](u(·, t∗) − ϕ∗)(4.6)

for n sufficiently large if the right-hand side is finite and

lim
n→∞

Z[0,1](un(·, t∗) − ϕ∗) = ∞(4.7)

if the right-hand side of (4.6) is infinite. However, (4.7) is ruled out by (4.5) and the
nonincrease of Z[0,1](un(·, t∗) − ϕ∗), so we have (4.6).

Now let ri ∈ (0, 1] (i = 1, 2, . . . , k) be such that the function r �→ u(r, τi) − ϕ∗(r)
has a degenerate zero at r = ri. Suppose first that ri < 1 (i = 1, 2, . . . , k). (This is
always true if f(u) = up, p > 1 or if f(u) = λeu, λ > 0, λ �= 2(N − 2).) Choose ai, bi
such that 0 < ai < ri < bi < 1 and that

u(ai, τi) − ϕ∗(ai) �= 0, u(bi, τi) − ϕ∗(bi) �= 0 for i = 1, . . . , k.

Next choose ε > 0 sufficiently small so that u(r, t)−ϕ∗(r) �= 0 for r = ai, τi − ε ≤ t ≤
τi + ε and r = bi, τi − ε ≤ t ≤ τi + ε. We denote these two line segments by γi, γ̃i.
Since u(r, t) − ϕ∗(r) has a degenerate zero at (r, t) = (ri, τi) and since this function
does not vanish on γi, γ̃i, we have

Z[ai,bi](u(·, τi − ε) − ϕ∗) > Z[ai,bi](u(·, τi + ε) − ϕ∗).(4.8)

Here we can choose ε > 0 in such a way that the functions u(·, ti ± ε) − ϕ∗ have only
simple zeros in the interval [ai, bi] and that the intervals [τi−ε, τi+ε], i = 1, . . . , k, are
mutually disjoint. This is possible since degenerate zeros can occur only at a discrete
set of time t. Then,

Z[ai,bi](un(·, τi ± ε) − ϕ∗) = Z[ai,bi](u(·, τi ± ε) − ϕ∗)

for n sufficiently large; hence,

Z[ai,bi](un(·, τi − ε) − ϕ∗) > Z[ai,bi](un(·, τi + ε) − ϕ∗).

Moreover, since u(r, t)−ϕ∗(r) does not vanish on γi, γ̃i, the same is true for un(r, t)−
ϕ∗(r) for n sufficiently large. This and the above inequality imply that the function
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r �→ un(r, t) − ϕ∗(r) has a degenerate zero in [ai, bi] for some t ∈ (τi − ε, τi + ε).
Consequently, at least k degenerate zeros occur in the time interval [t0, t

∗]; hence

Z[0,1](un(·, t∗) − ϕ∗) ≤ Z[0,1](un(·, t0) − ϕ∗) − k.

Combining this inequality with (4.5) and (4.6), we obtain

Z[0,1](u(·, t∗) − ϕ∗) ≤ Z[0,1](u(·, t0) − ϕ∗) − k.

Since u is a classical solution for 0 ≤ t < T , we have

Z[0,1](u(·, t0) − ϕ∗) ≤ Z[0,1](u(·, 0) − ϕ∗).

This and the previous inequality prove the lemma if ri < 1 (i = 1, 2, . . . , k).
Consider the possibility ri = 1 for some i ∈ {1, 2, . . . , k}, which can occur only if

f(u) = λeu and λ = 2(N−2). In this case, u(t, ·)−ϕ∗ satisfies the Dirichlet condition
u(1, t) − ϕ∗(1) = 0. Therefore, choosing ai as above (so that u(t, ai) − ϕ∗(ai) �= 0 for
t ≈ τi) we still obtain (4.8). We can now proceed similarly as before.

Remark 4.2. Since Z[0,1](u(·, t0) − ϕ∗) < ∞, the left-hand side of (4.4) is finite
even if Z[0,1](u(·, 0) − ϕ∗) = ∞.

Remark 4.3. Note that the left-hand side of (4.4) is not necessarily monotone
nonincreasing in t. This is because some intersection points between the graph of
r �→ u(r, t) and that of ϕ∗(r) may escape to infinity (at r = 0) and later emerge from
infinity repeatedly.

4.3. Rescaled equations. As usual, rescaling arguments provide useful infor-
mation about the behavior of solutions near the blow up point. In the case of the
exponential nonlinearity (1.1), we use the rescaling

w(y, s) = wθ(y, s) = u(r, t) + log(θ − t),(4.9)

y =
r√
θ − t

, s = − log(θ − t),

where θ is any positive number. Then (P) is converted into the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ws =

1

ρ
(ρwy)y + λew − 1, 0 < y < es/2, s > − log θ,

wy(0, s) = 0, w(es/2, s) = −s, s > − log θ,

w(y,− log θ) = u0(
√
θ y) + log θ, 0 ≤ y ≤ θ−1/2,

(Re)

where
ρ(y) = yN−1e−y2/4.

In the case of the power nonlinearity 1.2, we use the rescaling

wθ(y, s) = (θ − t)1/(p−1)u(r, t)(4.10)

with y and s as before. Then, (P) is converted into⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ws =

1

ρ
(ρwy)y + wp − 1

p− 1
w, 0 < y < es/2, s > − log θ,

wy(0, s) = 0, w(es/2, s) = 0, s > − log θ,

w(y,− log θ) = θ1/(p−1)u0(
√
θ y), 0 ≤ y ≤ θ−1/2.

(Rp)
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Note that, in contrast to the usual setup, we do not assume that θ = T , the blow up
time of solution u. In fact, in our later argument, we shall need to consider the case
θ > T ; thus, w may possess singularity in finite time. However, for the time being
we assume that w is a classical solution of (Re) or (Rp) and shall later use a limiting
argument to deal with singular solutions.

Energy functionals corresponding to (Re) and (Rp) are, respectively, the following:

Ee[w](s) : =

∫ es/2

0

(
1

2
w2

y − λew + w

)
ρ dy,

Ep[w](s) : =

∫ es/2

0

(
1

2
w2

y −
1

p + 1
wp+1 +

1

2(p− 1)
w2

)
ρ dy.

As is well known, Ep is a Lyapunov functional for (Rp). More precisely,

d

ds
Ep[w](s) ≤ −

∫ es/2

0

w2
s ρ dy, s > − log θ;(4.11)

hence, Ep[w](s) is monotone decreasing in s. The same is true of Ee, at least for large
s, as shown in the following lemma.

Lemma 4.4. Let w be a global classical solution of (Re). Then there is s0 < 1
such that

d

ds
Ee[w](s) ≤ −

∫ es/2

0

w2
sρ dy, s ≥ s0.(4.12)

Proof. By direct computations we obtain

d

ds
Ee[w](s) = −

∫ es/2

0

w2
sρ dy

−
(
wy +

1

4
es/2w2

y +
λ

2
e−s/2 +

1

2
ses/2

)
ρ
∣∣∣
y=es/2

.

Since

wy +
1

4
es/2w2

y ≥ −e−s/2,

it suffices to choose s0 such that s0e
s0 > 2 − λ.

In the case of the power nonlinearity (1.2), the global existence of wθ for all large
s implies that Ep[w

θ](s) ≥ 0 (see [6]). Integrating (4.11) with respect to s, we obtain

∫ s2

s1

∫ es/2

0

(wθ
s)

2ρ dy ds ≤ Ep[w
θ](s1) − Ep[w

θ](s2).

Letting s2 → ∞ and using the boundedness of Ep[w
θ], we obtain

∫ ∞

s1

∫ es/2

0

(wθ
s)

2ρ dy ds < ∞(4.13)

(cf. Proposition 7.1 of [10]). As a matter of fact, the same estimate holds for any limit
L1-solutions. More precisely, we have the following lemma.
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Lemma 4.5. Let u be a limit L1-solution of (P) for the power nonlinearity (1.2)
and let wθ be as in (4.10) for some θ > 0. Then (4.13) holds for any s1 > − log θ.

Proof. Let un be an approximating sequence for u. Then wθ
n satisfies the same

estimate as (4.13) for n = 1, 2, 3, . . . , where the bound does not depend on n. Letting
n → ∞ and using Fatou’s lemma, we obtain (4.13).

Corollary 4.6. Let u and wθ be as in Lemma 4.5. Then wθ(y, s) approaches
stationary solutions of (Rp) as s → ∞ locally uniformly in y > 0. More precisely, the
ω limit set of wθ is contained in the set of solutions of

1

ρ
(ρwy)y + wp − 1

p− 1
w = 0, y > 0.(4.14)

Proof. Estimate (2.18) yields

wθ(y, s) ≤ Cy−2/(p−1).(4.15)

This pointwise bound and parabolic regularization imply that, for any M > 0, the
derivatives of wθ are uniformly Hölder continuous in y in the region

y ∈ IM := [M−1,M ], s ≥ s1

for s1 sufficiently large. Consequently wθ(·, s) remains in a compact set of C2(IM ) as
s varies over [s1,∞). Furthermore, the uniform Hölder continuity of wθ

s and (4.13)
imply that

wθ
s(y, s) → 0 as s → ∞

uniformly in y ∈ IM . The conclusion of the lemma now follows immediately.
In the case of the exponential nonlinearity (1.1), pointwise estimates of wθ are

much more difficult to obtain. However, under certain special circumstances we have
an analogue of the above corollary.

Lemma 4.7. Let u be a limit L1-solution of (P) for the exponential nonlinearity
(1.1) and let wθ be as in (4.9). Suppose that for some 0 < r0 ≤ 1, C1 > 0, and
0 < t1 < t2,

u(r, t) ≥ log
1

r2
− C1 for 0 < r ≤ r0, t1 ≤ t ≤ t2.(4.16)

Then, for any θ ∈ (t1, t2), the solution wθ(y, s) approaches stationary solutions of
(Re) as s → ∞ locally uniformly in y > 0. More precisely, the ω limit set of wθ is
contained in the set of solutions of

1

ρ
(ρwy)y + λew − 1 = 0, y > 0.(4.17)

Proof. By choosing a suitable constant a > 0, we see that

u(r, t) ≥ log
1

r2
− C1, t0 ≤ t ≤ t0 + ar2

for any 0 < r ≤ r0, t1 ≤ t0 ≤ θ. By Lemma 2.16, we have

u(r, t) ≤ log
1

r2
+ α, for 0 < r ≤ r0, t1 ≤ t ≤ θ.
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Therefore, wθ satisfies

log
1

y2
− C1 ≤ wθ(y, s) ≤ log

1

y2
+ α(4.18)

for 0 < y ≤ r0 e
s/2 and for all large s. Thus, once we have estimate (4.13), the same

argument as in the proof of Corollary 4.6 will yield the conclusion of the lemma.
In order to prove (4.13), it suffices to show that Ee[w

θ](s) is bounded from below
as s → ∞. We have

Ee[w
θ](s) ≥

∫ es/2

0

(−λew
θ

+ wθ)ρ dy

=

∫ r0e
s/2

0

(−λew
θ

+ wθ)ρ dy +

∫ es/2

r0es/2

(−λew
θ

+ wθ)ρ dy.

The second integral is easily shown to converge to zero, as s → ∞, thanks to the
fact that y �→ w(y, s) is decreasing (recall that in case (1.1) we assume that U0 is
nonincreasing). The first integral can be estimated using (4.18):

∫ r0e
s/2

0

(−λew
θ

+ wθ)ρ dy ≥
∫ es/2

0

(
−λelog(1/y2)+α + log

1

y2
− C1

)
ρ dy

=

∫ es/2

0

(
−λeα

1

y2
+ log

1

y2
− C1

)
yN−1e−y2/4 dy.

It is easily seen that the above integral remains bounded as s → ∞. The lemma is
proved.

4.4. Singular stationary solutions for the rescaled equation. The singu-
lar stationary solution ϕ∗ defined in (4.2) (resp., (4.3)) is also a singular stationary
solution for the rescaled equation (4.17) (resp., (4.14)). That is, we have

1

ρ
(ρϕ∗

y)y + λeϕ
∗ − 1 = 0, 0 < y < ∞

(
resp.,

1

ρ
(ρϕ∗

y)y −
1

p− 1
ϕ∗ + (ϕ∗)p = 0, 0 < y < ∞

)
.

In Corollary 4.6 and Lemma 4.7, we are not excluding the possibility that wθ ap-
proaches a singular stationary solution as s → ∞.

The following lemmas show that there is no singular stationary solution that lies
above ϕ∗.

Lemma 4.8. Let ϕ∗ be as in (4.2) and ρ(y) = yN−1e−
y2

4 . If ψ is a solution of
(4.17) satisfying ψ ≥ ϕ∗, then ψ = ϕ∗.

Proof. Suppose Φ := ψ − ϕ∗ > 0 for 0 < y < ∞. Then (ρΦy)y < 0 because Φ
satisfies

(ρΦy)y + λρ
(
eψ − eϕ

∗
)

= 0.

Define a new space variable z = z(y) by

z =

∫ y

1

dξ

ρ(ξ)
.
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Then (ρΦy)y < 0 (y > 0) is equivalent to Φzz < 0 (−∞ < z < ∞). Therefore, Φ is a
strictly concave function of z on R, but this is impossible since Φ > 0.

Lemma 4.9. Let ϕ∗ be as in (4.3). If ψ is a solution of (4.14) satisfying ψ ≥ ϕ∗,
then ψ = ϕ∗.

Proof. Suppose Φ := ψ
ϕ∗ > 1 for y ∈ (0,∞). Then (σΦy)y < 0 because Φ satisfies

(σΦy)y + Kp−1 σ

y2
(Φp − Φ) = 0,

where

σ(y) := y−
4

p−1 ρ(y) = yN−1− 4
p−1 e−

y2

4 .

The rest of the proof is the same as in the proof of Lemma 4.8 since our assumption
p > N+2

N−2 implies 2 −N + 4
p−1 < 0.

5. Proof of the main theorem. In this section we prove Theorem 3.1. We
begin with the following lemma.

Lemma 5.1. Under the assumptions of Theorem 3.1, the set B is decomposed
into a disjoint union of finitely many closed intervals:

B =
k⋃

i=1

Ai,

where Ai = [t1i , t
2
i ] or Ai = {ti} for 1 ≤ i ≤ k, and Ak may also be of the form

[tk,∞).
Proof. By the definition of B, it is clear that this set is closed. What we have to

show is that the number of connected components of B does not exceed (j + 1)/2.
Suppose B has at least k connected components. Then, considering that u(x, t) is

a classical solution for t �∈ B, and in view of (2.23), we can find a sequence of numbers

0 < τ1 < t1 = T < τ2 < t2 < · · · < τk < tk

such that u is regular in the time interval [τi, ti) and that

lim
t↗ti

u(0, t) = ∞.

Therefore, there exists τ̃i ∈ (τi, ti) such that

u(0, τ1) < u(0, τ̃1) > u(0, τ2) < u(0, τ̃2) > · · · < u(0, τ̃k).

Now let un be an approximating sequence for u. Then by Lemma 2.7 and the above
inequality, we have

un(0, τ1) < un(0, τ̃1) > un(0, τ2) < un(0, τ̃2) > · · · < un(0, τ̃k)

for n sufficiently large. It follows that (un)t(0, t) changes sign at least 2(k− 1) times.
Since Z[0,1]((un)t(·, t)) drops at least by 1 each time (un)t(0, t) changes sign, we have

Z[0,1]((un)t(·, τ̃k)) ≤ Z[0,1]((un)t(·, τ1)) − 2(k − 1).

Letting n → ∞, we obtain

Z[0,1](ut(·, τ̃k)) ≤ Z[0,1](ut(·, τ1)) − 2(k − 1);(5.1)
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see Remark 5.2. Since τ1 can be chosen arbitrarily close to t1 := T , the right-hand
side of (5.1) can be replaced by j − 2(k − 1). Moreover, since u does not blow up
completely at t = tk, we have

Z[0,1](ut(·, τ̃k)) ≥ 1

(cf. Remark 3.3). Combining this and (5.1), we obtain

1 ≤ j − 2(k − 1).

The lemma is proved.
Remark 5.2. In obtaining (5.1) above, we have used the fact that the pointwise

convergence vn(r) → v(r) implies

lim inf
n→∞

Z(0,1](vn) ≥ Z(0,1](v),

and that the equality holds if v(r) has only simple zeros in the interval 0 ≤ r ≤ 1.
Thus (5.1) holds if ut(r, τ1) has only simple zeros in 0 ≤ r ≤ 1. Since ut(r, t) can have
a degenerate zero only for a discrete set of values of t ∈ (0, T ), we can always assume
without loss of generality that τ1 ∈ (0, T ) has the above property.

Now we are ready to prove our main theorem.
Proof of Theorem 3.1. We show by contradiction that A1 = {T}. Suppose

A1 ⊃ [T, T + δ] for some δ > 0. By Lemma 4.1, u(r, t)− ϕ∗(r) can have a degenerate
zero in 0 < r ≤ 1 only at finitely many values of t. Therefore, we can find an
interval [τ1, τ2] ⊂ [T, T + δ] (with τ1 < τ2) such that u(r, t)−ϕ∗(r) has no degenerate
zero for any t ∈ [τ1, τ2]. This means that the graph of r �→ u(r, t) and that of
ϕ∗(r) always intersect transversally as t varies over the interval [τ1, τ2]; hence these
intersection points are smooth functions of t. The number of the intersection points
is uniformly bounded, as we see in Remark 4.2, but it may not be constant since
some intersection points may escape into r = 0 (where ϕ∗ = ∞) or emerge from
r = 0 as t varies (see Remark 4.3). Nonetheless, by replacing [τ1, τ2] with its suitable
subinterval, if necessary, we may assume without loss of generality that the number of
the intersection points is constant as t varies over [τ1, τ2]. Consequently, there exists
r0 > 0 such that either

u < ϕ∗, r ∈ (0, r0], t ∈ [τ1, τ2],(5.2)

or

u > ϕ∗, r ∈ (0, r0], t ∈ [τ1, τ2].(5.3)

If (5.2) holds, the approximating sequence un satisfies

un(r, τ1) < ϕ∗(r), r ∈ (0, r0],
un(r0, t) ≤ u(r0, t), t ∈ [τ1, τ2],

for n = 1, 2, 3, . . . since u1 < u2 < u3 < · · · → u. Let ũ be the solution of the
initial value problem (S) introduced in subsection 4.1. Then since both u and ũ are
smooth outside r = 0, there exists some δ0 > 0 such that u(r0, t) < ũ(r0, t − τ1) for
t ∈ [τ1, τ1 + δ0]. By the comparison principle we have

un(r, t) < ũ(r, t− τ1), r ∈ (0, r0], t ∈ [τ1, τ1 + δ0],
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for n = 1, 2, 3, . . . . Letting n → ∞, we obtain

u(r, t) ≤ ũ(r, t− τ1), r ∈ (0, r0], t ∈ [τ1, τ1 + δ0].

This implies that u is regular for τ1 < t ≤ τ1 + δ0, contradicting our assumption that
[T, T + δ] ⊂ B.

Next we consider the case where (5.3) holds. We fix θ ∈ (τ1, τ2) arbitrarily and
rescale u using the backward self-similar variables as in (4.9) (for the exponential case
(1.1)) or as in (4.10) (for the power case (1.2)). Then the rescaled solution wθ(y, s)
satisfies (Re) or (Rp), depending on the nonlinearity.

By Lemma 4.7 (in the case of the exponential nonlinearity) or by Corollary 4.6
(in the case of the power nonlinearity), wθ(y, s) must approach stationary solutions as
s → ∞ locally uniformly in y > 0. Inequality (5.3) implies that wθ can only approach
stationary solutions that lie above ϕ∗. However, Lemmas 4.8 and 4.9 state that there
is no stationary solution strictly above ϕ∗. Therefore,

wθ(y, s) → ϕ∗(y) as s → ∞(5.4)

locally uniformly in y > 0. We shall show that this convergence cannot occur. We
consider the exponential case and the power case separately.

First, let us consider the exponential case (1.1). Fix t0 ∈ (0, T ) such that

Z(0,1)(u(·, t0) − ϕ∗) =: m0 < ∞(5.5)

and such that the function r �→ u(r, t0) − ϕ∗(r) has no degenerate zero in 0 < r ≤ 1.
For each a > 0, let ϕa(r) be the solution of⎧⎨

⎩ϕ′′ +
N − 1

r
ϕ′ + λeϕ = 0, r > 0,

ϕ′
a(0) = 0, ϕa(0) = a.

(5.6)

In other words, ϕa(|x|) is a stationary solution of (1.1) in R
N . It is known that, under

the assumption 3 ≤ N ≤ 9,

ϕa(r) → ϕ∗(r) as a → ∞(5.7)

locally uniformly in r > 0 and that

Z(0,∞)(ϕa − ϕ∗) = ∞;(5.8)

see [7]. The convergences (5.7) and (5.5) yield

Z[0,1)(u(·, t0) − ϕa) ∈ {m0,m0 + 1}(5.9)

for all large a. On the other hand, by (5.8), we can choose s = s1 large enough so
that

Z(0,η(s1))(ϕ1 − ϕ∗) > m0 + 1,

where η(s) = es/2. Then this and convergence (5.4) imply that

Z(0,η(s1))(w
θ(·, s) − ϕ1) > m0 + 1
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for all large s; hence

Z(0,η(s))(w
θ(·, s) − ϕ1) > m0 + 1.

Fix s2 ≥ s1 large enough so that the above inequality holds for s = s2, (5.9) holds for
a = 1 + s2, and t2 := θ − e−s2 > t0. Then the above inequality can be rewritten as

Z(0,1/
√
μ)(u

μ(·, t2) − ϕ1) > m0 + 1,

where

uμ(r, t) = u(
√
μr, t) + logμ, μ = θ − t2.

Applying the rescaling v(r) �→ v(r/
√
μ)− logμ to both uμ and ϕ1 and using the fact

that

ϕ1(r/
√
μ) − logμ = ϕa(r), a = 1 − logμ = 1 + s2,

we obtain

Z[0,1)(u(·, t2) − ϕa) > m0 + 1.

This, however, contradicts (5.9) since Z[0,1)(u(·, t) − ϕa) is monotone nonincreasing
in t. This contradiction proves the assertion A1 = {T} for the exponential case (1.1).

In the power case (1.2), the argument goes completely parallel to the above. The
only difference is that ϕ∗ has now form (4.3) instead of (4.2), ϕa is the solution of
the problem ⎧⎨

⎩ϕ′′ +
N − 1

r
ϕ′ + ϕp = 0, r > 0,

ϕ′
a(0) = 0, ϕa(0) = a,

and the rescaling that we use is

uμ(r, t) = μ
1

p−1u(
√
μr, t).

The rest of the proof is the same as in the exponential case. Thus we have A1 = {T}
both for the power case and the exponential case.

The same argument shows that the sets A2, . . . , Ak are all singletons.

6. Example of a peaking solution. In this section we consider (P) with the
exponential nonlinearity (1.1) and prove the existence of a minimal L1-solution that
blows up exactly once.

Theorem 6.1. There exists an initial function u0 such that the assumptions of
Theorem 3.1 are satisfied in case (1.1) with j = 1. This means that B = {T}.

We first recall some known properties of equilibria of (P) in case (1.1). The
stationary problem corresponding to (P) is equivalent to⎧⎨

⎩φrr +
N − 1

r
φr + λeφ = 0, r ∈ (0, 1),

φr(0) = 0, φ(1) = 0.
(E)

Proposition 6.2 ([5, 7]; see Figure 1). Denote by S the solution set of the
parameterized problem (E):

S = {(φ, λ) : λ ∈ R
+ and φ is a solution of (E)}.
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Fig. 1.

Then there exists a smooth curve

s �→ (φ(s), λ(s)) : R
+ → C(B1(0)) × R

+

such that S = {(φ(s), λ(s)) : s > 0} and that

sup
x∈B1(0)

φ(s)(x) = φ(s)(0) = s.

Moreover, the following holds:
(a) lims→0 λ(s) = 0, lims→∞ λ(s) = λ∞ := 2(N − 2).
(b) The set of all zeros of λ′(·) is given by a sequence 0 < s1 < s2 < s3 < · · · → ∞

and the critical values λj = λ(sj) (j = 1, 2, 3, . . . ) satisfy

λ1 > λ3 > · · · > λ2j+1 ↘ λ∞, λ2 < λ4 < · · · < λ2j+2 ↗ λ∞.

(c) For each λ ≤ λ1 define

φλ
i = φ(s̃i) (i = 0, 1, . . . ),

where s̃0 < s̃1 < · · · is the sequence of all points s with λ(s) = λ. This
sequence is finite if λ �= λ∞ and infinite if λ = λ∞.

Next we recall the existence of a special blow up solution which can be continued
globally as an L1-solution.

Proposition 6.3 (see [3]). For any λ ∈ (λ2, λ3] there is u0 such that the solution
u(·, t) of (P) has the following properties:

(i) u(·, t) blows up in finite time.
(ii) u(·, t) is a minimal L1-solution.
(iii) u(·, t) is defined (as a classical solution of (P)) on the interval (−∞, T ) for

u(·, t) → φ2 in C1 as t → −∞.
(iv)

ut(·, t)
‖ut(·, t)‖C1(B1)

→ ψ2 in C1(B1) as t → −∞,
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where ψ2 is a normalized eigenfunction of

Δψ + λeφ2(|x|)ψ + μψ = 0, x ∈ B1,
ψ = 0, x ∈ ∂B1,

corresponding to the second eigenvalue μ2.
For (i)–(iii), see Theorem 3.4 in [3]. For (iv), see the proof of Lemma 3.6 (in

particular, (3.14)) of the same paper.
Theorem 6.1 follows now from Proposition 6.3 because Z[0,1](ψ2) = 1 and ψ2 has

no degenerate zeros (thus Z[0,1](ut(·, t)) = 1 for large negative t).
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[3] M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation, Adv. Differential
Equations, 4 (1999), pp. 163–196.

[4] V. Galaktionov and J.L. Vázquez, Continuation of blow-up solutions of nonlinear heat
equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), pp. 1–67.

[5] I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc.
Transl., 29 (1963), pp. 295–381.

[6] Y. Giga and R.V. Kohn, Characterizing blowup using similarity variables, Indiana Univ.
Math. J., 36 (1987), pp. 1–40.

[7] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,
Arch. Ration. Mech. Anal., 49 (1973), pp. 241–269.

[8] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Commun. Pure
Appl. Math., 16 (1963), pp. 305–330.

[9] A.A. Lacey and D.E. Tzanetis, Global, unbounded solutions to a parabolic equation, J.
Differential Equations, 101 (1993), pp. 80–102.

[10] H. Matano and F. Merle, On non-existence of type II blow-up for a supercritical nonlinear
heat equation, Commun. Pure Appl. Math., 57 (2004), pp. 1494–1541.

[11] N. Mizoguchi, On the behavior of solutions for a semilinear parabolic equation with super-
critical nonlinearity, Math. Z., 239 (2002), pp. 215–219.

[12] N. Mizoguchi, Various behaviors of solutions for a semilinear heat equation after blowup, J.
Funct. Anal., 220 (2005), pp. 214–227.

[13] N. Mizoguchi, Multiple blow-up of solutions for a semilinear heat equation, Math. Ann., 331
(2005), pp. 461–473.

[14] N. Mizoguchi, Multiple Blow-Up of Solutions for a Semilinear Heat Equation II, preprint.
[15] N. Mizoguchi, Boundedness of Global Solutions for a Semilinear Heat Equation with Super-

critical Nonlinearity, preprint.
[16] W.-M. Ni, P.E. Sacks, and J. Tavantzis, On the asymptotic behavior of solutions of certain

quasilinear parabolic equations, J. Differential Equations, 54 (1984), pp. 97–120.
[17] M. Pierre, private communication.
[18] Ph. Souplet and F.B. Weissler, Regular self-similar solutions of the nonlinear heat equa-

tion with initial data above the singular steady state, Ann. Inst. H. Poincaré, Anal. Non
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Abstract. We study the large-time behavior of the solutions to viscous and nonviscous Hamilton–
Jacobi equations with additive noise and periodic spatial dependence. Under general structural con-
ditions on the Hamiltonian, we show the existence of unique up to constants, global-in-time solutions,
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1. Introduction. We are interested in the long-time behavior of solutions to
equations of the form

du− (tr(A(x)D2u) −H(Du, x))dt + dW (x, t) = 0 in R
n × (t0,∞),(1.1)

where t0 ∈ R is arbitrary,

H ∈ C0,1
loc (Rn × R

n) is Z
n-periodic with respect to x,(1.2)

and, if Sn and Mn×m are, respectively, the spaces of n × n symmetric and n × m
matrices,

A ∈ C0,1(Rn;Sn) is Z
n-periodic(1.3)

and

there exists a Z
n-periodic σ ∈ C0,1(Rn;Mn×m) such that A = σσT .(1.4)

Here we use the standard notation C0,1 and C0,1
loc for the spaces of Lipschitz

continuous and locally Lipschitz continuous functions.
We note that (1.4) immediately implies that A is degenerate elliptic, i.e., for all

x, ξ ∈ R
n × R

n,

(A(x)ξ, ξ) ≥ 0.

If A is uniformly elliptic, i.e., there exists ν > 0 such that for all x, ξ ∈ R
n × R

n,

(A(x)ξ, ξ) ≥ ν|ξ|2,
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then (1.4) holds. As a matter of fact, the latter is true also if A is degenerate elliptic
and A ∈ C1,1(Rn;Sn).

Let (Ω,F , P ) be a standard probability space and

Δ = {(s, t) ∈ R
2 : s � t}.

For each (s, t) ∈ Δ, denote by W (x, t, s, ω) the increment of the random variable
W (x, ·, ω) in the interval [s, t]. Then W (x, t, s, ω) has the form

W (x, t, s, ω) =

M∑
i=1

Fi(x)(Wi(t, ω) −Wi(s, ω)),(1.5)

where, for each i = 1, . . . ,M,

Wi is a Brownian motion and Fi ∈ C2(Rn) is Z
n-periodic.(1.6)

In our analysis we do not need to assume that the Brownian motions W1, . . . ,WM

are mutually independent. Indeed, throughout the paper, we use the fact that W =
(W1, . . . ,WM ) is continuous with respect to t almost surely in ω with increments in
time which are independent and identically distributed over disjoint time intervals,
and that, for all ε > 0 and � ∈ N,

P

(
sup

t∈[0, l]

|W (t) −W (0)| < ε

)
> 0.(1.7)

In view of this, our analysis extends to any random forcing ζ(x, t, ω) for which a

notion of time integral Z(x, t, s, ω) =
∫ t

s
ζ(x, ρ)dρ is defined in such a way that Z has

the aforementioned properties. Moreover, using discontinuous viscosity solutions, it
is possible to extend our analysis to equations driven by certain jump processes, such
as, for example, kicking force (see [IK]). In order to keep the presentation short, we
focus here on the Brownian case.

Our results hold for all initial data and initial times and for all realizations of
the noise in ΩC , the set of continuous paths of the Brownian motion, which has full
measure (P(ΩC) = 1), or a smaller set Ω̃, also of full measure, to be defined later.

Throughout the paper we write T = [0, 1]n, we denote by C(T) the space of Z
n-

periodic continuous real-valued functions, and we use the seminorm |‖ · |‖ defined, for
each u ∈ C(T), by

|‖w|‖ = inf
c∈R

‖w − c‖,

where ‖ · ‖ is the usual sup-norm.
The deterministic version of (1.1), i.e., the equation

ut − tr
(
A(x)D2u

)
+ H(Du, x) = 0 in R

n × (t0,∞),(1.8)

plays a fundamental role in our analysis.
Indeed our main result says that, under some additional assumptions on A,H

and F = (F1, . . . , FM ), if (1.8) has a unique up to constants, periodic-in-space, and
global-in-time attracting solution, then so does (1.1). In other words, there exists a
unique up to constants, periodic with respect to x solution uinv : R

n ×R×Ω → R of
(1.1) such that, if u is another solution of (1.1), then

lim
t→∞

|‖u(·, t) − uinv(·, t)|‖ = 0.(1.9)
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We briefly explain the strategy of the proof. The theory of a fully nonlinear
stochastic PDE developed by Lions and one of the authors in [LS1], [LS2], and [LS3],
which applies to more general equations, allows us to define pathwise solutions to
(1.1). These can be expressed, using a simple transformation, as solutions of a PDE
with random coefficients.

The comparison principle for viscosity solutions to (viscous) Hamilton–Jacobi
equations implies that the distance between two solutions driven by the same noise
cannot increase. Moreover, whenever the excursions of the Brownian motion remain
small throughout a time interval, the solutions to (1.1) and (1.8) stay close. In view
of (1.9), which holds for solutions of (1.8), the latter converge, as t → ∞ to a unique
up to constants attractive solution. It follows that the distance between solutions
measured in the seminorm |‖ · |‖ decreases throughout such intervals. On the other
hand, the independent increments property of W and (1.7) imply that, as t → ∞,
there exist enough intervals of small excursions for W . Hence the difference of any
two solutions of (1.1) measured in |‖ · |‖ tends to 0 as t → ∞. The claim then follows
in a standard way.

An important step in showing that the solutions to the deterministic and stochas-
tic equations stay close to each other in intervals of small excursions of the Brownian
motion is the fact that, after times of order one, the solutions to (1.1) become Lipschitz
continuous with respect to x, with a Lipschitz constant depending on the realization
of the noise and not the initial datum. This fact, which is of independent interest, is
the main technical result in the paper.

When the equation is of first order, i.e., A ≡ 0, the Lipschitz bound follows from
the growth conditions on the Hamiltonian, which yield uniform L∞-bounds on the
solutions. For second-order equations, i.e., when A �≡ 0, there are two distinct cases.
When H is superquadratic with respect to the gradient, it is again possible to obtain
universal L∞-bounds on the solutions. The Lipschitz estimate then follows as in the
first-order case. When the Hamiltonian is superlinear but not superquadratic, the
estimate is more delicate. In this case it is necessary to obtain the Lipschitz bound
without using a priori L∞-bounds for nonnegative solutions, which may not exist.
Typically (see, e.g., Barles [B], Crandall, Lions, and Souganidis [CLS], and Lions [L]),
the Lipschitz bounds depend on the spatial oscillations of the initial datum, a fact
which is not enough for the argument here. We overcome this difficulty by obtaining
uniform, after time of order one, estimates on the spacial oscillations of the solutions.

The problem under consideration in this paper is a “toy” example for far more
complex models in, for example, phase transitions and growth processes (the so-called
KPZ (Kadar–Parisi–Zhang) equation) and fluid mechanics (the stochastically forced
Navier–Stokes equation).

The stochastic KPZ equation

du−
(
εΔu− |Du|2

)
dt− dW = 0

is obtained by linearizing the forced mean curvature flow for small gradients and
large force. Our results apply directly to this equation with additive forcing and more
general operators.

Another concrete example to which our results apply is the stochastic Burgers
equation with additive noise. Indeed, if u ∈ C(R × (0,∞)) solves the stochastic
Hamilton–Jacobi equation

du + (ux)2dt− dW = 0,
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then v = ux solves the Burgers equation

dv + (v2)xdt− dWx = 0.(1.10)

The unique up to constants random attractor of the Hamilton–Jacobi equation
yields a unique invariant measure for the Burgers equation.

Invariant measures for (1.10) and other closely related equations have been the
object of extensive study. We refer to E et al. [EKMS], Iturriaga and Khanin [IK],
Gomes et al. [GIKP] for the Burgers equation and Mattingly [M1], [M2] for the Navier–
Stokes equation with stochastic forcing.

The large-time behavior of solutions of (1.8) depends strongly on whether A ≡ 0
or is uniformly elliptic, while very little is known in the degenerate case. When A ≡ 0,
the problem was studied by Fathi [F], Roquejoffre [R], and Namah and Roquejoffre
[NR1], [NR2], the most general results being the ones of Barles and Souganidis [BS2].
The behavior of (1.8) for uniformly elliptic A was studied by Barles and Souganidis
[BS3].

When A = 0 and H is periodic in time, it was shown by Barles and Souganidis
[BS1] (see also Fathi and Mather [FM]) that there are no global attracting solutions.
As a matter of fact, phenomena like period doubling can occur. In the uniformly
elliptic case, however, it was shown in [BS3] that there exists a unique up to con-
stants attracting solution. Of course, the basic difference between the degenerate and
uniformly elliptic settings is that, in the latter case, the equation admits a strong
maximum principle.

It follows from our results that even when the equation does not have a strong
maximum principle, the stochastic noise is sufficiently irregular for the solutions to
lose dependence on the initial data, while this is not true in general for a deterministic
time-dependent perturbation.

The proofs in our paper are based on general arguments from the theory of vis-
cosity solutions. This allows us to consider general Hamiltonians H and matrices A.
In view of the generality of our assumptions, this paper extends previous works of
Iturriaga and Khanin [IK], E et al. [EKMS], and Gomes et al. [GIKP], which consider
strictly convex Hamiltonians, and in [GIKP], a space independent uniformly elliptic
second-order operator. If the Hamiltonian is strictly convex, the solution of (1.1) can
be expressed as the value function of a control problem. The asymptotic behavior of
the solutions then reduces to the study of the corresponding controlled stochastic and
ordinary differential equations. Here, instead of convexity, we assume some form of
asymptotic convexity of the level sets of H. Moreover, in the viscous case, the matrix
A can be degenerate elliptic and may depend on space.

We remark that Gomes et al. [GIKP] show that attracting solutions for strictly
convex Hamiltonians and A = εI converge to attracting solutions of the first-order
equation. A similar convergence result holds in our case for general A’s.

The paper is organized as follows. In section 2 we introduce the notion of solution,
we state all the assumptions and the main theorems of the paper, and we prove some
preliminary facts. In section 3 we prove the existence of an attracting solution uinv on
R

n×(−∞,∞), assuming that we have the Lipschitz regularization property discussed
earlier. Section 4 is devoted to the proof of this property.

2. Assumptions, preliminaries, and results. We begin with the notion of a
solution of (1.1). For this, we need the equation

vt − tr(A(x)D2v) + H(Dv + DW (x, t, t0), x) = tr(A(x)D2W (x, t, t0)).(2.1)
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Definition 2.1. A function u : R
n × [a, b] × Ω → R is a viscosity solution of

(1.1) if, for all [t0, t1] ⊆ [a, b], the function

v(x, t, ω) = u(x, t, ω) −W (x, t, t0, ω)

is a viscosity solution of (2.1) in R
n × [t0, t1].

This definition coincides with the more general notion of stochastic viscosity so-
lutions in [LS1], [LS2], [LS3]. Notice that when A ≡ 0, for the definition we only
need F ∈ C1. When A is uniformly elliptic and sufficiently smooth—for example,
when A has constant coefficients—then it is possible to give an alternative definition
requiring less differentiability of the F . Indeed, consider the solution w of the linear
stochastic PDE{

dw(x, t, t0) − tr(A(x)D2w(x, t, t0))dt = dW (x, t),

w(x, t0, t0) = 0.

The basic regularity theory for uniformly parabolic linear equations yields, for
some C > 0, the estimate

‖w(·, t, t0)‖C2(T) ≤ C(‖W‖C0,α([t0,t1]) + ‖F‖C2,α(T)).

In this case we say that u is a viscosity solution of (1.1) if v = u−w(·, ·, t0) solves

vt − tr(A(x)D2v) + H
(
Dv + Dw(x, t, t0), x

)
= 0 in R

n × [t0, t1].

Next we state a proposition which asserts the existence and uniqueness of pathwise
solutions of (1.1). Since the result is an immediate consequence of the theory of
viscosity solutions (see [CIL], [B]) and Definition 2.1, we omit the proof.

Proposition 2.2. Assume (1.2), (1.3), (1.4), (1.5), and (1.6). For all ω ∈ ΩC ,
s ∈ R, and u ∈ C(T ), there exists a unique stochastic viscosity solution u(·, ·, s, ω) ∈
C
(
R

n × [s,∞)
)

of (1.1) such that u(·, s, s, ω) = u.

Throughout the paper we denote by SW,A(t, s)(u) the stochastic viscosity solution
of (1.1) starting with initial datum u at s. The solution to (1.8) is denoted by
S 0,A(t, s)(u). When A ≡ 0 and the context allows it, we write SW (t, s) and S0(t, s)
to denote the solution operators to (1.1) and (1.8), respectively. Finally, whenever it
does not create any ambiguity, we write SW,A(t, s) for both SW,A(t, s) and S 0,A(t, s).

Since it will be used later, we note here that, as an immediate consequence of
Proposition 2.2, both S0,A(t, s) and SW,A(t, s) commute with constants, i.e., for all
c ∈ R

n,

SW,A(t, s)(v + c) = SW,A(t, s)(v) + c.(2.2)

We proceed with the assumptions on the Hamiltonian H, which we will be using
in this paper.{

There exist K > 0 and q > 1 such that for all (p, x) ∈ R
n × R

n,

H(p, x) ≥ K−1|p|q −K.
(2.3)

⎧⎨
⎩

There exist R0 > 0 and a strictly increasing Φ∈C
(
[0,∞), [0,∞)

)
with Φ(0) = 0, such that for all (p, x) ∈ R

n × R
n with |p| ≥ R0,

DpH(p, x) · p−H(p, x) ≥ Φ(|p|).
(2.4)
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There exist R0 and B > 0 such that for all (p, x) ∈ R

n × R
n

with |p| ≥ R0,−DxH(p, x) · p ≤ B|p|2(DpH(p, x) · p−H(p, x)).
(2.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

There exist R0 > 0 and a strictly increasing Φ ∈ C([0,∞); [0,∞)) with Φ(0) = 0,

such that for some δ > 0, G(r) = Φ(r)r−(1+δ) is increasing,

G(r) → ∞ as r → ∞, and for all (p, x) ∈ R
n × R

n with |p| ≥ R0,

DpH(p, x) · p−H(p, x) ≥ Φ(|p|).

(2.6)

{
There exists C > 0 such that for all (p, x) ∈ R

n × R
n with |p| ≥ R0,

−DxH(p, x) · p ≤ C(DpH(p, x) · p−H(p, x)).
(2.7)

lim sup
|p|→∞

(DpH(p, x) · p−H(p, x))−1|DpH(p, x)| = 0 uniformly in x ∈ R
n.(2.8)

sup
x∈Rn

lim sup
|p|→∞

(DpH(p, x) · p−H(p, x))
−1 |p||DpH(p, x)| < ∞.(2.9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

There exist a unique λ ∈ R and a unique up to constants U ∈ C(T),

both depending on A and H, such that for each v ∈ C(T) and t0 ∈ R,

there exists c ∈ R such that

limN→∞ supx∈T

∣∣S 0,A(t0 + N, t0)(v) − (U + c) − λN
∣∣ = 0.

(2.10)

Assumptions (2.4) and (2.6) state that the level sets of H as a function of p
become convex for large |p|. This asymptotic condition is crucial for obtaining Lip-
schitz bounds which do not depend on the initial data and is much weaker than
requiring the Hamiltonian to be convex in p.

The sole purpose of (2.8) and (2.9) is to ensure that the Hamiltonian in (2.1),
which arises after incorporating the noise, still satisfies the growth assumptions (2.3),
(2.4), (2.5) in the nonviscous case and (2.3), (2.6), (2.7) in the viscous case, with
constants which may depend on t0, t, and ω.

Among all the above, the most important assumption is (2.10). It states that
the corresponding deterministic equation has a global attractor, which consists—up
to constants—of a single trajectory. We refer to the introduction for a discussion
concerning this fact and to [BS1], [BS2], and [BS3] for results yielding (2.10) as well
as an extensive list of references.

The main result of this paper is the next theorem. The strategy for the proof
of the first part was outlined in the introduction. As we explain later in this section
the second part is a simple consequence of the first and the stability properties of the
viscosity solutions.

Theorem 2.3. Assume (1.2), (1.5), (1.6), (2.3), and (2.10). There exists Ω̃ ⊆ Ω

with P(Ω̃) = 1 such that for every ω ∈ Ω̃, the following hold:
(i) If A ≡ 0 and, in addition, (2.4), (2.5), and (2.8) hold, or if A �≡ 0 satisfies

(1.3), (1.4) and, in addition, (2.6), (2.7), (2.9) hold and Fi ∈ C3(T), there exists a
unique up to constants solution uinv(·, ·, ω) ∈ C(R;C0,1(T)) of (1.1) attracting any
other solution, i.e., for any v ∈ C(T) and s ∈ R,

lim
t→∞

|‖uinv(·, t, ω) − SW (t, s)(v)(·)|‖ = 0.
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(ii) Assume that A = εÃ is uniformly elliptic and satisfies (1.3). If uε
inv(·, ·, ω) and

uinv
0(·, ·, ω) are the unique up to constants invariant solutions of (1.1) corresponding

to ε > 0 and ε = 0, respectively, then for any [a, b] ⊂ (−∞,+∞),

lim
ε→0

sup
t∈ [a,b]

|‖uε
inv(·, t, ω) − u0

inv(·, t, ω)|‖ = 0.

As was already mentioned in the introduction, for A ≡ 0 and H(p) = |p|2 this
result was first proved by [EKMS] in one dimension and by [IK] in all dimensions for
general strictly convex H and uniformly elliptic x-independent A. Our assumptions
allow, however, to consider nonconvex Hamiltonians and degenerate elliptic A. For
example, H can have the form

H(p, x) = |p|2Ĥ(p̂, x),

where, for p ∈ R
n \ {0}, p̂ = |p|−1p, and Ĥ is periodic in x and uniformly bounded

away from 0. It is straightforward to check that all structural assumptions on H hold.
Moreover, it is proved in [BS2] and [BS3] that for each v ∈ C(T), S0(t)(v) has a limit
as t → ∞. The up to constants uniqueness of the asymptotic limit of the deterministic
equation is here an assumption, which holds, for example, if Ĥ is independent of x.

Most of the growth conditions on H are needed for the following lemma, which
plays a central role in the paper. In fact, this lemma is of independent interest, as it
extends known regularity results for viscous Hamilton–Jacobi equations.

For (t1, t2) ∈ Δ, we write

CW (t1, t2, ω) = max
i

sup
t∈[t1,t2]

∣∣∣∣
∫ t

t1

dWi(s, ω)

∣∣∣∣ .(2.11)

We have the following.
Lemma 2.4. Assume (1.2), (1.3), (1.4), (1.5), (1.6), (2.3) and either (2.6),

(2.7), (2.9), and Fi ∈ C3(T) if A �≡ 0 is degenerate elliptic, or (2.4), (2.5), and (2.8)
if A ≡ 0. For all ω ∈ ΩC and (s, t) ∈ Δ, there exists L(s, t, ω) > 0 such that for all
v ∈ C(T),

inf
c∈R

‖SW,A(t, s)(v) − c‖C0,1(T) ≤ L(s, t, ω).

Moreover, there exists L̂ : (0,∞) × (0,∞) → (0,∞) which is increasing with
respect to the second argument, such that

if CW (s, t, ω) ≤ K, then L(s, t, ω) ≤ L̂(t− s,K).

It follows from Lemma 2.4 that solutions to (1.1) are Lipschitz continuous in
space with Lipschitz constant independent of the initial datum. For solutions of the
deterministic time-independent equation (1.8), the lemma holds with an L which
depends only on |t− s|.

The claim about the vanishing viscosity limit asserted in Theorem 2.3 is a sim-
ple consequence of our results and standard arguments from the theory of viscosity
solutions. Indeed, Lemma 2.4 yields that the family (uε

inv)ε>0 is uniformly Lipschitz
continuous on any given compact time interval. A simple diagonalization argument
yields a subsequence which converges uniformly on compact intervals to a viscosity
solution u of (1.1) with A ≡ 0. Lemma 3.7 below then asserts that we must have
u(x, t) = u0

inv(x, t) + c(t). However, since both u and u0
inv are solutions, the constant

c cannot depend on time. Therefore the whole family (uε
inv)ε>0 converges up to

constants to u0
inv.
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3. Proofs. We begin with a number of preliminary lemmas which summarize
some of the key properties of the solutions of (1.1). The first lemma is an immediate
consequence of the definition of a solution and the comparison principle for viscosity
solutions (see [CIL]); hence we omit its proof.

Lemma 3.1. For all u, v ∈ C(T) and (s, t) ∈ Δ,

‖SW,A(t, s)(u) − SW,A(t, s)(v)‖C(T) ≤ ‖u− v‖C(T).

For v0 ∈ C0,1(T) and (t1, t2) ∈ Δ we denote by

LA(t1, t2) = sup
s∈[t1,t2]

‖DS 0,A(s, t1)(v0)‖

the uniform Lipschitz constant of the solution of the deterministic equation.
We also write CA and C0 for the constants

CA = max
x∈T, |p|≤LA(t1,t2)

(
|DpH(p, x)|+1

)
‖F‖C3(T) if A �≡ 0

and

C0 = max
x∈T, |p|≤LA≡0(t1,t2)

(|DpH(p, x)| + 1)‖F‖C2(T) if A ≡ 0.

Lemma 3.2. Let v0∈C0,1(T) and (t1, t2) ∈ Δ. Then∥∥S 0,A(t2, t1)(v0) − SW,A(t2, t1)(v0)
∥∥ ≤ (t2 − t1)CA ‖F‖CW (t1, t2, ω).

Proof. 1. To simplify the presentation we assume that t1 = 0, t2 = T and we use
the notation C = CA ‖F‖L∞ CW (t1, t2, ω), u = SW,A(v0), and v = S0,A(v0).

2. Arguing by contradiction, we assume that there exists (x0, t0) ∈ T×(0, T ) such
that, possibly after exchanging the role of u and v, u(x0, t0) − v(x0, t0) − Ct0 > 0.
Standard arguments from the theory of viscosity solutions (see [CIL]) then yield η > 0
and (Xα, pα, xα, tα), (Yα, pα, yα, sα) ∈ Sn × R

n × R
n × (0, T ) such that, as α → ∞,

⎧⎪⎨
⎪⎩
|tα − sα| + α|yα − xα|2 → 0, tr (A(yα)Yα) − tr (A(xα)Xα) ≤ Lα|xα − yα|2,
C + η(T − tα)−2 + H(pα, xα) − tr(A(xα)Xα)

≤ −η(T − sα)−2 + H(pα + DW (yα, sα), yα) − tr (A(yα)Yα) .

The (degenerate) ellipticity of A, the choice of C, and the above inequalities
contradict the fact that η>0.

Note that the above estimates depend on the Lipschitz constant of the determin-
istic equation. Hence to use this lemma, it is necessary to have a universal bound on
those Lipschitz constants, like the one asserted by Lemma 2.4.

The next claim strengthens the assertion of (2.10), which asserts only pointwise
convergence as t → ∞ of the solution operator S0,A(t, s) acting on C(T). It turns out
that this convergence is uniform with respect to the initial data.

Lemma 3.3. Assume (2.10) and the hypotheses of Lemma 2.4 hold. There exists
a unique up to constants function U∗

A ∈ C0,1(T) such that, for all t ∈ R,

lim
k→∞

(
sup

v∈C0(T)

|‖S 0,A(t,−k)(v) − U∗
A|‖

)
= 0.
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Proof. 1. Since the deterministic equation does not depend on time, we may take
t = 0. Assume that, for some δ > 0, there exist (vk)k∈N ∈ C(T) such that

|‖S 0,A(0,−k)(vk) − U∗
A|‖ ≥ δ for all k ∈ N,(3.1)

where U∗
A is the unique (up to constants) limit which exists in view of (2.10).

2. The Lipschitz continuity asserted in Lemma 2.4 yields constants ck such that
the family (v̂k)k∈N defined by

v̂k = S 0,A(−k + 1,−k)(vk) − ck

is bounded in C0,1 and thus compact in C(T). Hence there exists a subsequence
km → ∞ such that v̂km

→ v̂ in C0.
3. Consider the family of maps Sk : C(T) → C(T) given by

Sk(v) = S 0,A(0,−k + 1)(v).

The contraction property yields that, as m → ∞,

‖Skm(v̂) − Skm(v̂km)‖ → 0.

But (2.10) implies that

|‖Skm
(v̂) − U∗

A|‖ → 0.

Hence, Skm(v̂km) → U∗
A, a contradiction to (3.1).

The next result concerns a technical property of the Brownian motion which is
a consequence of the fact that the increments are independent and identically dis-
tributed. This property plays a fundamental role in our analysis as well as that of
[EKMS], [IK], and [GIKP]. To state it, we need the following definition.

Definition 3.4. Fix l,m ∈ N and k ∈ Z. An interval [kl, (k + 1)l] is called an
(l,m)-small noise interval if

sup
t∈[kl,(k+1)l]

sup
1≤i≤M

|Wi(t) −Wi(kl)| ≤
1

m
.

We have the following.
Lemma 3.5. For almost every path and for any (l,m) ∈ N × N, there are

two sequences of integers (kl,m,±
i )i∈N such that kl,m,±

i → ±∞, as i → ∞, and

[kl,m,±
i l, (kl,m,±

i + 1)l] are (l,m)-small noise intervals.
Proof. 1. We present the argument only for positive values of k.
2. Let

Al,m
k =

{
ω : sup

kl≤t≤(k+1)l

sup
1≤i≤M

|Wi(t) −Wi(kl)| ≤
1

m

}
.

The increments W (t)−W (kl) of the Brownian motion W (t) = (W1(t), . . . ,WM (t))
on the interval [kl, (k + 1)l] are independent and identically distributed. Hence the

events (Al,m
k )k∈N are independent and P(Al,m

k ) is strictly positive and independent of
k. The second Borel–Cantelli lemma then yields that

P({ω ∈ Al,m
k for infinitely many k}) = 1.
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The subset Ω̃ of Ω of full measure in which our result holds consists of all of
continuous paths which have, for each (l,m) ∈ N × N, infinitely many (l,m)-small
noise intervals for both positive and negative times. The precise definition of Ω̃ is

Ω̃ = ΩC ∩(l,m)∈N×N (∩∞
j=1 ∪∞

k=j A
l,m
k ) ∩ (∩∞

j=1 ∪∞
k=j A

l,m
−k ).

Next we use Lemmas 2.4, 3.2, 3.3, and 3.5 to establish the following.
Lemma 3.6. Fix ω ∈ Ω̃, t0 and δ > 0. There exists k0 = k0(ω) ∈ N such that for

all k ≥ k0(ω) and u, v ∈ C(T),

|‖SW,A(t0, t0 − k)(u) − SW,A(t0, t0 − k)(v)|‖ ≤ δ, and

|‖SW,A(t0 + k, t0)(u) − SW,A(t0 + k, t0)(v)|‖ ≤ δ.

Proof. 1. Since both estimates are proved similarly, here we establish only the
second.

2. Lemma 3.3 yields an M > 0 such that for any initial datum û and any m ∈ N,

|‖S 0,A(m + M,m)(v̂) − U∗
A|‖ < δ/4.(3.2)

Here we use the fact that, since the deterministic equation is independent of time,

sup
v̂

|‖S 0,A(m + M,m)(v̂) − U∗
A|‖ = sup

v̂
|‖S 0,A(M, 0)(v̂) − U∗

A|‖.

3. If CA is the constant in Lemma 3.2 for the Lipschitz constant L = L̂(1, 1),
choose m ∈ N such that 4MCA‖F‖ < δm and recall that Lemma 3.5 yields an
(M + 1,m)-small noise interval [j(M + 1), (j + 1)(M + 1)] contained in (t0,+∞).

Fix k0(ω) such that t0 +k0(ω) > (j+1)M. It follows that the small noise interval
is contained in (t0, t0 + k0(ω)].

4. Let t−M = j(M + 1) and t+M = (j + 1)(M + 1). Since [t−M , t−M + 1] is contained
in the small noise interval, Lemma 2.4 asserts that

u0 = SW,A(t−M + 1, t0)(u) and v0 = SW,A(t−M + 1, t0)(v)

are Lipschitz continuous with Lipschitz constant L = L̂(1, 1).
Applying again Lemma 2.4, we find that the last statement holds on the entire

interval [t−M + 1, (t−M + 1) + M ], which has length M.
5. Using (3.2) and Lemma 3.2, we find

|‖SW,A(t+M , t−M + 1)(u0)−SW,A(t+M , t−M + 1)(v0)|‖

≤ |‖SW,A(t+M , t−M + 1)(u0) − S 0,A(t+M , t−M + 1)(u0)|‖

+ |‖SW,A(t+M , t−M + 1)(v0) − S 0,A(t+M , t−M + 1)(v0)|‖

+ |‖S 0,A(t+M , t−M + 1)(u0) − U∗
A|‖ + |‖S 0,A(t+M , t−M + 1)(v0) − U∗

A|‖

≤ 4(δ/4).

The contraction property guarantees now that the estimate holds for all later
times t > t+M .

Next we construct the global attracting solution uA
inv.

Lemma 3.7. Fix ω ∈ Ω̃. For all u0 ∈ C(T ) and all t ∈ R, the limit

ũ(·, t) = lim
k→∞

SW,A(t,−k)(u0)(·)(3.3)
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exists in C(T) and is unique up to constants. Moreover, for any t1 < t2, there exists
c(t1, t2) ∈ R such that

SW,A(t2, t1)(ũ(t1)) = ũ(t2) + c(t2, t1).(3.4)

Proof. 1. Lemma 3.6 yields that the family (uk(·, t))k∈N defined by

uk(·, k) = SW,A(t,−k)(u0)(·)

is a Cauchy sequence with respect to the seminorm |‖ · |‖ for each fixed t. Therefore
there exist constants ck(t) such that the sequence uk(·, t) − ck(t) converges in C(T).

2. The identity (3.4) is a consequence of the C0-continuity of the semigroup.
We are now in a position to present the proof of Theorem 2.3.
Proof. In view of Lemma 3.6 and Lemma 3.7, it remains to show that there exists

c(t) such that the function ṽ = ũ− c satisfies, for all t1 < t2,

SW,A(t2, t1)(ṽ(·, t1))(·) = ṽ(·, t2).

Let t1 < t2 < 0. The semigroup property and (3.4) yield

SW,A(0, t1)(ũ(·, t1)) = SW,A(0, t2) (ũ(·, t2) + c(t2, t1)) .

It follows that

c(t2, t1) = c(0, t1) − c(0, t2).

Similar expressions for t2 < 0 < t1 and t2, t1 > 0 yield the existence of a solution
on (−∞,∞) by setting

uinv(x, t) = ũ(x, t) + c(t), c(t) = c(max{t, 0},min{t, 0}).

4. The proof of the Lipschitz bounds. The proof of Lemma 2.4 is long and
technical. To simplify the presentation, we divide it into a number of lemmas.

We remind the reader that the sole purpose of assumptions (2.8) and (2.9) is
to ensure that the Hamiltonian in (2.1), which arises after incorporating the noise,
still satisfies the growth assumptions (2.3), (2.4), (2.5) in the nonviscous case and
(2.3) and (2.6), (2.7) in the viscous case, with constants depending on the noise only
through the expression in (2.11). Therefore, we will usually omit the dependence of
the Hamiltonian in (2.1) on t and ω, thus keeping the notation simple.

The first step towards the universal Lipschitz bound is a universal L∞-bound for
nonnegative solutions. This is the object of the following lemma.

Lemma 4.1. Fix ω ∈ ΩC , u0 ∈ C(T), and s ∈ R and assume (2.3) and A ≡ 0.
Let u be the solution of (2.1) on R × [s, T ] with u(·, s) = u0. For all t ≥ s, there
exists a positive constant C(s, t, ω), which is independent of the initial datum u0 and
depends on ω only through the expression in (2.11), such that

‖u(·, t) − minu0‖ ≤ C(s, t, ω).

Proof. 1. If H satisfies (2.3), a straightforward calculation yields that so does
H̄(p, x, t) = H(p + DW (x, t, s, ω), x) with a constant depending on ‖W‖C∞(T×[0,T ]).

Without loss of generality, we may assume that u0(0) = minT u0 = 0 and s = 0.
The extension to the general case is straightforward.
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2. For sufficiently large C = C(K) > 0, the function

g(x, t) = C|x|q/(q−1)t−1/(q−1) + Kt + 1

is a supersolution of (2.1).
Indeed, for C large,

−C(q − 1)−1(|x|t−1)q/q−1 + K + H(Cq(q − 1)−1(|x|t−1)1/q−1D|x|, x)

≥ C(q − 1)−1(|x|t−1)q/q−1(K−1q(qC)q−1(q − 1)1−q − 1) −K + K ≥ 0.

For t small enough we clearly have g(·, t) ≥ u(·, t). Since the infimum of a family
of supersolutions is also a supersolution, it follows that

ḡ(x, t) = inf
z∈Zn

g(x− z, t)

is a periodic supersolution of (2.1).
When A �≡ 0, a universal L∞-bound for nonnegative solutions is available only

for Hamiltonians H with superquadratic growth in p. Indeed, we have the following.
Lemma 4.2. Fix ω ∈ ΩC and u0 ∈ C(T) and assume that (2.3) holds with q > 2.

Let u solve (2.1) on R
n× [s, T ] with u(·, s) = u0. For (s, t) ∈ Δ there exists a constant

C(s, t, ω), independent of the initial datum and depending on ω only via (2.11), such
that

‖u(·, t) − minu0‖ ≤ C(s, t, ω).

Before we present the proof, we remark that it is not expected, as follows from
the discussion below, to have a universal bound on the L∞-norm for nonnegative
solutions of the viscous Hamilton–Jacobi equations with quadratic or subquadratic
growth H. Indeed, for c > 0, consider the function uc : R

n × [0, T ] → R defined by

uc(x, t) =
n

2
ln(t + c) + (4(t + c))−1|x|2 − n

2
ln(c),

which is an exact nonnegative solution to

ut − Δu + |Du|2 = 0.

It is immediate that, for each c > 0, minuc(x, 0) = 0, uc(·, t) ≥ 0 for all t ≥ 0 and
limc→0 uc(x, 1) = +∞. However, the oscillation of uc(x, 1) on each bounded subset of
R

n is bounded uniformly in c.
The above solutions were obtained by applying the Hopf–Cole transform to fun-

damental solutions of the heat equation at time t + c. By applying the Hopf–Cole
transformation to periodic solutions of the heat equation, it is possible to construct
counterexamples in the periodic case in a similar way.

Now we prove Lemma 4.2.
Proof. 1. To simplify the presentation, we assume throughout the proof that

s = 0 and write u0 for u(·, 0). Finally, as before, we assume that minu0 = 0.
2. Let

β = q − 2 > 0, γ = (1 − θ)(q − 2)(q − 1)−1, and α = γ − 1 + 2θ,

where θ ∈ (0, 2−1) is chosen so that α > 0.
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3. For a, b > 0 consider the function Ga,b : R
n × (0,∞) → R given by

Ga,b(x, t) = Kt + 2bmax
T

tr(A)tγ + atα + bγ|x|2tγ−1.

It is immediate that for any x �= 0, limt→0 Ga,b(x, t) = +∞. Hence, for t small,

Ga,b ≥ u0.

4. The constants a, b may be chosen so that Ga,b is a supersolution of (2.1).
Indeed, since D2|x|2 = 2I, it remains to show only that

Ra,b(x, t) = aαtα−1 + |x|2tγ−2
(
K−1(2bγ)q(|x|t−θ)q−2 − γ(1 − γ)b

)
> 0.

If |x| � tθ, it is possible to find b, depending on q, θ, and K but not on a, so that
Ra,b > 0.

If |x| ≤ tθ, it is possible to choose a so that

Ra,b(x, t) ≥ (aα− γ(1 − γ)b)tα−1 > 0.

5. A periodic supersolution can be constructed as the infimum of supersolutions
exactly as in the first-order case.

We remark that since

inf
T

u(t, ·) ≥ −Kt + inf
T

u(0, ·)

and the equations commute with constants, Lemmas 4.1 and 4.2 yield automatically
a bound on the oscillation

osc(u(·, t)) = sup
T

u(·, t) − inf
T

u(·, t).

Thus a bound on the oscillation is a weaker statement than the bounds on the L∞-
norm of nonnegative solutions asserted by the previous lemmas. We summarize these
comments in the following corollary.

Corollary 4.3. Fix ω ∈ ΩC . Under the assumptions of either Lemma 4.1 or
Lemma 4.2, there exists a positive constant C(s, t, ω), depending on ω only through
CW (s, t, ω) as in (2.11), such that for all (s, t) ∈ Δ and u0 ∈ C(T),

osc(SW,A(t, s)) ≤ C(s, t, ω).

The following lemma completes the proof of Lemma 2.4 in the first-order case.
Lemma 4.4. If (2.4), (2.5), and (2.8) hold and u solves (1.1) on R

n× [s, T ] with
A ≡ 0, then for all t ∈ [s, T ], u(·, t) is Lipschitz continuous with a Lipschitz constant
bounded by L(s, t, ω), which is nonincreasing for s < t < s + 1 and depends only on
(2.11), H, and supt′∈[s,T ] ‖u(·, t′)‖.

Proof. 1. For almost all ω, there exists a K(t, s, ω) > 0 such that if |p| > K(t, s, ω),
there exist B,R0 > 0 such that

H̃(p, x, t, ω) = H(p + DW (x, t, s, ω), x)

satisfies (2.4) and (2.5) for fixed ω uniformly in t ∈ [s, T ]. Again this is the place
where (2.8) is used. In order to simplify notation, next we suppress the dependence

of H̃ on t, s, and ω and write simply H̃(p, x). Finally, we choose s = 0.
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2. Following [CLS] (note that (2.4) and (2.5) are (G2) and (3.2) in [CLS]), we
consider the solution ϕ of

ϕ′(t) = ϕ(t)Φ(ϕ(t)−1),(4.1)

where Φ is the increasing function in (2.4).
3. For λ > 0 let

z(x, t) = −ϕ(t)e−λu(x,t).

It follows that

zt −G(Dz, z, x) − ϕ′ϕ−1z = 0,

where

G(p, z, x) = (λz)H̃(−(λz)−1p, x).

Note that if q = −(λz)−1p, then

DzG(p, z, x) = λ
(
H̃(q, x) − qDpH̃(q, x)

)
and

DxG(p, z, x) = λzDxH̃(q, x) = −|p| |q|−1DxH̃(q, x).

4. If, for some C > 0,

w(x, y, t) = z(x, t) − z(y, t) − C|x− y|

has a positive maximum M at (x0, y0, t0), then in particular x0 �= y0, so |x − y| is
smooth in a neighborhood of (x0, y0, t0).

Using the definition of the viscosity solutions with p = C(x0 − y0)|x0 − y0|−1 and
noting that p = Cp̂, we find

0 ≤ G(p, z(x0, t0), x0) −G(p, z(y0, t0), y0) + ϕ′(ϕ−1)(t0)(z(x0, t0) − z(y0, t0))

=

∫ 1

0

[|x0 − y0|p̂ ·DxG(p, z(r), x(r)) + DzG(p, z(r), x(r))(z(x0, t0)−z(y0, t0))]dr

+ϕ′(ϕ−1)(t0)
(
z(x0, t0) − z(y0, t0)

)
,

where

q(r) = −(λz(r))−1p, x(r) = y0+r(x0−y0), z(r) = z(y0, t0)+r(z(x0, t0)−z(y0, t0)).

Hence

0 ≤
∫ 1

0

(
− C|q(r)|−1|x0 − y0|q̂(r) ·DxH̃

(
q(r), x(r)

))
dr

+ ϕ′(ϕ−1)(t0)
(
z(x0, t0)−z(y0, t0)

)
− λ

(
z(x0, t0)−z(y0, t0)

) ∫ 1

0

(
q(r) ·DqH̃(q(r), x(r))−H̃(q(r), x(r))

)
dr.
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Assume next that C is such that

C ≥ λ sup
T

|z|R0 ≥ λϕe‖u
−‖R0,

so that |q| ≥ R0 and, hence, DqH̃ · q − H̃ � 0, and recall that ϕ′(ϕ)−1 � 0.
Since by assumption

z(x0, t0) − z(y0, t0) ≥ C|x0 − y0|,

there exists, in view of (2.5), a constant B > 0 such that

0 ≤
(∫ 1

0

(B − λ)g(r)dr+ϕ′(t0)(ϕ(t0))
−1

)(
z(x0, t0)−z(y0, t0)),

where

g(r) = q(r) ·DqH̃(q(r), x(r))−H̃(q(r), x(r)).

Choosing λ = B + 1 and using (2.4) and (4.1), we find

0 ≤ (z(x0, t0)−z(y0, t0))

∫ 1

0

[Φ(ϕ−1(t0)) − Φ(|q(r)|)]dr.

Recalling that |q| = Ceλu(λϕ)−1 and that Φ is strictly increasing, we obtain, for

C > λeλ‖u
−‖∞ , the desired contradiction.

We continue with the Lipschitz bound in the second-order case. Here we ar-
gue using the classical Bernstein method, which yields a universal Lipschitz bound
depending only on the oscillation of the initial datum.

In the subquadratic but superlinear case, we will use this bound iteratively to
obtain a bound for the oscillation which is independent of the initial datum (see
Lemma 4.7). Of course, for a superquadratic Hamiltonian, the oscillation is easily
bounded by Lemma 4.2, so the Lipschitz bound follows directly from Lemma 4.5.

To this end, let ϕ : [s, T ] → [0,∞) be a solution of the ordinary differential
inequality

ϕt ≤ min(ϕ1/2, 1), ϕ(s) = 0.(4.2)

Lemma 4.5. Let u solve (2.1) on T × [s, T ] and assume that

H̃(p, x, t, s, ω) = H(p + DW (x, t, s, ω), x) − tr
(
A(x)D2W (x, t, s, ω)

)
satisfies (2.3), (2.6), and (2.7) on [s, T ]. There exist κ ∈ [0, 1) and CR0 > 0, both
independent of the initial datum u(·, s), such that for all t ∈ [s, T ],

‖Du(·, t)‖ ≤ ϕ(t)−1/2 CR0 (1 + osc(u(·, s))κ).(4.3)

The fact that κ < 1 is very critical, since it implies that even if the oscillation is
large initially, it will be much smaller at the end of the time interval. It follows from
the proof that for δ as in (2.6), κ(δ) → 1 as δ → 0. Therefore the method does not
apply to Hamiltonians with just linear growth.

Further, notice that the constants in (2.3), (2.6), and (2.7) depend on the realiza-
tion of the noise in a given time interval, but only through (2.11), so they are bounded
if the interval is a small noise interval.
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Finally, we remark that it is straightforward to check that the particular equation

ut − εΔu + |Du + DW (x, t, s, ω)|2 = 0

satisfies the conditions of Lemma 4.5.
For the proof of Lemma 4.5 we need a rough a priori bound on the oscillation.

To this end, let

L(ω) = sup
(x,y,t)∈Rn×Rn×[s,T ]

|H(DW (x, t, s, ω), x) −H(DW (y, t, s, ω), y)|.

Note that the dependence on ω is through (2.11).
Lemma 4.6. For all (s, t) ∈ Δ, we have

osc(u(·, t)) ≤ osc(u(·, s)) + L|t− s|.

Proof. The estimate follows directly from the fact that

osc(u(·, t))t =

(
sup

T

u(·, t) − inf
T

u(·, t)
)

t

≤ L.

We continue with the proof of Lemma 4.5, which uses some of the techniques of
[CLS].

Proof. 1. To simplify things we assume that s = 0. The functions v(·, t) =
u(·, t) + Kt and u(·, t) have the same Lipschitz constant and v solves an equation
with a nonnegative Hamiltonian. We may therefore assume that the Hamiltonian
is nonnegative, i.e., K = 0. Moreover, to simplify the presentation, we drop the
dependence on ω and write H̃(p, x, t) instead of H̃(p, x, t, 0, ω). Finally, we write

O0 = osc(u(·, 0)).

2. Let m(t) and xm(t) denote, respectively, the maximum of the function u(·, t)
and the point where the maximum is assumed, i.e., for all x ∈ T,

m(t) = u(xm(t), t) ≥ u(x, t).

Then

|u(x, t) −m(t)| ≤ osc(u(·, t)) ≤ diam(T)‖Du(·, t)‖.

Since H̃ ≥ 0, we know that

mt(t) = ut(xm(t), t) = [tr(A(xm(t))D2u(xm(t), t)) − H̃(0, xm(t), t)] ≤ 0.

3. For λ > 0 consider the function

z(x, t) = ϕ(t)|Du(x, t)|2 + λ(m(t) − u(x, t)).

Let (x0, t0) be a point where z achieves its maximum. The goal is to show that
there exist λ > 0 such that either t0 = 0 or |Du(x0, t0)| ≤ R0.

In order to keep the presentation simple, in what follows we assume that A is the
identity matrix. The modifications needed for general A are straightforward, so we
omit them.
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4. If either t0 = 0 or |Du(x0, t0)| ≤ R0, then

z(x, t) ≤ R2
0 + λ(O0 + LT ).

Hence, for all (x, t) ∈ T × [0, T ],

ϕ(t)|Du(x, t)|2 ≤ R2
0 + λ(O0 + LT ) + λ(u(x, t)−m(t)) ≤ R2

0 + λ(O0 + LT ).

Assume that

O0 ≥ 1 + LT.

It then follows that for all (x, t) ∈ T × [0, T ],

ϕ(t)
1/2|Du(x, t)| ≤ (R2

0 + λ(O0 + LT ))1/2 ≤ (R2
0 + 2λO0)

1/2.

Since R0 is given, we may assume that λ ≥ R0. The above estimate then can be
simplified to read

‖Du(·, t)‖ ≤ C λϕ(t)
−1/2

(1 +
(
O0λ

−1
)1/2

).(4.4)

5. Assume that t0 > 0 and |Du(t0, x0)| > R0. The classical calculations as-
sociated with Bernstein’s method then yield the following sequence of inequalities,
where C is the constant in (2.7) and where z and H̃ are evaluated at (x0, t0) and
(Du(x0, t0), x0, t0):

0 ≤ zt − Δz = λmt − λ(ut − Δu)

+2ϕDu ·D(ut − Δu) − 2ϕ|D2u|2 + ϕt|Du|2

≤ λH̃ − 2ϕDu ·DH̃ − 2ϕ|D2u|2 + ϕt|Du|2

≤ λH̃ − λDu ·DpH̃ − 2ϕDu ·DxH̃ + ϕt|Du|2

≤ −(λ− C)Φ(|Du|) + ϕt|Du|2.

If 3λ ≥ 4C, then

0 ≤ −λΦ(| gradu|) + 4ϕt| gradu|2.

Dividing by |Du|1+δ, we obtain, always at (x0, t0),

0 ≤ −λG(|Du|) + 4ϕt|Du|1−δ.

Consider the set

DR0
= {(x, t) ∈ T × [0, T ] : | gradu(x, t)| ≥ R0}

and let

λ0 = sup
(x,t)∈DR0

4ϕt(t)G(|Du(x, t)|)−1|Du(x, t)|1−δ.(4.5)

If we choose λ > λ0, then it is impossible for the Bernstein function z to have an
interior maximum, unless at the maximum we have |Du| ≤ R0, in which case (4.4)
holds. It remains to show that λ0 depends only on the data.
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6. Let (x̄, t̄) be such that

λ0 = 4φt(t̄)(G(|Du(x̄, t̄)|))−1|Du(x̄, t̄)|1−δ.

If such (x̄, t̄) does not exist, we argue using approximate maximizers—we leave
the details to the reader. Moreover, since φt(0) = 0, if λ0 > 0, then t̄ > 0.

Choose λ ∈ (λ0, 2λ0). Using (4.4) and (4.5), we find, for some universal constant
C > 0, which is independent of λ and the initial datum, that

|Du(x̄, t̄ )| ≤ C ϕt(t̄ )(G(|Du(x̄, t̄)|)ϕ(t̄))−1/2|Du(x̄, t̄)|1−δ(1 + (O0λ
−1)1/2).

Note that since G(|Du(x̄, t̄)|) ≥ G(R0) and ϕt ≤ ϕ1/2,

|Du(x̄, t̄)|δ ≤ C(1 + (O0λ
−1)1/2).

Inserting the above in (4.5) and using (4.2) yield, for a different universal con-
stant C,

λ0 ≤ C(1 + (O0λ
−1)1/2)(1−δ)/δ ≤ 2(1−δ)/δC(1 + (O0λ0

−1)(1−δ)/2δ).

7. We may assume that

2(1−δ)/δ+1C ≤ λ0,

and hence

λ0 ≤ C(O0λ0
−1)(1−δ)/2δ,

which implies

λ0 ≤ CO
(1−δ)(1+δ)−1

0 .

It follows that there exists ρ ∈ (0, 1), independent of the initial condition, such
that

λ0 ≤ CO1−ρ
0 .

Inserting a λ with λ ∈ (λ0, 2λ0) in (4.4) yields (4.3).
We conclude with a lemma which provides a universal bound on the oscillation

via a bootstrap procedure.
Lemma 4.7. Assume the hypotheses of Lemma 4.5. There exists a universal

constant C, which is independent of the initial datum, such that, after time T = 1,
the oscillation of u is bounded by C.

Proof. 1. Since we may assume that ϕ(t) ≥ tβ for some β > 0, we find that if
osc(u(·, 0)) is sufficiently large, then Lemma 4.5 asserts the existence of κ̂ ∈ (0, 1) and
C > 1 such that, after a time interval of length τ ,

osc(u(·, t + τ)) ≤ Cτ−β(osc(u(·, t)))κ̂.

If the oscillation at some time is already bounded by a power of the universal
constant C, there is nothing to prove. Therefore we assume that

if Ĉ = C2(1−κ̂)−1

, then osc(u) ≥ Ĉ.
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If 2κ = (1 + κ̂) < 2, we obtain the simpler recursion

osc(u(·, t + τ)) ≤ τ−β(osc(u(·, t)))κ.

2. Choose a sufficiently small β1 > 0, let κ̄ = ββ1 + κ < 1, and consider the
recursively defined sequences

Ol = Oκ̄
l−1 and τl = O−β1

l−1 .

If the numbers Ol are given by Ol = O
(κ̄)l

0 , it follows that

osc

(
u

(
·,

l∑
i=0

τi

))
≤ max(Ĉ, Ol).

3. Let lM be the smallest integer such that OlM ≤ 2Ĉ. Then

OlM−1 = Oκ̄(lM−1)

0 ≥ 2Ĉ and OlM ≥ (2Ĉ)κ̄.

Recall that O0 and lM are sufficiently large, β1 is sufficiently small, 0 ≤ l ≤ lM ,
and define

sl = B(κ̄)−l

and B = (OlM )
−β1 .

We have

lM∑
l=0

τl =

lM∑
l=0

(O−β1

0 )(κ̄)l−lM+lM
=

lM∑
l=0

((O−β1

0 )(κ̄
lM ))(κ̄)l−lM

=

lM∑
l=0

sl,

and, since κ̄ < 1,

(κ̄)−l((κ̄)−1 − 1) ≥ r(κ̄) = (κ̄)−1((κ̄)−1 − 1) > 0.

Moreover

B = (OlM )
−β1 ≤ (2Ĉ)−κ̄β1 < 1.

Therefore

sl+1sl
−1 = B(κ̄)−(l+1)−(κ̄)−l ≤ Br(κ̄) < 1.

Thus the series
∑

τl converges by comparison with the geometric series. Note
that the powers β1, κ are independent of the length of the a priori chosen time
interval.
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Abstract. In this paper, we will study the Oldroyd model describing fluids with viscoelastic
properties. Global classical solutions for the two-dimensional incompressible Oldroyd model with
small initial displacements are shown to exist via the incompressible limit. The main difficulty is the
lack of the damping mechanism on the deformation tensor.
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1. Introduction. In the context of hydrodynamics, the motion of the fluid flow
is classically described by a time-dependent family of orientation preserving diffeo-
morphisms x(t,X), 0 ≤ t < T . Material points X in the reference configuration
are deformed to the spatial position x(t,X) at time t. The deformation tensor F is
defined as

F (t,X) =
∂x

∂X
(t,X).

When we work in the Eulerian coordinate, we define H(t, x) such that H(t, x(t,X)) =
F (t,X). With no ambiguity, we will not distinguish these two notations and always
use the notation F in this paper.

Applying the chain rule, we see that F (t, x) satisfies the following transport equa-
tion (see [17], for example):

∂tF + u · ∇F = ∇uF,

which stands for ∂tFij + u · ∇Fij = ∂kuiFkj . We point out that in this paper we will
use the notation Fij = ∂xi

∂Xj
, (∇·F )i = ∂jFij , and (∇u)ij = ∂ui

∂xj
, and summation over

repeated indices will always be understood.
The nonlinear viscoelastic fluid system of the compressible Oldroyd model takes

the following form:⎧⎨
⎩

∂tρ + u · ∇ρ + ρ∇ · u = 0,

∂tu + u · ∇u + λ2 p′(ρ)
ρ ∇ρ = μ

ρ (Δu + ∇(∇ · u)) + 1
ρ∇ · (ρFFT ),

∂tF + u · ∇F = ∇uF,

(1.1)
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where ρ is the density, u is the fluid velocity, p(ρ) is a given equation of state inde-
pendent of the large parameter λ with p′(ρ) > 0 for ρ > 0, and F is the deformation
tensor introduced above. We emphasize that the solutions will depend on the value of
the parameter λ; however, with the exception of the statements of the main theorems,
the dependence will not be displayed for reasons of notational convenience.

On the other hand, the nonlinear viscoelastic fluid system of the incompressible
Oldroyd model is a distinctly different system of the unknowns (u, F, q) given by⎧⎨

⎩
∇ · u = 0,
∂tu + u · ∇u + ∇q = μΔu + ∇ · (FFT ),
∂tF + u · ∇F = ∇uF,

(1.2)

where the density in the undeformed reference configuration has been set equal to
one. The scalar pressure q, the deformation tensor F , and the fluid velocity u must
be determined with u satisfying the constraint ∇·u = 0. For more details, one should
see [14, 15].

One expects, under appropriate conditions on the initial data, that the solutions
ρλ, λ2 1

ρλ∇pλ, uλ, Fλ of the compressible system (1.1) converge to the solutions 1,

∇q, u, F of the incompressible system (1.2) as λ −→ ∞. It is well known that long
time behavior of solutions to the viscoelastic equations depends on strong dispersive
estimates [8, 9, 11, 20]. For the wave equation, the generalized energy method, based
on the Lorentz invariance and global Sobolev inequalities, provides an elegant and
efficient means of combining energy and decay estimates; see [8, 9], for example.
Recently Sideris and Thomases [21] studied an elastodynamic system which is not
Lorentz invariant in three space dimensions via the incompressible limit through the
use of weighted Sobolev inequalities involving the smaller number of generators (also
in [3, 4]). Because of the presence of the damping term in the momentum equation,
the Oldroyd model we study in this paper is neither Lorentz invariant nor scaling
invariant; thus their methods do not work in our situation. In fact, the main difficulty
for system (1.2) is the lack of the damping mechanism on F . This is different from
the cases studied in [16], where the contribution of the strain rate in the constitutive
equation is ignored, and in [2, 7, 13], where a linear damping term is present.

On the other hand, one can easily check the energy law

1

2

d

dt

∫
Ω

(|u|2 + |F |2) dx = −μ‖∇u‖2,(1.3)

which gives the dissipation to the whole incompressible system. This is the reason
that Lin, Liu, and Zhang can prove the global existence for small initial displacements
in [15]. With the aid of the identities det F = 1 and ∇ · FT = 0, they obtained the
estimates of the linear terms by transforming them into nonlinear terms. Motivated
by their ideas, we believe that local solutions of the compressible system (1.1) should
be uniform stable and converge to a global solution of the limiting incompressible
system (1.2).

In this paper, we first prove that classical local solutions of the equations of
motion exist for sufficiently small disturbances from the general incompressible initial
data. This result depends on a modified method of [10], where Klainerman and Majda
developed a general theory to study the incompressible limit of compressible fluids in
general framework of quasi-linear hyperbolic systems depending on a large parameter.
Their method can also be extended to cover the viscous equations. But since the
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deformation tensor F in system (1.2) is not “fast scale” (in the sense of [10]), our
system does not satisfy their structural conditions.

We also prove the uniform stability of the local existence family which yields a
lifespan of the compressible system (1.1) and allows for convergence to a global so-
lution of the limiting incompressible equations by means of compactness arguments.
The strength of this convergence improves with the degree of incompressibility satis-
fied by the initial data.

It is well known that many fluids do not satisfy the Newtonian law. There have
been many attempts to capture different phenomena for non-Newtonian fluids; see
[5, 6, 12, 16, 18, 19], for example. The fluid of Oldroyd type is one of the classical
non-Newtonian fluids with memory. When additional damping mechanisms are added,
many mathematical results concerning these systems are proved [2, 7, 13, 16]. When
the damping mechanism on the deformation tensor F is lost, recently Lin, Liu, and
Zhang [15] proved the global existence of classical solutions for the two-dimensional
incompressible Oldroyd model by introducing the induced stress to find the dissipation
of the system. But it is of interest to see the incompressible system mathematically
justified as a limit of the slightly compressible system. However, the two-dimensional
inviscid case is still open.

The paper is organized as follows. In section 2, we state the main results of this
paper. In section 3, we get the dispersive energy estimates since the local existence
and the uniform stability estimates of the solutions of the compressible system (1.1)
have been established in [13]. The dispersive energy estimates will allow us to take the
limit to obtain a global solution to the incompressible Oldroyd system in section 4.

2. Statements of main results. To avoid complications at the boundary, we
concentrate below on the periodic case where x ∈ T2, the two-dimensional torus. In
fact the whole space problem and the Dirichlet problem of smooth bounded domain
can also be treated, at the expense of complicating the proofs below. In the follow-
ing, ‖ · ‖, ‖ · ‖s, and ‖ · ‖∞ will denote the norms in L2(T2), Hs(T2), and L∞(T2),
respectively.

Define

Es(U(t)) = ‖λ(ρ− 1)‖2
s + ‖u‖2

s + ‖F − F‖2
s,

Ẽs(U(t)) =
∑
|α|≤s

∫
T2

(
λ2 p

′(ρ)

ρ
|∇α(ρ− 1)|2 + ρ|∇αu|2 + ρ|∇α(F − F )|2

)
dx,(2.1)

where U(t) = (ρ, u, F ) and F is a constant 2×2 matrix with det(F ) = 1. It is obvious
that if |ρ− 1| is small, we have

Es(U(t)) ∼ Ẽs(U(t)).(2.2)

Theorem 2.1. Consider the compressible Oldroyd model (1.1) with the following
initial datum in Hs+1(T2) (integer s ≥ 4):

ρλ(0, x) = 1 + ρ̃λ0 (x), uλ(0, x) = u0(x) + ũλ
0 (x), Fλ(0, x) = F0(x) + F̃λ

0 (x),(2.3)

where u0(x), F0(x) satisfy the incompressible constraints

∇ · u0 = 0, ∇ · FT
0 = 0, detF0 = 1,(2.4)
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(where ∇ · FT
0 = 0 means ∂j(F0)ji = 0, i = 1, 2, as was pointed out before) and

ρ̃λ0 (x), ũλ
0 (x), F̃λ

0 (x) are assumed to satisfy

‖ρ̃λ0 (x)‖s ≤ δ0/λ
2, ‖ũλ

0 (x)‖s+1 ≤ δ0/λ, ‖F̃λ
0 (x)‖s ≤ δ0/λ, δ0 small.(2.5)

Then the following statements hold.
Uniform stability: There exist fixed constants T0 and κ independent of λ such that

a unique classical C2 solution (ρλ, uλ, Fλ) of the compressible Oldroyd system (1.1)
exists for all large λ on the time interval [0, T0]. Furthermore, the solution family
satisfies

Es(U
λ(t)) + Es−1(∂tU

λ(t)) + μ

∫ T0

0

(‖∇uλ‖2
s + ‖∇∂tu

λ‖2
s−1) dt ≤ κ(2.6)

for all t ∈ [0, T0]. Moreover, we have

Es(U
λ(t)) + μ

∫ T0

0

‖∇uλ‖2
s dt ≤ 4(‖u0‖2

s + ‖F0 − F‖2
s),(2.7)

provided λ is appropriately large and t ∈ [0, T0].
Local existence for incompressible system. There exist functions u, F with ‖u‖s+

‖F‖s ≤ κ, t ∈ [0, T0], such that⎧⎨
⎩

ρλ −→ 1 in L∞(0, T0;H
s) ∩ Lip([0, T0], H

s−1),
(uλ, Fλ) −→ (u, F ) weakly∗ in L∞(0, T0;H

s) ∩ Lip([0, T0], H
s−1),

(uλ, Fλ) −→ (u, F ) in C([0, T0], H
s−ε),

(2.8)

where ε is an arbitrarily small positive constant. The function (u, F ) is a C2 solution
of equations of the incompressible Oldroyd type⎧⎨

⎩
∇ · u = 0,

P{∂tu + u · ∇u− μΔu−∇ · (FFT )} = 0,
∂tF + u · ∇F = ∇uF,

(2.9)

with the initial datum

u(0, x) = u0(x), F (0, x) = F0(x),(2.10)

which satisfy the constraints (2.4), where P is the L2-projection on the divergence-free
vector fields.

Remark 2.1. If we denote

∂tu + u · ∇u− μΔu−∇ · (FFT ) = ∇q,

then we have

1

ρλ
λ2∇p(ρλ) −→ ∇q weakly∗ in L∞(0, T0;H

s−2) ∩ L2(0, T0;H
s−1)

which means that λ2(‖∇ρλ‖s−2+
∫ t

0
‖∇ρλ‖2

s−1 dt) is uniformly bounded in t ∈ [0, T0].
We can use the method originally for general quasi-linear hyperbolic systems and

viscous equations developed by Klainerman and Majda [10] and modified for the case
when the “slow scale” F has no damping mechanism (see [13]).
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Theorem 2.2. Consider the solutions of the two-dimensional compressible Ol-
droyd model obtained in Theorem 2.1. Suppose that the initial datum additionally
satisfies

‖u0‖s + ‖F0 − F‖s < ε,(2.11)

where ε is a positive constant and

F =

[
0 −1
1 0

]
.

Suppose further that the disturbances from (1, u0, F0) satisfy (2.5). If ε is sufficiently
small, then for every fixed T > 0, the solution (ρλ, uλ, Fλ) satisfies the following
estimates:

Es(U
λ(t)) + μ

∫ t

0

‖∇uλ‖2
s dt ≤ Cε2, t ∈ [0, Tλ),

Es−1(∂tU
λ(t)) + μ

∫ t

0

‖∇∂tu
λ‖2

s−1 dt ≤ C expCt, 0 ≤ t ≤ T ,(2.12)

where Tλ > T and Tλ −→ ∞ as λ −→ ∞.

We point out that the uniform bounds for the initial energy in (2.5) imply, in
the limit as λ −→ ∞, that the initial deformation is driven toward incompressibility.
Since the bounds on the energy from Theorem 2.2 are uniform in λ, we will be able
to take the limit as λ goes to infinity to obtain a global solution to the equations of
incompressible Oldroyd type (1.2).

Theorem 2.3. Consider the two-dimensional incompressible system of Oldroyd
type (1.2) with the initial datum (2.10) which satisfies the constraints (2.4) and (2.11).
Then there exists a unique global classical solution (u, F ) which satisfies

‖u‖s + ‖F − F‖s ≤ Cε,(2.13)

provided ε is sufficiently small.

3. Dispersive energy estimates and proof of Theorem 2.2. In this section
we will derive the dispersive energy estimates and prove Theorem 2.2. We refer the
reader to [13] for the proof of Theorem 2.1. As a result, we have

‖λ(ρλ − 1)‖2
s + ‖uλ‖2

s + ‖Fλ − F‖2
s ≤ 4(‖u0‖2

s + ‖F0 − F‖2
s) ≤ 4ε2,(3.1)

‖λρλt ‖s−1 + ‖λ∇ · uλ‖s−1 + ‖∂tuλ‖s−1 + ‖∂tFλ‖s−1

+ |λ2∇ρλ‖s−2 +

∫ t

0

‖λ2∇ρλ‖2
s−1 + ‖∇∂tu̇

λ‖2
s−1 dt ≤ κ(3.2)

provided λ is appropriately large and 0 ≤ t ≤ T0. In fact, noting (2.6) and (2.7), we
need only to check the bound of the term ‖λ∇·uλ‖s−1. We rewrite the first equation
of (1.1) as

∇ · uλ = ∂tρ
λ + uλ · ∇(ρλ − 1) + (ρλ − 1)∇ · uλ.
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Thus by using the Sobolev imbedding and Lemma 3.2 below, we obtain

‖λ∇ · uλ‖s−1 ≤ C(‖λ∂tρλ‖s−1 + ‖λ(ρλ − 1)‖s−1‖∇ · uλ‖∞
+‖∇ · uλ‖s−1‖λ(ρλ − 1)‖∞
+ ‖∇(ρλ − 1)‖s−1‖uλ‖∞ + ‖uλ‖s−1‖∇(ρλ − 1)‖∞)

≤ C(‖λ∂tρλ‖s−1 + ‖λ(ρλ − 1)‖s),

which gives the desired bound.

Before proving Theorem 2.2, we first show the following proposition, which is
essential and will be used to get the dispersive energy estimates.

Proposition 3.1. If we set the density in the undeformed reference configuration
equal to one, then we have

∂j(ρFji) = 0(3.3)

for i = 1, 2.

Proof. Noting the identity

∂Xj [(detF )F−T ]ij = 0, i = 1, 2,

we can use the conservation law of mass ρ · detF = 1 to get

1

ρ
∇ · (ρFFT )i = detF

∂Xk

∂xj
∂Xk

(ρFFT )ij

= detFF−T
jk ∂Xk

(ρFilF
T
lj )

= ∂Xk
(F−T

jk FilF
T
lj )

= ∂Xk
Fik

= Fjk∂jFik,

and hence

∂j(ρFji) = 0

for i = 1, 2.

We are now ready to move to the proof of the main results of this section. As it
is rather long, we divide it into four steps.

Proof of Theorem 2.2.

Step 1. Define

(ρ̇, u̇, Ḟ ) = (ρ− 1, u, F − F ).(3.4)

One can rewrite system (1.1) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ̇ + u̇ · ∇ρ̇ + ρ∇ · u̇ = 0,

∂tu̇ + u̇ · ∇u̇ + λ2 p′(ρ)
ρ ∇ρ̇ = μ

ρ (Δu̇ + ∇(∇ · u̇))

+ 1
ρ∇ · (ρḞ ḞT ) + 1

ρ∇ · (ρḞF
T

+ ρF ḞT ),

∂tḞ + u̇ · ∇Ḟ = ∇u̇Ḟ + ∇u̇F .

(3.5)
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We will use the so-called energy method. Let U(t, x) = (ρ(t, x), u(t, x), F (t, x))
be a local solution of the compressible Oldroyd model (1.1) obtained in Theorem 2.1.
Start by applying the derivative Dα, |α| ≤ s, to the system (3.5). We have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tD
αρ̇ + u̇ · ∇Dαρ̇ + ρ∇ ·Dαu̇
+ [Dα(u̇ · ∇ρ̇) − u̇ · ∇Dαρ̇] + [Dα(ρ∇ · u̇) − ρ∇ ·Dαu̇] = 0,

∂tD
αu̇ + u̇ · ∇Dαu̇ + λ2 p′(ρ)

ρ ∇Dαρ̇

− μ
ρ (ΔDαu̇ + ∇∇ ·Dαu̇) + [Dα(u̇ · ∇u̇) − u̇ · ∇Dαu̇]

+ λ2[Dα(p
′(ρ)
ρ ∇ρ̇) − p′(ρ)

ρ ∇Dαρ̇]

= 1
ρ∇ ·Dα(ρḞ ḞT ) + 1

ρ∇ ·Dα(ρḞF
T

+ ρF ḞT )

+ [Dα(μρ (Δu̇ + ∇∇ · u̇)) − μ
ρ (ΔDαu̇ + ∇∇ ·Dαu̇)]

+ [Dα( 1
ρ∇ · (ρḞ ḞT )) − 1

ρ∇ ·Dα(ρḞ ḞT )]

+ [Dα( 1
ρ∇ · (ρḞF

T
+ ρF ḞT )) − 1

ρ∇ ·Dα(ρḞF
T

+ ρF ḞT )],

∂tD
αḞ + u̇ · ∇DαḞ + [Dα(u̇ · ∇Ḟ ) − u̇ · ∇DαḞ ]

= ∇Dαu̇Ḟ + ∇Dαu̇F + [Dα(∇u̇Ḟ ) −∇Dαu̇Ḟ ].

(3.6)

Next we proceed with the energy method by taking the L2 inner product of (3.6)

with λ2 p′(ρ)
ρ Dαρ̇, ρDαu̇, and ρDαḞ , respectively. Then after integration by parts we

obtain

1

2

d

dt
Ẽ(DαU(t)) + μ(‖Dα∇u̇‖2 + ‖Dα∇ · u̇‖2) =

∑
1≤j≤9

Ij ,(3.7)

where

I1 =
1

2

∫
T2

[
λ2|Dαρ̇|2∂t

p′(ρ)

ρ
+ (|Dαu̇|2 + |DαḞ |2)∂tρ

]
dx,(3.8)

I2 =
1

2

∫
T2

[
λ2|Dαρ̇|2∇ ·

(
p′(ρ)

ρ
u̇

)
+ (|Dαu̇|2 + |DαḞ |2)∇ · (ρu̇)

]
dx,(3.9)

I3 = λ2

∫
T2

p′′(ρ)Dαρ̇Dαu̇ · ∇ρ dx,(3.10)

I4 =

∫
T2

[Dαu̇i∂jD
α(ρḞikḞjk) + ρDαḞik∂jD

αuiḞjk] dx,(3.11)

I5 = −λ2

∫
T2

p′(ρ)

ρ
{[Dα(u̇ · ∇ρ̇) − u̇ · ∇Dαρ̇] + [Dα(ρ∇ · u̇) − ρ∇ ·Dαu̇]}Dαρ̇

+ ρ

[
Dα

(
p′(ρ)

ρ
∇ρ̇

)
− p′(ρ)

ρ
∇Dαρ̇

]
·Dαu̇ dx,(3.12)

I6 = −
∫

T2

ρ{[Dα(u̇ · ∇u̇) − u̇ · ∇Dαu̇] ·Dαu̇ + [Dα(u̇ · ∇Ḟ ) − u̇ · ∇DαḞ ]ikD
αḞik} dx,

(3.13)
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I7 =

∫
T2

ρ

[
Dα

(
μ

ρ
(Δu̇ + ∇∇ · u̇)

)
− μ

ρ
(ΔDαu̇ + ∇∇ ·Dαu̇)

]
·Dαu̇ dx,(3.14)

I8 =

∫
T2

ρ

[
Dα

(
1

ρ
∇ · (ρḞ ḞT )

)
− 1

ρ
∇ ·Dα(ρḞ ḞT )

]
·Dαu̇(3.15)

+ ρ

[
Dα

(
1

ρ
∇ · (ρḞF

T
+ ρF ḞT )

)
− 1

ρ
∇ ·Dα(ρḞF

T
+ ρF ḞT )

]
·Dαu̇ + ρ[Dα(∇u̇Ḟ ) −∇Dαu̇Ḟ ]ikD

αḞik dx,

I9 =

∫
T2

∇ ·Dα(ρḞF
T

+ ρF ḞT )Dαu̇ + ρ∂jD
αu̇iF jkD

αḞik dx.(3.16)

To estimate the quantities Ij , 1 ≤ j ≤ 9, we need the following lemma.
Lemma 3.2. Assume f, g ∈ Hs(T2). Then for any multi-index α = (α1, . . . , αn),

|α| ≤ s, we have

‖∇α(fg)‖ ≤ C(‖f‖∞‖∇αg‖ + ‖g‖∞‖∇αf‖),

‖∇α(fg) − f∇αg‖ ≤ C(‖∇f‖∞‖g‖s−1 + ‖g‖∞‖∇f‖s−1).

Lemma 3.3. If f : Rn −→ R is a smooth function, then for any positive integer
s and constant M > 0, we have

‖∇f(u)‖s−1 ≤ C‖∇u‖s−1

for all ‖u‖s ≤ M , where C depends only on s, n,M , and f .
We refer the reader to [1, 10] for the proof of the above two lemmas. Now let us

estimate the right side of (3.7) term by term.
By Sobolev imbedding,

|I1| ≤ C‖∂tρ‖∞
∫

T2

[λ2|Dαρ̇|2 + |Dαu̇|2 + |DαḞ |2] dx

≤ Cλ−1‖λ∂tρ‖s−2

∫
T2

[λ2|Dαρ̇|2 + |Dαu̇|2 + |DαḞ |2] dx

≤ Cλ−1(‖λDαρ̇‖2 + ‖Dαu̇‖2 + ‖DαḞ‖2).(3.17)

Similarly, we estimate I2 and I3 as follows:

|I2| ≤ C(‖∇ · u̇‖∞ + ‖∇ρ̇‖∞)

∫
T2

[λ2|Dαρ̇|2 + |Dαu̇|2 + |DαḞ |2] dx

≤ Cλ−1(‖λ∇ρ̇‖s−2 + ‖λ∇ · u̇‖s−2)

∫
T2

[λ2|Dαρ̇|2 + |Dαu̇|2 + |DαḞ |2] dx

≤ Cλ−1(‖λDαρ̇‖2 + ‖Dαu̇‖2 + ‖DαḞ‖2),(3.18)

|I3| ≤ Cλ−1‖λ2∇ρ‖s−2

∫
T2

|λDαρ̇|2 + |Dαu̇|2 dx

≤ Cλ−1(‖λDαρ̇‖2 + ‖Dαu̇‖2).(3.19)
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Step 2. Estimates for Ik, with k ≥ 4 when Dα = ∇α, |α| = s and α = 0.
First, we let Dα = ∇α, |α| = s, s ≥ 4. We can use Lemma 3.2 and integration

by parts to get

|I4| ≤ C‖∇u̇‖s‖Ḟ‖∞‖∇αḞ‖ ≤ Cε(‖∇u̇‖2
s + ‖ΔḞ‖2

s−2).(3.20)

We now use Lemmas 3.2 and 3.3 to estimate I5 to I8.

|I5| ≤Cλ−1‖λρ̇‖s[(‖λ2∇ρ̇‖s−1‖∇u̇‖∞ + ‖λ2∇ρ̇‖∞‖∇u̇‖s−1)

+ (‖λ∇ρ̇‖s−1‖λ∇ · u̇‖∞ + ‖λ∇ρ̇‖∞‖λ∇u̇‖s−1)]

+ Cλ−1‖u̇‖s‖λ2∇ρ̇‖∞‖λ∇ρ̇‖s−1

≤Cλ−1(‖λ2∇ρ̇‖2
s−1 + ‖λρ̇‖2

s + ‖u̇‖2
s).

(3.21)

By a similar argument, we have

|I6| ≤ C[‖u̇‖s‖∇u̇‖∞‖∇u̇‖s−1 + ‖∇αḞ‖(‖∇Ḟ‖∞‖∇u̇‖s−1 + ‖∇Ḟ‖s−1‖∇u̇‖∞)]

≤ Cε(‖∇u̇‖2 + ‖∇u̇‖2
s + ‖ΔḞ‖2

s−2),(3.22)

|I7| ≤ C‖u̇‖s(‖∇ρ̇‖∞‖Δu̇‖s−1 + ‖∇ρ̇‖s−1‖Δu̇‖∞) ≤ Cλ−1(‖u̇‖2
s + ‖∇u̇‖2

s),(3.23)

|I8| ≤ C‖∇αu̇‖(‖∇ρ̇‖s−1‖∇ · (ρḞ ḞT )‖∞ + ‖∇ρ̇‖∞‖∇ · (ρḞ ḞT )‖s−1

+ ‖∇ρ̇‖s−1‖∇(ρḞ )‖∞ + ‖∇ρ̇‖∞‖∇(ρḞ )‖s−1)

+ C‖∇αḞ‖(‖∇u̇‖∞‖∇Ḟ‖s−1 + ‖∇u̇‖s−1‖∇Ḟ‖∞)

≤ Cλ−1(‖∇αu̇‖2 + ‖λρ̇‖2
s) + Cε(‖∇u̇‖2

s−1 + ‖ΔḞ‖2
s−2).(3.24)

At last, we estimate I9 as follows:

I9 =

∫
T2

∇ · ∇αρ(ḞF
T

+ FḞT )∇αu̇ + ρ∂j∇αu̇iF jk∇αḞik dx

= −
∫

T2

F ik∂j∇α−1(ρḞjk)∇∇αu̇i

+ [∂j∇αu̇i∇α(ρḞikF jk) − ρ∂j∇αu̇i∇αḞikF jk] dx.

Noting (3.3), we have

|I9| ≤ Cλ−1(‖∇u̇‖2
s + ‖λρ̇‖2

s) + C‖∇u̇‖s(‖∇ρ̇‖s−1‖Ḟ‖∞ + ‖∇α−1Ḟ‖‖∇ρ̇‖∞)

≤ Cλ−1(‖∇u̇‖2
s + ‖λρ̇‖2

s + ‖ΔḞ‖2
s−2).

(3.25)

On the other hand, when |α| = 0, we have I5 = I6 = I7 = I8 = 0. Furthermore,
if we go back to (3.11) and (3.16), we find

I4 =

∫
T2

[u̇i∂j(ρḞikḞjk) + ρḞik∂juiḞjk] dx = 0,

I9 =

∫
T2

u̇iF ik∂j(ρḞjk) − ρ∂j u̇iḞikF jk + ρ∂j u̇iF jkḞik dx

=

∫
T2

u̇iF ik∂j(ρF jk) dx

= −
∫

T2

u̇iF ik∂j(ρ̇F jk) dx.
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Thus, we have

|I9| ≤ Cλ−1(‖∇u̇‖2 + ‖λρ̇‖2).(3.26)

By adding up all these estimates (3.17)–(3.26), we have thus far obtained

d

dt
[Ẽ(U(t)) + Ẽ(∇sU(t))] + μ(‖∇u̇‖2

s + ‖∇ · u̇‖2
s)

≤ Cλ−1(‖λ2∇ρ̇‖2
s−1 + Es(U(t)) + Cε‖ΔḞ‖2

s−2).(3.27)

At this stage, it is clear we need to estimate the second term on the right side of the
above inequality.

We introduce

w = u− 1

μ
Δ−1∇⊥ · (ρḞ ),(3.28)

where ∇⊥ = (−∂2, ∂1)
T . Noting (3.2), (3.3), and

∇∇⊥ · ρḞ = Δ

(
ρḞ21 −ρḞ11

ρḞ22 −ρḞ12

)
+

(
−∂2i(ρḞi1) ∂1i(ρḞi1)

−∂2i(ρḞi2) ∂1i(ρḞi2)

)
+ ∇2(ρḞ12 − ρḞ21),

(3.29)

we find that

‖ΔḞ‖ ≤ C(‖∇Δu̇‖ + ‖∇Δw‖) + Cλ−1‖λρ̇‖2 + ‖∇2(ρḞ12 − ρḞ21)‖,(3.30)

‖∇s−2ΔḞ‖ ≤ C(‖∇Δu̇‖s−2 + ‖∇Δw‖s−2) + Cλ−1‖λρ̇‖s + ‖∇2(ρḞ12 − ρḞ21)‖s−2.

(3.31)

From the conservation law of mass ρ · det(Ḟ + F ) = 1 we have

ρḞ21 − ρḞ12 = 1 − ρ + ρḞ12Ḟ21 − ρḞ11Ḟ22.(3.32)

Thus, we have

‖∇2(ρḞ12 − ρḞ21)‖s−2 ≤ Cλ−1‖λρ̇‖s + Cε‖ΔḞ‖s−2.(3.33)

Combining (3.30), (3.31), (3.32), and (3.33), we obtain

‖ΔḞ‖s−2 ≤ Cλ−1‖λρ̇‖s + C(‖∇Δu̇‖s−2 + ‖∇Δw‖s−2).(3.34)

Now, substituting (3.34) into (3.27), we finally arrive at

d

dt
[Ẽ(U(t)) + Ẽ(∇sU(t))] + μ(‖∇u̇‖2

s + ‖∇ · u̇‖2
s)

≤ Cλ−1(‖λ2∇ρ̇‖2
s−1 + Es(U(t)) + Cε‖∇Δw‖2

s−2).(3.35)

To get the dispersive a priori energy estimates of the solutions of the compressible
Oldroyd system (1.1), it is clear we also need an equation of w.
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Step 3. Estimates for ‖Δw‖s−2 and Es(U(t)).
With the aid of (3.3), one can rewrite the momentum equation (the second equa-

tion of (3.5)) as

∂tu̇ + u̇ · ∇u̇ + λ2 1

ρ
∇p =

μ

ρ
Δw +

μ

ρ
∇∇ · u̇ +

1

ρ
∇ · (ρḞ ḞT ) − 1

ρ
∇ρ.(3.36)

On the other hand, from the first and third equations of (3.5) we have

∂t(ρḞ ) + u̇ · ∇(ρḞ ) = ∇u̇(ρḞ ) + ∇u̇ρF −∇ · u̇(ρḞ ).(3.37)

By applying Δ to (3.36) and − 1
μ∇⊥· to (3.37) and then adding up the resulting

equation, we find

∂tΔw + u̇ · ∇Δw + λ2 1

ρ
∇Δp− μ

ρ
Δ2w − μ

ρ
∇∇ · Δu̇ = h,(3.38)

where

hi = − [Δ(u̇ · ∇u̇i) − u̇ · ∇Δu̇i] − λ2

[
Δ

(
1

ρ
∂ip

)
− 1

ρ
∂iΔp

]

+
1

μ
[∂1u̇k∂k(ρḞi2) − ∂2u̇k∂k(ρḞi1)]

+

[
Δ

(
μ

ρ
Δwi

)
− μ

ρ
Δ2wi

]
+

[
Δ

(
μ

ρ
∂i∇ · u̇

)
− μ

ρ
∂i∇ · Δu̇

]

+ Δ

[
1

ρ
∂j(ρḞ ḞT )ij −

1

ρ
∂iρ

]
− 1

μ
∇⊥

j [∇u̇ρḞ + ∇u̇ρF −∇ · u̇ρḞ ]ij(3.39)

for i = 1, 2.
By taking the L2 inner product of (3.38) with ρΔw, we can use integration by

parts to obtain

1

2

d

dt
‖ρΔw‖2 + μ‖∇Δw‖2 =

1

2

∫
T2

(∇ · (ρu̇) + ∂tρ)|Δw|2dx− μ(∇ · Δu̇,∇ · Δw)

+ (λ2Δp,Δ∇ · w) + (ρh,Δw).(3.40)

We can use (3.2) to get∣∣∣∣12
∫

T2

(∇ · (ρu̇ + ∂tρ))|Δw|2dx
∣∣∣∣ ≤ Cλ−1‖Δw‖2.(3.41)

On the other hand, from a direct computation we have

∇ · (∇⊥ · ρḞ ) = ∂1iḞi2 − ∂2iḞi1 = Δρ.(3.42)

Thus we have

−μ(∇ · Δu̇,∇ · Δw) ≤ −μ‖∇ · Δu̇‖2 + Cλ−1(‖λρ̇‖2
2 + ‖∇Δu̇‖2).(3.43)

We now estimate the term (ρh,Δw) in (3.40) where h is given in (3.39). First,
we use integration by parts to get∣∣∣∣(−[Δ(u̇ · ∇u̇i) − u̇ · ∇Δu̇i] −

1

μ
∇⊥

j [∇u̇ρḞ + ∇u̇ρF −∇ · u̇ρḞ ]ij , ρΔwi)

∣∣∣∣
≤ ‖Δw‖∞‖∇2u̇‖‖∇u̇‖ + C‖∇Δw‖‖∇u̇‖‖Ḟ‖∞ +

1

μ
‖∇Δw‖‖∇u̇‖

≤ Cε(‖∇u̇‖2 + ‖∇2u̇‖2) +
μ

2
‖∇Δw‖2 +

2

μ3
‖∇u̇‖2.(3.44)
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We can use the integration by parts to estimate the third term of (ρh,Δw) as
follows:

|([∂1u̇k∂kḞ2i − ∂2u̇k∂kḞ1i], ρΔwi)| ≤ Cε(‖∇u̇‖2 + ‖∇Δw‖2) + Cλ−1(‖Δw‖2 + ‖Ḟ‖2).

(3.45)

Finally, with the aid of (3.34), we estimate the rest terms of (ρh,Δw) as follows:(
−λ2

[
Δ

(
1

ρ
∂ip

)
− 1

ρ
∂iΔp

]
+

[
Δ

(
μ

ρ
Δwi

)
− μ

ρ
Δ2wi

]

+ Δ

[
1

ρ
∂j(ρḞ ḞT )ji +

1

ρ
∂iρ

]
, ρΔwi

)
≤ Cλ−1‖Δw‖(‖λ2∇2ρ‖‖λ∇ρ‖∞ + ‖∇Δw‖‖λ∇ρ‖∞ + ‖Δw‖∞‖λ∇2ρ‖)

+ Cε‖∇Δw‖‖ΔḞ‖ + Cλ−1‖∇Δw‖(‖λΔρ‖ + ‖λ∇ρ‖‖λ∇ρ‖∞)

≤ Cλ−1(‖Δw‖2 + ‖λρ̇‖2
2 + ‖∇Δw‖2) + Cε(‖∇Δw‖2 + ‖∇Δu̇‖2).(3.46)

Summing up (3.44)–(3.46), we obtain

|(ρh,Δw)| ≤ Cε(‖∇u̇‖2 + ‖∇Δu̇‖2 + ‖∇Δw‖2)

+ Cλ−1(‖Δw‖2 + ‖λρ̇‖2
2 + ‖Ḟ‖2) +

μ

2
‖∇Δw‖2 +

2

μ3
‖∇u̇‖2.(3.47)

To estimate the term (λ2Δp,Δ∇ · w), we use the decomposition

(λ2Δp,Δ∇ · w) = (λ2Δp,Δ∇ · u̇) − 1

μ
(λ2Δp,∇ · (∇⊥ · ρḞ )).(3.48)

By multiplying the second equation of system (3.5) by ρ and then applying the diver-
gence operator to the resulting equation, we obtain

λ2Δp = −∇ · (ρ∂tu̇) + 2μΔ∇ · u̇−∇ · (ρu̇ · ∇u̇) + ∇ · (∇ · (ρḞ ḞT )) − 2Δρ,(3.49)

where we used the equality (3.42). Substituting (3.49) into (3.48), one obtains

|(λ2Δp,Δ∇ · w)| =

∣∣∣∣
(
−∇ · (ρ∂tu̇) + 2μΔ∇ · u̇−∇ · (ρu̇ · ∇u̇)

+∇ · (∇ · (ρḞ ḞT )) − 2Δρ,Δ∇ · u̇− 1

μ
Δρ

)∣∣∣∣
≤ 2μ‖Δ∇ · u̇‖2 + Cλ−1(‖λρ̇‖2

2 + ‖λΔ∇ · u̇‖2 + ‖ΔḞ‖2

+ ‖∇ · ∂tu̇‖2 + ‖∇∇ · u̇‖2) + Cε(‖ΔḞ‖2 + ‖∇u̇‖2)

≤ 2μ‖Δ∇ · u̇‖2 + Cλ−1‖λρ̇‖2
2

+ Cε(‖∇u̇‖2 + ‖∇Δu̇‖2 + ‖∇Δw‖2) + Cλ−1,(3.50)

where in the last inequality we used (3.2).
Finally, substituting (3.41), (3.43), (3.47), and (3.50) into (3.40), we arrive at

d

dt
‖ρΔw‖2 + μ‖∇Δw‖2 ≤ Cλ−1(‖Δw‖2 + ‖λρ̇‖2

2 + ‖Ḟ‖2) + Cε(‖∇u̇‖2 + ‖∇Δu̇‖2)

+
4

μ3
‖∇u̇‖2 + 2μ‖Δ∇ · u̇‖2 + Cλ−1.(3.51)



GLOBAL EXISTENCE FOR TWO-DIMENSIONAL OLDROYD MODEL 809

To estimate the higher order derivatives of w, we apply ∇s−2 to (3.38) to obtain

∂t∇s−2Δw + ∇s−2(u̇ · ∇Δw) + λ2∇s−2

(
1

ρ
∇Δp

)
−∇s−2

(
μ

ρ
Δ2w +

μ

ρ
Δ∇∇ · u̇

)
= ∇s−2h.

Then by taking the L2 inner product of the resulting equation with ρ∇s−2Δw, we
have

1

2

d

dt
‖ρ∇s−2Δw‖2 + μ‖∇s−2∇Δw‖2

= μ(∇s−2∇∇ · Δu̇,∇s−2Δw) +
1

2

∫
T2

(∇ · (ρu̇) + ∂tρ)|∇s−2Δw|2dx

+ (∇s−2h, ρ∇s−2Δw) − (∇s−2(u̇∇ · Δw) − u̇∇s−2∇ · Δw, ρ∇s−2Δw)

+

(
∇s−2

(
μ

ρ
Δ2w +

μ

ρ
Δ∇∇ · u̇

)
−
(
μ

ρ
∇s−2Δ2w +

μ

ρ
∇s−2Δ∇∇ · u̇

)
, ρ∇s−2Δw

)

+ λ2(∇s−2Δp,∇s−2Δ∇ · w) − λ2

(
∇s−2

(
1

ρ
∇Δp

)
− 1

ρ
∇s−2∇Δp, ρ∇s−2Δw

)
.

(3.52)

In what follows, we will estimate the above terms separately. First, similar to
getting (3.41) and (3.43), we have

μ(∇s−2∇∇ · Δu̇,∇s−2Δw) +
1

2

∫
T2

(∇ · (ρu̇) + ∂tρ)|∇s−2Δw|2dx

≤ −μ‖∇s−2∇ · Δu̇‖2 + Cλ−1(‖λρ̇‖2
s + ‖∇s−2Δw‖2 + ‖∇s−2∇Δu̇‖2).(3.53)

By using Lemma 3.2, we can estimate the second term of the third line (3.52) as

(∇s−2(u̇∇ · Δw) − u̇∇s−2∇ · Δw, ρ∇s−2Δw) ≤ Cε‖∇Δw‖2
s−2.(3.54)

By integration by parts, we can estimate the fourth line of (3.52) as follows:

∣∣∣∣
(
∇s−2

(
μ

ρ
Δ2w +

μ

ρ
Δ∇∇ · u̇

)
−
(
μ

ρ
∇s−2Δ2w +

μ

ρ
∇s−2Δ∇∇ · u̇

)
, ρ∇s−2Δw

)∣∣∣∣
=

∣∣∣∣
(
∇s−2

(
∇μ

ρ
Δ∇w + ∇μ

ρ
∇∇∇ · u̇

)

−
(
∇μ

ρ
∇s−2∇Δw + ∇μ

ρ
∇s−2∇∇∇ · u̇

)
, ρ∇s−2Δw

)∣∣∣∣
+

∣∣∣∣
(
∇s−2

(
μ

ρ
Δ∇w +

μ

ρ
∇∇∇ · u̇

)

−
(
μ

ρ
∇s−2∇Δw +

μ

ρ
∇s−2∇∇∇ · u̇

)
,∇

(
ρ∇s−2Δw

))∣∣∣∣
≤ Cλ−1(‖λρ̇‖2

s + ‖∇Δw‖2
s−2).

(3.55)
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Noting that p = p(ρ), by using Lemmas 3.2 and 3.3, we can similarly estimate the
last line of (3.52) as follows:∣∣∣∣−λ2

(
∇s−2∇

(
1

ρ
Δp

)
− 1

ρ
∇s−2∇Δp, ρ∇s−2Δw

)∣∣∣∣
= λ2

∣∣∣∣
(
∇s−2∇

(
∇1

ρ
∇p

)
−∇1

ρ
∇s−2∇∇p, ρ∇s−2Δw

)

+

(
∇s−2∇

(
1

ρ
∇p

)
− 1

ρ
∇s−2∇∇p,∇(ρ∇s−2Δw)

)∣∣∣∣
≤ Cλ−1(‖λ2∇ρ‖s−2‖λρ̇‖s‖∇s−2Δw‖ + ‖λ2∇ρ‖s−2‖λρ̇‖s‖∇s−2Δ∇w‖)
≤ Cλ−1(‖λρ̇‖2

s + ‖Δ∇w‖2
s−2),(3.56)

where in the last inequality we used (3.2).
In order to estimate the term (∇s−2h, ρ∇s−2Δw), we go back to (3.39). It is

rather easy to see that

|(−∇s−2[Δ(u̇ · ∇u̇i) − u̇ · ∇Δu̇i], ρ∇s−2Δwi)| ≤ Cε(‖∇u̇‖2
s + ‖∇Δw‖2

s−2),(3.57)

∣∣∣∣
(
λ2∇s−2

[
Δ

(
1

ρ
∂ip

)
− 1

ρ
∂iΔp

]
, ρ∇s−2Δwi

)∣∣∣∣ ≤ Cλ−1‖∇s−2∇Δw‖‖λ2∇ρ‖s−2‖λρ̇‖s

≤ Cλ−1(‖∇s−2∇Δw‖2 + ‖λρ̇‖2
s),(3.58)

∣∣∣∣
(

1

μ
∇s−2[∂1u̇k∂k(ρḞi2) − ∂2u̇k∂k(ρḞi1)], ρ∇s−2Δwi

)∣∣∣∣ ≤ Cε(‖∇s−2∇Δw‖2 + ‖∇u̇‖2
s),

(3.59)

∣∣∣∣
(
∇s−2

[
Δ

(
μ

ρ
Δwi

)
− μ

ρ
Δ2wi

]
+ ∇s−2

[
Δ

(
μ

ρ
∂i∇ · u̇

)
− μ

ρ
∂i∇ · Δu̇

]
, ρ∇s−2Δwi

)∣∣∣∣
≤ Cλ−1(‖λρ̇‖2

s + ‖∇Δw‖2
s−2 + ‖∇u̇‖2

s),(3.60)

∣∣∣∣
(
∇s−2Δ

[
1

ρ
∂j(ρḞ ḞT )ij +

1

ρ
∂iρ

]
, ρ∇s−2Δw

)∣∣∣∣
≤ Cε(‖∇Δw‖2

s−2 + ‖ΔḞ‖2
s−2) + Cλ−1(‖λρ̇‖2

s + ‖∇Δw‖2
s−2)

≤ Cε(‖∇Δw‖2
s−2 + ‖∇u̇‖2

s) + Cλ−1‖λρ̇‖2
s,(3.61)

∣∣∣∣
(

1

μ
∇s−2∇⊥

j [∇u̇ρḞ + ∇u̇ρF −∇ · u̇ρḞ ]ij , ρ∇s−2Δwi

)∣∣∣∣
≤ Cε‖∇u̇‖2

s−2 +
μ

2
‖∇s−2∇Δw‖2 +

2

μ3
‖∇s−2∇u̇‖2

s−2.(3.62)

Thus, combining (3.57) through (3.62), we have

|(∇s−2h, ρ∇s−2Δw)| ≤ Cλ−1‖λρ̇‖2
s + Cε(‖∇u̇‖2

s + ‖∇Δw‖2
s−2)

+
μ

2
‖∇s−2∇Δw‖2 +

2

μ3
‖∇s−2∇u̇‖2.(3.63)
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provided λ is appropriately large.
Finally we estimate the last remaining term λ2(∇s−2Δp,∇s−2Δ∇ · w) in (3.52).

Noting (3.2) and (3.42), we can use (3.28) and (3.49) to get

λ2(∇s−2Δp,∇s−2Δ∇ · w) =
1

μ
(∇s−2∇ · (ρ∂tu̇),∇s−2Δρ)

+ (∇s−1∇ · (ρ∂tu̇),∇s−3Δ∇ · u̇)

+

(
2μ∇s−2Δ∇ · u̇−∇s−2∇ · (ρu̇ · ∇u̇) + 2∇s−2Δρ

+ ∇s−2∇ · (∇ · ρḞ ḞT ),∇s−2Δ∇ · u̇ +
1

μ
∇s−2Δρ

)
≤ Cμ‖∇u̇‖2

s + Cε‖∇Δw‖2
s−2

+ Cλ−1(‖λρ̇‖2
s + ‖∇ · ∂tu̇‖2

s−1) + Cλ−1.(3.64)

Combining (3.51) through (3.56), (3.63), and (3.64), we obtain

d

dt
(‖ρΔw‖2 + ‖ρ∇s−2Δw‖2) + μ‖∇Δw‖2

s−2

≤ Cλ−1(Es(U(t) + ‖∇ · ∂tu̇‖2
s−1 + ‖Δw‖2

s)) + C

(
μ +

1

μ3

)
‖∇u̇‖2

s + Cλ−1.

(3.65)

Multiplying inequality (3.35) by an appropriately large constant M( 1
μ3 + μ) and

then adding up the resulting inequality with (3.65), we obtain

d

dt
[Ẽ(U(t)) + Ẽ(∇sU(t)) + ‖ρΔw‖2 + ‖ρ∇s−2Δw‖2] + (‖∇u̇‖2

s + ‖∇Δw‖2
s−2)

≤ Cλ−1(1 + ‖λ2∇ρ‖2
s−1 + ‖∇ · ∂tu̇‖2

s−1) + Cλ−1[Es(U(t)) + ‖Δw‖2
s−2].

(3.66)

Noting (3.2), one can use Gronwall’s inequality to obtain

Ẽ(U(t)) + Ẽ(∇sU(t)) +

∫ t

0

‖∇u̇‖2
s dt ≤ 2[Ẽ(U(0)) + Ẽ(∇sU(0))] + λ−1Ẽ(U(t))

(3.67)

for 0 ≤ t ≤ Tλ, with Tλ = λ1−δ (δ < 1 is a small positive constant), provided λ is
sufficiently large. Noting (2.2) and

Ẽ(U(0)) + Ẽ(∇sU(0)) ≤ 2(‖u0‖2
s + ‖F0 − F‖2

s) + λ−2,

we have

E(U(t)) + E(∇sU(t)) +

∫ t

0

‖∇u̇‖2
s dt ≤ C(‖u0‖2

s + ‖F0 − F‖2
s) + λ−2 ≤ Cε2,

(3.68)

provided λ is sufficiently large and 0 ≤ t ≤ Tλ, which gives the proof of the first
inequality of (2.2).
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Step 4. Estimate for Es−1(∂tU(t)).
Let Dα = ∂t∇α−1, |α| = s in (3.7). In this case we do not need the decay. We

proceed as before. A similar process for (3.17)–(3.19) yields

|I1| + |I2| + |I3| ≤ Cλ−1E(∂t∇s−1U(t)).(3.69)

To estimate I4, we now return to (3.11) and write

I4 =

∫
T2

[−∂t∇s−1∂j u̇i∂t∇s−1(ρḞikḞjk) + ρ∂t∇s−1Ḟik∂t∂j∇s−1uiḞjk] dx.

Thus,

|I4| ≤ CεEs−1(∂tU(t)) +
μ

8
‖∂t∇s−1∇u̇‖2.(3.70)

For the term I5, one can use Lemmas 3.2 and 3.3 to estimate it as follows:

|I5| ≤ Cλ2[‖∂t∇s−1ρ̇‖(‖∇u̇‖∞‖∂t∇ρ̇‖s−2 + ‖∂t∇ρ̇‖∞‖∇u̇‖s−2

+ ‖∂t∇u̇‖∞‖∇ρ̇‖s−2 + ‖∂t∇u̇‖s−2‖∇ρ̇‖∞)

+ ‖∂t∇s−1u̇‖(‖∇ρ̇‖∞‖∂t∇ρ̇‖s−2 + ‖∂t∇ρ̇‖∞‖∇ρ̇‖s−2)]

≤ Cε(‖λ∂t∇s−1ρ̇‖2 + ‖∂t∇s−1u̇‖2 + ‖λ∂tρ̇‖2 + ‖∂tu̇‖2).(3.71)

Similarly, for the terms I6, I7, I8, one can estimate them as follows:

|I6| ≤ Cε(‖∂t∇s−1u̇‖2 + ‖∂t∇s−1Ḟ‖2),(3.72)

|I7| ≤ Cελ−1(‖∇s−1∂tu̇‖2 + ‖∇s∂tu̇‖2 + ‖λ∂t∇s−1ρ̇‖2),(3.73)

|I8| ≤ Cε(‖∂t∇s−1u̇‖2 + ‖∂t∇s−1Ḟ‖2 + ‖λ∂t∇s−1ρ̇‖2),(3.74)

|I9| ≤ Cε(‖∂t∇s−1Ḟ‖2 + ‖λ∂t∇s−1ρ̇‖2) +
μ

8
‖∂t∇su̇‖2.(3.75)

On the other hand, when Dα = ∂t, by using (3.3) one obtains

|I9| =

∣∣∣∣
∫

T2

∂tj(ρF ikḞjk)∂tu̇
i − ∂jtu̇

i∂t(ρḞikF jk) + ρ∂jtu̇
iF jk∂tḞik dx

∣∣∣∣
=

∣∣∣∣
∫

T2

−∂tjρF jkF ik∂tu̇
i − ∂jtu̇

i∂tρḞikF jk dx

∣∣∣∣
≤ Cλ−1(‖λ∂tρ̇‖2 + ‖λ∇∂tρ̇‖2 + ‖∂tu̇‖2).

Thus, we have

1

2

d

dt
Ẽ(∂tU(t)) + μ‖∇∂tu̇‖2 ≤ CεE(∂tU(t)) +

μ

2
‖∇∂tu̇‖2,(3.76)

provided λ is sufficiently large.
By summing up (3.69)–(3.76), we arrive at

d

dt
[Ẽ(∂tU(t)) + Ẽ(∂t∇s−1U(t))] + μ‖∇∂tu̇‖2

s−1 ≤ CεEs−1(∂tU(t)).(3.77)
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Noting (2.4), (2.5), and (2.11), we have

Es−1(∂tU(0)) ≤ C‖λ(u0 + ũλ
0 )∇ρ̃λ0‖2

s−1 + ‖λ(ρ̃λ0 + 1)∇ · ũλ
0‖2

s−1 + ‖λ2∇ρ̃λ0‖2
s−1

+ ‖∇(∇ · ũλ
0 ) + ∇ · [(1 + ρ̃λ0 )(F0 + F̃λ

0 )(F0 + F̃λ
0 )T ]‖2

s−1

+ ‖(Δ(u0 + ũλ
0 ))‖2

s−1 + ‖(u0 + ũλ
0 ) · ∇(u0 + ũλ

0 )‖2
s−1

+ ‖(u0 + ũλ
0 ) · ∇(F0 + F̃λ

0 ) −∇(u0 + ũλ
0 )(F0 + F̃λ

0 )‖s−1

≤ C(δ2
0 + ‖u0‖2

s+1 + ‖F0 − F‖2
s).(3.78)

Combining (3.77) and (3.78), one can use Gronwall’s inequality to get

Ẽ(∂tU(t)) + Ẽ(∂t∇s−1U(t)) + μ

∫ t

0

‖∇∂tu̇‖2
s−1 dt ≤ C expCεt(3.79)

for 0 ≤ t ≤ Tλ.
This completes the proof of Theorem 2.2.

4. Proof of Theorem 2.3. In this section, we will tie everything together and
complete the proof Theorem 2.3. For every T > 0, we have from section 3 that

Es(U
λ(t)) ≤ Cε2, t ∈ [0, Tλ),

Es−1(∂tU
λ(t)) ≤ C expCt, 0 ≤ t ≤ T ,(4.1)

provided λ > CT expCT is sufficiently large.
We have, as λ −→ ∞, that ρλ −→ 1 in L∞(0, T ;Hs) ∩ Lip([0, T ], Hs−1). More-

over, a standard compactness argument based on the Lions–Aubin lemma (see [23],
for example) implies that any subsequence of (uλ, Fλ) has a subsequence with a limit
(u, F ) with (u, F−F ) ∈ L∞(0, T ;Hs)∩C([0, T ], Hs−ε) and (ut, Ft) ∈ L∞(0, T ;Hs−1),
where ε is a small positive constant. Now let φ(t, x) and ϕ(t, x) be two smooth test
functions with compact supports in [0, T ] and ∇ · φ = 0. Then∫ T

0

∫
T2

φ

(
∂tu̇

λ + u̇λ · ∇u̇λ − μ

ρλ
Δu̇λ − μ

ρλ
∇∇ · u̇λ − 1

ρλ
∇ · ρλḞλ(Ḟλ)T

− 1

ρλ
∇ · [ρλḞλF

T
+ ρλF (Ḟλ)T ]

)
dxdt

=

∫ T

0

∫
T2

−φλ2∇
∫ ρλ

1

p′(ξ)

ξ
dξ dxdt

= 0(4.2)

and ∫ T

0

∫
T2

ϕ(∂tḞ
λ + u̇λ · ∇Ḟλ −∇u̇λḞλ −∇u̇λF ) dxdt = 0.

On the other hand, from the first equation of system (1.1), we have

∇ · u̇λ = ∂tρ̇
λ + u̇λ · ∇ρ̇λ + ρ̇λ∇ · u̇λ.

Let λ −→ ∞. We obtain that (u, F ) satisfies (2.9) and (2.10) in time interval t ∈ [0, T ].
By the uniqueness of the classical solution of system (2.9), (2.10), it follows that the
convergence is in fact valid for the sequences uλ and Fλ themselves. Since T is
arbitrary, (u, F ) in fact is the unique global classical solution of the incompressible
Oldroyd system (1.2) with the initial data (2.10).
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Abstract. We are interested in the stability properties of some solutions of viscous incom-
pressible magnetohydrodynamics equations. These solutions are highly oscillating, with frequency
involving a small parameter ε. They arise in the study of small-scale dynamo mechanisms. We prove
both nonlinear stability and instability results, depending on the time scale under consideration.
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1. Introduction. This paper deals with some oscillatory solutions of the equa-
tions of magnetohydrodynamics (MHD). It is motivated by the study of small-scale
dynamo mechanisms. Before we state precisely our main results, let us first specify
the general framework.

The incompressible MHD equations read in a dimensionless form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u + ∇p− 1

Re
Δu = curl b× b + f,

∂tb− curl (u× b) − 1

Rm
Δb = 0,

div u = div b = 0.

(1.1)

They describe the evolution of an incompressible and electrically conducting fluid.
They are derived from the incompressible Navier–Stokes equations, the Maxwell equa-
tions, and Ohm’s law in a conducting medium (see [15]). Functions

u = u(t, x) ∈ R
3, b = b(t, x) ∈ R

3, f = f(t, x) ∈ R
3

model, respectively, the fluid velocity, the magnetic field, and an additional forcing
term; for instance, due to convection. The space and time variables are t ∈ R

+,
x = (x, y, z) ∈ R

3. We denote

Δ = ∂2
x + ∂2

y + ∂2
z , ∇ = (∂x, ∂y, ∂z)

t,

and for any v = (v1(x), v2(x), v3(x))t ∈ R
3,

div v = ∂xv1 + ∂yv2 + ∂zv3, curl v = (∂yv3 − ∂zv2, ∂zv1 − ∂xv3, ∂xv2 − ∂yv1)
t.

Constants Re and Rm are called hydrodynamic and magnetic Reynolds numbers. To
lighten the notation, we will assume in what follows that Re = Rm = 1. Note that
the divergence-free condition on b is preserved by (1.1b). As soon as it is satisfied
initially, it is satisfied for all positive times.
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Roughly speaking, dynamo theory deals with the stability of solutions

(u, b) = (u(t, x), 0)

of system (1.1). More precisely, it studies the generation of magnetic field from the
fluid flow u. The basic idea is that the “self-excited” term curl (u×b) may amplify the
magnetic field in the manner of an instability. As long as the fluid motion is strong
enough, this transfer from kinetic to magnetic energy may thus prevent the decay of
the magnetic field, despite the dissipation term −Δb.

It is widely accepted that dynamo action takes place in the Earth, in the sun,
and in many other planets and stars. Therefore, the understanding of dynamo mech-
anisms is a major physical issue. It has been the subject of an expansive literature:
we refer to the recent review papers by Gilbert [8] and Fearn [5] for a good intro-
duction and appropriate lists of references. Note that most of these references are
limited to kinematic dynamos: the Laplace force is neglected, and only the induction
equation (1.1b) is considered, at imposed velocity u.

Among the mechanisms that have been identified, one of the most famous is the so-
called alpha effect. It is based on a scale separation: the velocity and magnetic fields
are assumed to vary on (turbulent) time and length scales τ and l, much smaller
than the typical macro scales T and L. Introducing the ratios λ = τ/T � 1 and
β = l/L � 1, one can write this with little formalism:

u ≈ u∗
(
t, x, λ−1t, β−1x

)
+ ū (t, x) ,

b ≈ b∗
(
t, x, λ−1t, β−1x

)
+ b̄ (t, x) ,

(1.2)

where u∗ (resp., b∗) is the fluctuating part of the field, and ū (resp., b̄) is its mean
part. The basic idea is that the “average” of the fluctuating term curl (u∗ × b∗) can
have a destabilizing effect on the mean field b̄, generating a dynamo.

This idea was first introduced by Parker [13] in 1955, and in a geophysical context
by Braginsky [2]. It has been generalized by Steenbeck, Krause, and Rädler [16]. Let
us also mention the important works [14] and [3] on periodic dynamos. Note that the
alpha effect has since been confirmed experimentally [17].

The present paper is a small step towards the mathematical study of this mech-
anism. Namely, we will investigate the stability properties of solutions (u, 0) of (1.1)
given by

(u, 0) = (ε−1uε, 0), uε(t, x) = U(ε−4t, ε−2x),(1.3)

where U = U(τ, θ) satisfies

U ∈ H∞ (
T × T

3
)3

,

∫
T×T3

U = 0, divθ U = 0.(1.4)

Remark 1. The set P of profiles U satisfying (1.4) is a Fréchet space, where the
topology is induced by the family of norms

‖U‖2
m =

∑
(ω,ξ)∈Z4

(
|ω|2 + |ξ|2

)m |Û(ω, ξ)|2, m ≥ 0,

where Û is the Fourier transform with respect to (τ, θ). We denote by dP a metric
defining this topology.
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Remark 2. We assume that ε � 1 and that
∫
U = 0, which means we consider

fast oscillations with zero mean flow. This is reminiscent of the (somehow crude)
modeling of turbulence that we have in mind.

Remark 3. The amplitude and time and length scales in (1.3) are classical (see
[8]). In short, one can say using the notation of (1.2) that they correspond to the case

|u∗| � |ū|, |b∗| � |b̄|.

Indeed, the oscillatory part u∗ = ε−1uε of the velocity field is O(ε−1), bigger than the
O(1) potential mean part ū. On the contrary, our choices O(ε4) and O(ε2) for time
and length scales of uε ensure small amplitude for the oscillatory part of b. This can be
seen formally from (1.1b), as the oscillation b∗ = b∗(t, x, τ = ε−4t, θ = ε−2x) satisfies

ε−4 (∂τ b∗ − Δθb∗) = o(1).

We emphasize that other choices for solutions uε are possible. In particular, it would
be interesting to study oscillating fields with larger wavelength, so as to emphasize
the role of the hyperbolic part of (1.1).

We will show that solutions uε given by (1.3) are stable on times t = O(1) and
“generically” unstable on times t ∼ | ln(ε)|. Substituting u = ε−1uε + v into (1.1), we
will rather work with the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tv + ε−1uε · ∇v + ε−1v · ∇uε + v · ∇v + ∇p− Δv = curl b× b,

∂tb− ε−1curl (uε × b) − curl (v × b) − Δb = 0,

div v = div b = 0.

(1.5)

Note that for all ε > 0 and all divergence-free fields vε0, b
ε
0 ∈ L2

(
R

3
)3

, system (1.5)
has global weak solutions

v, b ∈ L∞
loc

(
R

+; L2
(
R

3
))3 ∩ L2

loc(R
+; Ḣ1(R3))3,

with initial data vε0, b
ε
0. Indeed, uε and its derivatives are bounded functions, so that

a classical Leray-type existence theorem for MHD equations extends easily to (1.5).
We will first prove the following stability result.
Theorem 1.1 (nonlinear stability result). Let U ∈ P, and let {uε}ε>0 satisfy

(1.3). Let m ∈ N, and let v0, b0 be in H∞ (
R

3
)3

divergence-free.
For all T ≥ 0, there exist δ > 0, ε0 > 0 such that if

m ≥ 1 or ‖(v0, b0)‖H1/2 ≤ δ,

the Cauchy problem (1.5) with initial data εmv0, ε
mb0 has a unique solution

vε, bε ∈ C0
(
[0, T ]; H∞ (

R
3
))3

for all ε < ε0. Moreover, it satisfies the following for a positive constant C, large s,
and small enough ε:

sup
0≤t≤T

‖(vε, bε)(t, ·)‖L2 ≤ C εm ‖(v0, b0)‖Hs ,

sup
0≤t≤T

‖(vε, bε)(t, ·)‖L∞ ≤ C εm ‖(v0, b0)‖Hs .

We will then prove the following instability result.
Theorem 1.2 (nonlinear instability result). There exists a dense and open subset

Ω of P such that
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• for all U ∈ Ω, and {uε}ε>0 satisfying (1.3), and
• for all m ∈ N,

one can find δ > 0, times t(ε) = O(| ln(ε)|), and families of solutions {(vε, bε)t}ε>0

of (1.5) with

vε, bε ∈ C0
(
R

+; H∞ (
R

3
))3

,

‖ ∂α
x (vε, bε)|t=0 ‖L2 ≤ Cα εm−2|α|+1 ∀α ∈ N

3,

and

‖bε|t=t(ε)‖L2 ≥ δ.

Remark 4. Note that the lower bound in Theorem 1.2 applies to bε, which
is exactly the mathematical expression of an alpha effect: small-scale velocity uε

generates destabilization of b = 0.
Remark 5. Theorem (1.2) extends and justifies linear computations carried in [8].

It is also reminiscent of the classical linear computations of Roberts [14] on periodic
dynamos. In [14] Roberts studied the equation

∂tb + curl (uε × b) − νεΔb = 0, uε = U
(
ε−1t, ε−1x

)
,

for U periodic with zero mean. He showed an instability result for ν large enough.
However, his analysis, which relied heavily on perturbation theory, does not adapt to
our nonlinear framework. Henceforth, we use a drastically different approach, based
on energy estimates.

The paper is structured as follows. In section 2, we introduce an auxiliary sin-
gular system. This system involves additional variables, which take into account the
dependence of (vε, bε) on ε−4t, ε−2x. We construct approximate solutions of this
system (section 2.1) and perform a priori estimates (section 2.2). The proof of Theo-
rem 1.1 follows (section 2.3). In section 3, we focus on the instability mechanism. We
show that the approximate solutions of section 2 have generically exponential growth
(section 3.1) and give precise estimates on this growth (section 3.2). We end with the
proof of Theorem 1.2 (section 3.3).

2. Singular system. From the structure of the small-scale flow uε, we expect
solutions vε, bε of (1.5) to exhibit rapid oscillations, involving ε−4t and ε−2x. In
particular, we expect the derivatives of vε, bε to behave badly. Hence, we do not
expect good Hs energy estimates on system (1.5). To override this difficulty, we will
follow ideas of nonlinear geometric optics (cf. [10]): we will work directly in the class
of solutions of the type

(vε, bε)t(t, x) = V ε
(
t, x, ε−4t, ε−2x

)
,(2.1)

where V ε = V ε(t, x, τ, θ) is periodic in τ and θ. We will get Sobolev bounds on V ε,
which will allow us to control vε, bε in L2 and L∞ (cf. Theorem 1.2).

We introduce the following singular system, of unknown V = (w, β)t:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tV + ε−4∂τV + ε−1(Bx + ε−2Bθ)(Ũ , V ) +
1

2
(Bx + ε−2Bθ)(V, V )

−
(
∇x + ε−2∇θ

)2
V =

((
∇x + ε−2∇θ

)
p, 0

)t
,

DivxV + ε−2DivθV = 0,

(2.2)
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with Ũ := (U, 0)
t
, U = U(τ, θ) ∈ P, where for all V = (w, β), Ṽ = (w̃, β̃),

Bx(V, Ṽ ) :=

⎛
⎝divx

(
w ⊗ w̃ − β ⊗ β̃

)
+ divx

(
w̃ ⊗ w − β̃ ⊗ β

)
−curlx

(
w × β̃

)
− curlx (w̃ × β)

⎞
⎠ ,

Bθ(V, Ṽ ) :=

⎛
⎝divθ

(
w ⊗ w̃ − β ⊗ β̃

)
+ divθ

(
w̃ ⊗ w − β̃ ⊗ β

)
−curlθ

(
w × β̃

)
− curlθ (w̃ × β)

⎞
⎠ ,

and where

Divx =

(
divx

divx

)
, Divθ =

(
divθ

divθ

)
.

Note that the quadratic terms in (1.5a) satisfy

uε · ∇v + v · ∇uε = div (uε ⊗ v) + div (v ⊗ uε),

curl b× b = b · ∇b− 1

2
∇|b|2 = div (b⊗ b) − 1

2
∇|b|2,

using the fact that v, b are divergence-free. We thus see that any regular solution V ε

of (2.2) provides a solution vε, bε of (1.5) through identity (2.1).

2.1. Approximate solutions. Up to the end of the section, we fix time T > 0,
and m ∈ N. For any

f = f(t, x, τ, θ) =
∑
ω,k

fω,k(t, x) ei(ωτ+k·θ),

we denote f = f0,0, f∗ = f − f .
We first construct approximate solutions of (2.2) of the following type:

V ε (t, x, τ, θ) ≈ εm
∑

εiV i (t, x, τ, θ) ,

pε (t, x, τ, θ) ≈ εm−1
∑

εipi (t, x, τ, θ) ,
(2.3)

where for all i ≥ 0,

(
V i, pi

)t
= (wi, βi, pi)t ∈ C∞ (

[0, T ]; H∞ (
R

3 × T × T
3
))7

,

∫
pi(t, ·) = 0.

We plug approximation (2.3) into the system (2.2). We identify terms of order εm+i−4

in (2.2a) and of order εm+i−2 in (2.2b). This yields, for all i ≥ 0,⎧⎨
⎩

(∂τ − Δθ)V
i = F i,

DivθV
i = −DivxV

i−2,
(Si)

where V j := 0, pj := 0 for j < 0, and

F i = −(∂t − Δx)V
i−4 −Bx

(
Ũ , V i−3

)
+ (divx∇θ + divθ∇x)V

i−2(2.4)

−
∑

j+J=i−m−4

Bx

(
V j , V J

)
−

∑
j+J=i−m−2

Bθ

(
V j , V J

)
−Bθ

(
Ũ , V i−1

)

+
(
∇θp

i−1, 0
)t

+
(
∇xp

i−3, 0
)t
.
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Note that (S0) is equivalent to V 0
∗ ≡ 0. For i ≥ 0, we take the oscillatory part of

(Si+1) and the average of (Si+4). We get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂τ − Δθ)V
i+1
∗ =

(
∇θp

i
∗, 0

)t −Bθ

(
Ũ , V

i
)

+ Gi
∗,

DivθV
i+1
∗ = −DivxV

i−1
∗ ,

(∂t − Δx)V
i
=

(
∇xp

i+1, 0
)t −Bx

(
Ũ , V i+1

∗
)
−

∑
j+J=i−m

Bx (V j , V J),

DivxV
i
= 0,

(Ti)

where Gi
∗ := F i+1

∗ − (∇θp
i
∗, 0)t + Bθ(Ũ , V

i
) depends only on V 0, . . . , V i−1, V i

∗ , and
∇xp

i−1
∗ .
Thus, introducing

Xi :=
(
V

i
, V i+1

∗ , pi∗, p
i+1

)
,

(Ti) can be seen as a system of unknown Xi, with data depending on X0, X1, . . . , Xi−1.
We will show inductively on i ≥ 0 the solvability of (Ti).

Case i = 0. Recall that V 0
∗ ≡ 0. As p0 does not appear in systems (Ti), we can

also assume p0 ≡ 0. System (T0) depends on the values of m.
• m = 0. The system (T0) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂τ − Δθ)V
1
∗ =

(
∇θp

0
∗, 0

)t −Bθ

(
Ũ , V

0
)
,

DivθV
1
∗ = 0,

(∂t − Δx)V
0

=
(
∇xp

1, 0
)t −Bx

(
Ũ , V 1

∗

)
−Bx

(
V

0
, V

0
)
,

DivxV
0

= 0.

Applying Divθ to (T0a) and using (T0b) leads to

(Δθp
0
∗, 0)t = DivθBθ

(
Ũ , V

0)
.

As the second component of the right-hand side is divθ curlθ
(
U × β

0) ≡ 0, such an
equation has a unique solution:

(p0
∗, 0)t = Δ−1

θ DivθBθ

(
Ũ , V

0)
.(2.5)

Here, Δ−1
θ denotes the inverse of Δθ in the set of L2 periodic functions of (τ, θ) with

zero average in θ. Thus, we are left with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∂τ − Δθ)V
1
∗ = LθV

0
,

(∂t − Δx)V
0

=
(
∇xp

1, 0
)t −Bx

(
Ũ , V 1

∗

)
−Bx

(
V

0
, V

0
)
,

DivxV
0

= 0,
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where

LθV
0

:= ∇θΔ
−1
θ DivθBθ

(
Ũ , V

0
)
−Bθ

(
Ũ , V

0
)
.

Note that

V 1
∗ = (∂τ − Δθ)

−1LθV
0
,(2.6)

where (∂τ − Δθ)
−1

denotes the inverse of ∂τ − Δθ in the set of L2 periodic functions
of (τ, θ) with zero average in θ. We end up with⎧⎪⎨

⎪⎩
(∂t − Δx)V

0
=

(
∇xp

1, 0
)t −Bx

(
Ũ , (∂τ − Δθ)−1LθV

0
)
−Bx

(
V

0
, V

0
)
,

DivxV
0

= 0.

(2.7)

This last system is of the type (1.1), up to the additional linear term

AV
0

:= −Bx

(
Ũ , (∂τ − Δθ)−1LθV

0
)
.

Classical existence results for smooth solutions of Navier–Stokes-type equations ex-
tend without difficulty (see [7]). In particular, there exists δ = δ(T ) such that for
all

V
0

0 ∈ H∞ (
R

3
)6

, DivxV
0

0 = 0, ‖V 0

0‖H1/2 ≤ δ,

system (2.7) has a unique solution(
V

0
, p1

)
∈ C∞ (

[0, T ]; H∞ (
R

3
))7

,

∫
p1(t, ·) = 0,

with V
0|t=0 = V

0

0. Together with (2.5) and (2.6), this provides a unique solution

X0 =
(
V

0
, V 1

∗ , p
0
∗, p

1
)

of system (T0).
• m ≥ 1. The situation is even simpler, as the quadratic term disappears. We

are left with ⎧⎨
⎩

(∂t − Δx)V
0

=
(
∇xp

1, 0
)t

+ AV
0
,

DivxV
0

= 0,
(2.8)

which has regular solutions(
V

0
, p1

)t

∈ C0
(
R

+; H∞ (
R

3
))7

,

∫
p1(t, ·) = 0

for any initial data V
0

0 in H∞ (
R

3
)6

, DivxV
0

= 0.
Case i ≥ 1. The solvability of (Ti) is proved inductively. Let i ≥ 1, and let

X0, . . . , Xi−1 solve (T0), . . . , (Ti−1) on the time interval [0, T ]. Applying Divθ to
(Tia) and using (Tib) leads to

(Δθp
i
∗, 0)t = Divθ

(
Bθ

(
Ũ , V

i
)
−Gi

∗

)
− (∂τ − Δθ) DivxV

i−1
∗ .(2.9)
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To solve (Ti), we need to verify that the right-hand side of (2.9) has zero second
component. This compatibility condition ensures that the magnetic component of our
approximation remains divergence-free. It is reminiscent to the fact that div b = 0 is
preserved by (1.5b).

If we denote Gi
∗ =

(
gi∗, h

i
∗
)t

, then (2.9) has a unique solution if and only if

divθh
i
∗ = −(∂τ − Δθ)divxβ

i−1
∗ ,

i.e.,

divθh
i
∗ = −divxh

i−2
∗ .(2.10)

The expression of hi
∗ yields

divθh
i
∗ = divθ

(
−(∂t − Δx)β

i−3 + (divx∇θ + divθ∇x)β
i−1

+ curlx
(
U × βi−2

)
+ curlx

∑
j+J=i−m−3

wj × βJ

)

= −(∂t − Δx)divθβ
i−3 + (divx∇θ + divθ∇x) divθβ

i−1

− divxcurlθ
(
U × βi−2

)
− divxcurlθ

∑
j+J=i−m−3

wj × βJ .

Using that divθβ
i = −divxβ

i−2 for all i and divxcurlx ≡ 0, we get

divθh
i
∗ = −divx

(
−(∂t − Δx)β

i−5 + (divx∇θ + divθ∇x)β
i−3

+ curlθ
(
U × βi−2

)
+ curlx

(
U × βi−4

)
+ curlθ

∑
j+J=i−m−3

wj × βJ + curlx
∑

j+J=i−m−5

wj × βJ

)
,

which is exactly (2.10). Hence,

(
pi∗, 0

)t
= Δ−1

θ DivθBθ

(
Ũ , V

i
)

+ Hi
∗,(2.11)

where Hi
∗ depends only on X0, . . . , Xi−1. Solving (Tia) yields in turn

V i+1
∗ = (∂τ − Δ)−1LθV

i
+ Ii∗,

where Ii∗ depends only on X0, . . . , Xi−1. We are left with equations of the following
type: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂t − Δx)V
i
=

(
∇xp

i+1, 0
)t

+ AV
i
+ J

i

− δ0m

(
Bx

(
V

0
, V

i
)

+ Bx

(
V

i
, V

0
))

,

DivxV
i
= 0,

(2.12)

where δ0m is the Kronecker symbol, and where

J
i ∈ C∞ (

[0, T ]; H∞ (
R

3
))6
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depends on X0, . . . , Xi−1. This system is linear and of parabolic type. It follows

easily that for all initial data V
i|t=0 = V

i

0 in H∞ (
R

3
)6

, DivxV
i

0 = 0, such a system
has a unique solution(

V
i
, pi

)
∈ C∞ (

[0, T ]; H∞ (
R

3
))7

,

∫
pi(t, ·) = 0.

Back to system (Ti), this ends the induction.

2.2. A priori estimates. We now establish some stability estimates on systems
of type (2.2) that will be used in sections 2.3 and 3.3. More precisely, let {T ε}ε>0 be

a family of times, and let
{
V ε
app

}
ε>0

, {F ε}ε>0 be families of functions satisfying,

∀ε, V ε
app, F

ε
app ∈ C

(
[0, T ε]; H∞ (

T × T
3 × R

3
))6

,

and such that

sup
ε

sup
0≤t≤T ε

∥∥∥∂α
t ∂

β
x,τ,θV

ε
app(t, ·)

∥∥∥
L∞

≤ Cα,β ∀α, β.(2.13)

We define

Uε := Ũ + εV ε
app, Ũ = (U, 0)t, U ∈ P,

and we consider the following equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tV + ε−4∂τV + ε−1(Bx + ε−2Bθ)(U
ε, V ) +

1

2
(Bx + ε−2Bθ)(V, V )

−
(
∇x + ε−2∇θ

)2
V =

((
∇x + ε−2∇θ

)
p, 0

)t
+ F ε,

DivxV + ε−2DivθV = 0.

(2.14)

We distinguish between the low-frequency part Vl and the high-frequency part Vh of
V . We introduce χ = χ(ζ, ξ) ∈ C∞ (

R
3 × T

3
)

such that

χ(ζ, ξ) = 1 for |ζ + ξ| ≤ δ,

χ(ζ, ξ) = 0 for |ζ + ξ| ≥ 2δ,

where δ is a fixed number satisfying 0 < δ < 1/4. Then we set

Vl = χ(ε2Dx, Dθ)V, pl = χ(ε2Dx, Dθ)p, Vh = V − Vl, ph = p− pl,

where for any f , χ(ε2Dx, Dθ)f is the Fourier multiplier defined as

F
(
χ(ε2Dx, Dθ)f

)
(ζ, ξ) = χ(ε2ζ, ξ)F(f)(ζ, ξ),

F being the Fourier transform with respect to x and θ. Finally, we define for all s ∈ N
and for all t ∈ [0, T ε]

Ψs(V ; t) := ‖Vl(t)‖2
Hs + ε2‖Vh(t)‖2

Hs +

∫ t

0

‖
(
∇x + ε−2∇θ

)
Vl(u)‖2

Hs du

+ ε−2

∫ t

0

‖Vh(u)‖2
Hs du + ε−2

∫ t

0

‖(ε2∇x + ∇θ)Vh(u)‖2
Hs du,

αs(V ; t) = sup
0≤u≤t

Ψs(V ;u).
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We show the following.

Proposition 2.1. Let V ∈ C0 ([0, T ε];H∞)
6
, satisfying (2.14). Then the fol-

lowing inequality holds, for all s ≥ 5, for ε small enough:

(2.15) αs(V ; t) ≤ Cs
(
αs(V ; 0) + ε6

∫ t

0

‖F ε
h(u)‖2

Hs du +

∫ t

0

‖F ε
l (u)‖2

Hs du

+ (1 + αs(V ; t))

∫ t

0

αs(V ;u) du + αs(V ; t)2
)
.

Proof. We start with an L2 estimate on (2.14).

L2 estimates.

• Estimates on Vh. We apply
(
1 − χ

(
ε2Dx, Dθ

))
to (2.14). Multiplication by

Vh and integration yield

‖Vh(t)‖2
L2 + ε−4

∫ t

0

‖(ε2∇x + ∇θ)Vh‖2
L2 ≤ ‖Vh(0)‖2

L2

+
‖Uε‖∞

ε3

∫ t

0

‖V ‖L2 ‖(ε2∇x + ∇θ)Vh‖L2

+

∫ t

0

‖V ⊗ V ‖L2 ‖(∇x + ε−2∇θ)Vh‖L2 +

∫ t

0

‖F ε
h‖L2 ‖Vh‖L2 .

Recall that notation V ⊗ V refers to the matrix (Vj Vk)j,k.

By the Plancherel formula,

‖(ε2∇x + ∇θ)Vh‖2
L2 =

1

(2π)6

∫
|ε2ζ + ξ|2|F(Vh)(ζ, ξ)|2dζdξ

≥ δ2

(2π)6

∫
|F(Vh)(ζ, ξ)|2dζdξ = δ2‖V h‖2

L2 .

Hence, for ε small enough,

(2.16) ‖Vh(t)‖2
L2 + ε−4

∫ t

0

‖Vh‖2
L2 + ε−4

∫ t

0

‖(ε2∇x + ∇θ)Vh‖2
L2 ≤ C

(
‖Vh(0)‖2

L2

+ ε−2

∫ t

0

‖Vl‖2
L2 +

∫ t

0

‖V ⊗ V ‖2
L2 + ε4

∫ t

0

‖F ε
h‖2

L2

)
.

• Estimates on Vl. The low-frequency part Vl satisfies

∂tVl − (∇x + ε−2∇θ))
2Vl = −

(
(∇x + ε−2∇θ)pl, 0

)t
− 1

2
χ(ε2Dx, Dθ)

(
Bx + ε−2Bθ

)
(V, V ) − ε−1χ(ε2Dx, Dθ)

(
Bx + ε−2Bθ

)
(Uε, V ).

The key observation is that

χ(ε2Dx, Dθ)
(
Bx + ε−2Bθ

)
(Uε, V ) = χ(ε2Dx, Dθ)

(
Bx + ε−2Bθ

)
(Ũ , Vh)

+ ε χ(ε2Dx, Dθ)
(
Bx + ε−2Bθ

)
(V ε

app, V ).
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Indeed,

supp F
((

Bx + ε−2Bθ

) (
Ũ , Vl

))
⊂ supp F(U) + supp F(Vl)

⊂
⋃

ξ′∈Z3−{0}
{(0, ξ′)} +

{
(ζ, ξ), |ε2ζ + ξ| ≤ 2δ

}
⊂

{
(ζ, ξ), |ε2ζ + ξ| ≥ 1 − 2δ

}
As δ < 1/4, we get

supp F(U) + supp F(Vl) ⊂
{
(ζ, ξ), |ε2ζ + ξ| > 2δ

}
so that

χ(ε2Dx, Dθ)
(
Bx + ε−2Bθ

)
(Ũ , Vl) = 0.

We end with the following energy estimates:

‖Vl(t)‖2
L2 +

∫ t

0

‖(∇x + ε−2∇θ)Vl‖2
L2 ≤ C

(
‖Vl(0)‖2

L2

+ ε−2

∫ t

0

‖Vh‖2
L2 +

∫ t

0

‖Vl‖2
L2 +

∫ t

0

‖V ⊗ V ‖2
L2 +

∫ t

0

‖F ε
l ‖2

L2

)
.

Combining with (2.16), we get

Ψ0(V ; t) ≤ C

(
Ψ0(V ; 0)+

∫ t

0

‖Vl‖2
L2+

∫ t

0

‖V⊗V ‖2
L2+ε6

∫ t

0

‖F ε
h‖2

L2+

∫ t

0

‖F ε
l ‖2

L2

)
.

Hs estimates. We do not detail the derivation of the Hs estimates, s ≥ 1. They
follow from differentiating system (2.14) and applying the same argument as above.
We get, for all s and for small enough ε,

(2.17) Ψs(V ; t) ≤ Cs

(
Ψs(V ; 0) +

∫ t

0

‖Vl‖2
Hs +

∫ t

0

‖V ⊗ V ‖2
Hs

+ ε6

∫ t

0

‖F ε
h‖2

Hs +

∫ t

0

‖F ε
l ‖2

Hs

)
.

It remains to handle the quadratic terms. As s ≥ 5 > 7/2, Hs
(
R

3 × T × T
3
)

is a
Banach algebra. Hence, we obtain the bounds∫ t

0

‖Vl ⊗ Vh‖2
Hs ≤

∫ t

0

‖Vl‖2
Hs‖Vh‖2

Hs

≤
(

sup
0≤u≤t

‖Vl(u)‖2
Hs

) (∫ t

0

‖Vh‖2
Hs

)

and, in the same way,∫ t

0

‖Vl ⊗ Vl‖2
Hs ≤

(
sup

0≤u≤t
‖Vl(u)‖2

Hs

) (∫ t

0

‖Vl‖2
Hs

)
,
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∫ t

0

‖Vh ⊗ Vh‖2
Hs ≤

(
sup

0≤u≤t
ε2‖Vh(u)‖2

Hs

) (
ε−2

∫ t

0

‖Vh‖2
L2

)
.

If we inject these bounds in (2.17), we obtain

(2.18) Ψs(V ; t) ≤ Cs

(
Ψs(V ; 0) + ε6

∫ t

0

‖F ε
h(u)‖2

Hsdu +

∫ t

0

‖F ε
l (u)‖2

Hsdu

+ (1 + αs(V ; t))

∫ t

0

Ψs(V ;u)du + αs(V ; t)Ψs(V ; t)

)
.

Bound (2.15) follows. This ends the proof of the proposition.

2.3. Proof of Theorem 1.1. We now turn to the proof of Theorem 1.1. Let

V 0 = (v0, b0) in H∞ (
R

3
)6

, such that DivxV 0 = 0. From computations of section 2.1,
we infer the existence of δ > 0, such that if

m ≥ 1 or ‖V 0‖H1/2 ≤ δ,(2.19)

there exist approximate solutions of (2.2), indexed by n ∈ N,

V ε,n
app = εm

(
V

0
(t, x) +

n∑
i=1

εiV i (t, x, τ, θ) + εn+1V n+1
∗

)
,(2.20)

pε,napp = εm

(
p0
∗(t, x, τ, θ) +

n∑
i=1

εipi (t, x, τ, θ) + εn+1pn+1

)
,(2.21)

with V
0|t=0 = V 0, and V

i|t=0 = 0 for i ≥ 1. Profiles V i and pi are found using the
recursion of the previous section. They satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tV
ε,n
app + ε−4∂τV

ε,n
app + ε−1

(
Bx + ε−2Bθ

)
(Ũ , V ε,n

app )

+
1

2

(
Bx + ε−2Bθ

)
(V ε,n

app , V
ε,n
app ) −

(
∇x + ε−2∇θ

)2
V ε,n
app

= −
((
∇x + ε−2∇θ

)
pε,napp, 0

)t
+ Rε,n

app,(
Divx + ε−2Divθ

)
V ε,n
app = rε,napp,

(2.22)

where for all s, α ∈ N, the remainders Rε,n
app and rε,napp satisfy the following estimates:

sup
0≤t≤T ε

‖∂α
t R

ε,n
app(t)‖Hs ≤ Cα,s ε

m+n−2, sup
0≤t≤T ε

‖∂α
t r

ε,n
app(t)‖Hs ≤ Cα,s ε

m+n.(2.23)

We want the second equation of (2.22) to become homogeneous. This is useful in the
energy estimates for getting rid of the gradient pressure term. We need to build a
function W ε

app, “sufficiently small,” such that

(
Divx + ε−2Divθ

)
W ε

app = −rε,napp.

A natural attempt to do so would be to look for W ε
app in the form

W ε
app =

(
∇x + ε−2∇θ

∇x + ε−2∇θ

)
Ψε,(2.24)
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with

−
(
∇x + ε−2∇θ

)2
Ψε = rε,napp.(2.25)

However, it is not obvious that (2.25) has a solution. Indeed, the operator −(∇x +
ε−2∇θ)

2 is not elliptic: its symbol (ζ + ε−2ξ)2 cancels for all ζ = −ε−2ξ, ξ ∈ Z.

To get rid of this difficulty, we must again distinguish between average and oscil-
lations, and between low frequencies and high frequencies. We first notice that

rε,napp = εm+nDivx

(
V n
∗ + εV n+1

∗
)

= rε,napp,∗.

Then we infer from the regularity of V ε,n
app that

‖∂α
t ∂

β
τ V

ε,n
app,∗,l(t, ·, τ, ·)‖2

Hs

≤ 1

(2π)6

∫
{|ε2ζ+ξ| ≤ 2δ}

(1 + |ζ|2 + |ξ|2)s
∣∣F(∂α

t ∂
β
τ V

ε,n
app,∗(t, ·, τ, ·))

∣∣2 dζdξ

≤ 1

(2π)6

∫
{|ζ| ≥ (1−2δ) ε−2}

(1 + |ζ|2 + |ξ|2)s
∣∣F(∂α

t ∂
β
τ V

ε,n
app,∗(t, ·, τ, ·))

∣∣2 dζdξ

≤ Ck ε
4k ‖∂α

t ∂
β
τ V

ε,n
app (t, ·, τ, ·)‖Hs+k = O(ε4k) ∀k > 0.

(2.26)

Thus, redefining

V ε,n
app := V

ε,n

app + V ε,n
app,∗,h,

we see that V ε,n
app still satisfies a system of type (2.22), with estimates (2.23), and the

new remainder rε,napp is such that

rε,napp,l = 0.

In particular, the function W ε
app given by (2.24), (2.25) is well-defined and is bounded by

‖∂α
t W

ε
app‖Hs−1 ≤ Cα,s ε

2 ‖∂α
t r

ε
app‖Hs ∀α, s.
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Finally, we set V ε
app = V ε,n

app + W ε
app. This solves

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tV
ε
app + ε−4∂τV

ε
app + ε−1

(
Bx + ε−2Bθ

)
(Ũ , V ε

app)

+
1

2

(
Bx + ε−2Bθ

)
(V ε

app, V
ε
app) −

(
∇x + ε−2∇θ

)2
V ε
app

= −
((
∇x + ε−2∇θ

)
pεapp, 0

)t
+ Rε

app,

DivxV + ε−2DivθV = 0,

(2.27)

where

sup
0≤t≤T ε

‖Rε
app(t)‖Hs ≤ Cs ε

m+n−2 ∀s.(2.28)

We can now use the results of section 2.2. We fix n ≥ 4, s ≥ 5 and assume
(2.19). For ε small enough, we will show the existence of a solution of (2.2), V ε ∈
C0

(
[0, T ]; H∞ (

R
3 × T × T

3
))6

, V ε|t=0 = εmV 0.
The local existence theory of smooth solutions for (2.2) is classical (see, for in-

stance, [11]). For all ε > 0, there exists a unique maximal solution

V ε ∈ C0
(
[0, T ε

∗ ); H∞ (
R

3 × T × T
3
))6

, V ε|t=0 = εmV 0.

Moreover, the lifespan T ε
∗ satisfies one of the following conditions:

• T ε
∗ ≥ T ,

• T ε
∗ < T and lim inft→T ε

∗ ‖V ε(t)‖Hs → +∞.
It is enough to show that the second possibility does not occur for small enough ε.
Let T ε < min(T ε

∗ , T ), and define W ε := V ε − V ε
app on [0, T ε]. Then W ε is a solution

of (2.14), where V ε
app defined above satisfies (2.13), and F ε = Rε

app satisfies (2.28).
We apply Proposition 2.1. This yields, for ε small enough,

(2.29) αs(W
ε; t) ≤ C

(
ε2m+4 + αs(W

ε; 0) + (1 + αs(W
ε; t))

∫ t

0

αs(W
ε;u)du

+ αs(W
ε; t)2

)
.

Note that W ε|t=0 = εmV 0 − V ε
app|t=0 satisfies

W
ε|t=0 = 0, ‖W ε

∗ |t=0‖Hs = O(εm+1).

As in (2.26), we deduce that

‖W ε
l |t=0‖Hs = O(εk) ∀k(2.30)

and that

αs(W
ε; 0) = O(ε2m+4).

We introduce

T (ε) := sup
{
t ∈ [0, T ε), αs(W

ε; t) < ε2m+3
}
.
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For ε > 0 small enough, T (ε) is well-defined and positive. Moreover, using (2.29), for
all t < T (ε),

(1 − ε2m+3)αs(W
ε; t) ≤ C

(
ε2m+4 + (1 + ε2m+3)

∫ t

0

αs(W
ε;u)du

)
.

The Gronwall’s lemma implies, for all t < T (ε), αs(W
ε; t) ≤ C ′ ε2m+4. This last

inequality shows that T (ε) = T ε, and that

sup
0≤t≤T ε

αs(W
ε; t) ≤ C ′′ε2m+4.

In particular, we get

sup
0≤t≤T ε

‖W ε(t, ·)‖Hs ≤ Cεm+1.

Back to V ε = V ε
app + W ε, we obtain, for all s,

sup
0≤t≤T ε

‖V ε(t, ·)‖Hs ≤ sup
0≤t≤T ε

‖V ε
app(t, ·)‖Hs + sup

0≤t≤T ε

‖W ε(t, ·)‖Hs

≤ Cεm‖V 0‖Hs .(2.31)

This yields T ε
∗ ≥ T and shows the existence on [0, T ] of a smooth solution V ε with

initial data V 0.
As explained at the beginning of section 2, this provides a smooth solution

(vε, bε)t(t, x) = V ε
(
t, x, ε−4t, ε−2x

)
of (1.5), with initial data (εmv0, ε

mb0)
t. Uniqueness of the solution (vε, bε) is a direct

consequence of its regularity. Finally, the estimates of the theorem follow from (2.31).
This ends the proof.

3. Instability mechanism. We now begin the description of the instability
mechanism leading to Theorem 1.2. As we will see, this mechanism is connected to
the behavior of the WKB solutions (2.3).

3.1. Spectral analysis. To understand the instability process requires the study

of system (2.8), satisfied by V 0 = V
0
(t, x) when m ≥ 1. This system reads⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tw

0 = A1w
0 + ∇xp

1 + Δxw
0,

∂tβ
0

= A2β
0

+ Δxβ
0
,

divxw
0 = divxβ

0
= 0,

(3.1)

where the operators

A1w = divx(A1w), A2β = curlx(A2β)

involve the linear operators A1 ∈ L
(
R

3,M3 (R)
)
, A2 ∈ L

(
R

3,R3
)
. They are defined

in the following way: for all b ∈ R
3,

A1b = −
∫
τ,θ

(
(∂τ − Δθ)

−1
(
∇θΔ

−1
θ div2

θ(U ⊗ b) − divθ (U ⊗ b)
))

⊗ U,

A2b =

∫
τ,θ

U ×
(

(∂τ − Δθ)
−1curlθ(U × b)

)
.
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As

divθ(U ⊗ b) = b · ∇θU = curlθ(U × b),

we deduce div2
θ(U ⊗ b) = 0 and

A1b =

∫
τ,θ

⊗
(

(∂τ − Δθ)
−1curlθ (U × b)

)
⊗ U.

Then

A1a = −divx

∫
τ,θ

(
(∂τ − Δθ)

−1curlθ (U × b)

)
⊗ U

=

∫
τ,θ

U · ∇x(∂τ − Δθ)
−1curlθ(U × b) = −A2b.

If we relabel, for all b ∈ R
3,

Ab =

∫
τ,θ

U ×
(

(∂τ − Δθ)
−1curlθ(U × b)

)
,

the system on V
0

eventually reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tw

0 = −curlxAw0 + ∇xp
1 + Δxw

0,

∂tβ
0

= curlxAβ
0

+ Δxβ
0
,

divxw
0 = divxβ

0
= 0.

(3.2)

Remark 6. In the physicists’ community, the matrix A is often denoted α, which
motivates the expression alpha effect.

We focus on solutions of (3.2) with initial data (0, β0)
t, divx β0 = 0. Thus,

w0 = 0 for all times, and the divergence-free condition divxβ
0

= 0 is fulfilled for all

times. If we set b0 := β
0
, we are left with the study of

∂tb
0 − curlx

(
Ab0

)
− Δxb

0 = 0.(3.3)

We first state some properties of the matrix A.

Lemma 3.1. For all U ∈ P, the matrix A = A(U) is real-symmetric. Moreover,
the set

Ω = {U ∈ P, A(U) has simple nonzero eigenvalues }

is dense and open in P.

Proof. Using the Fourier coefficients of U , we compute, for all b ∈ R
3,

Ab =
∑

(ω,k)∈Z
4

(ω,k) �=0

Û(ω, k) × Û(−ω,−k) (−ib · k)

iω + |k|2 .(3.4)
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Note that the change of indices (ω, k) → (ω′ = −ω, k′ = −k) yields

Ab =
∑

(ω′,k′)

Û(−ω′,−k′) × Û(ω′, k′) (ib · k′)
−iω′ + |k′|2

=
∑

(ω′,k′)

Û(ω′, k′) × Û(−ω′,−k′) (−ib · k′)
−iω′ + |k′|2 ,

so that

Ab =

∫
T4

U × (−∂τ − Δθ)
−1curlθ (U × b) .(3.5)

As U is real-valued, Û(−ω,−k) = Û∗(ω, k), where the asterisk denotes complex
conjugation. We deduce, for all b ∈ R

3,

A∗ b =
∑
(ω,k)

Û∗(ω, k) × Û∗(−ω,−k) (ib · k)

−iω + |k|2

=
∑
(ω,k)

Û(−ω,−k) × Û(ω, k) (ib · k)

−iω + |k|2

=
∑

(ω′,k′)

Û(ω′, k′) × Û(−ω′,−k′) (−ib · k′)
iω′ + |k′|2 = α b,

so that α is real. Then we compute

Ab · b̃ =

∫
T4

(
U × (∂τ − Δθ)

−1curlθ (U × b)

)
· b̃

= −
∫

T4

(U × b̃) ·
(

(∂τ − Δθ)
−1curlθ (U × b)

)

= −
∫

T4

(U × b̃) ·
(

curlθ (∂τ − Δθ)
−1 (U × b)

)

= −
∫

T4

(
(−∂τ − Δθ)

−1curlθ

(
U × b̃

))
·
(
U × b

)

=

∫
T4

(
U × (−∂τ − Δθ)

−1curlθ

(
U × b̃

))
· b = α b̃ · b

using (3.5). Thus, A is symmetric.

From (3.4), we deduce that

P �→ M3 (R) , U �→ A(U)

is continuous. This clearly implies that Ω is open in P. Let ε > 0, and U ∈ P − Ω.
Let

Un(τ, θ) =
∑

|ω|+|k|≤n

Û(ω, k) ei(ωτ+k·θ).
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There exists N , such that dP
(
U,UN

)
< ε/2. If UN ∈ Ω, we are done. Otherwise, we

consider

Ũ = UN +

3∑
i=1

δi V
i, δi > 0 ∀i,

where

V 1(θ1, θ2, θ3) =
(
cos((N + 1)θ2), sin((N + 1)θ1),

cos((N + 1)θ1) + sin((N + 1)θ2)
)t

,

V 2(θ1, θ2, θ3) =
(
sin((N + 2)θ3), sin((N + 2)θ1) + cos((N + 2)θ3),

cos((N + 2)θ1)
)t

,

V 3(θ1, θ2, θ3) =
(
sin((N + 3)θ3) + cos((N + 3)θ2), cos((N + 3)θ3),

sin((N + 3)θ2)
)t

.

Note that the V i’s are special cases of the famous ABC flows [1] of the type

V (θ1, θ2, θ3) =
(
C sin(Mθ3) + B cos(Mθ2), A sin(Mθ1) + C cos(Mθ3),

B sin(Mθ2) + A cos(Mθ1)
)t

.

They satisfy the Beltrami property that curlu = k u, k > 0. A simple calculation
shows that

A(Ũ) = A(UN ) − δ1

⎛
⎝1

1
0

⎞
⎠− δ2

⎛
⎝1

0
1

⎞
⎠− δ3

⎛
⎝0

1
1

⎞
⎠ .

Thus, for appropriate choices of δ1, δ2, δ3, one has

A(Ũ) ∈ Ω, dP

(
Un, Ũ

)
< ε/2,

so that dP(U, Ũ) < ε. Thus, Ω is dense, which ends the proof of the lemma.
We can now perform a spectral analysis of (3.3).
Proposition 3.2. Let Ω be the subset of P defined in Lemma 3.1. For all U in

Ω, there exist ζ0 ∈ R
3, δ > 0, and two smooth functions

Λ+ : B(ζ0, δ) �→ R
+
∗ , b̂ : B(ζ0, δ) �→ (C∗)

3
,

such that for all ζ ∈ B(ζ0, δ),

bζ(t, x) = b̂(ζ) exp (Λ+(ζ) t) exp (iζ · x)

is a divergence-free solution of (3.3). Moreover, one can assume that Λ has a non-
degenerate maximum over B(ζ0, δ) at ζ0.
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Proof. Let U in Ω. We apply the Fourier transform to (3.3): we get, for all ζ ∈ R
3,

∂tF
(
b0
)
(t, ζ) = AζAF

(
b0
)
(t, ζ) − |ζ|2F

(
b0
)
(t, ζ),

where,

∀ζ ∈ R
3, Aζ =

⎛
⎝ 0 −iζ3 iζ2

iζ3 0 −iζ1
−iζ2 iζ1 0

⎞
⎠

is the matrix corresponding to cross-product by iζ. As A is real-symmetric, there
exists an orthogonal matrix P with P tAP = diag(α1, α2, α3), αi ∈ R. Introducing
ξ = P tζ, b̃(t, ξ) = P tF(b0)(t, ζ), the previous equation reads

∂t b̃(t, ξ) = AξD b̃(t, ξ) − |ξ|2 b̃(t, ξ).(3.6)

A rapid calculation shows that the eigenvalues λ of AξD−|ξ|2Id satisfy λ = −|ξ|2
or (

λ + |ξ|2
)2

= ξ2
1α2α3 + ξ2

2α1α3 + ξ2
3α1α2.(3.7)

As U ∈ Ω, the αi’s are distinct and nonzero. Consequently, the products αiαj , i �= j,
are also distinct and nonzero. Let

f(ξ) := ξ2
1α2α3 + ξ2

2α1α3 + ξ2
3α1α2, U := {ξ, f(ξ) > 0} .

There are two possibilities:
• All the αi’s have the same sign. Then all the αiαj , i �= j, are positive, and U

is R
3
∗.

• The αi’s have different signs. Then among the products αiαj , i �= j, two are
negative and one is positive—for instance, α2α3. In this case, U is the cone
{|ξ1|2 > −α1α3

α2α3
|ξ2|2 − α1α2

α2α3
|ξ3|2}.

On U , one can define

λ±(ξ) = ±f(ξ)1/2 − |ξ|2.

Note that λ+(ξ) takes positive values for some ξ. Indeed, if ξ is such that f(ξ) > 0,
then

λ+

(
δξ
)

= δf
(
ξ
)1/2 − δ2

∣∣ξ∣∣2
is positive for δ > 0 small enough. Moreover, using λ+(ξ)

|ξ|→+∞−−−−−→ −∞, we deduce
that λ+ has a global positive maximum in U , say at ξ = ξ0. As ξ0 is a critical point,
we obtain

0 = λ′
+(ξ0) =

1

2
f(ξ0)−1/2∇f(ξ0) − 2ξ0

= f(ξ0)−1/2

⎛
⎝α2α3

α1α3

α1α2

⎞
⎠ ξ0 − 2ξ0.

Up to reindex the eigenvalues, this implies that

2f(ξ0)1/2 = α2α3, ξ0 = (ξ0
1 , 0, 0)t.(3.8)
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Then we compute

λ′′
+(ξ0) = −1

2
f(ξ0)−3/2∇f(ξ0) ⊗∇f(ξ0) +

1

2
f(ξ0)−1/2f ′′(ξ0) − 2Id,

and using (3.8) leads to

λ′′
+(ξ0) =

⎛
⎜⎝
− 1

2f(ξ0)3/2 (ξ0
1)2

α1α3

f(ξ0)1/2 − 2
α1α2

f(ξ0)1/2 − 2

⎞
⎟⎠ .

In particular, det(λ′′
+(ξ0)) �= 0, which means that the maximum at ξ0 is nondegenerate.

Let δ > 0 such that B(ξ0, δ) ⊂ U . For all ξ ∈ B(ξ0, δ), λ+(ξ) has multiplicity 1 as
an eigenvalue of AξD. Therefore, classical smooth dependence results on eigenvalues
and eigenvectors yield the existence of a smooth function b̃ : B(ξ0, δ) �→ (C∗)

3 such
that

AξD b̃(ξ) = λ+(ξ) b̃(ξ).

Back to original variables, we define

ζ0 = Pξ0, Λ±(ζ) = λ±(P tζ), b̂(ζ) = P b̃(P tζ),

so that (
AξA− |ζ|2

)
b̂(ζ) = Λ+(ζ) b̂(ζ).

This shows that, for all ζ ∈ B(ζ0),

bζ(t, x) = b̂(ζ) eiΛ(ζ)t eiζ·x

solves (3.3). Note also that bζ is divergence-free, as ζ · b̂(ζ) = 0. This ends the proof
of the proposition.

3.2. Construction of unstable wavepackets. Thanks to Proposition 3.2, we
are now able to build approximate solutions having exponential growth. More pre-
cisely, we show the following.

Proposition 3.3. Let U ∈ Ω. There exists λ0 > 0, and for every integer n ∈ N

families {Xi = (V
i
, V i+1

∗ , pi∗, p
i+1)}0≤i≤n such that:

(i) For all i, Xi satisfies (Ti).

(ii) As t → +∞, V 0 = V
0

= (0, β
0
) has the asymptotic behavior

‖β0
(t, ·)‖L2 ∼ C√

t
eλ

0t.(3.9)

(iii) For all i = km + l, with l ∈ {0, . . . ,m− 1}, for all α, s ∈ N, and for all t,

‖∂α
t X

i(t, ·)‖Hs ≤ Cα,i,s
√

1 + t
k+1

tl e(k+1)λ0t, Cα,i,s > 0.(3.10)

Proof. We treat separately the cases i = 0, 1 ≤ i ≤ m− 1, and i ≥ m (for which
(Ti) includes quadratic terms).
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Construction of X0. We first use Proposition 3.2 to build X0. Let

Λ± : B(ζ0, δ) �→ R
+
∗ , b̂ : B(ζ0, δ) �→ (C∗)

3

as in Proposition 3.3. As Λ0 := Λ+(ζ0) is a nondegenerate maximum, one can assume,
up to take a smaller δ, that

Λ+(ζ) = Λ+(ζ0) + ∇ζΛ+(ζ0) · (ζ − ζ0) − |ζ − ζ0|2α(ζ − ζ0)

2
,(3.11)

where 0 < α < α(·) < α in B(0, δ). We extend functions Λ± and b̂ to

Bδ := B(ζ0, δ) ∪B(−ζ0, δ)

by the following: for all ζ ∈ B(−ζ0, δ),

Λ±(ζ) := Λ±(−ζ), b̂(ζ) := b̂(−ζ)∗.

With this continuation,

bζ(t, x) = b̂(ζ) eΛ+(ζ)t eiζ·x(3.12)

is a divergence-free solution of (3.3) for all ζ in Bδ. Now let φ be a smooth real-valued
function supported in Bδ, such that φ(ζ0) = 1, φ(−ζ) = φ(ζ)∗. We set

β
0
(t, x) =

∫
Bδ

φ(ζ) b̂(ζ) eΛ+(ζ)t eiζ·x dζ.(3.13)

Then we define V
0

:= (0, β
0
)t, V 1

∗ by (2.6), and X0 = (V
0
, V 1

∗ , 0, 0). From

the properties of bζ , we deduce easily that V
0

satisfies (3.2), and consequently that
X0 solves (T0). Finally, points (ii) and (iii) of the proposition are derived from
standard computations involving (3.11). For the sake of brevity, we do not detail these
computations and refer to [4] for complete treatment in a very similar framework.

Construction of Xi, 1 ≤ i ≤ m − 1. Let X0 be defined as above, and for
1 ≤ i ≤ m − 1, let Xi be defined inductively by the following: Xi is the solution of

(Ti) with V
i|t=0 = 0. As seen in section 3.1, such a definition makes sense. We show

by induction on i ≥ 0 the following property:
(Pi): Function Xi has an expression of the type

(3.14) Xi(t, x, τ, θ)

=

∫
Bδ

(
P i,+
ζ,τ,θ(t) e

Λ+(ζ)t + P i,−
ζ,τ,θ(t) e

Λ−(ζ)t + P i,−
ζ,τ,θ(t) e

−|ζ|2t
)
eiζ·xdζ,

where P i,±
ζ,τ,θ, P

i,0
ζ,τ,θ are polynomials in t, of degree ≤ i, with coefficients smooth and

compactly supported in Bδ × T × T
3.

• Case i = 0. (P0) is true by definition of X0.
• Case i ≥ 1. Let i ≥ 1, and assume (P0), . . . , (Pi−1). Recall that

(
pi∗, 0

)t
= Δ−1

θ DivθBθ

(
Ũ , V

i
)

+ Hi
∗,

V i+1
∗ = (∂τ − Δ)−1LθV

i
+ Ii∗,
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where Hi
∗, I

i
∗ are i-linear in (X0, . . . , Xi−1). Thus, Xi is of type (3.14) as soon as V

i

and pi+1 are.
These functions satisfy⎧⎪⎪⎨

⎪⎪⎩
∂tV

i
=

(
−curlxA

curlxA

)
V i + ΔxV

i +
(
∇xpi+1, 0

)t

+ J
i
,

DivxV
i = 0.

(3.15)

Taking the curl of the first line of (3.15) yields

pi+1 = −(Δx)
−1 J

i

1,

which shows that

pi+1(t, x) =

∫
Bδ

(
Qi,+

ζ (t) eΛ+(ζ)t + Qi,−
ζ (t) eΛ−(ζ)t + Qi,0

ζ (t) e−|ζ|2t
)
eiζ·xdζ,

where Qi,±
ζ , Qi,0

ζ are polynomials in t, of degree ≤ i− 1, with coefficients smooth and
compactly supported in Bδ.

Replacing pi+1 by its expression leads to⎧⎪⎪⎨
⎪⎪⎩
∂tV

i
=

(
−curlxA

curlxA

)
V

i
+ ΔxV

i
+ K

i
,

DivxV
i
= 0,

where K
i

is i-linear on (X0, . . . , Xi−1). We define

Vi(t, ζ) := F
(
V

i
)

(t, ζ),

which satisfies

∂tVi(t, ζ) =

(
−AζA

AζA

)
− |ξ|2Vi(t, ζ) + Ki(t, ζ),

Ki(t, ζ) = Ri,+
ζ (t) eΛ+(ζ)t + Ri,−

ζ (t) eΛ−(ζ)t + Ri,0
ζ (t) e−|ζ|2t,

where Ri,±
ζ , Ri,0

ζ are polynomials in t, of degree ≤ i − 1, smooth and compactly
supported in Bδ.

At fixed ζ, such an equation is an ordinary differential system of the type

d

dt
V + MV = S+(t)eΛ+t + S−(t)eΛ−t + S0(t)eΛ0t,

where Λ+, Λ−, Λ0, which stand for Λ+(ζ), Λ−(ζ), −|ζ|2, are simple eigenvalues of the

matrix M , which stands for
(−AζA

AζA

)
. It is well known that the solution

V(t) =

∫ t

0

eM(t−s)
(
S+(s)eΛ+s + S−(s)eΛ−s + S0(s)eΛ0s

)
ds
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with V(0) = 0 is of the type

V(t) = T+(t)eΛ+t + T−(t)eΛ−t + T 0(t)eΛ0t,

where T± (resp., T 0) is a polynomial such that degT± ≤ degS± + 1 (resp., degT 0 ≤
degS0 + 1).

Back to the original system, (Pi) follows, which ends the induction. Point (iii) is
again a classical consequence of expression (3.14) and (3.11).

Construction of Xi, i ≥ m. As i ≥ m, quadratic terms enter system (Ti). More
precisely, one checks that

• Hi
∗ and Ii∗ are made of terms that are i-linear in (X0, . . . , Xi−1), and of

quadratic terms that involve the pairs {V j , V J} with j + J = i −m − 1, or
i−m− 3;

• J
i

and K
i

are made of terms that are i-linear in (X0, . . . , Xi−1), and of
quadratic terms involving the pairs {V j , V J} with j + J = i−m, i−m− 1
or i−m− 3.

Note that

Λ+(jζ0) < j Λ+(ζ0) ∀2 ≤ j ≤ n,

so that up to take δ smaller, one can assume that for all 2 ≤ j ≤ n and for all ζ1, . . . , ζj
in Bδ,

Λ+(ζ1 + · · · + ζj) < Λ+(ζ1) + · · · + Λ+(ζj).

Under this assumption, one can show inductively that for general i = km + l, k ≥ 0,

1 ≤ l ≤ m− 1, the solution Xi of (Ti) with V
i|t=0 = 0 has an expression of the type

Xi(t, x, τ, θ) =

k+1∑
j=1

∫
Bj+1

δ

Y i,j(ζ1, . . . , ζj , τ, θ, t) e
i(ζ1+···+ζj)·x dζ1 . . . dζj

+

∫
Bk+1

δ

P i(ζ1, . . . , ζk+1, τ, θ, t) e
(Λ+(ζ1)+···+Λ+(ζk+1)) t ei(ζ1+···+ζk+1)·x dζ1 . . . dζk+1,

where
• P i is a polynomial in t, of degree ≤ l, with coefficients smooth and compactly

supported.
• Y i,j is a finite sum of terms of the form

Y i
Λ1,...,Λj

(ζ1, . . . , ζj , τ, θ, t) = Qi
Λ1,...,Λj

(ζ1, . . . , ζj , τ, θ, t) e
(Λ1(ζ1)+···+Λj(ζk+1)) t,

with Qi
Λ1,...,Λj

polynomial in t, and Λ1(ζ0) + · · · + Λj(ζ0) < (k + 1)Λ+(ζ0).
We do not detail this induction, as it is very similar to the previous one and tedious.
Once this expression for Xi is obtained, the estimate follows; see [4] for details.

3.3. Proof of Theorem 1.2. We now turn to the proof of the instability theo-
rem, Theorem 1.2. We adapt ideas of [9], encountered in the stability study of Euler
and Prandtl equations (see also [6, 12]).

Let k0 in N
∗ to be chosen later, let m ≥ 1, and let n = k0m. Let U ∈ Ω, and take

profiles X0, . . . , Xn as in Proposition 3.3. We have in particular

εm‖V 0
(t, ·)‖L2 = εm‖β0

(t, ·)‖L2 ≥ C0 ε
m eλ

0t

(1 + t)1/2
.
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We define

E(t) :=
C0 ε

m eλ
0t

(1 + t)1/2

and T ε > 0 such that E(T ε) = 1. Note that T ε = O(| ln(ε)|). Moreover, thanks to
point (iii) of Proposition (3.3), we get, for all i = km + l, l ∈ {0, . . . ,m− 1}, and for
all α, s, t,

εm+i‖∂α
t X

i(t)‖Hs ≤ C
εm+ie(k+1)λ0t

√
1 + t

k+1
tl,

≤ C

(
εmeλ0t

√
1 + t

)k+1

(εt)l,

≤ C ′ E(t)k+1 (εt)l.

(3.16)

As in section 2.3, we define V ε,n
app and pε,napp by (2.3), so that they satisfy equations

of type (2.14). Thanks to (3.16), it is easy to check that

‖Rε,n

app(t)‖Hs ≤ Cs E(t)k0−2,

‖Rε,n
app,∗(t)‖Hs ≤ Cs ε

−2 E(t)k0−2,

‖∂α
t r

ε,n
app(t, ·)‖Hs ≤ C ′

s,α

(
εm E(t)k0+1 + ε E(t)k0+1

)
.

The Fourier transform of V n and V n+1 has compact support in ζ, so that rε,napp =
εm+n(V n

∗ + εV n+1
∗ ) is such that rε,napp,l = 0. As in section 2.3, we can then define W ε

app

by (2.24), (2.25) and set V ε
app = V ε,n

app +W ε
app. This solves (2.27), where the remainder

Rε
app satisfies, for all t ∈ [0, T ε],

‖Rε

app(t)‖Hs + ε2‖Rε
app,∗(t)‖Hs ≤ Cs E(t)k0−2.(3.17)

We deduce (as in (2.26))

‖Rε
app,l(t)‖Hs ≤ ‖Rε

app,l(t)‖Hs + ‖Rε
app,∗,l(t)‖Hs

≤ ‖Rε

app(t)‖Hs + C ε2 ‖Rε
app(t)‖Hs+1/2

≤ C ′
s E(t)k0−2.

(3.18)

Conclusion. We fix s ≥ 5, η > 0 to be chosen later. With the notation of
Proposition 2.1, (2.15), we choose k0 > max(4, 2 + λ−1Cs). Let V ε be the solution of
(2.2), with initial data V ε|t=0 = V ε

app|t=0. Let W ε = V ε − V ε
app, and let

T (ε) = sup {t ∈ [0, T ε], ∀u ∈ [0, t], αs(W
ε;u) ≤ 1/2} .

We apply Proposition 2.1 to W ε. This yields, for all t ∈ [0, T (ε)),

αs(W
ε; t) ≤ 2Cs

∫ t

0

αs(W
ε;u)du +

4

3
Cs

(
ε6

∫ t

0

‖Rε
app,h(u)‖2

Hsdu

+

∫ t

0

‖Rε
app,l(u)‖2

Hsdu

)
.
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We deduce from (3.18) that

αs(W
ε; t) ≤ 2Cs

∫ t

0

αs(W
ε;u)du + Cs E(t)2(k0−2).

With our choice for k0, Gronwall’s lemma implies

αs(W
ε; t) ≤ Cs E(t)2(k0−2).

For tε = T ε − σ, σ independent of ε, large enough,

Cs E(t)2(k0−2) < e−2(k0−2)λ0σ <
1

4
.

This shows that T (ε) ≥ tε and that

‖W ε
l (tε)‖2

Hs + ε2‖W ε(tε)‖2
Hs < exp(−2λ0σ) ∀s.

Recall also that, up to consider a larger σ,

‖V ε
app − V

0‖2
Hs ≤ e−2λ0σ.

We can now conclude the proof of Theorem 1.2. We introduce

(vε, bε)t(t, x) = V ε
(
t, x, ε−4t, ε−2x

)
= (wε, βε)

(
t, x, ε−4t, ε−2x

)
,

which is solution of the original system (1.5). Rapid computations lead to

‖bε(t)‖2
L2

x
≥ ‖βε(t)‖2

L2
x,τ,θ

− C ε2‖βε(t)‖2
H1

x,τ,θ

≥ ‖βε

l (t)‖2
L2

x
− C ε2‖βε(t)‖2

H1
x,τ,θ

≥ εm

2
‖β0

l (t)‖2
L2

x
− C ′

(
‖V ε

app,l(t) − εmV
0

app,l(t)‖2
L2

x
+ ‖W ε

l (t)‖2
L2

x

+ ε2
(
εm‖β0

(t)‖2
H1

x
+ ‖V ε

app(t) − εmV
0

app(t)‖2
H1

x,τ,θ
+ ‖W ε(t)‖2

H1
x,τ,θ

))
,

where C and C ′ are positive constants independent of ε and η. As the Fourier trans-

form of β
0

has compact support, we deduce that

β
0

= β
0

l , ‖β0‖H1
x
≤ R ‖β0‖L2

x

for some R > 0.

Using previous bounds, this yields, for ε small enough,

‖bε(t)‖2
L2 ≥ C0 e

−λ0σ − C1 e
−2λ0σ ≥ δ > 0,

up to consider a larger σ. Theorem 1.2 follows.
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OPTIMAL RATE OF CONVERGENCE OF THE
BENCE–MERRIMAN–OSHER ALGORITHM FOR

MOTION BY MEAN CURVATURE∗

KATSUYUKI ISHII†

Abstract. Bence, Merriman, and Osher proposed an algorithm for computing the motion
a hypersurface by mean curvature in terms of solutions of the usual heat equation, continually
reinitialized after short time steps. In this paper, applying some techniques of asymptotic analysis
for the Allen–Cahn equation, we give a rate of convergence of their algorithm for the motion of a
smooth and compact hypersurface by mean curvature. We also consider the special case of a circle
evolving by curvature and show that our rate is optimal.

Key words. motion by mean curvature, numerical algorithm, rate of convergence, optimality
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1. Introduction. In 1992, Bence, Merriman, and Osher proposed in [2] an al-
gorithm for computing the motion of a hypersurface by its mean curvature. It is
described as follows.

Given a closed set C0 ⊂ R
N , we solve the initial-value problem for the heat

equation ⎧⎨
⎩

ut − Δu = 0 in (0,+∞) × R
N ,

u(0, x) =

{
1, x ∈ C0,
−1, x ∈ R

N\C0.
(1.1)

Fix a time step h > 0 and set

C1 = {x ∈ R
N | u(h, x) ≥ 0}.

Next we solve (1.1) with C0 replacing C1 and define a new set C2 with the solution
u replaced by that of (1.1) with the new initial data. Repeating this procedure, we
have a sequence {Ck}k=0,1,... of closed sets in R

N . Then we define

Ch
t = Ck if kh ≤ t < (k + 1)h, k = 0, 1, . . . ,

for t ≥ 0. Letting h ↘ 0, we obtain

∂Ch
t −→ Γt, Γ0 = ∂C0,

and Γt moves by its ((N − 1)-times) mean curvature.
The convergence of the Bence–Merriman–Osher (BMO) algorithm was proved by

Mascarenhas [19], Evans [5], Barles and Georgelin [1], and Goto, Ishii, and Ogawa
[10]. The generalizations of this algorithm were considered by Ishii [14], Ishii, Pires,
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and Souganidis [16], Ishii and Ishii [15], Vivier [23], and Leoni [18]. However, to the
author’s knowledge, there are a few results on the rate of convergence of the BMO
algorithm. In [22] Ruuth gave an error estimate for the case of the planar graph on
[0, h]. Ishii and Nakamura [17] proved that the Hausdorff distance between the motion
by mean curvature Γt and the approximate interface Γh

t := ∂Ch
t is an order of h1/2

as h ↘ 0. This estimate is valid before the onset of singularities, but not optimal.
The purpose of this paper is to show the optimal rate of convergence of the BMO

algorithm, valid before the onset of singularities, for the Hausdorff distance between
Γt and Γh

t . In fact, assuming {Γt}0≤t<T0 is the motion of a smooth and compact
hypersurface by mean curvature, we prove that, for any T < T0,

sup
t∈[0,T ]

dH(Γt,Γ
h
t ) ≤ Lh,

where L is a constant depending on T , but independent of small h > 0, and dH
denotes the Hausdorff distance. This estimate is optimal and improves that of [17].

Both of the order in h and the optimality are the consequence of the maximum
principle and the explicit constructions of sub- and supersolutions of (1.1), which are
inspired by the asymptotic analysis of solutions of the Allen–Cahn equation (see, e.g.,
Fife [7] and de Mottoni and Schatzman [4]). As for the relation between the BMO
algorithm and the Allen–Cahn equation, from the viewpoint of the splitting methods
in numerical analysis, Vivier [23] first pointed out that we may think the Allen–Cahn
equation is an approximation of the BMO algorithm. Leoni [18] and Goto, Ishii, and
Ogawa [10] gave the proofs of the convergence of the BMO algorithm and a generalized
scheme by applying some techniques of the asymptotic analysis for the Allen–Cahn
equation. The arguments in this paper also rely on them.

This paper is organized as follows. In section 2 we discuss the formal asymptotic
expansion of the radially symmetric solution of (1.1). To derive formally the equation
of the motion of the interface, we consider the asymptotic behavior as t ↘ 0 of the
zero of the solution of (1.1). In section 3 we construct sub- and supersolutions of
(1.1) by using some functions provided by the formal asymptotic expansion. We treat
the nonradial case in subsection 3.2 and the radial case in subsection 3.3. Section
4 is devoted to the rate of convergence of the BMO algorithm to the motion of a
smooth and compact hypersurface by mean curvature. The arguments in sections 3–4
are very similar to those in [18], although Leoni considered in her paper a different
situation from ours. In section 5, we return to the special case of a circle evolving by
curvature. By the radial symmetry, we have only to consider the asymptotic behavior
of the radius Rh of the approximate circle as h ↘ 0. In subsection 5.1 we obtain the
short-time asymptotics of Rh. In subsection 5.2 we formally derive a corrector for
Rh. Based on these results, in subsection 5.3 we obtain the behavior of Rh and show
the optimality of our estimate obtained in section 4. The considerations of section 5
are motivated by Nochetto, Paolini, and Verdi [20]. In [20] they obtained the optimal
error estimate of the approximate interface given by the solution of a variational
inequality to the smooth motion by mean curvature. The appendix is devoted to the
proof of a lemma given in section 2.

In the following of this paper, we denote by K various constants depending only
on known ones, and the notation g = O(f) means that |g| ≤ K ′f for some constant
K ′ > 0 independent of small t > 0.

2. Formal asymptotic expansion to the radial case. In this section we
briefly discuss the formal asymptotic expansion to the simplest situation, the radially
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symmetric solution of (1.1) as t ↘ 0. Even though this presentation is only formal,
it shows us several crucial aspects for the constructions of sub- and supersolutions of
(1.1) in the next section. For each x0 ∈ R

N , put B(x0, R) = {x ∈ R
N | |x−x0| < R}.

If u = u(t, r) (r = |x|) and C0 = B(0, R), then the problem (1.1) turns to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lu := ut − urr −
N − 1

r
ur = 0 in (0,+∞) × (0,+∞),

ur(t, 0) = 0, t > 0,

u(0, r) =

{
1, r ∈ [0, R],
−1, r ∈ (R,+∞).

(2.1)

Set Γ̃0 = ∂B(0, R) and Γ̃t = {x ∈ R
N | u(t, |x|) = 0} for t > 0. Then we can easily

verify that Γ̃t is a sphere in R
N .

As to the behavior of the solution of (2.1) away from Γ̃t, we have the following.
Lemma 2.1. For any δ ∈ (0, R/2), there exist M0 > 0 and t0 ∈ (0, 1) such that,

for all t ∈ (0, t0),

1 −M0e
−δ2/32t ≤ u(t, r) ≤ 1 for all 0 ≤ r ≤ R− δ,

−1 ≤ u(t, r) ≤ −1 + M0e
−δ2/32t for all r ≥ R + δ.

See Goto, Ishii, and Ogawa [10, Proposition 6.1] for the proof. From this lemma,

it is sufficient for us to consider the asymptotics of the solution of (2.1) near Γ̃t. Fix

δ ∈ (0, R/2) and take t0 > 0 so small that Lemma 2.1 holds. Let φ̃(t) be the radius

of Γ̃t. We assume that the solution u of (2.1) is approximated by the following formal
series in (t, r) ∈ (0, t0) × (R− δ,R + δ):

u(t, r) =
+∞∑
j=0

tj/2Uj

(
t,
d̃(t, r)

2
√
t

)
, φ̃(t) =

+∞∑
j=0

tjφj(t), φ̃(0) = φ0(0) = R.(2.2)

Here Uj and φj are assumed to be bounded in (0, t0)×(R−δ,R+δ) for each j ∈ N∪{0}
and d̃(t, r) is the signed distance function to Γ̃t given by

d̃(t, r) = φ̃(t) − r.

Before choosing Uj and φj (j ∈ N ∪ {0}), we give a lemma on the effect of the

diffusion on ∂B(0, R). Select r̃ ≥ 0 so that u(t, R− r̃) = 0. Then r̃ = φ̃(0)− φ̃(t) and

it is the normal distance between ∂B(0, R) and Γ̃t.
Lemma 2.2. We have

r̃ =
(N − 1)t

R
+

(N − 1)(3N − 1)t2

6R3
+ O(t3) as t ↘ 0.

See the appendix for the proof. By this lemma, we formally have

φ̃′
∣∣∣
t=0

= − r̃′|t=0 = −N − 1

R
,

where ′ = d/dt. This suggests that we may set φ0(t) = φ(t), where φ(t) =√
R2 − 2(N − 1)t and it solves

φ′(t) = −N − 1

φ(t)
for t > 0, φ(0) = R.(2.3)
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Using Lemma 2.2 and the definition of φ, we can estimate the distance between
∂B(0, φ(t)) and Γ̃t for small t > 0.

Proposition 2.3. Let φ(t) =
√

R2 − 2(N − 1)t and let r̃ be the normal distance

between ∂B(0, R) and Γ̃t. Then

r̃ − (R− φ(t)) =
(N − 1)t2

3R3
+ O(t3) as t ↘ 0.

Remark 2.1. Ruuth [22, Chapter 4] obtained a similar result to this proposition
in the case of the graph in R

2.

Proof of Proposition 2.3. It is easily seen by Taylor expansion to φ around t = 0
that

φ(t) = R− (N − 1)t

R
− (N − 1)2t2

2R2
+ O(t3) as t ↘ 0.

Hence, we have the result by using Lemma 2.2 and this expansion.

We choose Uj and φj (j ∈ N ∪ {0}) of (2.2). First, we do some φj ’s. It is seen
that, as t ↘ 0,

r̃ − (R− φ(t)) = −
+∞∑
j=1

tjφj(t),

1

R
≈ 1

φ̃(t)
=

1

φ(t)

⎧⎪⎨
⎪⎩1 −

+∞∑
j=1

tj
φj(t)

φ(t)
+

⎛
⎝+∞∑

j=1

tj
φj(t)

φ(t)

⎞
⎠

2

− · · ·

⎫⎪⎬
⎪⎭ .

It follows from these relations and Proposition 2.3 that

−
+∞∑
j=1

tjφj(t) =
t2(N − 1)

3(φ(t))3

⎧⎪⎨
⎪⎩1 −

+∞∑
j=1

tj
φj(t)

φ(t)
+

⎛
⎝+∞∑

j=1

tj
φj(t)

φ(t)

⎞
⎠

2

− · · ·

⎫⎪⎬
⎪⎭

3

+ O(t3)

for sufficiently small t > 0. Comparing the coefficients of tj (j = 1, 2) on both sides,
we have

t−term : φ1(t) = 0, t2−term : φ2(t) = − N − 1

3(φ(t))3
.

We omit the choices of φj ’s (j ≥ 3).

Second, we select some Uj ’s. We set φ̃(t) = φ(t) + t2φ2(t) for simplicity. Put

ρ = d̃/2
√
t. Since r = φ− (2

√
tρ− t2φ2), we get

1

r
=

1

φ− (2
√
tρ− t2φ2)

=
1

φ

+∞∑
j=0

{
1

φ

(
2
√
tρ− t2φ2

)}j

for small t > 0.(2.4)

Besides we easily see that

dt = φ′ + 2tφ2 + t2φ′
2, dr = −1, drr = 0.
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Thus we use (2.2), (2.4) and these identities to compute that

Lu = − 1

4t
(U0,ρρ + 2ρU0,ρ) +

1√
t

{
U0,ρ

2

(
φ′ +

N − 1

φ

)
−
(

1

4
U1,ρρ +

ρ

2
U1,ρ −

1

2
U1

)}

+

{
(N − 1)ρU0,ρ

φ2
+

U1,ρ

2

(
φ′ +

N − 1

φ

)
−
(

1

4
U2,ρρ +

ρ

2
U2,ρ − U2

)}

+
√
t

{
U0,ρφ2 + U1,t + (N − 1)

(
2ρ2

φ3
U0,ρ +

ρU1,ρ

φ2

)
+

U2,ρ

2

(
φ′ +

N − 1

φ

)

−
(

1

4
U3,ρρ +

ρ

2
U3,ρ −

3

2
U3

)}
+ · · ·

= 0,

where Ui,ρ = ∂Ui/∂ρ andUi,ρρ = ∂2Ui/∂ρ
2.

We compare the coefficients of tj/2 (j = −2,−1, 0, 1, 2, . . .). In the case of the
t−1-term, we can derive

U0,ρρ + 2ρU0,ρ = 0 on R
1.(2.5)

Taking Lemma 2.1 into account, we impose the following condition on U0:

U0(t, ρ) −→
{

1 as ρ → +∞,
−1 as ρ → −∞ for any small t > 0.(2.6)

Then we have

U0 = U0(ρ) =
2√
π

∫ ρ

0

e−s2ds.(2.7)

As for the t−1/2-term, by (2.3) we obtain

1

4
U1,ρρ +

ρ

2
U1,ρ −

1

2
U1 = 0 on R

1.(2.8)

Since the rate of convergence (2.6) is faster than the exponential one, combining
Lemma 2.1 with this fact, we have the following condition on U1:

U1(t, ρ) −→ 0 as ρ → ±∞ for any small t > 0.(2.9)

Therefore we have U1 ≡ 0 because the uniqueness of solutions of (2.8) under (2.9)
holds in the class of bounded functions.

In the case of the tj/2-term (j = 0, 1), from (2.3) and the fact that U1 ≡ 0 we get

1

4
U2,ρρ +

ρ

2
U2,ρ − U2 =

(N − 1)ρU0,ρ

φ2
on R

1,(2.10)

1

4
U3,ρρ +

ρ

2
U3,ρ −

3

2
U3 = (N − 1)

(
2ρ2 − 1

3

)
U0,ρ

φ3
on R

1.(2.11)

By the same reason as above, the following condition is imposed on Uj ’s (j = 2, 3):

Uj(t, ρ) −→ 0 as ρ → ±∞ for any small t > 0.(2.12)

Solving (2.10) and (2.11) under (2.12), we obtain

U2(t, ρ) = − (N − 1)ρe−ρ2

√
π(φ(t))2

, U3(t, ρ) = −4(N − 1)ρ2e−ρ2

3
√
π(φ(t))3

.(2.13)

We omit selecting Uj (j ≥ 4).
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Remark 2.2. In the above discussion, we have not applied the Fredholm alterna-
tive to derive the equation of the motion of the interface, which is used to do so in the
case of the Allen–Cahn equation (see, e.g., Fife [7], de Mottoni and Schatzman [4],
and Nochetto, Paolini, and Verdi [20]), because such equations as (2.8) under (2.9)
have only the trivial solution. For this reason, we have used other methods such as
Lemma 2.2 and Proposition 2.3 to determine φ0, φ1, and φ2.

3. Subsolutions and supersolutions. We construct sub- and supersolutions
of (1.1) in (kh, (k+1)h)×R

N for h > 0 and k ∈ N∪{0}. These functions will be used
in sections 4 and 5 to derive the optimal rate of convergence of the BMO algorithm.

In this and the next section we assume that {Γt}0≤t<T0 is a motion of a smooth
and compact hypersurface by mean curvature. The precise assumption on {Γt}0≤t<T0

is given in subsection 3.1. In addition, the existence, uniqueness, and behavior of
{Γt}0≤t<T0

are mentioned in Remark 4.1 of section 4.

3.1. Signed distance function. For each t ∈ [0, T0), the signed distance func-
tion d = d(t, x) to Γt is defined by

d (t, x) =

⎧⎨
⎩

dist (x,Γt) for x ∈ D+
t ,

0 for x ∈ Γt,
−dist (x,Γt) for x ∈ D−

t ,
(3.1)

where D+
t denotes the bounded domain enclosed by Γt and D−

t = R
N\(D+

t ∪ Γt).
Then d satisfies

dt = Δd on Γt, t > 0.(3.2)

For any T ∈ (0, T0) and δ > 0, let Nδ be the tubular neighborhood of {(t, x) ∈
[0, T ] × R

N | x ∈ Γt}:

Nδ := {(t, x) ∈ [0, T ] × R
N | |d(t, x)| ≤ δ}.

We assume that {Γt}0≤t<T0 is so smooth that, for any T < T0, there exists a δ > 0
satisfying

dt, dxi
, dxixj , dxixjt, dxixjxk

, dxixjxkxl
∈ L∞(N5δ) for i, j, k, l = 1, . . . , N.(3.3)

It follows from this condition that for any (t, x) ∈ N5δ, there is a unique y(t, x) ∈ Γt

satisfying

|d(t, x)| = |x− y(t, x)|.(3.4)

Let κ̃ = κ̃(t, x) be the sum of the square of all principal curvatures at x ∈ Γt. Define

κs = κs(t, x) := κ̃(t, y(t, x)) for (t, x) ∈ N5δ.

Then (3.3) yields that

κs, κs
t , κ

s
xi
, κs

xixj
∈ L∞(N5δ) for i, j = 1, 2, . . . , N.(3.5)

Moreover, we observe by this property that there exists a κ1 > 0 such that

|dt − Δd− κsd| ≤ κ1d
2 on N5δ.(3.6)

For the details to (3.2)–(3.6), see, e.g., Chen [3], Gilbarg and Trudinger [9], and Paolini
and Verdi [21].
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3.2. Nonradial case. In this subsection we construct a sub- and a super-
solution of (1.1) in (kh, (k + 1)h) × R

N for each h > 0 and k ∈ N ∪ {0}.
We modify slightly the signed distance function d in (3.1). For any (t, x) ∈ N5δ,

k ∈ N ∪ {0}, and αk ≥ 0, set

dk(t, x) = d(t, x) − αkh
2, dk(t, x) = d(t, x) + αkh

2.

We introduce smooth functions η and ζ satisfying

η(r) =

⎧⎨
⎩

r, s ≤ δ,
2δ, s ≥ 3δ,
−2δ, s ≤ −3δ,

0 ≤ η′ ≤ 1, |η′′| ≤ M1

δ
,(3.7)

ζ(r) =

{
1, |s| ≤ δ,
0, |s| ≥ 3δ,

0 ≤ ζ ≤ 1, |ζ ′| ≤ M1

δ
, |ζ ′′| ≤ M1

δ2
,(3.8)

where M1 is a constant independent of δ. Motivated by the formal discussion in
section 2, we define u and u by

u (t, x) = U0

(
η(dk(t, x))

2
√
t− kh

)
+ (t− kh)ζ(dk(t, x))U2

(
t, x,

dk(t, x)

2
√
t− kh

)
(3.9)

− (t− kh)3/2U3 − U4αkh
2
√
t− kh,

u (t, x) = U0

(
η(dk(t, x))

2
√
t− kh

)
+ (t− kh)ζ(dk(t, x))U2

(
t, x,

dk(t, x)

2
√
t− kh

)
(3.10)

+ (t− kh)3/2U3 + U4αkh
2
√
t− kh

in (kh, (k + 1)h) × R
N and k ∈ N ∪ {0}. Here U2 = U2(t, x, ρ) is given by

U2(t, x, ρ) = − 1√
π
κs(t, x)ρe−ρ2

,(3.11)

and U3 and U4 are positive constants selected later. At t = kh, we set

u(kh, x) =

{
1 if dk(kh, x) ≥ 0,
−1 if dk(kh, x) < 0,

u(kh, x) =

{
1 if dk(kh, x) ≥ 0,

−1 if dk(kh, x) < 0.
(3.12)
We note that U2 satisfies

1

4
U2,ρρ +

ρ

2
U2,ρ − U2 = κsρU0,ρ for (t, x) ∈ N5δ, ρ ∈ R

1.(3.13)

Proposition 3.1. Let d satisfy (3.3) for some δ > 0. Then there exist h1 > 0,
U3 > 0, and U4 > 0 such that for each h ∈ (0, h1), k ∈ N ∪ {0}, and αk ≥ 0, u and u
are, respectively, a subsolution and a supersolution of (1.1) in (kh, (k + 1)h) × R

N .
Proof. We set k = 0 and prove the subsolution case.
For the notational simplicity, put ρ = d0/2

√
t, z(t, x) = η(d0(t, x)), and ρz =

z/2
√
t. We denote by L

Lu = ut − Δu for u = u(t, x).

It is seen by calculations that

Lu = − 1

4t
(U0,ρρ|Dz|2 + 2ρzU0,ρ) +

U0,ρ

2
√
t
(zt − Δz) − ζ

{
1

4
U2,ρρ|Dd0|2 +

ρ

2
U2,ρ − U2

}
+
√
t
{
ζU2,ρ(d0,t − Δd0) + ζ ′U2,ρ|Dd0|2 + ζ〈DU2,ρ, Dd0〉

}
+ t{ζ(U2,t − ΔU2) + ζ ′U2(d0,t − Δd0)} −

3

2

√
tU3 −

U4α0h
2

2
√
t

,

where Df = (fx1 , . . . , fxN
). We divide our consideration into two cases.
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Case 1. |d0(t, x)| ≤ δ.
In this case, η = ζ = 1. Thus z = d0, ρz = ρ and

|Dz| = |Dd0| = |Dd| = 1, zt − Δz = d0,t − Δd0 = dt − Δd on N5δ.(3.14)

Moreover, we observe that

sup
ρ∈R1

l=0,2

|ρlU0,ρ| + sup
(t,x)∈N5δ,ρ∈R1

(|U2| + |U2,ρ| + |U2,t| + |ΔU2| + |DU2,ρ|) ≤ K.(3.15)

Here we have used (3.3) and (3.5) to obtain the boundedness for the second term on
the left-hand side of this inequality.

It follows from (2.5), (3.3), (3.14), and (3.15) that

Lu ≤ U0,ρ

2
√
t
(dt − Δd) −

{
1

4
U2,ρρ +

ρ

2
U2,ρ − U2

}
+
√
t

{
K(1 +

√
t) − 3

2
U3

}
− U4α0h

2

2
√
t

.

We see by the positivity of U0,ρ, (3.6) and (3.13) that

U0,ρ

2
√
t
(dt − Δd) −

{
1

4
U2,ρρ +

ρ

2
U2,ρ − U2

}
≤ 2

√
tκ1ρ

2U0,ρ +
U0,ρ

2
√
t
(κs + 2κ1d)α0h

2.

Using (3.5), (3.15) and this inequality, we get

Lu ≤
√
t

(
K(1 +

√
t) − 3

2
U3

)
+

h2

2
√
t
(U4,1(U4,2 + 2κ1δ) − U4)α0,

where U4,1 = ‖U0,ρ‖L∞(R) and U4,2 = ‖κs‖L∞(N5δ). Therefore we can take

U3 ≥ 4

3
K, U4 ≥ U4,1(U4,2 + 2κ1δ)

to obtain

Lu ≤ 0 in {(t, x) ∈ (0, h) × R
N | |d0(t, x)| ≤ δ}.

Case 2. |d0(t, x)| ≥ δ.
In this case, |z| ≥ δ. Then we see by (3.3), (3.5), and (3.7) that

|ρlzU0,ρ(ρz)| + |U2(t, x, ρ)| + |U2,ρ(t, x, ρ)| + |U2,t(t, x, ρ)|(3.16)

+|ΔU2(t, x, ρ)| + |DU2,ρ(t, x, ρ)| ≤ Ke−δ2/8t

for small t > 0 and l = 0, 1, 2, 3. By (3.3) and (3.7) we get

|wt − Δw| ≤ K (w = z, d0).

Using (2.5), (3.8), (3.13), (3.16) and this estimate, we obtain

Lu ≤ Ke−δ2/8t − 3
√
t

2
U3.

We choose h1 > 0 so small that e−δ2/8t ≤
√
t for all t ∈ (0, h1). Hence, letting

U3 ≥ 2K/3 and U4 ≥ 0, we have

Lu ≤ 0 in {(t, x) ∈ (0, h) × R
N | |d0(t, x)| ≥ δ}

for all h ∈ (0, h1).
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Consequently, taking a large U3 > 0 and setting U4 = U4,1(U4,2+2κ1δ), we obtain

Lu ≤ 0 in (0, h) × R
N

for all h ∈ (0, h1). The supersolution case can be shown by a method similar to the
above.

For the case k ≥ 1, we can show the assertion of this proposition by using the
same h1, U3, and U4 as in the case k = 0.

3.3. Radial case. This subsection is devoted to the construction of a sub- and
a supersolution of (1.1) which are radially symmetric. We recall that if u = u(t, r)
(r = |x|) and C0 = B(0, R), then the problem (1.1) turns to (2.1). We assume N = 2
to simplify our arguments.

For any R > 0, put

φ(t) =
√
R2 − 2t, φ1(t) =

1

3(φ(t))3
on [0, h],(3.17)

d̃(t, r) = φ(t) − t2φ1(t) − r on [0, h] × R
1.

Let η and ζ be the same functions as (3.7) and (3.8), respectively. Set z(t, r) =

η(d̃(t, r)) and define u and u by

u(t, r) = U0

(
z(t, r)

2
√
t

)
+ ζ(d̃(t, r))

{
tU2

(
t,
d̃(t, r)

2
√
t

)
+ t3/2U3

(
t,
d̃(t, r)

2
√
t

)}
− t2U4,(3.18)

u(t, r) = U0

(
z(t, r)

2
√
t

)
+ ζ(d̃(t, r))

{
tU2

(
t,
d̃(t, r)

2
√
t

)
+ t3/2U3

(
t,
d̃(t, r)

2
√
t

)}
+ t2U4(3.19)

for t > 0, r ∈ R
1. Here U2, U3 are given by (2.13) and U4 is a constant selected later.

At t = 0, we put

u(0, r) = u(0, r) =

{
1, if d̃(0, r) ≥ 0,

−1, if d̃(0, r) < 0.
(3.20)

Proposition 3.2. Fix δ ∈ (0, R/5∧1). Then there exist h2 > 0 and U4 > 0 such
that for each h ∈ (0, h2), u and u are, respectively, a subsolution and a supersolution
of (2.1) in (0, h) × R

1. In addition, they satisfy the boundary condition of (2.1).
Proof. We assume k = 0 and prove the subsolution case. Set ρz = z/2

√
t and

ρ̃ = d̃/2
√
t for the notational simplicity.

It is observed by calculations that

Lu = − 1

4t

(
U0,ρρz

2
r + 2ρzU0,ρ

)
+

U0,ρ

2
√
t

(
zt − zrr −

1

r
zr

)
− ζ

(
1

4
U2,ρρd̃

2
r +

ρ̃

2
U2,ρ − U2

)

+
√
tζ

{
U2,ρ

(
d̃t − d̃rr −

1

r
d̃r

)
−
(

1

4
U3,ρρd̃

2
r +

ρ̃

2
U3,ρ −

3

2
U3

)}

+ t

[
ζ

{
U2,t +

√
tU3,t +

U3,ρ

2

(
d̃t − d̃rr −

1

r
d̃r

)}
− 2U4

]

− 2ζ ′d̃r

{
tU2,ρ

d̃r

2
√
t

+ t3/2U3,ρ
d̃r

2
√
t

}

+ t

{
ζ ′
(
d̃t − d̃rr −

1

r
d̃r

)
− ζ ′′d̃2

r

}
(U2 +

√
tU3).
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We divide our consideration into two cases.
Case 1. |d̃(t, r)| ≤ δ.

In this case, η = ζ = 1. Thus z = d̃, ρz = ρ̃ and

wr = −1, wt − wrr −
1

r
wr = φ′ − 2tφ1 − t2φ′

1 +
1

r
for w = z, d̃.(3.21)

Moreover, we see from (2.13) and (3.17) that

sup
ρ∈R1

l=0,1,2,3

|ρlU0,ρ| + sup
t∈[0,R2/4],ρ∈R1

j=2,3,l=0,1,2,3

(
|ρlUj | + |ρlUj,ρ| + |Uj,t|

)
≤ K.(3.22)

By (2.5), (3.21), and this boundedness, we have

Lu ≤ U0,ρ

2
√
t

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
−
(

1

4
U2,ρρ +

ρ̃

2
U2,ρ − U2

)

+ t1/2
{
U2,ρ

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
−
(

1

4
U3,ρρ +

ρ̃

2
U3,ρ −

3

2
U3

)}

+
tU3,ρ

2

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
+ t(K − 2U4).

We estimate φ′−2tφ1−t2φ′
1+1/r. We remark that d̃ = 2

√
tρ̃ and r = φ−(2

√
tρ̃+

t2φ1). It follows from (3.17) that there exists an h2 ∈ (0, δ) such that φ(t) ≥ 4δ and
t2φ1(t) ≤ δ for t ∈ (0, h2). Thus we get 2

√
t|ρ̃| + t2φ1 ≤ 2δ and

1

r
≤ 1

φ

{
1 +

1

φ
(2
√
tρ̃ + t2φ1) +

1

φ2
(2
√
tρ̃ + t2φ1)

2

}
+

1

3δφ3
(2
√
t|ρ̃| + t2φ1)

3

for all t ∈ (0, h2). Since φ satisfies φ′ + 1/φ = 0 and φ′
1 is bounded, we observe that

φ′ − 2tφ1 − t2φ′
1 +

1

r
≤ 2

√
tρ̃

φ2
+

4tρ̃2

φ3
− 2tφ1 +

8t3/2|ρ̃|3
3δφ3

+ Kt2.(3.23)

We observe from the positivity of U0,ρ on R
1, (2.10), (2.11), (3.22), and this estimate

that

U0,ρ

2
√
t

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
−
(

1

4
U2,ρρ +

ρ̃

2
U2,ρ − U2

)

−
√
t

(
1

4
U3,ρρ +

ρ̃

2
U3,ρ −

3

2
U3

)
≤ U0,ρ(Ktρ̃3 + Kt3/2) ≤ tK(1 +

√
t).

In addition, (3.22) and (3.23) yield that

t1/2U2,ρ

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
+

tU3,ρ

2

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
≤ Kt.

Therefore we obtain

Lu ≤ t(K(1 +
√
t) − 2U4).

Consequently, taking U4 sufficiently large, we obtain

Lu ≤ 0 in {(t, r) ∈ (0, h) × R
1 | |d̃(t, r)| ≤ δ}

for all h ∈ (0, h2).
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Case 2. |d̃(t, r)| ≥ δ.
In this case, |z| ≥ δ. Then we see by (2.13) that

|ρlzU0,ρ(ρz)| + |ρ̃lUj(t, ρ̃)| + |ρ̃lUj,ρ(t, ρ̃)| + |Uj,t(t, ρ̃)| ≤ Ke−δ2/8t(3.24)

for small t > 0, j = 2, 3, and l = 0, 1, 2, 3. Then it is easily observed by the fact that
δ ≤ r ≤ R + 3δ and by (3.7) and (3.17) that∣∣∣∣wt − wrr −

1

r
wr

∣∣∣∣ ≤ K for w = z, d̃.

Thus we apply (3.7), (3.8), (3.24), and this inequality to obtain

Lu ≤ Ke−δ2/8t − 2tU4.

Taking h2 > 0 smaller if necessary, we have e−δ2/8t ≤ t for all t ∈ (0, h2). Thus we
choose U4 ≥ K/2 to have

Lu ≤ 0 in {(t, r) ∈ (0, h) × R
1 | |d̃(t, r)| ≥ δ}

for all h ∈ (0, h2).
Consequently, taking U4 > 0 large and h2 > 0 small, we obtain

Lu ≤ 0 in (0, h) × R
1

for all h ∈ (0, h2). Since u(t, r) = U0(δ/
√
t) − t2U4 for 0 ≤ r � 1, it is easily verified

that ur(t, 0) = 0. The supersolution case can be shown in a similar way.

4. Rate of convergence. In this section we consider the rate of convergence of
the BMO algorithm to the motion of a smooth and compact hypersurface by mean
curvature.

To state our theorem, we rewrite the BMO algorithm as follows. Let Γ0 ⊂ R
N

be a smooth and compact hypersurface and C0 ⊂ R
N the compact set such that

∂C0 = Γ0. Fix a time step h > 0. Let uh = uh(t, x) be the solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uh
t = Δuh in (kh, (k + 1)h) × R

N ,

uh(kh, x) =

{
1, x ∈ Ck,
−1, x ∈ R

N\Ck,

Ck =

⎧⎨
⎩

the above set C0 for k = 0,{
x ∈ R

N

∣∣∣∣ lim
t→kh−

uh(t, x) ≥ 0

}
for k = 1, 2, . . . .

(4.1)

Set

Ch
t =

{
{x ∈ R

N | uh(t, x) ≥ 0} for t �= kh,
Ck for t = kh,

Γh
t = ∂Ch

t (= {x ∈ R
N | uh(t, x) = 0}).(4.2)

We note that Ch
kh coincides with Ck defined in the introduction and that Γh

t is a
smooth and compact hypersurface for each t ≥ 0, h > 0. Furthermore, there exists
an R0 > 0 such that Γh

t ⊂ B(0, R0) for all t ≥ 0 and h > 0 (see Barles and Georgelin
[1, Lemma 5.1]). Using this formulation, we have the following theorem.
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Theorem 4.1. Let {Γt}0≤t<T0
be a smooth and compact motion by mean cur-

vature satisfying (3.3). Let Γh
t be defined by (4.2). Then, for any T ∈ (0, T0), there

exist h0 > 0 and L > 0 such that

sup
t∈[0,T ]

dH
(
Γh
t ,Γt

)
≤ Lh(4.3)

for all h ∈ (0, h0). Here dH(A,B) denotes the Hausdorff distance between A, B ⊂
R

N .
Remark 4.1. On the existence, uniqueness, and behavior of a motion by mean

curvature {Γt}0≤t<T0 , the following results are known. Assume that Γ0 is the bound-
ary of class Ck,α of a bounded domain (k ≥ 2, 0 < α < 1).

(i) For some T0 = T0(Γ0) > 0, there uniquely exists a smooth and compact
motion by mean curvature {Γt}0≤t<T0 starting from Γ0. Moreover, the signed
distance function d defined by (3.1) is of class C(k+α)/2,k+α(Nδ0) for some
small δ0 > 0 (see Evans and Spruck [6]).

(ii) If N = 2 or Γ0 is convex, then the motion {Γt}0≤t<T0
can be extended up to

T0 = Tmax, where Tmax is the extinction time for Γt (see Gage and Hamilton
[8], Grayson [11], and Huisken [13]). In other cases the singularities may
appear before Γt shrinks to a point (see, e.g., Grayson [12]).

Therefore (4.3) is valid before Γt shrinks to a point or develops the singularities.
Proof of Theorem 4.1. Set k = 0, u = uh and let u and u be defined by (3.9) and

(3.10), respectively. Define

Σh
t := {x ∈ R

N | u(t, x) = 0}, Θh
t := {x ∈ R

N | d0(t, x) = 0},
Σ

h

t := {x ∈ R
N | u(t, x) = 0}, Θ

h

t := {x ∈ R
N | d0(t, x) = 0}.

Note that these sets are smooth and compact hypersurfaces.
Step 1. We prove that there exist h0,1 > 0, L1 and L2 > 0 such that

dH(Θh
t ,Σ

h
t ), dH(Θ

h

t ,Σ
h

t ) ≤ (L1hα0 + L2)h
2(4.4)

for all t ∈ (0, h) and h ∈ (0, h0,1).
We easily see from (3.15) that there exists an h0,1 = h0,1 > 0 such that

|d0(t, x)| < 2
√
t on Σh

t ∪ Θh
t(4.5)

for all t ∈ [0, h) and h ∈ (0, h0,1). Moreover, taking h0,1 smaller if necessary, we
observe that for any t ∈ (0, h0,1) and x ∈ R

N satisfying |d0(t, x)| ≤ 2
√
t,

〈Du(t, x), Dd0(t, x)〉 ≥ U0,ρ(1)

2
√
t

−Kt ≥ 1

10
√
πt

.(4.6)

Let x ∈ Θh
t and take y ∈ Σh

t so that y = x+ |x− y|Dd0(t, x). Applying the mean
value theorem, we obtain

0 = u(t, y) = u(t, x) + 〈Du(t, θx + (1 − θ)y), y − x〉 (0 < θ < 1)

= −t3/2U3 − U4α0h
2
√
t + |x− y|〈Du(t, θy + (1 − θ)x), Dd0(t, x)〉.

It is easily seen that Dd0(t, x) = Dd(t, θy+ (1− θ)x). Hence we can use (4.6) to have

|x− y| ≤ 10
√
πt(U4α0h

2 + tU3) and thus

sup
x∈Θh

t

dist(x,Σh
t ) ≤ (L1hα0 + L2)h

2,
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where L1 = 10
√
πU4, L2 = 10

√
πU3 and U3, U4 are the same constants as in Propo-

sition 3.1. Similarly, we can show that

sup
x∈Σh

t

dist(x,Θh
t ), sup

x∈Θ
h

t

dist(x,Σ
h

t ), sup
x∈Σ

h

t

dist(x,Θ
h

t ) ≤ (L1hα0 + L2)h
2.

Hence we obtain (4.4).
Step 2. We show that there exists an h0 > 0 such that

dH(Γt,Γ
h
t ) ≤ {(1 + L1h)α0 + L2}h2 for all t ∈ (0, h) and h ∈ (0, h0).(4.7)

Let h1 > 0 be given in Proposition 3.1. Set h0 = min{h0,1, h1} and fix h ∈ (0, h0).
Since it is easily verified by (3.12) that u(0, x) ≤ u(0, x) ≤ u(0, x) on R

N , we have
u(t, x) ≤ u(t, x) ≤ u(t, x) on [0, h) × R

N by Proposition 3.1 and the comparison
principle for the heat equation. This implies that

Γh
t ⊂ {x ∈ R

N | u(t, x) ≤ 0 ≤ u(t, x)} for all t ∈ [0, h),(4.8)

that is, Γh
t lies between Σh

t and Σ
h

t .
For any x ∈ Γt, we can find an x ∈ Θh

t such that dist(x,Θh
t ) = α0h

2 = |x − x|.
From Step 1, we have

dist(x,Σh
t ) ≤ |x− x| + dist(x,Σh

t ) ≤ {(1 + L1h)α0 + L2}h2

for all t ∈ [0, h). Since x ∈ Γt is arbitrary, we get

sup
x∈Γt

dist(x,Σh
t ) ≤ {(1 + L1h)α0 + L2}h2 for all t ∈ [0, h).(4.9)

Similarly, we can show that

sup
x∈Γt

dist(x,Σ
h

t ) ≤ {(1 + L1h)α0 + L2}h2 for all t ∈ [0, h),(4.10)

with the same L1, L2 as above.
Hence, using (4.8)–(4.10), we obtain

sup
x∈Γt

dist(x,Γh
t ) ≤ max

{
sup
x∈Γt

dist(x,Σ
h

t ), sup
x∈Γt

dist(x,Σh
t )

}
≤ {(1 + L1h)α0 + L2}h2

for all t ∈ (0, h).

Since Γt also lies between Σh
t and Σ

h

t , by the same argument as above, we get

sup
x∈Γh

t

dist(x,Γt) ≤ max

⎧⎨
⎩ sup

x∈Σ
h

t

dist(x,Γt), sup
x∈Σh

t

dist(x,Γt)

⎫⎬
⎭ ≤ {(1 + L1h)α0 + L2}h2

for all t ∈ (0, h). Therefore we obtain (4.7).
Step 3. We consider the case k = 1. Put α1 = (1+L1h)α0+L2 and fix h ∈ (0, h0).

Then we can see by Proposition 3.1 that u and u are, respectively, a subsolution and
a supersolution of (1.1) in (h, 2h)×R

N . Since Γh
t moves continuously in t in the sense

of the Hausdorff distance (cf. Goto, Ishii, and Ogawa [10, Corollary 3.1]), we observe
by (4.7) that

Γh
h ⊂ {x ∈ R

N | d1(h, x) ≤ 0 ≤ d1(h, x)}.
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It is easily seen by (3.12) and this inclusion that u(h, x) ≤ u(h, x) ≤ u(h, x) on R
N ,

and hence we obtain u(t, x) ≤ u(t, x) ≤ u(t, x) on [h, 2h) × R
N by the comparison

principle for the heat equation. Therefore applying the argument in Step 2, we have

dH(Γt,Γ
h
t ) ≤ {(1 + L1h)α1 + L2}h2 for all t ∈ [h, 2h).

Step 4. We select m ∈ N satisfying mh ≤ T < (m + 1)h for each h ∈ (0, h0) and
repeat the arguments in Steps 2–3 inductively. Set

αk = (1 + L1h)αk−1 + L2 for k = 1, 2, . . . ,m.

Then it follows from Proposition 3.1 that u and u are, respectively, a subsolution
and a supersolution of (1.1) in (kh, (k + 1)h) × R

N . Since we can verify from (3.12)
that u(kh, x) ≤ u(kh, x) ≤ u(kh, x) on R

N , we have u(t, x) ≤ u(t, x) ≤ u(t, x) on
[kh, (k + 1)h) × R

N by the comparison principle for the heat equation. Thus we
obtain

dH(Γt,Γ
h
t ) ≤ {(1 + L1h)αk + L2}h2 for all t ∈ [kh, (k + 1)h) and k = 0, 1, 2, . . . ,m

by an argument similar to Step 2.
Step 5. We estimate the sequence {αk}1≤k≤m. Since α0 ≥ 0 is arbitrary, we can

take α0 = 0. Then we observe from the definition of αk that

αk = (1 + L1h)αk−1 + L2 = (1 + L1h)2αk−2 + L2 {1 + (1 + L1h)}
= · · ·

= L2

k∑
l=1

(1 + L1h)l−1 ≤ L2
(1 + L1h)m − 1

L1h
.

By the choice of m, we get

αk ≤ L2(e
L1T0 − 1)

L1h
≤ L2T0e

L1T0

h
for k = 0, 1, . . . ,m.

Thus we obtain

sup
t∈[0,T ]

dH(Γt,Γ
h
t ) ≤

{
(1 + L1)L2T0e

L1T0 + L2

}
h

for all h ∈ (0, h0). Therefore the proof is completed.

5. Optimality. This section is devoted to the optimality for the estimate in
Theorem 4.1. For this purpose, we consider a circle evolving by curvature.

Let C0 = {x ∈ R
2 | |x| ≤ 1} and fix a time step h > 0. Let uh be the radially

symmetric solution of (4.1). Then we can easily verify that for any t > 0, Γh
t defined

in (4.2) is a circle centered at the origin, and we denote by Rh(t) the radius of Γh
t .

Put φ(t) =
√

1 − 2t and let Γt = ∂B(0, φ(t)). Take δ ∈ (0, 1/5) and set

Tmax =
1

2
, Tδ =

1

2
− 25δ2

2
, m =

[
Tδ

h

]
,(5.1)

where Tmax is the extinction time for Γt and [s] denotes the Gauss symbol for s ∈ R.
Applying Theorem 4.1, we see that for each δ ∈ (0, 1/5), there exist h2 > 0 and
M1 > 0 such that

sup
t∈[0,Tδ]

|Rh(t) − φ(t)| ≤ M1h for all h ∈ (0, h2).(5.2)
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In the remainder of this section we consider a more precise behavior of Rh as h ↘ 0
than (5.2) and show that the estimate of Theorem 4.1 is optimal. Our main result of
this section is stated as follows.

Theorem 5.1. For each δ ∈ (0, 1/5), there exist h0 > 0 and L > 0 such that

|Rh(t) − (φ(t) − t2φ0
1(t))| ≤ Lt5/2 for t ∈ [t, h],(5.3)

|Rh(t) − (φ(t) − hϕ(t))| ≤ Lh3/2 for t ∈ [h, Tδ](5.4)

for all h ∈ (0, h0). Here φ0
1(t), ϕ(t) are given by

φ0
1(t) =

1

3(φ(t))3
, ϕ(t) = − log φ(t)

3φ(t)
.

This theorem shows that Γh
t moves faster than Γt.

As a corollary of Theorem 5.1, we obtain an estimate of the distance between Γt

and Γh
t .

Corollary 5.2. For each δ ∈ (0, 1/5), there exist h1 ∈ (0, h0), L > 0, and
L > 0 such that

Lt2 ≤ dH(Γt,Γ
h
t ) ≤ Lt2 for t ∈ [0, h],(5.5)

Lth ≤ dH(Γt,Γ
h
t ) ≤ Lth for t ∈ [h, Tδ](5.6)

for all h ∈ (0, h1).
This corollary shows that in the case where {Γt}t≥0 is a motion of a smooth

and compact hypersurface by mean curvature, the linear rate in h is optimal to the
convergence of the BMO algorithm.

We prepare some functions which will be used in the following subsections. For
k = 0, 1, 2, . . . ,m, we define

φk(t) =
√

(Rh(kh))2 − 2t, φk
1(t) =

1

3(φk(t))3
for t ∈ [0, h].(5.7)

Note that φ0 = φ and (φk)′ = −1/φk in (0, h). It is easily seen by (5.2) and these
facts that, for any δ > 0, there exists an h0 > 0 such that

1

3(1 + δ)3
≤ φk

1(t) ≤ 1

3 · (3δ)3 ,
1

(1 + δ)5
≤ (φk

1)′(t) ≤ 1

(3δ)5
(5.8)

for all t ∈ [0, h], k = 0, 1, . . . ,m, and h ∈ (0, h0).

5.1. Short-time asymptotics of Rh. In this subsection, we prove the following
theorem suggested by Proposition 2.3.

Theorem 5.3. There exist h3 > 0 and L1 > 0 such that

|Rh(t + kh) − (φk(t) − t2φk
1(t))| ≤ L1t

5/2

for all t ∈ [0, h), k = 0, 1, . . . ,m, and h ∈ (0, h3).

Proof. Set k = 0 and u = uh for simplicity. Define φ̃(t) = φ(t) − t2φ0
1(t) and

d̃(t, r) = φ̃(t)−r. Let u and u be defined by (3.18) and (3.19), respectively. Let h2 be
given in Proposition 3.2. Since u(0, r) = u(0, r) = u(0, r) on R

1 by (3.20), applying
Proposition 3.2 and the comparison principle for the heat equation, we get

u(t, r) ≤ u(t, r) ≤ u(t, r) in [0, h) × R
1(5.9)
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for all h ∈ (0, h2). Let φ = φ(t) and φ = φ(t) be the zero of u(t, ·) and u(t, ·),
respectively. Then it follows from (5.9) and (5.12) that

φ(t) ≤ Rh(t) ≤ φ(t) for all t ∈ [0, h) and h ∈ (0, h2)(5.10)

for all h ∈ (0, h2).

We estimate φ and φ. At first, it is easily seen by (3.22) that there exists an

h3 ∈ (0, δ2/4 ∧ h2) such that

−t2U4 = u(t, φ̃(t)) < 0 = u(t, φ(t)) < u(t, φ̃(t) − 2t2),(5.11)

ur(t, r) ≤ −U0,ρ(1)

2
√
t

+ Kt ≤ −U0,ρ(1)

4
√
t

< 0(5.12)

for all t ∈ (0, h3) and r ∈ R satisfying |d̃(t, r)| ≤ 2
√
t(≤ δ). Here we have used (3.22)

to derive these estimates. Thus we can observe from (5.11) and (5.12) that

φ̃(t) −Kt5/2 ≤ φ(t) ≤ φ̃(t) for all t ∈ (0, h) and h ∈ (0, h3).(5.13)

We can also show similarly that

φ̃(t) ≤ φ(t) ≤ φ̃(t) + Kt5/2 for all t ∈ (0, h) and h ∈ (0, h3).(5.14)

Combining (5.13), (5.14) with (5.10) and setting L1 = K, we obtain the result for
k = 0.

In the case k ≥ 1, let η be defined by (3.7) and set

d̃k(t, r) = φk(t) − t2φk
1(t) − r, zk(t, r) = η(d̃k(t, r)).

We define uk and uk by (3.18)–(3.20) with replacing d̃, z with d̃k, zk, respectively.
Then we can check that Proposition 3.2 holds for these uk and uk for any h ∈ (0, h2)
and small h2 > 0. Since we can easily verify that the choices of h2 and h3 depend
only on δ ∈ (0, 1/5), we can apply the above argument to obtain the result.

5.2. Derivation of a corrector for Rh. In this subsection we formally calcu-
late Rh(t) − φ(t) and find a corrector for Rh(t) on each time interval [kh, (k + 1)h)
(k ∈ N ∪ {0}). By Theorem 5.3, we see that

|Rh(t) − (φ(t) − t
2
φ0

1(t))| ≤ L1t
5/2

for all t ∈ [0, h] and h ∈ (0, h3).(5.15)

Next we compute Rh(t+ h)− φ(t+ h) for t ∈ [0, h]. Theorem 5.3 yields that |Rh(t+

h) − (φ1(t) − t
2
φ1

1(t))| ≤ L1t
5/2

for all t ∈ [0, h3]. From (5.15) and this estimate, we
have

Rh(t + h) − φ(t + h) ≥ φ1(t) − t
2
φ1

1(t) − φ(t + h) − L1t
5/2

(5.16)

=
√

(Rh(h))2 − 2t−
√

1 − 2(t + h) − t
2
φ1

1(t) + L1t
5/2

≥
√

(φ(h) − h2φ0
1(h) − L1h5/2)2 − 2t−

√
(φ(h))2 − 2t− t

2
φ1

1(t) − L1t
5/2

=: I1 − I2 − t
2
φ1

1(t) − L1t
5/2

.
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We observe by Taylor expansion to I1 and I2 around t = 0 that

I1 − I2 = −h2φ0
1(h) − L1h

5/2 − (h2φ0
1(h) + L1h

5/2)t

φ(h)(φ(h) − h2φ0
1(h) − L1h5/2)

(5.17)

−
∫ t

0

(
(t− s)

{(φ(h) − h2φ0
1(h) − L1h5/2)2 − 2s}3/2

− (t− s)

{(φ(h))
2 − 2s}3/2

)
ds.

It follows from (
1

1 − r

)3

≤ 1 + 8r for all |r| � 1(5.18)

that

1

{(φ(h) − h2φ0
1(h) − L1h5/2)2 − 2s}3/2

≤ 1

{(φ(h))2 − 2s}3/2

(
1 +

8(h2φ0
1(h) + L1h

5/2)(2φ(h) − h2φ0
1(h) − L1h

5/2)

(φ(h))2 − 2s

)

for any s ∈ [0, h] and small h > 0. By using this inequality, we have

I1 − I2 ≥ −h2φ0
1(h) − L1h

5/2 − t(h2φ0
1(h) + L1h

5/2)

φ(h)(φ(h) − h2φ0
1(h) − L1h5/2)

−4t
2
(h2φ0

1(h) + L1h
5/2)(2φ(h) − h2φ0

1(h) − L1h
5/2)

{(φ(h))2 − 2t}5/2
.

In addition, since we also see by (5.18) that

1

φ(h) − h2φ0
1(h) − L1h5/2

≤ 1

φ(h)

(
1 +

8(h2φ0
1(h) + L1h

5/2)

φ(h)

)

for any small h > 0, noting that h2φ0
1(h) + L1h

5/2 > 0 and (φ(h))2 − 2t ≥ (φ(2h))2

on [0, h], we get

I1 − I2 ≥ −h2φ0
1(h) − L1h

5/2(5.19)

− th2

{(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5

)
φ0

1(h) +
8h2(φ0

1(h))2

(φ(h))3

}

− t

{(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5
+

16h2φ0
1(h)

(φ(h))3

)
L1h

5/2 +
8(L1h

5/2)2

(φ(h))3

}
.

Setting

φ1
1 =

(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5

)
φ0

1(h) +
8h2(φ0

1(h))2

(φ(h))3
,

L1 =

(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5
+

16h2φ0
1(h)

(φ(h))3

)
L1h

5/2 +
8(L1h

5/2)2

(φ(h))3
,

we obtain

Rh(t + h) − φ(t + h) ≥ −h2φ0
1(h) − t

2
φ1

1(t) − th2φ1
2 − L1h

5/2 − L1t
5/2 − L1t
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for all t ∈ [0, h] and small h > 0.
To consider the case k = 2, 3, . . . ,m, we define

ψk = ψk
1 + hψk

2 , ψk
1 =

k∑
l=0

φl
1(h), ψk

2 =

k∑
l=0

φl
2, Lk

2 = h

k∑
l=0

Ll(5.20)

(φ0
2 = 0,L0 = 0),

φl
2 =

(
1

(φ(lh))2
+

8hφ(lh)

(φ((l + 1)h))5

)
ψl−1 +

8h2(ψl−1)2

(φ(lh))3
,(5.21)

Ll =

(
1

(φ(lh))2
+

8hφ(lh)

(φ((l + 1)h))5
+

16h2ψl−1

(φ(lh))3

)
(L1lh

5/2 + Ll−1
2 )(5.22)

+
8(L1lh

5/2 + Ll−1
2 )2

(φ(lh))3
.

Assume that for k ≥ 2,

Rh(t + (k − 1)h) − (φ(t + (k − 1)h)

≥ −h2ψk−2 − t
2
φk−1

1 (t) − th2φk−1
2 − L1(k − 1)h5/2 − L1t

5/2 − Lk−2
2 − Lk−1t

for all t ∈ [0, h]. Since by Theorem 5.3 we have |Rh(t+kh)−(φk(t)−t
2
φk

1(t))| ≤ L1t
5/2

for all t ∈ [0, h2], similar calculations to (5.16) yield

Rh(t + kh) − φ(t + kh)

≥
√

(φ(kh) − h2ψk−1 − L1kh5/2 − Lk−1
2 )2 − 2t−

√
(φ(kh))2 − 2t− t

2
φk

1(t) − L1t
5/2

=: I4 − t
2
φk

1(t) − L1t
5/2

.

Replacing h2φ0
1(h) and L1h

5/2 with, respectively, h2ψk−1 and L1kh
5/2 + Lk−1

2 in the
case k = 1, we get

I4 ≥ −h2ψk−1 − t
2
φk

1(t) − th2φk
2 − L1kh

5/2 − L1t
5/2 − Lk−1

2 − Lkt.

Thus we have

Rh(t + kh) − φ(t + kh) ≥ −h2ψk−1 − t
2
φk

1(t) − th2φk
2

− kL1h
5/2 − L1t

5/2 − Lk−1
2 − Lkt

for all t ∈ [0, h] and small h > 0.
Similarly, we can observe that

Rh(t + kh) − φ(t + kh) ≤ −h2ψk−1 − t
2
φk

1(t) − th2φk
2

+L1kh
5/2 + L1t

5/2
+ Lk

2 + Lkt

for all t ∈ [0, h], k ∈ N ∪ {0} and small h > 0. Therefore we obtain

|Rh(t + kh) − {φ(t + kh) − (h2ψk−1 + t
2
φk

1(t) + th2φk
2)}|(5.23)

≤ L1kh
5/2 + L1t

5/2
+ Lk

2 + Lkt

for all t ∈ [0, h], k ∈ N ∪ {0} and small h > 0. This inequality shows that the term

h2ψk−1 + t
2
φk

1(t) + th2φk
2 is a (formal) corrector for Rh(t).
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5.3. Proofs of Theorem 5.1 and Corollary 5.2. This subsection is devoted
to the estimates and the limits of ψk

1 , ψk
2 , Lk

2 , and Lk and the proofs of Theorem 5.1
and Corollary 5.2. Remember that we have taken δ ∈ (0, 1/5) and set Tmax, Tδ, and
m as in (5.1).

Proposition 5.4. Let ϕ1(t) = (1/φ(t) − 1)/3. Then there exist h3 > 0 and
M3 > 0 such that

sup
t∈[0,Tδ]

|ϕ1(t) − hψ
[t/h]
1 | ≤ M3h for all h ∈ (0, h3).

Proof. We remark that ϕ1(t) = 1
3

∫ t

0
1

(φ(s))3 ds. Set k = [t/h]. It is easily seen by

the definition of φk
1 in (5.20) and kh ≤ Tmax that

|ϕ1(t) − hψ
[t/h]
1 | ≤ 1

3

∣∣∣∣∣
∫ kh

0

1

(φ(s))3
ds− h

k∑
l=0

1

(φ(lh))3

∣∣∣∣∣ +
h

3(φ(Tδ))3

+
Tmax

3
max
0≤l≤k

∣∣∣∣ 1

(φ(lh))3
− 1

{(Rh(lh))2 − 2h}3/2

∣∣∣∣ .
Since 1/(φ(t))3 is increasing in t, we easily observe that∣∣∣∣∣

∫ kh

0

1

(φ(s))3
ds− h

k∑
l=0

1

(φ(lh))3

∣∣∣∣∣ ≤
(

1

(φ(Tδ))3
− 1

(φ(0))3

)
h.

Combining (5.2) with this inequality, we have the result.
We obtain the estimates for ψk

2 by the following lemma.
Lemma 5.5. There exist h4 > 0, M4 > 0, and M5 > 0 such that

M4(kh)2 ≤ h2ψk
2 ≤ M5

for k = 0, 1, . . . ,m and h ∈ (0, h4).
Proof. The definition of ψk

1 in (5.20) yields that

0 < ψ1
1 ≤ · · · ≤ ψm

1 .(5.24)

Besides we easily see that

α := sup
0≤l≤m,h>0

max

{
1

(φ(lh))2
,

8φ(lh)

(φ((l + 1)h))5
,

8

(φ(lh))3

}
< +∞.

Thus, for l = 1, 2, . . . ,m, φl
2 satisfies

φl
2 ≤ α{(1 + h)ψl−1 + h2(ψl−1)2}.(5.25)

We estimate φl
2 by using (5.21) and this inequality.

First, for sufficiently small h > 0 we get ψ0
2(h) = φ0

2(h) ≤ 1 and

φ1
2 ≤ α(2 + h).

Fix k = 2, 3, . . . ,m and let l = 2, 3, . . . , k. From the fact m = [Tδ/h] we remark that

(1 + αh(2 + h))l ≤ (1 + αh(2 + h))m ≤ e3αTmax(5.26)
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for l = 2, 3, . . . ,m and h ∈ (0, 1). Taking (5.24) and this estimate into account, we
choose h4 ∈ (0, 1) such that for any h ∈ (0, h4),

h(ψm
1 + hψ1

1) ≤ M5,1, M5,1h ≤ M5,1e
3αTmaxh ≤ 1,(5.27)

where M5,1 = ϕ1(Tδ) + 1.
It follows from (5.21) with l = 2 and (5.25) that

φ2
2 ≤ α{(1 + h)(ψ1

1 + hψ1
2) + h2(ψ1

1 + hψ1
2)2}.

We easily see by (5.27) that h2(ψ1
1 + hψ1

2) ≤ M5,1h ≤ 1. Thus we get

φ2
2 ≤ α(2 + h)(ψ1

1 + hψ1
2).(5.28)

In the case of l = 3, since ψ2 = ψ2
1 + hψ1

2 + hφ2
2, we see by (5.24), (5.25), and (5.28)

that

φ3
2 ≤ α[(1 + h)(1 + αh(2 + h))(ψ2

1 + hψ1
2) + h2{(1 + αh(2 + h))(ψ2

1 + hψ1
2)}2].

Using (5.26) and (5.27), we get

h2(1 + αh(2 + h))(ψ2
1 + hψ1

2) ≤ M5,1e
3αTmaxh ≤ 1.

Therefore we have

φ3
2 ≤ α(2 + h)(1 + αh(2 + h))(ψ2

1 + hψ1
2).(5.29)

As to the case of l = 4, note that ψ3 = ψ3
1 + hψ1

2 + h(φ2
2 + φ3

2). Hence it is observed
by (5.25)–(5.29) and a similar argument that

φ4
2 ≤ α(2 + h)(1 + αh(2 + h))2(ψ3

1 + hψ1
2).

By repeating this procedure, we can show that

φl
2 ≤ α(2 + h)(1 + αh(2 + h))l−2(ψl−1

1 + hψ1
2) for l = 4, . . . , k.

Summing up l = 0 to l = k and using (5.27), we get

h2ψk
2 = h2

k∑
l=0

φl
2 ≤ 3α(1 + M5,1e

3αTmax) for h ∈ (0, h4).

Setting M5 = 3α(1 + M5,1e
3αTmax), we have an upper bound for h2ψk

2 .
As for a lower bound for h2ψk

2 , we observe from the definition of φl
2 in (5.21) and

(5.8) that

φl
2 ≥ ψl

(φ(lh))2
≥ lφ0

1(0)

(φ(0))2
≥ l

3(1 + δ)3
.

Thus, putting M4 = 1/6(1 + δ)3, we obtain h2ψk
2 ≥ M4(kh)2.

We use this lemma to prove the following.
Proposition 5.6. Let ϕ2(t) = − log φ(t)/3φ(t)−ϕ1(t). Then there exist h5 > 0

and M6 > 0 such that

sup
t∈[0,Tδ]

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ M6h for all h ∈ (0, h5).
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Proof. We easily see that ϕ2 is a unique solution of

ϕ2(t) =

∫ t

0

ϕ1(s) + ϕ2(s)

(φ(s))2
ds.

For each t ∈ [0, Tδ], set k = [t/h]. It is easily observed from the definition of ψk
2 in

(5.20) and Lemma 5.5 that

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ (1 + Kh)

{∣∣∣∣∣
∫ t

0

ϕ1(s)

(φ(s))2
ds− h

k∑
l=0

hψl
1

(φ(lh))2

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

ϕ2(s)

(φ(s))2
ds− h

k∑
l=0

h2ψl
2

(φ(lh))2

∣∣∣∣∣
}

+ Kh

=: (1 + Kh)(I1 + I2) + Kh.

Since 1/(φ(t))2 (resp., ψk) is increasing with respect to t (resp., k), we have

∫ (l+1)h

lh

hψ
[s/h]
1

(φ(s))2
ds ≤ h2ψl+1

1

(φ((l + 1)h))2
.

Using Proposition 5.4 and this inequality, we calculate

I1 =

∣∣∣∣∣
∫ kh

0

ϕ1(s) − hψ
[s/h]
1 + hψ

[s/h]
1

(φ(s))2
ds− h

k∑
l=0

hψl
1

(φ(lh))2
+

∫ t

kh

ϕ1(s)

(φ(s))2
ds

∣∣∣∣∣
≤ Kh

∫ kh

0

ds

(φ(s))2
+ h

∣∣∣∣∣
k∑

l=0

hψl+1
1

(φ((l + 1)h))2
−

k∑
l=0

hψl
1

(φ(lh))2

∣∣∣∣∣ + Kh

≤ Kh.

Similarly we can show that

I2 ≤
∫ t

0

|ϕ2(s) − h2ψ
[s/h]
2 |

(φ(s))2
ds + Kh.

Therefore we obtain

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ Kh + (1 + Kh)

∫ t

0

|ϕ2(s) − h2ψ
[s/h]
2 |

(φ(s))2
ds.

We apply the Gronwall inequality to get

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ Kh exp

(
(1 + Kh)

∫ Tδ

0

ds

(φ(s))2

)

for all t ∈ [0, Tδ] and small h > 0. Thus we have the result.
Finally we obtain the bounds for Lk and Lk

2 .
Proposition 5.7. There exist h6 > 0 and M7 > 0 such that

Lk ≤ M7(kh)h3/2, Lk
2 ≤ M7(kh)2h3/2

for all k = 1, 2, . . . ,m and h ∈ (0, h6).
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Proof. The proof is similar to that of Lemma 5.5.
It follows from (5.2) and Proposition 5.4 that

α := sup
0≤l≤m,h>0

max

{
1

(φ(lh))2
,

8φ(lh)

(φ((l + 1)h)5
,

16hψl

(φ(lh))3
,

8

(φ(lh))3

}
< +∞.

Thus, for l = 1, 2, . . . ,m, Ll satisfies

Ll ≤ α{(1 + h)(L1lh
5/2 + Ll−1

2 ) + (L1lh
5/2 + Ll−1

2 )2}.(5.30)

We estimate Ll by using (5.22) and this inequality.
First, for sufficiently small h ∈ (0, 1), we have

L1 ≤ α(2 + h)L1h
5/2 ≤ M7,1h

5/2, M7,1 = 3αL1.

Fix k = 2, 3, . . . ,m and let l = 2, 3, . . . , k. In view of

(1 + αh(2 + h))l ≤ (1 + αh(2 + h))m ≤ e3αTmax(5.31)

for l = 2, 3, . . . ,m and h ∈ (0, 1), we can choose h6 ∈ (0, 1) such that for any h ∈
(0, h6),

e3αTmax(TmaxL1 + M7,1h)h3/2 ≤ 1.(5.32)

It is easily seen from (5.20) that L1
2 = hL1 ≤ M7,1h

7/2. Thus we get, by (5.30),

L2 ≤ α{(1 + h)(2L1h
5/2 + M7,1h

7/2) + (2L1h
5/2 + M7,1h

7/2)2}.(5.33)

We easily observe by (5.32) that 2L1h
5/2 + M7,1h

7/2 ≤ 1. Hence we have

L2 ≤ α(2 + h)(2L1h
5/2 + M7,1h

7/2) ≤ 3α(L1 + M7,1h)(2h)h3/2.(5.34)

In the case of l = 3, since L2
2 = h(L1 + L2), we see by (5.30) that

L3 ≤ α[(1 + h)(1 + αh(2 + h))(3L1h
5/2 + M7,1h

7/2)

+{(1 + αh(2 + h))(3L1h
5/2 + M7,1h

7/2)}2].

Using (5.31) and (5.32), we obtain

(1 + αh(2 + h))(3L1h
5/2 + M7,1h

7/2) ≤ e3αTmax(Tmax + 1)L1h
3/2 ≤ 1.

Thus we get

L3 ≤ α(2+h)(1+αh(2+h))(3L1h
5/2 +M7,1h

7/2) ≤ 3αe3αTmax(L1 +M7,1h)(3h)h3/2.

We repeat the above arguments to obtain

Ll ≤ α(2 + h)(1 + αh(2 + h))l−2(L1lh
5/2 + M7,1h

7/2) ≤ M7(lh)h3/2(5.35)

for M7 = 3αe3αTmax(L1 + M7,1). From this estimate, we get

Lk
2 = h

k∑
l=1

Ll ≤ M7(kh)2h3/2

for all k = 0, 1, . . . ,m and h ∈ (0, h5).
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We observe from Propositions 5.4–5.7 that

0 ≤ h2ψk−1 + t
2
φk

1(t) + th2φk
2 ≤ Kh, 0 ≤ L1kh

5/2 + L1t
5/2

+ Lk
2 + Lkt ≤ Kh3/2

for all t ∈ [0, h), k = 0, 1, . . . ,m. Thus (5.23) rigorously holds for sufficiently small
h > 0.

Proof of Theorem 5.1. In the case k = 0, (5.3) is obtained by Theorem 5.3. Thus
we assume k ≥ 1 and prove (5.4).

Noting that ϕ = ϕ1 + ϕ2, in view of Propositions 5.4–5.7, we can find an h0 > 0
so small that

|Rh(t) − (φ(t) − hϕ(t))| ≤ Kh2 + Kh3/2 ≤ Lh3/2(5.36)

for some large L > 0 and all t ∈ [0, Tδ] and h ∈ (0, h0).
Proof of Corollary 5.2. In the case k = 0, we have (5.5) by (5.3). Thus we may

assume k ≥ 1 and kh ≤ t < (k + 1)h. Let h0 > 0 be given in Theorem 5.1.
Using (5.8), (5.23), Lemma 5.5, and Proposition 5.7, we have

Rh(t) − φ(t) ≤ −kKh2 −M4(kh)2h−K(t− kh)2

+kL1h
5/2 + L1(t− kh)5/2 + M7(kh)2h3/2 + M7(t− kh)(kh)h3/2

≤ −(K − L1h
1/2)(kh2 + (t− kh)2) − (M4 − 2M7h

1/2)(kh)2h

≤ −(K − L1h
1/2)(kh2 + (t− kh)2)

for any h ∈ (0, h0) satisfying M4 ≥ 2M7h
1/2. Take h1 ∈ (0, h0) such that 2M7h

1/2 ≤
M4 and Lh1/2 ≤ K/2. Since we get, from kh ≥ t− h,

kh2 + (t− kh)2 ≥ 1

2
kh2 +

1

2
kh2 ≥ 1

2
(t− h)h +

1

2
kh2 ≥ 1

2
th,

setting L = K/4, we obtain

Rh(t) − φ(t) ≤ −Lth.

Similarly we can show that

Rh(t) − φ(t) ≥ −Lth for all t ∈ [h, Tδ] and h ∈ (0, h1)

for some L > 0. From these two estimates, we have (5.6).

6. Appendix. We give the proof of Lemma 2.2.
Proof of Lemma 2.2. Put r̃ = vt. Then it follows from Evans [5, Theorem 4.1]

that |v− (N −1)/R| ≤ Kt1/2 for any small t > 0. Hence we estimate v as t ↘ 0 more
precisely. In the following we always assume that t > 0 is sufficiently small.

To simplify our consideration, we treat the following problem instead of (2.1):⎧⎨
⎩

ut − Δu = 0 in (0,+∞) × R
N ,

u(0, x) =

{
1, x ∈ B(z0, R),

0, x ∈ R
N\B(z0, R),

(6.1)

where z0 = (0, . . . , 0, R) ∈ R
N . We note that, in this setting, Ch

t = {x ∈ R
N | u(t, x) ≥

1/2}. Then the solution u of (6.1) can be represented as

u(t, x) =
1

(4πt)N/2

∫
B(z0,R)

e−|y−x|2/4tdy.
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Set x0 = (0, . . . , 0, vt) with v ≥ 0 and assume that u(t, x0) = 1/2. Then

1

2
=

1

(4πt)N/2

∫
B(z0,R)

e−(|y′|2+|yN−vt|2)/4tdy.

Since the lower hemisphere of ∂B(z0, R) can be written as

yN = R−
√
R2 − |y′|2 (y = (y′, yN ) ∈ ∂B(z0, R), y′ ∈ B′(0, R)),

where B′(0, R) = {x′ ∈ R
N−1 | |x′| < R}, we observe that

1

2
=

1

(4πt)N/2

∫
B′(0,R)

e−|y′|2/4t
∫ +∞

R−
√

R2−|y′|2
e−|yN−vt|2/4tdyNdy′ + O(e−K/t).

Changing the variable by setting z′ = y′/2
√
t, zN = (yN − vt)/2

√
t, we compute that

1

2
=

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
{∫ +∞

0

−
∫ √

t(g(t,z′)−v/2)

0

}
e−|zN |2dzNdz′ + O(e−K/t).

Here g(t, z′) is defined by

g(t, z′) =
1

2t
(R−

√
R2 − 4t|z′|2) =

|z′|2
R

+
t|z′|4
R3

+ O

(
t2|z′|6
R5

)
.(6.2)

Since

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
∫ +∞

0

e−|zN |2dzNdz′ =
1

2
−O(e−K/t),

we deduce that

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
∫ √

t(g(t,z′)−v/2)

0

e−|zN |2dzNdz′ = O(e−K/t).

Using Taylor expansion to the function
∫ s

0
e−|zN |2dzN around s = 0, we can observe

that

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
{

(2g(t, z′) − v) − t

12
(2g(t, z′) − v)3

}
= O(t2).(6.3)

By the way, lengthy calculations yield that

∫
B′(0,R/2

√
t)

e−|z′|2 |z′|2kdz′ = π(N−1)/2
k∏

l=1

N + 2l − 3

2
−O(e−K/t).(6.4)

We use this estimate to compute the left-hand side of (6.3). Combining (6.2) with
(6.4) with k = 1, 2, we get

1

π(N−1)/2

∫
B′(0,R/2

√
t)

e−|z′|2(2g(t, z′) − v)dz′ =
N − 1

R
+

(N2 − 1)t

2R3
− v + O(e−K/t).

We note that

(2g(t, z′) − v)3 =
8|z′|6
R3

− 12v|z′|4
R2

+
6v2|z′|2

R
− v3 + tP (t, |z′|),
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where tP (t, |z′|) is the remainder term satisfying∫
RN−1

e−|z′|2P (t, |z′|)dz′ = O(1).

We use (6.4) with k = 0, 1, 2, 3 and this estimate to obtain

t

12π(N−1)/2

∫
B′(0,R/2

√
t)

e−|z′|2(2g(t, z′) − v)3dz′

=
(N + 3)(N2 − 1)t

12R3
− (N2 − 1)t

4R2
v +

(N − 1)t

4R
v2 − t

12
v3 + O(t2).

Therefore we obtain the following:

N − 1

R
− (N2 − 1)(N − 3)t

12R3
− v +

(N2 − 1)t

4R2
v − (N − 1)t

4R
v2 +

t

12
v3 = O(t2).

Let G(v) be the left-hand side of this estimate. We find a root v∗ of G(v) = 0
near v0 = (N − 1)/R and consider v∗ − v0. We easily see that

G (v0 + s) =
(N − 1)(3N − 1)t

6R3
−
(

1 − (N − 1)t

2R2

)
s +

t

12
s3.(6.5)

Set

v1 = v1(t) :=
(N − 1)(3N − 1)t

6R3 − 3R(N − 1)t
.

It is observed by (6.5) that

G(v0 + 2v1) < 0 < G(v0 + v1) ≤ Kt4, −1 ≤ dG

dv
(v0 + s) ≤ −1

2
for s ∈ [0, 2v1).

Hence there exists a root v∗ of G(v) = 0 satisfying 0 < v∗ − (v0 + v1) ≤ Kt4. Thus
we conclude that ∣∣∣∣v∗ −

(
v0 +

(N − 1)(3N − 1)t

6R3

)∣∣∣∣ ≤ Kt2.

In the case of G(v) = O(t2), we can obtain the result of Lemma 2.2 by slightly
modifying the above argument.
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SYMBOLS∗

W. KOZEK† AND G. E. PFANDER‡

Abstract. Underspread and overspread operators are Hilbert–Schmidt operators with strictly
bandlimited Kohn–Nirenberg symbols. In this paper, we prove a classical conjecture concerning the
necessity of the underspread condition for the identifiability of such operator classes, and, in doing
so, we exhibit a new uncertainty principle phenomenon in the time-frequency analysis of operators.
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1. Introduction. Identification of incompletely known linear operators based
on the observation of a restricted number of input and corresponding output signals
is an important goal in many applied sciences. In communications engineering, for
instance, identifying the transmission channel can help to adjust signal synthesis at
the transmitter and signal analysis at the receiver. This is possible in wired commu-
nications, since a linear time-invariant system is a convolution operator and—leaving
numerical instability of deconvolution aside—is completely determined by its action
on a single function.

Underspread and overspread operators on the other hand are time-varying Hilbert–
Schmidt operators. They act on a space of d-dimensional signals, but the corre-
sponding kernels of time-varying operators are essentially 2d-dimensional so that a
single observation of its action cannot uniquely determine the operator unless one
has additional a priori knowledge of the operator class at hand in the form of certain
constraints.

Hilbert–Schmidt operators can be represented as a weighted superposition of trans-
lation operators Tt, t ∈ R, with Ttf(x) = f(x− t), x ∈ R

d, and modulation operators

Mν , ν ∈ R̂, with Mνf(x) = f(x)e2πiν·x, x ∈ R
d, i.e., as an operator valued integral

H =

∫ ∫
ηH(t, ν)TtMν dt dν .(1.1)

Underspread and overspread operators are characterized by the property that the sup-
port of their spreading function ηH in (1.1) is contained in a rectangular parallelepiped.
Such an operator is called underspread if the volume of the rectangular parallelepiped
does not exceed one, and it is overspread otherwise, conditions which are intimately
related to uncertainty phenomena in time-frequency analysis. The Kohn–Nirenberg
symbol of a Hilbert–Schmidt operator is the symplectic Fourier transformation of the
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respective spreading function, and, consequently, it is bandlimited in the case of an
underspread or overspread operator.

The identification of underspread and overspread operators is important in var-
ious areas of electrical engineering and applied mathematics, including radar/sonar
measurements and mobile radio communications, which we now briefly describe.

The principle of radar/sonar measurements is to send out a signal modulated onto
an electromagnetic/acoustic wave and to deduce information about a (generally) mov-
ing target from an echo of the signal [Sko80]. In simple range-Doppler estimation the
target is modeled as a pure time-frequency shift and distance (“range”) and velocity
(“Doppler-shift”) are estimated. A more precise model of the physical phenomenon
is the doubly spread target model. Here, the reflection is described as a continuous
superposition of time-frequency shifts which arise since the target causes different
reflections whose distance and velocity vary over a certain interval of the real-line.
Unambiguous identification of the target was realized to depend on the product of
the range and Doppler uncertainty, a fact that led to the terminology of underspread
and overspread targets [Gre68]. Qualitatively speaking, overspread targets are those
where the inherent uncertainty of the model is larger than the amount of information
gathered by observing the reflected signal [VT71].

In mobile radio communication, the transmitted signal typically undergoes multi-
ple reflections with different time-delay (corresponding to translation operators) and
Doppler-shift (corresponding to modulation operators). The action of such channels
on the signal can be modeled by underspread and overspread operators [VT71]. In
order to obtain reliable communication, it is necessary to gather knowledge about
channels by means of observations of transmitted and received signals to identify the
channel operator (channel sounding) [MMH+02, MGO03, LKS03].

Starting in the late 1950s, Thomas Kailath analyzed the identifiability of operators
with restricted time and frequency spread [Kai59, Kai62, Kai63]. In engineering terms
and without detailing a mathematical setup, Kailath proclaimed that a collection of
communication channels which are characterized by having common maximum delay a
and common maximum Doppler spread b would be identifiable by a single input signal
if and only if ab ≤ 1, i.e., if and only if the operator class is underspread. To prove
the necessity of the underspread condition, Kailath provided ingenious arguments
based on the comparison of the degrees of freedom of operators (which approximate
underspread operators) and degrees of freedom of the output signal. To compare finite
dimensions, Kailath used the theoretical construct of a bandlimited input signal with
finite duration.

Being aware of the mathematical shortcomings of his approach, and understand-
ing the work of Slepian, Landau, and Pollak on “the dimensions of the space of es-
sentially time- and bandlimited functions” [SP61, LP61, LP62], Kailath conjectured
that the underspread condition ab ≤ 1 is necessary in general [Kai62].

We shall prove Kailath’s conjecture in section 3 of this paper using the mathe-
matical framework which is described in section 2. In section 4, we shall describe
connections between the critical density in Gabor theory and the critical spread ab = 1
in the theory of operators with bandlimited symbols. We prove an identification result
for Gabor frame operators in section 4.1 and relate this result and Kailath’s conjecture
to uncertainty principles in time-frequency analysis in section 4.2.

In section 5, we shall extend our identifiability result to higher dimensions and
include classes of operators which have restricted but not necessarily rectangular
spreading support. These results are based on the representation theory of the re-
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Fig. 2.1. The goal of operator identification: Find f ∈ X such that Φf : H −→ Y is bounded
and stable.

duced Weyl–Heisenberg group, a fact which indicates close connections of our results
to quantum mechanics.

2. Preliminaries. The goal of operator/system identification is to locate, for
given normed linear spaces X and Y and a normed linear space of bounded linear
operators H ⊂ L(X,Y ), an element f ∈ X which induces a bounded and stable linear
map Φf : H −→ Y, H �→ Hf (see Figure 2.1). Consequently, we call H identifiable
by f ∈ X if there exist A,B > 0 with A ‖H‖H ≤ ‖Hf‖Y ≤ B ‖H‖H for all H ∈ H.

In sections 2.1 and 2.2, we shall describe the operator spaces H, the domain spaces
X, and the target spaces Y that are considered in this paper. In section 2.3, we shall
present some techniques from Gabor analysis which will be used in this paper.

2.1. Hilbert–Schmidt operators with bandlimited symbols. We shall use
Hilbert–Schmidt operators which act on the Hilbert space L2(Rd) of complex valued
and square integrable functions as a model of physical time-varying linear systems, as
they appear in radar and in mobile communications [FL96, Yoo02, Str05].

A Hilbert–Schmidt operator H : L2(Rd) −→ L2(Rd) is given by

Hf(x) =

∫
κH(x, t)f(t) dt =

∫
κH(x, x− t)f(x− t) dt (a.e.),

with kernel κH ∈ L2(R2d). The space of Hilbert–Schmidt operators HS(L2(Rd)) is
itself a Hilbert space with inner product 〈H1, H2〉HS = 〈κH1 , κH2〉L2 [Die70, Gaa73].

Underspread and overspread operators are Hilbert–Schmidt operators which sat-
isfy two constraints: First, they have restricted delay; i.e., κH(x, x − t) vanishes
for large |t|, say, for |t| > a

2 > 0. Consequently, if f satisfies supp f ⊆ [0, T ], then
suppHf ⊆ [−a

2 , T+a
2 ]. Second, underspread and overspread operators have the prop-

erty that they are almost time-invariant, i.e., that their characteristics change only
slowly over time. A comparison to the time-invariant convolution operators K given
by Kf(x) =

∫
κK(t)f(x− t) dt—whose kernel κK is independent of the time variable

x—leads us to quantify the slow variance of an operator H by means of a Paley–
Wiener-type support condition on its spreading function which is given by

ηH(t, ν) =

∫
κH(x, x− t)e−2πiνx dx (a.e.).
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In fact, underspread and overspread operators have the property that ηH(t, ν) vanishes
for large |ν|, say, for |ν| > b

2 > 0.
Combining the aforementioned time and frequency spread conditions on H leads

to the condition

supp ηH ⊆ Qa,b =

[
− a

2
,
a

2

]d
×
[
− b

2
,
b

2

]d
(2.1)

for some a, b > 0. An operator which satisfies (2.1) for a, b > 0 is called underspread
if ab ≤ 1 and overspread if ab > 1.

The spreading function ηH of a Hilbert–Schmidt operator H leads to a representa-
tion of H as an operator valued integral by means of (1.1). Here and in the following,
operator valued integrals shall be interpreted weakly, i.e.,

∫
H(z)dzf , f ∈ L2(R), is

given by means of〈∫
H(z)dzf, g

〉
L2(Rd)

=

∫
〈H(z)f, g〉L2(Rd) dz for all g ∈ L2(Rd).

Equation (1.1) illustrates that support restrictions on ηH reflect limitations on the
maximal time and frequency shifts which the input signals undergo, a fact which
emphasizes the usefulness of ηH in the time-frequency analysis of operators.

Note that condition (2.1) on a Hilbert–Schmidt operator H is a band-limitation
on its Kohn–Nirenberg symbol σH which is given by

σH(x, ξ) =

∫
κH(x, x− y) e−2πiyξ dy =

∫ ∫
ηH(t, ν)e2πi(xν−tξ) dt dν (a.e.)(2.2)

[KN65, Fol89].
To prove that a class of Hilbert–Schmidt operators whose spreading functions

satisfy (2.1) for fixed a, b > 0 with ab ≤ 1 is identifiable necessitates the use of
Shah distributions (also called combfunctions or delta trains) ⊥⊥⊥a =

∑
n∈Zd δan,

a > 0 as identifiers (see section 2.2). Since not all Hilbert–Schmidt operators in
L(L2(Rd), L2(Rd)) can be extended to a space of distributions containing the Shah
distribution, we need to restrict ourselves to operators which satisfy a regularity con-
dition on their kernels. Here, we choose Hilbert–Schmidt operators with kernels in
the Feichtinger algebra S0(R

2d), a Banach algebra of test functions which is discussed
in detail in section 2.2. In fact, if κH ∈ S0(R

2d), then the Hilbert–Schmidt operator
H extends to S′

0(R
d) with ⊥⊥⊥a ∈ S′

0(R
d) [FZ98]. We set

H =
{
H ∈ HS(L2(Rd)) : κH ∈ S0(R

2d)
}
,(2.3)

and, as discussed above, we consider operator classes with restricted spreading; i.e.,
we consider operator classes of the form

HM = {H ∈ H : supp ηH ⊆ M} , M ⊂ R
d×R̂

d.(2.4)

Note that H and HM , M ⊂ R
d×R̂

d, are not closed as linear subspaces of the space
of Hilbert–Schmidt operators, and that HM ⊆ HM ′ if M ⊆ M ′.

2.2. The Feichtinger algebra. Introduced in [Fei81], Feichtinger’s Banach al-
gebra S0(R

d) of test functions gained popularity in the growing field of Gabor analysis,
which is discussed in section 2.3. The usefulness of S0(R

d) stems from the fact that
it is the smallest Banach space allowing a meaningful time-frequency analysis, which,
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as a consequence, extends to its respectively large dual Banach space S′
0(R

d). In fact,

the L2-Fourier transform, the modulation operators Mν , ν ∈ R̂
d, and the translation

operators Tt, t ∈ R
d, which are all unitary on the Hilbert space L2(Rd), are isometric

isomorphisms on the Feichtinger algebra S0(R
d) and, therefore, on its dual S′

0(R
d).

The Feichtinger algebra S0(R
d) can be continuously embedded in any Banach space

with these properties and which contains at least one, and therefore all, nontrivial
Schwartz function [FZ98].

Note that we chose to work with the Banach spaces S0(R
d) and S′

0(R
d) rather

than with the Fréchet space of Schwartz functions S(Rd) ⊂ S0(R
d) and its dual

S ′(Rd) ⊃ S′
0(R

d) of tempered distributions for the convenience of expressing conti-
nuity (boundedness) and openness (stability) of linear operators by means of norm
inequalities. We would like to point out that the results in this paper are consequences
of the structure of the identification problem at hand and not of topological subtleties.

There exist various ways of defining S0(R
d), and equally many different equivalent

norms for S0(R
d). Here, we shall give a definition based on the space of Lebesgue mea-

surable and integrable functions L1(Rd), the space of Fourier transforms of functions
in L1(Rd), which is denoted by A(Rd) and which is equipped with the Banach-space

structure of L1(Rd) by means of ‖f̂‖A = ‖f‖L1 [Kat76], and the space of absolutely
summable sequences l1(Zd).

The Feichtinger algebra S0(R
d) coincides with the Wiener amalgam space W (A(Rd),

l1(Zd)). Consequently, we have f ∈ S0(R
d) if and only if f is locally in A(Rd) with

global decay of l1-type; i.e., given any compactly supported ψ ∈ A(Rd) with∑
n∈Zd Tnψ = 1 we have f ∈ S0(R

d) if and only if
∑

n∈Zd ‖f · Tnψ‖A < ∞, and

‖f‖S0
=
∑
n∈Zd

‖f · Tnψ‖A

is a norm on S0(R
d). Moreover, S0(R

d) is a Banach algebra under convolution and
pointwise multiplication.

The dual space S′
0(R

d) of the Feichtinger algebra satisfies S′
0(R

d) = W (A′(Rd),
l∞(Zd)) since the class of compactly supported functions in A(Rd) is dense in A(Rd)
[FG85]. Hence, S′

0(R
d) contains Dirac’s delta δ : f �→ f(0) and Shah distributions

⊥⊥⊥a =
∑

n∈Zd δan, where δna = Tnaδ and a > 0. We set ⊥⊥⊥ = ⊥⊥⊥1.

2.3. Gabor analysis. Most techniques applied in this paper originate from Ga-
bor analysis.

Gabor introduced the concept of coherent states to electrical engineering inde-
pendently of quantum theory [Gab46, Grö01]. Hence, we shall simply call the family

(g, a, b) = {MkbTlag}k,l∈Zd

of coherent states a Gabor system.

One of the basic results of Gabor analysis is the fact that there exists g ∈ L2(Rd)
such that (g, a, b) is an orthonormal basis for L2(Rd) if and only if ab = 1. For
example, the Gabor system (1[0,a), a, b) is an orthonormal basis for L2(Rd), where
1A(x) = 1 for x ∈ A and 1A(x) = 0 else.

If ab > 1, the system (g, a, b) is not complete. However, if ab > 1, then there
exists g ∈ L2(R) such that the (g, a, b)-synthesis map Dg : l2(Z2) −→ L2(R), {ck,l} �→∑

ck,lMkbTlag is well-defined, bounded, and stable; i.e., (g, a, b) is a Riesz basis for
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its closed linear span, span(g, a, b), in L2(Rd); hence, there exist A,B > 0 such that

A‖{ck,l}‖l2 ≤ ‖
∑

k,l∈Zd

ck,lMkbTlag‖L2 ≤ B‖{ck,l}‖l2 for all {ck,l} ∈ l2(Z2d).(2.5)

For ab < 1, the system (g, a, b), g ∈ L2(R), is overcomplete; i.e., there exists
a nontrivial coefficient sequence {ck,l} ∈ l2(Z2d) \ {0} such that

∑
ck,lMkbTlag = 0

in L2(Rd). Nevertheless, for an appropriate choice of g, e.g., g being a Gaussian,
the (g, a, b)-analysis operator Cg = D∗

g : L2(R) −→ l2(Z2), f �→ {〈f,MkbTlag〉} is

well-defined, bounded, and stable; i.e., (g, a, b) forms a frame for L2(Rd); hence, there
exist A,B > 0 such that

A‖f‖2
L2 ≤

∑
|〈f,MkbTlag〉|2 ≤ B‖f‖2

L2 for all f ∈ L2(Rd) .(2.6)

As a consequence of (2.6), every f ∈ L2(Rd) has a stable representation

f =
∑
k

∑
l

ck,lMkbTlag in L2(Rd)

in terms of the frame (g, a, b), where the coefficients {ck,l} ∈ l2(Z2) can be chosen by
means of inner products, i.e., ck,l = 〈f,MkbTlaγ〉, where (γ, a, b) is a so-called dual
frame of (g, a, b).

More details on time-frequency analysis with some relevance to this paper can be
found in [Grö01].

Operator-theoretic applications of Gabor theory as presented in this paper have
drawn increasing interest in applied harmonic analysis; see, for example, [Dau88,
HRT97, FK98, Koz98, RT98, Lab01, FN03, CG03, Hei03, GLM04].

3. Identification of underspread and overspread operators. We shall first
prove Kailath’s conjecture for operators acting on functions defined on the real-
line, i.e., we choose d = 1. The identification problem is given by the operator
space HQa,b

, a, b > 0, which is defined in (2.3) and (2.4), where M = Qa,b =

[−a
2 ,

a
2 ]×[− b

2 ,
b
2 ]. The linear space HQa,b

is equipped with the Hilbert–Schmidt norm
and its elements map X = S′

0(R) to Y = L2(R) [FK98].

The Lebesgue measure a·b of the set Qa,b plays a crucial role in determining the
identifiability of HQa,b

. The main result of our paper is the following.

Theorem 3.1. The set HQa,b
is identifiable; i.e., there is f ∈ S′

0(R) such that
Φf : HQa,b

−→ L2(R) is bounded and stable, where HQa,b
is equipped with the Hilbert–

Schmidt norm if and only if ab ≤ 1.

First, we shall give a proof of the long-understood identifiability of HQa,b
for

ab ≤ 1.

3.1. Sufficiency of ab ≤ 1 for the identifiability of HQa,b
. Our proof

of the sufficiency of the underspread condition is based on the unitarity of the Zak
transformations Zc : L2(R) −→ L2(Qc, 1c

), c > 0, which are defined by

Zcf(t, ν) = c
1
2

∑
n∈Z

f(t− cn)e2πicnν (for almost every) (t, ν) ∈ Qc, 1c

and the following lemma.
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Lemma 3.2. For H ∈ H we have

Zc ◦H⊥⊥⊥c(t, ν) = c−
1
2

∑
n∈Z

∑
m∈Z

ηH(t− cn, ν − m
c )e2πi(ν−m

c )t, (t, ν) ∈ Qc, 1c
.

Proof. For x ∈ R we have H⊥⊥⊥c(x) = 〈⊥⊥⊥c, κH(x, ·)〉 =
∑

k∈Z
κH(x, ck). Using

in succession the Tonelli–Fubini theorem, the formula

κH(x, y) =

∫
ηH(x− y, ν)e2πiνx dν, (x, y) ∈ R

2,

two substitutions, and the Poisson summation formula [Grö01, p. 250], we obtain for
(t, ν) ∈ Qc, 1c

that

Zc ◦H⊥⊥⊥c(t, ν) = c
1
2

∑
l∈Z

∑
k∈Z

κH(t− cl, ck)e2πiclν

= c
1
2

∑
l∈Z

∑
k∈Z

∫
ηH(t− cl − ck, ω)e2πi(clν+ω(t−cl)) dω

ξ=ν+ω
n=k+l

= c
1
2

∑
n∈Z

∑
m∈Z

∫
ηH(t− cn, ξ + ν)e2πi(ξ+ν)te−2πiclξ dξ

= c−
1
2

∑
n∈Z

∑
m∈Z

ηH(t− cn, ν − m
c )e2πi(ν−m

c )t.

A standard periodization argument leads to the sufficiency of ab ≤ 1 for the
identifiability of HQa,b

. In fact, the following theorem shows that for f = ⊥⊥⊥a ∈
S′

0(R) we have Φf : HQa,b
−→ L2(R), where HQa,b

is equipped with the Hilbert–
Schmidt norm, is bounded, and is stable whenever ab ≤ 1.

Theorem 3.3. The operator family HM = {H ∈ H : supp ηH ⊆ M} can be
identified with the identifier ⊥⊥⊥c if and only if the interior M◦ of M satisfies

M◦ ∩
⋃

(m,n)∈Z2\{(0,0)}

(
M◦+(cn, m

c )
)

= ∅,(3.1)

i.e., if and only if M◦ is contained in a fundamental domain of the lattice cZ × 1
cZ.

In particular, HQa,b
, a, b > 0, is identifiable with ⊥⊥⊥c if and only if a ≤ c and ab ≤ 1.

Note that Theorem 3.3 classifies all sets M with the property that HM can be
identified using the tempered distribution ⊥⊥⊥c, c > 0. No result regarding the neces-
sity of the underspread condition ab ≤ 1 for the identifiability of HQa,b

by any other
f ∈ S′

0(R) has been obtained.

Figure 3.1 is a picture proof of Theorem 3.3 for M = Qc, 1c
, c > 0. Details in the

case c = 1 are given below.

Proof of Theorem 3.3. For ease of notation, we shall only provide a proof of
Theorem 3.3 for c = 1. The general case follows from Theorem 5.4.

First, we show that if (3.1) holds, then ⊥⊥⊥ identifies HM . Set Q = Q1,1 and let
Am,n = M◦ ∩

(
Q+(m,n)

)
and Bm,n = Am,n−(m,n) ⊆ Q. Then Bm,n ∩ Bm′,n′ = ∅

for (m,n) �= (m′, n′), since else M◦ ∩
(
M◦ + (m − m′, n − n′)

)
�= ∅. Further, the

spreading function ηH of each H ∈ HM is continuous, and, therefore, ηH(t, ν) = 0
for all (t, ν) /∈

⋃
m,n Am,n. We conclude that {(t, ν) ∈ Q : Z ◦ H⊥⊥⊥(t, ν) �= 0} ⊆
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Fig. 3.1. Sketch of the proof of the identifiability of HQ
c, 1

c

, c > 0, using as identifier ⊥⊥⊥c.

The Zak transform Zc is unitary and, therefore, bounded and stable, and Zc ◦ Φ⊥⊥⊥c maps HQ
c, 1

c

into L2(Qc, 1
c
) and is bounded and stable as well. We conclude that Φ⊥⊥⊥c is bounded and stable

on HQ
c, 1

c

, i.e., ⊥⊥⊥c identifies HQ
c, 1

c

.

⋃
m,n Bm,n ⊆ Q. For H ∈ HM we calculate

‖H‖HS = ‖ηH‖
L2(R×R̂)

=
∑
m,n

‖ηH‖L2(Am,n) =
∑
m,n

‖T(−m,−n)ηH‖L2(Bm,n)

=
∑
m,n

‖Z ◦H⊥⊥⊥‖L2(Bm,n) = ‖Z ◦H⊥⊥⊥‖L2(Q) = ‖H⊥⊥⊥‖L2(R)

= ‖Φ⊥⊥⊥H‖L2(R) ;(3.2)

and, by definition, HM allows identification with identifier ⊥⊥⊥.
Let us now assume that M◦ ∩

⋃
(m,n) 	=0 M

◦+(m,n) �= ∅ and show that HM is

not identifiable. In this case, there exists (t0, ν0) ∈ M◦ ∩
⋃

(m,n) 	=0

(
M◦+(m,n)

)
,

1
2 > ε > 0, and (n0,m0) ∈ Z

2d with Bε(t0, ν0) ⊂ M◦ ∩
(
M◦+(n0,m0)

)
, where

Bε(t0, ν0) = {(t, ν) : ‖(t, ν) − (t0, ν0)‖∞ < ε}. Hence Bε(t0 − n0, ν0 − m0) ⊂ M◦.
Choose 0 �= η̃ ∈ A(R2d) ⊂ S0(R

2d) with supp η̃ ⊂ Bε(t0, ν0), and define H ∈ HM by

means of η(t, ν) = η̃(t, ν) − η̃(t + n0, ν + m0)e
2πitm0 �≡ 0, (t, ν) ∈ R×R̂. We obtain

Z◦H⊥⊥⊥(t, ν) =
∑

m,n∈Z

η(t−n, ν−m)e2πi(ν−m)t

=
∑

m,n∈Z

(
η̃(t−n, ν−m) − η̃(t−n+n0, ν−m+m0)e

2πi(t−n)m0

)
e2πi(ν−m)t

=
( ∑

m,n∈Z

η̃(t−n, ν−m)e2πi(ν−m)t
)

−
( ∑

m,n∈Z

η̃(t+n0−n, ν+m0−m)e2πi(t+n0)m0e2πi(ν−m)t
)

= 0 .

The injectivity of the Zak transformation implies H⊥⊥⊥ = 0, contradicting the injec-
tivity of Φ⊥⊥⊥ and therefore the identifiability of HM by ⊥⊥⊥.

Note that equation (3.2) implies that Φ⊥⊥⊥, which is a priori defined on HM =
{H ∈ H : supp ηH ⊆ M} ⊂ H ⊂ HS(L2(R)), where M is a fundamental do-
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Fig. 3.2. Sketch of the proof that HQa,b
is not identifiable if ab > 1. We show that for all

f ∈ S′
0(R), the bounded operator Cg ◦Φf ◦E is not stable. The synthesis operator E and the analysis

operator Cg are stable, hence, stability of Cg ◦ Φf ◦ E must fail at Φf .

main of Z×Z, can be isometrically extended to its HS-closure HM = {H ∈ HS(L2(R)) :
supp ηH ⊆ M}. Certainly, not all H ∈ HS(L2(R)) extend in this fashion to S′

0(R),
and, hence, we must continue to focus our attention on operators with kernels
in the Feichtinger algebra, i.e., on operator classes contained in H =

{
H ∈ HS(L2(R)) :

κH ∈ S0(R
2)
}
.

3.2. Necessity of ab ≤ 1 for the identifiability of HQa,b . We shall show
that for ab > 1 and every f ∈ S′

0(R), the well-defined operator Φf : HQa,b
−→ L2(R)

is not stable.

To obtain this result, we shall equip l0(Z
2) with the topology induced by the

l2-norm and use the fact that ab > 1 to construct a bounded and stable synthesis
operator E : l0(Z

2) → HM in Lemma 3.4, and a bounded and stable (g, a′, b′)-analysis
operator Cg : L2(R) −→ l2(Z2) in the proof of Theorem 3.6, with the property that
the compositions

Cg ◦ Φf ◦ E : l0(Z
2) −→ l2(Z2), f ∈ S′

0(R),

are not stable. The stability of E and Cg implies that all operators Φf : HQa,b
−→

L2(R), f ∈ S′
0(R), must not be stable, showing that HQa,b

is not identifiable for ab > 1
(see Figure 3.2).

We shall now construct the aforementioned synthesis operator E. For ab > 1,
we choose λ ∈ R with 1 < λ4 < a b. Using a product-convolution operator P : f �→
(f ∗ η1) η̌2 as prototype operator, we define the embedding operator E by means of

E : l0(Z
2) → HM , {σk,l} �→

∑
k,l

σk,l MkλαTlλβPT−lλβM−kλα ,

where we chose α = 1
a and β = 1

b for simplicity of notation. The choice of λ allows
us to construct P ∈ HQa,b

in Lemma 3.4 such that {MkλαTlλβPT−lλβM−kλα}k,l∈Z

is a Riesz basis for its closed linear space in the Hilbert space of Hilbert–Schmidt
operators, and, as consequence of (2.5), E is stable. In addition to the Riesz property,
P is designed in Lemma 3.4 to satisfy a time-frequency localization property which
will play a central role in the proof of our main result.
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Lemma 3.4. Fix λ > 1 with 1 < λ4 < a b and choose η1, η2 ∈ S(R) with values
in [0, 1] and

η1(t) =

{
1 for |t| ≤ a

2λ ,

0 for |t| ≥ a
2

and η2(ν) =

{
1 for |ν| ≤ b

2λ ,

0 for |ν| ≥ b
2 .

The operator P ∈ HQa,b
defined by ηP = η1 ⊗ η2 has the following properties:

(a) The synthesis operator

E : l0(Z
2) → HM , {σk,l} �→

∑
k,l

σk,l MkλαTlλβPT−lλβM−kλα(3.3)

is well-defined, bounded, and stable.

(b) The operator P ∈ HM is a time-frequency localization operator in the following
sense: There exist functions d1, d2 : R → R

+
0 which decay rapidly at infinity and which

have the property that for all f ∈ S′
0(R) we have |Pf(x)| ≤ ‖f‖S′

0
d1(x), x ∈ R, and

|P̂ f(ξ)| ≤ ‖f‖S′
0
d2(ξ), ξ ∈ R̂.

Proof. (a) Observe that for any (s, ω) ∈ R×R̂ and f ∈ S0(R) we have

MωTsPT−sM−ωf =

∫ ∫
ηP (t, ν)MωTs TtMν T−sM−ωf dt dν

=

∫ ∫
ηP (t, ν)e2πi(ωt−sν)TtMνf dt dν.

Hence, for E defined in (3.3) and any {σk,l} ∈ l0(Z
2), we have E{σk,l} ∈ HQa,b

with

ηE{σk,l}(t, ν)=ηP (t, ν)
∑
k,l∈Z

σk,l e
2πi(kλαt−lλβν) , (t, ν) ∈ R×R̂.(3.4)

We consider l0(Z
2) as a subspace of l2(Z2) and observe that E is stable, since

‖E{σk,l}‖HS = ‖ηE{σk,l}‖L2 ≥ ‖ηE{σk,l} 1[− a
2λ , a

2λ ]×[− b
2λ , b

2λ ]‖L2 =
ab

λ2
‖{σk,l}‖l2 .

The boundedness of E follows from a similar calculation.

(b) For f ∈ S0(R) and x ∈ R we have

|Pf(x)| =

∣∣∣∣
∫ ∫

ηP (t, ν)e2πiνxf(x− t) dt dν

∣∣∣∣
=

∣∣∣∣
∫

η2(ν)e2πiνx dν

∣∣∣∣
∣∣∣∣
∫

η1(t)f(x− t) dt

∣∣∣∣
≤ |η̂2(−x)| ‖f‖S′

0
‖η1‖S0

.(3.5)

The function d1(x) = |η̂2(−x)| ‖η1‖S0
decays rapidly at infinity, i.e., d1(x) → 0 as

|x| → ∞ faster than any power of 1
x , since η̂2 ∈ S(R). Further, the inequality

|Pf(x)| ≤ ‖f‖S′
0
d1(x), x ∈ R, extends to general f ∈ S′

0(R), since S0(R) is w∗-dense
in S′

0(R).



IDENTIFICATION OF OPERATORS WITH BANDLIMITED SYMBOLS 877

To establish a rapidly decaying bound on |P̂ f |, f ∈ S′
0(R

d), we first assume

f ∈ S0(R) and calculate for ξ ∈ R̂

|P̂ f(ξ)| =

∣∣∣∣
∫

η̂2(−x)

∫
η1(t)f(x− t) dt e−2πiξx dx

∣∣∣∣
=

∣∣∣∣
∫

η̂2(−x)

∫
η̂1(γ)f̂(γ)e−2πix(ξ−γ) dγ dx

∣∣∣∣
=

∣∣∣∣
∫

η2(ξ − γ)η̂1(γ)f̂(γ) dγ

∣∣∣∣(3.6)

≤ ‖f‖S′
0
‖η2(ξ − ·)η̂1(·)‖S0 .(3.7)

The application of the theorem of Tonelli and Fubini to obtain (3.6) is valid for
f ∈ S0(R), and the validity of (3.7) extends once more to general f ∈ S′

0(R).
We claim that d2(ξ) = ‖η2(ξ − ·)η̂1(·)‖S0 is rapidly decaying. Since the Feich-

tinger algebra S0(R) equals the Wiener amalgam space W (A(R), l1(Z)), we choose
ϕ̂ ∈ S(R) ⊂ A(R) with supp ϕ̂ ⊆ [−1,+1], and

∑
n∈Z

Tn ϕ̂ ≡ 1, and observe that
(‖η̂1 · Tn ϕ̂ ‖A)n∈Z

decays rapidly, i.e., for any k ∈ N there exists Ck > 0 such that

∥∥g · Tn ϕ̂
∥∥
A
=

∫ ∣∣∣ ∫ η1(x)e−2πixnϕ(t− x) dx
∣∣∣ dt ≤ Ck(1+n2)−k/2, n ∈ Z(3.8)

[Grö01, p. 228]. For k ∈ N we choose Ck satisfying (3.8) and calculate

d2(ξ) = ‖η2(ξ − ·)η̂1(·)‖S0
≤ C

∑
n∈Z

‖Tn ϕ̂(·) η2(ξ − ·)η̂1(·)‖A

= C
∑

ξ−1− b
2<n<ξ+1+ b

2

‖Tn ϕ̂(·) η2(ξ − ·)η̂1(·)‖A

≤ C ‖η2‖A
∑

ξ−1− b
2<n<ξ+1+ b

2

‖Tn ϕ̂(·) η̂1(·)‖A

≤ C Ck ‖η2‖A �2 + b�
(

1+ min

{⌈
ξ − 1 − b

2

⌉2

,

⌊
ξ + 1 +

b

2

⌋2
})−k/2

≤ C̃(1+ξ2)−k/2 .

Lemma 3.5 is technical but of upmost importance in the proof of Theorem 3.6.
It generalizes the fact that m× n matrices with m < n have a nontrivial kernel and,
therefore, are not stable, to operators acting on l2(Z2). In fact, the bi-infinite matrices
M = (mj′,j)j′,j∈Z2 considered in Lemma 3.5 are not dominated by its diagonal mj,j—
which would correspond to square matrices—but by a skewdiagonal mj,λj , with λ > 1.

Lemma 3.5. Given M = (mj′,j) : l2(Z2) → l2(Z2). If there exists a monotoni-
cally decreasing function w : R

+
0 → R

+
0 with w(x) = O

(
x−2−δ

)
, δ > 0, and constants

λ > 1 and K0 > 0 with |mi,j | < w(‖λj′ − j‖∞) for ‖λj′ − j‖∞ > K0, then M is not
stable.

Proof. First, we show that if w : R
+
0 → R

+
0 with w(x) = O

(
x−2−δ

)
is monotoni-

cally decreasing, then ∑
K≥1

K
∑
k≥K

k w(k)2 < ∞ .(3.9)
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Inequality (3.9) is proven using the Riemann integral criterium for sums. To this end,
we pick continuous v ∈ L∞(R+) with w(x) ≤ v(x)x−2−δ and observe that

∑
K≥1

K
∑
k≥K

k w(k)2 ≤
∫ ∞

0

x

∫ ∞

x

y w(y)2 dy dx ≤
∫ ∞

0

x

∫ ∞

x

v(y)2y−3−2δ dy dx

≤ ‖v‖2
∞

2 + 2δ

∫ ∞

0

x−1−2δ dx < ∞ .

Now, we shall use (3.9) to show that infx∈l2(Z2){
‖Mx‖l2

‖x‖l2
} = 0. To this end, fix

ε > 0 and pick K1 > K0 with

∑
K≥K1

K

⎛
⎝∑

k≥K

k w(k)2

⎞
⎠ ≤ 2−6ε2 .

Pick N ∈ N with Ñ := �N
λ � + K1 < N and define

M̃ = (mj′,j)‖j′‖∞≤Ñ,‖j‖≤N
: C

(2N+1)2 → C
(2Ñ+1)2 .

The matrix M̃ has a nontrivial kernel since (2Ñ + 1)2 < (2N + 1)2, so we can choose

x̃ ∈ C
(2N+1) with ‖x̃‖2 = 1 and M̃x̃ = 0. Define x ∈ l2(Z2) according to xj = x̃j if

‖j‖∞ ≤ N and xj = 0 otherwise.

By construction we have ‖x‖l2 = 1, and (Mx)j′ = 0 for ‖j′‖∞ ≤ Ñ .

To estimate (Mx)j′ for ‖j′‖∞ > Ñ , we fix K > K1 and j′ ∈ Z
d with ‖j′‖∞ =

�N
λ �+K. We have ‖λj′‖∞ ≥ N +Kλ and ‖λj′ − j‖∞ ≥ Kλ ≥ K for all j ∈ Z

d with
‖j‖∞ ≤ N , and, therefore,

|(Mx)′j |2 =

∣∣∣∣∣∣
∑

‖j‖∞≤N

mj′,jxj

∣∣∣∣∣∣
2

≤ ‖x‖2
2

∑
‖j‖∞≤N

|mj′,j |2

≤
∑

‖j‖∞≤N

w(‖λj′ − j‖∞)2 ≤
∑

‖j‖∞≥K

w(‖j‖∞)2

= 22
∑
k≥K

2k w(k)2 = 23
∑
k≥K

k w(k)2.

Finally, we can compute

‖Mx‖2
l2 =

∑
j′∈Zd

|(Mx)′j |2 =
∑

‖j′‖∞≥N
λ �+K1

|(Mx)j′ |2

= 23
∑

‖j′‖∞≥N
λ �+K1

∑
k≥‖j′‖∞

k w(k)2 ≤ 26
∑

K≥N
λ �+K1

K
∑
k≥K

k w(k)2 ≤ ε2

and obtain ‖Mx‖l2 ≤ ε. Since ε was chosen arbitrarily and ‖x‖l2 = 1, we have

infx∈l2(Z2){
‖Mx‖l2

‖x‖l2
} = 0 and M is not stable.

Now all pieces are in place to state and prove the main contribution of this paper.
Theorem 3.6. For a, b > 0 with ab > 1, HQa,b

is not identifiable.
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Proof. Fix a, b > 0 with ab > 1 and choose λ, η1, η2, P , and E as in Lemma 3.4.
To construct the aforementioned stable (g, a′, b′)-analysis operator Cg, we choose

as Gabor atom the Gaussian g0 : R → R
+, x �→ e−πx2

. Lyubarskii [Lyu92], and
Seip [Sei92], and Seip and Wallstén [SW92] have shown that (g0, a

′, b′) = {Mka′Tlb′g0}
is a frame for any a′, b′ > 0 with a′b′ < 1, and, hence, we conclude that the analysis
map given by

Cg0 : L2(R) → l2(Z2), f �→
{
〈f,Mkλ2αTlλ2βg0〉

}
k,l

is bounded and stable since λ2β · λ2α = λ4

ab < 1.
Let us now fix f ∈ S′

0(R) and consider the composition

l0(Z
2)

E→ HM
Φf→ L2

Cg0→ l2(Z2)
{σk,l} �→ E{σk,l} �→ E{σk,l} f �→

{
〈E{σk,l} f, Mk′λ2αTl′λ2βg0 〉

}
k′,l′

.

The bi-infinite matrix

M =
(
mk′,l′,k,l

)
=
(
〈MkλαTlλβPT−lλβM−kλαf, Mk′λ2αTl′λ2βg0 〉

)
represents the operator Cg0

◦ Φf ◦ E with respect to the canonical basis of l2(Z2),
since

(
Cg0 ◦ Φf ◦ E {σk,l}

)
k′,l′

=

〈∑
k,l

σk,lMkλαTlλβPT−lλβM−kλαf, Mk′λ2αTl′λ2βg0

〉

=
∑
k,l

〈MkλαTlλβPT−lλβM−kλαf, Mk′λ2αTl′λ2βg0 〉σk,l

=
∑
k,l

mk′,l′,k,l σk,l .

In order to use Lemma 3.5 to show that M , and, therefore, Cg0 ◦ Φf ◦ E, is not
stable, we have to obtain bounds on the matrix entries of M . Lemma 3.4(b) will
provide us with these bounds. In fact, for k, l, k′, l′ ∈ Z, we have

|mk′,l′,k,l| =
∣∣〈MkλαTlλβPT−lλβM−kλαf, Mk′λ2αTl′λ2β g0 〉

∣∣
≤ 〈Tlλβ |PT−lλβM−kλαf | , Tl′λ2β |g0| 〉
≤ ‖f‖S′

0
d1 ∗ g0 (λβ(λl′ − l)) ,

and

|mk′,l′,k,l| =
∣∣〈TkλαM−lλβ

(
PT−lλβM−kλαf )̂ , Tk′λ2αM−l′λ2β ĝ0 〉

∣∣
≤ 〈Tkλα

∣∣(PT−lλβM−kλαf
)̂ ∣∣ , Tk′λ2α |g0| 〉

≤ ‖f‖S′
0
d2 ∗ g0(λα(λk′ − k)).

In these calculations, we used that g0 ≥ 0, ĝ0 = g0, and g0(−x) = g0(x), as well as
the Parseval–Plancherel identity. Since d1, d2, and g0 decay rapidly, so do d1 ∗ g0 and
d2 ∗ g0. We set

w(x) = ‖f‖S′
0

max
{
d1 ∗ g0(λβx), d1 ∗ g0(−λβx), d2 ∗ g0(λαx), d2 ∗ g0(−λαx)

}
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and obtain |mk′,l′,k,l| ≤ w
(
max{|λk′ − k|, |λl′ − l|}

)
with w(x) = O (x−n) for n ∈ N.

Lemma 3.5 implies that M is not stable, and, by construction, we can conclude that
Cg0 ◦ Φf ◦ E, and thus Φf is not stable.

Note that Lemma 3.5 is crucial for the understanding of Theorem 3.6: For any
f ∈ S′

0, the operator Cg ◦ Φf ◦ E : l0(Z
2) −→ l2(Z2), and, therefore, the operator

Φf : HQa,b
−→ L2(R), is not stable as a result of the nonquadratic structure of the

canonical matrix representation of Cg ◦ Φf ◦ E. The validity of Lemma 3.5 does not
depend on the choice of (reasonable) topologies on domain and range; in fact, a more
general version of Lemma 3.5 can be found in [Pfa05].

4. Gabor frame operators, underspread operators, and uncertainty.
The proof of Kailath’s conjecture in section 3 relies strongly on the existence of a
Schwartz function g ∈ S(R) such that (g, a, b) is a Gabor frame for given a, b > 0
with ab < 1. In section 4.1 we shall discuss the role of the critical density ab = 1 in
the identification of Gabor frame operators and analogies of underspread and Gabor
frame operators. Interpretations of the results in sections 3 and 4.1 as consequences
of uncertainty in time-frequency analysis are given in section 4.2.

As in section 3, we choose to work in section 4 in the one-dimensional setting.

4.1. Identification of Gabor frame operators. For appropriate g, h ∈ L2(R),

e.g., for g, h ∈ S0(R), and a, b > 0, the Gabor frame operator Sa,b
g,h : L2(R) −→ L2(R)

is given by

Sa,b
g,hf = Dh◦Cg f =

∑
k,l∈Z

〈f,MkbTlag〉MkbTlah , f ∈ L2(R) .

Let us compare the spreading function representation of Hilbert–Schmidt operators
given in (1.1) with Janssen’s representation of the Gabor frame operator, which is

Sa,b
g,hf = (ab)−1

∑
m,n∈Z

〈
h,Mm

a
Tn

b
g
〉
Mm

a
Tn

b
f , f ∈ L2(R)

[Jan95, Grö01]. Both types of operators are superpositions of time-frequency shifts,
and, hence, we shall refer to the tempered distribution

(ab)−1
∑

m,n∈Z

〈
h,Mm

a
Tn

b
g
〉
δn

b
⊗δm

a
∈ S′

0(R×R̂)

as spreading function of the Gabor frame operator Sa,b
g,h.

On a formal level, the relationship between Gabor frame operators and under-
spread and overspread operators is striking: the spreading functions of Gabor frame
operators are supported (as distributions) on a full rank lattice 1

bZ× 1
aZ in the time-

frequency plane R×R̂, whereas the spreading functions of underspread and overspread
operators are supported on a fundamental domain of such a lattice (see Figure 4.1).
The duality of compact and discrete locally compact abelian groups suggests that re-
sults in the theory of underspread and overspread operators might lead to analogous
results in Gabor analysis, and vice versa.

The correspondence of underspread and overspread operators to Gabor frame
operators has not yet been fully explored. To initiate research in this direction, we
shall show in Theorem 4.1 that identifiability of a canonically defined class of Gabor
frame operators with fixed lattice aZ×bZ is equivalent to the existence of f ∈ L2(R)
such that (f, a, b) is a Gabor frame for L2(R). As in section 3, we need to define a
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Fig. 4.1. Support of the spreading symbol of an underspread or overspread operator and distri-
butional support of the spreading symbol of a Gabor frame operator.

domain X and classes of Gabor frame operators Sa,b with some care in order to have
X sufficiently large to allow identification for ab ≤ 1, and X small enough to allow
for an easy proof of the nonidentifiability in case of ab > 1.

We choose as domain the Wiener space W (R), i.e.,

X = W (R) = W (L∞(R), l1(Z)) =

{
f ∈ L2(R) : ‖f‖W =

∑
k∈Z

‖f · 1[k,k+1)‖∞ < ∞
}

,

as range, once more, Y = L2(R), and, for a, b > 0, we consider the operator class

Sa,b =
{
Sa,b
g,h : g ∈ L2(R), h ∈ W (R)

}
with ‖Sa,b

g,h‖Sa,b =
∥∥{〈h,Mm

a
Tn

b
g
〉}∥∥

l2
.

We have

‖Sa,b
g,hf‖L2 ≤

√
(a + 1)(b + 1) ‖f‖W ‖Sa,b

g,h‖Sa,b

[Grö01, p. 107], and, therefore, Sa,b ⊂ L
(
W (R), L2(R)

)
and {Φf : f ∈ W (R)} ⊂

L
(
Sa,b, L2(Rd)

)
, where Φf : Sa,b

g,h �→ Sa,b
g,hf .

Theorem 4.1. Sa,b is identifiable if and only if ab ≤ 1. Moreover, for any a, b
with ab > 1 and any f ∈ W (R) there exist g ∈ L2(R) and h ∈ W (R) such that

Sa,b
g,hf = 0.

Note that identification of Sa,b does not require us to uncover g and h in Sa,b
g,h,

but only to obtain the coefficients
{〈

h,Mn
a
Tm

b
g
〉}

in Janssen’s representation of the

Gabor frame operator Sa,b
g,h.

Proof of Theorem 4.1. To show the identifiability of Sa,b for ab ≤ 1, we use the
fact that for any ab ≤ 1 there exists f ∈ W (R) such that (f, a, b) = {MkbTlaf} is
a frame for L2(R). For example, if ab < 1, we may choose the Gaussian f = g0 :

R → R
+, x �→ e−πx2

, with g0 ∈ S(R) ⊂ W (R) and for ab = 1 we could choose
f = 1[0,a) ∈ W (R). The Ron–Shen duality principle implies that (f, a, b) is a frame

for L2(R) if and only if (f, 1
b ,

1
a ) is a Riesz basis for its closed linear span in L2(R),

i.e., if and only if there exist A,B > 0 such that for all {dm,n} ∈ l2(Z2) we have

A‖{dm,n}‖l2≤‖
∑

m,n∈Z

dm,nMm
a
Tn

b
f‖L2≤B‖{dm,n}‖l2(4.1)
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[RS97, Grö01]. Replacing {dm,n} by
{〈

h,Mm
a
Tn

b
g
〉}

∈ l2(Z2) in (4.1) shows that any

f with (f, a, b) is a frame for L2(R) identifies Sa,b.

We shall now show that for any a, b > 0 with ab > 1 and any f ∈ W (R) there exist

g ∈ L2(R) and h ∈ W (R) such that Sa,b
g,h ∈ Sa,b \ {0} and Sa,b

g,hf = 0, contradicting

that f identifies Sa,b. Fix a, b > 0 with ab > 1 and f ∈ W (R) and pick g ∈ L2(R) such
that g ⊥ span(f, a, b), and, therefore, f ⊥ span(g, a, b). Let h = g0 ∈ W (R) be the
Gaussian defined above and observe that (g0,

1
b ,

1
a ) is a frame for L2(R) since 1

ab < 1.

Hence,
{〈

h,Mm
a
Tn

b
g
〉}

=
{
e2πimn

ab

〈
g,M−m

a
T−n

b
h
〉}

∈ l2(Z2) \ {0}, i.e., Sa,b
g,h ∈ Sa,b,

‖Sa,b
g,h‖ �= 0, but Sa,b

g,hf =
∑

〈f, TamMbng〉TamMbnh = 0.

4.2. Uncertainty. Theorem 4.1 illustrates a strong relationship of critical den-
sity in Gabor analysis to the identification of canonically defined classes of Gabor
frame operators. The critical density phenomenon in Gabor analysis is well known to
be rooted in uncertainty in time-frequency analysis:

• functions cannot be arbitrarily well localized simultaneously in time and fre-
quency, i.e., in phase space, and we can therefore exclude the possibility that
there exist Gabor systems (g, a, b) which are Riesz bases for L2(R) if ab < 1,
and

• functions cannot represent an area in phase space of volume larger than one
in the sense that one cannot construct complete Gabor frames (g, a, b) for
L2(R) if ab > 1.

Due to the first of the two limitations described above, Folland refers to a rectangle
of volume one in phase space as a “minimal rectangle in phase space” [FS97].

Theorem 3.1 describes a new interpretation of minimal rectangles which plays a
role in the time-frequency analysis of operators: an operator, whose spreading symbol
is known to be supported in a rectangle in the time-frequency plane, can be identified
if the rectangle has volume less than or equal to one, and cannot be identified if the
rectangle has volume greater than one. Note that this phenomenon is not a direct
consequence of the fact that we cannot construct functions which are arbitrarily well
localized in phase space, since, in fact, there exist no support restrictions for the
construction of operator symbols or spreading functions in phase space.

Theorems 3.1 and 4.1 can also be viewed as pull-backs of the critical density
phenomenon of “phase space expansions” as described in [Lan93] to operator theory.
Any operator output signal can carry only a restricted amount of time-frequency
structured information, and therefore any output signal can be used only to resolve
a limited amount of information from an operator. Theorem 3.1 illustrates that this
amount of information corresponds to a minimal rectangle in the spreading domain.
Theorem 4.1 shows that the resolvable amount of information of operators, whose
spreading functions have discrete distributional support contained in a lattice 1

bZ× 1
aZ,

is connected to the sparsity of the lattice. In fact, all information inherent in such
an operator can be resolved using a single test signal if and only if ab ≤ 1. Note
that in the latter case, the Kohn–Nirenberg symbol, which is the symplectic Fourier
transformation of the spreading function, is a×b periodic, i.e., is the periodization of
a function supported on a minimal rectangle of size ab ≤ 1 in phase space.

We would like to add that the physical interpretation of the uncertainty principle
as a limit to the achievable precision when measuring position and momentum of
quantum mechanical objects parallels the identifiability result for underspread and
overspread operators nicely, since the latter tells us that we will not be able to identify
an overspread operator no matter how smartly a signal is chosen to test the system.
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The uncertainty principle phenomena discussed above, among others, can be
found in [Fef83, Dau92, Lan93, BHW98, Grö01, Grö03].

5. Generalized spreading constraints. We shall now extend the results stat-
ed in section 3 to higher dimensions and to nonrectangular spreading support sets.

Similarly to the one-dimensional case, we have

H = H(Rd) =
{
H ∈ HS(L2(Rd)) : κH ∈ S0(R

2d)
}
⊂ L

(
S′

0(R
d), L2(Rd)

)
.

Once more, we shall use a Zak transformation, namely, Z : L2(Rd) −→ L2(Rd × R̂d),
Zf(t, ν) =

∑
n∈Zd f(t − n)e2πin·ν for almost every (t, ν) ∈ Q = Q1,1, and the Shah

distribution ⊥⊥⊥ = ⊥⊥⊥1. Adjusting Lemma 3.2 accordingly, we obtain

Z ◦H⊥⊥⊥(t, ν)=
∑

n,m∈Zd

ηH(t−n, ν−m)e2πi(ν−m)·t for all (t, ν) ∈
[
−1

2
,
1

2

]2d
,(5.1)

an identity which leads immediately to the following.
Theorem 5.1. HM = {H ∈ H : supp ηH ⊆ M} is identifiable with identifier

⊥⊥⊥ if and only if M◦ ∩
⋃

(m,n)∈Z2d\(0,0)
(
M◦+(m,n)

)
= ∅.

The proof of Theorem 5.1 is similar to the proof of Theorem 3.3 and is therefore
omitted.

A straightforward generalization of either Theorem 3.3 or Theorem 5.1 leads to
the identifiability of HDQ, Q = Q1,1 = [− 1

2 ,
1
2 ]2d in the case that D is a diagonal

matrix with diagonal (a1, . . . , ad,
1
a1
, . . . , 1

ad
) ∈ (R+)2d. This observation leads us to

the question for which general diagonal or nondiagonal, volume preserving matrices
A ∈ SL(2d,R) is the operator space HAQ identifiable.

The underlying idea of obtaining identifiability results on HAQ for nondiagonal
matrices A ∈ SL(2d,R) is to use the canonical correspondence of elements in HAQ

with elements in HQ given by a coordinate transformation in the spreading domain.
Theorem 5.3 states that for symplectic A, there exist unitary operators OA on L2(Rd),
such that the following formal calculation of operator valued integrals holds for all
H ∈ HAQ. Note that here we set μ(t, ν) = MνTt to obtain

H =

∫ ∫
ηH(t, ν)MνTt dt dν =

∫ ∫
ηH(t, ν) μ(t, ν) dt dν

=

∫ ∫
ηH(A(t, ν)) μ(A(t, ν)) dt dν =

∫ ∫
ηH(A(t, ν)) OAμ(t, ν)OA

∗ dt dν

= OA

∫ ∫
ηHA(t, ν) μ(t, ν) dt dν OA

∗ = OA HA OA
∗,(5.2)

where ηHA = ηH◦A and HA ∈ HQ. We shall see that the intertwining operators
OA ∈ U

(
L2(Rd)

)
in (5.2) extend to S′

0(R
d) and act isomorphically on S0(R

d). The
identifiability of HQ leads therefore to the identifiability of HAQ using as identifier
the tempered distribution OA⊥⊥⊥ ∈ S′

0(R
d). See Figure 5.1 for an illustration of this

approach.
To gather all A ∈ SL(2d,R) which allow for calculations similar to those in (5.2),

we turn to the representation theory of the reduced Weyl–Heisenberg group H
red
d ,

which is identical to R
d×R̂

d×T in topology and Haar measure. The group operation
on the reduced Weyl–Heisenberg group is(

t, ν, e2πis
)
·
(
t′, ν′, e2πis′

)
=
(
t + t′, ν + ν′, e2πi(s+s′+ 1

2 (t′·ν−t·ν′))
)
,
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Fig. 5.1. Identifiability of HAQ, A ∈ Sp(d,R), based on the existence of an intertwining
operator OA.

and its Schrödinger representation on the space of unitary operators on L2(Rd) is
given by

ρ : H
red
d → U

(
L2(Rd)

)
(t, ν, s) �→ ρ(t, ν, s) : L2(R) → L2(R)

f �→ ρ(t, ν, e2πis)f : R
d → R

d

x �→ e2πi(ν·x)+sf(x + t) .

Representing H once more as operator valued integral, we obtain

H =

∫ ∫
ηH(t, ν)MνTt dt dν =

∫
Rd

∫
R̂d

∫ 1

0

ηH(t, ν)ρ(−t, ν, 0) dt dν ds

=

∫
Hred

d

e−2πisηH(−t, ν)ρ(t, ν, e2πis) dμ(t, ν, s) = ρ(η◦H),

where η◦H(t, ν, e2πis) = e−2πisηH(−t, ν). In other words, a Hilbert–Schmidt operator
H with ηH ∈ L1(R2d) is the integrated Schrödinger representations of η◦H with respect
to the reduced Weyl–Heisenberg group H

red
d [Fol89, Grö01].

Before listing the relevant results from representation theory in Theorem 5.3, it
is now time to define the symplectic group.

Definition 5.2. The symplectic group Sp(d,R) consists of those matrices A ∈
SL(2d,R) that satisfy A

(
0 −Id
Id 0

)
A =

(
0 −Id
Id 0

)
, where Id is the d×d identity matrix.

Theorem 5.3(a) outlines the scope of our approach [Fol89]. Part (c) delivers in-
tertwining operators for equivalent representations ρ ◦ A and ρ. Parts (d), (e), (f),
and (g) describe these operators as products of some elementary operators. This
characterization shows us that the a priori Hilbert space theory applies to the Fe-
ichtinger algebra setup used in this paper (see part (h)). Part (i) covers shifts of the
spreading support which allow us to extend Theorem 5.4 to affine linear coordinate
transformations.

For ease of notation we shall not distinguish between the matrix A and the cor-

responding linear map; i.e., we have A(t, ν) =
(
(t, ν) · At

)t
.

Theorem 5.3.

(a) Let S operate on H
red
d . The induced map ρS = ρ ◦ S : H

red
d −→ U

(
L2(Rd)

)
is an unitary representation of H

red
d which is unitarily equivalent to the irre-
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ducible Schrödinger representation ρ; i.e., there exists an unitary intertwin-
ing operator O such that Oρ(g)O∗ = ρS(g) for all g ∈ HW red

d if and only

if there exists A ∈ Sp(d,R) with S = Ã, where Ã is given by Ã : H
red
d −→

H
red
d , (t, ν, e2πis) �→ (A(t, ν), e2πis).

(b) Let A ∈ Sp(d,R) and let ρA = ρ ◦ Ã. Then ρA(f) = ρ(f ◦ A−1) for f ∈
L1(Hred

d ).

(c) For A ∈ Sp(d,R) there exists a unitary operator OA on L2(Rd), with OAHO∗
A =

ρ(η(H)◦ ◦ Ã−1) for all H ∈ HS(L2(Rd)) with η(H) ∈ L1(R2d).

(d) The matrix I =
(

0 Id
−Id 0

)
together with the subgroups

N =
{(

Id 0
A Id

)
, A = A∗} and D =

{(
A 0
0 A∗−1

)
, A ∈ GL(n,R)

}
of Sp(d,R) generate Sp(d,R).

(e) For A =
(

0 Id
−Id 0

)
we have μ ◦ A(t, ν) = μ(A(t, ν)) = F−1μ(t, ν)F .

(f) For A =
(
Id 0
A Id

)
with A = A∗ define CA through CAf(x) = e−πixTAxf(x).

Then we have μ ◦ A(t, ν) = μ(A(t, ν)) = CA ◦ μ(t, ν) ◦ C∗
A.

(g) For A =
(
A 0
0 A∗−1

)
let UA be defined by setting UAf(x) = |detA|− 1

2 f(A−1x).
Then μ ◦ A(t, ν) = μ(A(t, ν)) = UA ◦ μ(t, ν) ◦ U∗

A.

(h) The unitary operators F , CA, and UA restrict and extend to S0(R) and S′
0(R),

respectively.

(i) Set L(a,b) : R
d×R̂

d −→ R
d×R̂

d, (t, ν) �→ (a + t, b + ν). Then

μ ◦ L(a,b)(t, ν) = e2πiνaμ(a, b)μ(t, ν) = e2πibtμ(t, ν)μ(a, b).

For details on representation theoretic background, see [Fol89, FK98, Grö01].
Using Theorem 5.3, we obtain the following.

Theorem 5.4. Let S = L(a,b) ◦A, A ∈ Sp(d,R). Then HM is identifiable if and
only if HSM is identifiable.

Proof. Assume that HM is identifiable with fM ∈ S′
0(R

d). Theorem 5.3 provides
us with an unitary operator OA on L2(Rd) which extends to S′

0(R
d). We claim that

OAfM ∈ S′
0(R

d) identifies HSM . To see this, observe that for all H ∈ HSM we have

H =

∫ ∫
ηH(t, ν) μ(t, ν) dt dν

=

∫ ∫
ηH
(
A(t, ν)+(a, b)

)
μ
(
A(t, ν)+(a, b)

)
dt dν

=

∫ ∫
ηH
(
A(t, ν)+(a, b)

)
e2πia(Ct+Dν)μ(a, b)μ(A(t, ν)) dt dν

=

∫ ∫
ηH
(
A(t, ν)+(a, b)

)
e2πia(Ct+Dν) μ(a, b)OAμ(t, ν)OA

∗ dt dν

= μ(a, b)OA

∫ ∫
ηHA,(a,b)

(t, ν) μ(t, ν) dt dν OA
∗

= μ(a, b)OA HA,(a,b) OA
∗,

and

‖H OAfM‖L2(Rd) = ‖OA
∗μ(a, b)∗HOAfM‖L2(Rd)

= ‖HA,(a,b)fM‖L2(Rd) = ‖ηHA,(a,b)
‖L2(R2d) = ‖ηH‖L2(R2d) ≡ ‖H‖HS .
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Fig. 5.2. Examples of sets M such that HM is identifiable.

Theorems 3.3 and 5.4 imply that the exemplary spreading support sets M given
Figure 5.2 define identifiable operator classes HM .

For M = Q, we can identify HSQ using the identity in the following.

Corollary 5.5. Let S = L(a,b) ◦ A for some (a, b) ∈ R
d×R̂

d and A = ( A B
C D ) ∈

Sp(d,R). Then for H ∈ HSQ and for (t, ν) ∈ supp(ηH)

e2πia·(Ct+Dv)+νtZ ◦OS ◦H ◦O∗
S⊥⊥⊥(t, ν) = ηH(A−1(t− a, ν − b)).

We have shown that identifiability is robust with respect to symplectic coordinate
transformations in the spreading domain. This result is rooted in the representation
theory of the Weyl–Heisenberg group. Theorem 5.3(i) shows that this approach can
not be extended to obtain insights on nonsymplectic coordinate transformations.

Nevertheless, we should note that for A ∈ SL(2d,R) the condition A ∈ Sp(d,R) is
not necessary for HAQ to be identifiable. In fact, the diagonal matrix D with diagonal
(2, 1

2 , 1, 1) has the property D ∈ SL(4,R) \ Sp(2,R), but HDQ is identifiable since

DQ is a fundamental domain of the symplectic lattice
(
A 0
0 A∗−1

)
Z

4 with A =
( 1 0

1
2 1

)
,

and therefore an application of Theorems 5.1 and 5.4 is permissible.
For similar results on nonsymplectic lattices in Gabor theory see [Bek04, HW01,

HW04].
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STABILITY OF LARGE-AMPLITUDE SHOCK PROFILES OF
GENERAL RELAXATION SYSTEMS∗

CORRADO MASCIA† AND KEVIN ZUMBRUN‡

Abstract. Building on previous analyses carried out in [Mascia and Zumbrun, Indiana Univ.
Math. J., 51 (2002), pp. 773–904] and [Mascia and Zumbrun, Arch. Ration. Mech. Anal., 172 (2004),
pp. 93–131], we establish L1 ∩H2 → Lp nonlinear orbital stability, 1 ≤ p ≤ ∞, with sharp rates of
decay, of large-amplitude Lax-type shock profiles for a general class of relaxation systems that includes
most models in common use, under the necessary conditions of strong spectral stability, i.e., stable
point spectrum of the linearized operator about the wave, transversality of the profile, and hyperbolic
stability of the associated ideal shock. In particular, our results apply to standard moment-closure
systems, answering a question left open in Mascia and Zumbrun (2002). The argument combines
the basic nonlinear stability argument introduced in Mascia and Zumbrun (2002) with an improved
“Goodman-style” weighted energy estimate similar to but substantially more delicate than that used
in Mascia and Zumbrun (2004) to treat large-amplitude profiles of systems with real viscosity.
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1. Introduction. In [24], a detailed study was carried out on linearized and
nonlinear stability of traveling front solutions, or shock profiles

(u, v)(x, t) = (ū, v̄)(x− st), lim
z→±∞

(ū, v̄) = (u±, v±) = (u±, v
∗(u±)),(1.1)

of relaxation systems {
ut + f(u, v)x = 0,
vt + g(u, v)x = q(u, v),

(1.2)

u, f ∈ R
n, v, g, q ∈ R

r, where

Reσ(qv(u, v
∗(u))) < 0

along a smooth equilibrium manifold v = v∗(u) defined by q(u, v∗(u)) = 0.
The linearized results obtained in [24] are extremely general and appear to be

optimal. However, the nonlinear results are restricted to arbitrary-amplitude profiles
of special, discrete kinetic models, defined as systems (1.2) for which f and g are linear,
and small-amplitude profiles of general, simultaneously symmetrizable models, defined
as systems (1.2) for which there exists a smooth, symmetric positive definite matrix
function A0 = A0(u, v) for which A0A and A0Q are symmetric, where A := (df t, dgt)t

and Q := (0, dqt)t.
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The first result is quite satisfactory and has important applications to the phys-
ically interesting class of systems obtained by discretization of kinetic models such
as Boltzmann or Vlasov–Poisson equations. On the other hand, the equally impor-
tant class of systems obtained by moment-closure approximation of kinetic models
is not contained in the class of discrete kinetic models, and so the question of large-
amplitude stability for these models was left open in [24]; indeed, as discussed in
Remark 1.16 of [24], it was not at all clear from the analysis of [24] whether this was
a technical artifact or represented a true qualitative difference in behavior between
these two types of approximation. Moreover, even the requirement of simultaneous
symmetrizability appears to be overly restrictive in the large-amplitude case. As de-
scribed in [33], many systems of physical interest are simultaneously symmetrizable
along the equilibrium manifold v = v∗(u), including (standard versions of) both dis-
crete and moment-closure approximations of kinetic models; however, so far as we can
see, simultaneous symmetrizability does not typically hold away from equilibrium, in
particular along a shock profile, as assumed in [24].1 This distinction is unimportant
in the small-amplitude case, for which the argument of [24] goes through by conti-
nuity assuming only simultaneous symmetrizability at the endstates (u−, v

∗(u−));2

however, it becomes significant in the large-amplitude case, for which profiles may
feature arbitrarily large excursions from equilibrium.

The difficulty in the analysis of the general case was control of higher-derivative
source terms arising in the nonlinear iteration through Taylor expansion of the variable
coefficient matrix A = (df t, dgt)t. Such terms do not arise in the case of discrete ki-
netic models, for which A is constant, and this made it possible to carry out the entire
nonlinear stability analysis using linearized (i.e., Green function) estimates alone. In
the general case, we found it necessary to augment these bounds with coupled energy
estimates in order to close the iteration, and these estimates, as implemented in [24],
used both global symmetrizability and the small-amplitude assumption in important
ways. In particular, these assumptions were used to guarantee that the perturbation
equations be locally dissipative everywhere along the shock profile, whereas, in the
present, large-amplitude case, the perturbation equations are in general dissipative
only near plus or minus spatial infinity.

Similar difficulties arose in the closely related study [25] of stability of shock pro-
files for real viscosity models, initially limiting this analysis also to the small-amplitude,
globally symmetrizable case. Recently, however, these obstacles were overcome and
the corresponding restrictions removed in [27] by the introduction of a modified en-
ergy estimate incorporating “Goodman-type” weighted norms in the style of [12]. As
discussed in [39, 40], these quantify the observation that transverse convection relative
to the shock profile already yields a complementary type of dissipation near the inner
shock layer by rapidly sweeping signals to plus or minus spatial infinity, where they
then decay under the effects of the local dissipativity guaranteed by (A1)–(A2).

In this paper, we show that a similar approach can be applied in the relaxation
case to yield a satisfactory nonlinear stability theory applying to large-amplitude pro-
files of the physically correct class of systems that are simultaneously symmetrizable
at equilibrium—indeed, to the considerably more general class of equations that was
considered in the linearized analysis of [24].

1This corrects a misstatement in [24, Remark 1.15], where the calculations of [33] were misquoted
as asserting global simultaneous symmetrizability.

2Specifically, in the notation of [24, Lemma 7.4], the key property Re (kA − A0Q) > 0 persists
under perturbation.
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This brings the analysis of [24] to a satisfying conclusion, putting under a common
framework most of the relaxation models typically studied, and in particular resolving
in the negative the question posed in [24] of whether there might be a true qualita-
tive difference in behavior between discrete and moment-closure approximations of
kinetic models. We point out that our results yield new information even in the case
of (non-globally-symmetrizable) discrete kinetic models, since we require significantly
less regularity on the data (L1 ∩ H2 vs. W 3,1 ∩ W 3,∞). Also, the low norm decay
rates, Lp for 1 ≤ p < 2, are new for general models even in the small-amplitude case.

A substantial new difficulty in the relaxation as compared to the real viscosity case
is that the hyperbolic characteristic speeds corresponding to eigenvalues of (df t, dgt)t

are by the subcharacteristic condition (a necessary condition for dissipativity condition
(A2); see [24, 32]) necessarily of both positive and negative signs, whereas in the case
of real viscosity, hyperbolic modes were assumed to be all of one sign, i.e., strictly
upwind or strictly downwind. Since weights are chosen to decay exponentially in the
direction of propagation, this means that a single scalar weight no longer suffices in
the relaxation case, and the introduction of a matrix of distinct diagonal weights leads
to off-diagonal error terms that grow exponentially in both the amplitude of the shock
and in an arbitrary constant C∗ determining the amount of dissipation on the inner
layer with respect to the chosen weight.

At first sight, it is hard to see how such an argument could ever close, since good
terms of order C∗ generate bad terms of exponential order in C∗. Remarkably, the
energy estimates can close by a refinement of the hyperbolic compensation argument
of [17, 30]: namely, the observation (Lemma 2.3 below) that the same “compensating
matrix” K used to complete the partial dissipation provided by the semiparabolic
matrix B may be used at the same time to eliminate off-diagonal terms of essentially
arbitrary size. The details of this argument may be found in sections 2 and 3.

We now describe our results in more detail. Of system (1.2), we assume the
following structural properties:

(A1) Symmetrizability of A(u, v) = (df t, dgt)t: there exists a C3 positive definite
matrix-valued function A0(u, v) such that A0A is symmetric.

(A2) Dissipativity at the equilibrium states (u±, v
∗(u±)): for some θ > 0,

Reσ(iξA± + Q±) ≤ −θ|ξ|2
1 + |ξ|2 ∀ ξ ∈ R,

where A±:=A(u±, v
∗(u±)), Q±:=Q(u±, v

∗(u±)), and Q(u, v):=(0, dq(u, v))t.
Condition (A1) is connected with well-posedness of (1.2), while (A2) is con-

nected with time-asymptotic stability of equilibrium states (u±, v
∗(u±)) [17]. As

discussed variously in [5, 17, 33, 35], sufficient conditions for (A2) are either simulta-
neous symmetrizability, A0Q symmetric, or else weak dissipativity, Q(A0)−1 ≤ 0 and
(Q(A0)−1)22 < 0,3 together with genuine coupling:

No eigenvector of A± lies in the kernel of Q±.(1.3)

Hereafter, set s= 0 (changing to coordinates moving with the shock), so that
(1.1) becomes a standing-wave solution. Regarding the profile (ū, v̄), we assume the
following:

3That is, Q̃ := Q(A0)−1 = block-diag {0, q̃} with q̃ < 0, whence we may replace Q̃ with Re Q̃ and
proceed as in the simultaneously symmetrizable case, noting that kerA0Re Q̃ = kerA0Q̃ = (In−r, 0),
whence (1.3) is preserved. The example q̃ =

(
0 a

−a 1

)
, a �= 0, shows that q̃ > 0 is necessary, since

Reσq̃ < 0 but Re q̃ = block-diag {0, q̃} is only semidefinite.
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(H0) f , g, q ∈ C3.
(H1) The eigenvalues of A(x) := (df t, dgt)t(ū, v̄)(x) are (i) different from 0 and (ii)

of constant multiplicity.
(H2) (i) The eigenvalues a∗±j of A∗

± := df∗(u±), f∗(u) := f(u, v∗(u)), are real

and different from 0;4 moreover, (ii) when ordered with increasing size, they
satisfy the strict Lax characteristic conditions [19]

a∗−p−1 < 0 < a∗−p , a∗+p < 0 < a∗+p+1

for some 1 ≤ p ≤ n (the principal characteristic field of the shock).
(H3) Dynamical stability: the Liu–Majda determinant condition [20, 21, 22, 23]

Δ := det(r∗−1 , . . . , r∗−p−1, [u], r∗+p+1, r
∗+
n ) �= 0(1.4)

is satisfied, where r∗±j denote the eigenvectors of A∗
± associated with a∗±j ,

and [u] := u+ − u− denotes the jump in u across the shock.
(H4) Structural stability: the profile (ū, v̄)(·) is a transverse connection of the as-

sociated standing-wave ODE, in particular, therefore, locally unique up to
translation.

(H5) Strong spectral stability: the point spectrum of the linearized operator L about
the wave is contained in {λ : Reλ < 0} ∪ {0}.

Condition (H0) gives the regularity needed both for our analysis here and in order
to apply the linearized bounds of [24]. Condition (H1)(i) is a standard assumption
[34, 38, 24] ensuring that the standing-wave ODE be of nondegenerate type [24]. It
is not clearly necessary, however, and at least for discrete kinetic models it can be
relaxed, as we discuss in section 4; indeed, in that setting it is rather unnatural. Con-
dition (H1)(ii) is a technical assumption that was used in the pointwise Green function
analysis of [24]; at the expense of some detail in the pointwise description of linearized
behavior, it may be removed altogether [39]. Constant multiplicity holds automati-
cally for discrete kinetic models, but for moment-closure models may be difficult to
verify. Together, (A1) and (H1)(ii) are equivalent to semisimplicity plus constant mul-
tiplicity of σ(A). Condition (H2)(i) expresses hyperbolicity and noncharacteristicity
of the associated “equilibrium system”

ut + f∗(u)x = 0(1.5)

obtained from (1.2) by formal Chapman–Enskog expansion at the endstates u−, u+

with respect to the corresponding ideal shock (u−, u+) of (1.5). Note that hyperbol-
icity of the equilibrium system is not required along the profile, thus allowing appli-
cations to interesting nonhyperbolic situations as discussed in [16, 1, 2]. Condition
(H2)(ii) restricts attention for simplicity to the standard case of a classical, Lax-type

4This differs from hypothesis (H2) of [24], in which the eigenvalues were also required to be
distinct. However, it was noted in Remark 1.12 of [24] that this requirement may be dropped when A∗

±
and Q± are simultaneously symmetrizable, with essentially no change in either results or notation;
the same argument shows that this requirement may likewise be dropped in the general case, at the

expense of further complications (specifically, the matrix-valued diffusion waves e
(x−a∗±

j )2(4πβ∗±
j t)−1

of the remark must be replaced by the fundamental solution of vt + a∗±j vx = β∗±
j vxx, where β∗±

j :=

l∗±t
j B∗±r∗±j are no longer necessarily diagonal, and the matrix-valued error-functions appearing in

excited term E by its spatial integral; finally, though the precise form of scattering term S in [24,
Proposition 1.10] is no longer clear, it is easily verified that it satisfies pointwise bounds yielding the
same rates of Lq → Lp decay as needed for subsequent stability arguments).
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shock (u−, u+) of (1.5); the treatment of nonclassical over- and undercompressive
shocks we leave for the future.5

Conditions (H3)–(H5) are together equivalent to the Evans function condition:
(D) The Evans function D(·) associated with L has precisely one zero on {λ :

Reλ ≥ 0} (necessarily at λ = 0).6

The generalized spectral stability condition (D) was shown in [24] to be necessary
and sufficient for linearized stability under assumptions (A1)–(A2) and (H0)–(H2);
the main point of this paper is to show that these conditions are sufficient also for
nonlinear stability. The conditions (H3) and (H4) correspond to the classical physical
notions of dynamical and structural stability (see, e.g., [3]), whereas (H5) encodes
heretofore neglected relaxation effects; for further discussion in the closely related
viscous case, see [38] and especially [27]. All three of conditions (H3)–(H5) hold
automatically in the small-amplitude case; see [21, 22, 23, 34, 24, 28], respectively.

Definition 1.1. For a profile Ū = (ū, v̄) that is (as in the Lax case) unique up
to translation, we define nonlinear orbital stability as convergence of U = (u, v)(·, t)
as t → ∞ to a translate Ū(· − δ(t)), where δ(·) is an appropriately chosen function
describing shock location, for any solution U of (1.2) with initial data sufficiently close
in some norm to the original profile Ū .

Then the main result of this paper is as follows.
Theorem 1.2. Let Ū = (ū, v̄) be a profile (1.1) of a relaxation system (1.2),

under assumptions (A1)–(A2) and (H0)–(H5). Then Ū is nonlinearly orbitally stable
from L1 ∩H2 to Lp for all p ≥ 2.

More precisely, for initial perturbations U0 := Ũ0 − Ū with |U0|L1∩H2 sufficiently

small, the solution Ũ = (ũ, ṽ)(x, t) of (1.2) with initial data Ũ0 satisfies

|Ũ(x, t) − Ū(x− δ(t))|
Lp ≤ C|U0|L1∩H2 (1 + t)−

1
2 (1− 1

p )(1.6)

for all 1 ≤ p ≤ ∞, for some δ(t) satisfying

|δ̇(t)| ≤ C|U0|L1∩H2 (1 + t)−
1
2 and |δ(t)| ≤ C|U0|L1∩H2 .

Remark 1.3. Useful geometric necessary conditions for viscous stability have been
obtained in [36, 38, 11] in the simultaneously symmetrizable case A0Q symmetric
using the stability index of [10, 4]. Strengthened, signed versions Δ > 0 (under
appropriate normalization) of the dynamical stability condition (1.4), these readily
yield examples of spectrally unstable large-amplitude profiles, similarly to the strictly
parabolic case (see, e.g., [7, 10, 38, 42]). This shows that the stability conditions
assumed in Theorem 1.2 are not vacuous in the large-amplitude case. Moreover, as
discussed in [38, section 6.2], the signed version of the Majda condition can serve
as a physical selection principle in situations, for neither of the classical criteria of
structural or dynamical stability suffice. As discussed further in [27, 38], it is an
extremely interesting open problem which of the stability conditions (H3) and (H5)
is in practice most restrictive.

Similarly, as in the small-amplitude case, Theorem 1.2 is obtained by a nonlinear
iteration combining the linearized decay rates of [24] with an appropriate auxiliary

5See [24] for a linearized analysis and [41, 38, 13] for related nonlinear analyses in the viscous or
viscous-dispersive case.

6For a precise definition of the Evans function and a proof of the equivalence of (D) and (H3)–
(H5), see [24] or [38, Appendix A2].
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energy estimate controlling higher derivatives. Following [24], define the nonlinear
perturbation U = (u, v) by

U(x, t) := Ũ(x + δ(t), t) − Ū(x),(1.7)

where Ũ = (ũ, ṽ) is a solution of (1.2) and the “shock location” δ is to be determined
later. Evidently, decay of U is equivalent to nonlinear orbital stability, as described
in (1.6). Then the key energy estimate, and the main technical contribution of the
paper, is as follows.

Proposition 1.4. Under the hypotheses of Theorem 1.2, let U0 ∈ H2, and
suppose that, for 0 ≤ t ≤ T , both the supremum of |δ̇| and the H1 ∩W 1,∞ norm of
the perturbation U = (u, v)t defined by (1.7) remain bounded by a sufficiently small
constant ζ > 0. Then, for all 0 ≤ t ≤ T and some θ > 0,

|U |2
H2

(t) ≤ Ce−θt|U0|2
H2

+ C

∫ t

0

e−θ(t−s)(|U |2
L2

+ δ̇2)(s)ds.(1.8)

Inequality (1.8), expressing exponential damping of high frequencies, improves
the weaker bound

|U |2
H2

(t) +

∫ t

0

|Ux|2
H1

(s)ds ≤ C(ζ2 + |U0|2
H2

) + C

∫ t

0

(|U |2
H1

+ δ̇2)(s)ds(1.9)

stated for the small-amplitude case in [24]. As discussed in [39, 40] in the context of
real viscosity systems, both bounds follow from the same string of energy estimates;
similar inequalities hold in the real viscosity case.

With estimate (1.9), Theorem 1.2 follows for high norms Lp, 2 ≤ p ≤ ∞, by
exactly the same argument used in [24] to treat the small-amplitude case, for the
proof of (1.9) was the single place in [24] where the small-amplitude assumption was
actually used. See [24, section 7], or [27, section 4] in the real viscosity case. For
completeness, we give in section 4 a simplified version of this argument based on the
improved estimate (1.8) of Proposition 1.4, which suffices for low norms Lp, 1 ≤ p < 2,
as well.

Remark 1.5. We have here restricted our attention for simplicity to the study
of Lax-type shocks. Nonclassical over- and undercompressive shocks may be treated
similarly under further restrictions on the initial data; see [14, 29] for analyses in the
parabolic (resp., hyperbolic–parabolic) case.

The paper is outlined as follows. In section 2, we give the preliminary lemmas
needed in the analysis. In section 3, we carry out the proof of Proposition 1.4, and in
section 4 we prove Theorem 1.2. Finally, in section 5, we discuss the complementary
characteristic case.

2. Preliminaries. As in [27], our starting point consists of the following two
lemmas.

Lemma 2.1 (see [26]). Under assumptions (A1)–(A2), (H0)–(H2), standing wave
solutions (1.1) satisfy

|(d/dx)kŪ − U±| ≤ C|Ūx| ≤ Ce−θ|x|, k = 0, . . . , 4,(2.1)

as x → ±∞, for some θ > 0, U± = (u±, v±) = (u±, v
∗(u±)).

Proof. Equivalently, the standing-wave equations may be expressed as a nonde-
generate ODE with hyperbolic rest points; see [24, proof of Lemma 1.2].
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Lemma 2.2 (see [30]). Let A and Q denote simultaneously symmetrizable matri-
ces and A0 their symmetrizer, with A0Q ≤ 0.

Then genuine coupling (1.3) is equivalent to one of the following conditions:

(K0) There exists θ > 0 such that Reσ(iξA + Q) ≤ −θ|ξ|2
1+|ξ|2 for all ξ ∈ R;

(K1) There exists a smooth skew-symmetric matrix-valued function K(A,Q,A0)
such that Re

(
A0Q−KA

)
< 0;

(K2) block-diag LQR < 0, where L := Ot(A0)
1
2 and R := L−1 = (A0)−

1
2O are

matrices of left and right eigenvectors of A block-diagonalizing LAR, with
O orthonormal. Here, block-diag M denotes the matrix formed from the
diagonal blocks of M , with each block of dimension equal to the multiplicity
of corresponding eigenvalues of LAR.

Note that strictly dissipativity assumption (A2) corresponds to condition (K0) at
the asymptotic states (u±, v

∗(u±)) with respect to the matrices A± and Q±.

Proof. These and other useful equivalent formulations are established in [30].
The main implication for our purposes, (K2) ⇒ (K1), follows readily from Lemma
2.3, below, by first converting to the case of symmetric A, Q by the transformations
A → ((A0)

1
2AA0)−

1
2 , Q → ((A0)

1
2QA0)−

1
2 , from which the original result follows

by the fact that M > 0 ⇔ (A0)
1
2M(A0)

1
2 > 0, then converting by an orthonormal

change of coordinates to the case that A is diagonal and Q symmetric. Variable
multiplicity eigenvalues may be handled by partition of unity/interpolation, noting
that Re (Q−KA) < 0 persists under perturbation.

Under the assumed symmetry of LQR, (K0) ⇒ (K2) follows by Taylor expansion
at infinity of the spectrum of the symbol iξA + Q, from which we may deduce

Reσ( block-diagLQR) < 0;

see, e.g., [24, Appendix B]. That (K1) ⇒ (K0) follows upon rearrangement of energy
estimate

〈(A0 + |ξ|2A0 − iξK)w, (λ + iξA + |ξ|2B)w〉 = 0.

Finally, (K2) ⇔ (1.3) is clear.

For our purposes, we shall require the following slight extension of Lemma 2.2,
whose proof gives at the same time an explicit description of K of which we shall later
make important use. We note that an equivalent version of this result was obtained
independently and previously to ours by Humpherys [15].

Lemma 2.3. Let D be diagonal, with real entries appearing with prescribed multi-
plicity in order of increasing size, and let Q be arbitrary. Then there exists a smooth
skew-symmetric matrix-valued function K(D,Q) such that

Re (Q−KD) = Re block-diagQ,

where block-diagQ denotes the block-diagonal part of Q, with blocks of dimension
equal to the multiplicity of the corresponding eigenvalues of D.

Proof. It is straightforward to check that the symmetric matrix ReKD = ( 1
2 )(KD

−DtK) may be prescribed arbitrarily on off-diagonal blocks by setting Kij := (ai −
aj)

−1Mij , where Mij is the desired block, i �= j. Choosing M = ReQ, we obtain
Re (Q−KD) = Re block-diag (Q) as claimed.

We shall also need the following two elementary results.
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Lemma 2.4. Given (A2), there exist block-diagonalizing matrices L±, R±, LAR±
block-diagonal, LR± = I, such that

block-diagLQR± < 0.

(Note: A and Q are not assumed simultaneously symmetrizable as in Lemma
2.2.)

Proof. Again, Reσ( block-diag L̃QR̃±) < 0 follows from (A2) by Taylor expan-
sion at infinity of the spectrum of the symbol iξA± +Q± for any block-diagonalizing
transformations L̃±, R̃±; see [24, Appendix B]. By a standard linear-algebraic lemma
(see, e.g., [31, Proposition A.9, p. 361]), block-diagS−1L̃QR̃S± < 0, S± :=
block-diag {S1, . . . , Sk}± for some choice of nonsingular S±

j . Taking L± := S−1L̃±,

R± := R̃S±, and we are done.
Lemma 2.5. There is a correspondence between symmetric positive definite sym-

metrizers A0, A0A symmetric, and diagonalizing transformations L, R, LAR diago-
nal, given by A0 = L∗L, or equivalently L = O∗(A0)

1
2 , where O is an orthonormal

matrix diagonalizing the symmetric matrix (A0)
1
2A(A0)−

1
2 .

Moreover, the matrix O (or equivalently L) may be chosen with the same degree
of smoothness as A0 on any simply connected domain.

Proof. The first assertion follows by direct calculation. The second is clear in the
strictly hyperbolic case, for which the correspondence is also one-to-one; in the general
(constant-multiplicity) case, it follows by a standard lemma of Kato [18].

Remark 2.6. Lemma 2.5 hints at the strategy we shall follow in carrying out
energy estimates, which is to “effectively diagonalize” by the use of a symmetrizer.
That is, rather than working with LAR as we should like, we work with A0A =
L∗LA = L∗(LAR)L, thereby avoiding the problem that there may exist a nonlinear
change of coordinates with Jacobian L. Conjugation by L of course does not affect
the energy estimates.

Finally, for convenience of the reader, we recall the standard relations

〈W,SWx〉 = −1

2
〈W,SxW 〉(2.2)

and

1

2
〈Wx,KW 〉t = 〈Wx,KWt〉 +

1

2
〈Wx,KtW 〉 +

1

2
〈W,KxWt〉,(2.3)

valid, respectively, for symmetric S and skew-symmetric K.

3. Energy estimates. In this section, we carry out the main work of the paper,
establishing Proposition 1.4.

Perturbation equation. Define the nonlinear perturbation U(x, t) := Ũ(x+δ(t), t)−
Ū(x) as in (1.7), where δ(t) (estimating shock location) is to be determined later; for
definiteness, fix δ(0) = 0. Substituting (1.7) into (1.2), we obtain

Ũt + ÃŨx −
(

0
q

)
(Ũ) = δ̇Ũx,

where Ã := (df, dg)t(ũ, ṽ), and thereby

(Ũ − Ū)t + (ÃŨx − ĀŪx) −
((

0
q

)
(Ũ) −

(
0
q

)
(Ū)

)
= δ̇(t)Ũx,

where Ũ now denotes Ũ(x + δ(t), t) and Ū denotes Ū(x).
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Expanding (ÃŨx − ĀŪx) using the quadratic Leibniz relation

ÃŨx − ĀŪx = Ã(Ũx − Ūx) + (Ã− Ā)Ūx,

and Taylor expanding (
(
0
q

)
(Ũ) −

(
0
q

)
(Ũ)) about Ũ , we obtain the basic nonlinear

perturbation equation

Ut − ÃUx − Q̃U = M1(U)Ūx + (0, Ir)
tM2(U) + δ̇(t)(Ūx + Ux),(3.1)

where Q̃ := (0, dq)t(ũ, ṽ) and

M1(U) = O(|U |) := Ã(x, t) − Ā(x),

M2(U) = O(|U |2) :=

(
0
q

)
(Ũ) −

(
0
q

)
(Ū) − Q̃(Ũ − Ū).

Weighting matrix. Let Ã0 := A0(Ũ) denote the symmetrizer of Ã guaranteed by

(A1), and factor Ã0Ã = (Ã0)
1
2 ÕD̃Õt(Ã0)

1
2 , or, equivalently,

Ã = (Ã0)−
1
2 ÕD̃Õt(Ã0)

1
2 ,(3.2)

where Õ is orthogonal, Õt = Õ−1, and C3 is a function of (u, v) (see Lemma 2.5)
and D̃ = block-diag {ã1, . . . , ãl}, where ãj denote the eigenvalues of Ã, indexed in
increasing order

ã1 ≤ · · · ≤ ãk < 0 < ãk+1 ≤ · · · ≤ ãl.

Define the “Goodman-type” [12] weighting matrix α(x) := block-diag {α1, . . . , αl},
where αj > 0 are defined by ODE

αx = C∗sgn aj |Ūx|α, α(0) = 1,

with C∗ > 0 a sufficiently large constant to be determined later. This definition,
together with |aj | > 0, (H2)(i), gives the key inequality

αxD̄ ≥ θ1C∗|Ūx|α,(3.3)

where D̄ = block-diag {ā1, . . . , āl} and āj are the eigenvalues of Ā.
Setting

Ã0
α := (Ã0)

1
2 Õ α Õt(Ã0)

1
2 ,(3.4)

we have by factorization (3.2) that

Ã0
αÃ = [(Ã0)

1
2 Õ α Õt(Ã0)

1
2 ]Ã = (Ã0)

1
2 Õ(αD̃)Õt(Ã0)

1
2 .(3.5)

Hence, Ã0
αÃ is symmetric and the symmetric positive definite matrix Ã0

α is also a
viable symmetrizer for Ã.

Moreover, setting L := Õt(Ã0)
1
2 and R := (Ã0)−

1
2 Õ, by Lemma 2.5 and constant

multiplicity of eigenvalues of A, we have the freedom to smoothly (C3) redefine L and
R so that they take on prescribed values at x → ±∞. Thus, by Lemma 2.4, we may
assume without loss of generality that

Re block-diag
(
αÕt(Ã0)

1
2 Q̃(Ã0)−

1
2 Õ

)
± ≤ −θ(C∗) < 0,
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and thereby, appealing to (2.1), k = 0,

Re block-diag
(
αÕt(Ã0)

1
2 Q̃(Ã0)−

1
2 Õ

)
≤ −θ(C∗) + C(C∗)ζ + C|Ūx|α,(3.6)

where

Ã0
αQ̃ = (Ã0)

1
2 Õ

[
α Õt(Ã0)

1
2 Q̃(Ã0)−

1
2 Õ

]
Õt(Ã0)

1
2 ,

and the exponent θ now refers to the minimum of the constants used elsewhere in
the argument and that appear in (2.1). The constants θ(C∗) and C(C∗) measure the
conditioning of matrices α and in fact decay (resp., grow) exponentially with respect
to C∗; however, this is unimportant for our argument.

Define

K1 := K
(
D̃, α Õt(Ã0)

1
2 Q̃(Ã0)−

1
2 Õ + N

)
,

where K(·) is as in Lemma 2.3, and N is an arbitrary matrix with |N |
C1
x,t

≤ C(C∗)

and vanishing on diagonal blocks, to be determined later. Moreover, let K̃α be the
skew-symmetric matrix obtained from K1 after conjugation by (Ã0)

1
2 Õ, i.e.,

K̃α := (Ã0)
1
2 ÕK1Õ

t(Ã0)
1
2 .

For later use, note that, through smooth dependence on Ũ = Ū + U and N ,

|K̃α,x|, |K̃α,t| ≤ C(C∗).(3.7)

We have, therefore,

Re(−K̃αÃ + Ã0
αQ̃ + (Ã0)

1
2 ÕNÕt(Ã0)

1
2 )

= Re (Ã0)
1
2 Õ

(
−K1D̃ + α Õt(Ã0)

1
2 Q̃(Ã0)−

1
2 Õ + N

)
Õt(Ã0)

1
2

= Re (Ã0)
1
2 Õ block-diag

(
α Õt(Ã0)

1
2 Q̃(Ã0)−

1
2 Õ

)
Õt(Ã0)

1
2

≤ −θ(C∗) + C(C∗)ζ + C|Ūx| Ã0
α

(3.8)

by (3.6) together with Lemma 2.3. By (3.3), we have also

(Ã0)
1
2 Õ(αxD̃)Õt(Ã0)

1
2 ≥ (Ã0)

1
2 Õ(αxD̄)Õt(Ã0)

1
2 − C(C∗) ζ

≥ θC∗|Ūx|Ã0
α − C(C∗) ζ

(3.9)

for possibly still smaller θ > 0 (with ζ as defined in the statement of Proposition 1.4).
Friedrichs-type estimate. As in [24], we first perform a standard “Friedrichs-

type” estimate for symmetric hyperbolic systems (see [8, 9]), now incorporating the
weight α.

Differentiating (3.1) twice with respect to x, we obtain

Uxxt − (ÃUx)xx − (Q̃U)xx = (M(U)Ūx)xx + (0, Ir)
tM2(U)xx + δ̇(t)(Ūxxx + Uxxx).

(3.10)

Taking the L2 inner product Ã0
αUxx against Uxxt, we get

1

2
〈Ã0

αUxx, Uxx〉t = 〈Ã0
αUxx, Uxxt〉 +

1

2
〈(Ã0

α)tUxx, Uxx〉,(3.11)

where Ã0
α is defined in (3.4).
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The second term can be easily bounded: indeed, using (3.1),

|(Ã0
α)t|L∞ =

∣∣∣∣dA0
α

dŨ

∣∣∣∣ |Ũt| =

∣∣∣∣dA0
α

dŨ

∣∣∣∣ |Ut| ≤ C(C∗)[|U |
W1,∞ + |δ̇(t)|(|Ūx|L∞ + |Ux|L∞ )],

and hence

1

2
〈(Ã0

α)tUxx, Uxx〉 ≤ C(C∗) ζ |Uxx|2
L2

(3.12)

(with ζ as defined in the statement of Proposition 1.4).
Let us consider the first term on the right-hand side of (3.11)

〈Ã0
αUxx, Uxxt〉 = 〈Ã0

αUxx, (ÃUx)xx〉 + 〈Ã0
αUxx, (Q̃U)xx〉

+ 〈Ã0
αUxx, (M1(U)Ūx)xx〉 + 〈Ã0

αUxx, (0, Ir)
tM2(U)xx〉(3.13)

+ δ̇(t) 〈Ã0
αUxx, Ūxxx + Uxxx〉.

Differentiating the first of the terms in (3.13), we get

〈Ã0
αUxx, (ÃUx)xx〉 = 〈Ã0

αUxx, ÃxxUx〉 + 2〈Ã0
αUxx, ÃxUxx〉 + 〈Ã0

αUxx, ÃUxxx〉.
(3.14)

Since

Ãx =
dÃ

dŨ
(Ūx + Ux),

Ãxx =
d2Ã

dŨ2
(Ūx Ūx + Ūx Ux + Ux Ūx + Ux Ux) +

dÃ

dŨ
(Ūxx + Uxx),

the first two terms of (3.14) are bounded by

〈Ã0
αUxx, ÃxxUx〉 + 2〈Ã0

αUxx, ÃxUxx〉 ≤ C(C∗) (ζ + ζ̄) |Uxx|2
L2

+C(C∗, ζ̄) |Ux|2
L2

+

〈
Ã0

αUxx,
dÃ

dŨ
Ūx Uxx

〉
;

(3.15)

here, we have used Young’s inequality to bound 〈Ux, Uxx〉 with ζ̄|Uxx|2
L2

+ C|Ux|2
L2

,

with ζ̄ > 0 chosen such that ζ � ζ̄ � 1.
Using the symmetry of Ã0

α and (2.2) with S = Ã0
αÃ, we find that the last term

of (3.14) takes the form

〈Ã0
αUxx, ÃUxxx〉 = 〈Uxx, Ã

0
αÃ Uxxx〉 = −1

2
〈Uxx, (Ã

0
αÃ)xUxx〉.(3.16)

Recalling (3.5), we have

(Ã0
αÃ)x =

d (Ã0
αÃ)

dŨ
(Ūx + Ux) + (Ã0)

1
2 Õ (αxD̃) Õt(Ã0)

1
2 ,

where, with slight abuse of notation,

d (Ã0
αÃ)

dŨ
W =

d ((Ã0)
1
2 Õ)

dŨ
W α D̃ Õt(Ã0)

1
2 + (Ã0)

1
2 Õ α

d (D̃ Õt(Ã0)
1
2 )

dŨ
W.(3.17)
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Hence, we get

〈Ã0
αUxx, ÃUxxx〉 ≤ −1

2
〈Uxx, (Ã

0)
1
2 Õ (αxD̃) Õt(Ã0)

1
2Uxx〉

+C(C∗) ζ |Uxx|2
L2

− 1

2

〈
Uxx,

d (Ã0
αÃ)

dŨ
Ūx Uxx

〉
.

(3.18)

Summarizing, the first term on the right-hand side of (3.13) can be estimated by

〈Ã0
αUxx, (ÃUx)xx〉 ≤ C(C∗) (ζ + ζ̄) |Uxx|2

L2
+ C(C∗, ζ̄) |Ux|2

L2

+

〈
Ã0

αUxx,
dÃ

dŨ
Ūx Uxx

〉
− 1

2
〈Uxx, (Ã

0)
1
2 Õ (αxD̃) Õt(Ã0)

1
2Uxx〉(3.19)

−1

2

〈
Uxx,

d (Ã0
αÃ)

dŨ
Ūx Uxx

〉
.

The second term in (3.13) can be dealt with similarly: since

Q̃x =
dQ̃

dŨ
(Ūx+Ux), Q̃xx =

d2Q̃

dŨ2
(Ūx Ūx+Ūx Ux+Ux Ūx+Ux Ux)+

dQ̃

dŨ
(Ūxx+Uxx),

we have

〈Ã0
αUxx, (Q̃U)xx〉 = 〈Ã0

αUxx, Q̃xxU〉 + 2〈Ã0
αUxx, Q̃xUx〉 + 〈Ã0

αUxx, Q̃Uxx〉
≤ C(C∗) (ζ + ζ̄) |Uxx|2

L2
+ C(C∗, ζ̄) |U |2

H1
+ 〈Ã0

αUxx, Q̃Uxx〉,

(3.20)

with ζ̄ as in the previous case.
The third term in (3.13) can be estimated by

〈Ã0
αUxx, (M1(U)Ūx)xx〉 ≤ C(C∗) ζ̄ |Uxx|2

L2
+ C(C∗, ζ̄) |U |2

H1

+

〈
Ã0

αUxx,
dM1

dU
Uxx Ūx

〉
.

(3.21)

The fourth term in (3.13) is easier: since

M2(U)xx =
d2M2

dU2
Ux Ux +

dM2

dU
Uxx,

we have (recall that M2(U) = O(|U |2))

〈Ã0
αUxx, (0, Ir)

t M2(U)xx〉 ≤ C(C∗) ζ̄ |Uxx|2
L2

+ C(C∗, ζ̄) |Ux|2
L2
.(3.22)

Finally, we estimate the last term in (3.13): δ̇(t) 〈Ã0
αUxx, Ūxxx + Uxxx〉. Since

δ̇(t) 〈Ã0
αUxx, Ūxxx〉 ≤ C(C∗)|δ̇(t)| |Uxx|L2 ≤ C(C∗) ζ̄ |Uxx|2

L2
+ C(C∗, ζ̄)|δ̇(t)|2

and, using (2.2) with S = Ã0
α,

δ̇(t) 〈Ã0
αUxx, Uxxx〉 = −1

2
δ̇(t) 〈Uxx, (Ã

0
α)xUxx〉 ≤ C(C∗) ζ |Uxx|2

L2
,
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we have

δ̇(t) 〈Ã0
αUxx, Ūxxx + Uxxx〉 ≤ C(C∗) ζ |Uxx|2

L2
+ C(C∗)|δ̇(t)|.(3.23)

Collecting (3.12), (3.19), (3.20), (3.21), (3.22), and (3.23), we get

1

2
〈Ã0

αUxx, Uxx〉t ≤ −1

2
〈Uxx, (Ã

0)
1
2 Õ (αxD̃) Õt(Ã0)

1
2Uxx〉 + 〈Uxx, Ã

0
αQ̃Uxx〉

− 1

2

〈
Uxx,

d (Ã0
αÃ)

dŨ
Ūx Uxx

〉
+

〈
Uxx, Ã

0
α

(
dÃ

dŨ
Ūx Uxx +

dM1

dU
Uxx Ūx

)〉
(3.24)

+C(C∗) (ζ + ζ̄) |Uxx|2
L2

+ C(C∗, ζ̄) (|U |2
H1

+ |δ̇(t)|2).

Let us consider the term in (3.24) containing
d (Ã0

αÃ)

dŨ
. By (3.17),〈

Uxx,
d (Ã0

αÃ)

dŨ
Ūx Uxx

〉
= s

〈
Uxx,

d ((Ã0)
1
2 Õ)

dŨ
Ūx α D̃ Õt(Ã0)

1
2 Uxx

〉

+

〈
Uxx, (Ã

0)
1
2 Õ α

d (D̃ Õt(Ã0)
1
2 )

dŨ
Ūx Uxx

〉

= 〈Uxx, (Ã
0)

1
2 Õ P1 α Õt(Ã0)

1
2 Uxx〉

+〈Uxx, (Ã
0)

1
2 Õ αP2 Õ

t(Ã0)
1
2 Uxx〉,

where

P1 = Õt (Ã0)−
1
2
d ((Ã0)

1
2 Õ)

dŨ
Ūx D̃ and P2 =

d (D̃ Õt(Ã0)
1
2 )

dŨ
Ūx (Ã0)−

1
2 Õ.

Similarly,〈
Uxx, Ã

0
α

(
dÃ

dŨ
Ūx Uxx +

dM1

dU
Uxx Ūx

)〉
= 〈Uxx, (Ã

0)
1
2 Õ αP3Õ

t(Ã0)
1
2 Uxx〉,

where

P3 = Õt(Ã0)
1
2

(
dÃ

dŨ
+

dM1

dU

)
Ūx.

The terms

−1

2
〈Uxx, (Ã

0)
1
2 Õ P1 α Õt(Ã0)

1
2 Uxx〉 +

〈
Uxx, (Ã

0)
1
2 Õ α

(
P3 −

1

2
P2

)
Õt(Ã0)

1
2 Uxx

〉

can be rewritten as the sum of two terms, one taking into account “off-block-diagonal”
parts (meaning off-block-diagonal after conjugation by (Ã0)

1
2 Õ) and the other taking

into account “block-diagonal” parts. We denote the first one as

〈Uxx, (Ã
0)

1
2 ÕNÕt(Ã0)

1
2Uxx〉,

where |N |C1(x,t ≤ C(C∗) indeed holds, since N by definition is of form J(Ũ , α, Ūx)

with J(·) smooth, and |Ũ |C1(x,t) ≤ Cζ, |α|C1(x,t) ≤ C∗ sup |α| ≤ C(C∗). The “block-

diagonal” parts (meaning block-diagonal after conjugation by (Ã0)
1
2 Õ) of these error
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terms may be estimated by C 〈Uxx, |Ūx| Ã0
α Uxx〉 for some constant C > 0 (indepen-

dent of α,C∗).
Hence, we get the final form of the Friedrichs-type estimate:

1

2
〈Ã0

αUxx, Uxx〉t ≤ −1

2
〈Uxx, (Ã

0)
1
2 Õ (αxD̃) Õt(Ã0)

1
2Uxx〉 + 〈Uxx, Ã

0
αQ̃Uxx〉

+ 〈Uxx, (Ã
0)

1
2 ÕNÕt(Ã0)

1
2Uxx〉 + C〈Uxx, |Ūx| Ã0

αUxx〉(3.25)

+C(C∗) (ζ + ζ̄) |Uxx|2
L2

+ C(C∗, ζ̄) (|U |2
H1

+ |δ̇(t)|2).

Remark 3.1. The treatment of error term N , above, we regard as the most
delicate and novel aspect of our argument. Without complete cancellation of off-
diagonal terms, we see no way that such a “Goodman-type” estimate can close, due
to exponential growth in C∗ of sup |α|.

Kawashima-type estimate. Next, we perform a “Kawashima-type” estimate of the
type formalized in [17]. Applying (2.3) to W = Ux and K = K̃α,

1

2
〈Uxx, K̃αUx〉t = 〈Uxx, K̃αUxt〉 +

1

2
〈Uxx, (K̃α)tUx〉 +

1

2
〈Ux, (K̃α)xUxt〉.(3.26)

Thanks to (3.7) and to Young’s inequality, the second term is easily bounded by

1

2
〈Uxx, (K̃α)tUx〉 ≤ C ζ̄ |Uxx|2

L2
+ C(ζ̄, C∗) |Ux|2

L2
,(3.27)

with ζ̄ as previously chosen.
Differentiating (3.1) with respect to x, we obtain

Uxt + (ÃUx)x − (Q̃U)x = (M1(U)Ūx)x + (0, Ir)
tM2(U)x + δ̇(t)(Ūxx + Uxx),(3.28)

and hence (twice) the last term in (3.26) can be rewritten as

〈Ux, (K̃α)xUxt〉 = −
〈
Ux, (K̃α)x

dÃ

dŨ
(Ūx + Ux)Ux

〉
− 〈Ux, (K̃α)xÃUxx〉

+

〈
Ux, (K̃α)x

dQ̃

dŨ
(Ūx + Ux)Ux

〉
+ 〈Ux, (K̃α)xQ̃ Ux〉

+

〈
Ux, (K̃α)x

dM1

dU
Ux Ūx

〉
+ 〈Ux, (K̃α)xM1(U)Ūxx〉

+

〈
Ux, (K̃α)x(0, Ir)

t dM2

dU
Ux

〉
+ δ̇(t)〈Ux, (K̃α)x(Ūxx + Uxx)〉.

All of the terms not containing Uxx can be estimated by C(C∗)(|U |2
H1

+|δ̇(t)|2) (having

used once more (3.7)). For the remaining terms,

−〈Ux, (K̃α)xÃUxx〉 + δ̇(t)〈Ux, (K̃α)x Uxx〉 ≤ C ζ̄ |Uxx|2L2 + C(C∗, ζ̄) |Ux|2
L2
.

Hence,

1

2
〈Ux, (K̃α)xUxt〉 ≤ C ζ̄ |Uxx|2L2 + C(C∗, ζ̄)(|U |2

H1
+ |δ̇(t)|2).(3.29)
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Inserting (3.28), the first term on the right-hand side of (3.26) becomes

〈Uxx, K̃αUxt〉 = −
〈
Uxx, K̃α

dÃ

dŨ
(Ūx + Ux)Ux

〉
− 〈Uxx, K̃α ÃUxx〉

+

〈
Uxx, K̃α

dQ̃

dŨ
(Ūx + Ux)Ux

〉
+ 〈Uxx, K̃α Q̃ Ux〉

+

〈
Uxx, K̃α

dM1

dU
Ux Ūx

〉
+ 〈Uxx, K̃α M1(U)Ūxx〉

+

〈
Uxx, K̃α (0, Ir)

t dM2

dU
Ux

〉
+ δ̇(t)〈Uxx, (K̃α)x(Ūxx + Uxx)〉.

The terms containing at least one of Ux, U, δ̇ can be estimated (applying Young’s
inequality) by C(ζ̄ + ζ)|Uxx|2

L2
+ C(ζ̄, C∗)(|U |2

H1
+ |δ̇(t)|2); hence,

〈Uxx, K̃αUxt〉 ≤ −〈Uxx, K̃α ÃUxx〉 + C(ζ̄ + ζ)|Uxx|2
L2

+C(ζ̄, C∗)(|U |2
H1

+ |δ̇(t)|2).
(3.30)

Finally, (3.26), (3.27), (3.29), and (3.30) give

1

2
〈Uxx, K̃αUx〉t ≤ −〈Uxx, K̃α ÃUxx〉 + C(ζ̄ + ζ)|Uxx|2

L2

+C(C∗, ζ̄)(|U |2
H1

+ |δ̇(t)|2).
(3.31)

Adding (3.25) and (3.31), we obtain

1

2
(〈Ã0

αUxx, Uxx〉t + 〈Uxx, K̃αUx〉)t ≤ −1

2
〈Uxx, (Ã

0)
1
2 Õ (αxD̃) Õt(Ã0)

1
2Uxx〉

+C 〈Uxx, |Ūx| Ã0
αUxx〉 + 〈Uxx, (−K̃α Ã + Ã0

αQ̃ + (Ã0)
1
2 ÕNÕt(Ã0)

1
2 )Uxx〉(3.32)

+C(C∗) (ζ + ζ̄) |Uxx|2
L2

+ C(C∗, ζ̄) (|U |2
H1

+ |δ̇(t)|2).

Recalling (3.8) and (3.9), we obtain, finally,

(〈Ã0Uxx, Uxx〉 + 〈Uxx, K̃αUx〉)t ≤ − (θ C∗ − C) 〈Uxx, |Ūx| Ã0
α Uxx〉

+ (−θ(C∗) + C(C∗)(ζ + ζ̄))|Uxx|2
L2

+ C(ζ̄, C∗)(|U |2
H1

+ |δ̇(t)|2)(3.33)

≤ −1

2
θ(C∗)|Uxx|2

L2
+ C(ζ̄, C∗)(|U |2

H1
+ |δ̇(t)|2),

provided that C∗ is taken sufficiently large and ζ̄, ζ sufficiently small that C ≤ θC∗
and −θ(C∗) + C(C∗)(ζ + ζ̄) ≤ −θ(C∗)/2.

Given M > 0, let us set

E(U) := 〈Ã0Uxx, Uxx〉 + 〈Uxx, K̃αUx〉 + M |U |2
L2
.(3.34)

Since, for U ∈ H2, |Ux|L2 can be bounded by C
(
|U |

L2 + |Uxx|L2

)
for some C > 0,

then the functional defined in (3.34) is equivalent to |U |2
H2

if M is large enough.

Moreover, from (3.1) it follows that

d|U |2
L2

dt
≤ C(|U |2

H1
+ |δ̇(t)|2).
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Therefore,

dE
dt

≤ −1

2
θ(C∗) |Uxx|2

L2
+ C(|U |2

H1
+ |δ̇(t)|2)

for some C > 0. Passing through the Fourier transform, it is easy to see that for
U ∈ H2 there holds

|Ux|2
L2

≤ C|U |2
L2

+
1

C
|Uxx|2

L2
∀C > 0.(3.35)

Hence, using E ≥ C|Uxx|2
L2

and choosing C big enough in (3.35), we get

dE
dt

≤ −θ E + C(|U |2
L2

+ |δ̇(t)|2)

for some C, θ > 0. Multiplying by eθt and integrating in time from 0 to t, we get
(1.8), and the proof of Proposition 1.4 is complete.

Remark 3.2. The energy estimate (1.9) can be deduced from (3.33) as follows.
Integrating (3.33) from 0 to t yields

(〈Ã0
αUxx, Uxx〉 + 〈Uxx, K̃αUx〉)|t0 + θ(C∗)

∫ t

0

|Uxx|2
L2

(s) ds

≤ C(C∗, ζ̄)

∫ t

0

(|U |2
H1

+ |δ̇|2)(s) ds.

Rearranging, using positive definiteness of Ã0
α, using Young’s inequality to bound

〈Uxx,KαUx〉(t) ≤ ζ̄|Uxx|2
L2

(t) + Cζ̄−1|Ux|2
L2

(t) ≤ ζ̄|Uxx|2
L2

(t) + Cζ̄−1ζ2,

and recalling, by assumption, that (〈Ã0
αUx, Ux〉 + 〈Ux, K̃αU〉)(0) ≤ Cζ2, we obtain

(1.9) as claimed.

4. Nonlinear stability. We now establish Theorem 1.2 on nonlinear stability.
Linearized estimates. Linearizing (1.2) about the stationary solution (ū, v̄), we

obtain the linearized equations

Ut = LU := −(AU)x + QU,(4.1)

where

A :=

(
df
dg

)
(ū, v̄), Q :=

(
0

dq(ū, v̄)

)
, and U :=

(
u
v

)
(u ∈ R

n, v ∈ R
r).

Define the associated Green distribution G(x, t; y) by

(∂t − L)G(x, t; y) = δ(y,0)(x, t).

We have the following bounds established in [24, Proposition 1.11] and [24, Lemmas
7.1–7.5]. (See also the “notes” below (7.22) of [24], which is used in the short-time
estimate for |ey(·, t)|Lp .)

Proposition 4.1 (see [24]). Assuming (A1)–(A2) and (H0)–(H5), the Green
distribution G may be decomposed as

G = E + G̃ + H,(4.2)
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where E(x, t; y) = e(y, t) Ūx(x), with

|ey(·, t)|Lp ≤ Ct
1
2 (1 + t)−

1
2 (1− 1

p )− 1
2 , |et(·, t)|Lp ≤ Ct−

1
2 (1− 1

p ),

|ety(·, t)|Lp ≤ Ct−
1
2 (1− 1

p )− 1
2 ,∣∣∣∣

∫
R

G̃(·, t; y) f(y) dy

∣∣∣∣
Lp

≤ C(1 + t)−
1
2 (1− 1

r )|f |
Lq ,∣∣∣∣

∫
R

G̃(·, t; y) (0, Ir)
t f(y) dy

∣∣∣∣
Lp

≤ C(1 + t)−
1
2 (1− 1

r )− 1
2 |f |

Lq ,∣∣∣∣
∫

R

G̃y(·, t; y) f(y) dy

∣∣∣∣
Lp

≤ C(1 + t)−
1
2 (1− 1

r )− 1
2 |f |

Lq + Ce−ηt|f |
Lp ,

and ∣∣∣∣
∫

R

H(·, t; y) f(y) dy

∣∣∣∣
Lp

≤ Ce−ηt|f |
Lp

for all t ≥ 0, some C, η > 0, for any 1 ≤ r ≤ p and f ∈ Lq (resp., Lp), where
1/r + 1/q = 1 + 1/p.

Here, the “excited” component E accounts for contributions in the direction of the
translational zero eigenfunction Ūx, while the “hyperbolic” component H accounts for
propagation of signals along hyperbolic characteristics, its time-exponential damping a
consequence of the genuine coupling condition (1.3). The reduced Green distribution
G̃, accounting for long-time behavior in the far fields, is approximately a sum of
Gaussian signals scattered by the shock layer. For further discussion, see [24].

Proof of Theorem 1.2. We first treat the case p ≥ 2, afterward extending to p ≤ 2
by a bootstrap argument.

Lp stability, 2 ≤ p ≤ ∞. Define the nonlinear perturbation

U(x, t) :=

(
u
v

)
(x + δ(t), t) −

(
ū
v̄

)
(x) = Ũ(x + δ(t), t) − Ū(x),

where δ(t) (estimating shock location) is to be determined later; for definiteness, fix
δ(0) = 0. Then

Ut − LU = N1(U)x + (0, Ir)
tN2(U) + δ̇(t)(Ūx + Ux),

where

Nj(U,U) = O(|U |2) and Nj(U,U)x = O(|U ||Ux|)

so long as |U | remains bounded. By Duhamel’s principle, and the fact that∫
R

G(x, t; y)Ūx(y)dy = eLtŪx(x) = Ūx(x),

we have

U(x, t) =

∫
R

G(x, t; y)U0(y) dy −
∫ t

0

∫
R

Gy(x, t− s; y)(N1(U) + δ̇U)(y, s) dy ds

+

∫ t

0

∫
R

G(x, t− s; y)(0, Ir)
tN2(U)(y, s) dy ds + δ(t)Ūx.
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Defining the instantaneous shock location

δ(t) = −
∫

R

e(y, t)U0(y) dy +

∫ t

0

∫
R

ey(y, t− s)(N1(U) + δ̇U)(y, s) dy ds,(4.3)

where E, e are defined as in Proposition 4.1, and recalling decomposition (4.2), we
thus obtain the reduced equations

U(x, t) =

∫
R

(H + G̃)(x, t; y)U0(y) dy

+

∫ t

0

∫
R

H(x, t− s; y)(N1(U)x + (0, Ir)
tN2(U) + δ̇Ux)(y, s) dy ds

−
∫ t

0

∫
R

G̃y(x, t− s; y)(N1(U) + δ̇U)(y, s) dy ds

+

∫ t

0

∫
R

G̃(x, t− s; y)(0, Ir)
tN2(U) dy ds,

(4.4)

and differentiating (4.3) with respect to t and using |ey(·, s)|L1 → 0 as t → 0,

δ̇(t) = −
∫

R

et(y, t)U0(y) dy +

∫ t

0

∫
R

eyt(y, t− s)(N1(U) + δ̇U)(y, s) dy ds.(4.5)

Define

ζ(t) := sup
0≤s≤t, 2≤p≤∞

[ |U(·, s)|
Lp (1 + s)

1
2 (1− 1

p ) + |δ̇(s)|(1 + s)
1
2 + |δ(s)|].(4.6)

We shall establish the following claim.
Claim. For all t ≥ 0 for which a solution exists with ζ uniformly bounded by

some fixed, sufficiently small constant, there holds

ζ(t) ≤ C2(|U0|L1∩H2 + ζ(t)2).

From this result, it follows by continuous induction that, provided |U0|L1∩H2 <
1/4C2

2 , there holds

ζ(t) ≤ 2C2|U0|L1∩H2(4.7)

for all t ≥ 0 such that ζ remains small. By standard short-time theory/local well-
posedness in H2, and the standard principle of continuation, there exists a solution
U(·, t) ∈ H2 on the open time-interval for which |U |H2 remains bounded, and on this
interval ζ is well-defined and continuous. Now, let [0, T ) be the maximal interval on
which |U |

H2 remains strictly bounded by some fixed, sufficiently small constant δ > 0.
By Proposition 1.4 and the one-dimensional Sobolev bound |U |

W1,∞ ≤ C|U |
H2 , we

have

|U(t)|2
H2

≤ C|U(0)|2
H2

e−θt + C

∫ t

0

e−θ2(t−τ)(|U |2
L2

+ |δ̇|2)(τ) dτ

≤ C2

(
|U(0)|2

H2
+ ζ(t)2

)
(1 + t)−

1
2 ,

(4.8)

and so the solution continues so long as ζ remains small, with bound (4.7), at once
yielding existence and the claimed sharp Lp ∩H2 bounds, 2 ≤ p ≤ ∞.
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Thus, it remains only to establish the claim above.

Proof of claim. We must show that each of the quantities |U |
Lp (1 + s)

1
2 (1− 1

p ),

|δ̇|(1 + s)
1
2 , and |δ| is separately bounded by

C(|U0|L1∩H2 + ζ(t)2)

for some C > 0, all 0 ≤ s ≤ t, so long as ζ remains sufficiently small. By (4.4)–(4.5),
we have

∣∣U ∣∣
Lp

(t) ≤
∣∣∣∣
∫

R

(H + G̃)(x, t; y)U0(y) dy

∣∣∣∣
Lp

+

∣∣∣∣
∫ t

0

∫
R

H(x, t− s; y)N1(U)y(y, s) dy ds

∣∣∣∣
Lp

+

∣∣∣∣
∫ t

0

∫
R

H(x, t− s; y) (0, Ir)
tN2(U)(y, s) dy ds

∣∣∣∣
Lp

+

∣∣∣∣
∫ t

0

∫
R

H(x, t− s; y) δ̇ Ux(y, s) dy ds

∣∣∣∣
Lp

+

∣∣∣∣
∫ t

0

∫
R

G̃y(x, t− s; y)N1(U)(y, s) dy ds

∣∣∣∣
Lp

+

∣∣∣∣
∫ t

0

∫
R

G̃(x, t− s; y) (0, Ir)
tN2(U)(y, s) dy ds

∣∣∣∣
Lp

+

∣∣∣∣
∫ t

0

∫
R

G̃y(x, t− s; y) δ̇ U(y, s)dy ds

∣∣∣∣
Lp

=: Ia + Ib + Ic + Id + Ie + If + Ig,

(4.9)

(4.10)

|δ̇|(t) ≤
∣∣∣∣
∫

R

et(y, t)U0(y) dy

∣∣∣∣ +

∣∣∣∣
∫ t

0

∫
R

eyt(y, t− s)δ̇U(y, s) dy ds

∣∣∣∣ =: IIa + IIb,

and

(4.11)

|δ|(t) ≤
∣∣∣∣
∫

R

e(y, t)U0(y)dy

∣∣∣∣ +

∣∣∣∣
∫ t

0

∫
R

ey(y, t− s)δ̇ U(y, s) dy ds

∣∣∣∣ =: IIIa + IIIb.

We estimate each term in turn, following the approach of [24, 25, 27, 37]. Applying
the bounds of Proposition 4.1, we find that the linear term Ia satisfies

Ia ≤ |U |
Lp

(t)

∣∣∣∣
∫

R

H U0 dy

∣∣∣∣
Lp

+

∣∣∣∣
∫

R

G̃ U0 dy

∣∣∣∣
Lp

≤ Ce−θt|U0|Lp + C(1 + t)−
1
4 |U0|L1 ≤ C|U0|L1∩H2 (1 + t)−

1
4 .

(4.12)

Likewise, applying the bounds of Proposition 4.1 together with definition (4.6) and
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energy estimate (4.8), we have

Ib =

∣∣∣∣
∫ t

0

∫
R

H N1(U)y dy ds

∣∣∣∣
Lp

≤ C

∫ t

0

e−η(t−s)|U |
L∞ |Ux|Lp (s) ds

≤ C

∫ t

0

e−η(t−s)|U |
L∞ |U |

H2 (s) ds ≤ Cζ(t)2
∫ t

0

e−η(t−s)(1 + s)−
3
4 ds

≤ Cζ(t)2(1 + t)−
3
4 ,

(4.13)

Ic =

∣∣∣∣
∫ t

0

∫
R

H (0, Ir)
tN2(U) dy ds

∣∣∣∣
Lp

≤ C

∫ t

0

e−η(t−s)|U |
L∞ |U |

Lp (s) ds

≤ Cζ(t)2
∫ t

0

e−η(t−s)(1 + s)−
3
4 ds ≤ Cζ(t)2(1 + t)−

3
4 ,

(4.14)

Id =

∣∣∣∣
∫ t

0

∫
R

H δ̇ Ux dy ds

∣∣∣∣
Lp

≤ C

∫ t

0

e−η(t−s)|δ̇||Ux|Lp (s) ds

≤ Cζ(t)2
∫ t

0

e−η(t−s)(1 + s)−
3
4 ds ≤ Cζ(t)2(1 + t)−

3
4

(4.15)

(Proposition 4.1, 2 ≤ p = q ≤ ∞, r = 1) and

Ie =

∣∣∣∣
∫ t

0

∫
R

G̃y N1(U) dy ds

∣∣∣∣
Lp

≤ C

∫ t

0

(
1 + (t− s)

)− 1
2 (1− 1

p )− 1
4 |U |

L∞ |U |
L2 (s) ds

≤ Cζ(t)2
∫ t

0

(
1 + (t− s)

)− 1
2 (1− 1

p )− 1
4 (1 + s)−

3
4 ds ≤ Cζ(t)2(1 + t)−

1
2 (1− 1

p ),

(4.16)

If =

∣∣∣∣
∫ t

0

∫
R

G̃ (0, Ir)
tN2(U) dy ds

∣∣∣∣
Lp

≤ C

∫ t

0

(
1 + (t− s)

)− 1
2 (1− 1

p )− 1
4 |U |

L∞ |U |
L2 (s) ds

≤ Cζ(t)2
∫ t

0

(
1 + (t− s)

)− 1
2 (1− 1

p )− 1
4 (1 + s)−

3
4 ds ≤ Cζ(t)2(1 + t)−

1
2 (1− 1

p ),

(4.17)

(4.18)

Ig =

∣∣∣∣
∫ t

0

∫
R

G̃y δ̇ U dy ds

∣∣∣∣
Lp

≤ C

∫ t

0

(
1 + (t− s)

)− 1
2 (1− 1

p )− 1
4 |δ̇||U |

L2 (s) ds

≤ Cζ(t)2
∫ t

0

(
1 + (t− s)

)− 1
2 (1− 1

p )− 1
4 (1 + s)−

3
4 ds ≤ Cζ(t)2(1 + t)−

1
2 (1− 1

p )

(Proposition 4.1, 2 ≤ p ≤ ∞, q = 2). Summing bounds (4.12)–(4.18), we obtain the
desired bound on |U |

Lp .
Similarly, applying the bounds of Proposition 4.1 together with definition (4.6),

we find that

IIa =

∣∣∣∣
∫

R

et U0 dy

∣∣∣∣ ≤ |et(y, t)|L∞ (t)|U0|L1 ≤ C|U0|L1 (1 + t)−
1
2(4.19)



STABILITY OF LARGE SHOCK PROFILES OF RELAXATION SYSTEMS 909

and

IIb =

∣∣∣∣
∫ t

0

∫
R

eyt δ̇U dy ds

∣∣∣∣ ≤
∫ t

0

|eyt|L2 (t− s)|δ̇||U |
L2 (s) ds

≤ Cζ(t)2
∫ t

0

(t− s)−3/4(1 + s)−
3
4 ds ≤ Cζ(t)2(1 + t)−

1
2 ,

(4.20)

while

IIIa =

∣∣∣∣
∫

R

eU0 dy

∣∣∣∣ ≤ |e(y, t)|
L∞ (t)|U0|L1 ≤ C|U0|L1(4.21)

and

IIIb =

∣∣∣∣
∫ t

0

∫
R

ey δ̇U dy ds

∣∣∣∣ ≤
∫ t

0

|ey|L2 (t− s)|δ̇||U |
L2 (s) ds

≤ Cζ(t)2
∫ t

0

(t− s)−
1
4 (1 + s)−

3
4 ds ≤ Cζ(t)2.

(4.22)

Summing (4.19)–(4.20) and (4.21)–(4.22), we obtain the desired bounds on δ̇ and δ.
This completes the proof of the claim, giving the result for 2 ≤ p ≤ ∞.

Lp stability, 1 ≤ p ≤ 2. The source term δ̇ Ux appearing in the reduced
equations is convenient for high norm estimates Lp, p ≥ 2, but (since it would lead
to a source term involving higher derivative factor |Ux|Lp not controlled by energy
estimates) not for low norm estimates Lp, 1 ≤ p < 2. To treat low norms, we redefine

U := Ũ(x, t) − Ū(x− δ(t))

following [40], which has the effect of replacing δ̇ Ux in the reduced equations with
“centering errors”

S1(δ, δ̇, U)x +

(
0
Ir

)
S2(δ) := −((A(Ū(x− δ)) −A(Ū(x)))U + δ̇(Ū(x− δ) − Ū(x)))x

+ δ(Q(Ū(x− δ)) −Q(Ū(x)))U

satisfying

|S1(δ, δ̇, U)(y, s)| ≤ |δ|(|U | + |δ̇|)e−θ|y|,

|S1(δ, δ̇, U)x(y, s)| ≤ |δ|(|U | + |δ̇| + |Ux|)e−θ|y|,

|S2(δ)(y, s)| ≤ |δ||U |e−θ|y|,

and therefore

|S1|L1 ≤ (|U |
L∞ + |δ̇|) ≤ C(1 + t)−

1
2 |U0|L1∩H2 ,

|(S1)x|L1 ≤ (|U |
L∞ + |U |

H1 + |δ̇|) ≤ C(1 + t)−
1
4 |U0|L1∩H2 ,

and

|S2|L1 ≤ |U |
L∞ |δ| ≤ C(1 + t)−

1
2 |U0|L1∩H2
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by the previously obtained L∞ and H1 estimates, which are unaffected by a spatial
shift. Likewise,

|N1(U)|
W1,1 , |N2(U)|

L1 ≤ |U |2
H1

≤ C(1 + t)−
1
2 |U0|L1∩H2 .

Thus, expressing U by Duhamel’s formula similarly to (4.9)–(4.11) and estimating
nonlinear terms using the bounds of Proposition 4.1 with p = 1, q = 1, we readily
obtain the sharp L1 decay estimate

|U |
L1 ≤ C|U0|L1∩H2

and, by interpolation with the previously obtained L2 bound, the sharp Lp estimate,

1 ≤ p ≤ 2 of |U |
Lp ≤ C(1+ t)

1
2 (1− 1

p )|U0|L1∩H2 , as claimed. We omit the details, which
are entirely similar to those already carried out.

5. The characteristic case. Finally, we briefly discuss the uniformly charac-
teristic case in which (H1)(i) is violated for a shock profile of a discrete kinetic model.
This cannot occur for the simplest examples of the Broadwell or Jin–Xin models, for
the reason that it would violate the subcharacteristic condition

aj < a∗±j < aj+r,(5.1)

which is in turn necessary for strict dissipativity, (A2); see, e.g., [24, 26, 33]. Indeed,
this holds in general for models with the property that r+1 consecutive characteristics
take on only two values (r + 1 = 2 for Broadwell; r + 1 = (n/2) + 1 ≥ 2 for Jin–Xin,
but the total number of characteristic values is 2), for the subcharacteristic condition
(5.1) then implies that a∗±p lie between the neighboring characteristic values ap and
ap+r, whence, by the Lax condition a∗−p > 0 > a∗+p , the speed s = 0 does as well.

This is clearly an accident of low dimension, however, and for general models there
is no physical reason that (H1)(i) should be satisfied. Indeed, though it is evidently
satisfied generically, there is ample reason to discard this hypothesis, for, discretizing
the Boltzmann equations

ft + ξfx = Q(ξ, f), ξ ∈ R
1,

by velocity ξ, where ξ denotes velocity, f(ξ, x) the probability distribution of speeds
at spatial location x, and Q(ξ, f) a collision term (local in x but nonlocal in ξ), we find
as the velocity mesh goes to zero that (H1)(i) is more and more poorly satisfied, so
that uniformity of our estimates (or even the ball for which small-amplitude profiles
are guaranteed to exist) is lost.

This is hardly the main difficulty in proceeding to the Boltzmann limit, which is
rather the reverse problem of unboundedness of the multiplication operator f → ξf
(in our notation, blowup of the spectrum of A) and the associated lack of spectral
gap between zero and the essential spectrum of the operator A−1Q appearing in the
standing-wave and eigenvalue ODE; see, e.g., [6]. Nonetheless, it is an issue that arises
and should be addressed.

Fortunately, there is a simple fix, at least for discrete kinetic models. Namely, in
case characteristics aj , . . . , ak coincide with shock speed s = 0, we may substitute for
(H1)(i) the more general hypotheses

Re
(
Lj · · ·Lk

)
dQ

⎛
⎜⎝

Rj

...
Rk

⎞
⎟⎠ ≤ −θ < 0(5.2)



STABILITY OF LARGE SHOCK PROFILES OF RELAXATION SYSTEMS 911

for some fixed left and right zero eigenbases Li and Ri, and

kerA ∩ ker dQ = ∅,(5.3)

where without loss of generality A is taken to be diagonal. This holds necessarily
at x = ±∞ for some choice of diagonalizing transformation, by strict dissipativity,
(A2) (recall that Reσ( block-diag L̃QR̃±) < 0 follows from (A2) by Taylor expansion
at infinity of the spectrum of the symbol iξA± + Q±; likewise, (A2) implies genuine
coupling, (1.3), of which (5.3) is a weakened form), hence (H1)(i) is always satisfied in
the small-amplitude case. Whether or not it holds globally for physically interesting
examples we do not know.

Review of the argument of section 3 shows that auxiliary energy estimate (1.9)
goes through under this hypothesis with constant weights αj = αj+1 = · · · = αk ≡ 1
in the zero-speed modes, since there are no error terms in these modes to be overcome
and there is a uniformly good contribution by (5.2). Likewise, review of the arguments
of [24] shows that the results obtained there carry through as well, with appropriate
modification of the proofs. Namely, (5.2) and (5.3) together imply that⎛

⎜⎜⎜⎜⎜⎝

df
dQj

...
dQk

dg2

⎞
⎟⎟⎟⎟⎟⎠ , g =:

(
g1

g2

)
, g1 ∈ R

k−j+1,

is full rank under some choice of coordinate system, whence we can again rewrite
both traveling-wave and eigenvalue/resolvent equations as nondegenerate first-order
systems and proceed as before. We omit the details, as this diverges from our main
purpose.

Note in particular that we obtain small-amplitude existence for fixed speed s by
a minor adjustment of the argument of [24] (namely, fixing the speed, without loss
of generality, s = 0, and letting endstates vary), without any assumption on the base
state other than simplicity of the principal eigenvalue and strong dissipativity; this
generalizes earlier results of [34, 24].

For aj , . . . , ak close to s = 0, we may recover our previous results with uniform
estimates by a singular perturbation version of the same argument. It would be
interesting to extend this approach to more general relaxation models for which the
speeds ai are not constant, in particular the case for which they are sometimes but
not always characteristic.

Acknowledgments. K.Z. thanks Istituto per le Applicazioni del Calcolo “M.
Picone” (CNR) and European TMR project “Hyperbolic Systems of Conservation
Laws” for their hospitality and for making possible the visit (April 10–May 10, 2000)
during which this work was initiated.

REFERENCES

[1] G. I. Barenblatt, J. Garcia-Azorero, A. De Pablo, and J. L. Vazquez, Mathemati-
cal model of the non-equilibrium water-oil displacement in porous strata, Appl. Anal., 65
(1997), pp. 19–45.

[2] G. I. Barenblatt and A. P. Vinnichenko, Nonequilibrium filtration of nonmixing fluids,
Adv. in Mech., 3 (1980), pp. 35–50 (in Russian).



912 CORRADO MASCIA AND KEVIN ZUMBRUN

[3] A. A. Barmin and S. A. Egorushkin, Stability of shock waves, Adv. Mech., 15 (1992), pp. 3–
37.

[4] S. Benzoni-Gavage, D. Serre, and K. Zumbrun, Alternate Evans functions and viscous
shock waves, SIAM J. Math. Anal., 32 (2001), pp. 929–962.

[5] S. Bianchini, B. Hanouzet, and R. Natalini, Asymptotic behavior of smooth solutions for
weakly dissipative hyperbolic systems with a convex entropy in several space dimensions,
in preparation.

[6] R. Caflisch and B. Nickolaenko, Shock profile solutions of the Boltzmann equation, Comm.
Math. Phys., 86 (1982), pp. 161–194.

[7] H. Freistühler and K. Zumbrun, Examples of Unstable Viscous Shock Waves, unpublished
note, Institut für Mathematik, RWTH Aachen, 1998.

[8] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl.
Math., 7 (1954), pp. 345–392.

[9] K. O. Friedrichs, On the laws of relativistic electro-magneto-fluid dynamics, Comm. Pure
Appl. Math., 27 (1974), pp. 749–808.

[10] R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous
shock profiles, Comm. Pure Appl. Math., 51 (1998), pp. 797–855.

[11] P. Godillon, Linear stability of shock profiles for systems of conservation laws with semi-
linear relaxation, Phys. D, 148 (2001), pp. 289–316.

[12] J. Goodman, Remarks on the stability of viscous shock waves, in Viscous Profiles and Numerical
Methods for Shock Waves, Raleigh, NC, 1990, SIAM, Philadelphia, PA, 1991, pp. 66–72.

[13] P. Howard and K. Zumbrun, Pointwise estimates for dispersive-diffusive shock waves, Arch.
Ration. Mech. Anal., 155 (2000), pp. 85–169.

[14] P. Howard and K. Zumbrun, Stability of Undercompressive Shock Profiles, preprint, 2004.
[15] J. Humpherys, Viscous-Dispersive Traveling Waves I: Admissibility and Existence, preprint,

2003.
[16] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space

dimensions, Comm. Pure Appl. Math., 48 (1995), pp. 235–276.
[17] S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the

Equations of Magnetohydrodynamics, thesis, Kyoto University, 1983.
[18] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1985.
[19] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock

Waves, CBMS-NSF Reg. Conf. Ser. in Appl. Math. 11, SIAM, Philadelphia, PA, 1973.
[20] T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math.

Soc., 56 (1985).
[21] A. Majda, The stability of multi-dimensional shock fronts—a new problem for linear hyperbolic

equations, Mem. Amer. Math. Soc., 275 (1983).
[22] A. Majda, The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc., 281

(1983).
[23] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Vari-

ables, Springer-Verlag, New York, 1984.
[24] C. Mascia and K. Zumbrun, Pointwise Green’s function bounds and stability of relaxation

shocks, Indiana Univ. Math. J., 51 (2002), pp. 773–904.
[25] C. Mascia and K. Zumbrun, Stability of small-amplitude shock profiles of symmetric

hyperbolic–parabolic systems, Comm. Pure Appl. Math., 57 (2004), pp. 841–876.
[26] C. Mascia and K. Zumbrun, Pointwise Green function bounds for shock profiles of systems

with real viscosity, Arch. Ration. Mech. Anal., 169 (2003), pp. 177–263.
[27] C. Mascia and K. Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic–

parabolic systems, Arch. Ration. Mech. Anal., 172 (2004), pp. 93–131.
[28] R. Plaza and K. Zumbrun, An Evans function approach to spectral stability of small-

amplitude viscous shock profiles, Discrete Contin. Dyn. Syst., 10 (2004), pp. 885–924.
[29] M.-R. Raoofi, L1 Asymptotic Behavior of Viscous Shock Profiles of Systems with Real Vis-

cosity, preprint, 2004.
[30] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic–parabolic type with appli-

cations to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), pp. 249–275.
[31] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Chapman

and Hall, New York, 1989.
[32] G. B. Whitham, Linear and Nonlinear Waves, Pure Appl. Math., Wiley-Interscience, New

York, London, Sidney, 1974.
[33] W.-A. Yong, Basic Properties of Hyperbolic Relaxation Systems, Progr. Nonlinear Differential
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SYSTEM FOR LAYERED SUPERCONDUCTORS∗
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Abstract. We consider a coupled Ginzburg–Landau system, the so-called Lawrence–Doniach
system, which models layered superconductors as a stack of nonlinearly coupled, parallel two-
dimensional superconducting layers, separated by an insulating material or vacuum, in an applied
magnetic field. We prove that weak solutions (e.g., energy minimizers) in an appropriate divergence-
free gauge are uniformly bounded and continuous and satisfy a priori estimates based on elliptic
theory and single layer potentials. Moreover, we show the existence of an upper critical field h̄ such
that when the modulus of a constant applied magnetic field �H = h�v in a direction �v nontangential to
the layers (where |�v| = 1) is greater than h̄, the normal (nonsuperconducting) state is the only solu-
tion to the Lawrence–Doniach system. It follows from these results and methods developed earlier by
Chapman, Du, and Gunzburger [SIAM J. Appl. Math., 55 (1995), pp. 156–174] that under certain
assumptions on the relative values of parameters in the model, minimizers of the Lawrence–Doniach
energy converge, as the interlayer spacing tends to zero, to minimizers of an appropriate anisotropic
Ginzburg–Landau energy in three dimensions. Finally, we derive that h̄ ≤ Cκ/μ for all κ sufficiently
large and all unit vectors �v satisfying �v · �e3 ≥ μ > 0 for the Lawrence–Doniach system, where κ is
the Ginzburg–Landau constant for the superconducting material and C is independent of κ and μ.
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1. Introduction and statement of main results.

1.1. Background on the Lawrence–Doniach model. The standard Ginzburg–
Landau model (cf. [7]) has been well accepted as a macroscopic model for isotropic
(and homogeneous) superconductors for temperatures near the critical temperature
Tc of the material. However, this model cannot account for the anisotropy of layered
or high temperature superconductors. (See [3], [18].) Therefore, alternative mod-
els have been developed. One of these is the Lawrence–Doniach model proposed by
Lawrence and Doniach [15], whose solutions are analyzed here. Their model describes
a layered superconductor as a finite number of infinitely thin parallel superconducting
layers, each pair of which is separated by an insulating material or vacuum, occupy-
ing a bounded domain in R

3. The model includes Josephson coupling in adjacent
superconducting layers and is described by an energy which includes two-dimensional
(isotropic) Ginzburg–Landau-type integrals in terms of an order parameter and mag-
netic potential on each layer, and a three-dimensional integral which includes the
global effect of the applied magnetic field on the layered superconductor. The class of
layered superconductors includes low-temperature layered superconductors and cop-
per oxide high temperature superconductors (which are composed of layered Per-
ovskite structures).
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The scaling parameters most important for characterizing superconducting ma-
terials are the coherence length ξ (representing the length scale for spatial variation
of the superconducting order parameter ψ(x), whose modulus is the density of super-
conducting electrons at position x in the reference configuration) and the penetration
depth λ (which sets the length scale for electromagnetic response). In layered super-
conductors with uniaxial symmetry, these quantities are isotropic within the plane of
the layers (which we assume is oriented so that it is parallel to the horizontal (x1x2)
plane), and they take different values along the perpendicular (x3 axis) direction
(namely ξ‖, λ‖, ξ⊥, λ⊥). The degree of anisotropy, referred to in the physics literature
as “quasi-two-dimensionality” varies over a wide range for different layered super-
conducting materials, depending on the strength of coupling between the adjacent
two-dimensional superconducting layers. (A table of these values for various types of
layered and high temperature superconducting materials can be found in [11].)

The Lawrence–Doniach model is widely accepted as a model for layered super-
conductors at temperatures close to the critical temperature TC and is considered
qualitatively correct even for lower temperatures. It is considered a more complete
theory than the competing three-dimensional anisotropic Ginzburg–Landau model
(described in section 6 of this paper). The latter model occurs as a limit of the
Lawrence–Doniach model for layered superconductors in the case in which the coher-
ence length perpendicular to the layers, ξ⊥, is much larger than the layer separation,
d, by letting d/ξ⊥ → 0. This limiting process course-grains the layered structure
into a continuum in which the anisotropy is incorporated into an effective mass ten-
sor in the three-dimensional reference configuration of the material. The resulting
three-dimensional anisotropic Ginzburg–Landau model is physically relevant for lay-
ered superconductors in which the coherence length perpendicular to the layers is
much less than the interlayer spacing, and it is not expected to be even qualita-
tively correct at lower temperatures, where this coherence length can become less
than or comparable to the layer separation. (See [13].) For layered superconductors
in which ξ⊥ is much less than d (as is the case in many high temperature super-
conductors), it is necessary to take the discrete nature of the layered structure into
account. An example of a high temperature superconducting material in which this
is the case is BiSr2Ca2Cu2O8+y. Thus, the Lawrence–Doniach model is more ap-
propriate for describing BiSr2Ca2Cu2O8+y than the three-dimensional anisotropic
Ginzburg–Landau model. (See [11].)

A detailed study comparing the phenomenological Lawrence–Doniach model for
layered superconductors to a full-fledged microscopic treatment was done by Klemm,
Luther, and Beasley in [13]. An extensive description of experimental results on highly
anisotropic layered high temperature superconductors described by the Lawrence–
Doniach model can be found in [11]. The experimental observations and physical
predictions in these papers motivate a careful study of solutions to the Lawrence–
Doniach system (described below) in regimes in which the applied magnetic field
�H = h�v is allowed to take various directions. To understand why this is important,
we note that in standard (isotropic) Ginzburg–Landau models in three dimensions, it
is expected that vortices (i.e., superconducting defects) occur in filaments whose cross
sections form an Abrikosov triangular lattice, and the qualitative behavior of solutions
is similar as we vary the direction of the applied magnetic field. However, in layered
superconductors of the type in which the discrete layers must be taken into account,
the situation is different: experiments suggest that when the applied magnetic field
�H = h�v is perpendicular to the horizontal (x1x2) plane of the layers, the lateral
distance between two vortices of a single flux line in adjacent layers increases on the
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order of cot θ, where θ = arcsin(�v · �e3). As long as θ is not too small, the vortices of
single flux lines in adjacent layers have sufficient overlap to form a three-dimensional
supercurrent flow pattern that is not very different from the usual Abrikosov vortex.
As θ is reduced, there occurs a crossover from Abrikosov-like to staircase-like flux
lines at a critical angle. As θ is further reduced, there may be a second critical angle
below which the whole length of a flux line is locked into the region between the
superconducting layers. Moreover, when θ is zero (so that the applied magnetic field
is parallel to the layers), shielding current flows only within individual layers and
not between them. (See [11].) The phenomena described above may be related to
an interesting conjecture by Beasley, Klemm, and Luther, which we describe later
in the introduction, asserting that when �H = h�v is parallel to the xxx2 plane of
the layers and the temperature T of the superconductor is sufficiently low, the upper
critical modulus Hc3(v) for the Lawrence–Doniach model should be infinite. (See [13].)
Physically, this means that no matter how strong the parallel applied magnetic field
is, the superconducting material never becomes normal; i.e., it never reaches a state
in which superconductivity is completely destroyed and the applied magnetic field has
completely penetrated the superconducting layers. It is interesting to note that this
kind of behavior is impossible for the three-dimensional anisotropic Ginzburg–Landau
model, since methods developed in [9] for the standard isotropic three-dimensional
Ginzburg–Landau model can be used to show easily that upper critical fields are
uniformly bounded above independent of the direction �v, since the anisotropy governed
by the effective mass tensor is not so different qualitatively from the isotropic case in
which this tensor is the identity.

Before stating our results, let us introduce the Lawrence–Doniach model and the
Euler–Lagrange equations and gauge invariance associated with the model. In the
(nondimensionalized) Lawrence–Doniach model, a layered superconductor occupies a
bounded domain D = Ω × (0, S) in R

3, where Ω is a bounded Lipschitz domain in
R

2 and S > 0. The superconducting layers are perpendicular to the x3 axis and
occupy N +1 equally spaced planar regions, Ωn = Ω×{ns}, in D for n = 0, 1, . . . , N ,
where S = Ns and N is a positive integer. Thus, the distance s between adjacent
superconducting planes is equal to S

N .

We assume throughout this paper that �H = (h1, h2, h3) is a given constant applied

magnetic field, and we write �H = h�v, where �v is a unit vector in R
3 and h ≡ | �H| ≥ 0.

We say that �H is nontangential if it is nontangential to the layers, i.e., h > 0 and
�v · �e3 �= 0. For each unit vector �v in R

3, we assume that a fixed smooth divergence-
free vector field �a : R

3 −→ R
3 has been chosen such that ∇ × �a = �v in R

3. For
example, if �v = (v1, v2, v3), one can choose �a(x) = (v2x3, v3x1 − v1x3, 0), and any
other choice differs from this by the gradient of a harmonic function on R

3. Thus,
∇× h�a = h�v = �H in R

3.
The Lawrence–Doniach energy functional for a layered superconductor in an ap-

plied magnetic field �H in nondimensionalized form (see [4], [6], [13], and [15]) is given
by

Gs
LD

(
{ψn}Nn=0,

�A
)

= s

N∑
n=0

∫
Ω

(
1

2

(
|ψn|2 − 1

)2
+
∣∣∣( ı

κ
grad + An

)
ψn

∣∣∣2) dx

+ s

N−1∑
n=0

∫
Ω

σ

∣∣∣∣∣ψn+1 exp

(
−ıκ

∫ (n+1)s

ns

A3dx3

)
− ψn

∣∣∣∣∣
2

dx

(1.1)

+

∫
R3

∣∣∣(∇× �A
)
− �H

∣∣∣2 d�x,
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where x = (x1, x2) so that �x = (x1, x2, x3) = (x, x3), grad denotes the gradient
operator with respect to the x1 and x2 coordinates, ı is the imaginary unit, and σ and
κ are positive constants. Here, ψn is a complex-valued function defined on Ω, called
the order parameter for the nth superconducting layer occupying Ωn ≡ Ω × {ns};
�A = �A(�x) = (A1, A2, A3) = (A, A3) is a vector field defined on R

3, called the magnetic
potential; and An = An(x) = (A1

n(x), A2
n(x)) is a function from R

2 to R
2 defined

by An(x) = A(x, ns) = (A1(x1, x2, ns), A
2(x1, x2, ns)). More precisely, An(x) and

Ai
n(x) for i = 1, 2 are the traces of A and Ai, respectively, at (x, ns) on the plane

{x3 = ns} for n = 0, 1, . . . , N . Note that ψn is a function whose domain is Ω, even
though it represents a physical quantity (the nth order parameter) corresponding to
Ωn. Similarly, An is a function whose domain is R

2, though it corresponds to the
trace of A on the plane {x3 = ns}.

Given �H, the Lawrence–Doniach energy is defined on pairs
(
{ψn}Nn=0,

�A
)

such
that

⎧⎨
⎩
{ψn}Nn=0 ∈

[
H1(Ω; C)

]N+1
=
[
H1(Ω)

]N+1
and

�A ∈ E ≡
{
�C ∈ H1

loc(R
3; R3) : (∇× �C) − �H ∈ L2(R3; R3)

}
.

(1.2)

Note that for these pairs it follows from the trace theorem that An ∈ H
1
2

loc

(
R

2; R2
)
↪→

L4
loc

(
R

2; R2
)
, so that Gs

LD

(
{ψn}Nn=0,

�A
)

is well defined and finite. According to the

Lawrence–Doniach model, a minimizer or stable equilibrium
(
{ψn}Nn=0,

�A
)

of the

Lawrence–Doniach energy, Gs
LD, in [H1(Ω)]

N+1 ×E corresponds to a physically real-

istic state of the layered superconductor:
∣∣ψn(x)

∣∣2 is the density of superconducting

electron pairs at position (x, ns) in the nth superconducting layer Ωn;
(
∇× �A

)
(�x)

is the induced magnetic field at position �x in R
3; and

(
∇× (∇× �A )

)
(�x) is the in-

duced current at position �x in R
3. We note that in the above nondimensionalized

model, several dimensional constants have been “nondimensionalized” or scaled from
their original values. Thus, κ = λ/ξ, the ratio of the penetration depth and coherence
length in the superconducting layers. Also, the nondimensionalized interlayer spacing,
s, equals d/λ, where d is the original (dimensionalized) interlayer spacing. (See [4] for
more details on the nondimensionalized formulation.) The constant σ is a parameter
related to the strength of the interlayer coupling (Josephson coupling) of the layers
in the superconducting material.

The Euler–Lagrange equations and natural boundary conditions associated with
minimizers or equilibria of the Lawrence–Doniach energy Gs

LD , called the Lawrence–
Doniach system, are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a)
( ı

κ
grad + An

)2

ψn +
(
|ψn|2 − 1

)
ψn + Pn = 0 on Ω,

(b) ∇×
(
∇× �A

)
= (j1, j2, j3) in R

3,

(c)
( ı

κ
grad ψn + Anψn

)
· n = 0 on ∂Ω,

(d) (∇× �A) − �H ∈ L2(R3; R3)

(1.3)
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for all n = 0, 1, . . . , N , where

Pn =

⎧⎪⎨
⎪⎩
σ
(
ψ0 − ψ1e

−ıφ1
0

)
if n = 0,

σ
(
2ψn − ψn−1e

ıφn
n−1 − ψn+1e

−ıφn+1
n

)
if 0 < n < N,

σ
(
ψN − ψN−1e

ıφN
N−1

)
if n = N,

φn+1
n = κ

∫ (n+1)s

ns

A3 dx3 for n = 0, 1, . . . , N − 1,

ji = s

N∑
n=0

[
ı

2κ

(
ψn

∂ψ∗
n

∂xi
− c.c.

)
− |ψn|2Ai

n

]
χΩ(x1, x2)dx1 dx2 δns(x3) for i = 1, 2,

j3 =
1

2
sσκı

N−1∑
n=0

[
ψnψ

∗
n+1e

ıφn+1
n − c.c.

]
χΩ(x1, x2)χ[ns,(n+1)s](x3).

Here n is the outward normal to ∂Ω, ∗ means the complex conjugate, c.c. denotes
the complex conjugate of the previous term, χΩ is the characteristic function for Ω,
and δns ∈ D′(R) is the delta distribution supported at the point ns. The Lawrence–
Doniach system (1.3) is to be interpreted in the weak sense defined by (2.3). Note

that j1 and j2 are real measures in R
3 supported in

⋃N
n=0 Ωn.

The Lawrence–Doniach energy, Gs
LD , in (1.1) and the family of weak solutions of

(1.2) and (1.3) are invariant in [H1(Ω)]
N+1 × E under the gauge transformation(

{ψn}Nn=0,
�A
)
−→

(
{ξn}Nn=0,

�Q
)
,

where {
ξn(x) = ψn(x)eıκg(x,ns) in Ω,

�Q = �A + ∇g in R3
(1.4)

for all n = 0, 1, . . . , N and any g ∈ H2
loc(R

3). If
(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]

N+1 ×E and

(1.4) holds for a function g ∈ H2
loc(R

3), we say that
(
{ψn}Nn=0,

�A
)

and
(
{ξn}Nn=0,

�Q
)

are
gauge-equivalent. Note that the Lawrence–Doniach energy and the physical properties
of a solution are invariant under this transformation: the density of superconducting
electron pairs is |ψn|2 = |ξn|2, the induced magnetic field is ∇× �A = ∇× �Q, and the

current is ∇×
(
∇× �A

)
= ∇×

(
∇× �Q

)
.

We prove in section 2 that every pair in [H1(Ω)]N+1 ×E is gauge-equivalent to a

pair
(
{ψn}Nn=0,

�A
)
, satisfying

(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]

N+1 ×K,

where K =
{
�C ∈ E : ∇· �C = 0 and �C − h�a ∈ Ȟ1(R3) ∩ L6(R3;R3)

}
,

(1.5)

which is unique up to uniform rotations: ψn → ψne
iκc for n = 0, . . . , N , where c ∈ R.

(See Lemma 2.1.) Here Ȟ1(R3) denotes the completion of C∞
0 (R3; R3) with respect

to the norm

∥∥�C∥∥
Ȟ1(R3)

=

(∫
R3

∣∣∇�C
∣∣2d�x) 1

2

,
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where

∇�C =

(
∂Cj

∂xi

)
and

∣∣∇�C
∣∣2 = tr

[
(∇�C)t(∇�C)

]
.

It follows easily that minimizers of Gs
LD (and hence weak solutions) of (1.3) in

[H1(Ω)]N+1 × E exist. Moreover, for any weak solution of (1.3) in [H1(Ω)]N+1 × E,
g can be chosen so as to obtain a new gauge-equivalent weak solution of (1.3) in

[H1(Ω)]
N+1 ×K. (This process is called “choosing a gauge.”)

The layered superconductor is said to be in a perfect superconducting state if
|ψn|2 = 1 in Ω for all n, and in the normal (nonsuperconducting) state if |ψn|2 = 0

in Ω for all n and ∇× �A ≡ �H in R
3. In general, it is expected that |ψn| ≤ 1 in Ω for

each n; this was proved for a weak solution of (1.2) and (1.3) by Chapman, Du, and
Gunzburger in [4] under the assumption that Ω is a smooth simply connected domain,

and that the solution is gauge-equivalent to some
(
{ψn}Nn=0,

�A
)

whose restriction to

Ω
N+1 ×D is continuous, and satisfies

(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]N+1 × Ȟ1(R3),

∇· �A = 0 in R3,

�A · �n = 0 on ∂D and ∇ψ · �n = 0 on ∂Ω,
(1.6)

where �n is the outer unit normal on ∂D. (See [4, sections 1 and 4].) In addition, they
proved that if γ and S are fixed positive numbers, with σκ2s2 = γ−1 and S = Ns, and
if minimizers of (1.1) satisfy |ψn| ≤ 1 for all n = 0, 1, . . . , N , then there is an extension

of
(
{ψn}Nn=0,

�A
)
, denoted by (ψs, �As), to H1(D) × E, such that (ψs, �As) forms a

minimizing sequence, as s = sj ≡ S
Nj

→ 0, for an appropriate anisotropic Ginzburg–

Landau energy (which involves the parameters γ and κ) defined on H1(D)×E. (See
(6.1) of section 6 for the definition of this anisotropic Ginzburg–Landau energy.) The
proof of this result involved an intricate analysis in which the minimum Lawrence–
Doniach energy was shown to converge (as s → 0) to the minimum energy for the
anisotropic Ginzburg–Landau model, assuming the above relationship between σ, κ, s,
and γ. This result explains why, under certain assumptions on the relative sizes
of the parameters σ, κ, and s, the Lawrence–Doniach system “homogenizes” to an
anisotropic version of the classical three-dimensional Ginzburg–Landau model as the
interlayer spacing s tends to 0.

We remark that the “gauge” (1.6) used in [4] is overdetermined. This is easily
adjusted, however, by choosing the gauge (1.5), for example, instead of (1.6), and
when this is done, it follows from the work of Chapman, Du, and Gunzburger in
[4] that if weak solutions in the gauge (1.5) satisfy |ψn| ≤ 1 in Ω for each n, the
convergence result described above as s → 0 holds in the gauge (1.5).

The question of whether minimizers of (1.1) or weak solutions to the Lawrence–

Doniach system are gauge-equivalent to a pair whose restriction to Ω
N+1 ×D is con-

tinuous was left open in [4]. This question is nontrivial, since the magnetic potential
�A = (A1, A2, A3) has the property that ∇×∇× �A is given by a measure supported
in the layers, for i = 1, 2, and thus analysis of the regularity of the trace of Ai on Ωn,
and hence of ψn, is nontrivial. This question is of independent interest, since defects
in superconductivity (known as vortices) in the nth layer are described by points x in
Ω satisfying ψn(x) = 0 (since |ψn(x)|2 is the density of superconducting electron pairs
in the nth layer at position (x, ns)). This definition of defects makes sense only if
higher regularity, such as continuity, of the order parameter ψn is proved. In addition,
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jump discontinuities in the induced magnetic field, (∇× �A)(�x), across the layers (cor-
responding to bending of the induced magnetic field across the layers) are expected
for solutions of the Lawrence–Doniach system. (See [1] and [2].) A rigorous analysis

of such properties cannot be done without results on the regularity of (∇ × �A)(�x)
that identifies how and where jumps will occur across each layer for solutions of the
Lawrence–Doniach system.

1.2. Main results and outline of the paper. In this paper, assuming that
Ω is a bounded Lipschitz domain in R

2, we prove that |ψn| ≤ 1 almost everywhere in
Ω for n = 0, 1, . . . , N for all weak solutions, without assuming continuity of solutions
of the Lawrence–Doniach system. In addition, we prove a priori estimates, which
imply that all weak solutions (and in particular, minimizers of the Lawrence–Doniach

energy) are gauge-equivalent to a pair satisfying (1.5), whose restriction to Ω
N+1 ×D

is continuous, with �A piecewise C1 in Ω × R, such that all discontinuities of ∇ �A in

Ω×R occur as jump discontinuities in ∂Ai

∂x3
for i = 1, 2 from above and below at points

in Ωn. Our methods of proof involve elliptic regularity and a priori estimates of single
layer potentials. The latter arise because A1 and A2 in this gauge have Laplacians
given by measures supported in the layers, and hence can be represented as single
layer potentials in R

3. A consequence of these results and the methods of Chapman,
Du, and Gunzburger is that minimizers of the Lawrence–Doniach energy converge,
as the nondimensionalized interlayer spacing s tends to zero, to minimizers of an
appropriate anisotropic Ginzburg–Landau energy in three dimensions (provided that
σκ2s2 = γ−1 for some γ > 0). (See section 6.) Another consequence is the existence
of a smallest nonnegative number, h̄ = h̄(�v, κ, s, σ, S,Ω) = 1

μO(κ), called the upper

critical modulus, such that if h > h̄ and �H = h�v, where �v is a nontangential unit vector
in R

3 and 0 < μ ≤ |�v · �e3|, the only weak solution to the Lawrence–Doniach system
is the normal (nonsuperconducting) state, defined by ψn ≡ 0 for n = 0, 1, . . . , N and

∇× �A ≡ �H in R
3. (See (5.1) for a formal definition of h̄.)

The infimum of the values h′′ > 0 such that all normal states are stable for h > h′′

in an applied magnetic field �H = h�v is denoted by Hc3 = Hc3(�v, κ, s, σ, S,Ω). (If there
are no such values h′′, one defines Hc3 = ∞.) Here, a weak solution is called stable
if the Lawrence–Doniach energy has nonnegative second variation at the solution.
From our result on the finiteness of h̄ < ∞ and the fact that the Lawrence–Doniach
energy has a minimizer in [H1(Ω)]

N+1×E, it follows that Hc3 ≤ h̄ = 1
μO(κ) (for each

fixed �v, κ, s, σ, S, and Ω as above), for nontangential applied magnetic fields �H = h�v.
This proves a result conjectured by physicists (see [13] and the references cited there).

Note that since μ is the sine of the angle between �H = h�v and the x1x2 plane when
�v · �e3 = μ, our upper bound on Hc3 blows up as μ → 0. Moreover, an examination of
the proof of this estimate (based on the inequality (5.6) of Lemma 5.4, which involves
integral estimates on the two-dimensional layers) shows that our proof of this result
does not allow a finite upper bound on Hc3 as �v approaches a direction parallel to the
layers.

We remark that Klemm, Luther, and Beasley have predicted that Hc3 = ∞ at a

sufficiently low temperature T < Tc for applied magnetic fields �H = h�v in directions
�v that are parallel to the layers, based on a theory that the normal cores in these
materials can effectively fit between the layers (so that |ψn| > 0 in Ωn for each n)
in this case. The behavior of solutions in this regime has been studied recently by
Alama, Berlinsky, and Bronsard in [1] for layered superconductors occupying a finite
number of parallel infinite strips, under some assumptions on the spatial dependence
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of the order parameter in each layer and on the magnetic potential �A in R
3. Since the

constants in the Lawrence–Doniach model are temperature dependent, an interesting
open problem (that will require a different approach from the one we develop here
in Lemma 5.4 and Theorem 5.5) is to compute Hc3 = Hc3(T,�v, κ, s, σ, S,Ω) when �v
is parallel to the x1x2 plane. We conjecture that Hc3(v) is finite in certain regimes
depending on the constants in the Lawrence–Doniach model in parallel fields �v (since it
converges to the three-dimensional Ginzburg–Landau anisotropic model under certain
assumptions on these constants), but it may be infinite for parallel fields at certain
temperatures (i.e., in other regimes depending on the constants in the Lawrence–
Doniach model).

As far as we know, our results on the existence and bounds of the upper critical
moduli Hc3 and h̄ for nontangential applied magnetic fields, �H = h�v, are the first
rigorous results on upper critical moduli for the Lawrence–Doniach system, even in
the case of a perpendicular applied magnetic field, �H = h�e3.

A detailed summary of our results and the organization of our paper is as follows.
In section 2 we prove the maximum principle, |ψn|2 ≤ 1 on Ω, for all solutions of
(1.2) and (1.3), without assuming any continuity of solutions. (See Theorem 2.4.) In

addition, we observe that for a solution
(
{ψn}Nn=0,

�A
)

in the “Coulomb gauge” (1.5),

it follows from elliptic regularity theory (since ∇×
(
∇× �A

)
= −Δ �A for divergence-free

fields in R
3) that A3 is in W 2,q

loc (R3) for all q ∈ (1,∞), and thus A3 is in C1,β
loc (R3) for

all β ∈ (0, 1). (See Theorem 2.6.)
Unlike the case of A3, the Laplacians of A1 and A2 are singular measures rather

than Lp functions. In addition, ψn satisfies a nonlinear elliptic equation in Ω involv-
ing An for each n, where An(·) is the trace of (A1, A2) on {x3 = ns}. Therefore,
techniques for obtaining higher regularity for the standard Ginzburg–Landau system
do not apply. In section 3 we find explicit integral representations of A1, A2, A1

n, and
A2

n involving single layer potentials, and using results from the theory of single layer

potentials, we improve the regularity of A1
n and A2

n from H
1
2

loc(R
2) to H1

loc(R
2).

In section 4, we use the above result and a bootstrapping method (combining
results from the theory of single layer potentials and elliptic theory) to obtain a
regularity result, Theorem 4.6, which states that there exist constants p > 2 and α in
(0,1) such that in the gauge (1.5), all weak solutions of the Lawrence–Doniach system
satisfy

ψn ∈ W 1,p
(
Ω
)
∩ Cα

(
Ω
)
∩ C2,α

(
Ω
)
,

A1
n, A

2
n ∈ W 1,p

loc

(
R

2
)
∩ Cα

loc

(
R

2
)
∩ C1

(
Ω
)
∩ C∞

(
R

2 \ Ω
)

for all n = 0, 1, . . . , N,

A1, A2 ∈ W 1,p
loc

(
R

3
)
∩ Cα

loc

(
R

3
)
∩ C∞

(
R

3

∖
N⋃
i=o

Ωn

)
,

∂Ai

∂x1
and

∂Ai

∂x2
∈ C

(
Ω × R

)
for i = 1, 2,

A3 ∈ W 2,q
loc

(
R

3
)
∩ C1,β

loc

(
R

3
)

for all q ∈ (1,∞) and β ∈ (0, 1).

In addition, for i = 1, 2 we prove that Ai is piecewise C1 in Ω × R, with all discon-

tinuities of ∇Ai in Ω × R occurring as jump discontinuities in ∂Ai

∂x3
from above and

below at points in Ωn where the ith component of the current density in R2 × {ns},
namely, gin(x, ns) (defined by (3.4)), is nonzero. If Ω is a C1,1 domain, we prove that
the above results hold for all p ∈ (1,∞) and all α ∈ (0, 1), with additional regularity
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up to the boundary of Ω. (See Theorems 4.4 and 4.6.) Thus ψn is continuous in Ω

for each n, and the induced magnetic field ∇× �A is continuous in Ω × R
3 except at

points in Ωn, where it has jump discontinuities.
In section 5, we prove the existence of h̄ = h̄(�v, κ, s, σ, S,Ω) < ∞ such that if h >

h̄, �v is a nontangential unit vector, and �H = h�v, any weak solution to the Lawrence–
Doniach system is normal (nonsuperconducting). We also prove that Hc3 ≤ h̄ ≤ Cκ/μ
for all κ sufficiently large if |�v · �e3| ≥ μ > 0, where C is a positive constant depending
only on S and Ω. (See Theorem 5.5 and Corollary 5.6.) The above result generalizes
a theorem of Giorgi and Phillips in [9] for the standard Ginzburg–Landau model with
�v = �e3 as κ → ∞ in two and three dimensions.

Finally, in section 6, we describe the three-dimensional anisotropic Ginzburg–
Landau model, and conclude as a consequence of Theorem 2.4 and the results of
Chapman, Du, and Gunzburger in [4], that if σκ2s2 = γ−1, where γ > 0 is fixed, then
minimizers of the Lawrence–Doniach energy in the gauge (1.5) have an extension to
H1(D)×E in a divergence-free gauge in R

3 and form a minimizing sequence as s → 0
of the anisotropic Ginzburg–Landau energy. (See Theorem 6.1.)

2. Preliminary results. Throughout this paper, we assume that Ω is a given
bounded Lipschitz domain in R

2 and �H = h�v is a constant applied magnetic field on
R

3 with h, �v, and �a = �a(�x) as described in the introduction.
In this section we prove preliminary results on weak solutions of (1.3) and min-

imizers of the Lawrence–Doniach energy in the gauge [H1(Ω)]N+1 × K defined by
(1.5). Recall that Ȟ1(R3) is the completion of C∞

0 (R3; R3) with respect to the norm

∥∥�C∥∥
Ȟ1(R3)

=

(∫
R3

∣∣∇�C
∣∣2d�x) 1

2

.

It follows from the Sobolev inequality that each �C ∈ Ȟ1(R3) has a representative in
L6(R3;R3) such that

∥∥�C∥∥
L6(R3,R3)

≤ 2
∥∥�C∥∥

Ȟ1(R3)
.(2.1)

Moreover,

∥∥�C∥∥2

Ȟ1(R3)
=

∫
R3

(∣∣∇· �C
∣∣2 +

∣∣∇× �C
∣∣2) d�x.(2.2)

(See [14].) We need the following lemma to prove that the “Coulomb gauge” (1.5) is
an appropriate gauge for weak solutions of (1.3) in [H1(Ω)]N+1 × E.

Lemma 2.1. Let
(
{ξn}Nn=0,

�Q
)
∈ [H1(Ω)]N+1 × E. Then there exists a gauge-

equivalent pair
(
{ψn}Nn=0,

�A
)

satisfying (1.5). Moreover, if
({

ψ̃n

}N

n=0
, Ã

)
is another

such pair, then Ã = �A and there is a constant c ∈ R such that ψ̃n = ψne
ıκc for all n =

0, 1, . . . , N .
Proof. Let

(
{ξn}Nn=0,

�Q
)
∈ [H1(Ω)]N+1 × E be given. Then �Q ∈ H1

loc(R
3; R3)

and ∇× �Q − �H = ∇×
(
�Q − h�a

)
∈ L2(R3; R3). Set �u = ∇×

(
�Q − h�a

)
. Since

�u ∈ L2(R3; R3) and ∇·�u = 0 in D′(R3), Lemma 3.1 of [9] states that there is a unique
�C ∈ Ȟ1(R3)∩L6(R3;R3) such that ∇× �C = �u and ∇· �C = 0. Set �A = �C + h�a. Then
�A ∈ H1

loc(R
3; R3), �A− h�a = �C ∈ Ȟ1(R3)∩L6(R3;R3), and ∇· �A = ∇· �C + h∇·�a = 0



LAWRENCE–DONIACH SYSTEM FOR LAYERED SUPERCONDUCTOR 923

in R
3. Since

∇×
(
�A− �Q

)
= ∇×

(
�A− h�a

)
−∇×

(
�Q− h�a

)
= ∇× �C − �u = �0

and �A− �Q ∈ H1
loc(R

3; R3), there exists a function g in H2
loc(R

3) such that �A = �Q+∇g.
Set ψn(x) = ξn(x)eıκg(x,ns) for all x in Ω and for all n = 0, 1, . . . , N . Then the pair(
{ψn}Nn=0,

�A
)

is gauge-equivalent to
(
{ξn}Nn=0,

�Q
)

and
(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]N+1 ×

K.
Now assume that there is another pair (

{
ψ̃n

}N

n=0
, Ã) in [H1(Ω)]N+1 ×K, which

is gauge-equivalent to
(
{ξn}Nn=0,

�Q
)
; i.e., there is a function g̃ in H2

loc(R
3) such that

Ã = �Q + ∇g̃ and ψ̃n(x) = ξn(x)eıκg̃(x,ns) for each n. To show that �A = Ã and that
there is a constant c ∈ R such that ψ̃n = ψne

ıκc for each n, it is sufficient to prove that
g̃−g = c for some constant c ∈ R . Set C̃ = Ã−h�a. Then �C, C̃ ∈ Ȟ1(R3)∩L6(R3;R3),

∇× �C = ∇×C̃ = ∇×
(
�Q− h�a

)
∈ L2(R3; R3), and ∇· �C = ∇· C̃ = 0. By Lemma 3.1

in [9], such a vector field is unique, and hence �C = C̃. Thus, �A = Ã and we have
∇g = ∇g̃, so that g̃ = g + c for some constant c ∈ R .

By Lemma 2.1 and the invariance of the Lawrence–Doniach energy under gauge
transformations, the existence of minimizers in [H1(Ω)]N+1 × E is equivalent to the
existence of minimizers in [H1(Ω)]N+1 ×K. Thus we have the following theorem.

Theorem 2.2. There exists
(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]N+1 ×K, which minimizes

Gs
LD in [H1(Ω)]N+1 × E.

Proof. Let {
(
{ψj

n}Nn=0,
�Aj
)
} ⊂ [H1(Ω)]N+1 × E be a minimizing sequence for

Gs
LD. By Lemma 2.1, we may assume that �Aj ∈ K for all j without loss of generality.

Using (2.1), (2.2), and ∇· �Aj = 0 for all j, it follows that
(
{ψj

n}Nn=0,
�Aj − h�a

)
is

bounded in [H1(Ω)]N+1× [Ȟ1(R3)∩L6(R3;R3)] so that there is a weakly convergent

subsequence. Let ({ψn}Nn=0,
�A− h�a) be the weak limit of the subsequence. Since the

integrands in (1.1) are each weakly lower semicontinuous in [H1(Ω)]N+1 × K, Gs
LD

is weakly lower semicontinuous, and thus
(
{ψn}Nn=0,

�A
)

is a minimizer in the gauge
[H1(Ω)]N+1 ×K.

The weak formulation of (1.3) is

(a) s
N∑

n=0

∫
Ω

[(
|ψn|2 − 1

)
ψnϕ

∗
n +

(
ı

κ
grad ψn + Anψn

)
·
(
ı

κ
grad ϕn + Anϕn

)∗
]
dx

+ sσ
N−1∑
n=0

∫
Ω

[(
ψn+1 − ψne

ıφn+1
n

)
ϕ∗
n+1 +

(
ψn − ψn+1e

−ıφn+1
n

)
ϕ∗
n

]
dx = 0,

(b) 2

∫
R3

∇×
(
�A− h�a

)
· ∇× �B d�x + sσ

∫
R3

I ·B3 d�x

+ s

N∑
n=0

∫
R2

χ[Ω×{ns}](x, x3)

[
ı

κ
(ψ∗

n grad ψn − c.c.) + 2An |ψn|2
]
· Bn dx = 0

(2.3)

for any {ϕn}Nn=0 ∈ [H1(Ω)]N+1 and �B = (B1, B2, B3) ∈ H1(R3; R3) with bounded
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support. Here,

I = ıκ

N−1∑
n=0

χΩ(x)χ[ns,(n+1)s](x3)
(
ψn+1ψ

∗
ne

−ıφn+1
n − c.c.

)

= 2κ

N−1∑
n=0

χΩ(x)χ[ns,(n+1)s](x3)�
(
ψ∗
n+1ψne

ıφn+1
n

)
,

(2.4)

where � denotes the imaginary part of the argument and c.c. denotes the com-
plex conjugate of the previous term. By a weak solution of (1.3) we mean a pair,(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]N+1 × E, satisfying (2.3). From Theorem 2.2, we have the

following.
Corollary 2.3. There exists

(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]N+1 ×K, which is a weak

solution to the Lawrence–Doniach system (1.3).
Next we prove that the magnitude of the order parameters of weak solutions to

(1.3) is uniformly bounded by 1, which is the density of the perfectly superconducting
state. This result generalizes Proposition 4.5 in [4], in which the maximum principle

was established under the assumption that ψn and �A are continuous on Ω and D for
all n = 0, 1, . . . , N .

Theorem 2.4. If
(
{ψn}Nn=0,

�A
)

is a weak solution to (1.3), then |ψn| ≤ 1 almost
everywhere in Ω for all n = 0, 1, . . . , N .

Proof. Set ϕn =
(
|ψn| − 1

)
+
dn, where dn = ψn

|ψn| and where q+ = q if q ≥ 0 and

q+ = 0 if q < 0. Since ψn ∈ H1(Ω; C), we have |ψn| and (|ψn| − 1)+ in H1(Ω) (see
[10, Chapter 7]), and it follows that ϕn ∈ H1(Ω,C) for each n. Let On = {x ∈ Ω :
|ψn(x)| > 1}. Then almost everywhere in On, we have

ı

κ
gradψn + Anψn =

ı

κ
dn

(
grad |ψn|

)
+ |ψn|

(
ı

κ
grad dn + Andn

)
,(

ı

κ
gradϕn + Anϕn

)∗
= − ı

κ
d∗n

(
grad |ψn|

)
+
(
|ψn| − 1

)(
− ı

κ
grad d∗n + And

∗
n

)
,

and (
|ψn|2 − 1

)
ψnϕ

∗
n = |ψn|

(
|ψn| + 1

)(
|ψn| − 1

)2
so that


{(

ı

κ
gradψn + Anψn

)(
ı

κ
gradϕn + Anϕn

)∗
}

=
1

κ2

∣∣grad |ψn|
∣∣2 + |ψn|

(
|ψn| − 1

) ∣∣∣ ı
κ
grad dn + Andn

∣∣∣2 .
Taking the real part of (2.3a), we obtain

s

N∑
n=0

∫
On

(
1

κ2

∣∣grad |ψn|
∣∣2 + |ψn|

(
|ψn| − 1

) ∣∣∣ ı
κ
grad dn + Andn

∣∣∣2) dx

+ s
N∑

n=0

∫
On

|ψn|
(
|ψn| + 1

)(
|ψn| − 1

)2
dx

+ sσ

N−1∑
n=0


{∫

Ω

((
ψn − ψn+1e

−iφn+1
n

)
ϕ∗
n +

(
ψn+1 − ψne

iφn+1
n

)
ϕ∗
n+1

)
dx

}
= 0.
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We write this as I + II + III = 0. Note that I ≥ 0 and II ≥ 0. Rewriting III, we
have

III = sσ

N−1∑
n=0

[∫
Ω


{(

ψn − ψn+1e
−iφn+1

n

)
ψ∗
n

|ψn| − 1

|ψn|
χOn

}

+
{(

ψn+1 − ψne
iφn+1

n

)
ψ∗
n+1

|ψn+1| − 1

|ψn+1|
χOn+1

}
dx

]

so that

III = sσ

N−1∑
n=0

[∫
On

(
|ψn|2 −

{
ψ∗
nψn+1e

−iφn+1
n

}) |ψn| − 1

|ψn|
dx

+

∫
On+1

(
|ψn+1|2 −

{
ψ∗
n+1ψne

iφn+1
n

}) |ψn+1| − 1

|ψn+1|
dx

]
.

Thus,

III ≥ sσ
N−1∑
n=0

[∫
On

(
|ψn| − |ψn+1|

)(
|ψn| − 1

)
dx

+

∫
On+1

(
|ψn+1| − |ψn|

)(
|ψn+1| − 1

)
dx

]
.

Splitting the domains of integration appropriately, we have

III ≥ sσ
N−1∑
n=0

[(∫
On∩On+1

+

∫
On\On+1

)(
|ψn| − |ψn+1|

)(
|ψn| − 1

)
dx

+

(∫
On+1∩On

+

∫
On+1\On

)(
|ψn+1| − |ψn|

)(
|ψn+1| − 1

)
dx

]
.

Rearranging the terms in the integrand of the above, we get

III ≥ sσ

N−1∑
n=0

[∫
On∩On+1

(
|ψn|2 − 2 |ψn| |ψn+1| + |ψn+1|2

)
dx

+

∫
On\On+1

(
|ψn| − |ψn+1|

)(
|ψn| − 1

)
dx

+

∫
On+1\On

(
|ψn+1| − |ψn|

)(
|ψn+1| − 1

)
dx

]
.

Since |ψn| − |ψn+1| ≥ |ψn| − 1 ≥ 0 on On \On+1 and |ψn+1| − |ψn| ≥ |ψn+1| − 1 ≥ 0
on On+1 \On, we have

III ≥ sσ

N−1∑
n=0

[∫
On∩On+1

(
|ψn| − |ψn+1|

)2

+

∫
On\On+1

(
|ψn| − 1

)2
+

∫
On+1\On

(
|ψn+1| − 1

)2] ≥ 0.

(2.5)
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Using (2.5) and the fact that I ≥ 0, II ≥ 0, and I + II + III = 0, we obtain I = II =
III = 0 so that

N∑
n=0

∫
On

|ψn|
(
|ψn| + 1

)(
|ψn| − 1

)2
dx = 0.

Therefore, the measure of On is zero, i.e., |ψn| ≤ 1 almost everywhere in Ω for all n =
0, 1, . . . , N .

The above result, namely, |ψn| ≤ 1 for all n = 0, 1, . . . , N , was assumed as a
hypothesis in a result of Chapman, Du, and Gunzburger in [4], in which case it
was shown that if the parameters in the Lawrence–Doniach system are related by
the equation γσs2 = κ−2, then minimizers of the Lawrence–Doniach energy (with
S fixed and s = S/N → 0), after extending {ψn} to be defined on D = Ω × (0, S)
by linear interpolation in x3 between consecutive layers, form a minimizing sequence
for an appropriate anisotropic Ginzburg–Landau energy. (See Lemma 5.5, Theorem
5.1, and Corollary 5.6 of [4].) Thus, our Theorem 2.4 and the results in [4] can be
combined to obtain this limiting result without the added hypothesis |ψn| ≤ 1 in
Ω for all n = 0, 1, . . . , N . For completeness, we describe the anisotropic Ginzburg–
Landau energy and state this consequence in section 6 of this paper.

We need the following lemma, which follows by approximation with smooth func-
tions.

Lemma 2.5. Let �C = (C1, C2, C3) ∈ H1
loc(R

3; R3) such that ∇· �C = 0 and let
�B = (B1, B2, B3) ∈ H1(R3; R3) with bounded support. Then∫

R3

(
∇× �C

)
·
(
∇× �B

)
d�x =

∫
R3

(
∇�C

)
·
(
∇ �B

)
d�x,(2.6)

where

(
∇�C

)
·
(
∇ �B

)
=

3∑
i=1

∇Ci · ∇Bi.

We can now improve the regularity of A3, the third component of �A, for weak
solutions in the gauge (1.5).

Theorem 2.6. Let
(
{ψn}Nn=0,

�A
)

be a weak solution of (1.3) in [H1(Ω)]N+1 ×K.

Then A3 ∈ W 2,q
loc (R3) for all 1 < q < ∞, and thus A3 ∈ C1,β

loc (R3) for all 0 < β < 1.

Proof. Let �B = (0, 0, B3) in (2.3b), where B3 ∈ H1(R3) with bounded support.
Using Lemma 2.5, we have

Δ(A3 − ha3) = ΔA3 =
sσ

2
I in R

3,

where I is the function defined in (2.4). By Theorem 2.4, we have sσ
2 I ∈ L∞(R3).

Since I =0 in R
3\D and A ∈ K, it follows from this and (1.3) that A3 − ha3 is

the Newtonian potential of sσ
2 I in R

3. The proof now follows from standard elliptic
regularity results and the Sobolev imbedding theorem; see, e.g., [10].

3. Integral representations of A1, A2, A1
n, and A2

n. Throughout this sec-

tion, let
(
{ψn}Nn=0,

�A
)

denote a weak solution of (1.3) in the gauge (1.5) so that(
{ψn}Nn=0,

�A
)
∈ [H1(Ω)]N+1 ×K.
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Thus,

�A− h�a ∈ Ȟ1(R3), ∇· ( �A− h�a) = 0 in R
3.(3.1)

By choosing an appropriate �B = (B1, B2, B3) in (2.3b), we obtain

Δ(Ai − hai) = ji in D′(R3)(3.2)

for i = 1, 2. Here ji is the measure defined in (1.3), i.e.,

ji(ϕ) =

N∑
n=0

∫
R2

gin(x, ns)ϕ(x, ns) dx(3.3)

for all ϕ ∈ C∞
0 (R3) and i = 1, 2, where

gin(x, ns) ≡ hi
n(x) = sχΩ(x)

[
ı

2κ

(
ψ∗
n

∂ψn

∂xi
− c.c.

)
+ Ai

n |ψn|2
]

(x)(3.4)

for all x ∈ R
2, n = 0, 1, . . . , N, and i = 1, 2. Note that Ai

n ∈ H
1
2

loc(R
2) by the trace

theorem and that hi
n is real valued. By Theorem 2.4, hi

n ∈ L2(R2) (with support in Ω),
and hence gin ∈ L2(R2×{ns}) (with support in Ωn) for all n = 0, 1, . . . , N and i = 1, 2.
Thus ji ∈ E ′(R3) for i = 1, 2, where E ′(R3) is the class of tempered distributions in
R

3.
One can extend ji to be defined in Cc(R

3) by formula (3.3), where Cc(R
3) is the

set of continuous functions defined in R
3 with compact support. Let us denote the

extension again by ji. Thus, ji is a measure in R
3 with support in

⋃N
n=0 Ωn.

For �x in R
3, let Γ3(�x) = c

|	x| be the fundamental solution of Δ in R
3 (so that

c = − 1
4π ). Define

[S(gin)](�x) =

∫
R2×{ns}

c

|�x− �Q|
gin( �Q) dσ( �Q)

=

∫
R2

c∣∣�x− (y, ns)
∣∣hi

n(y) dy,

(3.5)

where dσ denotes surface measure on R
2 × {ns}. Note that S(gin) is the single layer

potential of gin on R
2 × {ns}. By the L2 theory of single layer potentials on smooth

domains (see [8]), S(gin) ∈ W 1,2
loc (R3) ∩ C∞(R3\Ωn).

Our analysis of the regularity of Ai − hai for i = 1, 2 is based on the following
observations.

Lemma 3.1. Ai − hai = Γ3 ∗ ji =
∑N

n=0 S(gin) in L2
loc(R

3).

Proof. Let Â = �A− h�a. By (2.3), we have ΔÂi = ji in D′(R3) for i = 1, 2. Thus
for all ϕ ∈ C∞

c (R3),

〈Âi, ϕ〉 = 〈ΔΓ3 ∗ Âi, ϕ〉

= 〈Γ3 ∗ ΔÂi, ϕ〉 = 〈Γ3 ∗ ji, ϕ〉,

and hence Âi = Γ3 ∗ ji in D′(R3). On the other hand,

〈S(gin), ϕ〉 =

∫
R3

S(gin)(�x)ϕ(�x) d�x

=

∫
R3

ϕ(�x)

∫
R2

c∣∣�x− (y, ns)
∣∣hi

n(y) dy d�x.
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Thus (by Fubini’s theorem)

〈Γ3 ∗ ji, ϕ〉 = 〈ji ∗ Γ3, ϕ〉

=
N∑

n=0

∫
R2

hi
n(y)

∫
R3

c∣∣�x− (y, ns)
∣∣ϕ(�x) d�x dy

=
N∑

n=0

∫
R3

ϕ(�x)

∫
R2

c∣∣�x− (y, ns)
∣∣hi

n(y) dy d�x

=

N∑
n=0

∫
R3

ϕ(�x)[S(gin)](�x) d�x,

and we conclude that Âi = Γ3 ∗ ji =
∑N

n=0 S(gin) in D′(R3) for i = 1, 2. Since

Âi and S(gin) are in L2
loc(R

3) for all n = 0, 1, . . . , N and i = 1, 2, it follows that

Âi =
∑N

n=0 S(gin) in L2
loc(R

3).
Define tin ∈ L2

loc(R
2 × {ns}) for all n = 0, 1, . . . , N and i = 1, 2 by

tin(x, ns) =

∫
R2×{ns}

c

|(x, ns) − �Q|
gin( �Q) dσ( �Q)

=

∫
R2

c

|x − y|h
i
n(y) dy.

(3.6)

We shall need the following notation concerning nontangential limits and nontan-
gential maximal functions on the plane {x3 = ns} for n = 0, 1, . . . , N in order to state
our next result. Fix any R > 0 and assume that 0 < θ < π

2 . Let

Γ ≡ ΓR,θ = {�x ∈ R
3 : |�x| < R and |�x · �e3| > |�x| · cos θ}.

Let Γ+ = {�x ∈ Γ : x3 > 0} and Γ− = {�x ∈ Γ : x3 < 0}. For each x ∈ R
2 and

n ∈ {0, 1, . . . , N}, let

Γ(x, ns) = {�y ∈ R
3 : �y − (x, ns) ∈ Γ}.

Similarly, let Γ+(x, ns) = {�y ∈ R
3 : �y − (x, ns) ∈ Γ+} and Γ−(x, ns) = {�y ∈ R

3 :
�y − (x, ns) ∈ Γ−}. Note that Γ(x, ns) is a cone which is nontangential to the plane
R

2 × {ns} at (x, ns), since Γ(x, ns)
⋂

[R2 × {ns}] = {(x, ns)}.
For a function u defined at all points �y in Γ(x, ns) with 0 < |y3 − ns| sufficiently

small, we define the nontangential limit (n.t. lim) of u(�y) as �y → (x, ns) by

n.t.lim
	y→(x,ns)

u(�y) = lim
	y→(x,ns)

{u(�y) : �y ∈ Γ(x, ns)},

provided that the limit exists for each Γ = ΓR,θ with 0 < θ < π
2 . Similarly, we define

n.t.lim
	y→(x,ns+)

u(�y) and n.t.lim
	y→(x,ns−)

u(�y)

by replacing Γ(x, ns) in the above definition with Γ+(x, ns) and Γ−(x, ns), respec-
tively.

Finally, we define the nontangential maximal function of u at (x, ns), denoted
u∗(x, ns) = u∗

R,θ(x, ns), by

u∗(x, ns) = sup{|u(�y)| : �y ∈ Γ(x, ns)}
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for a fixed R > 0 and 0 < θ < π
2 .

By standard results on single layer potentials (see [8] and [19]), we have the
following.

Theorem 3.2. For all n = 0, 1, . . . , N and i = 1, 2, S(gin) ∈ W 1,2
loc (R3) ∩

C∞(R3\Ωn), tin ∈ W 1,2
loc (R2 × {ns}), and tin is the trace of S(gin) on R

2 × {ns}. The
nontangential maximal functions of S(gin) and ∇S(gin) from above and below R

2×{ns}
are in L2

loc(R
2 × {ns}). In addition, tin and grad tin are the nontangential limits of

S(gin) and gradS(gin), respectively, pointwise almost everywhere in R
2 ×{ns}, and in

L2
loc(R

2 × {ns}) via the translation (x, ns + ε) → (x, ns) as ε → 0. The gradients of
S(gin) and tin satisfy

∇S
(
gin
)
(�x) =

∫
R2×{ns}

−c
(
�x− �Q

)
∣∣�x− �Q

∣∣3 gin
(
�Q
)
dσ
(
�Q
)

=

∫
R2

−c
(
�x− (y, ns)

)
∣∣�x− (y, ns)

∣∣3 hi
n(y) dy a.e. in R

3,

(grad tin)(x, ns) = P.V.

∫
R2×{ns}

−c
(
(x, ns) − �Q

)
∣∣(x, ns) − �Q

∣∣3 gin
(
�Q
)
dσ
(
�Q
)

= P.V.

∫
R2

−c(x − y)

|x − y|3 hi
n(y) dy a.e. in R

2 × {ns},

and

n.t.lim
	y→(x,ns)

gradS
(
gin
)
(�y) = grad tin(x, ns),

n.t.lim
	y→(x,ns+)

(
∂S(gin)

∂x3

)
(�y) =

1

2
gin(x, ns) =

1

2
hi
n(x),

n.t.lim
	y→(x,ns−)

(
∂S(gin)

∂x3

)
(�y) = −1

2
gin(x, ns) = −1

2
hi
n(x)

pointwise a.e. in R
2 ×{ns}, and in L2

loc(R
2 ×{ns}) via the translation (x, ns+ ε) →

(x, ns), as ε → 0 (or ε → 0+ or ε → 0−, respectively). Here P.V. denotes the
principal-valued integral.

Define an(x) = (a1
n(x), a2

n(x)) = (a1(x, ns), a2(x, ns)). A consequence of Lemma

3.1, Theorem 3.2, and the fact that S(gin) ∈ C∞(R3\
⋃N

n=0 Ωn) is Corollary 3.3.
Corollary 3.3. For all n = 0, 1, . . . , N and i = 1, 2, we have

Ai
n(x) − hain(x) = tin(x, ns) +

N∑
k=0
k 
=n

S(gik)(x, ns)

=
N∑

k=0

∫
R2

c∣∣(x, ns) − (y, ks)
∣∣hi

k(y) dy

for almost every x in R
2. Thus, Ai

n ∈ W 1,2
loc (R2) for all n and i as above.

Proof. Fix i and n. The formula for Ai
n−hain follows from Lemma 3.1 and Theo-

rem 3.2. Since ain is smooth, we have Ai
n ∈ W 1,2

loc (R2).
Remark 3.4. We remark that if gin ∈ Lp(Ωn) for 2 < p < ∞, the Lp theory of

single layer potentials on C1 domains gives the results of Theorem 3.2 and Corollary
3.3 with L2

loc and W 1,2
loc replaced by Lp

loc and W 1,p
loc throughout. (See [8].)
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4. Higher regularity of solutions to the Lawrence–Doniach system.
Throughout this section, let

(
{ψn}Nn=0,

�A
)

denote a weak solution of (1.3) in the
Coulomb gauge (1.5). In Corollary 3.3, we improved the regularity of Ai

n for i = 1, 2

from H
1
2

loc(R
2) to W 1,2

loc (R2). In this section, we use this improved regularity together
with the Lp theory of single layer potentials and elliptic estimates to prove higher
regularity of ψn, An, and �A. In particular, we prove that ψn and An are C1 in Ω for
each n, A1 and A2 are continuous in R

3 and piecewise C1 in Ω × R, and all disconti-

nuities in the gradient of Ai for i = 1, 2 occur as jump discontinuities in ∂Ai

∂x3
at those

points of Ωn at which gin �= 0.
Although our only assumption on Ω throughout this paper is that it is a bounded

Lipschitz domain, we also state the regularity results, which hold when Ω is a bounded
C1,1 domain, and which are of independent interest, since most of the literature
on Ginzburg–Landau equations has been written for the case of bounded smooth
domains.

Lemma 4.1. ψn ∈ W 2,2
loc (Ω) ∩W 1,p(Ω) ∩ Cα(Ω) for some 2 < p < ∞, 0 < α < 1,

and for all n = 0, 1, . . . , N . Moreover, if Ω is a C1,1 domain, then ψn ∈ W 2,2(Ω) ∩
W 1,q(Ω) ∩ Cβ(Ω) for all 1 < q < ∞ and 0 < β < 1.

Proof. Let div denote the divergence operator with respect to the x1 and x2

coordinates. By (1.5), Theorem 2.6, and Corollary 3.3, divAn =
∂A1

n

∂x1
+

∂A2
n

∂x2
is well

defined and is in Cβ
loc(R

2) for all 0 < β < 1. Using this result, we can rewrite (1.3a)
and (1.3c) as follows: ⎧⎪⎨

⎪⎩
1

κ2
Δψn = Fn in Ω,

∂ψn

∂n
= Gn in ∂Ω

(4.1)

for all n = 0, 1, . . . , N , where⎧⎨
⎩Fn =

(
|ψn|2 − 1

)
ψn +

2i

κ
An · gradψn +

ı

κ
ψndivAn + |An|2 ψn + Pn,

Gn = iκ(ψnAn) · n
(4.2)

for all n = 0, 1, . . . , N , and where Pn is the bounded function defined in (1.3). By
Theorem 2.4 and Corollary 3.3, Fn ∈ L2−ε(Ω) for all 0 < ε < 1, and thus ψn ∈
W 2,2−ε

loc (Ω) by interior elliptic estimates. It follows that Fn ∈ L2
loc(Ω) and ψn ∈

W 2,2
loc (Ω) ∩W 1,2(Ω) ∩ L∞(Ω) for all n = 0, 1, . . . , N .

Set w = Γ2 ∗χΩFn, where Γ2 is the fundamental solution for the Laplacian in R
2.

By interior elliptic estimates, w ∈ W 2,2−ε
loc (R2)

⋂
W 2,2

loc (Ω) for all 0 < ε < 1. Hence
∂w
∂xj

∈ W 1,2−ε
loc (R2)∩Lq

loc(R
2) for all 0 < ε < 1 and 1 < q < ∞, and w ∈ Cβ

loc(R
2) for all

0 < β < 1 by Sobolev imbedding. Since ∇[( ∂w
∂xj

)q] = q( ∂w
∂xj

)q−1 · ∇( ∂w
∂xj

) ∈ L2−ε
loc (R2)

by Holder’s inequality, we have ( ∂w
∂xj

)q ∈ W 1,2−ε
loc (R2) for all 1 < q < ∞ and 0 < ε < 1.

Similarly, since Ai
n ∈ W 1,2

loc (R2) ⊂ Lq
loc(R

2) for all 1 < q < ∞, 0 < ε < 1, and

i = 1, 2, ∇[(Ai
n)q] = q(Ai

n)q−1 · ∇Ai
n ∈ L2−ε

loc (R2), and hence (Ai
n)q ∈ W 1,2−ε

loc (R2) for
all 1 < q < ∞ and 0 < ε < 1. Thus the traces of ∇w and Ai

n are in Lq(∂Ω) for all
1 < q < ∞ and Gn ∈ Lq(∂Ω) for all 1 < q < ∞.

Now set U = ψn−w. Then U ∈ W 1,2(Ω)∩W 2,2
loc (Ω), ΔU = 0 in Ω, and ∇U ·n =

Gn −∇w · n ≡ G̃n ∈ Lq(∂Ω) for all 1 < q < ∞. By existence-uniqueness results (up
to an additive constant) on the Neumann problem in W 1,r(Ω) with compatible Lr
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Neumann data in bounded Lipschitz domains for 1 < r < 2+ε0, where ε0 is a positive
constant depending only on the domain (see [5], [12], [16], and [19]), we conclude that
U ∈ W 1,p(Ω) for some p ∈ (2, 2 + ε0), and thus ψn ∈ W 2,2

loc (Ω) ∩W 1,p(Ω) ∩Cα(Ω) for
α = 1 − 2

p by Sobolev imbedding.

If Ω is a C1,1 domain, since G̃n is in Lq(∂Ω), existence-uniqueness results for the
Neumann problem in C1 domains with Lq Neumann data imply that U ∈ W 1,q(Ω)
for all 1 < q < ∞. (See [8].) Thus ψn ∈ W 1,q(Ω) for all 1 < q < ∞, and it follows

from this and Corollary 3.3 that Gn ∈ H
1
2 (∂Ω) and Fn ∈ L2(Ω). Thus, ψn ∈ W 2,2(Ω)

by the elliptic regularity theory for C1,1 domains. The desired result in this case now
follows by Sobolev imbedding.

For the remainder of this section, let p ∈ (2,∞) and α ∈ (0, 1) denote the con-
stants of Lemma 4.1.

Lemma 4.2. For all n = 0, 1, . . . , N and i = 1, 2, Ai
n ∈ W 1,p

loc (R2) ∩ Cα
loc(R

2).

Moreover, if Ω is a C1,1 domain, then Ai
n ∈ W 1,q

loc (R2) ∩ Cβ
loc(R

2) for all 1 < q < ∞
and 0 < β < 1.

Proof. Fix n and i as above. By (3.4), Theorem 2.4, Corollary 3.3, Lemma
4.1, and the Sobolev imbedding theorem, we have gin ∈ Lp(R2 × {ns}) with suppt
gin ∈ Ωn. Since tin is the trace of S(gin) on R

2 × {ns}, it follows from Remark 3.4
that tin ∈ W 1,p

loc (R2 × {ns}). By Corollary 3.3, we have Ai
n ∈ W 1,p

loc (R2) and thus
Ai

n ∈ Cα
loc(R

2).
If Ω is a C1,1 domain, then Lemma 4.1 implies that gin ∈ Lq(R2 × {ns}) for all

1 < q < ∞, and thus Ai
n ∈ W 1,q

loc (R2) ∩ Cβ
loc(R

2) in this case.
The additional regularity obtained for Ai

n and ψn in Lemma 4.2 yields additional
regularity on Ai for i = 1, 2.

Lemma 4.3. For i = 1, 2, Ai ∈ W 1,p
loc (R3) ∩ Cα

loc(R
3). Moreover, if Ω is a C1,1

domain, then Ai ∈ W 1,q
loc (R3) ∩ Cβ

loc(R
3) for all 1 < q < ∞ and 0 < β < 1.

Proof. Fix i as above. Since Ai ∈ W 1,2
loc (R3) and hai is harmonic in R

3 for i = 1, 2,

it follows from (1.3) and (1.5) that Ai is harmonic in R
3\
⋃N

n=0 Ωn and the trace of

Ai on R
2×{ns} is in W 1,p

loc (R2) by Lemma 4.2. Thus elliptic regularity in C1 domains

implies that Ai ∈ W 1,p
loc (R3) ∩ Cα

loc(R
3). (See [8].)

If Ω is a C1,1 domain, the above holds with p and α replaced by q and β for any
1 < q < ∞ and 0 < β < 1.

Theorem 4.4. ψn ∈ C2,α(Ω) and, if Ω is a C1,1 domain, ψn ∈ W 2,q(Ω) ∩
C1,β(Ω)∩C2,β(Ω) for all 1 < q < ∞ and 0 < β < 1. Moreover, if Ω is a C2,δ domain
with 0 < δ < 1, ψn ∈ C2,δ(Ω).

Proof. By Lemma 4.1, ψn ∈ W 1,p(Ω) ∩ Cα(Ω). By Lemma 4.2 and the Sobolev
imbedding theorem, Fn ∈ Lp(Ω). It follows from interior elliptic estimates that
ψn ∈ W 2,p

loc (Ω), and thus ψn ∈ C1,α(Ω). By this and Theorem 2.6, we have Fn ∈ Cα(Ω)
and thus ψn ∈ C2,α(Ω).

If Ω is a C1,1 domain, then, arguing as above, we have Fn ∈ Lq(Ω). By the trace

theorem, Lemma 4.1, and Lemma 4.2, we have Gn ∈ W 1− 1
q ,q(∂Ω) ∩ Cβ(∂Ω) for all

1 < q < ∞, 0 < β < 1, and n = 0, . . . , N . Thus ψn ∈ W 2,q(Ω) ∩ C1,β(Ω) for all
1 < q < ∞ and 0 < β < 1 by the elliptic regularity theory. It follows that Fn ∈ Cβ(Ω)
for all 0 < β < 1 and ψn ∈ C2,β(Ω). Moreover, if ∂Ω is C2,δ, then ψn ∈ C2,δ(Ω).

Corollary 4.5. Ai
n ∈ C1(Ω) for all n = 0, 1, . . . , n and i = 1, 2.

Proof. Fix n and i as above. By Corollary 3.3, it suffices to show that tin(·, ns) ∈
C1(Ω). By (3.4), Lemmas 4.1 and 4.2, and Theorem 4.4, hi

n ∈ Lp(R2)∩Cα(Ω). Thus,
by Theorem 3.2 and Remark 3.4, tin(·, ns) ∈ W 1,p

loc (R2) ⊂ Cα
loc(R

2). In addition, for
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each open set Ω′ such that Ω′ ⊂⊂ Ω, there is a constant C = C(Ω′,Ω) such that

|hi
n(y) − hi

n(x)| ≤ C|x − y|α for all x,y ∈ Ω′.

Recall that

tin(x, ns) =

∫
R2

c

|x − y|h
i
n(y) dy =

∫
Ω

c

|x − y|h
i
n(y) dy.

To show that tin(·, ns) is C1 in Ω, we use an argument similar to that found in
Lemma 4.2 of [10]. Let ζ(x) denote c

|x| and η(t) denote a continuously differentiable

function such that 0 ≤ η ≤ 1, 0 ≤ η′ ≤ 2, η(t) = 0 if t ≤ 1, and η(t) = 1 if t ≥ 2. For
ε > 0, define ηε(t) to be η

(
t
ε

)
. Let

tin,ε(x, ns) =

∫
Ω

ζ(x − y) · ηε(|x − y|) · hi
n(y) dy.

Note that tin,ε ∈ C1(R2), and tin,ε(·, ns) converges uniformly in compact subsets of Ω

to tin(·, ns). For j = 1, 2, x ∈ Ω, and ε < 1
2dist(x, ∂Ω), we have

∂

∂xj
(tin,ε)(x, ns) =

∫
Ω

∂

∂xj
(ζηε)h

i
n(y) dy

=

∫
Ω

∂

∂xj
(ζηε)[h

i
n(y) − hi

n(x)] dy + hi
n(x)

∫
Ω

∂

∂xj
(ζηε) dy

=

∫
Ω

∂

∂xj
(ζηε)[h

i
n(y) − hi

n(x)] dy − hi
n(x)

∫
∂Ω

ζ(x − y)nj dl(y).

Here, ζ = ζ(x − y), ηε = ηε(x − y), nj is the jth component of the outward unit
normal to ∂Ω, and dl(y) is the arclength measure on ∂Ω. Define

uij
n (x) =

∫
Ω

∂

∂xj

(
ζ(x − y)

)(
hi
n(y) − hi

n(x)
)
dy − hi

n(x)

∫
∂Ω

ζ(x − y)nj dl(y).

Since hi
n ∈ Cα(Ω), it follows that uij

n is well defined in Ω, and for each subdomain Ω′

as above,

sup

{∣∣∣∣ ∂

∂xj
(tin,ε)(x, ns) − uij

n (x)

∣∣∣∣ : x ∈ Ω′
}

→ 0

as ε → 0 and thus uij
n ∈ C(Ω) for all i and j in {1, 2}. We have shown that tin,ε → tin

and
∂tin,ε

∂xj
(·, ns) → uij

n uniformly on compact subsets of Ω, uij
n ∈ C(Ω), and tin(·, ns) ∈

W 1,p
loc (R2) ⊂ Cα

loc(R
2). It follows that

∂tin
∂xj

(·, ns) = uij
n in the sense of distributions in

Ω, and thus tin(·, ns) ∈ C1(Ω).

Since Ai and ∇Ai are harmonic in R
3\
⋃N

n=0 Ωn for i = 1, 2, the continuity of

gradAi
n in Ω and gin in Ωn implies that ∂Ai

∂xj
is continuous up to the boundary in the

subdomains of Ω′ × R located between two adjacent layers Ωn, below Ω0, or above
Ωn, where Ω′ ⊂⊂ Ω. From this and the regularity results proved in sections 3 and 4,
we obtain the following.
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Theorem 4.6. Let
(
{ψn}Nn=0,

�A
)

be a weak solution of (1.3) satisfying (1.5).
There exist constants p > 2 and 0 < α < 1 such that for all n = 0, . . . , N ,

ψn ∈ W 1,p
(
Ω
)
∩ C2,α

(
Ω
)
∩ Cα(Ω),

A1
n, A

2
n ∈ W 1,p

loc

(
R

2
)
∩ Cα

loc

(
R

2
)
∩ C1

(
Ω
)
∩ C∞

(
R

2 \ Ω
)
,

A1, A2 ∈ W 1,p
loc

(
R

3
)
∩ Cα

loc

(
R

3
)
∩ C∞

(
R

3

∖
N⋃
i=o

Ωn

)
,

∂Ai

∂x1
and

∂Ai

∂x2
∈ C(Ω × R) for i = 1, 2,

A3 ∈ W 2,q
loc

(
R

3
)
∩ C1,β

loc

(
R

3
)

for all q ∈ (1,∞) and β ∈ (0, 1).

In addition, for i = 1, 2, Ai is piecewise C1 in Ω′ ×R for all domains Ω′ ⊂ Ω′ ⊂⊂ Ω,

with all discontinuities of ∇Ai in Ω×R occurring as jump discontinuities in ∂Ai

∂x3
from

above and below at points in Ωn at which gin(x, ns) is nonzero. Moreover, if Ω is a
C1,1 domain, the above results hold for all 1 < p < ∞ and 0 < α < 1, and we have,
in addition,

ψn ∈ W 2,q(Ω) ∩ C2,β
(
Ω
)
∩ C1,β

(
Ω
)
,

A1
n, A

2
n ∈ W 1,q

loc

(
R

2
)
∩ Cβ

loc

(
R

2
)
,

A1, A2 ∈ W 1,q
loc

(
R

3
)
∩ Cβ

loc

(
R

3
)

for all 1 < q < ∞ and 0 < β < 1.
Proof. The proof follows immediately from elliptic regularity and Theorem 3.2,

Lemmas 4.1–4.3, Theorem 4.4, and Corollary 4.5, since ΔAi = �0 in R
3\
⋃N

n=0 Ωn for
i = 1, 2.

5. Breakdown of superconductivity due to strong magnetic fields. In
this section we prove various a priori estimates for solutions of the Lawrence–Doniach
system in the gauge (1.5), which generalize results of Giorgi and Phillips (cf. [9]) for the
standard (isotropic) Ginzburg–Landau model predicted by physicists (cf. [17]). Using
our a priori estimates, we show that the upper critical modulus, h̄(�v, κ, s, σ, S,Ω), is
finite when �v is nontangential to the layers.

Recall that we have assumed �H is a constant applied magnetic field in R
3 and

�H = h�v, where |�v| = 1 and h ≥ 0. The vector �v is called nontangential if �v · �e3 �= 0.
We define h̄ = h̄(�v, κ, s, σ, S,Ω) by

h̄ = inf{h′ > 0 : normal states are the only solutions of (1.3)

for all h > h′ with �H = h�v},
(5.1)

with h̄ = ∞ if there are no such h′.
We begin with the following observation: Let

(
{ψn}Nn=0,

�A
)

be a weak solution of
(1.3). Computing real and imaginary parts of ( ı

κgrad ψn + Anψn)ψ∗
n, we have


[( ı

κ
grad ψn + Anψn

)
ψ∗
n

]
=

ı

2κ

(
ψ∗
ngrad ψn − c.c.

)
+ An |ψn|2 ,

�
[( ı

κ
grad ψn + Anψn

)
ψ∗
n

]
=

1

2κ
grad

(
|ψn|2

)
=

|ψn|
κ

grad (|ψn|).
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Thus,

ı

κ
grad ψn + Anψn

=

{[
ı

2κ

(
ψ∗
ngrad ψn − c.c.

)
+ An |ψn|2

]
|ψn|−1

+ �
[

1

κ
grad |ψn|

]}
ψn

|ψn|
(5.2)

for almost all x in {x ∈ Ω : ψn(x) �= 0}, which we denote by {ψn �= 0}. Since
ψn ∈ H1(Ω), grad ψn = 0 almost everywhere in {ψn = 0}. (See [10, Lemma 7.7].)
Therefore, (5.2) holds almost everywhere in Ω. Now, letting ϕn = ψn in (2.3a), using

(5.2), Theorem 2.4, and the fact that |ψn+1|2 + |ψn|2 −
(
ψnψ

∗
n+1e

ıφn+1
n + c.c.

)
=

|ψn+1e
−ıφn+1

n − ψn|2, we get the following.

Lemma 5.1. If
(
{ψn}Nn=0,

�A
)

is a weak solution of (1.3), then

N∑
n=0

∫
Ω

(∣∣∣∣ 1κgrad |ψn|
∣∣∣∣
2

+

∣∣∣∣
[

ı

2κ

(
ψ∗
ngrad ψn − c.c.

)
+ An |ψn|2

]
|ψn|−1

∣∣∣∣
2
)
dx

=
N∑

n=0

∫
Ω

∣∣∣ ı
κ
grad ψn + Anψn

∣∣∣2 dx

=

N∑
n=0

∫
Ω

(
1 − |ψn|2

)
|ψn|2 − σ

N−1∑
n=0

∫
Ω

∣∣∣ψn+1e
−ıφn+1

n − ψn

∣∣∣2dx
≤

N∑
n=0

∫
Ω

(
1 − |ψn|2

)
|ψn|2 dx

≤
N∑

n=0

∫
Ω

|ψn|2 dx.

Recall that an(x) =
(
a1
n(x), a2

n(x)
)

denotes the trace of the first two components
of �a(x, ns) on R

2. We need the following lemma.

Lemma 5.2. Let
(
{ψn}Nn=0,

�A
)

be a weak solution of (1.3) satisfying (1.5). There
exists a constant M depending only on Ω and S (and hence depending only on D) such
that

N∑
n=0

∫
Ω

|An − han|2 dx ≤ M

N∑
n=0

∫
Ω

|ψn|2 dx.

Proof. By Corollary 3.3,

Ai
n(x) − hain(x) =

N∑
k=0

∫
R2

c∣∣(x, ns) − (y, ks)
∣∣hi

k(y) dy

for i = 1, 2. Thus

∫
Ω

∣∣Ai
n − hain

∣∣2 dx ≤ C̃N

N∑
k=0

∫
Ω

∣∣hi
k

∣∣2 dx

= C̃N

N∑
k=0

∫
Ω×{ks}

∣∣gik(x, ks)∣∣2 dx,

(5.3)
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where C̃ is a constant depending only on Ω. Since |ψn| ≤ 1, it follows from formula
(3.4) and Lemma 5.1 that

N∑
k=0

∫
Ω×{ks}

∣∣gik(x, ks)∣∣2 dx ≤ s2
N∑

k=0

∫
Ω×{ks}

|ψk|2 dx

= S2N−2
N∑

k=0

∫
Ω×{ks}

|ψk|2 dx.

(5.4)

Summing over i = 1, 2 and n = 0, 1, . . . , N in (5.3) and using (5.4), we obtain

N∑
n=0

∫
Ω

|An − han|2 dx ≤ C̃S2
N∑

n=0

∫
Ω

|ψn|2 dx.

The theorem follows with M = C̃S2.
Lemma 5.3. Let

(
{ψn}Nn=0,

�A
)

be a weak solution of (1.3) satisfying (1.5). Then

N∑
n=0

∫
Ω

∣∣(ıgrad + κhan)ψn

∣∣2 dx ≤ C1κ
2

N∑
n=0

∫
Ω

|ψn|2 dx,

where C1 is a positive constant depending only on D.
Proof. We write(

ı

κ
grad + han

)
ψn =

(
ı

κ
grad + An

)
ψn − (An − han)ψn.(5.5)

Thus, we have

N∑
n=0

∫
Ω

∣∣∣( ı

κ
grad + han

)
ψn

∣∣∣2 dx
≤ 2

N∑
n=0

[∫
Ω

∣∣∣( ı

κ
grad + An

)
ψn

∣∣∣2dx +

∫
Ω

∣∣An − han

∣∣2 |ψn|2 dx
]
.

Using this inequality, Theorem 2.4, Lemma 5.1, and Lemma 5.2, we obtain

N∑
n=0

∫
Ω

∣∣∣( ı

κ
grad + han

)
ψn

∣∣∣2 dx ≤ 2(1 + M)

N∑
n=0

∫
Ω

|ψn|2 dx.

The lemma follows with C1 = 2(1 + M) = C1(D).
We shall need the following result, which is an extension of Lemma 2.8 of [9].

Note that when θ = 0 in the statement of this result, no positive lower bound on
the right-hand side of (5.6) is obtained. This is the reason that our estimate from

above on hc3(�v) (proved on Theorem 5.5) applies only to the case in which �H = h�v
is nontangential to the layers Ω × {ns}.

Lemma 5.4. Given m > 0, there is a constant C2 = C2(m,Ω) satisfying 0 <

C2 ≤ 1 such that if θ ∈ R, w is a nonzero real number, �b = (b1, b2, b3) = (b, b3)

is a vector field in H1
(
Ω,R3

)
satisfying

(
∇ × �b

)
· �e3 ≡

(
∂b2
∂x1

− ∂b1
∂x2

)
≡ θ in Ω, and

w2 |θ| ≥ m, then

C2w
2|θ|

∫
Ω

|ζ|2 dx ≤
∫

Ω

∣∣(ıgrad + w2b)ζ
∣∣2 dx(5.6)
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for all ζ ∈ H1(Ω; C).
Proof. If θ = 0, the inequality is trivial. Assume that θ �= 0.
It was shown by Giorgi and Phillips (see [9, Lemma 2.8]) that, given m > 0, there

exists C2 = C2(m,Ω)), 0 < C2 ≤ 1, such that if λ2 ≥ m, then

C2λ
2

∫
Ω

|ζ|2 dx ≤
∫

Ω

∣∣(ıgrad + λ2c)ζ
∣∣2 dx

for all ζ ∈ H1(Ω; C) and c = (c1, c2) ∈ H1(Ω; R2) such that ∂c2
∂x1

− ∂c1
∂x2

≡ 1 in Ω. Since
1
θ ( ∂b2

∂x1
− ∂b1

∂x2
) = 1 in Ω, if θ > 0, we can apply the result of Giorgi and Phillips with

c = 1
θb = 1

θ (b1, b2) and λ2 = θw2 to obtain (5.6). If θ < 0, the result follows from (5.6)

for the case just proved, applied to θ′ = |θ| = −θ, �b′ = −�b, and ζ ′ = −(Reζ) + i(Imζ)
in H1(Ω; C).

We can now prove the existence of a finite upper critical modulus, assuming that
�H = h�v, where �v is a unit vector in R

3 which is nontangential to the superconducting
layers, Ω × {ns}.

Theorem 5.5. Given m > 0 and 0 < μ < 1, there exists a positive constant
φ = φ(m,D) so that if �H = h�v with |�v| ≡ 1 and |�v ·�e3| ≥ μ and if h > 1

μ max
(
m
κ , φκ

)
,

then any weak solution to (1.3) is a normal state. Thus

Hc3(�v, κ, s, σ, S,Ω) ≤ h̄(�v, κ, s, σ, S,Ω)

≤ 1

μ
max

(m
κ
, φκ

)
.

Moreover, the constant φ can be chosen to satisfy φ = C1

C2
, where C1 = C1(D) and

C2 = C2(m,Ω) are the constants of Lemmas 5.3 and 5.4, respectively.

Proof. Let
(
{ψn}Nn=0,

�A
)

be a weak solution of (1.3) and assume that h >
1
μ max

(
m
κ , φκ

)
. Note that a weak solution is a normal state if and only if its en-

tire gauge-equivalence class consists of normal states. Thus we may assume without
loss of generality that

(
{ψn}Nn=0,

�A
)

satisfies (1.5). Set w2 = hκ. Then, by hypothesis,
we have w2|�v ·�e3| ≥ w2μ ≥ m. Since [∇× (�a(x1, x2, ns))] ·�e3 = �v ·�e3 is constant in Ω

for each n, we may apply (5.6) of Lemma 5.4 with ζ = ψn, �b(x1, x2) = �a(x1, x2, ns),
b = an, and θ = �v · �e3, to get

C2hκμ

N∑
n=0

∫
Ω

|ψn|2 dx ≤
N∑

n=0

∫
Ω

∣∣(igrad + hκan)ψn

∣∣2 dx.
Using this inequality, Lemma 5.3, and setting φ = C1

C2
, we have

h
N∑

n=0

∫
Ω

|ψn|2 dx ≤ φκ

μ

N∑
n=0

∫
Ω

|ψn|2 dx.

By hypothesis, h > φκ
μ . Therefore we have

∫
Ω
|ψn|2 dx = 0 for all n = 0, 1, . . . , N ,

and ψn = 0 almost everywhere in Ω for all n. Using this result and (1.3), we have

Δ( �A − h�a) = −∇ × ∇ × ( �A − h�a) = 0. Since �A − h�a ∈ Ȟ1(R3), we conclude that
�A = h�a, and thus ∇× �A = h�v = �H.

Corollary 5.6. Assume that |�v| = 1 and |�v · �e3| ≥ μ > 0. There exist positive
constants κ0 and C0 depending only on D such that for all κ ≥ κ0, we have

Hc3(�v, κ, s, σ, S,Ω) ≤ h̄(�v, κ, s, σ, S,Ω) ≤ C0 ·
κ

μ
.
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Proof. Set m = 1 in Theorem 5.5 and let C0 = φ(1,D) = C1(D)/C2(1,D). The

result follows from Theorem 5.5 if κ ≥ κ0 = φ(1,D)−
1
2 .

6. Homogenization of the Lawrence–Doniach model. For completeness,
we conclude this paper by stating a result on the homogenization of solutions of the
Lawrence–Doniach system (in the gauge (1.5)) to solutions of a three-dimensional
anisotropic Ginzburg–Landau system, which follows from the maximum principle
(Theorem 2.4) and results proved by Chapman, Du, and Gunzburger in [4] under
the assumption that solutions of the Lawrence–Doniach system satisfy |ψn| ≤ 1 for
all n.

The three-dimensional anisotropic Ginzburg–Landau energy (in nondimensional-
ized form) is given by

GAGL

(
ψ, �A

)
=

∫
D

1

2

(∣∣ψ∣∣2 − 1
)2

d�x +

∫
R3

∣∣∣∇×
(
�A− h�a

)∣∣∣2d�x
+

∫
D

(∣∣∣( ı

κ
grad + A

)
ψ
∣∣∣2 +

1

γ

∣∣∣
(

ı

κ

∂

∂x3
+ A3

)
ψ
∣∣∣2) d�x,

(6.1)

where κ is the Ginzburg–Landau constant and γ is an anisotropy constant. Here, the
order parameter ψ is defined in D = Ω × (0, S) and (ψ, �A) ∈ H1(D) × E, where E is
defined as in (1.2). We remark that the anisotropic Ginzburg–Landau energy GAGL

is invariant under the gauge transformation(
ψ, �A

)
−→

(
ξ, �Q

)
,

where {
ξ(�x) = ψ(�x)eıκg(	x),

�Q = �A + ∇g,

which maps H1(D)×E to itself whenever g ∈ H2
loc(R

3). By choosing g appropriately,

one obtains (ξ, �Q) ∈ H1(D) ×K, where K is defined as in (1.5), and it follows that

minimizers of GAGL in H1(D) × E exist and are gauge-equivalent to some (ψ, �A) in
H1(D)×K. Moreover, minimizers are weak solutions of the Euler–Lagrange equations
(called the anisotropic equations)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ı

κ
grad + A

)2

ψ +
1

γ

(
ı

κ

∂

∂x3
+ A3

)2

ψ +
(
|ψ|2 − 1

)
ψ = 0 in D,

∇×
(
∇× �A

)
= (J1, J2, J3) in R

3,(
ı

κ
∇ψ + �Aψ

)
· n̂ = 0 on ∂D,

∇×
(
�A− h�a

)
∈ L2(R3; R3),

(6.2)

where

Ji =
1

γi

[
ı

2κ

(
ψ
∂ψ∗

∂xi
− c.c.

)
− |ψ|2 Ai

]
χD
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for i = 1, 2, 3, and where γ1 = γ2 = 1 and γ3 = γ. Here, n̂ is the outward normal to
∂D. More precisely, a minimizer of GAGL in H1(D) ×K satisfies

∫
D

[(
|ψ|2 − 1

)
ψϕ∗ +

(
ı

κ
grad ψ + Aψ

)
·
(
ı

κ
grad ϕ + Aϕ

)∗

+
1

γ

(
ı

κ

∂ψ

∂x3
+ A3ψ

)(
ı

κ

∂ϕ

∂x3
+ A3ϕ

)∗
]
d�x = 0,

2

∫
R3

∇×
(
�A− h�a

)
· ∇× �B d�x +

∫
R3

χD

[
ı

κ

(
ψ∗ grad ψ − c.c.

)
+ 2A |ψ|2

]
· B dx

+

∫
R3

χD
1

γ

[
ı

κ

(
ψ∗ ∂ψ

∂x3
− c.c.

)
+ 2A3 |ψ|2

]
B3 d�x = 0

(6.3)

for any ϕ ∈ H1(D) and �B ∈ H1(R3; R3) with bounded support.
As in the case of the Lawrence–Doniach system, one can prove that weak solutions

satisfy |ψ| ≤ 1 almost everywhere in D by choosing an appropriate test function in
(6.3).

Assume that the parameters σ, κ, s, and γ are related by

1

γ
= σκ2s2.(6.4)

(See [4] and [13] for details on the physical meaning of these relationships.) Briefly,
the above equation allows one to define m⊥, λ⊥, and ξ⊥, the mass of superconducting
charge carriers, penetration depth, and coherence length in directions perpendicular
to the layers in the dimensionalized Lawrence–Doniach model by

γ =
m⊥
m‖

=

(
λ⊥
λ‖

)2

=

(
ξ⊥
ξ‖

)2

(where m‖, λ‖, and ξ‖ are defined to be their values within the layers for the Lawrence–
Doniach model) in such a way that

σ =

(
ξ⊥
d

)2

,

and it can be shown that s → 0 in the nondimensionalized Lawrence–Doniach model
corresponds to d/ξ⊥ → 0 in the dimensionalized Lawrence–Doniach model. (See [4].)
The homogenization of the Lawrence–Doniach model is achieved by fixing the domain
D = Ω× [0, S] and letting N go to ∞. Since sN = S, there is a set A of the available
values for s, i.e., A =

{
S
N : N = 1, 2, . . .

}
. Thus, letting s → 0+ means that s ∈ A

and s → 0 by letting N → ∞.

Now let ξs denote {ξn}Nn=0 if s ∈ A and {ξn}Nn=0 ∈
[
H1(Ω)

]N+1
. Define Isξ

s to
be the linear interpolant of ξs in the x3 direction in D with respect to the supercon-
ducting layers {Ωn}Nn=0, i.e.,

(
Isξ

s
)
(x, x3) =

(
1 − x3 − ns

s

)
ξn(x) +

x3 − ns

s
ξn+1(x)(6.5)
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if (x, x3) ∈ Ω × [ns, (n + 1)s] for all n = 0, 1, . . . , N − 1. Thus, we have

∇
(
Isξ

s
)

=

(
grad

(
Isξ

s
)
,
∂Isξ

s

∂x3

)

=

((
1 − x3 − ns

s

)
grad ξn +

x3 − ns

s
grad ξn+1 ,

ξn+1 − ξn
s

)
.

(6.6)

It is easy to show that if ξs ∈
[
H1(Ω)

]N+1
, then Isξ

s ∈ H1(D).
From Theorem 2.4 of this paper and Theorem 5.1, Lemma 5.5, and Corollary 5.6

of [4] (using the Coulomb gauge (1.5)), we have the following.

Theorem 6.1. Let
(
ψs, �As

)
∈
[
H1(Ω)

]N+1 ×K denote a minimizer of Gs
LD in[

H1(Ω)
]N+1 × E for each s ∈ A. If (6.4) is satisfied, then as s → 0+,

{(
Isψ

s, �As
)}

s∈A
forms a minimizing sequence of GAGL in H1(D) × E. Moreover, if l and ls denote
the minimum values of GAGL and Gs

LD, respectively, i.e.,

l = min
{
GAGL

(
ξ, �Q

)
:
(
ξ, �Q

)
∈ H1(D) × E

}
,

ls = min
{
Gs
LD

(
ξs, �Q

)
:
(
ξs, �Q

)
∈ [H1(Ω)]N+1 × E

}
for s ∈ A, we have l = lims→0+ ls = lims→0+ GAGL

(
Isψ

s, �As
)
.
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CURRENT COUPLING OF DRIFT-DIFFUSION MODELS
AND SCHRÖDINGER–POISSON SYSTEMS:

DISSIPATIVE HYBRID MODELS∗
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Abstract. A one-dimensional coupled drift-diffusion dissipative Schrödinger model (hybrid
model) is mathematically analyzed. The device domain is split into two parts: one in which the
transport is well described by the drift-diffusion equations (classical zone) and another in which a
quantum description via dissipative Schrödinger equations (quantum zone) is used. Both system are
coupled such that the continuity of the current densities is guaranteed. The electrostatic potential
is self-consistently determined by Poisson’s equation on the whole device domain. We show that the
hybrid model is well posed, and we prove existence of solutions and show their uniform boundedness,
provided the distribution functions satisfy a so-called balance condition. The current densities are
different from zero in the nonequilibrium case and are uniformly bounded.

Key words. quantum–classical coupling, hybrid models, drift-diffusion models, dissipative
Schrödinger systems, Poisson equation, current coupling, semiconductors
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1. Introduction. A basic model for carrier transport in semiconductors was cre-
ated in 1950 by van Roosbroeck [51]. It describes the transport of electrons and holes
by drift and diffusion processes in a self-consistent electrical field. This so-called drift-
diffusion model was first used by Gummel [27] to calculate diodes. Since that time,
drift-diffusion models have been intensively studied, and there exists extensive litera-
ture on them; see [23, 44, 52] and references therein. However, modern semiconductor
devices inherently employ quantum effects in their operations, such as tunneling [15,
18, 54], which are well described by stationary or transient Wigner– or Schrödinger–
Poisson systems [1, 9, 10, 12, 19, 20, 29, 30, 31, 36, 37, 38, 39, 41, 42, 46, 47, 48, 49, 53].
Unfortunately, the numerical treatment of a Wigner– or Schrödinger–Poisson system
is fairly expensive compared to classical models, such as the drift-diffusion model.
However, for several devices, such as resonant tunneling diodes [13, 14, 22, 45], the
quantum effects occur only in some small spatial parts, while other parts admit a
quite reasonable description by approved “classical models,” such as drift-diffusion
models, etc. Thus one looks for a model that combines a quantum description in
parts where it is necessary with a classical description in other parts. The aim is to
obtain a model which allows an effective and fast numerical treatment but describes
the transport of electrons and holes in the semiconductor device with sufficient accu-
racy. Models of that type are usually called hybrid models; cf. [2, 6, 7, 16]. In [2, 16]
coupled Schrödinger drift-diffusion models are used to simulate the current voltage
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characteristic of a resonant tunneling diode. In the following we are interested in
an analytical treatment of such models under quite general assumptions, but in a
dissipative approximation.

In particular, we consider a one-dimensional stationary hybrid model which con-
sists of a drift-diffusion model in the so-called “classical zone” and a dissipative
Schrödinger model in the “quantum zone.” Both systems are coupled by the con-
ditions that the Fermi energies of the quantum zone are given by the electrochemical
potentials of the classical zone, and the current densities are continuous at the inter-
face points. Moreover, the electrostatic potential is determined self-consistently by a
Poisson equation on the whole device domain.

The hybrid model approach, however, evokes several problems. In fact, if one
is interested in a current density which is continuous over the whole device, then
one has to consider an open quantum system. Indeed, for Schrödinger operators
with self-adjoint boundary conditions, the current density is always zero since such
operators commute with the complex conjugation. Thus, a continuous nontrivial net
current flow through the interface between quantum and classical zones is impossible
in this case. Consequently, hybrid models enforce at least non–self-adjoint boundary
conditions for the Schrödinger operator to describe the particles in the quantum zone.
Such models are introduced in [33, 34, 35]. Further, a nontrivial current density
arises in the quantum zone only if the statistical behavior of the quantum system is
described by a density matrix, which is different from those of the thermodynamical
equilibrium. Hence, one has to find suitable nonequilibrium density matrices.

In more detail, we divide the one-dimensional device domain Ω = (a0, b0) ⊆ R

into a quantum zone Ωq = (a, b), a0 < a < b < b0, and a classical region Ωc = Ω \Ωq.
In the classical region the densities of electrons U− and holes U+, as well as the
current densities for electrons J− and holes J+, respectively, are determined by means
of the stationary drift-diffusion equations without generation or recombination [43]
(temperature, elementary charge, and Boltzmann’s constant scaled to one):

U±(x) := N0(x)± exp
(
− V ±(x) ± φ±(x)

)
(density relations),(1.1)

J±(x) := ∓μ±(x)U±(x)
d

dx
φ±(x) (current relations),(1.2)

d

dx
J± = 0 (continuity equations),(1.3)

x ∈ Ωc. Here and in what follows, the superscript “+” refers to hole quantities
and “−” to electron quantities. N±

0 denotes the densities of states, μ± the carrier
mobilities, and φ± the electrochemical potentials. The potentials V ± contain the
electrostatic potential ϕ and the band edge-offset potentials V ±

h , i.e.,

V ± := V ±
h ± ϕ.(1.4)

At the device boundary we impose inhomogeneous Dirichlet boundary conditions on
the system (1.1)–(1.3), i.e.,

φ±(a0) = φ±
a0

and φ±(b0) = φ±
b0
.(1.5)

To have a mathematically meaningful description, the system (1.1)–(1.3) requires
boundary conditions at the end points a and b of the classical zones (a0, a) and (b, b0),
too. However, for the hybrid model, a and b are not boundary points but interface
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points at which the coupling of the drift-diffusion system with the quantum subsystem
is realized. Hence, the coupling conditions have to replace the boundary conditions
at these interface points. We will develop these interface conditions later in the text.

In the quantum zone a dissipative Schrödinger system is adopted (cf. [3, 33]),
which is derived from a quantum transmitting Schrödinger system; see [4, 8] and
section B.1 in Appendix B. A dissipative Schrödinger model consists of two dissipative
Schrödinger-type operators H± (cf. [34, 35] and section A.1 in Appendix A), arising
from the differential expressions

H±f =

(
−1

2

d

dx

1

m±
d

dx
+ V ±

)
f,(1.6)

where m± denotes the effective mass of the particle under consideration and V ±

contain the band edge-offsets and the electrostatic potential; see (1.4). Supplemented
by the boundary conditions

1

2m±(a)
f ′(a) = −κ

±
a f(a) and

1

2m±(b)
f ′(b) = κ

±
b f(b),(1.7)

H± are maximal dissipative, and completely non–self-adjoint operators on the Hilbert
space L2(Ωq) if Im(κ±

a ), Im(κ±
b ) > 0. The coupling constants κ

±
a and κ

±
b are given

by means of the potentials V ± at the quantum–classical interface boundaries a and b
by

κ
±
a := i

√
s± − V ±(a)

2m±
a

and κ
±
b := i

√
s± − V ±(b)

2m±
b

,(1.8)

where i denotes the imaginary unit, i.e., i2 = −1, and

s± := V ±
max + δ±0 , δ±0 > 0,(1.9)

with

V ±
max := max{V ±(a), V ±(b)},(1.10)

where δ±0 are given positive constants. Note that Im(κ±
a ) > 0 and Im(κ±

b ) > 0.
The operators H± are maximal dissipative, and the multiplicity of their minimal self-
adjoint dilations is 2; cf. [35]. Moreover, the spectrum of minimal self-adjoint dilations
coincides with the real line and is purely absolutely continuous. Thus, there exist two
generalized eigenfunctions, denoted by ψ±

a (λ, x), ψ±
b (λ, x), for each dilation operator;

see [33] and section A.2 in Appendix A. The particle densities u± and current densities
j± are then given by means of the generalized eigenfunctions ψ±

a (λ, x), ψ±
b (λ, x),

assuming Boltzmann distribution, by

u±(x) =
∑
ν=a,b

∫
Λ±

dλ n±
0 exp (−λ± εν) |ψν(λ, x)|2, x ∈ Ωq,(1.11)

j± =
∑
ν=a,b

∫
Λ±

dλ n±
0 exp (−λ± εν) Im

(
1

m(x)

∂ψν(λ, x)

∂x
ψν(λ, x)

)
(1.12)

(see [33, 5]), where n±
0 are the integrated density of states and

Λ± := [V ±
max, V

±
max + δ±), 0 < δ±0 < δ± ≤ ∞.(1.13)
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The real parameters A := {δ±0 , δ±}, 0 < δ±0 < δ± ≤ ∞, are called the approximation
parameters; see section B.2 in Appendix B.

The construction of the Schrödinger model in the quantum zone is to some extent
artificial, since the physical interpretation of the generalized eigenfunctions ψa, ψb

corresponding to the self-adjoint dilations of H± is not a priori clear. However, as
pointed out in [4], the dissipative Schrödinger model can be seen as an approximation
of the usual Schrödinger scattering model considered elsewhere (see, e.g., [8, 22]),
with approximation parameters A. We will briefly outline this feature in section B.2
of Appendix B.

The Fermi levels ε±a , ε±b in (1.11), (1.12) are determined by the drift-diffusion
model by

φ±(a) = ε±a and φ±(b) = ε±b .(1.14)

Thus, the conditions (1.14) couple the drift-diffusion equations (1.1)–(1.3) and the
dissipative Schrödinger operators (1.6)–(1.12). This coupling will be called the Fermi
coupling. Moreover, we impose the continuity of the drift-diffusion currents J± and
the quantum current j±, i.e.,

J±(a) = j± = J±(b).(1.15)

This condition is necessary in order to obtain a physically meaningful model.
In order to have a meaningful description of the semiconductor device, the elec-

trostatic potential ϕ has to be computed self-consistently by a Poisson equation, i.e.,

− d

dx
ε
d

dx
ϕ(x) = C(x) + U+(x) − U−(x), x ∈ Ω,(1.16)

with boundary conditions

ϕ(a0) = ϕa0 and ϕ(b0) = ϕb0 ,(1.17)

where the carrier densities U± are given by

U±(x) :=

{
U±(x) for x ∈ Ωc,

u±(x) for x ∈ Ωq,
(1.18)

and ε, C denote the dielectric permittivity and the doping profile, respectively.
The coupled dissipative Schrödinger (1.6)–(1.12) and drift-diffusion model (1.1)–

(1.3) with the coupling conditions (1.14)–(1.18) is called the dissipative hybrid model.
The aim of this paper is to show that the proposed dissipative hybrid model

is well posed and admits a solution under natural assumptions for any choice of
the approximation parameters A. The paper is organized as follows. In section 2
we investigate the stationary drift-diffusion system on the disconnected set Ωc =
(a0, a) ∪ (b, b0), provided the current densities are given and equal on the different
intervals (a0, a) and (b, b0). This leads to certain restrictions on the current densities;
cf. Lemma 2.2. Section 3 is devoted to the rigorous setup of the dissipative Schrödinger
system used in the quantum zone. The dissipative hybrid model is defined in section 4.
In section 4.1 the so-called Fermi coupling is explained. Using the Fermi coupling, we
show in section 4.2 that the stationary drift-diffusion and the dissipative Schrödinger
models admit a current coupling. This result is in fact nontrivial and is based on
Proposition 4.1. Using the results of section 4.2, in section 4.3 we rigorously introduce
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the dissipative hybrid model. Finally, in section 4.4 we consider the coupling with
the Poisson equation. The problem of finding a solution to the dissipative hybrid
model is reformulated in section 4.4 as a fixed point problem. In section 5 we show
that the fixed point problem admits a solution. The existence proof is based on the
Leray–Schauder fixed point theorem. Uniqueness is not shown and not expected for
physical reasons; cf. [32, 50]. However, it turns out that all solutions are uniformly
bounded by a bound that is determined by the data of the problem but independent
of the choice of the approximation parameters A. Moreover, the current densities are
nontrivial in the nonequilibrium case. We sum up with some comments in section 6.
In section A we give an introduction to dissipative Schrödinger systems and prove
some continuity results for the carrier and current density operators. The derivation
of the dissipative Schrödinger model from the usual Schrödinger scattering model is
exposed in section B.

Notation. By Lp(O, X,m), 1 ≤ p < ∞, we denote the space of m-measurable
and p-integrable functions over Borel sets O ⊆ R with values in a Banach space X.
By L∞(O, X,m) the space of essentially bounded functions is denoted. If m is the
Lebesgue measure, then we write Lp(O) = Lp(O,C,m) and Lp

R
(O) := Lp(O,R,m),

1 ≤ p ≤ ∞. For closed sets O ⊆ R we denote by C(O) and CR(O) the spaces of
continuous complex- or real-valued functions, respectively, on O equipped with the
supremum norm.

The norm of a Banach or Hilbert space X is indicated by ‖ · ‖X , or simply by
‖ · ‖; the scalar product of a Hilbert space X by (·, ·)X , or simply by (·, ·), where
the first argument is the linear one. The dual space is indicated by X∗. By B(X,Y )
the space of all linear bounded operators from the Banach space X to the Banach
space Y is denoted with norm ‖ · ‖B(X,Y ). If X = Y , then B(X,X) = B(X) and
‖ · ‖B(X,Y ) = ‖ · ‖B(X). If X is a Hilbert space, then B1(X) denotes the space of trace
class operators. For a densely defined linear operator A : X −→ Y we denote by A∗,
spec(A), and res(A) its adjoint, spectrum, and resolvent set, respectively.

Furthermore, for O = (a0, b0) or O = (a, b) we denote by W 1,2(O) the usual
Sobolev spaces of complex-valued functions on O. The subspace of elements with
homogeneous Dirichlet boundary conditions at the end points of the interval O ⊆
R is denoted by

o

W 1,2 (O). Its dual with respect to the L2-pairing is denoted by

W−1,2(O) = (
o

W 1,2 (O))∗. If we have in mind only real-valued functions, then we

write W 1,2
R

(O) and
o

W 1,2
R

(O).
Moreover, the superscripts “+” and “−” always indicate quantities related to

holes and electrons, respectively.
Throughout this paper ϕ will always denote the electrostatic potential. If needed,

we will indicate the dependence of any quantity A on the electrostatic potential ϕ,
or the current density J and the electrostatic potential ϕ, by writing A[ϕ] or A[J, ϕ],
respectively.

2. Classical zone. In this section we consider the stationary drift-diffusion
equations (1.1)–(1.3) on the disconnected set Ωc with boundary conditions (1.5). The
boundary conditions at a and b are replaced by the conditions that (i) the current
densities at a and b are equal and (ii) these current densities are given. We show in
this section that the system is well posed and admits solutions φ±, provided the given
current densities are located in some interval around zero, which depends on the fixed
electrostatic potential ϕ. Later on, the given current densities will be the quantum
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current densities for a fixed potential ϕ, which is finally determined self-consistently
by the Poisson equation.

We assume that the carrier and current densities U± and J± are given by (1.1)
and (1.2), respectively. We make the following assumptions.

Assumption 2.1.

(C.1) The effective carrier mobilities μ± are strictly positive and constant on Ωc.
(C.2) The effective density of states N±

0 are strictly positive constants on Ωc.
(C.3) The boundary values φa0

and φb0 are given constants from R.
(C.4) The band-edge offsets V ±

h are real and continuous functions, i.e., V ±
h ∈

CR(Ωc).
(C.5) Generation and recombination are absent.
Moreover, we will assume throughout this section that the electrostatic potential

ϕ is given and obeys ϕ ∈ CR(Ω). By Assumption (C.4) we get that the potentials V ±

defined by (1.4) satisfy V ± ∈ CR(Ωc).
By (C.5) we obtain the continuity equations (1.3), which imply that the current

density J±(x) is constant on each subinterval of Ωc, i.e.,

J±(x) = J±(a), x ∈ (a0, a), and J±(x) = J±(b), x ∈ (b, b0).(2.1)

Thus, we deduce

J±(a) = μ±N±
0

e−φ±
a0 − e−φ±(a)∫ a

a0
dy eV ±(y)

(2.2)

and

J±(b) = μ±N±
0

e−φ±(b) − e−φ±
b0∫ b0

b
dy eV ±(y)

.(2.3)

Lemma 2.2. Let the electrostatic potential ϕ ∈ CR(Δ) and the current densities
J± be given. There are solutions φ± ∈ C1

R
(Ωc) of the drift-diffusion equations (1.1)–

(1.3) satisfying the boundary conditions (1.5) and the conditions J±(a) = J±(b) = J±

if and only if J± ∈ (J±
min, J

±
max), where

J±
min := −μ±N±

0

e±φ±
b0∫ b0

b
dy eV ±(y)

, J±
max := μ±N±

0

e±φ±
a0∫ a

a0
dy eV ±(y)

,(2.4)

with V ± given by (1.4). Moreover, these solutions φ± are unique.
Proof. Let us first assume that φ± are solutions of the drift-diffusion equations

such that J±(a) = J±(b) = J± holds. From (2.2) and (2.3), one gets

J±(a) < μ±N±
0

e±φ±
a0∫ a

a0
dy eV ±(y)

= J±
max(2.5)

and

J±(b) > −μ±N±
0

e±φ±
b0∫ b0

b
dy eV ±(y)

= J±
min.(2.6)

Thus, J± ∈ (J±
min, J

±
max).
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Conversely, if J± ∈ (J±
min, J

±
max), then we can define

φ−(x) :=

⎧⎨
⎩
− ln

(
e−φ−

a0 − J−

μ−N−
0

∫ x

a0
dy eV

−(y)
)

for x ∈ (a0, a),

− ln
(
e−φ−

b0 + J−

μ−N−
0

∫ b0
x

dy eV
−(y)

)
for x ∈ (b, b0),

(2.7)

and similarly

φ+(x) :=

⎧⎨
⎩

ln
(
eφ

+
a0 − J+

μ+N+
0

∫ x

a0
dy eV

+(y)
)

for x ∈ (a0, a),

ln
(
eφ

+
b0 + J+

μ+N+
0

∫ b0
x

dy eV
+(y)

)
for x ∈ (b, b0).

(2.8)

A straightforward computation shows that φ± defined by (2.7) and (2.8) are indeed so-
lutions of the drift-diffusion equations (1.1)–(1.3) and satisfy the boundary conditions
(1.5). The uniqueness of the solutions follows from the fact that (1.3) is a second order

equation for eφ
±
, where the boundary values at φ±(a0), φ

±(b0) are fixed by (1.5), and
d
dxφ

±(a0),
d
dxφ

±(b0) are fixed by the conditions J±(a) = J±(b) = J±.
It is convenient to introduce the sets

E− :=

⎧⎨
⎩(J−, ϕ) ∈ R × CR(Ω) :

0 < e−φ−
a0 − J−

μ−N−
0

∫ a

a0
dx eV

−(x)

0 < e−φ−
b0 + J−

μ−N−
0

∫ b0
b

dx eV
−(x)

⎫⎬
⎭(2.9)

and

E+ :=

⎧⎨
⎩(J+, ϕ) ∈ R × CR(Ω) :

0 < eφ
+
a0 − J+

μ+N+

∫ a

a0
dx eV

+(x)

0 < eφ
+
b0 + J+

μ+N+

∫ b0
b

dx eV
+(x)

⎫⎬
⎭ .(2.10)

Note that the definitions (2.7) and (2.8) make sense if (J±, ϕ) ∈ E±. For pairs
(J±, ϕ) ∈ E± we will indicate the dependence of φ± from (2.7), (2.8) on the pairs by
writing φ±[J±, ϕ].

For (J±, ϕ) ∈ E± the densities U± are given by means of (1.1), (2.7), and (2.8)
by

U−(x) =

⎧⎨
⎩
N−

0 e−V −(x)
{
e−φ−

a0 − J−

μ−N−
0

∫ x

a0
dy eV

−(y)
}

for x ∈ (a0, a),

N−
0 e−V −(x)

{
e−φ−

b0 + J−

μ−N−
0

∫ b0
x

dy eV
−(y)

}
for x ∈ (b, b0),

(2.11)

and

U+(x) =

⎧⎨
⎩
N+

0 e−V +(x)
{
eφ

+
a0 − J+

μ+N+
0

∫ x

a0
dy eV

+(y)
}

for x ∈ (a0, a),

N+
0 e−V +(x)

{
eφ

+
b0 + J+

μ+N+
0

∫ b0
x

dy eV
+(y)

}
for x ∈ (b, b0).

(2.12)

Clearly the densities U± are positive if (J±, ϕ) ∈ E±. The operators that assign
the densities U± to pairs of (J±, ϕ), called the classical carrier density operators
D± : E± −→ L1

R
(Ωc), are defined by

D±[J±, ϕ] := U±, (J±, ϕ) ∈ dom(D±) = E±,(2.13)

where U± are given by (2.11) and (2.12). Of course, the carrier densities are not only
from L1 but in fact also are continuous functions. However, in section 3 we see that
for the quantum densities the adequate function space is L1. This suggests that we
demand the same function space here.
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3. Quantum zone. In this section we rigorously define the dissipative Schröd-
inger system described in the introduction of this paper; see (1.6)–(1.13). To that end
we make the following general assumptions.

Assumption 3.1.

(Q.1) The effective masses m± are positive and obey m±, 1
m± ∈ L∞

R
(Ωq).

(Q.2) The effective masses m±
a and m±

b entering the boundary coefficients κ
±
a

and κ
±
b (see (1.8)) are strictly positive constants.

(Q.3) The approximation parameters A = {δ±0 , δ±} entering κ
±
a and κ

±
b via (1.9)

are strictly positive and obey δ±0 < δ± ≤ ∞.
(Q.4) The band-edge offsets V ±

h are essentially bounded over the whole device
domain and continuous in the classical region (see also Assumption (C.4)).

(Q.5) The distribution functions f± : R −→ R+ are continuously differentiable
and nonincreasing, i.e., d

dxf
±(x) ≤ 0 for x ∈ R, such that

D±(s) := sup
λ∈[s,∞)

f±(λ)
√

1 + λ2 < ∞, s ∈ R,(3.1)

F±(s) :=

∫ ∞

s

dλ f±(λ) < ∞, s ∈ R.(3.2)

Moreover, the electrostatic potential ϕ ∈ CR(Ω) is assumed to be fixed in this
section. The potentials V ± are defined—as before—by (1.4).

Remark 3.2. Clearly, the reduced Boltzman distribution functions f±(λ) =
n±

0 e−λ and the reduced Fermi–Dirac distribution functions f±(λ) = n±
0 ln(1 + e−λ),

where n±
0 are the integrated density of states, satisfy assumption (Q.5).

We define the operators H± on the Hilbert space L2(Ωq) by

dom(H±) =

⎧⎪⎪⎨
⎪⎪⎩g ∈ W 1,2(Ωq) :

1
m± g′ ∈ W 1,2(Ωq),

1
2m±(a)g

′(a) = −κ
±
a g(a),

1
2m±(b)g

′(b) = κ
±
b g(b)

⎫⎪⎪⎬
⎪⎪⎭(3.3)

and

(H±g)(x) = −1

2

d

dx

1

m±(x)

d

dx
g(x) + V ±(x)g(x),(3.4)

where the coefficients κ
±
a and κ

±
b are given by (1.8). The operators H± are maximal

dissipative and completely non–self-adjoint, since Im(κ±
a ), Im(κ±

b ) > 0; see [34].
The dissipative operators H± are regarded as pseudo-Hamiltonians of an open

quantum system; see [17, 3]. By means of the dilation theorem (see, e.g., [21]), there
exists a Hilbert space K containing L2(Ωq) as a subspace and self-adjoint dilations
K± on K corresponding to the maximal dissipative operators H±, i.e.,

(H± − z)−1ψ = P (K± − z)−1ψ for all ψ ∈ L2(Ωq),

where P denotes the orthogonal projection from the dilation space K onto the subspace
L2(Ωq). Moreover, the minimality conditions

K = clospan
z∈C\R

{
(K± − z)−1ψ, ψ ∈ L2(Ωq)

}
are satisfied. The minimal self-adjoint dilations K± corresponding to the maximal
dissipative operators H± can be obtained explicitly; see [35] and also section A.2. The
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spectrum of K± is absolutely continuous, is the whole real line, and has multiplicity
2. The incoming eigenfunctions of K± are denoted by ψ±

a (x, λ), ψ±
b (x, λ); see [35].

The macroscopic quantities such as carrier densities u± and current densities j± for
the open quantum system are then determined by the incoming eigenfunctions of the
quasi Hamiltonian and given statistics as in [33] and sections A.3 and A.4 by

u±(x) =
∑
ν=a,b

∫
Λ±

dλ f±(λ∓ εν)|ψ±
ν (x, λ)|2,(3.5)

j± =
∑
ν=a,b

∫
Λ±

dλ f±(λ∓ εν)Im

(
1

m(x)

∂ψ±
ν (λ, x)

∂x
ψ±
ν (λ, x)

)
,(3.6)

where ε±a , ε±b are given Fermi levels and Λ± the sets given by (1.13). The current
densities j± can be expressed by means of the transmission coefficients 0 ≤ t±(λ) ≤ 1
(see [35] and section A.4 in Appendix A) as

j± =
1

2π

∫
Λ±

dλ t±(λ)
(
f±(λ∓ εa) − f±(λ∓ εb)

)
.(3.7)

Clearly the carrier and current densities depend on the electrostatic potential
ϕ since the eigenfunctions ψ±

a , ψ±
b and the intervals Λ± depend on ϕ. Moreover,

u± and j± depend on the Fermi energies ε±a , ε±b . Therefore, we define the carrier
density operators N± : R × R × CR(Ω) −→ L1(Ωq) and current density operators
j± : R × R × CR(Ω) −→ R, which assign to the Fermi levels and the electrostatic
potential the corresponding carrier and current densities, i.e.,

N±[ε±a , ε
±
b , ϕ] := u±(x), (ε±a , ε

±
b , ϕ) ∈ dom(N±) = R × R × CR(Ω),(3.8)

and

j±[ε±a , ε
±
b , ϕ] := j±, (ε±a , ε

±
b , ϕ) ∈ dom(j±) = R × R × CR(Ω).(3.9)

The carrier density operators admit the estimate (cf. Proposition A.4 of section A.3)

‖N±[ε±a , ε
±
b , ϕ]‖L1(Ωq) ≤ C±[ε±a , ε

±
b , ϕ]

(
γ±
1 + γ±

2

√
‖ϕ∓‖L∞(Ωq)

)
,(3.10)

where ϕ+ and ϕ− denote the positive and negative parts, respectively, of ϕ, i.e.,

ϕ−(x) := max{0,−ϕ(x)}, ϕ+(x) := max{0, ϕ(x)}, x ∈ Ωq.(3.11)

The constants γ±
1 , γ±

2 are independent of ε±a , ε±b , and ϕ. The constants C±[ε±a , ε
±
b , ϕ]

are given by

C±[ε±a , ε
±
b , ϕ] := sup

λ∈Λ±[ϕ]

max
ν=a,b

f±(λ∓ ε±ν )
√

1 + λ2,(3.12)

where Λ±[ϕ] denotes the dependence of the intervals Λ± given by (1.13) on the elec-
trostatic potential ϕ.

4. Hybrid model. In this section we couple the drift-diffusion model of section 2
and the dissipative Schrödinger model of section 3, which leads to the dissipative
hybrid model. This coupling is done in two steps: (i) the Fermi coupling and (ii) the
current coupling.
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4.1. Fermi coupling. Fermi coupling means to choose the Fermi energies ε±a
and ε±b in the dissipative Schrödinger model (see (3.5), (3.6)) in an appropriate man-
ner. Let us assume that the electrostatic potential ϕ and the current densities J± are
given and obey (J±, ϕ) ∈ E±, where E± are given by (2.9), (2.10). Thus the Fermi
potentials φ± can be defined by means of (2.7) and (2.8). The Fermi levels ε±a and
ε±b are then determined by

ε±a = φ±(a) and ε±b = φ±(b).

With this choice of the Fermi levels, we may define in accordance with (3.8) and (3.9)
the mappings N± : E± −→ L1(Ωq),

N±[J±, ϕ] := N±[φ±[J±, ϕ](a), φ[J±, ϕ](b), ϕ], (J±, ϕ) ∈ dom(N±) = E±,(4.1)

and similar the mappings j± : E± −→ R by

j±[J±, ϕ] := j±[φ±[J±, ϕ](a), φ±[J±, ϕ](b), ϕ], (J±, ϕ) ∈ dom(j±) = E±.(4.2)

4.2. Current coupling. The other condition for the coupling of the dissipa-
tive and drift-diffusion model is to impose the continuity of the current densities.
More precisely, let the electrostatic potential ϕ ∈ CR(Ω) be given; then the current
continuity condition reads

J± = j±[J±, ϕ], (J±, ϕ) ∈ E±,(4.3)

where j± are given by (4.2). Let us first show that condition (4.3) is well posed.
Proposition 4.1. If Assumptions 2.1 and 3.1 are satisfied, then for any electro-

static potential ϕ ∈ CR(Ω), the equations (4.3) admit unique solutions J± such that
(J±, ϕ) ∈ E±.

Proof. Since the considerations for holes and electrons are the same, we restrict
ourselves in the following to holes and consider only the current continuity equation
J+ = j+[J+, ϕ], (J+, ϕ) ∈ E+. The transmission coefficient t+(z) is holomorphic and
bounded by 1 in z ∈ C−; see section A.2, equation (A.23). We note that the limit
t+(λ) = limβ↑0 t

+(λ − iβ) exists for all λ ∈ R and is bounded by 1, too. Using the
uniqueness theorem for the H∞-function (cf. Corollary II.4.2 of [26]), we find that
this limit is different from zero for a.e. λ ∈ R. Hence the function t+(λ) is different
from zero and obeys the estimate

0 ≤ t+(λ) ≤ 1, ϕ ∈ CR(Ω),(4.4)

for a.e. λ ∈ R. Inserting (2.7) and (2.8) into (3.7), we find

j+[J+, ϕ] =
1

2π

∫
Λ+[ϕ]

dλ t+(λ)

{
f+

(
λ− ln

(
eφ

+
a0 − J+

μ+N+
0

∫ a

a0

dy eV
+(y)

))

−f+

(
λ− ln

(
eφ

+
b0 +

J+

μ+
b N

+
b

∫ b0

b

dy eV
+(y)

))}
.

Since d
dxf

+ ≤ 0, one gets ∂
∂J+ j

+[J+, ϕ] ≤ 0. Hence, if ϕ is fixed, then the function
j+[J+, ϕ] is nonincreasing in J+. By Lemma 2.2 one has (J+, ϕ) ∈ E+ ⇐⇒ J+ ∈
(J+

min, J
+
max). If J+ ↑ J+

max, then φ+[J+, ϕ](a) → −∞. Using the estimate∫
Λ+

dλ t+(λ)f+(λ− φ+[J+, ϕ](a)) ≤
∫ ∞

V +
max−φ+[J+,ϕ](a)

dλ f+(λ),
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we find

lim
J+↑J+

max

∫
Λ+

dλ t+(λ)f+(λ− φ+[J+, ϕ](a)) = 0,

which gives

(4.5) j+[J+
max, ϕ] := lim

J+↑J+
max

j+[J+, ϕ]

= − 1

2π

∫
Λ+

dλ t+(λ)f+

(
λ− ln

(
eφ

+
b0 +

J+
max

μ+N+
0

∫ b0

b

dy eV
+(y)

))
.

Similarly, if J+ ↓ J+
min, then φ+[J+, ϕ](b) → −∞. Hence

lim
J+↓J+

min

∫
Λ+

dλ t+(λ)f+(λ− φ+[J+, ϕ](b)) = 0,

which yields

(4.6) j+[J+
min, ϕ] := lim

J+↓J+
min

j+[J+, ϕ]

=
1

2π

∫
Λ+

dλ (λ)f+

(
λ− ln

(
eφ

+
a0 − J+

min

μ+N+
0

∫ a

a0

dy eV
+(y)

))
.

Since j+[J+, ϕ] is continuous and nonincreasing in J+, as are j+[J+
min, ϕ] > 0 and

j+[J+
max, ϕ] < 0, one immediately gets that the equation J+ = j+[J+, ϕ] admits a

unique solution J+ for each ϕ ∈ CR(Ω) such that (J+, ϕ) ∈ E+.

4.3. Dissipative hybrid system. If J± = J±[ϕ] are the solutions of (4.3) for a
given electrostatic potential ϕ ∈ CR(Ω), then it makes sense to introduce the following
quantities of the dissipative hybrid system:

φ±[ϕ] := φ±[J±[ϕ], ϕ] Fermi potentials (cf. (2.7), (2.8)),(4.7)

N±[ϕ] := N±[J±[ϕ], ϕ] dissipative particle density operators (cf. (4.1)),(4.8)

D±[ϕ] := D±[J±[ϕ], ϕ] classical density operators (cf. (2.13)).(4.9)

Moreover, we introduce the hybrid carrier density operators as follows.
Definition 4.2. Let Assumptions 2.1 and 3.1 be satisfied. The carrier density

operator U±[·] : CR(Ω) −→ L1
R
(Ω) of the dissipative hybrid system is defined by

U±[ϕ](x) :=

⎧⎨
⎩
D±[ϕ](x), x ∈ Ωc,

N±[ϕ](x), x ∈ Ωq.
(4.10)

In order to couple the hybrid system with the Poisson equation, we need to verify
certain properties of the quantities (4.7)–(4.9). In the following lemma we give an
L∞-estimate of the quasi-Fermi potentials φ±[ϕ] that is uniform in ϕ ∈ CR(Ω).

Lemma 4.3. If Assumptions 2.1 and 3.1 are satisfied, then for any ϕ ∈ CR(Ω)
one has

max
x∈Ωc

{|φ±[ϕ](x)|} ≤ η±,(4.11)
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where

η± := max
{∣∣φ±

a0

∣∣ , ∣∣φ±
b0

∣∣} .(4.12)

Proof. Assume that J+[ϕ] ≥ 0. Since J+[ϕ] solves (4.3), one gets from (3.7) and
the monotonicity of the functions f± that

f+(λ− φ+[ϕ](a)) ≥ f+(λ− φ+[ϕ](b)), λ ∈ Λ+.

Taking into account the monotonicity of f+, we find that

−φ+[ϕ](a) ≤ −φ+[ϕ](b).

If J+[ϕ] ≥ 0, then −φ+[ϕ](x), x ∈ Ωc, is nondecreasing. That means we have

−φ+[ϕ](a0) ≤ −φ+[ϕ](a) and − φ+[ϕ](b) ≤ −φ+[ϕ](b0).

Hence

−φ+[ϕ](a0) ≤ −φ+[ϕ](a) ≤ −φ+[ϕ](b) ≤ −φ+[ϕ](b0),

which shows that

max{|φ+[ϕ](a)|, |φ+[ϕ](b)|} ≤ max{|φ+[ϕ](a0)|, |φ+[ϕ](b0)|}.

If J+[ϕ] ≤ 0, then from (3.7) one gets

f+(λ− φ+[ϕ](a)) ≤ f+(λ− φ+[ϕ](b)), λ ∈ Λ+,

which yields

φ+[ϕ](a) ≤ φ+[ϕ](b).

Since φ+[ϕ](x) is nondecreasing on Ωc, we find

φ+[ϕ](a0) ≤ φ+[ϕ](a) ≤ φ+[ϕ](b) ≤ φ+[ϕ](b0),

which gives

max{|φ+[ϕ](a)|, |φ+[ϕ](b)|} ≤ max{|φ+[ϕ](a0)|, |φ+[ϕ](b0)|} = η+.

We complete the proof for holes with the remark that the quasi-Fermi potential φ+[ϕ]
is monotone on each subinterval (a0, a) and (b, b0). The proof for electrons is simi-
lar.

With the help of Lemma 4.3, we prove an estimate for the carrier density opera-
tors.

Lemma 4.4. If Assumptions 2.1 and 3.1 are satisfied, then for any ϕ ∈ CR(Ω)
the carrier density operators N±[·] admit the estimates

‖N±[ϕ]‖L1(Ωq) ≤ C±(V ±
max[ϕ])

(
γ±
1 + γ±

2

√
‖ϕ∓‖L∞(Ωq)

)
,(4.13)

where ϕ+ and ϕ− denote the positive and negative parts, respectively, of ϕ. The
constants γ±

1 , γ±
2 are independent of ϕ; V ±

max[ϕ] are given by (1.10), and the functions
C±(s) are given by

C±(s) := D±(s− η±)(1 + η±), s ∈ R,(4.14)



DISSIPATIVE HYBRID MODEL 953

with D±(·) and η± given by (3.1) and (4.12), respectively.
Proof. From (3.10) and (3.12) we get

‖N±[ϕ]‖L1(Ωq) ≤ C±[φ±[ϕ](a), φ±[ϕ](b), ϕ]
(
γ±
1 + γ±

2

√
‖ϕ∓‖L∞(Ωq)

)
.

Thus, it suffices to show that constants C±[φ±[ϕ](a), φ±[ϕ](b), ϕ] are estimated by
C±(V ±

max[ϕ]). Let us consider the case of holes. We find by means of the definition
of Λ+ (see (1.13)) that

sup
λ∈Λ+[ϕ]

√
1 + λ2f+(λ− φ+[ϕ](b))

≤ D+(V +
max[ϕ] − φ+[ϕ](b)) sup

x∈R

(
1 + (x + φ+[ϕ](b))2

1 + x2

)1/2

.

Since

sup
x∈R

(
1 + (x + φ+[ϕ](b))2

1 + x2

)1/2

≤ 1 + |φ+[ϕ](b)|,

we get

sup
λ∈Λ+[ϕ]

√
1 + λ2f+(λ− φ+[ϕ](b)) ≤ D+(V +

max[ϕ] − φ+[ϕ](b))(1 + |φ+[ϕ](b)|).

In the same manner, we prove

sup
λ∈Λ+[ϕ]

√
1 + λ2f+(λ− φ+[ϕ](a)) ≤ D+(V +

max[ϕ] − φ+[ϕ](a))(1 + |φ+[ϕ](a)|),

which yields

C+[φ+[ϕ](a), φ+[ϕ](b), ϕ] ≤ max
ν∈{a,b}

{
D+(V +

max[ϕ] − φ+[ϕ](ν))(1 + |φ+[ϕ](ν)|)
}
.

(4.15)

Since D+(·) is nonincreasing, we complete the proof using Lemma 4.3. The proof for
electrons is similar.

Like the carrier densities N±[ϕ], the current densities J±[ϕ] also admit an esti-
mate.

Lemma 4.5. If Assumptions 2.1 and 3.1 are satisfied, then for any ϕ ∈ CR(Ω)
the estimates

|J±[ϕ]| ≤ 1

π
F±(V ±

max[ϕ] − η±)(4.16)

are valid, where V ±
max[ϕ] are defined by (1.10); η± and the functions F±(·) are given

by (4.12) and by (3.2), respectively.
Proof. We consider the case of holes. Since J+[ϕ] is a solution of (4.3), one has

J+[ϕ] = j+[J+[ϕ], ϕ], where j+[J+[ϕ], ϕ] is defined by (4.2). From (3.7) and the fact
that the transmission coefficient t+[ϕ](λ) is uniformly bounded by one, we obtain

|J+[ϕ]| ≤ 1

2π

{∫
Λ+[ϕ]

dλ f+(λ− φ+[ϕ](b)) + f+(λ− φ+[ϕ](a))

}
,
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which yields

|J+[ϕ]| ≤ 1

2π

{
F+(V +

max[ϕ] − φ+[ϕ](b)) + F+(V +
max[ϕ] − φ+[ϕ](a))

}
.

By Lemma 4.3 we immediately get (4.16). The case of electrons is handled in a similar
way.

The next step is to show the continuity of the current density operator with
respect to the electrostatic potential ϕ.

Lemma 4.6. Let Assumptions 2.1 and 3.1 be satisfied. If ϕ,ϕn ∈ CR(Ω), n ∈ N,
and limn→∞ ‖ϕn − ϕ‖L∞(Ω) = 0, then limn→∞ J±[ϕn] = J±[ϕ].

Proof. We will prove the statement only for holes; the proof for electrons is
similar. We set J := J+[ϕ] and Jn := J+[ϕn], n ∈ N. If Jn �→ J as n → ∞, then
there is a subsequence {Jnk

}k∈N such that limk→∞ Jnk
= J∞ �= J . This results from

Lemma 4.5, which shows the uniform boundedness of {Jn}∞n∈N
.

Let us show that (J∞, ϕ) ∈ E+. Since (Jn, ϕn) ∈ E+, n ∈ N, and

lim
n→∞

J+
min[ϕn] = J+

min[ϕ] and lim
n→∞

J+
max[ϕn] = J+

max[ϕ],

one has (J∞, ϕ) �∈ E+ if and only if either J∞ = J+
max[ϕ] or J∞ = J+

min[ϕ]. However,
this is impossible; namely, if limk→∞ Jnk

= J+
max[ϕ] > 0, then limk→∞ j+[Jnk

, ϕnk
] =

j+[J∞, ϕ] ≤ 0; cf. (4.5). Similarly, if limk→∞ Jnk
= J+

min[ϕ] < 0, then limk→∞
j+[Jnk

, ϕnk
] = j+[J+

∞, ϕ] ≥ 0; cf. (4.6).
Since (J∞, ϕ) ∈ E+, the quantities φ+[J∞, ϕ] are well defined. One gets limk→∞

φ+[Jnk
, ϕnk

](b) = φ+[J∞, ϕ](b) and limk→∞ φ+[Jnk
, ϕnk

](a) = φ+[J∞, ϕ](a), which
yields

lim
k→∞

f+(λ− φ+[Jnk
, ϕnk

](ν)) = f+(λ− φ+[J±
∞, ϕ](ν)) for a.e. λ ∈ R, ν = a, b.

From the uniform boundedness of the Fermi potentials (see Lemma 4.3), we obtain
from Theorem A.9

lim
k→∞

j+[Jnk
, ϕnk

] = j+[J∞, ϕ].

By Jnk
= j+[Jnk

, ϕnk
] we find

J∞ = lim
k→∞

Jnk
= j+[J∞, ϕ].

Since the solution of this equation is unique, one gets J∞ = J+[ϕ], which proves the
continuity.

Next, let us show that the carrier density operators U±[·] are continuous. To this
end we first prove the continuity of the dissipative carrier density operators N±[·].

Lemma 4.7. Let Assumptions 2.1 and 3.1 be satisfied. If ϕ,ϕn ∈ CR(Ω), n ∈ N,
and limn→∞ ‖ϕn − ϕ‖L∞(Ω) = 0, then limn→∞ ‖N±[ϕn] −N±[ϕ]‖L1(Ωq) = 0.

Proof. Let ϕ,ϕn ∈ CR(Ω), n ∈ N, with limn→∞ ‖ϕ − ϕn‖L∞(Ω) be given. From
Lemma 4.6 and (2.7), (2.8), we immediately obtain

lim
n→∞

φ±[ϕn](x) = φ±[ϕ](x) for every x ∈ Ωc.

Hence, we get limn→∞ f±(λ ∓ φ±[ϕn](ν)) = f±(λ ∓ φ±[ϕ](ν)) for ν = a, b. Taking
into account the uniform boundedness of φ± (cf. Lemma 4.3) and Theorem A.7, one
completes the proof.
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Proposition 4.8. Let Assumptions 2.1 and 3.1 be satisfied. If ϕ,ϕn ∈ CR(Ω),
n ∈ N, and limn→∞ ‖ϕn − ϕ‖L∞(Ω) = 0, then limn→∞ ‖U±[ϕn] − U±[ϕ]‖L1(Ω) = 0.

Proof. Taking into account Lemma 4.7, it remains to show that

lim
n→∞

‖D±[ϕn] −D±[ϕ]‖L1(Ωc) = 0.

However, this follows immediately from Lemma 4.6 and (2.11), (2.12).

4.4. Coupling to Poisson’s equation: Dissipative hybrid model. In order
to have a meaningful model for semiconductors, the electrostatic potential has to be
computed self-consistently by a Poisson equation. In this section we pose the Poisson
equation on the whole device domain Ω, where the right-hand side depends on the
densities of the dissipative hybrid model. This leads to a nonlinear equation for the
electrostatic potential ϕ, which will be reformulated as a fixed point problem.

Concerning the data for Poisson’s equation, we make the following assumptions.
Assumption 4.9.

(P.1) The doping profile C belongs to W−1,2
R

(Ω).
(P.2) The dielectric permittivity ε is positive and obeys ε, 1

ε ∈ L∞
R

(Ω).

By ϕ̂ we denote the function which satisfies ϕ̂ ∈ W 1,2
R

(Ω), ε d
dx ϕ̂ ∈ W 1,2

R
(Ω),

ϕ̂(a0) = ϕa0
, and ϕ̂(b0) = ϕb0 , and additionally

− d

dx
ε(x)

d

dx
ϕ̂(x) = 0, x ∈ Ω.

Definition 4.10. We define the linear Poisson operator with zero boundary

conditions P :
o

W 1,2
R

(Ω) −→ W−1,2
R

(Ω) by

〈Pυ, ζ〉 :=

∫ b

a

dx ε(x)
dυ

dx

dζ

dx
, υ, ζ ∈

o

W 1,2
R

(Ω).(4.17)

Definition 4.11. Assume w± ∈ L1(Ω). We say ϕ ∈ W 1,2
R

(Ω) satisfies Poisson’s

equation if ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

(Ω) and, additionally, satisfies

Pζ = C + w+ − w−,(4.18)

where the function w± must be understood in the sense of the embedding L1(Ω) ↪→
W−1,2

R
(Ω)

Definition 4.12. Let Assumptions 2.1, 3.1, and 4.9 be satisfied. We say an
element ϕ ∈ W 1,2

R
(Ω) is a solution of the dissipative hybrid model if

(i) the carrier densities w± ∈ L1(Ω) are given by the hybrid densities, i.e., w± =
U±[ϕ] (cf. (4.10)), and

(ii) the potential ϕ satisfies Poisson’s equation.
We note that if ϕ ∈ W 1,2

R
(Ω) is a solution of the dissipative hybrid model, then

the current densities are given by J±[ϕ].
Let us introduce for each fixed electrostatic potential ϕ ∈ CR(Ω) the map R[ϕ] :

o

W 1,2
R

(Ω) −→ W−1,2
R

(Ω),

R[ϕ](ζ) := Pζ +
{
p−[ϕ]eζ − p+[ϕ]e−ζ

}
,(4.19)
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where

p−[ϕ](x) :=

⎧⎪⎪⎨
⎪⎪⎩
N−

0 eϕ̂(x)−V −
h (x)

(
e−φ−

a0 − J−[ϕ]

μ−N−
0

∫ x

a0
dy eV

−(y)
)
, x ∈ (a0, a),

0, x ∈ Ωq,

N−
0 eϕ̂(x)−V −

h (x)
(
e−φ−

b0 + J−[ϕ]

μ−N−
0

∫ b0
x

dy eV
−(y)

)
, x ∈ (b, b0),

(4.20)

and

p+[ϕ](x) :=

⎧⎪⎪⎨
⎪⎪⎩
N+

0 e−(ϕ̂(x)+V +
h (x))

(
eφ

+
a0 − J+[ϕ]

μ+N+
0

∫ x

a0
dy eV

+(y)
)
, x ∈ (a0, a),

0, x ∈ Ωq,

N+
0 e−(ϕ̂(x)+E+

h (x))
(
eφ

+
b0 + J+[ϕ]

μ+N+
0

∫ b0
x

dy eV
+(y)

)
, x ∈ (b, b0),

(4.21)

ϕ ∈ CR(Ω), where V ± = V ±[ϕ] are given by (1.4). We note that p±[ϕ] ∈ L∞
R

(Ω) and
that drift-diffusion densities can be written as

U±[J±[ϕ], ϕ](x) = p±[ϕ](x)e∓ζ(x), x ∈ Ωc,(4.22)

where ϕ = ζ + ϕ̂ and U±[J±[ϕ], ϕ] are given by (2.11) and (2.12), respectively.
Concerning the next lemma and its proof, we follow the terminology of [24]; in

particular, the notions of strong monotonicity and boundedly Lipschitz continuity are
used in accordance with Definitions III.1.1 and III.1.2 of [24].

Lemma 4.13. Let Assumptions 2.1 and 4.9 be satisfied. If ϕ ∈ CR(Ω), then
the operator R[ϕ] is strongly monotone with monotonicity constant 1

‖1/ε‖L∞(Ω)
and

boundedly Lipschitz continuous.
Proof. We note that the operator P is linear, is bounded, and obeys

〈Pζ, ζ〉 ≥ 1

‖1/ε‖L∞(Ω)
‖ζ‖2

o

W 1,2
R

(Ω)
.(4.23)

Hence, P is a strongly monotone operator with monotonicity constant 1
‖1/ε‖L∞(Ω)

,

which maps
o

W 1,2
R

(Ω) onto W−1,2
R

(Ω).
By Proposition 4.1 one has (J±[ϕ], ϕ) ∈ E±; hence, p±[ϕ](x) ≥ 0 for x ∈ Ω. Using

this, one verifies that for each ϕ ∈ CR(Ω) the nonlinear operator T [ϕ] :
o

W 1,2
R

(Ω) −→
W−1,2

R
(Ω),

T [ϕ](ζ) :=
{
p−[ϕ]eζ − p+[ϕ]e−ζ

}
,(4.24)

is monotone. Hence, the sum R[ϕ] = P + T [ϕ] is a strongly monotone operator
with the same monotonicity constant as P. Since P is bounded and linear, it is
obviously Lipschitz continuous. A straightforward computation shows that T [ϕ] is
boundedly Lipschitz continuous, too. Hence the sum R[ϕ] is also boundedly Lipschitz
continuous.

Remark 4.14. From our Lemma 4.13, and Corollary III.2.3 of [24], we obtain

that for ϕ ∈ CR(Ω) the operator R[ϕ]−1 : W−1,2
R

(Ω) −→
o

W 1,2
R

(Ω) exists, is bounded,
and is Lipschitz continuous with a Lipschitz constant not bigger than ‖1/ε‖L∞(Ω).

Let us introduce the mapping Q : CR(Ω) −→ W 1,2
R

(Ω) defined by

Q(ϕ) := ϕ̂ + R[ϕ]−1(C −N−[ϕ] + N+[ϕ]),(4.25)



DISSIPATIVE HYBRID MODEL 957

where ϕ ∈ dom(Q) = CR(Ω) and N±[ϕ] have to be seen as elements from W−1,2
R

(Ω).
In what follows we simultaneously regard the mapping Q also as mapping from CR(Ω)
into itself by means of the embedding W 1,2

R
(Ω) ↪→ CR(Ω).

Proposition 4.15. Let Assumptions 2.1, 3.1, and 4.9 be satisfied. An element
ϕ ∈ W 1,2

R
(Ω) is a solution of the dissipative hybrid model if and only if ϕ is a fixed

point of the mapping Q : CR(Ω) −→ CR(Ω).
Proof. Let us assume that ϕ ∈ W 1,2

R
(Δ) is a solution of the dissipative hybrid

model. From Definition 4.12 we get

Pζ = C − U−[ϕ] + U+[ϕ],(4.26)

where ϕ = ζ + ϕ̂. By means of the relation (4.22) we have

−D−[ϕ] + D+[ϕ] = −p−[ϕ]eζ + p+[ϕ]e−ζ ,(4.27)

and thus, by definition of U± (see (4.10)), we get

R[ϕ](ζ) = C −N−[ϕ] + N+[ϕ].(4.28)

Therefore we obtain

ϕ = ϕ̂ + R[ϕ]−1(C −N−[ϕ] + N+[ϕ]),(4.29)

which implies ϕ = Q[ϕ]; i.e., ϕ is a fixed point of Q. The converse statement is proven
in a similar manner.

5. Existence.

5.1. Preliminaries. Our final aim is to show that the dissipative hybrid model
introduced in the previous section always admits a solution. By Proposition 4.15 this
is equivalent to showing that the nonlinear mapping Q : CR(Ω) −→ CR(Ω) admits a
fixed point. This will be done by applying the Leray–Schauder fixed point theorem
[25, Theorem 11.3]. To this end we consider the nonlinear equation

ϑ = tQ(ϑ), ϑ ∈ CR(Ω), t ∈ [0, 1].(5.1)

Let us introduce the modified carrier density operators U±
t [·] : CR(Ω) −→ L1(Ω),

t ∈ [0, 1],

U±
t [ϕ](x) :=

⎧⎨
⎩
D±[tϕ](x)e∓(1−t)ϕ(x), x ∈ Ωc,

N±[tϕ](x), x ∈ Ωq.
(5.2)

We note that U±[ϕ] = U±
1 [ϕ], ϕ ∈ CR(Ω); cf. (4.10).

Lemma 5.1. Let Assumptions 2.1, 3.1, and 4.9 be satisfied. If ϑ ∈ CR(Ω) satisfies
(5.1) for t ∈ [0, 1], then there is an element ϕ ∈ W 1,2

R
(Ω) such that ϑ = tϕ, and that

ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

(Ω) satisfies the modified Poisson equation

Pζ = C + U+
t [ϕ] − U−

t [ϕ].(5.3)

Proof. The proof of the lemma is essentially the same as the proof of Proposi-
tion 4.15.
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Having in mind an application of the Leray–Schauder fixed point theorem, one
has to show that the mapping Q is compact, i.e., continuous and maps every bounded
set into a precompact one; cf. section 11.2 of [25]. This will be shown by the following
lemmata.

Lemma 5.2. If Assumptions 2.1, 3.1, and 4.9 are satisfied, then the mapping
Q : CR(Ω) −→ CR(Ω) is continuous.

Proof. Let ϕ,ϕn ∈ CR(Ω), n ∈ N, such that limn→∞ ‖ϕ− ϕn‖L∞(Ω) = 0. We set

ψ := C −N−[ϕ] + N+[ϕ] ∈ W−1,2
R

(Ω)

and

ψn := C −N−[ϕn] + N+[ϕn] ∈ W−1,2
R

(Ω), n ∈ N.

By Lemma 4.7 we find limn→∞ ‖N±[ϕn] −N±[ϕ]‖L1(Ω) = 0, which yields

lim
n→∞

‖ψn − ψ‖W−1,2(Ω) = 0.(5.4)

Let us show that

lim
n→∞

‖R[ϕn]−1(ψn) −R[ϕ]−1(ψ)‖W 1,2(Ω) = 0.(5.5)

Obviously one has

ψn −R[ϕn](R[ϕ]−1(ψ)) = ψn − ψ −
{
R[ϕn](R[ϕ]−1(ψ)) − ψ

}
.(5.6)

The sequence R[ϕn] :
o

W 1,2(Ω) −→ W−1,2(Ω) converges strongly to R[ϕ]; i.e., for

each ζ ∈
o

W 1,2(Ω) one has R[ϕn](ζ) → R[ϕ](ζ) as n → ∞. Hence

lim
n→∞

‖R[ϕn](R[ϕ]−1(ψ)) − ψ‖W−1,2(Ω) = 0.(5.7)

From (5.4), (5.6), and (5.7) we get

lim
n→∞

‖ψn −R[ϕn](R[ϕ]−1(ψ))‖W−1,2(Ω) = 0.(5.8)

Using the representation

R[ϕn]−1(ψn) −R[ϕ]−1(ψ) = R[ϕn]−1(ψn) −R[ϕn]−1(R[ϕn](R[ϕ]−1(ψ)))

and (5.8), we obtain from Remark 4.14 the relation (5.5), which yields the continuity
of Q.

Lemma 5.3. If Assumptions 2.1, 3.1, and 4.9 are satisfied, then the mapping
Q : CR(Ω) −→ CR(Ω) is compact.

Proof. By Lemma 5.2 it remains to show that Q maps a bounded set into a
precompact set. To this end we are going to verify that the mapping Q : CR(Ω) −→
W 1,2(Ω) defined by (4.25) maps bounded sets into bounded sets. The compactness
of the embedding W 1,2(Ω) ↪→ CR(Ω) then implies the asserted precompactness.

Using the definition (4.25), we get the estimate

‖Q(ϕ)‖W 1,2(Ω) ≤
{
‖ϕ̂‖W 1,2(Ω) + ‖R[ϕ]−1(C −N−[ϕ] + N+[ϕ])‖ o

W 1,2(Ω)

}
.(5.9)
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Since, by Lemma 4.13, for each ϕ ∈ CR(Ω) the operator R[ϕ] is strongly monotone
with monotonicity constant 1

‖1/ε‖L∞(Ω)
, we obtain from Theorem 2.17 of [38] (see also

[24]) the estimate

(5.10) ‖R[ϕ]−1(C −N−[ϕ] + N+[ϕ])‖ o

W 1,2(Ω)

≤ ‖1/ε‖L∞(Ω)‖R[ϕ](0) − (C −N−[ϕ] + N+[ϕ])‖W−1,2(Ω).

Thus we get by (4.19)

R[ϕ](0) = p−[ϕ] − p+[ϕ].

Hence

‖R[ϕ]−1(C −N−[ϕ] + N+[ϕ])‖ o

W 1,2(Ω)

≤ ‖1/ε‖L∞(Ω)

∥∥{p−[ϕ] − p+[ϕ]} − (C −N−[ϕ] + N+[ϕ])
∥∥
W−1,2(Ω)

,

which yields the estimate

(5.11) ‖R[ϕ]−1(C −N−[ϕ] + N+[ϕ])‖ o

W 1,2(Ω)

≤ β

(
1 +

∑
s=±

{
‖ps[ϕ]‖L1(Ω) + ‖N s[ϕ]‖L1(Ωq)

})
,

where β is some positive constant depending only on the doping profile C, the per-
mittivity function ε, and the norm of the embedding L1

R
(Ω) ↪→ W−1,2

R
(Ω).

Using the definitions (2.7), (2.8), as well as (4.20) and (4.21), we find the repre-
sentations

p±[ϕ](x) =

⎧⎨
⎩
N±

0 e∓(ϕ̂(x)±V ±
h (x))e±φ±[ϕ](x), x ∈ Ωc,

0, x ∈ Ωq,

and taking into account Lemma 4.3, we obtain the estimate

‖p±[ϕ]‖L1(Ωc) ≤ Γ±
c ,

with

Γ±
c := N±

0 eη
±
∫

Ωc

dx e−V ±
h ∓ϕ̂(x).

Hence,

‖p−[ϕ]‖L1(Ωc) + ‖p+[ϕ]‖L1(Ωc) ≤ Γ−
c + Γ+

c =: Γc.(5.12)

By Lemma 4.4 we find the estimate

(5.13) ‖N−[ϕ]‖L1(Ωq) + ‖N+[ϕ]‖L1(Ωq)

≤ C−(V −
max[ϕ])

(
γ−
1 + γ−

2 ‖ϕ+‖L∞(Ωq)

)
+ C+(V +

max[ϕ])
(
γ+
1 + γ+

2 ‖ϕ−‖L∞(Ωq)

)
,
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where V ±
max[ϕ] are given by (1.10). If ϕ ∈ BCR(Ω)(r) := {ϕ ∈ CR(Ω) : ‖ϕ‖L∞(Ω) ≤ r},

then V ±
max[ϕ] ≥ −r − ch, where

ch := max{‖V +
h ‖L∞(Ω), ‖V −

h ‖L∞(Ω)}.(5.14)

Since the functions C±(·) are nonincreasing, we find C±(V ±
max[ϕ]) ≤ C±(−r − ch),

which yields

‖N−[ϕ]‖L1(Ωq) + ‖N+[ϕ]‖L1(Ωq) ≤ Γq(r) for all ϕ ∈ BCR(Ω)(r), r > 0,(5.15)

where the constant Γq(r) is given by

Γq(r) := C−(−r − ch)
(
γ−
1 + γ−

2

√
r
)

+ C+(−r − ch)
(
γ+
1 + γ+

2

√
r
)
.

Finally, one gets by (5.9)–(5.15) the estimate

‖Q(ϕ)‖W 1,2(Ω) ≤ r0,

with

r0 := ‖ϕ̂‖ o

W 1,2(Ω)
+ β

(
1 + Γc + Γq(r)

)
.

Hence Q(BCR(Ω)(r)) ⊆ BW 1,2(Ω)(r0); i.e., the mapping Q maps bounded sets into
bounded sets of W 1,2(Ω). Since the embedding W 1,2(Ω) ↪→ CR(Ω) is compact, we
deduce the precompactness of the set Q(BCR(Ω)(r)), which completes the proof.

5.2. A priori estimates. Our next aim is to investigate solutions of (5.3) and
to verify certain a priori estimates for them.

Lemma 5.4. Let Assumptions 2.1, 3.1, and 4.9 be satisfied. If ϕ ∈ W 1,2
R

(Ω), and

if ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

satisfies (5.3) for some t ∈ [0, 1], then there exists a constant M
independent of ϕ and t such that

ϕ(x) ≤M
{

1 + C+(tϕmax − ch)
√

1 + ‖ϕ−‖L∞(Ωq)

}
,(5.16)

−ϕ(x) ≤M
{

1 + C−(−tϕmin − ch)
√

1 + ‖ϕ+‖L∞(Ωq)

}
(5.17)

for all x ∈ Ω, where

ϕmax := max{ϕ(a), ϕ(b)} and ϕmin := min{ϕ(a), ϕ(b)},(5.18)

ϕ± denotes the positive and negative parts of ϕ, and ch is given by (5.14).

Proof. We set d := P−1C ∈
o

W 1,2
R

(Ω). Since ζ := ϕ− ϕ̂ is a solution of (5.3), one
has

P(ζ − d) = U+
t [ϕ] − U−

t [ϕ].

Since the right-hand side of the above equation is in L1(Ω), one gets that g := ζ−d ∈
o

W 1,2
R

(Ω), εg′ ∈ W 1,1
R

(Ω), and

− d

dx
ε(x)

d

dx
g(x) = U+

t [ϕ](x) − U−
t [ϕ](x)
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for a.e. x ∈ Ω. We remark that

P(ζ − d) = − d

dx
ε(x)

d

dx
g.

Let Ω0 = (x0, x1) ⊆ Ω be given such that ζ(x0) = ζ(x1) = 0 and ζ(x) > 0 for
x ∈ Ω0. We set

g+(x) =

∫ x

x0

dy
1

ε(y)

∫ y

x0

dz U+
t [ϕ](z), x ∈ Ω0.

Obviously, one has

d

dx
ε(x)

d

dx
h(x) = U−

t [ϕ](x)

for a.e. x ∈ Ω0, where h(x) := g(x) + g+(x) = ζ(x)− d(x) + g+(x), x ∈ Ω0. Using the
maximum principle [25, Theorem 8.1] we obtain

sup
x∈Ω0

h(x) ≤ max{h(x0), h(x1)},

which yields

ζ(x) ≤ d(x) + max{−d(x0),−d(x1) + g+(x1)}, x ∈ Ω0.

Thus

ζ(x) ≤ 2‖d‖L∞(Ω) + g+(x1), x ∈ Ω0.(5.19)

For x ∈ Ωc ∩ Ω0 there is, by (5.2),

U+
t [ϕ](x) = N+

0 eφ
+[tϕ](x)e−ϕ̂(x)−V +

h (x)e−ζ(x).

By Lemma 4.3 and ζ(x) ≥ 0, x ∈ Ω0, we get

U+
t [ϕ](x) ≤ N+

0 eη
+

e−ϕ̂(x)−V +
h (x), x ∈ Ωc ∩ Ω0,

which yields the estimate∫
Ω0∩Ωc

dz U+
t [ϕ](z) ≤ N+

0 eη
+

∫
Ω0∩Ωc

dz e−ϕ̂(z)−V +
h (z).

Hence, we obtain the estimate

g+(x1) ≤ ‖1/ε‖L1(Ω0)

∫
Ω0

dz U+
t [ϕ](z)

≤ ‖1/ε‖L1(Ω0)

(∫
Ω0∩Ωq

dz U+
t [ϕ](z) + eη

+

N+
0

∫
Ω0∩Ωc

dz e−ϕ̂(z)−V +
h (z)

)
.

Inserting this estimate into (5.19), one finds positive constants M+
1 , M+

2 independent
of ϕ and t such that the inequality

ζ(x) ≤ M+
1 + M+

2

∫
Ωq

dz U+
t [ϕ](z)(5.20)



962 M. BARO, H. NEIDHARDT, AND J. REHBERG

holds for x ∈ Ω+ := {x ∈ Ω : ζ(x) > 0}.
In the same manner we find positive constants M−

1 , M−
2 , which are independent

of ϕ and t, such that

−ζ(x) ≤ M−
1 + M−

2

∫
Ωq

dz U−
t [ϕ](z)(5.21)

for x ∈ Ω− := {x ∈ Ω : ζ(x) < 0}.
Since ∫

Ωq

dz U±
t [ϕ](z) = ‖N±[tϕ]‖L1(Ωq),

we obtain from Lemma 4.4 and (5.20), (5.21) the existence of positive constants M+,
M−, which do not depend on ϕ and t, such that

ζ(x) ≤ M+
(
1 + C+(V +

max[tϕ])
√

1 + ‖ϕ−‖L∞(Ωq)

)
(5.22)

for all x ∈ Ω+ and

−ζ(x) ≤ M−
(
1 + C−(V −

max[tϕ])
√

1 + ‖ϕ+‖L∞(Ωq)

)
(5.23)

for all x ∈ Ω−.
Since ζ(x) ≤ 0 for x ∈ Ω \ Ω+ and −ζ(x) ≤ 0 for x ∈ Ω \ Ω−, we obtain from

(5.22) and (5.23) that in fact these relations are valid for each x ∈ Ω.
Taking into account the estimates V +

max[tϕ] ≥ tϕmax−ch, V −
max[tϕ] ≥ −tϕmin−ch

(cf. (5.14) and (5.18)), we get—since C±(·) is nonincreasing—the estimates

C+(V +[tϕ]) ≤ C±(tϕmax − ch) and C−(V −[tϕ]) ≤ C±(−tϕmin − ch).

Finally, using the estimates ±ϕ(x) ≤ ±ζ(x) + ‖ϕ̂‖L∞(Ω), x ∈ Ω, and t ∈ [0, 1],
we immediately obtain from (5.22) and (5.23) the estimates (5.16), (5.17) for some
constant M .

Corollary 5.5. Let Assumptions 2.1, 3.1, and 4.9 be satisfied. If ϕ ∈ W 1,2
R

(Ω)

and if ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

(Ω) satisfies (5.3) for some t ∈ [0, 1], then

‖ϕ+‖L∞(Ωq) ≤ M
(
1 + C+(tϕmax − ch)

√
1 + ‖ϕ−‖L∞(Ωq)

)
(5.24)

and

‖ϕ−‖L∞(Ωq) ≤ M
(
1 + C−(−tϕmax − ch)

√
‖1 + ‖ϕ+‖L∞(Ωq)

)
.(5.25)

Proof. Since ϕmin ≤ ϕmax, one has −tϕmax ≤ −tϕmin, t ∈ [0, 1]. Taking into
account the fact that the functions C±(·) are nonincreasing, we obtain from Lemma
5.4 the estimates (5.24) and (5.25).

5.3. Main theorem. Using Corollary 5.5, we aim to show that all solutions of
(5.3) are included in a uniform ball; that is, there is an r0 > 0 such that

L :=
{
ϑ ∈ CR(Ω) : ϑ = tQ∞(ϑ), t ∈ [0, 1]

}
⊆ BCR(Ω)(r0).(5.26)
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For this last step we need the following additional balance condition.
Assumption 5.6 (balance condition). Let the distribution functions f± satisfy

the assumption (Q.5). We say that the distribution functions f± obey the balance
condition if

G(x, y) := sup
s≥0

{
D+(s + x)D−(−s + y)1/2 + D+(−s + x)1/2D−(s + y)

}
< ∞

for x, y ∈ R, where D±(·) are defined by (3.1).
Remark 5.7. The Boltzmann and the Fermi–Dirac distributions satisfy the bal-

ance condition; see Remark 3.2.
Indeed, let f±(·) be the Boltzmann distribution function, i.e., f±(λ) = e−λ,

λ ∈ R. Using the definition (3.1), we get that D±(λ) = e−λ
√

1 + λ2, λ ∈ R. A
straightforward computation shows that

G(x, y) = sup
s≥0

{
e−

s
2−x−yg(x, y, s)

}
for x, y ∈ R, where

g(x, y, s) :=
(√

1 + (s + x)2
√

1 + (s− y)2 +
√

1 + (s− x)2
√

1 + (s + y)2
)
.

Obviously, one has G(x, y) < ∞ for x, y ∈ R. Hence, the balance condition holds.
The verification of the balance condition for Fermi–Dirac distribution functions is

easier than for Boltzmann distributions since their growth at minus infinity is linear
and not exponential, as for Boltzmann distributions.

Theorem 5.8. Let Assumptions 2.1, 3.1, and 4.9 be satisfied. If the balance
condition, i.e., Assumption 5.6, is valid, then for any choice of the approximation
parameters A = {δ±0 , δ±}, 0 < δ±0 < δ± ≤ ∞,

(i) a solution ϕ ∈ W 1,2
R

(Ω) of dissipative hybrid model in the sense of Defini-
tion 4.12 exists, and

(ii) there is an r0 ∈ (0,∞) independent of the approximation parameters {δ±0 , δ±}
such that any solution ϕ ∈ W 1,2

R
(Ω) of the dissipative hybrid model obeys

‖ϕ‖L∞(Ω) ≤ r0.

The corresponding current densities J±[ϕ] of a solution ϕ ∈ W 1,2
R

(Ω) of the dissipative
hybrid model are different from zero if and only if the boundary values of the quasi-
Fermi potentials are different, i.e., φ±

a0
�= φ±

b0
, provided the distribution functions

f±(·) are strictly decreasing.
Proof. To prove (i) it is enough to show that Q : CR(Ω) −→ CR(Ω) has a fixed

point; see Proposition 4.15. To prove this we use the Leray–Schauder fixed point
theorem. Since by Lemmas 5.2 and 5.3 the mapping Q is continuous and compact, it
remains to show that the set L defined by (5.26) is uniformly bounded in t ∈ [0, 1]. If
ϕ ∈ L, then by Lemma 5.1 it satisfies (5.3). If ϕ ∈ L satisfies (5.3), then the estimates
of Corollary 5.5 hold.

Let us assume that ϕmax ≥ 0. Using the estimate 1 + ‖ϕ±‖1/2
L∞(Ωq)

≤
√

2
(
1 + ‖ϕ±‖L∞(Ωq)

)1/2
, we obtain from Corollary 5.5 the estimates

1 + ‖ϕ+‖L∞(Ωq) ≤ r1

(
1 + C+

√
1 + ‖ϕ−‖L∞(Ωq)

)
,(5.27)

1 + ‖ϕ−‖L∞(Ωq) ≤ r1

(
1 + C−

√
1 + ‖ϕ+‖L∞(Ωq)

)
,(5.28)
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where r1 is a positive constant independent of ϕ ∈ L. Moreover, we used abbreviations
C± := C±(±tϕmax − ch). Inserting (5.28) into (5.27), we find a positive constant r2,
which does not depend on ϕ and t, such that

‖ϕ+‖L∞(Ωq) ≤ r2

(
1 + C+

√
C−

)4/3

,

where we used the fact that C+ ≤ C+(−ch), since ϕmax ≥ 0.
Further, by definition (4.14) we get

C+
√
C− = C+(tϕmax − ch)

√
C−(−tϕmax − ch)

= (1 + η+)
√

1 + η−D+(tϕmax − ch − η+)D−(−tϕmax − ch − η−)1/2.

Taking into account the balance condition (Assumption 5.6) and ϕmax ≥ 0, we get

C+
√
C− ≤ (1 + η+)

√
1 + η−G(−ch − η+,−ch − η−),

which shows that there is a positive constant r3 independent of ϕ ∈ L and t ∈ [0, 1]
such that

‖ϕ+‖L∞(Ωq) ≤ r3.

Since 0 ≤ ϕmax ≤ ‖ϕ+‖L∞(Ωq), we have −tϕmax ≥ −t‖ϕ+‖L∞(Ωq) ≥ −‖ϕ+‖L∞(Ωq)

≥ −r3, t ∈ [0, 1]. By the monotonicity of C−(·) we obtain C−(−tϕmax − ch) ≤
C−(−r3). Using Corollary 5.5, we finally get the existence of a positive constant r4,
which does not depend on ϕ ∈ L and t, such that

‖ϕ−‖L∞(Ωq) ≤ r4.

Hence ‖ϕ‖L∞(Ωa) ≤ r+ := max{r3, r4}, which shows that the Lq := {ϕ � Ωq : ϕ ∈
L} ⊆ BCR(Ωq)(r+), provided ϕmax ≥ 0.

In a similar manner one shows that there exists a positive constant r− independent
of t ∈ [0, 1] such that Lq := {ϕ � Ωq : ϕ ∈ L} ⊆ BCR(Ωq)(r−), provided ϕmax ≤ 0.

Thus, we get that Lq ⊆ BCR(Ωq)(rq), rq := max{r+, r−}. In particular, we have
−rq ≤ ϕmin ≤ ϕmax ≤ rq. Using Lemma 5.4, we find

ϕ(x) ≤ M
(
1 + C+(−rq − ch)

(
1 + r1/2

q

))
=: r5

and

−ϕ(x) ≤ M
(
1 + C−(−rq − ch)

(
1 + r1/2

q

))
=: r6

for all x ∈ Ω. Setting r0 = max{r5, r6}, we conclude that ‖ϕ‖L∞(Ω) ≤ r0. Hence,
L ⊆ BCR(Ω)(r0). Since r0 depends only on quantities entering Assumptions 2.1, 3.1,
4.9, and 5.6, but is independent of t ∈ [0, 1], the uniform boundedness of the set L

is verified. Hence the Leray–Schauder fixed point theorem implies the existence of a
solution of a dissipative hybrid model. Assertion (ii) is verified.

To prove the last assertion, we note that in accordance with (3.7) the current
density for holes J+[ϕ] satisfies the equation

J+[ϕ] =
1

2π

∫
Λ+[ϕ]

dλ t+[ϕ](λ)
{
f+(λ− φ+[ϕ](a)) − f+(λ− φ+[ϕ](b))

}
,
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where t+[ϕ](λ) is the transmission coefficient. Notice that t+[ϕ](λ) ≥ 0 for a.e. λ ∈ R.
If J+[ϕ] ≥ 0, then −φ+[ϕ](x), x ∈ Ωq, is nondecreasing such that −φ+[ϕ](a) ≤
−φ+[ϕ](b). Hence

f+(λ− φ+[ϕ](a)) − f+(λ− φ+[ϕ](b)) ≥ 0.

If J+[ϕ] = 0, then

f+(λ− φ+[ϕ](a)) − f+(λ− φ+[ϕ](b)) = 0

for a.e. λ ∈ Λ+[ϕ]. Since the distribution functions f±(·) are strictly decreasing, one
gets φ+[ϕ](a) = φ+[ϕ](b). If J+[ϕ] = 0, then φ+[ϕ](a0) = φ+[ϕ](a) and φ+[ϕ](b) =
φ+[ϕ](b0), which yields φ+

a0
= φ+[ϕ](a0) = φ+[ϕ](b0) = φ+

b0
. We proceed similarly

if J+[ϕ] ≤ 0. Conversely, if φ+
a0

= φ+
b0

and J+[ϕ] ≥ 0, then −φ+
a0

= −φ+[ϕ](a0) ≤
−φ+[ϕ](a) ≤ −φ+

b [ϕ](b) ≤ −φ+[ϕ](b0) = −φ+
b0

= −φ+
a0

, which yields J+[ϕ] = 0. We
act similarly if J+[ϕ] ≤ 0. The proof for electrons is similar.

6. Comments. We analyzed a dissipative hybrid model, which consists of a
coupled drift-diffusion model and dissipative Schrödinger operators. The electrostatic
potential is determined by a Poisson equation on the whole device domain. We showed
that the coupled system is well posed and always admits a solution, provided Assump-
tions 2.1, 3.1, 4.9, and 5.6 are satisfied; see Theorem 5.8. The proof is based on a
Leary–Schauder fixed point argument, which does not give uniqueness of solution. In
fact, uniqueness is in general not expected.

Let us comment on the results as follows:
1. The dissipative Schrödinger model considered in section 3 is to some extent ar-

tificial since the physical interpretation of the generalized eigenfunctions ψ±
a ,

ψ±
b of the minimal self-adjoint dilations K± is not a priori clear. However, as

has been shown in [4], for fixed energy there are two channels which fit into
the picture of the more commonly used quantum transmitting Schrödinger
equation (B.1); see (B.8) and (B.9). Using this fact, one can consider the dis-
sipative Schrödinger model as an approximation by means of a proper choice
of the distribution functions for the dissipative system. The approximation
we consider here is outlined in section B.2 and depends on the approximation
parameters A = {δ0, δ}; see (B.10) and (B.11). We note that other approx-
imations can be chosen, which then leads to a different dissipative hybrid
model.
Moreover, the dissipative Schrödinger model allows us to use the Lax–Philip
scattering techniques to prove the continuity of the carrier and current density
operator; see section A.2. The Lax–Phillips scattering theory is simpler than
that of the Schrödinger operators corresponding to the Schrödinger operator
(B.1); see also [4].
In the dissipative approximation presented in section B.2, we considered only
wave functions with energy larger than Vmax since they are the current car-
rying states. The inclusion of the states with energies smaller than Vmax is
so far an open problem.

2. The drift-diffusion model we consider here is based on Boltzmann statistics
(see (1.1)–(1.3)), which leads to explicit expressions for the electrochemical
potentials φ±; see (2.7) and (2.8). The case of Fermi–Dirac statistics may be
considered in the same fashion. However, one loses the explicit expressions.
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3. Here we treated the bipolar case, where electrons and holes interact via the
Poisson equation only. To prove the existence of solutions, the statistical dis-
tribution functions f± have to satisfy the balance condition (Assumption 5.6),
which is satisfied for the common distribution functions; see Remark 5.7. The
unipolar case, where only one particle species is considered, is even simpler.
In this case the balance condition is redundant, and the existence of a solu-
tion is easily obtained by the estimate (3.10) of the density and applying the
maximum principle to Poisson’s equation.

4. Theorem 5.8 shows that the solutions of a dissipative hybrid model are con-
tained in a ball with radius r0. Following the proof of the theorem, one can
derive this radius explicitly.

5. In Theorem 5.8 we showed that the current densities of the dissipative hybrid
model are equal to zero if and only if φ±

a0
= φ±

b0
, i.e., in thermal equilibrium.

In this case the electrochemical potentials φ± are constant, and thus the sta-
tistical operators �± are given by functions of the corresponding self-adjoint
dilation K±, i.e., �± = f±(K±) with f±(λ) = f±(λ ∓ φ±)χΛ±(λ), where φ±

are the constant electrochemical potentials. One may expect that the solution
of the dissipative hybrid model in thermal equilibrium is unique. However,
this is so far an open problem.

Appendix A. Dissipative Schrödinger systems. Let us give a short intro-
duction to the theory of dissipative Schrödinger systems; for details see [3, 5, 35, 33].
We start with some facts on Schrödinger-type operators.

A.1. Schrödinger-type operators. Let the conditions 0 < m ∈ L∞
R

(Ωq),
1
m ∈

L∞
R

(Ωq), be satisfied, where Ωq = (a, b). Moreover, let V ∈ L∞
R

(Ωq) and κa,κb ∈ C+,
where C+ := {z ∈ C : Im(z) > 0}, be given. The Schrödinger-type operator H is
defined by

(Hg)(x) := −1

2

d

dx

1

m

d

dx
g(x) + V (x)g(x), x ∈ Ωq, g ∈ dom(H),(A.1)

where its domain is given by

dom(H) :=

⎧⎪⎪⎨
⎪⎪⎩g ∈ W 1,2(Ωq) :

1
mg′ ∈ W 1,2(Ωq),

1
2m(a)g

′(a) = −κag(a),

1
2m(b)g

′(b) = κbg(b)

⎫⎪⎪⎬
⎪⎪⎭ .(A.2)

The operator H is maximal dissipative and completely non–self-adjoint on the
Hilbert space L2(Ωq); that is, the operator does not possess self-adjoint parts. Its
spectrum consists only of discrete eigenvalues in the lower half-plane [34].

In the following we are going to prove some continuity results for the operator H
with respect to the potential V and the boundary coefficients κa, κb. To this end we
introduce

T := C+ × C+ × L∞(Ωq),

and write—if needed—H[τ ] for τ = (κa,κb, V ) ∈ T to indicate the dependence of the
maximal dissipative operator on the potential V and the boundary coefficients κa,
κb. Moreover, for τ, τn ∈ T , n ∈ N, we write limn→∞ τn = τ if

lim
n→∞

(
|κa,n − κa| + |κb,n − κb| + ‖Vn − V ‖L∞(Ω)

)
= 0.(A.3)
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Remark A.1. Let the electrostatic potential ϕ ∈ CR(Ω) be given and assume that
the band-edge offset potentials V ±

h satisfy Assumption 3.1 (Q.4). Then the triples
τ± = (κ±

a ,κ±
b , V ±), where κ

±
a , κ

±
b are given by (1.8) and V ± by (1.4), are well

defined, and there is τ± ∈ T . Thus the operators H± defined by (3.3), (3.4) are of the
form (A.1), (A.2). Moreover, ϕ,ϕn ∈ CR(Ω), n ∈ N, with limn→∞ ‖ϕn−ϕ‖L∞(Ω) = 0
implies limn→∞ τ±n = τ±, where

τ±n := (κ±
a [ϕn],κ±

b [ϕn], V ±[ϕn]) and τ± := (κ±
a [ϕ],κ±

b [ϕ], V ±[ϕ]),

where κ
±
a [ϕ], κ

±
b [ϕ], V ±[ϕ] indicates the dependence of the coupling constants κ

±
a ,

κ
±
b and the potential V ± on the electrostatic potential ϕ; cf. (1.8) and (1.4).

A.2. Dilation and Lax–Phillips scattering. The constants κa,κb ∈ C+ can
be written as

κa = qa + i
α2
a

2
and κb = qb + i

α2
b

2
,(A.4)

where αa, αb > 0.
Since the operator H is maximal dissipative, it admits a minimal self-adjoint

dilation K on some dilation space K; see [21]. We choose the dilation space K,

K := L2(R−,C
2) ⊕ L2(Ωq) ⊕ L2(R+,C

2).(A.5)

To describe the minimal dilation K in K we set

�g := g− ⊕ g ⊕ g+,(A.6)

where g ∈ L2(Ωq), and where

g−(x) :=

(
gb−(x)
ga−(x)

)
∈ L2(R−,C

2) and g+(x) :=

(
gb+(x)
ga+(x)

)
∈ L2(R+,C

2)(A.7)

for x ∈ R− and x ∈ R+, respectively.
Theorem A.2. Let (κa,κb, V ) ∈ T be given. Then the operator K defined by

dom(K) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�g ∈ K :

g± ∈ W 1,2(R±,C
2), g, 1

mg′ ∈ W 1,2(Ωq),

1
2m(b)g

′(b) − qbg(b) = αb
gb
−(0)+gb

+(0)

2 ,

iαbg(b) = gb+(0) − gb−(0),

1
2m(a)g

′(a) + qag(a) = αa
ga
−(0)+ga

+(0)

2 ,

iαag(a) = ga−(0) − ga+(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.8)

and

K�g := −i
d

dx
g− ⊕

(
−1

2

d

dx

1

m

d

dx
+ V

)
g ⊕−i

d

dx
g+, �g ∈ dom(K),(A.9)

is self-adjoint.
Proof. The proof is given in [35, Theorem 4.1].
The operator K is a minimal self-adjoint dilation of H, i.e.,

(H − z)−1ψ = P (K − z)−1ψ for all ψ ∈ L2(Ωq) and z ∈ C+,(A.10)
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and

K = clospan
z∈C\R

{
(K − z)−1ψ, ψ ∈ L2(Ωq)

}
,(A.11)

where P is the orthogonal projection from the dilation space K onto the subspace
L2(Ωq).

We introduce the unclosed operator α : L2(Ωq) → C
2,

αf =

(
αbf(b)
−αaf(a)

)
, f ∈ dom(α) = W 1,2(Ωq),(A.12)

and the boundary operators T : res(H) −→ B(L2(Ωq),C
2), T∗ : res(H∗) −→

B(L2(Ωq),C
2) defined by

T (z)g := α(H − z)−1g, g ∈ L2(Ωq),

T∗(z)g := α(H∗ − z)−1g, g ∈ L2(Ωq).
(A.13)

The 2 × 2 matrix-valued function Θ : res(H∗) −→ B(C2) defined by

Θ(z) = IC2 − iαT (z)∗(A.14)

is holomorphic, contractive on C−, and unitary on R. The matrix-valued Θ is called
the characteristic function of H; see [21, 35] for motivation and details of this defini-
tion.

The incoming generalized eigenfunctions of K, i.e., functions �ψa = ψa,−⊕ψa⊕ψa,+

and �ψb = ψb,− ⊕ ψb ⊕ ψb,+, which satisfy

− i
d

dx
ψν,−(λ, x) ⊕

(
−1

2

d

dx

1

m

d

dx
+ V (x)

)
ψν(, λ, x) ⊕− i

d

dx
ψν,+(λ, x)

= λ
(
ψν,−(λ, x) ⊕ ψν(λ, x) ⊕ ψν,+(λ, x)

)
, λ ∈ R, ν = a, b,

and the boundary conditions in (A.8), are given by

(A.15) �ψν(λ, x) = ψν,− ⊕ ψν ⊕ ψν,+

=
1√
2π

(
eiλxeν ⊕

(
T∗(λ)∗eν

)
(x) ⊕ eiλxΘ(λ)eν

)
, λ ∈ R, ν = a, b,

eb = ( 1
0 ), ea = ( 0

1 ); see [35, 5].

The incoming Fourier transform Φ− : K −→ K̂0 := L2(R; C2) is then defined by

(
Φ− �f

)
(λ) :=

⎛
⎝
∫ 0

−∞ dx (f−(x), ψb,−(λ, x))
C2∫ 0

−∞ dx (f−(x), ψa,−(λ, x))
C2

⎞
⎠

+

⎛
⎝
∫ b

a
dx ψb(λ, x) f(x)∫ b

a
dx ψa(λ, x) f(x)

⎞
⎠ +

(∫∞
0

dx (f+(x), ψb,+(λ, x))
C2∫∞

0
dx (f+(x), ψa,+(λ, x))

C2

)
,

λ ∈ R, for all �f = f− ⊕ f ⊕ f+ ∈ K. The incoming Fourier transform Φ− establishes a
unitary equivalence between the dilation K and the multiplication operator M with
the independent variable λ; see [35, 5].
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We introduce the identification operators J± : K0 −→ K, K0 = L2(R; C2),

J− �f := P− �f ⊕ 0 ⊕ 0,

J+
�f := 0 ⊕ 0 ⊕ P+

�f,

�f ∈ K0,(A.16)

where P± denote the orthogonal projections from K0 onto L2(R±,C
2). Let K0 be the

differentiation operator K0 = −i d
dx , defined on K0. The Lax–Phillips wave operators,

W± := s− lim
t→±∞

eitKJ±e
−itK0 ,(A.17)

always exist (see [3, 33]) and are unitary.

By F : K0 −→ K̂0 = L2(R,C2) we denote the usual Fourier transform

(F �f)(λ) :=
1√
2π

∫
R

dx e−ixλ �f(x), �f ∈ K0, λ ∈ R.(A.18)

The incoming Fourier transform Φ− of K is then expressed by

Φ− = FW ∗
− : K −→ K̂0(A.19)

(see [3, 35, 33]).
The Lax–Phillips scattering operator S : K0 −→ K0 is defined by

S := W ∗
+W−.(A.20)

The scattering operator commutes with K0, which yields that the operator Ŝ : K̂0 −→
K̂0,

Ŝ := FSF∗,(A.21)

commutes with M . Hence the operator Ŝ can be represented as a multiplication
operator with a 2 × 2 matrix-valued function {Ŝ(λ)}λ∈R, which is called the scatter-
ing matrix, in particular, the Lax–Phillips scattering matrix. It turns out that the
scattering matrix can be computed directly from the operator H by means of the
characteristic function Θ. In fact, there is

S(λ) = Θ(λ)∗(A.22)

for a.e. λ ∈ R.
The transmission coefficient t(λ), λ ∈ R, is then given by

t(λ) := |(S(λ)eb, ea)C2 |2 = |(eb,Θ(λ)ea)C2 |2,(A.23)

where eb, ea ∈ C are given by eb = ( 1
0 ), ea = ( 0

1 ). Moreover, there is

t(λ) = |(S(λ)ea, eb)C2 |2

(see [35]).
Clearly, all the quantities defined above depend on the triple τ = (κa,κb, V ) ∈ T .

If needed, we will denote the dependence of any quantity A on τ ∈ T by writing A[τ ].



970 M. BARO, H. NEIDHARDT, AND J. REHBERG

A.3. Carrier density operator. Let τ ∈ T be given and H be the associated
maximal dissipative Schrödinger operator. By means of a so-called density matrix ρ,
one can assign a particle density u to each operator H in a unique way. The mapping
τ �→ u is then defined as the carrier density operator. In what follows we will discuss
this procedure in detail.

A density matrix is an element of the Banach space L∞(R,B(C2)) such that its
values are self-adjoint and nonnegative 2 × 2 matrices; i.e., for a.e. λ ∈ R there is
ρ(λ) = ρ(λ)∗ and ρ(λ) ≥ 0. With ρ one associates a bounded multiplication operator

ρ̂ : K̂0 −→ K̂0 on the Hilbert space K0 = L2(R,C2) defined by

(ρ̂ �f)(λ) := ρ(λ)�f(λ).(A.24)

Using the transformation (A.19), one defines by

� := Φ∗
−ρ̂Φ−(A.25)

an operator on the dilation space K, which is self-adjoint, is nonnegative, and com-
mutes with the dilation K. The operator � is called a density operator or a steady
state albeit that � is not a trace class operator. However, it turns out that if the
additional condition

Cρ := sup
λ∈R

√
λ2 + 1‖ρ(λ)‖B(C2) < ∞(A.26)

is satisfied, then the product �P (where P denotes again the projection from K onto
L2(Ωq)) belongs to the trace class; cf. [33]. Using this observation, the following is
shown in [3, 35]: for a fixed density matrix ρ satisfying (A.26) and given τ ∈ T , there
is exactly one function u ∈ L1(Ωq) satisfying

tr(�M(h)) =

∫
Ωq

dx u(x)h(x) for all h ∈ L∞
R

(Ωq),(A.27)

where M(h) is the multiplication operator defined by

M(h)�g := 0 ⊕ hg ⊕ 0, �g = g− ⊕ g ⊕ g+ ∈ K, (hg)(x) = h(x)g(x), x ∈ Ωq

(see [35]). We note that condition (A.26) implies �M(h) ∈ B1(K) for each h ∈ L∞
R

(Ωq).
Remark A.3. Let f± be distribution functions obeying Assumption 3.1 (Q.5).

We define the density matrices ρ± by

ρ±(λ) =

(
f±(λ∓ εb) 0

0 f±(λ∓ εa)

)
χΛ±(λ),

where εa, εb are given Fermi levels and χΛ± denotes the characteristic function of the
sets Λ±; see (1.13). Clearly ρ± satisfy the condition (A.26). In [33] it is shown that
the densities u± corresponding to ρ± and τ±, where τ± are given as in Remark A.1,
defined by means of the relation (A.27) coincide with (3.5).

The mapping that assigns the density u to each triple τ ∈ T , if the density matrix
ρ is given, is called the carrier density operator Nρ; i.e., Nρ : T −→ L1(Ωq) is defined
by ∫

Ωq

dx Nρ[τ ](x)h(x) = tr(�[τ ]M(h)) for all h ∈ L∞(Ωq) and each τ ∈ T ,
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where �[τ ] indicates the dependence of � given by (A.25) on τ .
Proposition A.4. Let τ = {κa,κb, V } ∈ T+. If the density matrix

ρ ∈ L∞(R,B(C2)) satisfies the condition (A.26) and the boundary coefficients obey
Re(κa) ≤ 0 and Re(κb) ≤ 0, then

‖Nρ[τ ]‖L1(Ωq) ≤ Cρ

(
3 +

[
8 + 4

√
‖m‖L∞(Ωq)(b− a)

]√
1 + ‖V−‖L∞(Ωq)

)
,(A.28)

where V−(x) := max{0,−V (x)}, x ∈ Ωq, and Cρ is given by (A.26).
Proof. In [4, Lemma 6.2] the estimate

‖Nρ[τ ]‖L1(Ωq) ≤ Cρ

(
3 +

[
8 + 4

√
‖m‖L∞(Ωq)(b− a)

]√
1 + ‖V ‖L∞(Ωq)

)
is proven. The improved estimate (A.28) can be obtained by carefully checking the
proof of Lemma 6.2 of [4]. Indeed, by doing so one obtains that the nonnegative part
of the potential v moves the spectrum of the operator H to the right-hand side, which
yields that it can be neglected.

We are going to verify the continuity of the carrier density operator in its depen-
dence of τ . To this end we need the following.

Proposition A.5. Let τ, τn ∈ T , n ∈ N. If τn → τ as n → ∞, then

lim
n→∞

‖(K[τn] − z)−1 − (K[τ ] − z)−1‖B1(K) = 0(A.29)

for z ∈ C \ R.
Proof. At first we show that for each �g ∈ dom(K[τ ]) there is a sequence

{�gn}n∈N such that �gn ∈ dom(K[κa,n,κb,n, V ]), limn→∞ �gn = �g, and limn→∞
K[κa,n,κb,n, V ]�gn = K[τ ]�g in the sense of K. Let

�gn = �g + �hn, n ∈ N,

where

�hn := 0 ⊕ hn ⊕ h+,n, n ∈ N.

Furthermore, let θ(·) : R −→ [0, 1] be a smooth function equal to one in a neighbor-

hood of zero and equal to zero in neighborhood of y0 := 2
∫ b

a
dt m(t). We set

hn(x) := θ

(
2

∫ x

a

dt m(t)

)
ha,n(x) + θ

(
2

∫ b

x

dt m(t)

)
hb,n(x), x ∈ Ωq, n ∈ N,

where

ha,n(x) := 2Ca,n

∫ x

a

m(t)dt, hb,n(x) := −2Cb,n

∫ b

x

m(t)dt, x ∈ [a, b],

and

Ca,n := (αa,n − αa)g
a
−(0) − (κa,n − κa)g(a),

Cb,n := (αb,n − αb)g
b
−(0) + (κb,n − κb)g(b).
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Notice that limn→∞ Ca,n = limn→∞ Cb,n = 0. Further, we set

ha
+,n(x) := ha

+,n(0)e−x, x ∈ R+, and hb
+,n(x) := hb

+,n(0)e−x, x ∈ R+,

where

ha
+,n(0) := −i(αa,n − αa)g(a) and hb

+,n(0) := i(αb,n − αb)g(b), n ∈ N.

A straightforward computation shows that �gn ∈ dom(K[κa,n,κb,n, V ]), limn→∞ �gn =
�g, and limn→∞ K[κa,n,κb,n, V ]�gn = K[τ ]�g.

Since the sequence {�gn}n∈N exists for each �g ∈ dom(K[τ ]), one gets by [40,
Theorem 2.1] that

s− lim
n→∞

(K[κa,n,κb,n, V ] − z)−1 = (K[τ ] − z)−1.(A.30)

The operators K[κa,n,κb,n, V ], n ∈ N, and K[τ ] are self-adjoint extensions of the
symmetric operator K•[V ] given by

dom(K•[V ]) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
�g ∈ K :

g± ∈ W 1,2(R±,C
2) g, 1

mg′ ∈ W 1,2(Ωq),

g(a) = g(b) = 0,

1
m(a)g

′(a) = 1
m(b)g

′(b) = 0,

g−(0) = g+(0) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

and

K•[V ]�g := − i
d

dx
g− ⊕

(
−1

2

d

dx

1

m

d

dx
+ V

)
g ⊕−i

d

dx
g+, �g ∈ dom(K•[V ]),

which has the deficiency indices {4, 4}. This fact immediately improves the strong
convergence (A.30) to the trace class convergence, i.e.,

lim
n→∞

‖(K[κa,n,κb,n, V ] − z)−1 − (K[τ ] − z)−1‖B1(K) = 0.

Since P (K[τ ] − z)−1 ∈ B1(K), one gets

lim
n→∞

‖(K[τn] − z)−1(V − Vn)P (K[τ ] − z)−1‖B1(K) = 0.

Using the representation

(K[τn] − z)−1 − (K[κa,n,κb,n, V ] − z)−1

= (K[τn] − z)−1(V − Vn)P (K[τ ] − z)−1

+(K[τn] − z)−1(V − Vn)P
(
(K[κa,n,κb,n, V ] − z)−1 − (K[τ ] − z)−1

)
,

we find

lim
n→∞

‖(K[τn] − z)−1 − (K[κa,n,κb,n, V ] − z)−1‖B1(K) = 0.

Finally, taking into account the representation

(K[τn] − z)−1 − (K[τ ] − z)−1

= (K[τn]−z)−1−(K[κa,n,κb,n, V ]−z)−1+(K[κa,n,κb,n, V ]−z)−1−(K[τ ]−z)−1,
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we complete the proof.
Proposition A.5 immediately implies the continuity of the incoming Fourier trans-

form.
Proposition A.6. Let τ, τn ∈ T , n ∈ N. If τn −→ τ as n → ∞, then

s− lim
n→∞

Φ−[τn] = Φ−[τ ].(A.31)

Proof. Let

W−[τn, τ ] := s− lim
t→−∞

eitK[τn]e−itK[τ ].

From Proposition A.5 we obtain that

s− lim
n→∞

W−[τn, τ ] = IK,

which yields

w − lim
n→∞

W−[τn, τ ]∗ = IK.

Since W−[τn, τ ] is unitary for each n ∈ N, we find

s− lim
n→∞

W−[τn, τ ]∗ = IK.

By the chain rule for wave operators, we obtain

W−[τn] = W−[τn, τ ]W−[τ ], n ∈ N,

which gives

s− lim
n→∞

W−[τn]∗ = W−[τ ]∗.(A.32)

Taking into account the representation (A.19), we complete the proof.
Using Proposition A.6, we will now verify the continuity of the carrier density

operator.
Theorem A.7. Let τ, τn ∈ T , n ∈ N. Further, suppose that there is a density

matrix ρ ∈ L∞(R,B(C2)) such that Cρ < ∞ and a sequence of density matrices
{ρn}n∈N, ρn ∈ L∞(R,B(C2)), such that supn∈N Cρn < ∞. If τn → τ as n → ∞ and

lim
n→∞

ρn(λ) = ρ(λ)

for a.e. λ ∈ R, then

lim
n→∞

‖Nρn
[τn] −Nρ[τ ]‖L1(Ωq) = 0.(A.33)

Proof. We set Φn := Φ−[τn] and Φ := Φ−[τ ] as well as

ιn(λ) := (λ− i)ρn(λ) and ι(λ) := (λ− i)ρ(λ), λ ∈ R, n ∈ N.

From (A.25) we find the representation

�n[τn] − �[τ ] = Φ∗
n ι̂n Φn(Kn − i)−1 − Φ∗ ι̂Φ(K − i)−1, n ∈ N,
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where Kn := K[τn] and K := K[τ ]. Note that (K − i)−1P ∈ B1(K). Hence we find
the estimate

∥∥(�n[τn] − �[τ ])PK
h

∥∥
B1(K)

≤ Cρn

∥∥(Kn − i)−1 − (K − i)−1
∥∥
B1(K)

+ Cρn

∥∥(Φn − Φ)(K − i)−1P
∥∥
B1(K,K0)

+
∥∥(ι̂n − ι̂)Φ(K − i)−1P

∥∥
B1(K,K0)

+
∥∥(Φ∗

n − Φ∗) ι̂ Φ(K − i)−1P
∥∥
B1(K)

.

The first term on the right-hand side goes to zero by Proposition A.5. The second
term tends to zero by Proposition A.6 and (K−i)−1P ∈ B1(K). By s− limn→∞ ι̂n = ι̂
and (K − i)−1P ∈ B1(K) the third term goes to zero. Finally, from Proposition A.6
and the isometry of the incoming Fourier transform we get s− limn→∞ Φn = Φ, which
yields that the fourth term converges to zero. Hence we find

lim
n→∞

‖(�n[τn] − �[τ ])P‖B1(K) = 0.

Taking into account (A.27), this proves (A.33).

A.4. Current density operator. Similar to the carrier density operator, it is
possible to introduce a current density operator jρ : T −→ R for a given maximal
dissipative operator h[τ ] and a density matrix ρ ∈ L∞(R,B(C2)), provided the density
matrix satisfies the additional condition

Lρ :=

∫
R

dλ tr(ρ(λ)) < ∞(A.34)

(cf. [3, 5, 35, 33]). In [33] it is shown that the current density operator admits a
representation by the so-called current density observable C[τ ](λ) at energy λ ∈ R,
which is defined by

C[τ ](λ) :=
1

2π
(PaΘ[τ ](λ)Pb − PbΘ[τ ](λ)Pa) Θ[τ ](λ)∗, τ ∈ T ,(A.35)

where Θ[τ ] is the characteristic function of the maximal dissipative operator H[τ ]
(cf. (A.14) and [5, 33]) and the projections Pa := (·, ea)C2ea, Pb := (·, eb)C2eb with
ea = ( 0

1 ), eb = ( 1
0 ). Indeed, if the density matrix ρ satisfies the condition (A.34),

then the current density operator jρ[·] : T+ −→ R admits the representation

jρ[τ ] :=

∫
R

dλ tr(ρ(λ)C[τ ](λ)).(A.36)

Since ‖C[τ ](λ)‖B(C2) ≤ 1
2π , one gets the estimate

|jρ[τ ]| ≤ 1

2π

∫
R

dλ tr(ρ(λ)).(A.37)

Remark A.8. In the case when ρ± are given as in Remark A.3, we obtain from
(A.36) the expression (3.7), where the transmission coefficients are given by (A.23).

Let us now prove the continuity of the current density operator.
Theorem A.9. Let τ, τn ∈ T , n ∈ N. Further, suppose that there is a density

matrix ρ ∈ L∞(R,B(C2)) such that Lρ < ∞ (cf. (A.34)) and a sequence of density
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matrices {ρn}n∈N, ρn ∈ L∞(R,B(C2)), such that supn∈N Lρn
< ∞. If τn −→ τ as

n → ∞, limn→∞ ρn(λ) = ρ(λ) for a.e. λ ∈ R, and

lim
n→∞

∫
R

dλ (ρn(λ)e, e)C2 =

∫
R

dλ (ρ(λ)e, e)C2(A.38)

for each e ∈ C
2, then limn→∞ jρn

[τn] = jρ[τ ].
Proof. By Proposition A.5 we obtain that s− limn→∞ S[τn] = S[τ ]. This yields

lim
n→∞

∫
R

dλ
∥∥∥(S[τn](λ) − S[τ ](λ))�f(λ)

∥∥∥2

C2
= 0

for each �f ∈ K̂0 = L2(R,C2). Taking into account (A.22), we obtain

lim
n→∞

∫
R

dλ
∥∥∥(Θ[τn](λ)∗ − Θ[τ ](λ)∗)�f(λ)

∥∥∥2

C2
= 0

and

lim
n→∞

∫
R

dλ
∥∥∥(Θ[τn](λ) − Θ[τ ](λ))�f(λ)

∥∥∥2

C2
= 0

for each �f ∈ K̂0. Hence

lim
n→∞

∫
R

dλ
∥∥∥(C[τn](λ) − C[τ ](λ))�f(λ)

∥∥∥2

C2
= 0(A.39)

for each �f ∈ K̂0. Further, we have

tr(ρn(λ)C[τn](λ)) − tr(ρ(λ)C[τ ](λ))

= tr(ρn(λ)1/2C[τn]ρn(λ)1/2)C2 − tr(ρ1/2(λ)C[τ ]ρ1/2(λ))C2

=
∑
ν=a,b

{
(C[τn](λ)ρn(λ)1/2eν , ρn(λ)1/2eν)C2 − (C[τ ](λ)ρ(λ)1/2eν , ρ(λ)1/2eν)C2

}
,

λ ∈ R. Setting �fν,n(λ) := ρn(λ)1/2eν and �fν(λ) := ρ(λ)1/2eν , ν = a, b, we get
�fν,n, �fν ∈ K0. Using ‖C[τ ](λ)‖B(C2) ≤ 1

2π , λ ∈ R, we obtain the estimate

∣∣tr(ρn(λ)C[τn](λ)) − tr(ρ(λ)C[τ ](λ))
∣∣

≤
∑
ν=a,b

1

2π

{
‖�fν,n(λ)‖C2 + ‖�fν(λ)‖C2

}
‖�fν,n(λ) − �fν(λ)‖C2

+
∑
ν=a,b

‖�fν(λ)‖C2‖(C[τn](λ) − C[τ ](λ))�fν(λ)‖C2 .

We note that �fν,n, �fν ∈ K̂0, ν = a, b, n ∈ N. Hence
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|jρn [τn] − jρ[τ ]| ≤
∫

R

dλ |tr(C[τn](λ)ρn(λ)) − tr(C[τ ](λ)ρ(λ))|

≤ 1

2π

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

ν=a,b

‖�fν,n‖2
K̂0

⎞
⎠

1/2

+

⎛
⎝ ∑

ν=a,b

‖�fν‖2
K̂0

⎞
⎠

1/2
⎫⎪⎬
⎪⎭

⎛
⎝ ∑

ν=a,b

‖�fν,n − �fν‖2
K̂0

⎞
⎠

1/2

+

⎛
⎝ ∑

ν=a,b

‖�fν‖2
K̂0

⎞
⎠

1/2 ⎛
⎝ ∑

ν=a,b

∫
R

dλ ‖(C[τn](λ) − C[τ ](λ))�fν(λ)‖2
C2

⎞
⎠

1/2

,

which yields

(A.40)
∣∣jρn [τn] − jρ[τ ]

∣∣ ≤ {
L1/2
ρn

+ L1/2
ρ

}⎛
⎝ ∑

ν=a,b

‖�fν,n − �fν‖2
K̂0

⎞
⎠

1/2

+ L1/2
ρ

⎛
⎝ ∑

ν=a,b

∫
R

dλ ‖(C[τn](λ) − C[τ ](λ))�fν(λ)‖2
C2

⎞
⎠

1/2

.

Since ρn(λ) → ρ(λ) for a.e. λ ∈ R as n → ∞, we find �fν,n(λ) → �fν(λ) for a.e.

λ ∈ R as n → ∞. From (A.38) we get that limn→∞ ‖�fν,n‖K̂0
= ‖�fν‖K̂0

, ν = a, b.

By Theorem 13.44 of [28] we get that �fν,n converges weakly to �fν , which implies

limn→∞ ‖�fν,n − �fν‖K̂0
= 0, ν = a, b. Thus the first term of the right-hand side tends

to zero as n → ∞. Taking into account (A.39), we show that the second term of the
right-hand side goes to zero as n → ∞.

Appendix B. Approximation. In the following we will outline in which sense
the dissipative Schrödinger system can be regarded as an approximation of the fre-
quently used Schrödinger scattering model in [8, 22] (also known as the quantum
transmitting Schrödinger model [4]).

B.1. The quantum transmitting Schrödinger model. Let us briefly review
the quantum transmitting Schrödinger model considered, e.g., in [8, 4, 11, 22]. The

wave functions ψ̃ are solutions of the one-dimensional Schrödinger equation(
−1

2

d

dx

d

dx
+ Ṽ

)
ψ̃(x) = λψ̃(x), x ∈ R,(B.1)

where the effective mass m and the potential Ṽ satisfy

m(x) =

⎧⎪⎨
⎪⎩
ma, x ∈ (−∞, a),

m(x), x ∈ Ωq,

mb, x ∈ (b,∞),

and Ṽ (x) =

⎧⎪⎨
⎪⎩
V (a), x ∈ (−∞, a),

V (x), x ∈ Ωq,

V (b), x ∈ (b,∞).

Due to the flatness of the potential in the asymptotic regions, the solutions of the
Schrödinger equation (B.1) are superpositions of plane waves. In what follows we
will refer to quantities in the left asymptotic region (−∞, a) by the subscript a and,
similarly, the subscript b is used for quantities in the right asymptotic region (b,∞).
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For energies λ > V (a) and λ > V (b) there will be two independent solutions ψ̃a, ψ̃b

of the Schrödinger equation representing particles incident from the left and right,
respectively. In the asymptotic regions they are of the form

ψ̃a(λ, x) =
1√

2π va(λ)

{
eika(λ)(x−a) + Saa(λ)e−ika(λ)(x−a), x < a,

Sab(λ)eikb(λ)(x−b), x > b,

for λ > V (a) and

ψ̃b(λ, x) =
1√

2π vb(λ)

{
Sba(λ)e−ika(λ)(x−a), x < a,

e−ikb(λ)(x−b) + Sbb(λ)e−ikb(λ)(x−b), x > b,

for λ > V (b), where kν(λ) = [2mν(λ − V (ν))]1/2, ν = a, b, are the wave vectors;
vν(λ) = kν(λ)/mν , ν = a, b, are the group velocities; Sab, Sba the transmission
amplitudes; and Saa, Sbb the reflection amplitudes.

We note that the Schrödinger equation (B.1) may have bounded states with en-
ergies λ < min{V (a), V (b)}. However, we will neglect theses states in the present
considerations.

It is well known that the solutions ψ̃a, ψ̃b of the Schrödinger equation (B.1) can
be obtained by solving (B.1) on the bounded domain Ωq with appropriate boundary
conditions; see, e.g., [8, 22]. Moreover, the Schrödinger operator induced by (B.1)
on L2(R; C) is completely described by the so-called quantum transmitting boundary
family, which is a maximal dissipative operator family on L2(Ωq,C); see [4].

The macroscopic quantities such as carrier density and current density are given
by

ũ(x) =
∑
ν=a,b

∫ ∞

V (ν)

dλ f(λ− εν)|ψ̃ν(λ, x)|2, x ∈ Ωq,(B.2)

j̃ =
∑
ν=a,b

∫ ∞

V (ν)

dλ f(λ− εν)Im

(
1

m(x)

∂ψ̃ν(λ, x)

∂x
ψ̃ν(λ, x)

)
,(B.3)

where εa, εb ∈ R are given Fermi levels and f is a distribution function such as
Boltzmann or Fermi–Dirac; see Remark 3.2.

Let us introduce the transmission coefficient T (λ) given by

T (λ) :=
vb(λ)

va(λ)
|Sba(λ)|2, λ ∈ (Vmax,∞),(B.4)

where Vmax = max{V (a), V (b)}. The current density j̃ can then be written as

j̃ =
1

2π

∫ ∞

Vmax

dλ T (λ)
(
f(λ− εa) − f(λ− εb)

)
(B.5)

(see, e.g., [4, 8, 22]). From (B.5) we observe that only the wave functions ψ̃ν(λ, x),
ν = a, b, with energies larger than Vmax, contribute to the current.

B.2. Dissipative approximation. In [4] it is shown that the Schrödinger model
considered in the previous section and the dissipative Schrödinger model coincide for
fixed energies. In this section we will use this correspondence to derive a dissipative
approximation.
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Let ψ̃ν , ν = a, b, be the scattering solutions of the Schrödinger equation (B.1). As
already mentioned, only the states with energy above Vmax contribute to the current
density. In what follows we are interested in only these states. Assume that δ is a
strictly positive constant. We introduce the discrete energies λk, k = 0, 1, . . . , by

λk := Vmax + k δ, k = 0, 1, . . . .

Moreover, we introduce

Λk := [λk−1, λk), k = 1, 2, . . . .

Therefore, the carrier ũ and current density j̃ (see (B.2), (B.5)) may be written as

ũ(x) =
∞∑
k=1

ũk(x), x ∈ Ω, and j̃ =

∞∑
j=1

j̃k,

where

ũk(x) :=

∫
Λk

dλ
∑
ν=a,b

f(λ− εν)|ψ̃ν(λ, x)|2, k = 1, 2, . . . , x ∈ Ω,(B.6)

j̃k :=
1

2π

∫
Λk

dλ T (λ) (f(λ− εa) − f(λ− εb)) , k = 1, 2, . . . .(B.7)

Let δ0 be a strictly positive constant with δ0 < δ. The constants sk, k = 1, 2, . . . ,
are given by

sk := λk−1 + δ0, k = 1, 2, . . . .

Note that sk ∈ Λj for each k = 1, 2, . . . . Moreover, we define the complex constants

κa(sk) := 2i va(sk) = i

√
sk − V (a)

2ma
, κa(sk) := 2i vb(sk) = i

√
sk − V (b)

2mb
,

where vν(λ), ν = a, b, are the group velocities defined in section B.1; see also (1.8).
Note that Im(κa(sk)), Im(κb(sk)) > 0 for all k = 1, 2, . . . . The maximal dissipative
Schrödinger operators defined by (A.1) and (A.2) by means of κa(sk) and κb(sk) are
denoted by H(sk), k = 1, 2, . . . , where the potential V is given and fixed. To each
maximal dissipative operator H(sk) there corresponds a minimal self-adjoint dila-

tion K(sk) (see (A.8), (A.9) in section A.2) and incoming eigenfunctions ψ
(sk)
ν (λ, x),

ν = a, b, k = 1, 2, . . . ; see (A.15). Moreover, the transmission coefficient (A.23)
corresponding to each maximal dissipative operator H(sk) is denoted by t(sk)(λ),
k = 1, 2, . . . .

In [4] the following relations between the eigenfunctions ψ̃ν of section B.1 and

ψ
(sk)
ν , ν = a, b, are proven:

|ψ̃ν(sk, x)|2 = |ψ(sk)
ν (sk, x)|2 for all x ∈ Ωq and k = 1, 2, . . . , where ν = a, b.(B.8)

Moreover, for the transmission coefficient T from (B.4) and the transmission coeffi-
cients t(sk), k = 1, 2, . . . , there is

T (sk) = t(sk)(sk) for all k = 1, 2, . . . .(B.9)
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Using these relations, we may approximate the carrier densities ũk and the current
density j̃k, k = 1, 2, . . . , defined by (B.6) and (B.7), respectively, by

ũk(x) ≈ u(sk)(x) and j̃k ≈ j(sk), k = 1, 2, . . . ,

where

u(sk)(x) :=

∫
Λk

dλ
∑
ν=a,b

f(λ− εν)|ψ(sk)(λ, x)|2,

j(sk) :=

∫
Λk

dλ t(sk)(λ) (f(λ− εa) − f(λ− εb)) .

Hence, for large N ∈ N we obtain

ũ(x) ≈
N∑

k=1

usk(x) and j̃ =

N∑
k=1

j(sk),

where ũ and j̃ are the carrier and current densities given by (B.2) and (B.3), respec-
tively.

Thus, carrier and current densities are approximated by means of a sequence of
carrier densities u(sk) and currents densities j(sk), which are determined by a sequence
of maximal dissipative operators and given statistics. The quantities δ, δ0, and N are
the approximation parameters.

In the case when we choose the rather rough approximation N = 1, we obtain

ũ(x) ≈
∫

Λ

dλ
∑
ν=a,b

f(λ− εν)|ψν(λ, x)|2 and j̃ ≈
∫

Λ

dλ t(λ)(f(λ− εa) − f(λ− εb)),

where

s := Vmax + δ0, t(λ) := t(s)(λ), ψν := ψ(s)
ν ,(B.10)

and

Λ := [Vmax, Vmax + δ),(B.11)

for some strictly positive δ, δ0 with δ0 < δ. This is the approximation we consider in
this paper; see (1.11)–(1.13) and (3.5)–(3.7).
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1. Introduction. We consider functionals of the type

F(u) =

∫
Ω

f(x,Du(x))dx,

where Ω is an open bounded subset of R
n, the Lagrangian f = f(x, ξ) maps Ω × R

n

into R, and the competing real valued maps u vary in suitable Sobolev spaces and
satisfy a Dirichlet boundary condition.

Our interest is focused on nonsemicontinuous functionals, corresponding to inte-
grands f which are nonconvex in the second variable. In this case the so-called direct
method of the calculus of variations does not guarantee the existence of minimizers
and the study of the minimum problem associated to F requires further techniques
based on the theory of differential inclusions and on the study of Hamilton–Jacobi
equations.

We describe briefly the idea of the procedure: introduce the lower convex envelope
of f with respect to the second variable, usually denoted by f∗∗, and the corresponding
relaxed functional

F(u) =

∫
Ω

f∗∗(x,Du(x))dx;

if standard growth conditions on f are assumed, so that the functional is coercive on
a suitable Sobolev space, the set S of minimizers of F is nonempty and the solution of
the minimum problem for the nonconvex functional F consists in finding an element
ũ ∈ S such that

f∗∗(x,Dũ(x)) = f(x,Dũ(x)) for almost every x ∈ Ω.(1)

The realization of this program has seen considerable improvements in the last years
and we mention the result contained in [14], [6], [12], [7], [1], [3], and the monograph [8]
for a review. In the homogeneous case, corresponding to a Lagrangian f which does
not depend explicitly on the variable x, the program sketched above has been per-
formed by different methods. Assuming that coercivity holds, the main hypotheses
are the following:
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(i) the bipolar f∗∗ is affine on each connected component of the set

X
.
= {ξ ∈ R

n : f(ξ) > f∗∗(ξ)} ;(2)

(ii) all the minimizers of F are (classically) differentiable at almost every point
x ∈ Ω.

Condition (i) cannot be avoided. As shown in [4] (see also Theorem 2 in section 3 of
this paper), if local affinity on X is violated the nonconvex functional fails to have
minimizers for arbitrary boundary data and only in special cases, determinated by
certain compatibility conditions between the datum and the Lagrangian, the minimum
problem can be solved. On the other hand it is an open question to establish if
condition (ii) can be weakened or suppressed.

The paper [11] treats the nonhomogeneous case (where f depends explicitly on x),
and in order to prove the existence of minimizers the authors impose the conditions
listed below.

(a) The map ξ �→ f(x, ξ) is affine on each connected component of the set

X(x)
.
= {ξ ∈ R

n : f(x, ξ) > f∗∗(x, ξ)} ;

that is to say, assuming for simplicity that X(x) is connected for every x,
there exists a C1 field m and a continuous function q such that

ξ �→ f∗∗(x, ξ) = 〈m(x), ξ〉 + q(x) for every ξ ∈ X(x).

(b) The boundary of the set on which the divergence of the field m vanishes is
zero.

(c) The bipolar f∗∗ satisfies a strict convexity condition outside X(x); i.e., there
exists a nonnegative increasing function ω, vanishing only in zero, such that

f∗∗
(
x,

ξ + η

2

)
≤ 1

2
f∗∗(x, ξ) +

1

2
f∗∗(x, η) − ω(|ξ − η|),

for every x ∈ Ω such that X(x) is nonempty, for every ξ ∈ E(x), and for
every η ∈ R

n \ E(x), where E(x) = {ξ ∈ R
n : f∗∗(x, ξ) = 〈m(x), ξ〉 + q(x)}.

(d) All the minimizers of the relaxed functional are continuous on Ω and classi-
cally differentiable almost everywhere on Ω.

In addition, in order to guarantee condition (d), a uniform strict convexity condition
at infinity is imposed so that, in particular, the set valued map x �→ X(x) is necessarily
uniformly bounded on Ω.

In this paper we propose a new approach to the problem by using the notion of
integro-maximal minimizer. We now give a brief description of this method applied
to the homogeneous case, where it is more transparent. Assume the coercivity of the
functional and that conditions (i) and (ii) hold, and consider the nonempty set S of
minimizers of F which is compact with respect to strong convergence in L1(Ω). The
functional

S � u �→
∫

Ω

u(x)dx

is continuous with respect to the same topology and then, by the Weierstrass theorem,
there exists an element u which maximizes it on S, that is to say,∫

Ω

u(x)dx ≥
∫

Ω

u(x)dx ∀u ∈ S.
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The map u minimizes F . Roughly speaking, the maximization of the integral forces
the gradient of u to avoid the interior of the set X defined in (2) and to take values
at its boundary so that (1) is satisfied.

In the general nonhomogeneous case, the argument is more elaborate, but essen-
tially analogous.

By this method we are able to refine the results contained in the aforementioned
papers. We treat separately the homogeneous and the nonhomogeneous case (sections
3 and 4, respectively) since in the first one, which can be taken as a guide for the
general one, the hypotheses are minimal. We stress that in section 3 we give essentially
a new proof of results already achieved in other papers and, for completeness, we
recall also a well-known result [4] which shows that the local affinity of f∗∗ is not only
sufficient but also necessary for the existence of minimizers for arbitrary boundary
data.

In the nonhomogeneous case (section 4), we improve the result contained in [11]
by weakening the assumptions specified above. We maintain (d), and in (a)–(b)
we require that m is a continuous Sobolev field satisfying conditions which strictly
subsume (b) while condition (c) is suppressed. In addition, we do not need strict
convexity at infinity so that the set valued map Ω � x �→ X(x) is allowed to be not
necessarily uniformly bounded.

2. Preliminaries and notations. We denote, respectively, by 〈·, ·〉 and | · | the
inner product and the euclidean norm in R

n. For x ∈ R
n and r > 0, B(x, r) is the

open ball in R
n of center x and of radius r; μ(E) denotes the Lebesgue measure of a

(Lebesgue measurable) subset E of R
n. Throughout the paper Ω is an open bounded

subset of R
n. We use the spaces Lp(Ω), W 1,p(Ω,R), and W 1,p

0 (Ω,R), for 1 ≤ p ≤ ∞,
with their usual (strong and weak) topologies and use the precise representative of
Sobolev functions as defined in [10]; the conjugate exponent of p ≥ 1 is written
p′

.
= p/(p− 1). By 1E we denote the characteristic function of a subset E of R

n, i.e.,

1E(x)
.
=

{
1 for x ∈ E,
0 for x ∈ R

n \ E.

In the proof of our main result we shall need the following well-known argument
(see [9] and [14]).

Lemma 1. Let U be an open subset of R
n, p ∈ [1,∞], u ∈ W 1,p(U,R), r > 0.

Assume that there exists a point x0 ∈ U such that u is differentiable at x0 (with dif-
ferential denoted by Du(x0)). Then there exists ρ > 0 and maps u+, u− ∈ W 1,p(U,R)
with the following properties:

B(x0, ρ) ⊆ U ;(3)

u± − u ∈ W 1,p
0 (U,R);(4)

u(x) ≤ u+(x) for a.e. x ∈ B(x0, ρ);(5)

u(x) ≥ u−(x) for a.e. x ∈ B(x0, ρ);(6)

A+ .
= {x ∈ U : u+(x) > u(x)} is nonempty and A+ ⊆ B(x0, ρ);(7)

A− .
= {x ∈ U : u−(x) < u(x)} is nonempty and A− ⊆ B(x0, ρ);(8) {
|Du±(x) −Du(x0)| = r for a.e. x ∈ A±;
Du±(x) = Du(x) for a.e. x ∈ U \A±;

(9) ∫
Ω

u+dx >

∫
Ω

u dx;(10)
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Ω

u−dx <

∫
Ω

u dx;(11)

for every field l ∈ W 1,p′
(B(x0, ρ),R

n), we have∫
B(x0,ρ)

〈l, (Du± −Du)〉dx = −
∫
B(x0,ρ)

div l · (u± − u)dx.(12)

Proof. We give the proof for the map u+; it will be clear that the construction of
u− is analogous.

Choose a positive ρ such that (3) is satisfied. Since u is differentiable at x0 there
exists s > 0 such that

s

r
≤ ρ(13)

and ∣∣∣∣u(x) − u(x0) − 〈Du(x0), x− x0〉
x− x0

∣∣∣∣ ≤ r

2
∀x ∈ B

(
x0,

s

r

)
.(14)

Inserting (13) into (14) we have, in particular,

u(x) − u(x0) − 〈Du(x0), x− x0〉 ≥ −s

2
∀x ∈ B

(
x0,

s

r

)
.(15)

Define a map w on B
(
x0,

s
r

)
by setting

w(x)
.
= max

{
u(x), u(x0) + 〈Du(x0), x− x0〉 +

s

4
− r|x− x0|

}
(16)

and introduce the set

A+ .
=
{
x ∈ B
(
x0,

s

r

)
: w(x) > u(x)

}
.(17)

The function u is differentiable and then continuous at the point x0; since the map

B(x0, ρ) � x �→ u(x0) + 〈Du(x0), x− x0〉 +
s

4
− r|x− x0|(18)

is also continuous at the same point and its value is strictly greater than u(x0),
it follows that the set A+ is nonempty. In addition the map defined in (18) is
Lipschitz continuous and then belongs to W 1,∞ (B (x0,

s
r

)
,R
)
, which is contained

in W 1,p
(
B
(
x0,

s
r

)
,R
)
; hence, by Stampacchia’s theorem, w belongs to the space

W 1,p
(
B
(
x0,

s
r

)
,R
)

and we have{
Dw(x) = Du(x0) − rD|x− x0| for a.e. x ∈ A,
Dw(x) = Du(x) for a.e. x ∈ B

(
x0,

s
r

)
\A.

(19)

We observe that, for any x ∈ B
(
x0,

s
r

)
such that |x− x0| > 3

4
s
r , we have, by (15),

u(x0) + 〈Du(x0), x− x0〉 +
s

4
− r|x− x0|

< u(x0) + 〈Du(x0), x− x0〉 +
s

4
− 3

4
s

= u(x0) + 〈Du(x0), x− x0〉 −
s

2
≤ u(x).
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Hence

A+ ⊆ B
(
x0,

s

r

)
(20)

and the map w coincides with u on B
(
x0,

s
r

)
\B
(
x0,

3
4
s
r

)
. By definition (16) and by

standard notions on Sobolev functions (see, for example, [10]), this implies that

(w − u) |B(x0,
s
r )

∈ W 1,p
0

(
B
(
x0,

s

r

)
,R
)
.(21)

Now we set

u+(x)
.
=

{
w(x) for x ∈ B

(
x0,

s
r

)
,

u(x) for x ∈ U \B
(
x0,

s
r

)
.

(22)

From (16), (20) (and the consideration which follows), (21), and (22) we obtain that
u+ lies in W 1,p(U,R). We see now that conditions (4)–(12) hold. Property (4) is a
trivial consequence of (16), (21), and (22); (5) follows trivially from definitions (16)
and (22). Condition (7) has been already proved and, in order to show (9), we observe
that, by (19) and (22), we have that |Du+(x)−Du(x0)| = rD|x− x0| = r for almost
every x ∈ A and that Du+(x) = Du(x) for almost every x ∈ U \A. Inequality (10) is
a consequence of (5) and of the fact that the open set A, being nonempty, has positive
measure. Formula (12) follows from (22), (21), and the divergence theorem.

The map u− can be defined by changing the sign of the second argument in
definition (16) and, by analogous arguments, obtaining properties (6), (8), and (11)
in place of (5), (7), and (10).

Hence the proof is finished.

3. The homogeneous case. We consider a lower semicontinuous function f : R
n

→ R, consider its bipolar f∗∗, and define the set

X
.
=
{
ξ ∈ R

d : f(ξ) > f∗∗(ξ)
}
.(23)

The lower semicontinuity of f and the continuity of f∗∗ imply that X is open.
For p ∈ [1,∞] and given u0 ∈ W 1,p(Ω,R), we introduce the functionals

F(u) =

∫
Ω

f(Du(x))dx, u ∈ u0 + W 1,p
0 (Ω,R);

F(u) =

∫
Ω

f∗∗(Du(x))dx, u ∈ u0 + W 1,p
0 (Ω,R).

We need the following hypotheses.
Hypothesis H1. The function f∗∗ is locally affine on the set X. In other words, for

every η ∈ X there exists r(η) > 0, m(η) ∈ R
n, and q(η) ∈ R such that B(η, r(η)) ⊂ X,

f∗∗(ξ) = 〈m(η), ξ〉 + q(η) ∀ξ ∈ B(η, r(η)) and(24)

f∗∗(ξ) ≥ 〈m(η), ξ〉 + q(η) ∀ξ ∈ R
n.(25)

In our result we require that the set of minimizers of the functional F is nonempty
and sequentially compact with respect to the strong topology of L1(Ω). In addition
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we need all minimizers to be classically differentiable almost everywhere in Ω. These
facts are ensured by the following conditions (see [3]).

Hypothesis H2.

1 < p ≤ n, ∃ a, b, c, d > 0 : a|ξ|p − b ≤ f(ξ) ≤ c|ξ|p + d ∀ξ ∈ R
n,

n < p < ∞, ∃ a, b > 0 : f(ξ) ≥ a|ξ|p − b ∀ξ ∈ R
n,

p = ∞ ∃ K > 0 : f(ξ) = +∞ ∀ξ ∈ R
n : |ξ| ≥ K.

Remark 1. It is well known that the convexity of f∗∗ is equivalent to the sequential
lower semicontinuity of F with respect to the weak (weak* when p = ∞) topology of
W 1,p(Ω,R). Hence Hypothesis H2 guarantees that the functional F admits at least
one minimizer.

Remark 2. Let u0 ∈ W 1,p(Ω,R). If f satisfies H2, by previous considerations
the set S of minimizers of F is nonempty. Suppose that there exists ũ such that
Dũ(x) ∈ R

n \X for almost every x ∈ Ω. Then ũ is a minimizer of F . Indeed, since
f(ξ) ≥ f∗∗(ξ) for every ξ ∈ R

n, we have that inf F ≤ minF . Since f(Dũ(x)) =
f∗∗(Dũ(x)) for almost every x ∈ Ω, it turns out that

F(ũ) =

∫
Ω

f(Dũ(x))dx =

∫
Ω

f∗∗(Dũ(x))dx = minF ≤ inf F .

We are ready to prove the main result of this section.

Theorem 1. Let p ∈ [1,∞] and u0 ∈ W 1,p(Ω,R). Let f : R
d → R be a lower

semicontinuous function satisfying H1. Assume that the set S of minimizers of F
is nonempty and sequentially compact with respect to the strong topology of L1(Ω).
Assume that all the elements of S are differentiable almost everywhere in Ω. Then
the functional F attains its minimum.

Proof. The functional

S � u �→
∫

Ω

u(x)dx

is continuous with respect to the strong topology of L1(Ω). Hence, by the Weierstrass
theorem, there exists u ∈ S such that∫

Ω

u(x)dx ≥
∫

Ω

u(x)dx ∀u ∈ S.(26)

Claim. The map u minimizes F .

We prove that Du(x) lies in the set R
n \ X for every x ∈ Ω such that u(x) is

differentiable at x, so that the claim will be proved by Remark 2.

We argue by contradiction: assume that there exists a point x0 ∈ Ω such that u
is differentiable at x0 and Du(x0) ∈ X. Recalling Hypothesis H1, we select r in such
a way that

0 < r < r (Du(x0)) .(27)

Taking a positive we apply Lemma 1 with Ω, u, r in place of U , u, r, respectively,
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and obtain a map u+ satisfying the following conditions:

u+ − u ∈ W 1,p
0 (Ω,R);(28)

A
.
= {x ∈ Ω: u+(x) > u(x)} is nonempty and A ⊆ B(x0, ρ);(29) {
|Du+(x) −Du(x0)| = r for a.e. x ∈ A;
Du+(x) = Du(x) for a.e. x ∈ Ω \A;

(30) ∫
Ω

u+(x)dx >

∫
Ω

u(x)dx;(31) ∫
A

Du+(x)dx =

∫
A

Du(x)dx.(32)

We have suppressed the superscript + on the set A+ and remark that equality (32)
follows easily from (12), (29), and (30).

First, we prove that u+ lies in S. By (28) it belongs to u + W 1,p
0 (Ω,R) =

u0 + W 1,p
0 (Ω,R) and we can compute, using (30),

F(u+) =

∫
Ω\A

f∗∗(Du+(x))dx +

∫
A

f∗∗(Du+(x))dx

=

∫
Ω\A

f∗∗(Du(x))dx +

∫
A

f∗∗(Du+(x))dx.

(33)

Again by (30) and by the choice (27) of r, we have that

Du+(x) ∈ B (Du(x0), r (Du(x0))) a.e. in A.(34)

Setting for convenience m = m (Du(x0)), q = q (Du(x0)), and using (24), (25),
and (32) we have∫

A

f∗∗(Du+(x))dx =

∫
A

(〈
m,Du+(x)

〉
+ q
)
dx

=

〈
m,

∫
A

Du+(x)dx

〉
+ qμ(A)

=

〈
m,

∫
A

Du(x)dx

〉
+ qμ(A)

=

∫
A

(〈m,Du(x)〉 + q) dx ≤
∫
A

f∗∗(Du(x))dx.

(35)

Inserting (35) into (33), we have

F(u+) =

∫
A

f∗∗(Du+(x))dx ≤
∫
A

f∗∗(Du(x))dx = minF .(36)

Hence u+ belongs to S so that (31) contradicts (26), and this ends the proof.
Remark 3. In the proof of Theorem 1, in place of the map u we may introduce

a map u ∈ S such that
∫
Ω
u(x)dx ≤

∫
Ω
u(x)dx for every u ∈ S. By an analogous

indirect argument, using the map u− instead of the map u+, it can be shown that u
minimizes F .

According to Theorem 1, the local affinity of f∗∗ appears a sufficient condition
for the existence of minimizers of F for arbitrary data. We see now that it is also
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necessary. This fact is well known and we recall it for completeness. Consider affine
boundary data: given η ∈ R

n, set

uη(x)
.
= 〈η, x〉, x ∈ Ω(37)

and write

Fη(u) =

∫
Ω

f(Du(x))dx, u ∈ uη + W 1,p
0 (Ω,R);

Fη(u) =

∫
Ω

f∗∗(Du(x))dx, u ∈ uη + W 1,p
0 (Ω,R).

We have the following result, the full proof of which is in [4].
Theorem 2. Assume that Fη attains its minimum for every η ∈ R

n. Then f∗∗

is locally affine on the set X.

4. The nonhomogeneous case. We consider a lower continuous function f :
Ω×R

n → R and its bipolar f∗∗ : Ω×R
n → R. For every x ∈ Ω we introduce the set

X(x)
.
= {ξ ∈ R

n : f(x, ξ) > f∗∗(x, ξ)}.(38)

Given p ∈ [1,∞] and u0 ∈ W 1,p(Ω,R), we consider the functionals

F(u) =

∫
Ω

f(x,Du(x))dx, u ∈ u0 + W 1,p(Ω,R);

F(u) =

∫
Ω

f∗∗(x,Du(x))dx, u ∈ u0 + W 1,p(Ω,R).

We need a version of the affinity condition (H1) introduced in the previous section
which refines the one used in [11], which is recalled in points (a)–(b) in the introduction
of this paper. We assume that the function f∗∗ is continuous on Ω × R

n, hence for
every x ∈ Ω the set X(x) is the countable union of its connected components Xj(x),

X(x) =

∞⋃
j=1

Xj(x).(39)

Hypothesis H3. For every j ∈ N we set

ΩXj

.
= {x ∈ Ω : Xj(x) is nonempty}(40)

and assume that, for every j ∈ N, there exists a field mj ∈ W 1,p′

loc (ΩXj ,R
n) ∩

C0(ΩXj ,R
n) and a map qj ∈ C0(ΩXj ,R) such that

f∗∗(x, ξ) = 〈mj(x), ξ〉 + qj(x) ∀x ∈ ΩXj
and ∀ξ ∈ Xj(x)(41)

and

f∗∗(x, ξ) ≥ 〈mj(x), ξ〉 + qj(x) ∀x ∈ ΩXj
and ∀ξ ∈ R

n.(42)

We assume that for every j the function divmj admits a measurable extension on the
whole Ω, still denoted by divmj , satisfying the following condition:

For every j ∈ N and for almost every x ∈ Ω, there exists an open
neighborhood U of x contained in Ω such that either divmj ≥ 0
almost everywhere on U or divmj ≤ 0 almost everywhere on U .

(43)
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In particular, if the boundary of ΩXj
has measure zero, we may extend divmj by

zero on Ω \ ΩXj . We stress that if mj is of class C1, condition (43) is automatically
satisfied if hypothesis (b) in the introduction holds.

Remark 4. Since f is lower semicontinuous and f∗∗ is continuous, the set Xj(x)
is open for every j ∈ N and for every x ∈ Ω. Hence, recalling (39) and (40), the set
ΩXj

is also open for every j. In particular, given x0 ∈ ΩXj
and ξ0 ∈ Xj(x0), there

exists r > 0 such that for every x ∈ Ω and for every ξ ∈ R
n such that |x − x0| < r

and |ξ − ξ0| < r, we have x ∈ ΩXj
and ξ ∈ Xj(x). To see this fact, take x0 ∈

ΩXj and ξ0 ∈ Xj(x0) and assume, by contradiction, that there exists two sequences
(xk) and (ξk) such that xk → x0 and ξk → ξ0 and ξk /∈ Xj(xk). By the definition of
f∗∗ and of Xj this means that f(xk, ξk) = f∗∗(xk, ξk), and from this we obtain

f(x0, ξ0) ≤ lim inf f(xk, ξk) = lim f∗∗(xk, ξk) = f∗∗(x0, ξ0).

This contradicts that ξ0 belongs to Xj(x0). The fact that the ΩXj ’s are open justifies

the assumption that mj belongs to W 1,p′
(ΩXj ,R

n), which is made in Hypothesis H3.
Definition 1. Fix j ∈ N. By condition (43) there exists a null set N ⊂ Ω such

that for every x ∈ Ω \N there exists ρx > 0 such that divmj has definite sign almost
everywhere on B(x, ρ) for every ρ ∈ ]0, ρx[. Call B+

j (x, ρ) the open balls on which

divmj ≥ 0 a.e. and B−
j (x, ρ) the open balls on which divmj ≤ 0 a.e. The collection{
B+

j (x, ρ), B−
j (x, ρ) : x ∈ Ω, ρ ∈ ]0, ρx[

}
is a Vitali covering of Ω \ N , hence, by the Vitali covering lemma, there exists a
sequence of positive numbers (ρk) and a sequence (xk) in Ω\N such that the elements
of the countable family {

B+
j (xk, ρk), B

−
j (xk, ρk), k ∈ N

}
are pairwise disjoint and the set

(Ω \N) \
(
∪k∈N

(
B−

j (xk, ρk) ∪B+
j (xk, ρk)

))
has measure zero.

Now, for every j ∈ N, we set

V +
j

.
=
⋃
k∈N

B+
j (xk, ρk), V −

j
.
=
⋃
k∈N

B−
j (xk, ρk)(44)

and define the map

γj
.
= 1V +

j
− 1V −

j
.(45)

Clearly, for every j ∈ N, γj belongs to L∞(Ω,R), |γj | ≡ 1 almost everywhere and,
by (43), satisfies the following property.

For every j ∈ N and for almost every x ∈ Ω, there exists an open
ball B contained in Ω such that γj is constant almost everywhere
on B. If γj = +1 a.e. on B, then divmj ≥ 0 a.e. on B; if
γj = −1 a.e. on B, then divmj ≤ 0 a.e. on B.

(46)

Remark 5. We stress that the function γj does not coincide with the function
sign(divmj) since the value zero for divmj is treated differently.
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Remark 6. Let u0 ∈ W 1,p(Ω,R). By Hypothesis H2’ below and by the convexity
of f∗∗ with respect to the second variable, the set S of minimizers of F is nonempty.
Assume that there exists ũ ∈ S such that Dũ(x) ∈ R

n \ X(x) for almost every
x ∈ Ω. Then ũ is a minimizer of F . Indeed, since f(x, ξ) ≥ f∗∗(x, ξ) for every pair
(x, ξ) ∈ Ω × R

n, we have that inf F ≥ minF . Since, by hypothesis, f∗∗(x,Dũ(x)) =
f(x,Dũ(x)) for almost every x ∈ Ω, we have

F(ũ) =

∫
Ω

f(x,Dũ(x))dx =

∫
Ω

f∗∗(x,Dũ(x))dx = minF ≤ inf F .

As in the previous section, we need differentiability almost everywhere of the
minimizers of the functional F and the sequential compactness of the set of its mini-
mizers. Such properties are ensured by the generalization of Hypothesis H2 (see the
reference quoted there).

Hypothesis H2’.

1 < p ≤ n, ∃ a, b, c, d > 0 : a|ξ|p − b ≤ f(x, ξ) ≤ c|ξ|p + d ∀(x, ξ) ∈ Ω × R
n,

n < p < ∞, ∃ a, b > 0 : f(x, ξ) ≥ a|ξ|p − b ∀(x, ξ) ∈ Ω × R
n,

p = ∞, ∃ K > 0 : f(x, ξ) = +∞ ∀(x, ξ) ∈ Ω × R
n : |ξ| ≥ K.

Example. An easy example of an integrand satisfying the above hypotheses is the
following. Let a ∈ C(Ω) be strictly positive for some x and let m ∈ W 1, 43 (Ω,Rn) ∩
C(Ω) be such that divm satisfies condition (43). Then set

f(x, ξ) =
(
ξ2 − a(x)

)2
+ 〈m(x), ξ〉.

Clearly f fulfills the requirements (with p = 4) and the set X(x), which is nonempty
whenever a(x) > 0, coincides with the ball B(0,

√
a(x)). Indeed, we have

f∗∗(x, ξ) =

⎧⎪⎨
⎪⎩
〈m(x), ξ〉, ξ ∈ X(x),

(
ξ2 − a(x)

)2
+ 〈m(x), ξ〉, ξ ∈ R

n \X(x).

We are ready to prove the main result of this section.
Theorem 3. Let p ∈ [1,∞] and u0 ∈ W 1,p(Ω,R). Let f : Ω × R

n → R be a
lower semicontinuous function satisfying H3. Assume that the set S of minimizers of
F is nonempty and sequentially compact with respect to the strong topology of L1(Ω).
Assume that all the elements of S are differentiable almost everywhere in Ω. Then
the functional F attains its minimum.

Proof. Recall the properties of the map γ1 from Definition 1.
Step 1. The functional

S � u �→
∫

Ω

γ1(x)u(x)dx

is continuous with respect to the strong topology of L1(Ω); hence the set

S1
.
=

{
u1 ∈ S :

∫
Ω

γ1(x)u1(x)dx ≥
∫

Ω

γ1(x)u(x)dx ∀u ∈ S

}
(47)
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is nonempty and sequentially compact with respect to the same topology.
Claim. The set

{x ∈ Ω : Du1(x) ∈ X1(x)}

has measure zero for every u1 ∈ S1.
We prove that given any u1 ∈ S1, Du1(x) ∈ R

n \X1(x) for every x ∈ Ω at which
u1 is differentiable. Assume, by contradiction, that there exists x0 ∈ Ω at which u1

is differentiable with Du1(x0) ∈ X1(x0). Recalling Remark 4, we can find r > 0 and
ρ > 0 such that γ1 is constant almost everywhere on B(x0, ρ) and

B(x0, ρ) ⊆ ΩX1 , B(Du1(x0), r) ⊆ X1(x).(48)

Suppose, to fix ideas, that

γ1 = +1 a.e. in B(x0, ρ);(49)

that is to say, recalling Definition 1 and (45),

divm1 ≥ 0 a.e. in B(x0, ρ).(50)

We apply Lemma 1 with r and ρ chosen above and with the map u1 in place of u,
obtaining a map u+

1 satisfying (4), (5), (7), (9), (10), and (12). By (9) and (48) we
have

Du+
1 (x) ∈ X1(x) for a.e. x ∈ A+.(51)

First we prove that u+
1 lies in S. Property (4) implies that u+

1 belongs to u1 +
W 1,p

0 (Ω,R) = u0 + W 1,p
0 (Ω,R). Then, using (41) and (51), we have that

f∗∗(x,Du+
1 (x)) =

〈
m1(x), Du+

1 (x)
〉

+ q1(x) for a.e. x ∈ A+,(52)

while (42) and (48) imply that

f∗∗(x,Du1(x)) ≥ 〈m1(x), Du1(x)〉 + q1(x) for a.e. x ∈ B(x0, ρ).(53)

Hence (9) and (52) give∫
B(x0,ρ)

f∗∗(x,Du+
1 (x))dx

=

∫
B(x0,ρ)\A+

f∗∗(x,Du+
1 (x))dx +

∫
A+

f∗∗(x,Du+
1 (x))dx

=

∫
B(x0,ρ)\A+

f∗∗(x,Du1(x))dx +

∫
A+

(〈m1(x), Du+
1 (x)〉 + q1(x))dx,

(54)

while (53) gives∫
B(x0,ρ)

f∗∗(x,Du1(x))dx

≥
∫
B(x0,ρ)\A+

f∗∗(x,Du1(x))dx +

∫
A+

(〈m1(x), Du1(x)〉 + q1(x))dx.

(55)
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Subtracting (54) from (55) we obtain∫
B(x0,ρ)

(
f∗∗(x,Du1(x))dx− f∗∗(x,Du+

1 (x))
)
dx

≥
∫
A+

〈m1(x), Du1(x) −Du+
1 (x)〉dx

=

∫
B(x0,ρ)

〈m1(x), Du1(x) −Du+
1 (x)〉dx,

(56)

since Du1 and Du+
1 agree on B(x0, ρ) \A+. Remarking that, by Hypothesis H3, the

restriction of the field m1 to the ball B(x0, ρ) belongs to W 1,p′
(B(x0, ρ),R) and that

the restrictions of u1 and u+
1 to the same ball lie in W 1,p(B(x0, ρ),R) (recall (4)), we

have, by (12), (5), (50), and (56), the following.∫
B(x0,ρ)

(f∗∗(x,Du1(x)) − f∗∗(x,Du+
1 (x)))dx

≥
∫
B(x0,ρ)

divm1(x)(u+
1 (x) − u1(x))dx ≥ 0.

Thus, ∫
B(x0,ρ)

f∗∗(x,Du+
1 (x))dx ≤

∫
B(x0,ρ)

f∗∗(x,Du1(x))dx.(57)

Hence (9) and (57) imply that

F(u+
1 ) =

∫
Ω\B(x0,ρ)

f∗∗(x,Du+
1 (x))dx

+

∫
B(x0,ρ)

f∗∗(x,Du+
1 (x))dx

≤
∫

Ω\B(x0,ρ)

f∗∗(x,Du1(x))

+

∫
B(x0,ρ)

f∗∗(x,Du1(x))dx

= F(u1),

and it follows that u+
1 lies in S. Recalling (5), (7), and (49) we have∫

Ω

γ1(x)u+
1 (x)dx >

∫
Ω

γ1(x)u1(x)dx,(58)

and this contradicts (47).
If, on the contrary, we have

γ1 = −1 a.e. in B(x0, ρ),(59)

we proceed analogously defining a map u−
1 as in Lemma 1 and obtaining the same

contradiction inserting (6), (8), and (59) into (57) and into (58).
The claim is so proved.
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Step 2. Consider now the set

S2
.
=

{
u2 ∈ S1 :

∫
Ω

γ2(x)u2(x)dx ≥
∫

Ω

γ2(x)u1(x)dx ∀u1 ∈ S1

}
,

which is nonempty and sequentially compact with respect to the strong topology of
L1(Ω) by the sequential compactness of S1, the sequential lower semicontinuity of F ,
and the sequential continuity of the map

S1 � u1 �→
∫

Ω

γ2(x)u1(x)dx.

We reproduce the arguments of Step 1. Take u2 ∈ S2 and assume, by contradiction,
that there exists x0 ∈ Ω at which u2 is differentiable with Du2(x0) ∈ X2(x0). Since
both divm1 and divm2 have sign in a suitably small ball centered at x0, by the same
argument used previously we get a contradiction and obtain that, for every u2 ∈ S2,
the set

{x ∈ Ω : Du2(x) ∈ X2(x)}

has measure zero for every u2 ∈ S2. Then, since S2 ⊆ S1, we have

μ ({x ∈ Ω : Du2(x) ∈ X1(x) ∪X2(x)}) = 0 ∀u2 ∈ S2.(60)

Step 3. Iterating the procedure we obtain a sequence (Sk) of nonempty sequen-
tially compact (with respect to strong topology in L1(Ω)) subsets of S given by

Sk
.
=

{
uk ∈ Sk−1 :

∫
Ω

γkuk dx ≥
∫

Ω

γkuk−1 dx ∀uk−1 ∈ Sk−1

}
,

for which we have, as in (60),

μ
({

x ∈ Ω : Duk(x) ∈ ∪k
j=1Xj(x)

})
= 0 ∀uk ∈ Sk.(61)

Since, by construction,

S ⊇ S1 ⊇ · · · ⊇ Sk ⊇ Sk+1 ⊇ · · · ∀k,(62)

the set

S∞
.
=
⋂
k∈N

Sk(63)

is nonempty.
Take an element u∞ ∈ S∞; by (61), (62), and (63) we have that

μ
({

x ∈ Ω : Du∞(x) ∈ ∪k
j=1Xj(x)

})
= 0 ∀k ∈ N.

Hence

μ ({x ∈ Ω : Du∞(x) ∈ Xj(x)}) = 0 ∀j ∈ N,

and, consequently,

μ ({x ∈ Ω : Du∞(x) ∈ X(x)})

= μ

⎛
⎝⋃

j∈N

{x ∈ Ω : Du∞(x) ∈ Xj(x)}

⎞
⎠(64)

≤
∑
j∈N

μ ({x ∈ Ω : Du∞(x) ∈ Xj(x)}) = 0.
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Recalling Remark 6, (64) shows that any element of the nonempty set S∞ is a mini-
mizer of F . This ends the proof.

Remark 7. It is hard to establish if the condition (43) is necessary for the exis-
tence of minimizers of the nonconvex functional since, if it is violated, what fails is a
contradictory argument. It is clear from the proof of Theorem 3 that the gradient of
any minimizer of the relaxed functional (and not only the one of the maximal function
u) must take values away from the open sets contained in Xj(x) in which divmj is
strictly positive or negative. If not, indeed, it would be possible to reduce the value
of the functional by a variation like the one performed in our argument. On the open
sets in which divmj vanishes, it is the maximization of the integral

∫
Ω
u dx which

forces the gradient to be extremal. If (43) is not fulfilled, the rapid changes of sign
of divmj may induce oscillations of minimizing sequences so that the gradient of all
the minimizers may coalesce inside the “bad” set Xj(x).
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1. Introduction. In this paper we investigate the Cauchy problem

ut +

(
u2

2

)
x

=
1

4

(∫ x

−∞
−
∫ ∞

x

)
u2
x dx, u(0, x) = ū(x).(1.1)

Formally differentiating the above equation with respect to the spatial variable x, we
obtain

(ut + uux)x =
1

2
u2
x,(1.2)

whereas yet another differentiation leads to

utxx + 2uxuxx + uuxxx = 0.(1.3)

Either of the forms (1.2) and (1.3) of the equation in (1.1) is known as the Hunter–
Saxton equation. In this paper we analyze various concepts of solutions for the above
equations and construct a semigroup of globally defined solutions. Moreover, we
introduce a new distance functional, related to a problem of optimal transportation,
which monitors the continuous dependence of solutions on the initial data. The global
solutions constructed in this paper are dissipative. It is worthwhile to point out that
it is possible (and simpler) to construct a corresponding optimal-transport functional
for global energy-conserving solutions—see [BF] for an example of a metric valid for
conservative solutions of an equation similar to (1.1).

Physical significance. The Hunter–Saxton equation describes the propagation
of waves in a massive director field of a nematic liquid crystal [HS], with the orientation
of the molecules described by the field of unit vectors n(t, x) = (cos u(t, x), sin u(t, x)),
x being the space variable in a reference frame moving with the linearized wave ve-
locity, and t being a slow time variable. The liquid crystal state is a distinct phase
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of matter observed between the solid and liquid states. More specifically, liquids are
isotropic (that is, with no directional order) and without a positional order of their
molecules, whereas the molecules in solids are constrained to point only in certain
directions and to be only in certain positions with respect to each other. The liquid
crystal phase exists between the solid and the liquid phases—the molecules in a liquid
crystal do not exhibit any positional order, but they do possess a certain degree of
orientational order. Not all substances can have a liquid crystal phase, e.g., water
molecules melt directly from solid crystalline ice to liquid water. Liquid crystals are
fluids made up of long rigid molecules, with an average orientation that specifies the
local direction of the medium. Their orientation is described macroscopically by a
field of unit vectors n(t,x)). There are many types of liquid crystals, depending upon
the amount of order in the material. Nematic liquid crystals are invariant under the
transformation n �→ −n, in which case n is called a director field, so that the rodlike
molecules have no positional order but tend to point in the same direction (along
the director). The director field does not remain the same but generally fluctuates.
Obtaining the equation governing the director field represents the crucial point for
the modeling of nematic liquid crystals since it is advantageous to study the dynam-
ics of the director field instead of studying the dynamics of all the molecules. The
fluctuations of the director field are mainly due to the thermodynamical force caused
by elastic deformations in the form of twisting, bending, and splaying (the last being
a fan-shaped spreading out from the original direction, bending being a change of di-
rection, while twisting corresponds to a rotation of the direction in planes orthogonal
to the axis of rotation). Consider director fields that lie on a circle and depend on a
single spatial variable x so that twisting is not allowed. To describe the dynamics of
the director field independently of the coupling with the fluid flow, let u(t, x) be the
perturbation about a constant value. The asymptotic equation for weakly nonlinear
unidirectional waves is precisely (1.2), obtained as the Euler–Lagrange equation of
the variational principle

δ

∫ t2

t1

∫
R

(utux + uu2
x) dxdt = 0

for the internal stored energy of deformation of the director field if dissipative effects
are neglected (corresponding to the case when inertia effects dominate viscosity)—see
[HS] for the details of the derivation. Unlike other studies, in the Hunter–Saxton
model the kinetic energy of the director field is not neglected. In the asymptotic
regime in which (1.2) is derived (see [HS]), the nondimensionalized kinetic energy
density is u2

x so that the condition∫
R

u2
x(t, x) dx < ∞(1.4)

has to hold at any fixed time t for a physically meaningful solution to the Hunter–
Saxton equation.

Equation (1.1) is also relevant in other physical situations; e.g., it is a high-
frequency limit of the Camassa–Holm equation [DP], a nonlinear shallow water equa-
tion [CH, J] modeling solitons [CH, CS] as well as breaking waves [CE].

Geometric interpretation. An interesting aspect of the Hunter–Saxton equa-
tion (see [KM]) is the fact that, for spatially periodic functions, it describes geodesic
flow on the homogeneous space Diff(S)/Rot(S) of the infinite-dimensional Lie group
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Diff(S) of smooth orientation-preserving diffeomorphisms of the unit circle S modulo
the rotations Rot(S), with respect to the right-invariant homogeneous metric 〈f, g〉 =∫
S fxgx dx. The geometric interpretation of the Hunter–Saxton equation establishes

a natural connection with the Camassa–Holm equation, which describes geodesic flow
on Diff(S) with respect to the right-invariant metric 〈f, g〉 =

∫
S(fg + fxgx) dx; see

[K, CK]. A similar geometric interpretation of (1.1) on the diffeomorphism group of
the line holds also for smooth initial data ū in certain weighted function spaces, but
the involved technicalities are more intricate (see [C] for the case of the Camassa–Holm
equation).

Integrable structure. The Hunter–Saxton equation has an integrable struc-
ture. The equation has a reduction (see [BSS, HZ1]) to a finite-dimensional com-
pletely integrable Hamiltonian system whose phase space consists of piecewise linear
solutions of the form

u(t, x) =
n∑

i=1

αi(t) |x− xi(t)|,(1.5)

with the constraint

n∑
i=1

αi(t) = 0,(1.6)

the Hamiltonian being

H(x, α) =
1

2

n∑
i,j=1

αiαj |xi − xj |.

Due to their lack of regularity, functions of the form (1.5) are not classical solutions
of (1.2). Below we will discuss in what sense they are weak solutions of the Hunter–
Saxton equation. Let us point out that the constraint (1.6) is the necessary and
sufficient condition to ensure that the distributional derivative x �→ ux(t, x) of a
function of the form (1.5) belongs to the space L2(R). Thus (1.4) holds.

In the family of smooth functions u : R �→ R all of whose derivatives ∂n
xu decay

rapidly as x → ±∞, the Hunter–Saxton equation is bi-Hamiltonian [HZ1]. If D−1 is
the skew-adjoint antiderivative operator given by

(D−1f)(x) =
1

2

(∫ x

−∞
−
∫ ∞

x

)
f(x) dx, f ∈ D(R),

the first Hamiltonian form for the Hunter–Saxton equation is

ut = J1
δH1

δu
, J1 = uxD

−2 −D−2ux, H1 =
1

2

∫
R

u2
x dx,

whereas the second, compatible Hamiltonian structure is

ut = J2
δH2

δu
, J2 = D−1, H2 =

1

2

∫
R

uu2
x dx.

Moreover, the Hunter–Saxton equation is formally integrable; e.g., it has an associated
Lax pair (see [BSS]). However, the complete integrability of the equation has been es-
tablished only in the previously mentioned case when it reduces to a finite-dimensional
dynamical system.
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The notion of solution. Physically relevant solutions of the Hunter–Saxton
equation need to be of finite kinetic energy so that (1.4) must hold. This leads
naturally to functions u(t, x) with distributional derivative ux(t, ·) square integrable
at every instant t. Note that the integrability assumption ux(t, ·) ∈ L2(R) already
imposes a certain degree of regularity on the function u. This suggests that it might
be possible to incorporate a reasonably high degree of regularity in the concept of
weak solutions to the Hunter–Saxton equation. Let us first consider the concept of
weak solutions introduced by Hunter and Zheng [HZ2].

Definition 1.1. A function u(t, x) defined on [0, T ] × R is a solution of (1.2) if
the following hold:

(i) u ∈ C([0, T ] × R; R) and u(0, x) = ū(x) pointwise on R.
(ii) For each t ∈ [0, T ], the map x �→ u(t, x) is absolutely continuous with ux(t, ·) ∈

L2(R). Moreover, the map t �→ ux(t, ·) belongs to the space L∞([0, T ];L2(R))
and is locally Lipschitz continuous on [0, T ] with values in H−1

loc (R).
(iii) Equation (1.2) holds in the sense of distributions.
Here and below, by a mapping f that is locally Lipschitz or locally bounded on

[0, T ] with values in H−1
loc (R) we understand the following: for every n ≥ 1 there is a

constant Kn ≥ 0 such that

sup
{ψ∈D(−n,n): ‖ψ‖H1(R)≤1}

∣∣〈f(t) − f(s), ψ〉
∣∣ ≤ Kn |t− s|, t, s ∈ [0, T ],

respectively,

sup
{ψ∈D(−n,n): ‖ψ‖H1(R)≤1}

∣∣〈f(t), ψ〉
∣∣ ≤ Kn, t ∈ [0, T ].

Here D(a, b) is the family of smooth functions f : R → R with compact support within
(a, b) ⊂ R.

To a function u : [0, T ]×R → R with the above properties associate the function
F : [0, T ] × R → R defined by

F (t, x) =
1

4

(∫ x

−∞
−
∫ ∞

x

)
u2
x dx.(1.7)

Then F ∈ L∞
loc([0, T ]×R; R) ⊂ L2

loc([0, T ]×R; R). Moreover, Fx = 1
2 u

2
x so that (1.2)

becomes

(ut + uux − F )x = 0(1.8)

in the sense of distributions. Note that uux ∈ L2
loc([0, T ] × R; R). From (1.8) we

infer the existence of a distribution h(t) so that ut + uux − F = h(t) ⊗ 1(x), where
1(x) stands for the constant function with value 1 on R. If H(t) is a primitive of
the distribution h(t), we deduce that the distribution U = u − H(t) ⊗ 1(x) satisfies
Ut = ut−h(t)⊗1(x) = F−uux ∈ L2

loc([0, T ]×R; R) and Ux = ux ∈ L2
loc([0, T ]×R; R).

Therefore U ∈ H1
loc([0, T ]× R). Moreover, since Ut = F − uux ∈ L∞

loc([0, T ];H−1
loc (R))

ensures that U is locally Lipschitz as a function from [0, T ] to H−1
loc (R) and so is u, we

deduce that h(t)⊗1(x) = u−U shares this property too. But then h : [0, T ] → R has
to be Lipschitz continuous. We infer that u = U + H(t) ⊗ 1(x) belongs to the space
H1

loc([0, T ] × R). Since requirement (iii) in Definition 1.1 ensures that the identity∫ T

0

∫
R

(
φxtu +

1

2
φxxu

2 − 1

2
φu2

x

)
dxdt = 0
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holds for every smooth function φ : (0, T )×R → R with compact support in (0, T )×R,
we see that the notion of weak solution in the sense of Definition 1.1 is stronger than
the concept of weak solution introduced by Hunter and Saxton [HS]. Another useful
conclusion that can be drawn from the previous considerations is that for a function u
with regularity properties specified in (i)–(ii) of Definition 1.1, requirement (iii) from
Definition 1.1 is equivalent to asking that the equation

ut + uux = F + h(t) ⊗ 1(x)(1.9)

hold in the distribution sense for some Lipschitz continuous function h : [0, T ] → R.
Any such function h is admissible. Among all these possibilities the most natural
one corresponds to the special choice h ≡ 0. This leads us to the form (1.1) of the
Hunter–Saxton equation.

In the following, we say that a map t �→ u(t, ·) from [0, T ] into Lp
loc(R) is absolutely

continuous if, for every bounded interval [a, b], the restriction of u to [a, b] is absolutely
continuous as a map with values in Lp

(
[a, b]

)
. We can thus adopt the following notion

of a weak solution.
Definition 1.2. A function u(t, x) defined on [0, T ] × R is a solution of (1.2) if

the following hold:
(i) u ∈ C([0, T ] × R; R) and u(0, x) = ū(x) pointwise on R.
(ii) For each t ∈ [0, T ], the map x �→ u(t, x) is absolutely continuous with ux(t, ·) ∈

L2(R). Moreover, the map t �→ ux(t, ·) belongs to the space L∞([0, T ];L2(R)).
(iii) The map t �→ u(t, ·) ∈ L2

loc(R) is absolutely continuous and satisfies (1.1) for
almost every t ∈ [0, T ].

The concept of solution introduced in Definition 1.2 is stronger than that corre-
sponding to Definition 1.1. Indeed, for a function u satisfying all the requirements of
Definition 1.2 we infer by (1.1) that utx ∈ L∞

loc([0, T ];H−1
loc (R)) since ut = −uux + F

and uux, F ∈ L∞
loc([0, T ];L2

loc(R)). This yields that the map t �→ ux(t, ·) is locally
Lipschitz continuous on [0, T ] with values in H−1

loc (R). We thus recover the apparently
missing part from requirement (ii) in Definition 1.1.

We remark that even with this stronger definition, solutions are far from unique.
For example, consider the initial data

ū(x) = 0.(1.10)

There are now two ways to prolong the solution for times t > 0. On one hand, we
can define

u(t, x) = 0, x ∈ R, t ≥ 0.(1.11)

On the other hand, the function

u(t, x)
.
=

⎧⎪⎨
⎪⎩

−2t if x ≤ −t2

2x
t if |x| < t2 for t ≥ 0,

2t if x ≥ t2
(1.12)

provides yet another solution. To distinguish between these two solutions, we need to
consider the evolution equation satisfied by the “energy density” u2

x, namely,

(u2
x)t + (uu2

x)x = 0.(1.13)
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For smooth solutions, the conservation law (1.13) is satisfied pointwise. Notice that
the solution defined by (1.10), (1.12) satisfies the additional conservation law (1.13)
in the distributional sense, i.e.,∫ ∫

R+×R

{
u2
xϕt + uu2

x ϕx

}
dxdt = 0(1.14)

for every test function ϕ ∈ C1
c (R+×R) whose compact support is contained in the half

plane where t > 0. On the contrary, the solution defined by (1.10)–(1.11) dissipates
energy. More precisely, for every t2 ≥ t1 ≥ 0 we have

∫
R

u2
x(t2, x)ϕ(t2, x) dx−

∫
R

u2
x(t2, x)ϕ(t2, x) dx ≤

∫ t2

t1

∫
R

{
u2
x ϕt + uu2

xϕx

}
dxdt

(1.15)

for every test function ϕ ∈ C1
c (R+ × R). In what follows, we say that a solution is

dissipative if (1.15) holds for every t2 > t1 > 0, ϕ ∈ C1
c (R+ × R). Notice that the

solution (1.10), (1.12) does not satisfy (1.15) when t1 = 2, t2 > 0.
At this point in the discussion it is worthwhile to point out that the most impor-

tant feature in the definition of weak solutions is the requirement (1.4). A continuous
function u : [0, T ] × R → R with square integrable distributional derivative ux(t, ·)
belonging to the space L∞([0, T ];L2(R)) is not necessarily bounded, nor does it have
a predetermined asymptotic behavior at infinity, as one can see from the example

u(t, x) =

{
|x| 15 sin(|x| 15 ) if t ≥ 0, |x| ≥ 1,

|x| 23 sin(|x| 23 ) if t ≥ 0, |x| ≤ 1.

Nevertheless, the possibility that some additional structural information about the
behavior of such functions at infinity might be inferred from some invariance properties
of the Hunter–Saxton equation should be ruled out. To do this, consider solutions
of the type (1.5) with the constraint (1.6). This type of solution enters into the
framework of Definition 1.2, and for any N(t) > max {|x1(t)|, . . . , |xn(t)|} we have

ut(t, x) = F (x) a.e. on |x| ≥ N(t),

so that for all j ≥ N(t),

ut(t, j) − ut(−j) = F (j) − F (−j) =
1

2

∫ j

−j

u2
x(t, x) dx =

1

2

∫
R

u2
x(t, x) dx.(1.16)

But the quantity I = 1
2

∫
R
u2
x(t, x) dx is an invariant (time-independent); cf. [HZ1,

BSS]. Moreover, the special form of the solutions guarantees that at every fixed
t ≥ 0,

u∞(t)
.
= lim

x→∞
u(t, x) = −

n∑
i=1

αi(t)xi(t) = − lim
x→−∞

u(t, x)

and u∞(t) = u(t, j) = −u(t,−j) for all j ≥ N(t). Thus (1.16) yields

u∞(t) = u∞(0) +
1

2
It, t ≥ 0.(1.17)
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Unless I = 0, in which case u is constant, we see from (1.17) that the asymptotic
behavior of the solutions changes with time. On the basis of this set of examples
we conclude that the asymptotic behavior of the solutions at infinity should not be
prescribed a priori. However, the previous set of examples indicates that a possible
restriction would be to require u ∈ L∞([0, T ] × R) if ū ∈ L∞(R). In this case the
space of functions introduced in Definition 1.2 (that is, bounded functions with all
the properties specified in Definition 1.2 except the condition that u satisfies (1.1) in
L2[−n, n] for every n ≥ 1) is a Banach space when endowed with the norm

‖u‖T = sup
(t,x)∈[0,T ]×R

{|u(t, x)|} + ess-sup
t∈[0,T ]

∫
R

u2
x(t, x) dx.(1.18)

It is also worth noticing that a function entering the framework of Definition 1.2 has
further regularity properties that are not explicitly stated. For example, we have the
Hölder continuity property

|u(t, x) − u(t, y)| ≤ K(t)
√
|x− y|, t ≥ 0, x, y ∈ R,

with K(t) = ‖ux(t, ·)‖L2(R), since

|u(t, x)−u(t, y)|2 =

∣∣∣∣
∫ y

x

ux(t, ζ) dζ

∣∣∣∣
2

≤ |x−y| ·
∣∣∣∣
∫ y

x

u2
x(t, ζ) dζ

∣∣∣∣ ≤ |x−y|
∫

R

u2
x(t, ζ) dζ.

2. Global existence of dissipative solutions. For twice continuously dif-
ferentiable solutions, the derivative v

.
= ux of the solution u to (1.1) satisfies the

equations

vt + uvx = −v2

2
,(2.1)

(v2)t + (uv2)x = 0.(2.2)

Define the characteristic t �→ ξ(t, y) as the solution to the ODE

∂

∂t
ξ(t, y) = u

(
t, ξ(t, y)

)
, ξ(0, y) = y.(2.3)

From (1.2) it follows that the evolution of the gradient ux along each characteristic is
described by

d

dt
ux

(
t, ξ(t, y)

)
= −1

2
u2
x

(
t, ξ(t, y)

)
.(2.4)

Observe that the solution of the ODE

ż = −z2/2, z(0) = z0

is given by

z(t) =
2z0

2 + tz0
.(2.5)

If z0 ≥ 0, this solution is defined for all t ≥ 0, whereas if z0 < 0, this solution
approaches −∞ at the blow-up time

T (z0) = −2/z0.(2.6)
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Note that if ū(x) �≡ 0, then there is some x0 ∈ R with ū(x0) < 0 so that the
characteristic curve t �→ ξ(t, ū(x0)) will blow up in finite time. Nevertheless, if
lim infx∈R{ūx(x)}>−∞, then T0 > 0, where

T0 = inf
{x∈R: ūx(x)<0}

{
−2

ūx(x)

}
≥ 0,(2.7)

and on the time interval [0, T0) the method of characteristics can be used to construct
the unique solution of (1.1). Let us describe the construction in detail. From (2.3)
we get

∂

∂t
ξx = ux(t, ξ) · ξx =

2 ūx

2 + t ūx
· ξx(2.8)

since

ux(t, ξ(t, y)) =
2 ūx(y)

2 + t ūx(y)
(2.9)

in view of (2.4) and the solution formula (2.5). The unique solution of the linear ODE
(2.7) with initial data ξx(0, y) = 1 is given by

ξx(t, y) =

(
1 +

t

2
ūx(y)

)2

.(2.10)

Since 1 + t
2 ūx(y) > 0 for t ∈ [0, T0), relation (2.10) shows that for each t ∈ [0, T0)

the map y �→ ξ(t, y) is an absolutely continuous increasing diffeomorphism of the line.
Define the absolutely continuous function ϕ by

ϕ(y) =
1

4

∫
R

sign(y − x) ū2
x(x) dx(2.11)

so that ϕy(y) = 1
2 ū

2
x(y). Note that by (2.10),

ξtx = ūx + t
ū2
x

2
.(2.12)

Since ξt(0, y) = ū(y) as ξ(0, y) = y, integration of (2.12) with respect to the spatial
variable x yields

ξt(t, y) = ū(y) +
t

4

∫
R

sign(y − x) ū2
x(x) dx(2.13)

and thus

ξ(t, y) = y +

∫ t

0

ξt(s, y) ds = y + t ū(y) +
t2

8

∫
R

sign(y − x) ū2
x(x) dx.(2.14)

The value of the solution u along the characteristic curve t �→ ξ(t, y) is

u(t, ξ(t, y)) = ū(y) +
t

4

∫
R

sign(y − x) ū2
x(x) dx.(2.15)

This relation is obtained by combining (2.13) with (2.3). The increasing diffeomor-
phism of the line y �→ ξ(t, y) given by (2.14) and formula (2.15) yield the unique
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solution of the Hunter–Saxton equation on the time interval [0, T0). The above ap-
proach works as long as 2 + t ūx(x) > 0 but breaks down at T = T0 with T0 given by
(2.7). The reason for the breakdown is that

lim inf
t↑T0

{
inf
x∈R

ux(t, x)

}
= −∞(2.16)

in view of (2.9) and the definition (2.7) of T0. Note that at t = T0 we might have
ξx(t, x) = 0 for all x ∈ (a, b) ⊂ R so that the map y �→ ξ(t, y) is no longer an increasing
diffeomorphism of the line. Nevertheless, the previous considerations suggest the
following approach in the general case when ūx ∈ L2(R), covering situations when

possibly T0 = 0 as it is the case for, e.g., ū(x) = x
2
3 (1−x)

2
3 χ[0,1]. Here χA stands for

the characteristic function of the set A, defined by χA(x) = 1 if x ∈ A and χA(x) = 0
if x �∈ A.

Let ū ∈ C(R) be such that its distributional derivative ūx is square integrable.
Define ϕ : R+ × R → R by

ϕy(t, y) =
1

2
ū2
x(y)χ[ūx>−2/t](y)(2.17)

so that

ϕ(t, y) =
1

4

∫
[ūx>−2/t]

sign(y − x) ū2
x(x) dx, t > 0,(2.18)

with the understanding that

ϕ(0, y) =
1

4

∫
R

sign(y − x) ū2
x(x) dx.

In other words, if u(t, ξ(t, x0)) blows up before t0 > 0, then the point x0 is not included
in the domain of the integral defining ϕ(t0, ·), because

T
(
ūx(x)

)
> t if and only if ūx(x) > −2/t,

according to (2.4) and (2.6). Observe that (2.18) and Young’s inequality yield

‖ϕ(t, ·)‖L∞(R) ≤
1

4

∫
R

ū2
x(x) dx, t ≥ 0.(2.19)

In the (t, x)-plane, the characteristic curve starting at y is obtained as

ξ(t, y) = y + tū(y) +

∫ t

0

(t− s)ϕ(s, y) ds.(2.20)

The value of the solution u along this curve is

u
(
t, ξ(t, y)

)
= ū(y) +

∫ t

0

ϕ(s, y) ds.(2.21)

Observe that for all t ≥ 0 and y ∈ R,

ξt(t, y) = u(t, ξ(t, y))(2.22)
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in view of (2.20)–(2.21).
Theorem 2.1. Given any absolutely continuous function ū : R → R with deriva-

tive ūx ∈ L2(R), the formulas (2.18)–(2.20) provide a dissipative solution to (1.1),
defined for all times t ≥ 0.

Proof. We proceed in several steps. First of all, for any fixed t ≥ 0, the map
y �→ ξ(t, y) is absolutely continuous since ϕy(t, ·) ∈ L2(R). We claim that for any
fixed t ≥ 0 the map y �→ ξ(t, y) is nondecreasing on R with limy→±∞ ξ(t, y) = ±∞.

Indeed, if ūx(y) > − 2
t , then ūx(y) > − 2

s for all s ∈ [0, t] so that ϕy(s, y) =
1
2 ū

2
x(y) for s ∈ [0, t] by (2.17). Since

ξy(t, y) = 1 + tūx(y) +

∫ t

0

(t− s)ϕy(s, y) ds(2.23)

we find that in this case

ξy(t, y) = 1 + tūx(y) +
t2

4
ū2
x(y) =

1

4

(
2 + t ūx(y)

)2

.(2.24)

In the remaining cases we have that ūx(y) = − 2
t0

≤ − 2
t for some t0 ∈ (0, t]. Therefore

(2.17) yields ϕy(s, y) = 1
2 ū

2
x(y) for s ∈ [0, t0), while ϕy(s, y) = 0 for s ∈ (t0, t]. From

(2.23) we infer that

ξy(t, y) = 1 − 2t

t0
+

2t− t0
t0

= 0.(2.25)

The relations (2.24)–(2.25) confirm the monotonicity of the map y �→ ξ(t, y). Since
ξ(0, x) = x, it remains to prove that limy→±∞ ξ(t, y) = ±∞ for any t > 0. Fix t > 0.
Since ūx ∈ L2(R), the Lebesgue measure l(t) of the set {y ∈ R : ūx(y) ≤ − 1

t } is
finite. On the complement C(t) of this set we obviously have ūx(y) > − 1

t and thus
ξy(t, y) ≥ 1

4 by taking into account (2.24). Therefore, given x2 > x1, we infer that

ξ(t, x2) − ξ(t, x1) =

∫ x2

x1

ξy(t, y) dy ≥
∫

[x1,x2]∩C(t)

ξy(t, y) dy

≥
∫

[x1,x2]∩C(t)

1

4
dy ≥ x2 − x1 − l(t)

4
.

This proves the claim about the limiting behavior of ξ(t, ·) at ±∞. While for times
t up to the blow-up time T0, given by (2.7), the map y �→ ξ(t, y) is an absolutely
continuous diffeomorphism of the real line, for t ≥ T0 this map is nondecreasing and
onto but is not necessarily a bijection. Nevertheless, we would like to define the
solution u by the formula (2.21) for all t ≥ 0.

To show that u is well-defined via (2.21), due to the monotone and surjective
character of the map y �→ ξ(t, y), it is sufficient to show that if ξ(t, y1) = ξ(t, y2) for
some y2 > y1, then the values of u given by (2.21) are also equal. Indeed, we must
have that ξ(t, y) = ξ(t, y1) for all y ∈ [y1, y2], and a glance at (2.24)–(2.25) confirms
that ūx(y) ≤ − 2

t for y ∈ [y1, y2]. This means that for every fixed y ∈ (y1, y2) we have
ūx(y) = − 2

t0(y) for some t0(y) ∈ [0, t]. Consequently ϕy(s, y) = 1
2 ū

2
x(y)χ[0,t0(y)](s) for

s ∈ [0, t], and differentiation of the right-hand side of (2.21) yields

∂y

(
ū(y) +

∫ t

0

ϕ(s, y) ds

)
= ūx(y) +

∫ t0(y)

0

1

2
ū2
x(y) ds = − 2

t0(y)
+

t0(y)

2

4

t20(y)
= 0
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for y ∈ (y1, y2). In particular, the values of the right-hand side of (2.21) are equal
when evaluated at (t, y1) and at (t, y2). This proves that u is well-defined.

The next step is to prove that for every t ≥ 0, the map y �→ u(t, y) is continuous
on R with distributional derivative in L2(R). Given t ≥ 0 and y0 ∈ R, let I0 = {x ∈
R : ξ(t, x) = y0}. The previously established properties of the map x �→ ξ(t, x)
ensure that I0 = [a, b] for some a ≤ b. For any sequence yn → y0, choose xn ∈ R

with ξ(t, xn) = yn. If we show that min {|xn − a|, |xn − b|} → 0 as n → ∞, by the
continuous dependence on the y-variable of the right-hand side of (2.21), we infer that

u(t, yn) = u(t, ξ(t, n)) → u(t, ξ(t, a)) = u(t, ξ(t, b)) = u(t, y0)

since ξ(t, xn) → ξ(t, a) = ξ(t, b) = y0. Thus y �→ u(t, y) would be continuous at y0. If
it would be possible that min {|xnk

− a|, |xnk
− b|} ≥ ε > 0 for a sequence nk → ∞,

then

|ynk
−y0| = |ξ(t, xnk

)−ξ(t, a)| = |ξ(t, xnk
)−ξ(t, b)| ≥ min {y0−ξ(t, a−ε), ξ(t, b+ε)} > 0

must hold by the definition of [a, b] and the monotonicity property of the function
x �→ ξ(t, x). But this is a contradiction since yn → y0 as n → ∞. We therefore proved
the continuity of the map y �→ u(t, y) for every fixed y ∈ R. Actually, a glance at
the previous considerations confirms the continuity of the map u : R+ ×R → R since
ξ : R+ × R → R is continuous in view of (2.14). To show that for each t ≥ 0 the
distributional derivative ux(t, ·) belongs to L2(R), due to the absolute continuity of
the nondecreasing surjective map ξ(t, ·) : R → R, we first show that at every point
y = ξ(t, x) where ξx(t, x) > 0 exists, ux(t, y) ∈ R exists. Indeed, at such a point y
the right-hand side of (2.21), formally equal to ux(t, ξ(t, x)) · ξx(t, x), is differentiable
with derivative

ūx(x) +

∫ t

0

ϕy(t, x) ds = ūx(x) +
t

2
ū2
x(x),

since in view of (2.24)–(2.25) we must have ūx(x) > − 2
t and ϕy(s, x) = 1

2 ū
2
x(x) for

all s ∈ [0, t]. Since ξy(t, x) = 1+ t ūx(x)+ t2

4 ū2
x(x), we infer that ux(t, y) exists, being

given by the formula

ux(t, y) =
ūx(x) + t

2 ū
2
x(x)

1 + tūx(x) + t2

4 ū2
x(x)

=
ūx(x)

1 + t
2 ūx(x)

,(2.26)

where y = ξ(t, x). From (2.26) we deduce that for any interval [x1, x2] where ξx(t, x) >
0 a.e., we have∫ y2

y1

u2
x(t, y) dy =

∫ ξ(t,x2)

ξ(t,x1)

u2
x(t, ξ(t, x)) · ξx(t, x) dx

=

∫ x2

x1

ū2
x(x)(

1 + t
2 ūx(x)

)2
(

1 + t ūx(x) +
t2

4
ū2
x(x)

)
dx =

∫ x2

x1

ū2
x(x) dx

if y1 = ξ(t, x1), y2 = ξ(t, x2) and if we take into account (2.24). Summing up over
such intervals, we obtain that∫

R

u2
x(t, x) dx =

∫
{ūx(x)>− 2

t }
ū2
x(x) dx.(2.27)
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In particular, the map t �→ ‖ux(t, ·)‖L2(R) is nonincreasing on R+. Moreover, we also
have that ∫ ξ(t,y)

−∞
u2
x(t, x) dx =

∫
{x∈(−∞,y]: ūx(x)>− 2

t }
ū2
x(x) dx

and ∫ ∞

ξ(t,y)

u2
x(t, x) dx =

∫
{x∈[y,∞): ūx(x)>− 2

t }
ū2
x(x) dx.

A comparison with (2.18) yields

ϕ(t, y) =
1

4

∫
R

sign (ξ(t, y) − x)u2
x(t, x) dx.(2.28)

Furthermore, if ξx(t, x) > 0 exists, relation (2.20) ensures for y = ξ(t, x) the
existence of ut(t, y), given by the formula

ut(t, y) = −ux(t, y)u(t, y) + ϕ(t, x)

obtained by differentiation and taking into account (2.22). In combination with (2.28),
this yields

(ut + uux)(t, ξ(t, x)) =
1

4

∫
R

sign(ξ(t, x) − ζ)u2
x(t, ζ) dζ,

which is precisely (1.1) evaluated at (t, ξ(t, x)). In view of the previously established
properties of the map x �→ ξ(t, x) we deduce that the constructed function u satisfies
also condition (iii) of Definition 2.1. Since the other properties required by Definition
2.1 were proved above, we conclude that u qualifies as a solution to (1.1) in the sense
of Definition 2.1. This completes the proof of Theorem 2.1.

3. A distance functional. If ū : R → R is also bounded, in addition to being
continuous and with distributional derivative ūx ∈ L2(R), then the global solution
u(t, ·) constructed in Theorem 2.1 will be bounded at every fixed time t ≥ 0. More
precisely, in view of (2.19) and (2.21) we have that

sup
t≥0, x∈R

∣∣u(t, x)
∣∣ ≤ sup

x∈R

∣∣ū(x)
∣∣ +

t

4

∫
R

ū2
x(x) dx.

Thus, if ū : R → R is a bounded continuous function with distributional derivative
ūx ∈ L2(R), then at each fixed time t ≥ 0, the solution u(t, ·) to (1.1), constructed
in Theorem 2.1, belongs to the Banach space X of bounded continuous functions
f : R → R with distributional derivative fx ∈ L2(R), endowed with the norm

‖f‖X = sup
x∈R

{|f(x)|} +

(∫
R

f2
x(x) dx

) 1
2

.

The Banach space X seems suitable for (1.1)—see also [BZZ], where a construction
similar to the one performed in Theorem 2.1 is presented. However, the map t �→ u(t, ·)
is generally not continuous from R+ to X . Indeed, if for some τ > 0 we have that
the set {x ∈ R : ūx(x) = − 2

τ } is of positive Lebesgue measure, then a discontinuity
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occurs at time t = τ for the map t �→ u(t, ·) ∈ X since from (2.27) we infer that for
t < τ , ∫

R

u2
x(t, x) dx−

∫
R

u2
x(τ, x) dx ≥

∫
{x∈x: ūx(x)=− 2

τ }
ū2
x(x) dx > 0.

Our aim will be to construct a distance functional in the space of solutions to
(1.1) with respect to which we will have both continuity with respect to time as well
as continuity with respect to the initial data for the solutions to (1.1). More precisely,
for nonsmooth solutions the conservation law (2.2) is replaced by

(v2)t + (uv2)x = −μ,(3.1)

where μ is the positive measure on the (t, x)-plane defined as

μ(Ω) =

∫
{(T (y), ξ(T (y),y))∈Ω}

ū2
x(y) dy

for every open set Ω ⊂ R+×R. Here T (y) is the blow-up time along the characteristic
curve starting at y, namely,

T (y)
.
=

{
−2/ūx(y) if ūx(y) < 0,
∞ otherwise.

For any ū ∈ X , we can use the semigroup notation Stū
.
= u(t, ·) to denote the solution

of (1.1) constructed in section 2. Indeed

S0ū = ū, St+sū = St

(
Ssū

)
.(3.2)

To prove (3.2), we first show that

ξ1(t + s, y) = ξ2(t, ξ1(s, y)), t, s ≥ 0, y ∈ R,(3.3)

where ξ2 is the characteristic built upon the initial data y �→ u(s, ξ1(s, y)). To check
(3.3), we view both expressions as functions of t. At t = 0 they are both equal to
ξ1(s, y). For t > 0, differentiation of (3.3) yields

ū(y) +

∫ t+s

0

ϕ1(r, y) dr = u(s, ξ1(s, y)) +

∫ t

0

ϕ2(r, ξ1(s, y)) dr(3.4)

in view of (2.20). We use (2.21) to express the right-hand side of (3.4) as

ū(y) +

∫ s

0

ϕ1(r, y) dr +

∫ t

0

ϕ2(r, ξ1(s, y)) dr.

Therefore, to get (3.4), which yields (3.3) by integration, it suffices to show that∫ t+s

s

ϕ1(r, y) dr =

∫ t

0

ϕ2(r, ξ1(s, y)) dr.(3.5)

To prove (3.5), we note that by (2.18),∫ t

0

ϕ2(r, ξ1(s, y)) dr =
1

4

∫ t

0

∫
{x: ux(s,x)>− 2

r }
sign(ξ1(s, y) − x)u2

x(s, x) dx dr

=
1

4

∫ t

0

∫
{x: ux(s,ξ1(s,x))>− 2

r }
sign(ξ1(s, y) − ξ1(s, x))u2

x(s, ξ1(s, x)) ∂xξ1(s, x) dx dr
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if we change variables x �→ ξ1(s, x). Now taking (2.9)–(2.10) into account, we infer
that∫ t

0

ϕ2(r, ξ1(s, y)) dr =
1

4

∫ t

0

∫
{x: ux(s,ξ1(s,x))>− 2

r }
sign(ξ1(s, y) − ξ1(s, x)) ū2

x(x) dx dr

=
1

4

∫ t

0

∫
{x: ux(s,ξ1(s,x))>− 2

r }
sign(y − x) ū2

x(x) dx dr

since the function x �→ ξ1(s, x) is nondecreasing. But

ux(s, ξ1(s, x)) =
2 ūx(x)

2 + s ūx(x)
> −2

r
if and only if ūx(x) > − 2

s + r

since the function y �→ 2y
2+s y is strictly increasing for y > − 2

s , so that in the end we
get ∫ t

0

ϕ2(r, ξ1(s, y)) dr =
1

4

∫ t

0

∫
{x: ūx(x)>− 2

r+s}
sign(y − x) ū2

x(x) dx dr

=
1

4

∫ t+s

s

∫
{x: ūx(x)>− 2

τ }
sign(y − x) ū2

x(x) dx dτ(3.6)

where τ = r + s. On the other hand, by (2.18),∫ t+s

s

ϕ1(r, y) dr =
1

4

∫ t+s

s

∫
{x: ūx(x)>− 2

τ }
sign(y − x) ū2

x(x) dx dτ

so that (3.4) holds and (3.3) is proved. Knowing (3.3), to infer St+sū = St(Ssū), it
suffices to show that

u(t + s, ξ1(t + s, y)) = u(t, ξ2(t, ξ1(s, y))).

But, by (2.21), the left-hand side is precisely

ū(y) +

∫ t+s

0

ϕ(r, y) dr = ū(y) +

∫ s

0

ϕ1(r, y) dr

+

∫ t+s

s

ϕ1(r, y) dr = u(s, ξ1(s, y)) +

∫ t+s

s

ϕ1(r, y) dr,

which, taking into account (3.5), equals

u(s, ξ1(s, y)) +

∫ t

0

ϕ2(r, ξ1(s, y)) ds = u(t, ξ2(t, ξ1(s, y)))

in view of (2.21). This completes the proof of (3.2).
Notice that in general the map t �→ Stū is not continuous from [0,∞[ into X .

It is thus interesting to identify some distance J(u, v) which is well adapted to the
evolution generated by (1.1). More precisely, given an arbitrary constant M , in this
section we shall construct a functional J(u, v) with the following property: For any
initial data ū, v̄ ∈ X with

‖ūx‖L2 ≤ M, ‖v̄x‖L2 ≤ M,



1010 ALBERTO BRESSAN AND ADRIAN CONSTANTIN

the corresponding dissipative solutions u, v constructed in Theorem 2.1 satisfy

J(u(t), v(t)) ≤ eCM tJ(ū, v̄).

To begin the construction, consider the metric space

X
.
= (R2× ] − π/2, π/2]) ∪ {∞}(3.7)

with distance

d((x, u, w), (x̃, ũ, w̃))
.
= min{|x− x̃| + |u− ũ| + κ0 |w − w̃|,

κ0 |π/2 + w| + κ0|π/2 + w̃|},
d((x, u, w), ∞) = κ0 |π/2 + w|.(3.8)

Here κ0 is a suitably large constant, whose precise value will be specified later. Notice
that X is obtained from the metric space R

2 × [−π/2, π/2] by identifying all points
(x, u, −π/2) into a single point, called “∞”.

Let M(X) be the space of all bounded Radon measures on X. To each function
u ∈ H1

loc(R) with ux ∈ L2(R) we now associate the measure μu ∈ M(X) defined as

μu({∞}) = 0, μu(A) =

∫
{x∈R : (x, u(x), arctan ux(x) )∈A}

u2
x(x) dx(3.9)

for every Borel set A ⊆ R
2× ] − π/2, π/2] .

As distance between two functions u, v ∈ X we now introduce a kind of Kan-
torovich distance J(u, v) related to an optimal transportation problem. Call F the
family of all triples (ψ, φ1, φ2), where φ1, φ2 : R �→ [0, 1] are simple Borel measurable
maps (that is, their range is a finite number of points and the preimage of each such
point is a Borel set) and ψ : R �→ R is a nondecreasing absolute continuous surjective
map. Assuming that

φ1(x)u2
x(x) = ψ′(x) · φ2(ψ(x)) v2

x(ψ(x)) for almost every x ∈ R,(3.10)

we define

J (ψ,φ1,φ2)(u, v)
.
=

∫
d((x, u(x), arctanux(x)), (ψ(x), v(ψ(x)), arctan vx(ψ(x))))

·φ1(x)u2
x(x) dx

+

∫
d((x, u(x), arctanux(x)), ∞) · (1 − φ1(x))u2

x(x) dx

+

∫
d((ψ(x), v(ψ(x)), arctan vx(ψ(x))), ∞)

·(1 − φ2(ψ(x))) v2
x(ψ(x))ψ′(x) dx.(3.11)

Observe that (ψ, φ1, φ2) can be regarded as a transportation plan, in order to transport
the measure μu onto the measure μv. Since these two positive measures need not have
the same total mass, we allow some of the mass to be transferred to the point ∞.
More precisely, the mass transferred is (1 − φ1) · μu and (1 − φ2) · μv. The last two
integrals in (3.11) account for the additional cost of this transportation. Integrating
(3.10) over the real line, one finds∫

R

φ1(x)u2
x(x) dx =

∫
R

φ2(y) v
2
x(y) dy.
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We can thus transport the measure φ1μ
u onto φ2 μ

v by a map Ψ : (x, u(x) arctan
ux(x)) �→ (y, v(y), arctan vx(y)), with y = ψ(x). The associated cost is given by
the first integral in (3.11). In this case the measure φ2 μ

v is obtained as the push-
forward of the measure φ1μ

u. We recall that the push-forward of a measure μ by a
mapping Ψ is defined as (Ψ#μ)(A)

.
= μ(Ψ−1(A)) for every measurable set A. Here

Ψ−1(A)
.
= {z : Ψ(z) ∈ A}.

We now define our distance functional by optimizing over all transportation plans,
namely,

J(u, v)
.
= inf

(ψ,φ1,φ2)
{J (ψ,φ1,φ2)(u, v)},(3.12)

where the infimum is taken over all triples (ψ, φ1, φ2) ∈ F such that (3.10) holds.
To check that (3.12) actually defines a distance, let u, v, w ∈ X be given functions.
1. Let us show that J(u, v) = J(v, u). In order to do this, it is enough to prove

that for every triple (ψ, φ1, φ2) ∈ F satisfying (3.10) and every ε > 0, there is a triple
(η, ϕ1, ϕ2) ∈ F satisfying (3.10) such that η : R → R is a strictly increasing absolutely
continuous bijection and

|J (η,ϕ1,ϕ2)(u, v) − J (ψ,φ1,φ2)(u, v)| ≤ ε.(3.13)

Indeed, given (ψ, φ1, φ2) ∈ F satisfying (3.10), define ψ̃ = η−1, φ̃1 = ϕ2, φ̃2 = ϕ1.
The properties of η ensure the absolute continuity of ψ̃ (see [N]) so that we obtain

J (ψ̃,φ̃1,φ̃2)(v, u) = J (η,ϕ1,ϕ2)(u, v) by performing the change of variables x �→ η(x).
Since ε > 0 was arbitrary, we infer that J(v, u) ≤ J(u, v). Interchanging the roles of
u and v we get J(u, v) = J(v, u).

To prove (3.13), it is convenient to view ψ : R → R as a maximal monotone
multifunction ψ : R �→ P(R) with domain and range R. Here P(R) is the family of
all subsets of R. The conditions for a multifunction F : R �→ P(R) to be maximal
monotone with domain and range R may be explicitly written as follows [Z]:

• for every x ∈ R, the set F (x) ⊂ R is nonempty (i.e., the domain of F is R);
• for every y ∈ R there is at least some x ∈ R with y ∈ F (x), expressing the

fact that the range of F is R;
• there are no couples (x1, y1) and (x2, y2) with y1 ∈ F (x1) and y2 ∈ F (x2)

such that x1 < x2 and y2 < y1, meaning that F is monotone;
• if we associate to F its graph {(x, y) ∈ R

2 : y ∈ F (x)}, then this graph has
no proper extension satisfying the first three properties (condition defining
the maximal monotonicity property).

We recall some important features presented by such maps [AA, Z]:
• the set F (x) is an interval of the form [ax, bx] with ax ≤ bx for all x ∈ R

and ax = bx for all x ∈ R, except perhaps an at most countable set (so F is
single-valued with the exception of at most countably many points);

• F is a.e. differentiable, that is, for almost all x0 ∈ R there exists F ′(x0) ∈ R

such that

lim
x→x0, y∈F (x)

y − F (x0) − (x− x0)F
′(x0)

x− x0
= 0;

• we can define the inverse F−1 : R → P(R) of F by asking y ∈ F−1(x) if and
only if x ∈ F (x) and F−1 is again a maximal monotone multifunction with
domain and range R.
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Since the multifunction ψ−1 is maximal monotone, let {yn} be the (at most countable)
set of points where it is multivalued, that is, ψ−1(y) = [an, bn] with bn > an. Then
ψ(x) = yn for x ∈ [an, bn] and, ψ being absolutely continuous, ψx > 0 a.e. on
R −

⋃
n[an, bn] since ψ is strictly increasing on this set. Given γ > 0, the absolute

continuity of ψ : R → R allows us to choose some δ > 0 such that the total variation
of ψ over the union of disjoint closed intervals with the sum of their lengths less than
δ is less than γ; cf. [BGH]. On each interval [an − δ

2n , bn + δ
2n ] we replace ψ with the

linear function η which takes the values ψ(an − δ
2n ), respectively, ψ(bn + δ

2n ), at the

endpoints. By the way an and bn were defined, we know that ψ(bn+ δ
2n ) > ψ(an− δ

2n )

so that η′(x) is a positive constant on [an − δ
2n , bn + δ

2n ] with

∑
n

∫ bn+ δ
2n

an− δ
2n

η′(x) dx ≤
∑
n

(
ψ

(
bn +

δ

2n

)
− ψ

(
an − δ

2n

))
≤ γ.

Setting η(x) = ψ(x) for x �∈ [an− δ
2n , bn+ δ

2n ], we obtain a strictly increasing absolutely
continuous bijection η : R → R. Let us now show that the triple (η, ϕ1, ϕ2) ∈ F
satisfies both (3.10) and (3.13), where ϕ1, ϕ2 are defined by setting ϕ1(x) = 0 for
x ∈ [an − δ

2n , bn + δ
2n ] and ϕ1(x) = φ1(x) for x �∈ [an − δ

2n , bn + δ
2n ], while ϕ2(η(x)) =

φ2(ψ(x)) for x �∈ [an − δ
2n , bn + δ

2n ] and ϕ2(η(x)) = 0 for x ∈ [an − δ
2n , bn + δ

2n ]. On

the complement of the set
⋃

n[an − δ
2n , bn + δ

2n ] relation (3.10) clearly holds a.e. for

(η, ϕ1, ϕ2), being unmodified from (3.10) for (ψ, φ1, φ2). If x ∈ [an− δ
2n , bn+ δ

2n ], then
(3.10) for (η, ϕ1, ϕ2) holds again since both sides are zero as ϕ1(x) = ϕ2(η(x)) = 0 in
this case. Finally, to check (3.13), notice that if we denote

Eδ =
⋃
n

{[
an − δ

2n
, an

]
∪
[
bn, bn +

δ

2n

]}
, A =

⋃
n

[an, bn],

then

|J (η,ϕ1,ϕ2)(u, v) − J (ψ,φ1,φ2)(u, v)| ≤ 2κ0π

∫
Eδ

u2
x dx + 2κ0π

∫
Eδ ∪A

v2
x(η(x)) η′(x) dx.

(3.14)

Indeed, the distance d is less than 2κ0π and the integrands in J (η,ϕ1,ϕ2)(u, v) and
J (ψ,φ1,φ2)(u, v) agree on the complement of the set

⋃
n[an− δ

2n , bn + δ
2n ] by definition.

Also, for almost every x ∈ [an, bn] we have φ1(x)u2
x = 0 by (3.10) as ψ′(x) = 0, and

ϕ1(x) = 0 by its definition. We obtain (3.14). Since the absolutely continuous map η
maps Eδ ∪ A into a set of Lebesgue measure less than γ, and u2

x, v
2
x ∈ L1(R), from

(3.14) we infer (3.13) by choosing δ > 0 and γ > 0 small enough. This completes the
argumentation needed to show that J(u, v) = J(v, u).

2. Choosing ψ(x) = x, φ1(x) = φ2(x) = 1, we immediately see that J(u, u) = 0.
Moreover, we have J(u, v) > 0 if u �= v. To check this, note that J(u, v) = 0 implies
that there is a sequence (ψn, φn

1 , φ
n
2 ) along which J (ψn,φn

1 ,φ
n
2 )(u, v) → 0. The second

term in (3.11) yields(π
2

+ arctanux(x)
)

(1 − φn
1 (x))u2

x(x) → 0 in L1(R),

so that along a subsequence (1 − φnk
1 )u2

x → 0 a.e. on R since ux > −∞ a.e. On the
set S = {x ∈ R : ux(x) �= 0} we therefore have φnk

1 → 1 a.e. Moreover, the first term
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in (3.11) forces

φnk
1 (x)u2

x(x) · min
{
|x− ψnk(x)| + |u(x) − v(ψnk(x))|

+ κ0| arctanux(x) − arctan vx(ψnk(x))|,

κ0

[π
2

+ arctanux(x) +
π

2
+ arctan vx(ψnk(x))

]}
→ 0 in L1(R).(3.15)

Since ux > −∞ a.e. ensures

π

2
+ arctanux(x) +

π

2
+ arctan vx(ψnk(x)) ≥ π

2
+ arctanux(x) > 0 a.e. on R,

we infer from (3.15), by passing to another subsequence, that

|x− ψnk(x)| + |u(x) − v(ψnk(x))| → 0 a.e. on S.

In view of the continuity of v, ψnk(x) → x a.e. on S guarantees v(ψnk(x)) → v(x)
a.e. on S so that u = v a.e. on S since also v(ψnk(x)) → u(x) a.e. on S. Repeating
this argument with the roles of u and v reversed, we find that u = v a.e. on the set
{x ∈ R : vx �= 0}. Combining this with the previous conclusion, we have u = v a.e.
on the complement of the set {x ∈ R : ux = vx = 0}. Since ux, vx ∈ L2(R), this is
possible only if u = v on R. Thus J(u, v) = 0 if and only if u = v.

3. Finally, to prove the triangle inequality, it suffices to show that for every
choice of (ψ	, φ	

1, φ
	
2) satisfying (3.10), and of (ψ
, φ


1, φ


2) satisfying (3.10) for (v, w),

the triplet (ψ, φ1, φ2) defined by

ψ(x) = ψ
(ψ	(x)), φ1(x) = φ	
1(x) · φ


1(ψ
	(x)), φ2(y) = φ


2(y) · φ	
2(ψ

	(x))

satisfies (3.10) for (u,w) and

J (ψ,φ1,φ2)(u,w) ≤ J (ψ�,φ�
1,φ

�
2)(u, v) + J (ψ�,φ�

1,φ
�
2)(v, w).(3.16)

Notice that composing the relation (3.10) for (v, w) a.e. to the right with ψ	, and
multiplying the outcome by φ	

2 ◦ ψ	 · (ψ	)′, we infer that (3.10) holds a.e. on R for
(u,w) with our choice of (ψ, φ1, φ2), and we can now concentrate on proving (3.16).

To simplify matters, we introduce the following notation:

P1 = (x, u, arctanux), P2 = (ψ	, v ◦ ψ	, arctan vx ◦ ψ	),

P3 = (ψ, w ◦ ψ, arctanwx ◦ ψ),

m1 = u2
x, m2 = v2

x ◦ ψ	 · (ψ	)′, m3 = w2
x ◦ ψ · ψ′.

The relations of type (3.10) then yield that a.e. on R,

φ	
1 ·m1 = φ	

2 ◦ ψ	 ·m2, φ

1 ◦ ψ	 ·m2 = φ


2 ◦ ψ ·m3, φ1 ·m1 = φ2 ◦ ψ ·m3.

(3.17)
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Also,

J (ψ,φ1,φ2)(u,w) =

∫
R

{d(P1, P3) · φ1m1 + d(P1,∞) · (1 − φ1)m1 + d(P3,∞)

·(1 − φ2 ◦ ψ)m3} dx,

J (ψ�,φ�
1,φ

�
2)(u, v) =

∫
R

{d(P1, P2) · φ	
1m1 + d(P1,∞) · (1 − φ	

1)m1 + d(P2,∞)

·(1 − φ	
2 ◦ ψ	)m2} dx,

J (ψ�,φ�
1,φ

�
2)(v, w) =

∫
R

{d(P2, P3) · φ

1 ◦ ψbm1 + d(P2,∞) · (1 − φ


1 ◦ ψ	)m2 + d(P3,∞)

·(1 − φ

2 ◦ ψ)m3} dx,

the last relation being obtained after the change of variables x �→ ψ	(x) in the integral.
We will prove (3.16) by deriving an appropriate inequality valid a.e. pointwise between
the integrands in the previous expressions. Since

(1 − φ	
2 ◦ ψ	)(1 − φ


1 ◦ ψ	) ≥ 0,

we have

1 − φ	
2 ◦ ψ	 + 1 − φ


1 ◦ ψ	 ≥ φ	
2 ◦ ψ	(1 − φ


1 ◦ ψ	) + φ

1 ◦ ψ	(1 − φ	

2 ◦ ψ	).

Multiplication of both sides by d(P2,∞) ·m2 leads to

d(P2,∞) · (1 − φ	
2 ◦ ψ	)m2 + d(P2,∞) · (1 − φ


1 ◦ ψ	)m2

≥ d(P2,∞) · φ	
1(1 − φ


1 ◦ ψ	)m1 + d(P2,∞) · φ

1 ◦ ψ	(1 − φ	

2 ◦ ψ	)m2(3.18)

in view of (3.17). Multiply now the inequalities

d(P1, P2) − d(P1,∞) + d(P2,∞) ≥ 0, d(P2, P3) − d(P3,∞) + d(P2,∞) ≥ 0

by φ	
1(1 − φ


1 ◦ ψ	)m1, respectively, φ

1 ◦ ψ	(1 − φ	

2 ◦ ψ	)m2, and add them up. The
outcome yields in combination with (3.18) that

d(P1, P2) · φ	
1(1 − φ


1 ◦ ψ	)m1 − d(P1,∞) · φ	
1(1 − φ


1 ◦ ψ	)m1

+ d(P2, P3) · φ

1 ◦ ψ	(1 − φ	

2 ◦ ψ	)m2 + d(P2,∞) · (1 − φ	
2 ◦ ψ	)m2

+ d(P2,∞) · (1 − φ

1 ◦ ψ	)m2 ≥ d(P3,∞) · φ


1 ◦ ψ	(1 − φ	
2 ◦ ψ	)m2.

Adding to both sides the quantity

d(P1,∞) ·m1 + d(P3,∞) ·m3 + d(P1, P2) · φ	
1 · φ



1 ◦ ψ	 ·m1 − d(P1,∞) · φ	

1

·φ

1 ◦ ψ	 ·m1 + d(P2, P3) · φ


1 ◦ ψ	 · φ	
2 ◦ ψ	 ·m2 − d(P3,∞) · φ


2 ◦ ψ ·m3

we deduce by (3.17) that the integrand of J (ψ�,φ�
1,φ

�
2)(u, v) + J (ψ�,φ�

1,φ
�
2)(v, w), equal

a.e. precisely to the left-hand side of the new inequality, is a.e. pointwise larger than

d(P3,∞) · φ

1 ◦ ψ	(1 − φ	

2 ◦ ψ	)m2 + d(P1,∞) ·m1 + d(P3,∞) · m3

+ d(P1, P2) · φ	
1 · φ



1 ◦ ψ	 ·m1 − d(P1,∞) · φ	

1 · φ


1 ◦ ψ	 ·m1

+ d(P2, P3) · φ

1 ◦ ψ	 · φ	

2 ◦ ψ	 · m2 − d(P3,∞) · φ

2 ◦ ψ ·m3.
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Taking into account (3.17) and the definition φ1 = φ	
1 · φ



1 ◦ψ	, we see that the above

expression equals

d(P1,∞) · (1 − φ1)m1 + d(P3,∞) · (1 − φ2 ◦ ψ)m3 + (d(P1, P2) + d(P2, P3) · φ1m1)

≥ d(P1,∞) · (1 − φ1)m1 + d(P3,∞) · (1 − φ2 ◦ ψ)m3 + d(P1, P3) · φ1m1.

The lower estimate is a.e. precisely the integrand in J (ψ,φ1,φ2)(u,w), and (3.16) holds.
The proof that J satisfies the triangle inequality is therefore complete.

In the remainder of this section we examine how the distance J(·, ·) behaves in
connection with solutions of (1.1).

Continuity with respect to time. Let t �→ u(t) be the solution of (1.1) con-
structed in section 2. For any fixed t > 0, we define a transportation plan of μū to
μu(t) by setting

ψ(x)
.
= ξ(t, x), φ1(x)

.
=

{
1 if T (x) > t,

φ2(x) ≡ 1.
0 if T (x) ≤ t,

(3.19)

Relation (3.6) follows from (2.9)–(2.10) on {T (x) > t} and from (2.25) on {T (x) ≤ t}.
The cost of this plan is estimated by

J (ψ,φ1,φ2)(ū, u(t)) ≤
∫
{T (x)>t}

{|x− ξ(t, x)| + |ū(x) − u(t, ξ(t, x))|

+ κ0| arctan ūx(x) − arctanux(t, ξ(t, x))|} ū2
x(x) dx

+

∫
{T (x)≤t}

|π/2 + arctan ūx(x)| ū2
x(x) dx.(3.20)

By (2.4) we have that a.e.∣∣∣∣ ddt arctanux

(
t, ξ(t, x)

)∣∣∣∣ =

∣∣∣∣∣
d
dtux

(
t, ξ(t, x)

)
1 + u2

x

(
t, ξ(t, x)

)
∣∣∣∣∣ ≤ 1

2
.(3.21)

An integration on [0, t] yields

| arctan ūx(x) − arctanux(t, ξ(t, x))| ≤ t

2
, t ≥ 0.(3.22)

On the other hand, using (2.20), we get

|x− ξ(t, x)| ≤ t |ū(x)| +
∫ t

0

(t− s) |ϕ(s, x)| ds ≤ t |ū(x)| + t2

8

∫
R

ū2
x(x) dx, t ≥ 0, x ∈ R,

(3.23)

if we take into account (2.19). From (2.21) and (2.19), we also infer

|ū(x) − u(t, ξ(t, x))| ≤
∫ t

0

|ϕ(s, y)| dy ≤ t

4

∫
R

ū2
x(x) dx, t ≥ 0, x ∈ R.(3.24)

To estimate the last term in (3.20), notice that

{x ∈ R : T (x) ≤ t} =

{
x ∈ R : − 2

ūx(x)
≤ t

}
=

{
x ∈ R : ūx(x) ≤ − 2

t

}
, t > 0.

(3.25)
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Furthermore, since limx→−∞ x(π2 + arctanx) = −1, there is a constant c > 0 such
that

0 ≤ π

2
+ arctan y ≤ c

|y| , y ≤ −1,

whereas ∣∣∣π
2

+ arctan y
∣∣∣ y2 ≤ π if − 1 ≤ y ≤ 0,

so that ∣∣∣π
2

+ arctan ūx(x)
∣∣∣ ū2

x(x) ≤ π + c |ūx(x)| if ūx(x) ≤ − 2

t
.(3.26)

On the other hand, if ūx(x) ≤ − 2
t , then t2ū2

x(x) ≥ 4 so that∫
{T (x)≤t}

1 dx ≤ t2

4

∫
{T (x)≤t}

ū2
x(x) dx.(3.27)

From (3.25)–(3.27) we infer that∫
{T (x)≤t}

∣∣∣π
2

+ arctan ūx(x)
∣∣∣ ū2

x(x) dx ≤ πt2

4
‖ūx‖2

L2 + c

∫
{T (x)≤t}

|ūx(x)| dx

≤ πt2

4
‖ūx‖2

L2 + c

(∫
{T (x)≤t}

1 dx

) 1
2
(∫

{T (x)≤t}
ū2
x(x) dx

) 1
2

≤ πt2

4
‖ūx‖2

L2 +
ct

2
‖ūx‖2

L2 .

By (3.20), (3.22)–(3.25), and the previous inequality we conclude

J (ψ,φ1,φ2)(ū, u(t)) ≤
(
πt

4
+

c + κ0

2
+ ‖ū‖L∞ +

t + 2

8
‖ūx‖2

L2

)
t ‖ūx‖2

L2 , t ≥ 0.

(3.28)

It is now clear that each semigroup trajectory t �→ Stū is Lipschitz continuous as a
map from [0,∞[ into the metric space X equipped with our distance functional J .
The Lipschitz constant remains uniformly bounded as ū ranges over bounded subsets
of X.

Continuity with respect to the initial data. We now consider two distinct
solutions and study how the distance J

(
u(t), ũ(t)

)
varies in time. Recall that the

solution u = u(t, x) is computed by (2.20)–(2.22), also in the case where the gradient
blows up. The same formula of course holds for ũ. Let (ψ0, φ1,0, φ2,0) be an optimal
transportation plan of the measure μu(0) to the measure μũ(0). In view of the ap-
proximation property established in (3.13), we can restrict our attention to the case
when ψ0 is strictly increasing on R. For any t > 0, we define a transportation plan
(ψt, φt

1, φ
t
2) of the measure μu(t) to μũ(t) as follows:

ψt
(
ξ(t, y)

) .
= ξ̃(t, ỹ) for ỹ = ψ0(y),

φt
1

(
ξ(t, y)

) .
=

{
φ1,0(y) if T (y) > t and T̃ (ỹ) > t for ỹ = ψ0(y),
0 otherwise,

φt
2

(
ξ̃
(
t, ỹ)

) .
=

{
φ2,0(ỹ) if T (y) > t and T̃ (ỹ) > t for y = ψ−1

0 (ỹ),
0 otherwise.
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If initially the point y is mapped to ỹ = ψ0(y), then at any later time t > 0 the point
ξ(t, y) along the u-characteristic starting from y is sent to the point ξ̃(t, ỹ) along
the ũ-characteristic starting from ỹ = ψ0(y). We thus transport the mass from the
point (ξ(t, y), u(t, ξ(t, y)), arctanux(t, ξ(t, y))) to the corresponding point (ξ̃(t, ỹ),
ũ(t, ξ̃(t, ỹ)), arctan ũx(t, ξ̃(t, ỹ))) with ỹ = ψ0(y), except in the case where blow-up
has occurred within time t along one (or both) of the characteristics ξ(·, y), ξ̃(·, ỹ). In
this later case, the mass is transported to the point ∞.

To check (3.10), it suffices to show that a.e.

φt
1(ξ(t, y)) · u2

x(t, ξ(t, y)) · ξx(t, y) = φt
2(ψ

t(ξ(t, y))) · (ψt)′(ξ(t, y))

· ξx(t, y) · u2
x(t, ψt(ξ(t, y))).

Since the relations ỹ = ψ0(y), ψt(ξ(t, y)) = ξ̃(t, ỹ), and (ψt)′(ξ(t, y)) · ξx(t, y) =
ξ̃x(t, ψ0(y)) · ψ′

0(y) all hold a.e., the desired identity holds a.e. on the complement
of the set {y : ỹ = ψ0(y), T (y) > t, T̃ (ỹ) > t} where both sides equal zero since
φt

1(ξ(t, y)) = φt
2(ξ̃(t, ỹ)) = 0. The identity holds also a.e. on the set {y : ỹ = ψ0(y),

T (y) > t, T̃ (ỹ) > t} since there, in view of (2.9)–(2.10), it practically amounts to
relation (3.10) for (φ1,0, φ2,0, ψ0).

In the following, our main goal is to provide an estimate on the time derivative
of the function

J(t) = J (ψt,φt
1,φ

t
2)
(
u(t), ũ(t)

)
.

Throughout the remainder of this section, by {T̃ (ỹ)>≤t} we understand the set of all

y ∈ R such that ψ0(y) = {ỹ} and T̃ (ỹ)>≤t. Since u2
x(t, ξ(t, y)) · ξx(t, y) = ū2

x(y) on

{T (y) > t} by (2.9)–(2.10) and ũ2
x(t, ξ̃(t, ỹ)) · ξ̃x(t, ỹ) = ũ2

x(0, ỹ) on {T̃ (ỹ) > t}, while
ψt(ξ(t, y)) = ξ̃(t, ỹ) for ψ0(y) = {ỹ}, performing the change of variables y �→ ξ(t, y),
we see that

J(t) =

∫
{T (y)>t, T̃ (ỹ)>t}

min {|ξ(t, y) − ξ̃(t, ỹ)| + |u(t, ξ(t, y)) − ũ(t, ξ̃(t, ỹ))|

+κ0| arctanux(t, ξ(t, y)) − arctan ũx(t, ξ̃(t, ỹ))|,
κ0(π + arctanux(t, ξ(t, y)) + arctan ũx(t, ξ̃(t, ỹ)))}φ1,0(y) ū

2
x(y) dy

+κ0

∫
{T (y)>t, T̃ (ỹ)>t}

(π
2

+ arctanux(t, ξ(t, y))
)

(1 − φ1,0(y)) ū
2
x(y) dy

+κ0

∫
{T (y)≤t or T̃ (ỹ)≤t}

(π
2

+ arctanux(t, ξ(t, y))
)
ū2
x(y) dy

+κ0

∫
{T (y)>t, T̃ (ỹ)>t}

(π
2

+ arctan ũx(t, ξ̃(t, ỹ))
)

(1 − φ2,0(ỹ)) ũ
2
x(0, ỹ)ψ′

0(y) dy

+κ0

∫
{T (y)≤t or T̃ (ỹ)≤t}

(π
2

+ arctan ũx(t, ξ̃(t, ỹ))
)
ũ2
x(0, ỹ)ψ′

0(y) dy.

To simplify notation, let

S(t) = {T (y) > t, T̃ (ỹ) > t}, Sc(t) = R − S(t),(3.29)

E(t, y) = min {|u(t, ξ(t, y)) − ũ(t, ξ̃(t, ỹ))| + κ0| arctanux(t, ξ(t, y))

− arctan ũx(t, ξ̃(t, ỹ))| + |ξ(t, y) − ξ̃(t, ỹ)|,
κ0(π + arctanux(t, ξ(t, y)) + arctan ũx(t, ξ̃(t, ỹ)))}.(3.30)
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Since for h ≥ 0 we have

S(t + h) ⊂ S(t), Sc(t) ⊂ Sc(t + h),(3.31)

we deduce that

(3.32)

J(t + h) − J(t) =

∫
S(t)

(E(t + h, y) − E(t, y))φ1,0(y) ū
2
x(y) dy

−
∫
S(t)\S(t+h)

E(t + h, y)φ1,0(y) ū
2
x(y) dy

+κ0

∫
S(t)

(arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y)))(1 − φ1,0(y)) ū
2
x(y) dy

+κ0

∫
S(t)

(arctan ũx(t + h, ξ̃(t + h, ỹ))

− arctan ũx(t, ξ̃(t, ỹ)))(1 − φ2,0(ỹ)) ũ
2
x(0, ỹ)ψ′

0(y) dy

−κ0

∫
S(t)\S(t+h)

(π
2

+ arctanux(t + h, ξ(t + h, y))
)
(1 − φ1,0(y)) ū

2
x(y) dy

−κ0

∫
S(t)\S(t+h)

(π
2

+ arctan ũx(t + h, ξ̃(t + h, ỹ))
)
(1 − φ2,0(ỹ)) ũ

2
x(0, ỹ)ψ′

0(y) dy

+κ0

∫
Sc(t)

(arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y)))ū2
x(y) dy

+κ0

∫
Sc(t)

(arctan ũx(t + h, ξ̃(t + h, ỹ)) − arctan ũx(t, ξ̃(t, ỹ)))ũ2
x(0, ỹ)ψ′

0(y) dy

+κ0

∫
Sc(t+h)\Sc(t)

(π
2

+ arctanux(t + h, ξ(t + h, y))
)
ū2
x(y) dy

+κ0

∫
Sc(t+h)\Sc(t)

(π
2

+ arctan ũx(t + h, ξ̃(t + h, ỹ))
)
ũ2
x(0, ỹ)ψ′

0(y) dy.

Noticing that S(t) \ S(t + h) = S(t) ∩ Sc(t + h) = Sc(t + h) \ Sc(t), we see that
the combination of the fifth and ninth terms above, with that of the sixth and tenth,
added to the second term, amount to

(3.33)

κ0

∫
S(t)\S(t+h)

(π
2

+ arctanux(t + h, ξ(t + h, y))
)
φ1,0(y) ū

2
x(y) dy

+κ0

∫
S(t)\S(t+h)

(π
2

+ arctan ũx(t + h, ξ̃(t + h, ỹ))
)
φ2,0(ỹ) ũ

2
x(0, ỹ)ψ′

0(y) dy

−
∫
S(t)\S(t+h)

E(t + h, y)φ1,0(y) ū
2
x(y) dy

= κ0

∫
S(t)\S(t+h)

(π + arctanux(t + h, ξ(t + h, y))

+ arctan ũx(t + h, ξ̃(t + h, ỹ)))φ1,0(y) ū
2
x(y) dy

−
∫
S(t)\S(t+h)

E(t + h, y)φ1,0(y) ū
2
x(y) dy
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by (3.10) for (φ1,0, φ2,0, ψ0). In view of (3.29)–(3.30), on S(t) \S(t+h) we have that

E(t + h, y) = π + arctanux(t + h, ξ(t + h, y)) + arctan ũx(t + h, ξ̃(t + h, ỹ))

since at least one of the expressions ux(t + h, ξ(t + h, y)) and ũx(t + h, ξ̃(t + h, ỹ))
is precisely −∞ on this set. Thus the whole expression (3.33) is identically zero.
Therefore (3.32) yields

J(t + h) − J(t) =

∫
S(t)

(E(t + h, y) − E(t, y))φ1,0(y) ū
2
x(y) dy

(3.34)

+ κ0

∫
S(t)

(arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y)))(1 − φ1,0(y)) ū
2
x(y) dy

+ κ0

∫
S(t)

(arctan ũx(t + h, ξ̃(t + h, ỹ))

− arctan ũx(t, ξ̃(t, ỹ)))(1 − φ2,0(ỹ))ũ
2
x(0, ỹ)ψ′

0(y) dy

+ κ0

∫
Sc(t)

(arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y)))ū2
x(y) dy

+ κ0

∫
Sc(t)

(arctan ũx(t + h, ξ̃(t + h, ỹ)) − arctan ũx(t, ξ̃(t, ỹ)))ũ2
x(0, ỹ)ψ′

0(y) dy.

In view of (3.29), we have Sc(t) = {T (y) ≤ t} ∪ {T̃ (ỹ) ≤ t}. On the set {T (y) ≤ t}
we have arctanux(t+h, ξ(t+h, y)) = arctanux(t, ξ(t, y)) = −∞ so that in the fourth
term in (3.34) only the integral over {T (y) > t, T̃ (ỹ) ≤ t} might have a nonzero
contribution. Thus the second and fourth terms in (3.34) combine to

κ0

∫
{T (y)>t}

(arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y)))(3.35)

× (1 − φ1,0(y)) ū
2
x(y) dy

+ κ0

∫
{T̃ (ỹ)≤t<T (y)}

(arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y)))

× φ1,0(y) ū
2
x(y) dy.

Similarly, the third and fifth terms combine to

κ0

∫
{T̃ (ỹ)>t}

(arctan ũx(t + h, ξ(t + h, ỹ))(3.36)

− arctan ũx(t, ξ(t, ỹ)))(1 − φ2,0(ỹ)) ũ
2
x(0, ỹ)ψ′

0(y) dy

+κ0

∫
{T (y)≤t<T̃ (ỹ)}

(arctan ũx(t + h, ξ(t + h, ỹ))

− arctan ũx(t, ξ(t, ỹ)))φ2,0(ỹ) ũ
2
x(0, ỹ)ψ′

0(y) dy.

To transform suitably the first term in (3.34), let us denote by E1(t, y) the first
expression in the minimum (3.30), and by E2(t, y) the second. If E(t, y) = E2(t, y),
then

E(t + h, y) − E(t, y) ≤ κ0 (arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y))

(3.37)

+ arctan ũx(t + h, ξ̃(t + h, ỹ)) − arctan ũx(t, ξ̃(t, ỹ))),
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since E(t + h, y) ≤ E2(t + h, y). On the other hand, if E(t, y) = E1(t, y), then the
triangle inequality and the relation E(t + h, y) ≤ E1(t + h, y) ensure that

E(t + h, y) − E(t, y) ≤
∣∣ξ(t + h, y) − ξ(t, y) + ξ̃(t + h, ỹ) − ξ̃(t, ỹ)

∣∣(3.38)

+
∣∣u(t + h, ξ(t + h, y)) − ũ(t + h, ξ̃(t + h, ỹ)) − u(t, ξ(t, y)) + ũ(t, ξ(t, ỹ))

∣∣
+ κ0

∣∣ arctanux(t + h, ξ(t + h, y)) − arctanux(t, ξ(t, y))

+ arctan ũx(t + h, ξ̃(t + h, ỹ)) − arctan ũx(t, ξ̃(t, ỹ))
∣∣.

Letting h ↓ 0 in (3.34), and taking into account (3.38) and the considerations preceding
it, we deduce that

lim sup
h↓0

J(t + h) − J(t)

h
≤ κ0J0(t) +

∫
S(t)

φ1,0(y) ū
2
x(y)

∣∣∣ d
dt

ξ(t, y) − d

dt
ξ̃(t, ψ0(y))

∣∣∣ dy
(3.39)

+

∫
S(t)

φ1,0(y) ū
2
x(y)

∣∣∣ d
dt

u(t, ξ(t, y)) − d

dt
ũ(ξ̃(t, ψ0(y)))

∣∣∣ dy
+ κ0

∫
S(t)

φ1,0(y) ū
2
x(y)

∣∣∣ d
dt

arctan ux(t, ξ(t, y)) − d

dt
arctan ũx(ξ̃(t, ψ0(y)))

∣∣∣ dy,
where

J0(t) =

∫
[T (y)>t]

(1 − φ1,0(y))

[
d

dt
arctan ux(t, ξ(t, y))

]
ū2
x(y) dy

+

∫
[T̃ (ỹ)>t]

(1 − φ2,0(ỹ))

[
d

dt
arctan ũx(t, ξ(t, ỹ))

]
ũ2
x(0, ỹ) dỹ

+

∫
[T̃ (ỹ)≤t<T (y)]

φ1,0(y)

[
d

dt
arctan ux(t, ξ(t, y))

]
ū2
x(y) dy

+

∫
[T (y)≤t<T̃ (ỹ)]

φ2,0(ỹ)

[
d

dt
arctan ũx(t, ξ(t, ỹ))

]
ũ2
x(0, ỹ) dỹ ≤ 0,

the last inequality being true by (2.4).

Before proceeding with further analysis of (3.39), we establish a few a priori
bounds. From (2.22) we get

∣∣∣ d
dt

ξ(t, y) − d

dt
ξ̃(t, ỹ)

∣∣∣ = |u(t, ξ(t, y)) − ũ(t, ξ̃(t, ỹ))|.(3.40)

Also, note that if v = arctan z(t) and ż = − z2

2 , then

v̇ = − z2

2 + 2z2
= −1

2
sin2 v.

Since | sin2 α−sin2 β| ≤ |α−β| by the mean-value theorem as |(sin2 z)′| = 2| sin z cos z|
= | sin (2z)| ≤ 1, we infer three useful facts if we set z = ux(t, ξ(t, x)). First of all,

d

dt
arctanux(t, ξ(t, y)),

d

dt
arctan ũx(t, ũ(t, ξ̃(t, ỹ))) ≤ 0.(3.41)
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Second,

∣∣∣ d
dt

arctan u(t, ξ(t, y)) − d

dt
arctan ũ(t, ξ̃(t, ỹ))

∣∣∣(3.42)

≤ 1

2
| arctanux(t, ξ(t, y)) − arctan ũx(t, ξ̃(t, ỹ))|.

Furthermore, if arctan z ≤ −π
4 , then sin(arctan z) ∈ [−1,− 1√

2
], so that

d

dt
arctanux(t, ξ(t, y)) ≤ −1

4
if arctanux(t, ξ(t, y)) ≤ −π

4
.(3.43)

On the other hand, using first (2.21) and then (2.18), we have

∣∣∣∣ ddt u(t, ξ(t, y0)) −
d

dt
ũ(t, ξ̃(t, ỹ0))

∣∣∣∣ = |ϕ(t, y0) − ϕ̃(t, ỹ0)|

=
1

4

∣∣∣ ∫
{T (y)>t}

sign(y0 − y) ū2
x(y) dy −

∫
{T̃ (ỹ)>t}

sign(ỹ0 − ỹ) ũ2
x(0, ỹ) dỹ

∣∣∣
=

1

4

∣∣∣ ∫ y0

−∞
ū2
x(y)χ[T (y)>t]dy −

∫ ỹ0

−∞
ũ2
x(0, ỹ)χ[T̃ (ỹ)>t]dỹ

−
∫ ∞

y0

ū2
x(y)χ[T (y)>t]dy −

∫ ∞

ỹ0

ũ2
x(0, ỹ)χ[T̃ (ỹ)>t]dỹ

∣∣∣
=

1

4

∣∣∣ ∫ y0

−∞
ū2
x(y)χ[T (y)>t]dy −

∫ y0

−∞
ũ2
x(0, ψ0(y))χ[T̃ (ỹ)>t] ψ

′
0(y) dy

−
∫ ∞

y0

ū2
x(y)χ[T (y)>t]dy −

∫ ∞

y0

ũ2
x(0, ψ0(y))χ[T̃ (ỹ)>t] ψ

′
0(y) dy

∣∣∣
=

1

4

∣∣∣ ∫ y0

−∞
(1 − φ1,0(y) + φ1,0(y))ū

2
x(y)χ[T (y)>t]dy

−
∫ y0

−∞
(1 − φ2,0(ψ0(y)) + φ2,0(ψ0(y)))ũ

2
x(0, ψ0(y))χ[T̃ (ỹ)>t] ψ

′
0(y) dy

−
∫ ∞

y0

(1 − φ1,0(y) + φ1,0(y))ū
2
x(y)χ[T (y)>t]dy

−
∫ ∞

y0

(1 − φ2,0(ψ0(y)) + φ2,0(ψ0(y)))ũ
2
x(0, ψ0(y))χ[T̃ (ỹ)>t] ψ

′
0(y) dy

∣∣∣
after performing in the next to last step in two of the integrals the change of variables
ỹ = ψ0(y). Since equation (3.10) for (ψ0, φ1,0, φ2,0) ensures that φ1,0(y) ū

2
x(y) =

φ2,0(ψ0(y)) ũ
2
x(0, ψ0(y))ψ

′
0(y) a.e. on S(t), we deduce that

∣∣∣ d
dt

u(t, ξ(t, y0)) −
d

dt
ũ(t, ξ̃(t, ỹ0))

∣∣∣(3.44)

≤ 1

4

∫
[T (y)>t]

(1 − φ1,0(y)) ū
2
x(y) dy +

1

4

∫
[T̃ (ỹ)>t]

(1 − φ2,0(ỹ))ũ
2
x(0, ỹ) dỹ

+
1

4

∫
[T̃ (ỹ)≤t<T (y)]

φ1,0(y) ū
2
x(y) dy +

1

4

∫
[T (y)≤t<T̃ (ỹ)]

φ2,0(ỹ) ũ
2
x(0, ỹ) dỹ.
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Let us now introduce the following sets:

S1 =
{
y ∈ R : arctan ux(t, ξ(t, y)) ≤ −π

4
and arctan ũx(t, ξ̃(t, ỹ)) ≤ −π

4

}
,

S2 =
{
y ∈ R : arctan ux(t, ξ(t, y)) > −π

4
and arctan ũx(t, ξ̃(t, ỹ)) > −π

4

}
,

S3 =
{
y ∈ R : arctan ux(t, ξ(t, y)) > −π

4
≥ arctan ũx(t, ξ̃(t, ỹ))

}
,

S4 =
{
y ∈ R : arctan ũx(t, ξ̃(t, ỹ)) > −π

4
≥ arctan ux(t, ξ(t, y))

}
.

The integral on the right-hand side of (3.44) over S1 is, in view of (3.43), bounded
from above by |J0(t)| = − J0(t). The integral over S2 is, in view of the formula for J(t)

preceding relation (2.29), bounded from above by J(t)
πκ0

. To evaluate the contribution
over the integral over S3, notice that the same formula for J(t) yields

J(t) ≥ κ0

∫
S(t)∩S3

(arctanux(t, ξ(t, y)) − arctan ũx(t, ξ̃(t, ỹ)))φ1,0(y) ū
2
x(y) dy

+ κ0

∫
S(t)∩S3

(π
2

+ arctanux(t, ξ(t, y))
)

(1 − φ1,0(y)) ū
2
x(y) dy

+ κ0

∫
Sc(t)∩S3

(π
2

+ arctanux(t, ξ(t, y))
)
ū2
x(y) dy

+ κ0

∫
S(t)∩S3

(π
2

+ arctan ũx(t, ξ̃(t, ỹ))
)

(1 − φ2,0(ỹ)) ũ
2
x(0, ỹ)ψ′

0(y) dy

+ κ0

∫
Sc(t)∩S3

(π
2

+ arctan ũx(t, ξ̃(t, ỹ))
)
ũ2
x(0, ỹ)ψ′

0(y) dy.

Using (3.10), the sum of the first and fourth terms is larger than

κ0

∫
S(t)∩S3

(π
2

+ arctanux(t, ξ(t, y))
)
ũ2
x(0, ỹ)ψ′

0(y) dy

≥ κ0π

4

∫
S(t)∩S3

ũ2
x(0, ỹ)ψ′

0(y) dy =
κ0π

4

∫
S(t)∩S3

ũ2
x(0, ỹ) dỹ

≥ κ0π

4

∫
S(t)∩S3

(1 − φ2,0(ỹ)) ũ
2
x(0, ỹ) dỹ =

κ0π

4

∫
[T̃ (ỹ)>t]∩S3

(1 − φ2,0(ỹ)) ũ
2
x(0, ỹ) dỹ,

with the last equality enforced by S3 ⊂ [T (y) > t]. The second term is bounded from
below by

κ0π

4

∫
S(t)∩S3

(1 − φ1,0(y)) ū
2
x(y) dy =

κ0π

4

∫
[T (y)>t]∩S3

(1 − φ1,0(y)) ū
2
x(y) dy

−κ0π

4

∫
[T (y)>t≥T̃ (ỹ)]∩S3

(1 − φ1,0(y))ū
2
x(y)dy =

κ0π

4

∫
[T (y)>t]∩S3

(1 − φ1,0(y))ū
2
x(y) dy

−κ0π

4

∫
[T (y)>t≥T̃ (ỹ)]∩S3

ū2
x(y)dy +

κ0π

4

∫
[T (y)>t≥T̃ (ỹ)]∩S3

φ1,0(y)ū
2
x(y)dy

if we recall (3.10). The third term is bounded from below by

κ0π

4

∫
Sc(t)∩S3

ū2
x(y) dy ≥ κ0π

4

∫
[T (y)>t≥T̃ (ỹ)]∩S3

ū2
x(y) dy.
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Summing up, we get

J(t) ≥ κπ

4

{∫
[T (y)>t]∩S3

(1 − φ1,0(y))ū
2
x(y)dy +

∫
[T̃ (ỹ)>t]∩S3

(1 − φ2,0(ỹ))ũ
2
x(0, ỹ) dỹ

+

∫
[T̃ (ỹ)≤t<T (y)]∩S3

φ1,0(y)ū
2
x(y)dy +

∫
[T (y)≤t<T̃ (ỹ)]∩S3

φ2,0(ỹ)ũ
2
x(0, ỹ)dỹ

}
,

since the last term on the right is zero as S3 ⊂ [T (y) > t]. A similar relation holds
with S4 instead of S3. Consequently, putting together all this information about the
various inequalities valid on the disjoint sets S1, S2, S3, and S4, we conclude by (3.44)
that

∣∣∣ d
dt

u(t, ξ(t, y0)) −
d

dt
ũ(t, ξ̃(t, ỹ0))

∣∣∣ ≤ −J0(t) +
3J(t)

κ0π
.(3.45)

To obtain now a suitable estimate on

lim sup
h↓0

J(t + h) − J(t)

h
= lim sup

h↓0

∫
S(t)

E(t + h, y) − E(t, y)

h
φ1,0(y) ū

2
x(y) dy + κ0 J0(t)

(3.46)

we distinguish two cases. If E(t, y) is the second component E2(t, y) of the minimum
in (3.30), then by (3.37) and (3.41) we can estimate the contribution of the first term
in (3.46) by zero from above. On the other hand, if the minimum is E1(t, y), then the
first integral term in (3.46) is not larger (pointwise) than the nonnegative expression

(
E(t, y) +

3J(t)

κ0π
− J0(t)

)
φ1,0(y) ū

2
x(y)

in view of the estimates (3.40), (3.42), and (3.45). We conclude that

lim sup
h↓0

J(t + h) − J(t)

h
≤ J(t) +

(
3J(t)

κ0π
− J0(t)

)
‖ū2

x‖L1(R) + κ0 J0(t).

Since J0(t) ≤ 0, choosing the constant κ0
.
= ‖ū2

x

∥∥
L1(R)

we now have

d

dt
J (ψt,φt

1,φ
t
2)(u(t), v(t)) ≤ 2 J (ψt,φt

1,φ
t
2)(u(t), v(t)).

Optimizing over all triples (ψ0, φ0
1, φ

0
2) we conclude

J(u(t), v(t)) ≤ J(u(0), v(0)) e2t, t ≥ 0.(3.47)

Summing up the considerations made above, we proved the following result.

Theorem 3.1. The trajectories t �→ u(t) of (1.1) constructed in Theorem 2.1
are locally Lipschitz continuous as maps from [0,∞) into the metric space X equipped
with the distance functional J . Moreover, the distance between two trajectories is also
locally Lipschitz continuous as a map from [0,∞) into X .
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4. Concluding remarks. The following example shows that, in some sense, our
distance functional J in (3.11) is “sharp.” Indeed, the convergence of the initial data
in L∞(R) ∩ L1(R) together with the weak convergence of the derivatives ūx and ū2

x

in L2(R) does not guarantee the convergence of the corresponding solutions at later
times t > 0.

Example 1. Consider the functions f, g : [0, 1] �→ [0, 1] defined as

f(x)
.
=

{
1 − 2x if x ∈ [0, 1/2],
0 if x ∈ [1/2, 1],

g(x)
.
=

⎧⎨
⎩

1 − 3x if x ∈ [0, 1/6],
1/2 if x ∈ [1/6, 1/2],
1 − x if x ∈ [1/2, 1].

Observe that∫ 1

0

f ′(x) dx =

∫ 1

0

g′(x) dx = −1,

∫ 1

0

[
f ′(x)

]2
dx =

∫ 1

0

[
g′(x)

]2
dx = 2.

Next, consider the function

h(x)
.
=

{
1 − |x| if |x| ≤ 1,
0 if |x| ≥ 1,

and define the sequences of initial values

ūn(x) =

{
h(x) if x /∈ [0, 1],
h(i/n) + 1

nf(nx− i + 1) if x ∈
[
i−1
n , i

n

]
, i = 1, . . . , n,

v̄n(x) =

{
h(x) if x /∈ [0, 1],
h(i/n) + 1

ng(nx− i + 1) if x ∈
[
i−1
n , i

n

]
, i = 1, . . . , n.

Letting n → ∞ we now have the strong convergence
∥∥ūn − v̄n

∥∥
L∞(R)

→ 0. Moreover,

by construction it is easy to see that at each point x ∈ [0, 1],

lim
n→∞

∫ x

0

((ūn)x(y) − (v̄n)x(y)) dy = lim
n→∞

∫ x

0

((ūn)2x(y) − (v̄n)2x(y)) dy = 0

so that in L2[0, 1] one has the weak convergence

(ūn)x − (v̄n)x ⇀ 0, (ūn)2x − (v̄n)2x ⇀ 0,

since both sequences are bounded in L2[0, 1] and the previous observation identifies
the zero function as the only possible weak limit. However,

u(t)
.
= lim

n→∞
un(t) �= lim

n→∞
vn(t)

.
= v(t)

for every t ∈ (2/3, 1), where T = 2/3 is the time at which the gradients of the functions
vn blow up. The last assertion follows at once from (2.27).

We also would like to highlight the importance of requiring that the transport
map ψ in (3.10) be monotone nondecreasing. If in (3.11) we were to take the min-
imization over all maps ψ, not necessarily monotone, we would obtain the classical
Kantorovich–Rubinstein distance between measures, which generates the weak topol-
ogy on the space of bounded, positive measures [V]. By restricting ourselves to mono-
tone nondecreasing maps ψ, the corresponding distance functional generates a much
stronger topology.
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Example 2. Consider the sequence of Lipschitz functions

um(x)
.
=

⎧⎨
⎩

0 if x /∈ [0, 1],
x− (i− 1)/m if (i− 1)/m ≤ x ≤ (2i− 1)/2m,
i/m− x if (2i− 1)/2m ≤ x ≤ i/m,

i = 1, . . . ,m.

In this case, ux = ±1 and arctanux = ±π/4. The corresponding measures μum

defined at (3.9) converge weakly to the measure μ on R
2 × [−π/2, π/2] defined as

μ(A)
.
=

1

2
meas

{
x ∈ [0, 1]; (x, 0, π/4) ∈ A

}
+

1

2
meas

{
x ∈ [0, 1] ; (x, 0, −π/4) ∈ A

}
.

In particular, these measures form a Cauchy sequence in the Kantorovich metric.
However, these same functions um do not form a Cauchy sequence with respect to the
distance J . Indeed, let m < n. Notice that in our case κ0

.
= ‖ū2

x

∥∥
L1(R)

= 1. Consider
the open intervals

Im+
i =

]
i− 1

m
,
2i− 1

2m

[
, Im−

i =

]
2i− 1

2m
,
i

m

[
,

where um
x takes the values +1 and −1, respectively. Define the intervals In+

j , In−j

similarly. Now consider any transportation plan (ψ, φ1, φ2) relating um to un via
(3.10), with ψ nondecreasing. For each i = 1, . . . ,m, call νi the number of distinct
intervals In+

j which intersect the image ψ(Im+
i ). Since ψ is monotone, if νi ≥ 2, this

implies that the image ψ(Im+
i ) entirely covers at least νi − 1 distinct intervals In−j .

Because um
x = 1 on Im+

i and un
x = −1 on each In−j , on the union of these intervals In−j

we have arctanum
x (ψ(x)) = − arctanun

x(x) = π
4 so that the integrand contribution

from the first two parts of (3.11) is pointwise larger than π
2φ1(x)+ π

4 (1−φ1(x)) ≥ π
4 ,

which therefore accounts for a cost ≥ π(νi − 1)/8n. Next, if ν1 + · · · + νm = n∗ < n,
there must be n − n∗ intervals In+

j(1), . . . , I
n+

j(n∗−n) which do not intersect any of the

sets ψ(Im+
i ) for i = 1, . . . ,m. These intervals must be contained in the image of some

Im−
i , or in the image of the set ψ

(
R \ [0, 1]

)
, where um ≡ 0. This accounts for a cost

≥ π(n− n∗)/4n.
The above argument shows that, for any m < n, the cost of any transportation

plan relating um to un is bounded below by

J (ψ,φ1,φ2)(um, un) ≥ π

8n
· max

{
m∑
i=1

(νi − 1), n−
m∑
i=1

νi

}
≥ π

8n
· n−m

2
.

For any fixed m, the right-hand side approaches π/16 as n → ∞. Therefore, the
above is not a Cauchy sequence in our transportation metric.

Acknowledgment. The authors are grateful to both referees for useful com-
ments.
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Abstract. In this paper, we consider Maxwell’s equations in a bi-isotropic and inhomogeneous
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1. Introduction and main results. We consider Maxwell’s equations in a bi-
isotropic and inhomogeneous medium:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tD(x, t) −∇×H(x, t) = 0, (x, t) ∈ Q,

∂tB(x, t) + ∇× E(x, t) = 0, (x, t) ∈ Q,

∇ ·D(x, t) = ∇ ·B(x, t) = 0, (x, t) ∈ Q,

D(x, 0) = d(x), B(x, 0) = b(x), x ∈ Ω,

ν(x) × E(x, t) = q(x, t), (x, t) ∈ Σ,

(1.1)

with the constitutive relations{
D(x, t) = ε(x)E(x, t) + ζ(x)H(x, t), (x, t) ∈ Q,
B(x, t) = ζ(x)E(x, t) + μ(x)H(x, t), (x, t) ∈ Q.

(1.2)

Here and henceforth x = (x1, x2, x3) ∈ R
3, ∂t = ∂

∂t , ∂k = ∂
∂xk

for k = 1, 2, 3, ∇ = (∂1,

∂2, ∂3)
T, Δ is the Laplacian in x, Q = Ω×(−T, T ), Ω is a bounded domain in R

3 with
C2-boundary ∂Ω, Σ = ∂Ω× (−T, T ) and ν(x) = (ν1(x), ν2(x), ν3(x))T is the outward
unit normal vector to ∂Ω at x. In (1.1),

D(x, t) = (D1(x, t), D2(x, t), D3(x, t))
T

: the electric flux density,

B(x, t) = (B1(x, t), B2(x, t), B3(x, t))
T

: the magnetic flux density,

E(x, t) = (E1(x, t), E2(x, t), E3(x, t))
T

: the electric field,

H(x, t) = (H1(x, t), H2(x, t), H3(x, t))
T

: the magnetic field.

d(x), b(x), q(x, t) are given vector-valued functions and ε(x), ζ(x), μ(x) are real-valued
functions. Here and henceforth ·T denotes the transposes of vectors or matrices under
the consideration.

Our consideration is based on some physical background. In fact, there exist
materials which can exhibit the magnetoelectric effect. For example, we can consider

∗Received by the editors May 13, 2004; accepted for publication (in revised form) April 19, 2005;
published electronically December 30, 2005. The author is supported by the Fujyu-kai (Tokyo,
Japan) and the 21st century COE program at the Graduate School of Mathematical Sciences of the
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http://www.siam.org/journals/sima/37-4/44366.html
†Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro

Tokyo 153, Japan (lism@ms.u-tokyo.ac.jp).
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some magnetic crystals such as antiferromagnetic Cr2O3 and ferromagnetic GaFeO3

(cf. [24, 21]). For details, we refer to [24, 5, 21, 22]. The constitutive relations for
magnetoelectric media can be written in the following form (cf. [24, 5]):{

D = εE + ζH,

B = ζ
T
E + μH,

where the three 3×3 matrices ε, μ, and ζ are the permittivity tensor, the permeability
tensor, and the Dzyaloshinskii magnetoelectric tensor, respectively. This paper is
concerned with the bi-isotropic case, that is, ε = εI3, ζ = ζI3, and μ = μI3, where ε,
ζ and μ are real-valued functions of x and I3 denotes the 3 × 3 unit matrix.

In this paper, we first consider the following.
Inverse problem: Let ω ⊂ Ω satisfy ∂Ω ⊂ ∂ω and T > 0 be suitably given. Then
determine ε(x), ζ(x), μ(x) for x ∈ Ω from the observation data

D(x, t), B(x, t), (x, t) ∈ Qω ≡ ω × (−T, T ).

To the author’s best knowledge, in the existing papers, inverse problems of de-
termining all the coefficients for Maxwell’s equations are mainly considered for the
classical isotropic case. The purpose of this paper is to prove the Lipschitz stabil-
ity for the inverse problem in a more general media. For other inverse problems for
Maxwell’s equations, we refer to Romanov [26], Romanov and Kabanikhin [27], Sun
and Uhlmann [28], Yamamoto [29, 30], and Li and Yamamoto [23].

To state our main results, we introduce the notations. For the coefficients ε, ζ,
μ in the constitutive relations (1.2), we set ε = (ε, ζ, μ). By D[ε; Φ](·), B[ε; Φ](·),
E[ε; Φ](·), and H[ε; Φ](·), we denote the solution of (1.1) and (1.2) with the initial
and boundary conditions Ψ ≡ (d, b, q).

To guarantee the uniqueness in the inverse problem, we will use two sets of initial
and boundary data: Φ(j) =

(
dj , bj , qj

)
, j = 1, 2. For the sake of convenience, we

assume that dj , bj , and qj (j = 1, 2) are sufficiently smooth and satisfy sufficient

compatibility conditions so that D[ε; Φ], B[ε; Φ] ∈
(
W 2,∞(Q)

)3
. Denote by G the

12 × 9 matrix⎛
⎜⎝

0 e1 × d1 e1 × b1 0 e2 × d1 e2 × b1 0 e3 × d1 e3 × b1

e1 × d1 e1 × b1 0 e2 × d1 e2 × b1 0 e3 × d1 e3 × b1 0
0 e1 × d2 e1 × b2 0 e2 × d2 e2 × b2 0 e3 × d2 e3 × b2

e1 × d2 e1 × b2 0 e2 × d2 e2 × b2 0 e3 × d2 e3 × b2 0

⎞
⎟⎠,

where e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, and e3 = (0, 0, 1)T.

For W = (w1, w2, . . . , wn)
T
, we set |W |2 =

∑n
k=1 |wk|2. Furthermore, L2(Ω),

H1(Qω), etc. denote usual Sobolev spaces.
Let λ = infx∈Ω |x| and Λ = supx∈Ω |x|. We assume that

0 < Λ2 < 2λ2.(1.3)

We introduce an admissible set of unknown coefficients ε = (ε, ζ, μ), ε̃ =
(
ε̃, ζ̃, μ̃

)
:

U = UM,θ0,θ1,ε0 =
{
(ε, ζ, μ) ∈ (C2(Ω))3 : (ε, ζ, μ) = ε0 on ∂Ω;

‖ε‖C2(Ω), ‖ζ‖C2(Ω), ‖μ‖C2(Ω), ‖∇(εμ− ζ2)‖(C(Ω))3 < M ; ε, μ, εμ− ζ2 > θ1 on Ω;

x·∇(εμ−ζ2)
2(εμ−ζ2) >−θ0 on Ω; ‖D[ε; Φ(j)]‖(W 2,∞(Q))3 , ‖B[ε; Φ(j)]‖(W 2,∞(Q))3<M for j=1, 2

}
,
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where the constants M > 0, 0 < θ0 < 1, θ1 > 0 and a smooth vector-valued function
ε0 = (ε0, ζ0, μ0) on ∂Ω are given. Furthermore, we take a positive constant β such
that

0 < β <
−λ

√
θ1 +

√
λ2θ1 + 4θ2

1(1 − θ0)

2Mθ1
.(1.4)

The following is our main result.
Theorem 1.1 (stability). We assume (1.3), (1.4), and

√
Λ2 − λ2

β
< T.(1.5)

Furthermore, we assume that there exists a constant θ2 > 0 such that

the absolute value of one of the 9 × 9 minors of G(x) ≥ θ2, for all x ∈ Ω.(1.6)

Then there exists a constant K = K(Ω, T,Φ(1),Φ(2),M, θ0, θ1, θ2, ε0) > 0 such that

‖ε̃− ε‖L2(Ω) + ‖ζ̃ − ζ‖L2(Ω) + ‖μ̃− μ‖L2(Ω) ≤ KΘ(1.7)

for all ε = (ε, ζ, μ) ∈ U and ε̃ = (ε̃, ζ̃, μ̃) ∈ U , where

Θ =

2∑
j=1

{‖∂t(D[ε; Φ(j)] −D[ε̃; Φ(j)])‖(H1(Qω))3

+‖∂t(B[ε; Φ(j)] −B[ε̃; Φ(j)])‖(H1(Qω))3}.
(1.8)

We will provide a proof of Theorem 1.1 in section 3 by applying the argument
on the basis of Carleman estimate and the energy conservation law. The method of
applying Carleman estimate (i.e., a weighted L2-estimate) to inverse problems was
invented by Bukhgeim and Klibanov [3]. For developments of this method, we refer to
Bukhgeim [2]; Imanuvilov, Isakov, and Yamamoto [9]; Imanuvilov and Yammamoto
[10, 11, 12]; Isakov [14, 15]; Khăıdarov [17, 18]; Klibanov [19]; and Yamamoto [30, 31].
In section 2, we will state a key Carleman estimate.

For similar inverse problems, we refer to [9] for a Lamé system and [12] for an
acoustic equation. In [9, 12], the stability estimate is of Hölder’s type. Due to the en-
ergy conservation law (3.2) in Lemma 3.1 (ii), we gain here Lipschitz stability estimate
(1.7), which is one main achievement.

Furthermore, in Theorem 2.1 in [9], the H5-norms of observation data are needed
in the stability estimate. Here we need at most H2-norms. There are two reasons.
First, in the proof of Theorem 2.1 in [9], higher-order (the second, third, fourth)
derivatives with respect to t are used as in [12]. Instead of using higher-order deriva-
tives with respect to t, we use energy estimate (3.1) similarly to [10]. Second, the
solution to the corresponding initial-value/boundary-value problem, has only three
components in [9]. In this paper, there are in total six components of the vector-
valued functions D and B. On the other hand, there are three unknown coefficients
both in [9] and in this paper so that we can reduce the order of t-derivatives.

Remark 1.1. In Theorem 1.1, we have to assume a monotonicity condition about
the wave speed (εμ− ζ2)−(1/2):

x · ∇(εμ− ζ2)

2(εμ− ζ2)
> −θ0 on Ω.(1.9)
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We may be able to replace (1.9) by a weaker condition, but it is extremely difficult to
search for sharpest conditions for deriving a Carleman estimate which is the main tool
for our proof. Condition (1.9) is a sufficient condition for the pseudoconvexity, which
is a sharp sufficient condition for a Carleman estimate (e.g., [6, 15]), and a similar
condition is assumed in the existing references (cf. [4, 9, 12, 13, 15, 16, 17, 20]).
In this paper, further searches will not be made for a more general condition than
(1.9). In particular, if εμ − ζ2 is close to a constant function, then (1.9) holds true.
Furthermore, we note that similar conditions to (1.3)–(1.5) are adopted in [9].

Remark 1.2. Condition (1.6) enables us to obtain sufficient information from
the observation data in order to determine the unknown coefficients and we should a
posteriori choose initial data meeting (1.6). It is a common feature in inverse problems
with a finite number of measurements that such conditions should be satisfied by initial
data (e.g., [9, 10, 12]). There exist initial data satisfying (1.6). For example, we take
d1(x) = e3, b

1(x) = d2(x) = e2, b
2(x) = e1 for x ∈ Ω. In fact, the 9× 9 minor formed

by rows 1, 2, 3, 4, 5, 9, 10, 11, and 12 satisfies (1.6) if we take 0 < θ2 < 1.
Remark 1.3. By setting

A0 =

(
εI3 ζI3

ζI3 μI3

)
, Ak =

(
0 Ak

−Ak 0

)
, k = 1, 2, 3,

A1 =

⎛
⎝ 0 0 0

0 0 1
0 −1 0

⎞
⎠, A2 =

⎛
⎝ 0 0 −1

0 0 0
1 0 0

⎞
⎠, A3 =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠,

and U = (E1, E2, E3, H1, H2, H3)
T
, Maxwell’s equations with the constitutive rela-

tions (1.2) can be written as

A0∂tU +

3∑
k=1

Ak∂kU = 0.

It is obvious that A
T
0 = A0 and A

T
k = Ak (k = 1, 2, 3). Moreover, A0 is a 6×6 positive

definite matrix if there exists a constant θ1 such that ε, μ, εμ − ζ2 ≥ θ1. Therefore,
for initial-value/boundary-value problem (1.1) and (1.2), we can refer to the results
on symmetric hyperbolic equations.

This paper consists of two more sections. In section 2, we will show a Carleman
estimate for Maxwell’s equations in bi-isotropic media. In section 3, we will complete
the proof of Theorem 1.1.

2. Carleman estimates for Maxwell’s equations. Reducing Maxwell’s equa-
tions to a weakly coupled system of hyperbolic equations and applying a Carleman
estimate in the H−1-norms, we will establish a Carleman estimate for Maxwell’s equa-
tions in bi-isotropic media. For such methods, we can refer to [9, 30].

First, we show a Carleman estimate in the H−1-norms for a second order hyper-
bolic equation which is proved in [9].

For β and λ, we define the functions ϕ = ϕ(x, t) by

ϕ(x, t) = e�(|x|
2−β2t2−λ2)(2.1)

with some large � > 0. For (ε, ζ, μ)∈ U , we set

ξ = εμ− ζ2 on Ω.(2.2)
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By (ε, ζ, μ)∈ U and (1.4), we can verify that a = ξ1/2 satisfies the conditions −θ0 <
x·∇a
a and 2|∇a|λβ + a2β2 < 1 − θ0 on Ω (cf. (2.2) and (2.3) in [9]). Furthermore, we

note that our weight function ϕ coincides with that in [9] (cf. (4.3) in [9]).
Proposition 2.1 (see [9]). Let ϕ(x, t) be given by (2.1) and the domain Ω

satisfy (1.3). We assume that (ε, ζ, μ) ∈ U and 0 < T < λ
β , where β satisfies (1.4).

Let u ∈ H2
0 (Q) satisfy

ξ(x)
[
∂2
t u(x, t)

]
− Δu(x, t) = g̃ + ∂tg0 +

3∑
k=1

∂kgk, (x, t) ∈ Q,

where ξ is defined by (2.2). Then there is K1 > 0 such that for all s > K1,

∫
Q

s|u|2e2sϕdxdt ≤ K1

∫
Q

(
1

s2
|g̃|2 +

3∑
k=0

|gk|2
)

e2sϕdxdt.

For the proof of Proposition 2.1, we refer to Theorem 3.2 and section 4 in [9] and
section 3.4 in [15]. For similar results, we can refer to Proposition 2.1 in [12] which is
derived from Theorem 1.1 in Imanuvilov [8]. Furthermore, we can refer to Ruiz [25].
For Carleman estimate in the H−1-norms for parabolic equations, we refer to [11]. As
for Carleman estimate in the L2-norms, we refer to Hörmander [6, 7], Isakov [15, 16].

Now we state a Carleman estimate for Maxwell’s equations, which is the main
ingredient for the proof of Theorem 1.1. We will prove it by applying Proposition 2.1.

Theorem 2.2. Let ϕ(x, t) be given by (2.1) and the domain Ω satisfy (1.3).
We assume that ε = (ε, ζ, μ) ∈ U and 0 < T < λ

β , where β satisfies (1.4). Let D,

B ∈
(
H1

0 (Q)
)3

satisfy

∂tD −∇×H = R1, ∂tB + ∇× E = R2,(2.3)

D = εE + ζH, B = ζE + μH,(2.4)

∇ ·D = r1, ∇ ·B = r2(2.5)

in Q. Then there exist s0 = s0(�) > 0 and K2 = K2(s0, β, �,M, θ0, θ1,Ω, T ) > 0 such
that for s > s0

s

∫
Q

(
|D|2 + |E|2 + |B|2 + |H|2

)
e2sϕdxdt

≤ K2

2∑
k=1

∫
Q

(
|rk|2 + |Rk|2

)
e2sϕdxdt.

(2.6)

Proof. By the density argument, it suffices to prove (2.6) for D, B ∈ (C∞
0 (Q))

3

satisfying (2.3)–(2.5).
By ε ∈ U , we have ξ > θ1 on Ω where ξ is defined by (2.2). By (2.4) and direct

calculations, we have

E = γ1D + γ2B, H = γ2D + γ3B, in Q,(2.7)

where

γ1 =
μ

ξ
, γ2 = −ζ

ξ
, γ3 =

ε

ξ
on Ω.(2.8)
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Moreover, by ε ∈ U , we have γk ∈ C2
(
Ω
)

for k = 1, 2, 3 and

γ1γ3 − γ2
2 =

1

ξ
> 0 on Ω.(2.9)

Differentiating the second equality in (2.7) with respect to t, in terms of (2.3),
(2.7), and (2.9), we have

∂tH = γ2 (∂tD) + γ3 (∂tB)

= γ2 (∇×H + R1) + γ3 (−∇× E + R2)

= γ2 [∇× (γ2D + γ3B) + R1] + γ3 [−∇× (γ1D + γ2B) + R2]

=
(
γ2
2 − γ1γ3

)
(∇×D) + Υ(D,B) + γ2R1 + γ3R2

= −1

ξ
(∇×D) + Υ(D,B) + γ2R1 + γ3R2 in Q,

where Υ(D,B) = γ2 [(∇γ2) ×D + (∇γ3) ×B] + γ3 [− (∇γ1) ×D − (∇γ2) ×B]. For
the fourth equality, we have used

∇× (αA) = α (∇×A) + (∇α) ×A on Ω(2.10)

for α ∈ C1
(
Ω
)

and A ∈
(
C1

(
Ω
))3

. Therefore, differentiating the first equation of
(2.3) with respect to t, we obtain

∂tR1 = ∂2
tD −∇× (∂tH) = ∂2

tD −∇×
[
−1

ξ
(∇×D) + Υ(D,B) + γ2R1 + γ3R2

]

= ∂2
tD +

1

ξ
[∇× (∇×D)]+

[
∇
(

1

ξ

)]
× (∇×D) −∇×[Υ(D,B) + γ2R1 + γ3R2]

in Q. In the third equality, we have used (2.10). Then by ∇ × (∇×D) = −ΔD +
∇ (∇ ·D) and the first equation of (2.5), we have

∂2
tD− 1

ξ
ΔD = −

[
∇
(

1

ξ

)]
× (∇×D)− 1

ξ
∇r1 +∇× [Υ(D,B) + γ2R1 + γ3R2]+∂tR1

in Q. Hence we can apply Proposition 2.1 and obtain that there exist s1 = s1(�) > 0
and C1 > 0 such that for s > s1

s

∫
Q

|D|2e2sϕdxdt ≤ C1

∫
Q

(
|r1|2 + |D|2 + |B|2 + |R1|2 + |R2|2

)
e2sϕdxdt.(2.11)

Here and henceforth, Ck(k = 1, 2, . . . ) denote generic positive constants which may
depend on sl(l = 0, 1, 2, . . . ), �, M , θ0, θ1, ε0, λ, Λ, β, Ω, T , Σ, χ1, χ2, δ, η, t1,
t2,

∥∥d1
∥∥
(C1(Ω))

3 ,
∥∥d2

∥∥
(C1(Ω))

3 ,
∥∥b1∥∥(C1(Ω))

3 ,
∥∥b2∥∥(C1(Ω))

3 , but are independent of s

and ϑ.

Similarly to (2.11), we can obtain that there exist s2 = s2(�) > 0 and C2 > 0
such that for s > s2

s

∫
Q

|B|2e2sϕdxdt ≤ C2

∫
Q

(
|r2|2 + |D|2 + |B|2 + |R1|2 + |R2|2

)
e2sϕdxdt.(2.12)
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By (2.7), (2.11), and (2.12), we see that there exist s0 = s0(�) > 0 and C3, C4 > 0
such that for s > s0

s

∫
Q

(
|D|2 + |E|2 + |B|2 + |H|2

)
e2sϕdxdt ≤ C3s

∫
Q

(
|D|2 + |B|2

)
e2sϕdxdt

≤ C4

∫
Q

(
|r1|2 + |r2|2 + |R1|2 + |R2|2

)
e2sϕdxdt.

The proof of Theorem 2.2 is finished.
The following is a Carleman estimate for a first-order differential equation.
Proposition 2.3 (see [9]). Let ϕ(x, t) be given by (2.1). Then there exists

K3 > 0 such that for s > K3∫
Ω

s|w|2e2sϕ(x,0)dx ≤ K3

3∑
j=1

∫
Ω

|∂jw|2e2sϕ(x,0)dx for all w ∈ C1
0

(
Ω
)
.(2.13)

We can prove Proposition 2.3 directly by integral by parts (e.g., Lemma 3.6
in [9]).

3. Proof of Theorem 1.1. We divide the proof into five steps.
Step 1. First we show a lemma, the first part of which is proved by the argument

in [10] and Carleman estimate (2.6) for Maxwell’s equations in bi-isotropic media.
Lemma 3.1. Let ϕ(x, t) be given by (2.1) and the domain Ω satisfy (1.3). We

assume that ε = (ε, ζ, μ) ∈ U and 0 < T < λ
β , where β satisfies (1.4). Let D,

B ∈
(
H1(Q)

)3
satisfy (2.3)–(2.5) and D = B = 0 on Σ. Then we have the following.

(i) There exist s3 = s3(�) > 0 and K4 = K4(s3, β, �,M, θ0, θ1,Ω, T ) > 0 such that

∫
Ω

[
|D(·, 0)|2 + |B(·, 0)|2

]
e2sϕ(·,0)dx ≤ K4

2∑
k=1

∫
Q

(
|rk|2 + |Rk|2

)
e2sϕdxdt(3.1)

for s > s3, provided that D, B ∈
(
H1

0 (Q)
)3

.
(ii) There exists K5 = K5(M, θ0, θ1,Ω, T ) > 0 such that∫

Ω

[
|D(·, t2)|2 + |B(·, t2)|2

]
dx

≤ K5

{∫
Ω

[
|D(·, t1)|2 + |B(·, t1)|2

]
dx +

∫
Q�

(
|R1|2 + |R2|2

)
dxdt

}(3.2)

for −T ≤ t1, t2 ≤ T , where Q� = Ω × (min{t1, t2},max{t1, t2}) ⊆ Q.
We note that in (ii) D, B need not vanish on Ω × {±T}.
Proof. It is obvious that (3.2) holds for −T ≤ t1 = t2 ≤ T . In the following, we

assume that t1 �= t2 and t1, t2 ∈ [−T, T ]. Let

ι =

{
1, t2 > t1,

−1, t2 < t1,
(3.3)

and ξ, γ1, γ2, γ3 be defined by (2.2) and (2.8). As in the proof of Theorem 2.2,
by ε ∈ U and (2.4), we have γk ∈ C2

(
Ω
)

for k = 1, 2, 3, (2.7) and (2.9). By D,

B ∈
(
H1(Q)

)3
and (2.7), we have E, H ∈

(
H1(Q)

)3
. Furthermore, by D = B = 0 on

Σ and (2.7), we have E = H = 0 on Σ.
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By (2.3) and (2.7), it is easy to see that

(∂tD) · (γ1D + γ2B) − (∇×H) · E = R1 · (γ1D + γ2B) in Q,(3.4)

(∂tB) · (γ2D + γ3B) + (∇× E) ·H = R2 · (γ2D + γ3B) in Q.(3.5)

Adding (3.4) and (3.5), we have

∂tB + ∇ · (E ×H) = R1 · (γ1D + γ2B) + R2 · (γ2D + γ3B)(3.6)

in Q, where we set

B ≡ 1

2

[
γ1|D|2 + 2γ2 (D ·B) + γ3|B|2

]
.(3.7)

Here we have used (∇× E) · H − (∇×H) · E = ∇ · (E ×H) in Q. Therefore, for
s ≥ 0, we have

Il = Ir,(3.8)

where

Il ≡
∫ t2

t1

∫
Ω

[∂tB + ∇ · (E ×H)] e2sϕ−ιtdxdt,

Ir ≡
∫ t2

t1

∫
Ω

[R1 · (γ1D + γ2B) + R2 · (γ2D + γ3B)] e2sϕ−ιtdxdt.

Integrating by parts and using E = H = 0 on Σ, we have

Il =

∫
Ω

B (·, t2) e2sϕ(·,t2)−ιt2dx−
∫

Ω

B (·, t1) e2sϕ(·,t1)−ιt1dx

−
∫ t2

t1

∫
Ω

{−ιB + 2s [(∂tϕ)B + (E ×H) · (∇ϕ)]} e2sϕ−ιtdxdt

≥
∫

Ω

B (·, t2) e2sϕ(·,t2)−ιt2dx−
∫

Ω

B (·, t1) e2sϕ(·,t1)−ιt1dx

+

∫
Q�

Be2sϕ−ιtdxdt− C5e
T s

∫
Q�

(
|B| + |E|2 + |H|2

)
e2sϕdxdt for s ≥ 0.

(3.9)

For the inequality in (3.9), we have used (3.3) and definition (2.1) of ϕ. By (2.9) and
(3.7), there exist C6, C7 > 0 such that

C6

(
|D|2 + |B|2

)
≤ B ≤ C7

(
|D|2 + |B|2

)
in Q.(3.10)

Therefore, by (3.9) and (3.10), we have

Il ≥ C6e
−T

∫
Ω

[
|D(·, t2)|2 + |B(·, t2)|2

]
e2sϕ(·,t2)dx

− C7e
T

∫
Ω

[
|D(·, t1)|2 + |B(·, t1)|2

]
e2sϕ(·,t1)dx

+ C6e
−T

∫
Q�

(
|D|2 + |B|2

)
e2sϕdxdt

− C8e
T s

∫
Q�

(
|D|2 + |E|2 + |B|2 + |H|2

)
e2sϕdxdt for s ≥ 0.

(3.11)
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By the inequality 2|ab| ≤ ϑa2 + b2/ϑ for ϑ > 0, we obtain

Ir ≤ C9e
T

∫
Q�

[
ϑ
(
|D|2 + |B|2

)
+

1

ϑ

(
|R1|2 + |R2|2

)]
e2sϕdxdt(3.12)

for ϑ > 0 and s ≥ 0. Hence, by (3.8), (3.11), and (3.12), choosing ϑ > 0 sufficiently
small and fixing it, we have∫

Ω

[
|D(·, t2)|2 + |B(·, t2)|2

]
e2sϕ(·,t2)dx

≤ C10

{∫
Ω

[
|D(·, t1)|2 + |B(·, t1)|2

]
e2sϕ(·,t1)dx

+

∫
Q�

(
|R1|2 + |R2|2

)
e2sϕdxdt

+s

∫
Q�

(
|D|2 + |E|2 + |B|2 + |H|2

)
e2sϕdxdt

}
(3.13)

for s ≥ 0. Taking s = 0 in (3.13), we obtain (3.2).

Next, we will complete the proof of (3.1). Since D, B ∈
(
H1

0 (Q)
)3

, we can apply
Theorem 2.2, so that (2.6) holds for sufficiently large s > 0. Therefore, taking t2 = 0,
t1 = T in (3.13), and using Q� ⊆ Q and (2.6), we see that there exist s3 = s3(�) > 0
and K4 = K4(s3, β, �,M, θ0, θ1,Ω, T ) > 0 such that (3.1) holds for s > s3.

The proof of Lemma 3.1 is complete.
Step 2. As in [9], by (1.3) and (1.5), we can assume that 0 < T < λ

β , where β

satisfies (1.4).

By ε, ε̃ ∈ U , we have ξ ≡ εμ− ζ2 > θ1, ξ̃ ≡ ε̃μ̃− ζ̃2 > θ1 on Ω. By the constitutive
relations (1.2), we have

E[ε; Φ(j)] = γ1D[ε; Φ(j)] + γ2B[ε; Φ(j)],

H[ε; Φ(j)] = γ2D[ε; Φ(j)] + γ3B[ε; Φ(j)],

E[ε̃; Φ(j)] = γ̃1D[ε̃; Φ(j)] + γ̃2B[ε̃; Φ(j)],

H[ε̃; Φ(j)] = γ̃2D[ε̃; Φ(j)] + γ̃3B[ε̃; Φ(j)] in Q,

(3.14)

where j = 1, 2 and

γ1 =
μ

ξ
, γ2 = −ζ

ξ
, γ3 =

ε

ξ
on Ω,(3.15)

γ̃1 =
μ̃

ξ̃
, γ̃2 = − ζ̃

ξ̃
, γ̃3 =

ε̃

ξ̃
on Ω.(3.16)

Furthermore, by ε, ε̃ ∈ U , we have γk, γ̃k ∈ C2(Ω) for k = 1, 2, 3 and

γ1γ3 − γ2
2 =

1

ξ
> 0, γ̃1γ̃3 − γ̃2

2 =
1

ξ̃
> 0, on Ω.(3.17)

We set

Y (·; j) = {∂tD[ε; Φ(j)] − ∂tD[ε̃; Φ(j)]} (·) in Q,(3.18)

Z(·; j) = {∂tB[ε; Φ(j)] − ∂tB[ε̃; Φ(j)]} (·) in Q,(3.19)
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U(·; j) = γ1Y (·; j) + γ2Z(·; j), V (·; j) = γ2Y (·; j) + γ3Z(·; j) in Q,(3.20)

R3(·; j) = {∂tD[ε̃; Φ(j)]} (·), R4(·; j) = {∂tB[ε̃; Φ(j)]} (·) in Q,(3.21)

fk = γ̃k − γk on Ω, k = 1, 2, 3,(3.22)

Ψ1(·; j) = ∇× [f1R3(·; j) + f2R4(·; j)] in Q,(3.23)

Ψ2(·; j) = ∇× [f2R3(·; j) + f3R4(·; j)] in Q, j = 1, 2, 3.(3.24)

Then we have Y (·; j), Z(·; j), U(·; j), V (·; j), R3(·; j), R4(·; j) ∈
(
W 1,∞(Q)

)3
,

∂tY (·; j) −∇× V (·; j) = −Ψ2(·; j), ∂tZ(·; j) + ∇× U(·; j) = Ψ1(·; j),(3.25)

Y (·; j) = εU(·; j) + ζV (·; j), Z(·; j) = ζU(·; j) + μV (·; j),(3.26)

∇ · Y (·; j) = ∇ · Z(·; j) = 0 in Q.(3.27)

In fact, by (3.14) and (3.22), we have

E[ε; Φ(j)] − E[ε̃; Φ(j)] = γ1 {D[ε; Φ(j)] −D[ε̃; Φ(j)]}
+ γ2 {B[ε; Φ(j)] −B[ε̃; Φ(j)]} − f1D[ε̃; Φ(j)] − f2B[ε̃; Φ(j)] in Q,

(3.28)

H[ε; Φ(j)] −H[ε̃; Φ(j)] = γ2 {D[ε; Φ(j)] −D[ε̃; Φ(j)]}
+ γ3 {B[ε; Φ(j)] −B[ε̃; Φ(j)]} − f2D[ε̃; Φ(j)] − f3B[ε̃; Φ(j)] in Q.

(3.29)

Differentiating (3.28) and (3.29) with respect to t, and using (3.18)–(3.21) and
t-independence of γ1, γ2, γ3, we have

{∂tE[ε; Φ(j)] − ∂tE[ε̃; Φ(j)]} (·) = U(·; j) − f1R3(·; j) − f2R4(·; j) in Q,(3.30)

{∂tH[ε; Φ(j)] − ∂tH[ε̃; Φ(j)]} (·) = V (·; j) − f2R3(·; j) − f3R4(·; j) in Q.(3.31)

By (1.1), (3.18), and (3.19), we have

Y (·; j) = {∇ ×H[ε; Φ(j)] −∇×H[ε̃; Φ(j)]} (·) in Q,(3.32)

Z(·; j) = −{∇× E[ε; Φ(j)] −∇× E[ε̃; Φ(j)]} (·) in Q.(3.33)

Differentiating (3.32) and (3.33) with respect to t and using (3.23) and (3.24), and
(3.30) and (3.31), we can obtain (3.25). By definition (3.15) of γ1, γ2, γ3 and (3.20),
direct calculations yield (3.26). Moreover, by (1.1), (3.18), and (3.19), we obtain
(3.27). Furthermore, we note that ‖R3‖(W 1,∞(Q))3 , ‖R4‖(W 1,∞(Q))3 ≤ M by ε̃ ∈ U .

By ε, ε̃ ∈ U , and definitions (3.15), (3.16), and (3.22), we have fk ∈ C1
0 (Ω)

(k = 1, 2, 3). Therefore, we can apply Proposition 2.3 to fk (k = 1, 2, 3). As a result,
we have

3∑
k=1

∫
Ω

|fk|2e2sϕ(·,0)dx ≤ C11

s

3∑
k=1

∫
Ω

|∇fk|2e2sϕ(·,0)dx(3.34)

for all sufficiently large s > 0.
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By (1.5) and definition (2.1) of ϕ, we have

ϕ(x, 0) ≥ 1 and 0 < ϕ(x,−T ) = ϕ(x, T ) < 1, x ∈ Ω.(3.35)

Therefore, for any given small η ∈ (0, 1− supx∈Ω ϕ(x, T )), we can choose a sufficiently
small δ = δ(η) > 0, such that

ϕ(x, t) ≤ 1 − η, (x, t) ∈ Ω × ([−T,−T + 2δ] ∪ [T − 2δ, T ]) .(3.36)

In order to apply Lemma 3.1, we introduce two cut-off functions χ1 and χ2 satisfying
χ1 ∈ C∞

0 (Ω), χ2 ∈ C∞ (R), 0 ≤ χ1(x) ≤ 1 for x ∈ Ω, 0 ≤ χ2(t) ≤ 1 for t ∈ R,
χ1(x) = 1 for x ∈ Ω\ω and

χ2(t) =

{
0, t ∈ [−T,−T + δ] ∪ [T − δ, T ],

1, t ∈ [−T + 2δ, T − 2δ].

Step 3. We set Y1(·; j) = χ1Y (·; j) ∈
(
W 1,∞(Q)

)3
, Z1(·; j) = χ1Z(·; j) ∈(

W 1,∞(Q)
)3

, U1(·; j) = χ1U(·; j) ∈
(
W 1,∞(Q)

)3
, V1(·; j) = χ1V (·; j) ∈

(
W 1,∞(Q)

)3
.

Then, by definition of χ1, (2.10) and (3.25)–(3.27), we have

∂tY1(·; j) −∇× V1(·; j) = −χ1Ψ2(·; j) − (∇χ1) × V (·; j) in Q,(3.37)

∂tZ1(·; j) + ∇× U1(·; j) = χ1Ψ1(·; j) + (∇χ1) × U(·; j) in Q,(3.38)

Y1(·; j) = εU1(·; j) + ζV1(·; j), Z1(·; j) = ζU1(·; j) + μV1(·; j) in Q,(3.39)

∇ · Y1(·; j) = (∇χ1) · Y (·; j), ∇ · Z1(·; j) = (∇χ1) · Z(·; j) in Q,(3.40)

Y1(·; j) = Z1(·; j) = 0 on Σ.(3.41)

Therefore, by Lemma 3.1 (ii) and (∇χ1) (x) = 0 for x ∈ Ω \ ω, we have

w(t2; j) ≤ c12

{
w(t1; j) +

∫
Q

[
|−χ1Ψ2(·; j) − (∇χ1) × V (·; j)|2

+ |χ1Ψ1(·; j) + (∇χ1) × U(·; j)|2
]
dxdt

}

≤ c13

{
w(t1; j) +

∫
Q

[
|Ψ1(·; j)|2 + |Ψ2(·; j)|2

]
dxdt

+

∫
Qω

|∇χ1|2
[
|U(·; j)|2 + |V (·; j)|2

]
dxdt

}
(3.42)

for −T ≤ t1, t2 ≤ T , where

w(t; j) =

∫
Ω

[
|Y1(·, t; j)|2 + |Z1(·, t; j)|2

]
dx, t ∈ [−T, T ].(3.43)

By (3.23) and (3.24), ‖R3(·; j)‖(W 1,∞(Q))3 , ‖R4(·; j)‖(W 1,∞(Q))3 ≤ M , and t-independency
of fk, we have∫

Q

[
|Ψ1(·; j)|2 + |Ψ2(·; j)|2

]
dxdt ≤ C14

3∑
k=1

∫
Q

(
|fk|2 + |∇fk|2

)
dxdt

≤ C15

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
dx.

(3.44)
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By definition (1.8) of Θ and (3.18)–(3.20), we have

∫
Qω

|∇χ1|2
[
|U(·; j)|2 + |V (·; j)|2

]
dxdt

≤ C16

∫
Qω

[
|Y (·; j)|2 + |Z(·; j)|2

]
dxdt ≤ C17Θ

2.

(3.45)

Hence, it follows from (3.42), (3.44), and (3.45) that

w(t2; j) ≤ c18

[
w(t1; j) +

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
dx + Θ2

]
(3.46)

for −T ≤ t1, t2 ≤ T .

Step 4. We set Y2(·; j) = χ2Y1(·; j), Z2(·; j) = χ2Z1(·; j), U2(·; j) = χ2U1(·; j),
V2(·; j) = χ2V1(·; j). Then, by definitions of χ1, χ2, and (3.37)–(3.41), we have Y2(·; j),
Z2(·; j), U2(·; j), V2(·; j) ∈

(
H1

0 (Q)
)3

,

∂tY2(·; j) −∇× V2(·; j) = −χ1χ2Ψ2(·; j) − χ2 (∇χ1) × V (·; j) + (∂tχ2)Y1(·; j),

∂tZ2(·; j) + ∇× U2(·; j) = χ1χ2Ψ1(·; j) + χ2 (∇χ1) × U(·; j) + (∂tχ2)Z1(·; j),

Y2(·; j) = εU2(·; j) + ζV2(·; j), Z2(·; j) = ζU2(·; j) + μV2(·; j),

∇ · Y2(·; j) = χ2 (∇χ1) · Y (·; j), ∇ · Z2(·; j) = χ2 (∇χ1) · Z(·; j) in Q.

Therefore, we can apply Lemma 3.1 (i) so that, by (∇χ1) (x) = 0 for x ∈ Ω \ ω and
(∂tχ2) (t) = 0 for t ∈ (−T,−T + δ) ∪ (−T + 2δ, T − 2δ) ∪ (T − δ, T ),

∫
Ω

[
|Y2(·, 0; j)|2 + |Z2(·, 0; j)|2

]
e2sϕ(·,0)dx

≤ C19

∫
Q

[
|−χ1χ2Ψ2(·; j) − χ2 (∇χ1) × V (·; j) + (∂tχ2)Y1(·; j)|2

+ |χ1χ2Ψ1(·; j) + χ2 (∇χ1) × U(·; j) + (∂tχ2)Z1(·; j)|2

+ |χ2 (∇χ1) · Y (·; j)|2 + |χ2 (∇χ1) · Z(·; j)|2
]
e2sϕdxdt(3.47)

≤ C20

{∫
Q

[
|Ψ1(·; j)|2 + |Ψ2(·; j)|2

]
e2sϕdxdt

+

∫
Qω

|∇χ1|2
[
|U(·; j)|2 + |V (·; j)|2 + |Y (·; j)|2 + |Z(·; j)|2

]
e2sϕdxdt

+

(∫ −T+2δ

−T+δ

+

∫ T−δ

T−2δ

)∫
Ω

(∂tχ2)
2
[
|Y1(·; j)|2 + |Z1(·; j)|2

]
e2sϕdxdt

}

for all large s > 0. By (2.1) and the definition of λ, we have

ϕ(x, t) − ϕ(x, 0) = e�(|x|
2−λ2)

(
e−�β2t2 − 1

)
≤ e−�β2t2 − 1 ≤ 0 for x ∈ Ω.
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Therefore, by (3.23) and (3.24) and ‖R3(·; j)‖(W 1,∞(Q))3 , ‖R4(·; j)‖(W 1,∞(Q))3 ≤ M ,
we have ∫

Q

[
|Ψ1(·; j)|2 + |Ψ2(·; j)|2

]
e2sϕdxdt

≤ C21

3∑
k=1

∫
Q

(
|fk|2 + |∇fk|2

)
e2sϕdxdt

≤ C22

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)

{∫ T

−T

e2s[ϕ(·,t)−ϕ(·,0)]dt

}
dx

≤ C23κ1(s)

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)dx

(3.48)

for all s > 0, where

κ1(s) =

∫ T

−T

e
2s
(
e−�β2t2−1

)
dt.(3.49)

By (1.8) and (3.18)–(3.20), we have∫
Qω

|∇χ1|2
[
|U(·; j)|2 + |V (·; j)|2 + |Y (·; j)|2 + |Z(·; j)|2

]
e2sϕdxdt

≤ C24e
2sΓ

∫
Qω

[
|Y (·; j)|2 + |Z(·; j)|2

]
dxdt ≤ C25e

2sΓΘ2
(3.50)

for all s > 0, where Γ = sup(x,t)∈Q ϕ(x, t) ≥ 1. By (3.36), (3.43), and (3.46), we have(∫ −T+2δ

−T+δ

+

∫ T−δ

T−2δ

)∫
Ω

(∂tχ2)
2
[
|Y1(·; j)|2 + |Z1(·; j)|2

]
e2sϕdxdt

≤ C26e
2s(1−η)

(∫ −T+2δ

−T+δ

+

∫ T−δ

T−2δ

)
w(t; j)dt

≤ 2C27δe
2s(1−η)

[
w(0; j) +

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
dx + Θ2

]

≤ C28δe
−2sη

{∫
Ω

[
|Y1(·, 0; j)|2 + |Z1(·, 0; j)|2

]
e2sϕ(·,0)dx

+

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)dx

}
+ C29e

2sΓΘ2

(3.51)

for all s > 0. For the last inequality, we have used the first inequality in (3.35)
and definition (3.43) of w(t; j). Moreover, by χ2(0) = 1 and the definition of Y2(·; j),
Z2(·; j), we have Y2(x, 0; j) = Y1(x, 0; j) and Z2(x, 0; j) = Z1(x, 0; j) for x ∈ Ω. Hence,
substituting (3.48), (3.50), and (3.51) into (3.47), we have∫

Ω

[
|Y1(·, 0; j)|2 + |Z1(·, 0; j)|2

]
e2sϕ(·,0)dx

=

∫
Ω

[
|Y2(·, 0; j)|2 + |Z2(·, 0; j)|2

]
e2sϕ(·,0)dx

≤ C30

{
δe−2sη

∫
Ω

[
|Y1(·, 0; j)|2 + |Z1(·, 0; j)|2

]
e2sϕ(·,0)dx

+κ2(s)

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)dx + e2sΓΘ2

}
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for all large s > 0, where

κ2(s) = κ1(s) + δe−2sη.(3.52)

Furthermore, there exists s4 > 0 such that C30δe
−2sη ≤ 1/2 for all s > s4. Therefore,

we have ∫
Ω

[
|Y1(·, 0; j)|2 + |Z1(·, 0; j)|2

]
e2sϕ(·,0)dx

≤ 2C30

[
κ2(s)

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)dx + e2sΓΘ2

]

≤ C31

[
κ2(s)

3∑
k=1

∫
Ω

|∇fk|2 e2sϕ(·,0)dx + e2sΓΘ2

](3.53)

for all sufficiently large s > 0. For the last inequality in (3.53), we have used (3.34).
Moreover, by the definition of Y1(·; j), Z1(·; j), we have

Y (·, 0; j) = Y1(·, 0; j)+(1−χ1)Y (·, 0; j), Z(·, 0; j) = Z1(·, 0; j)+(1−χ1)Z(·, 0; j) in Ω.

Therefore, by 1 − χ1(x) = 0 for x ∈ Ω \ ω, we have∫
Ω

[
|Y (·, 0; j)|2 + |Z(·, 0; j)|2

]
e2sϕ(·,0)dx

≤ C32

{∫
Ω

[
|Y1(·, 0; j)|2 + |Z1(·, 0; j)|2

]
e2sϕ(·,0)dx

+

∫
ω

(1 − χ1)
2
[
|Y (·, 0; j)|2 + |Z(·, 0; j)|2

]
e2sϕ(·,0)dx

}(3.54)

for s > 0. By the Sobolev embedding theorem (e.g., [1]) and using (1.8) and (3.18)
and (3.19), we have∫

ω

(1 − χ1)
2
[
|Y (·, 0; j)|2 + |Z(·, 0; j)|2

]
e2sϕ(·,0)dx

≤ C33e
2sΓ

∫
ω

[
|Y (·, 0; j)|2 + |Z(·, 0; j)|2

]
dx ≤ C34e

2sΓΘ2
(3.55)

for all s > 0. Substituting (3.53) and (3.55) into (3.54) and summing over j = 1, 2,
we obtain

2∑
j=1

∫
Ω

[
|Y (·, 0; j)|2 + |Z(·, 0; j)|2

]
e2sϕ(·,0)dx

≤ C35

[
κ2(s)

3∑
k=1

∫
Ω

|∇fk|2 e2sϕ(·,0)dx + e2sΓΘ2

](3.56)

for all sufficiently large s > 0.
Step 5. On the other hand, by (1.1), we have D[ε; Φ(j)](·, 0) = D[ε̃; Φ(j)](·, 0) =

dj , B[ε; Φ(j)](·, 0) = B[ε̃; Φ(j)](·, 0) = bj in Ω. Therefore, by (3.28) and (3.29), we have

{E[ε; Φ(j)] − E[ε̃; Φ(j)]} (·, 0) = −f1d
j − f2b

j in Ω,(3.57)



AN INVERSE PROBLEM FOR MAXWELL’S EQUATIONS 1041

{H[ε; Φ(j)] −H[ε̃; Φ(j)]} (·, 0) = −f2d
j − f3b

j in Ω.(3.58)

By (3.32), (3.33), (3.57), and (3.58), direct calculations yield

Y (·, 0; j) = −∇×
(
f2d

j + f3b
j
)

= −f2

(
∇× dj

)
− f3

(
∇× bj

)
− (∂1f2)

(
e1 × dj

)
− (∂1f3)

(
e1 × bj

)
− (∂2f2)

(
e2 × dj

)
− (∂2f3)

(
e2 × bj

)
− (∂3f2)

(
e3 × dj

)
− (∂3f3)

(
e3 × bj

)
in Ω,

Z(·, 0; j) = ∇×
(
f1d

j + f2b
j
)

= f1

(
∇× dj

)
+ f2

(
∇× bj

)
+ (∂1f1)

(
e1 × dj

)
+ (∂1f2)

(
e1 × bj

)
+ (∂2f1)

(
e2 × dj

)
+ (∂2f2)

(
e2 × bj

)
+ (∂3f1)

(
e3 × dj

)
+ (∂3f2)

(
e3 × bj

)
in Ω.

Therefore, by definition of G, we have

GF =

⎛
⎜⎜⎝

−Y (·, 0; 1)
Z(·, 0; 1)
−Y (·, 0; 2)
Z(·, 0; 2)

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0 ∇× d1 ∇× b1

∇× d1 ∇× b1 0
0 ∇× d2 ∇× b2

∇× d2 ∇× b2 0

⎞
⎟⎟⎠
⎛
⎝ f1

f2

f3

⎞
⎠ in Ω,(3.59)

where F = (∂1f1, ∂1f2, ∂1f3, ∂2f1, ∂2f2, ∂2f3, ∂3f1, ∂3f2, ∂3f3)
T
. By (1.6) and (3.59),

we see that

3∑
k=1

|∇fk|2 ≤ C36 |GF |2 ≤ C37

⎧⎨
⎩

2∑
j=1

[
|Y (·, 0; j)|2 + |Z(·, 0; j)|2

]
+

3∑
k=1

|fk|2
⎫⎬
⎭ in Ω.

Hence, by (3.34) and (3.56), we have

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)dx

≤ C38

∫
Ω

⎧⎨
⎩

2∑
j=1

[
|Y (·, 0; j)|2 + |Z(·, 0; j)|2

]
+

3∑
k=1

|fk|2
⎫⎬
⎭ e2sϕ(·,0)dx

≤ C39

[
κ3(s)

3∑
k=1

∫
Ω

|∇fk|2e2sϕ(·,0)dx + e2sΓΘ2

]
(3.60)

for all sufficiently large s > 0, where

κ3(s) = κ2(s) +
1

s
.(3.61)

Furthermore, by definitions (3.49), (3.52), and (3.61) of κ3(s), we see that lims→∞
κ3(s) = 0. Therefore, there exists s5 > 0 such that C39κ3(s) ≤ 1/2 for s > s5.
Therefore, by (3.60), we can obtain that

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)dx ≤ 2C39e

2sΓΘ2

for all sufficiently large s > 0. Consequently, by the first inequality in (3.35), we have

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
dx ≤ e−2s

3∑
k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
e2sϕ(·,0)dx

≤ 2C39e
2s(Γ−1)Θ2

(3.62)
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for all sufficiently large s > 0. Hence, taking s > 0 sufficiently large and fixing it, we
obtain that

3∑
k=1

∫
Ω

|fk|2dx ≤
3∑

k=1

∫
Ω

(
|fk|2 + |∇fk|2

)
dx ≤ C40Θ

2.(3.63)

Moreover, by direct calculations, we can verify that

ε̃− ε = ξ̃f3 + γ3ξξ̃ [(γ̃2 + γ2) f2 − γ1f3 − γ̃3f1] ,

ζ̃ − ζ = −ξ̃f2 − γ2ξξ̃ [(γ̃2 + γ2) f2 − γ1f3 − γ̃3f1] ,

μ̃− μ = ξ̃f1 + γ1ξξ̃ [(γ̃2 + γ2) f2 − γ1f3 − γ̃3f1] on Ω.

Therefore, by (3.63), we have

‖ε̃− ε‖L2(Ω) +
∥∥ζ̃ − ζ

∥∥
L2(Ω)

+ ‖μ̃− μ‖L2(Ω) ≤ c41

3∑
k=1

‖fk‖L2(Ω) ≤ C42Θ.(3.64)

The proof of Theorem 1.1 is complete.
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Abstract. We consider a generalized hyperelastic-rod wave equation (or generalized Camassa–
Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We establish
existence of a strongly continuous semigroup of global weak solutions for any initial data from H1(R).
We also present a “weak equals strong” uniqueness result.
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1. Introduction and statement of main results. In recent years the so-called
Camassa–Holm equation [3] has caught a great deal of attention. It is a nonlinear
dispersive wave equation that takes the form

∂u

∂t
− ∂3u

∂t∂x2
+ 2κ

∂u

∂x
+ 3u

∂u

∂x
= 2

∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3
, t > 0, x ∈ R.(1.1)

When κ > 0, this equation models the propagation of unidirectional shallow water
waves on a flat bottom, and u(t, x) represents the fluid velocity at time t in the
horizontal direction x [3, 22]. The Camassa–Holm equation possesses a bi-Hamiltonian
structure (and thus an infinite number of conservation laws) [20, 3] and is completely
integrable [3, 1, 11, 6]. Moreover, when κ = 0 it has an infinite number of solitary
wave solutions, called peakons due to the discontinuity of their first derivatives at the
wave peak, interacting like solitons:

u(t, x) = ce−|x−ct|, c ∈ R.

The solitary waves with κ > 0 are smooth, while they become peaked when κ → 0.
From a mathematical point of view the Camassa–Holm equation is well studied. Local
well-posedness results are proved in [7, 21, 24, 30]. It is also known that there exist
global solutions for a particular class of initial data and also solutions that blow up
in finite time for a large class of initial data [5, 7, 10]. Here blow up means that
the slope of the solution becomes unbounded while the solution itself stays bounded.
More relevant for the present paper, we recall that existence and uniqueness results
for global weak solutions of (1.1) with κ = 0 have been proved by Constantin and
Escher [8], Constantin and Molinet [12], and Xin and Zhang [32, 33], see also Danchin
[17, 18].
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Here we are interested in the Cauchy problem for the nonlinear equation

∂u

∂t
− ∂3u

∂t∂x2
+

∂

∂x

(
g(u)

2

)
= γ

(
2
∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3

)
, t > 0, x ∈ R,(1.2)

where the function g : R → R and the constant γ ∈ R are given. Observe that if
g(u) = 2κu + 3u2 and γ = 1, then (1) is the classical Camassa–Holm equation. With
g(u) = 3u2, Dai [15, 14, 16] derived (1) as an equation describing finite length, small
amplitude radial deformation waves in cylindrical compressible hyperelastic rods, and
often referred to it as the hyperelastic-rod wave equation. Stability of solitary waves
for this equation was studied in [13]. The constant γ is given in terms of the material
constants and the prestress of the rod; we coin (1) the generalized hyperelastic-rod
wave equation.

In the derivation of the Camassa–Holm equation in the context of the shallow
water waves [3, 22], the constant κ is proportional to the square root of water depth.
Thus under normal circumstances it is not physical to set κ = 0. Although strictly
speaking one does not have peakons in the shallow water model (κ > 0), one has
them in Dai’s model for compressible hyperelastic rods, since in this model g(u) =
3u2 and γ ∈ R. For γ = 0 and g(u) = 3u2, (1) becomes the regularized wave
equation describing surface waves in channel [2]; the solutions are global, the equation
has an Hamiltonian structure but is not integrable, and its solitary waves are not
solitons.

A difference between the Camassa–Holm equation (1.1) (with κ = 0) and the
generalized hyperelastic-rod wave equation (1) is that (the slope of) solitary wave
solutions to (1) can blow up, while they cannot for (1.1). Solitary waves are bounded
solutions of (1) of the form u(t, x) = ϕ(x − ct), where c is the wave speed. It is
not hard to check that ϕ(ζ), ζ = x − ct, satisfies the ordinary differential equation

(ϕ′)2 = cϕ2−G(φ)
c−γϕ , where G(ξ) =

∫ ξ

0
g(ξ)dξ. From this expression it is clear that

|ϕ′| can become infinite. Notice, however, that for the Camassa–Holm equation (1.1)
(with κ = 0), for which G(u) = u3, it follows from the above equation that (ϕ′)2 = ϕ
(if ϕ �= c/γ) and thus any solitary wave (peakon) ϕ belongs to W 1,∞. Notice also
that for (1) with g(u) = 2κu + 3u2, the above ordinary differential equation becomes

(ϕ′)2 = φ2 (c−κ)−ϕ
c−γϕ , and choosing γ = c

c−κ , c �= κ, we find the peakon solution

ϕ(ξ) = (c− κ)e−
√

c−κ
c |ξ|.(1.3)

From a mathematical point of view the generalized hyperelastic-rod wave equation
(1) is much less studied than (1.1). Recently, Yin [34, 35, 36] (see also Constantin and
Escher [9]) proved local well-posedness, global well-posedness for a particular class of
initial data, and in particular that smooth solutions blow up in finite time (with a
precise estimate of the blow-up time) for a large class of initial data. Lopes [28] proved
stability of solitary waves for (1) with γ = 1, while Kalisch [23] studied the stability
when g(u) = 2κu + 3u3 and γ ∈ R. Qian and Tang [29] used the bifurcation method
to study peakons and periodic cusp waves for (1) with g(u) = 2κu + au2, κ, a ∈ R,
γ = 1. When a �= 3, a > 0, κ �= 0, they found the following two peakon type solutions:
u(t, x) = 6κ

3−a exp
(
−
√

a
3 |x− 6κt

3−a |
)

and u(t, x) = 2κ
a+1

(
3a exp

(
−
√

a
3 |x− 2κt

a+1 |
)
− 2

)
.

When a = 3 and κ �= 0 they also found a peakon type solution of the form u(t, x) =
3κ
2 exp(−|x− κt

2 |) − κ. For (1) with g(u) = 3u2, Dai [16] has constructed explicitly a
variety of traveling waves, including solitary shock (or peakon like) waves. To give an
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example, suppose 0 < γ < 3 and pick any constant c > 0. Then the following peakon
like function is a travelling wave solution:

u(t, x) =
1

2

(
1 − 1

γ

)
c +

c

2

(
3

γ
− 1

)
exp

(
− 1

√
γ
|x− ct− ζ|

)
,

where ζ is a particular constant. Dai refers to this as a supersonic solitary shock wave.
Although all the above displayed peakon type solutions belong to W 1,∞ they do not
all belong to H1(R) (some of them do not decay to zero at ±∞) and these cannot be
encompassed by our theory.

Up to now there are no global existence results for weak solutions to the gener-
alized hyperelastic-rod wave equation (1). Here we establish the existence of a global
weak solution to (1) for any initial function u0 belonging to H1(R). Furthermore, we
prove the existence of a strongly continuous semigroup, which in particular implies
stability of the solution with respect to perturbations of data in the equation as well
as perturbation in the initial data. Our approach is based on a vanishing viscosity
argument, showing stability of the solution when a regularizing term vanishes. This
stability result is new even for the Camassa–Holm equation (1.1). Finally, we prove
a “weak equals strong” uniqueness result. Here we follow closely the approach of Xin
and Zhang [32] for the Camassa–Holm equation (1.1) with κ = 0.

Let us be more precise about our results. We shall assume that

u|t=0 = u0 ∈ H1(R),(1.4)

and

g ∈ Liploc(R), g(0) = 0, γ > 0.(1.5)

Observe that the case γ = 0 is much simpler than the one we are considering.
Moreover, if γ < 0, peakons become antipeakons, so we can use a similar argument.
The assumption of infinite differentiability of g is made just for convenience. In fact,
locally Lipschitz continuity would be sufficient. Define

h(ξ) :=
1

2

(
g(ξ) − γξ2

)
for ξ ∈ R. Rewriting (1) as

(1 − ∂2
x)ut + γ(1 − ∂2

x)uux +
(
h(u) +

γ

2
u2
x

)
x

= 0,(1.6)

we see that (1) formally is equivalent to the elliptic-hyperbolic system

∂u

∂t
+ γu

∂u

∂x
+

∂P

∂x
= 0, −∂2P

∂x2
+ P = h(u) +

γ

2

(
∂u

∂x

)2

.(1.7)

Moreover, since e−|x|/2 is the Green’s function of the operator − ∂2

∂x2 +1, (1) is equiv-
alent to the integro-differential equation

∂u

∂t
+ γu

∂u

∂x
+

∂P

∂x
= 0, P (t, x) =

1

2

∫
R

e−|x−y|
(
h(u(t, y)) +

γ

2

(
∂u

∂x
(t, y)

)2)
dy.

(1.8)
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Motivated by this, we shall use the following definition of weak solution.
Definition 1.1. We call u : [0,∞) × R → R a weak solution of the Cauchy

problem for (1) if
(i) u ∈ C([0,∞) × R) ∩ L∞((0,∞);H1(R)

)
;

(ii) u satisfies (1.7) in the sense of distributions for some P∈L∞([0,∞) :W 1,∞(R));
(iii) u(0, x) = u0(x), for every x ∈ R;
(iv) ‖u(t, · )‖H1(R) ≤ ‖u0‖H1(R), for each t > 0.

If, in addition, there exists a positive constant K1 depending only on ‖u0‖H1(R) such
that

∂u

∂x
(t, x) ≤ 2

γt
+ K1, (t, x) ∈ (0,∞) × R,(1.9)

then we call u an admissible weak solution of the Cauchy problem for (1).
Our existence results are collected in the following theorem.
Theorem 1.2. There exists a strongly continuous semigroup of solutions associ-

ated to the Cauchy problem (1). More precisely, there exists a map

S : [0,∞) × (0,∞) × E ×H1(R) −→ C([0,∞) × R) ∩ L∞([0,∞);H1(R)
)
,

(t, γ, g, u0) 
→ St(γ, g, u0),

where

E :=
{
g ∈ Liploc(R) | g(0) = 0

}
with the following properties:

(j) for each u0 ∈ H1(R), γ > 0, g ∈ E the map u(t, x) = St(γ, g, u0)(x) is an
admissible weak solution of (1);

(jj) it is stable with respect to the initial condition in the following sense, if

u0,n −→ u0 in H1(R), γn −→ γ, g′n −→ g′ in L∞(I),(1.10)

then

St(γn, gn, u0,n) −→ St(γ, g, u0) in L∞([0, T ];H1(R)),(1.11)

for every {u0,n}n∈N ⊂ H1(R), {γn}n∈N ⊂ (0,∞), {gn}n∈N ⊂ E, u0 ∈ H1(R),
γ > 0, g ∈ E, T > 0, where

I :=
1√
2

[
− sup

n
‖u0,n‖H1(R), sup

n
‖u0,n‖H1(R)

]
.

Moreover, the following statements hold:
(k) Estimate (1.9) is valid with

K1 :=

√
2

γ

(
2 max
|ξ|≤

√
2‖u0‖H1(R)

∣∣h(ξ)
∣∣+ γ

2
‖u0‖2

H1(R)

)1/2

.

(kk) There results

∂

∂x
St(γ, g, u0) ∈ Lp

loc([0,∞) × R),(1.12)

for each 1 ≤ p < 3.
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(kkk) The following identity holds in the sense of distributions on [0,∞) × R:

∂

∂t

(
1

2

[
u2 + q2

])
+

∂

∂x

(
u

[
γ

2
q2 + P

]
+

γ

3
u3 −H(u)

)
= −μ,(1.13)

where u = St(γ, g, u0), q = ∂
∂xSt(γ, g, u0), H ′ = h, the defect measure μ is

a nonnegative Radon measure such that as R → ∞ there holds Rq (q + R)

χ(−∞,−R)(q)
�
⇀ μ in the sense of measures and μ([0,∞) × R) ≤ 1

2‖u0‖H1(R).
We stress that the existence of a strongly continuous semigroup is new, even for

the Camassa–Holm equation itself. In particular, this includes the stability of the
solution with respect to perturbations in the initial data and the coefficients in the
equation.

As in Xin and Zhang [32, 33] and their study of the Camassa–Holm equation (1.1)
with κ = 0, we prove existence of a global weak solution by establishing convergence as
ε → 0 of a sequence of smooth viscous approximate solutions uε (see (2.1)). Regarding
the limiting process there is a an interesting mathematical issue: we need to prove that
the derivative qε = ∂uε/∂x, which a priori is only weakly compact, in fact converges
strongly (along a subsequence). Strong convergence of qε is needed if we want to send
ε to zero in the viscous problem and recover (1). To improve the weak convergence of
qε to strong convergence we follow [32] closely when using renormalization theory for
linear transport equations with nonsmooth coefficients. The idea of renormalization
goes back to DiPerna and Lions [19] and it has been developed further and applied by
many authors (see Lions [26, 27], Xin and Zhang [32], and the references given therein
for relevant information). In the process of improving weak convergence to strong
convergence, the higher integrability estimate (1.12) for qε is crucial. It ensures that
the weak limit of q2

ε does not contain singular measures (there are no concentration
effects).

Regarding the optimality of (1.12), one should keep in mind that when a solution
u blows up (necessarily in the sense that |∂u/∂x| → ∞), say at x = 0, then u must
behave like x2/3 and ∂u/∂x like x−1/3, since u(t, ·) ∈ H1(R), in which case ∂u/∂x
belongs to Lp

loc if and only if 1 ≤ p < 3.
Denote by u an (admissible) weak solution. If the associated defect measure μ

defined in (1.13) vanishes, then we call u an energy conservative (admissible) weak
solution. Xin and Zhang [33] proved a “weak equals strong” uniqueness result for
energy conservative admissible weak solutions of the Camassa–Holm equation (1.1)
when κ = 0. Their result also contains the uniqueness result of Constantin and
Molinet [12] as a special case.

By slightly adapting the arguments of Xin and Zhang we can also have a “weak
equals strong” uniqueness result for the generalized hyperelastic-rod wave equation.

Theorem 1.3. Suppose there exists a function u such that (i), (ii), and (iii) of
Definition 1.1 hold and that there exists a function β ∈ L2([0, T )) for all T > 0 such
that

∥∥∂u
∂x (t, · )

∥∥
L∞(R)

≤ β(t) for any t ≥ 0. Then the energy conservative admissible

weak solution is unique.
Due to strong similarities with the proof of Xin and Zhang, we do not prove

Theorem 1.3 here and instead ask that the reader consult their paper [33].
Whenever a sufficiently regular solution to (1) can be found (see [9, 16, 29, 34,

35, 36] for some situations where this happens), then Theorem 1.3 ensures that this
solution is unique in the class energy conservative admissible weak solutions. Note that
peakons are “sufficiently regular.” For example, the peakon solution (1.3) is covered by
our theory. One should compare Theorem 1.3 with the uniqueness/stability assertion
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in Theorem 1.2, which states that there is uniqueness in the class of vanishing viscosity
solutions.

In passing, we mention that it is apparently not easy to prove existence and
uniqueness results for (1) by adapting the methods in [8, 12] for the Camassa–Holm

equation, which are based on studying the equation for the “vorticity” m := (1− ∂2

∂x2 )u.
In the present context the equation for m reads

∂m

∂t
+ γu

∂m

∂x
+ 2γ

∂u

∂x
m = −1

2

∂

∂x

(
g(u) − 3γu2

)
.(1.14)

In the case of the Camassa–Holm equation (that is, g(u) = 3u2 and γ = 1), the
right-hand side of (1.14) vanishes, and assuming that m|t=0 is a bounded nonnegative
measure it is not difficult to see that m(t, · ) ∈ L1 remains nonnegative at later times
and consequently one can bound ∂u/∂x in L∞ and ∂2u/∂x2 in L1. Using these
bounds one can in fact prove the existence and uniqueness of an energy conservative
weak solution [8, 12]. In the general case (g(u) is not equal to 3γu2), it seems difficult
to implement this strategy for proving existence and uniqueness results, and this fact
has motivated us to use the “weak convergence” approach.

The remainder of this paper is organized as follows. Section 2 is devoted to stating
the viscous problem and a corresponding well-posedness result. In sections 3 and 4 we
establish, respectively, an Oleinik type estimate and a higher integrability estimate
for the viscous approximants. Section 5 is devoted to proving basic compactness
properties for the viscous approximants. Strong compactness of the derivative of the
viscous approximants is obtained in section 6, where an existence result for (1) is also
stated. In section 7 we prove the uniqueness of the vanishing viscosity limit, this
defines a semigroup of solutions as stated in Theorem 1.2. In section 8 we prove the
continuity properties of the semigroup.

2. Viscous approximants: Existence and energy estimate. We will prove
existence of a weak solution to the Cauchy problem for (1) by proving compactness
of a sequence of smooth functions {uε}ε>0 solving the following viscous problems (see
[4, Theorem 2.3]):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂uε

∂t
+ γuε

∂uε

∂x
+

∂Pε

∂x
= ε

∂2uε

∂x2
, t > 0, x ∈ R,

−∂2Pε

∂x2
+ Pε = h(uε) +

γ

2

(
∂uε

∂x

)2

, t > 0, x ∈ R,

uε(0, x) = uε,0(x), x ∈ R.

(2.1)

We shall assume that

‖uε,0‖H1(R) ≤ ‖u0‖H1(R), ε > 0, and uε,0 → u0 in H1(R).(2.2)

The starting point of our analysis is the following well-posedness result for (2.1).
Theorem 2.1. Assume (1.4) and (2.2). Let ε > 0, uε,0 ∈ H
(R) and  ≥ 2.

Then there exists a unique solution uε ∈ C
(
R;H
(R)

)
to the Cauchy problem (2.1).

Moreover, for each t ≥ 0,∫
R

(
u2
ε +

(
∂uε

∂x

)2
)

(t, x)dx

+ 2ε

∫ t

0

∫
R

((
∂uε

∂x

)2

+

(
∂2uε

∂x2

)2
)

(s, x)dxds = ‖uε,0‖2
H1(R),

(2.3)
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or

‖uε(t, · )‖2
H1(R) + 2ε

∫ t

0

∥∥∥∥∂uε

∂x
(s, · )

∥∥∥∥
2

H1(R)

ds = ‖uε,0‖2
H1(R).

Remark 2.2. Due to [25, Theorem 8.5], (2.2) and (2.3), we have for each t ≥ 0

‖uε(t, · )‖L∞(R) ≤
1√
2
‖uε(t, · )‖H1(R) ≤

1√
2
‖u0‖H1(R).(2.4)

Proof of Theorem 2.1. From Theorem 2.3 in [4] we infer that (2.1) has a solution
uε ∈ C(R;H
(R)). Define

qε(t, x) :=
∂uε

∂x
(t, x).

By (2.1), qε = qε(t, x) is the solution of

∂qε
∂t

+ γuε
∂qε
∂x

− ε
∂2qε
∂x2

+
γ

2
q2
ε = h(uε) − Pε, qε(0, x) =

∂uε,0

∂x
(x),(2.5)

for t > 0 and x ∈ R. Multiply (2.1) by uε, (2.5) by qε, and add the resulting equations.
After rearranging a bit, we derive the conservation law

∂

∂t

(
1

2

[
u2
ε + q2

ε

])
+

∂

∂x

(
uε

[γ
2
q2
ε + Pε

]
+

γ

3
u3 −H(u)

)

=
ε

2
(u2

ε + q2
ε)xx − εq2

ε − ε

(
∂qε
∂x

)2

,

where H ′ = h. From this (2.3) follows easily.

3. Viscous approximants: Oleinik type estimate.
Lemma 3.1. For each t > 0 and x ∈ R,

∂uε

∂x
(t, x) ≤ 2

γt
+ C2,(3.1)

where uε = uε(t, x) is the unique solution of (2.1), and

C2 :=

√
2

γ

(
2 max
|ξ|≤

√
2‖u0‖H1(R)

∣∣h(ξ)
∣∣+ γ

2
‖u0‖2

H1(R)

)1/2

.

Proof. From (2.4),∥∥h(uε)
∥∥
L∞([0,∞)×R)

≤ max
|ξ|≤

√
2‖u0‖H1(R)

∣∣h(ξ)
∣∣ := L1 < ∞.(3.2)

Moreover, since ∫
R

e−|x−y|dy = 2, x ∈ R,(3.3)
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again using (2.4), for each t ≥ 0 and x ∈ R,

|Pε(t, x)| ≤ L1 +
γ

4

∥∥∥∥∂uε

∂x
(t, · )

∥∥∥∥
2

L2(R)

≤ L1 +
γ

4
‖u0‖2

H1(R) := L2.

So, denoting L := L1 + L2, we have, from (2.5),

∂qε
∂t

+ γuε
∂qε
∂x

− ε
∂2qε
∂x2

+
γ

2
q2
ε ≤ L.(3.4)

Let f = f(t) be the solution of

df

dt
+

γ

2
f2 = L, t > 0, f(0) =

∥∥∥∂uε,0

∂x

∥∥∥
L∞(R)

.(3.5)

Since, by (2.4) and (3.4), f = f(t) is a supersolution of the parabolic initial value
problem (2.5), due to the comparison principle for parabolic equations, we get

qε(t, x) ≤ f(t), t ≥ 0, x ∈ R.(3.6)

Finally, consider the map F (t) := 2
γt+

√
2
γL, t > 0. Observe that dF

dt (t)+ γ
2F

2(t)−L =

2
√

2L/γ

t > 0, for any t > 0, so that F = F (t) is a supersolution of (3.5). Due to the
comparison principle for ordinary differential equations, we get f(t) ≤ F (t) for all
t > 0. Therefore, by this and (3.6), the estimate (3.1) is proven.

4. Viscous approximants: Higher integrability estimate.
Lemma 4.1. Let 0 < α < 1, T > 0, and a, b ∈ R, a < b. Then there exists a

positive constant C3 depending only on ‖u0‖H1(R), α, T , a and b, but independent of
ε, such that ∫ T

0

∫ b

a

∣∣∣∣∂uε

∂x
(t, x)

∣∣∣∣
2+α

dtdx ≤ C3,(4.1)

where uε = uε(t, x) is the unique solution of (2.1).
Proof. The proof is a variant of the proof found in Xin and Zhang [32]. Let

χ ∈ C∞(R) be a cut-off function such that

0 ≤ χ ≤ 1, χ(x) =

{
1, if x ∈ [a, b],

0, if x ∈ (−∞, a− 1] ∪ [b + 1,∞).

Consider also the map θ(ξ) := ξ
(
|ξ| + 1

)α
, ξ ∈ R, and observe that, since 0 < α < 1,

θ′(ξ) =
(
(α + 1)|ξ| + 1

)(
|ξ| + 1

)α−1
,

θ′′(ξ) = α sign (ξ)
(
|ξ| + 1

)α−2(
(α + 1)|ξ| + 2

)
= α(α + 1) sign (ξ)

(
|ξ| + 1

)α−1
+ (1 − α)α sign (ξ)

(
|ξ| + 1

)α−2
,∣∣θ(ξ)∣∣ ≤ |ξ|α+1 + |ξ|,

∣∣θ′(ξ)∣∣ ≤ (α + 1)|ξ| + 1,
∣∣θ′′(ξ)∣∣ ≤ 2α,(4.2)

ξθ(ξ) − 1

2
ξ2θ′(ξ) =

1 − α

2
ξ2
(
|ξ| + 1

)α
+

α

2
ξ2
(
|ξ| + 1

)α−1

(4.3)

≥ 1 − α

2
ξ2
(
|ξ| + 1

)α
.
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Multiplying (2.5) by χθ′(qε), using the chain rule, and integrating over ΠT :=
[0, T ] × R, we get∫

ΠT

γχ(x)qεθ(qε)dtdx− γ

2

∫
ΠT

q2
εχ(x)θ′(qε)dtdx(4.4)

=

∫
R

χ(x)
(
θ
(
qε(T, x)

)
− θ

(
qε(0, x)

))
dx−

∫
ΠT

γuεχ
′(x)θ(qε)dtdx

+ ε

∫
ΠT

∂qε
∂x

χ′(x)θ′(qε)dtdx + ε

∫
ΠT

(
∂qε
∂x

)2

χ(x)θ′′(qε)dtdx

−
∫

ΠT

(h(uε) − Pε)χ(x)θ′(qε)dtdx.

Observe that, by (4.3),∫
ΠT

γχ(x)qεθ(qε)dtdx− γ

2

∫
ΠT

q2
εχ(x)θ′(qε)dtdx

=

∫
ΠT

γχ(x)
(
qεθ(qε) −

1

2
q2
εθ

′(qε)
)
dtdx

≥ γ(1 − α)

2

∫
ΠT

χ(x)q2
ε

(
|qε| + 1

)α
dtdx.(4.5)

Let t ≥ 0, since 0 < α < 1, using the Hölder inequality, (2.4) and the first part of
(4.2), ∣∣∣∣

∫
R

χ(x)θ(qε)dx

∣∣∣∣ ≤
∫

R

χ(x)
(
|qε|α+1

+ |qε|
)
dx(4.6)

≤ ‖χ‖L2/(1−α)(R)‖qε(t, · )‖α+1
L2(R) + ‖χ‖L2(R)‖qε(t, · )‖L2(R)

≤ (b− a + 2)(1−α)/2‖u0‖α+1
H1(R) + (b− a + 2)1/2‖u0‖H1(R),

and

∣∣∣∣
∫

ΠT

γuεχ
′(x)θ(qε)dtdx

∣∣∣∣ ≤
∫

ΠT

γ|uε||χ′(x)|
(
|qε|α+1 + |qε|

)
dtdx

(4.7)

≤
∫

ΠT

γ‖uε(t, · )‖L∞(R)|χ′(x)|
(
|qε|α+1 + |qε|

)
dtdx

≤ γ
‖u0‖H1(R)√

2

∫ T

0

(
‖χ′‖L2/(1−α)(R)‖qε(t, · )‖α+1

L2(R)

+ ‖χ′‖L2(R)‖qε(t, · )‖L2(R)

)
dt

≤ γT
‖u0‖H1(R)√

2

(
‖χ′‖L2/(1−α)(R)‖u0‖α+1

H1(R)

+ ‖χ′‖L2(R)‖u0‖H1(R)

)
.

Moreover, observe that

ε

∫
ΠT

∂qε
∂x

χ′(x)θ′(qε)dtdx = −ε

∫
ΠT

θ(qε)χ
′′(x)dtdx,
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so, again by the Hölder inequality (2.4) and the first part of (4.2),∣∣∣∣ε
∫

ΠT

∂qε
∂x

χ′(x)θ(qε)dtdx

∣∣∣∣ ≤ ε

∫
ΠT

|θ(qε)||χ′′(x)|dtdx

≤ ε

∫
ΠT

(
|qε|α+1 + |qε|

)
|χ′′(x)|dtdx(4.8)

≤ ε

∫ T

0

(
‖χ′′‖L2/(1−α)(R)‖qε(t, · )‖α+1

L2(R)

+ ‖χ′′‖L2(R)‖qε(t, · )‖L2(R)

)
dt

≤ εT
(
‖χ′′‖L2/(1−α)(R)‖u0‖α+1

H1(R) + ‖χ′′‖L2(R)‖u0‖H1(R)

)
.

Since 0 < α < 1, using (2.3) and the third part of (4.2),

ε

∣∣∣∣∣
∫

ΠT

(
∂qε
∂x

)2

χ(x)θ′′(qε)dtdx

∣∣∣∣∣ ≤ 2αε

∫
ΠT

(
∂qε
∂x

)2

dtdx ≤ α‖u0‖2
H1(R).(4.9)

As we showed in the proof of Lemma 3.1, there exists a constant L > 0 depending
only on ‖u0‖H1(R) such that

∥∥h(uε)−Pε

∥∥
L∞([0,∞)×R)

≤ L, so, since 0 < α < 1, using

the second part of (4.2),∣∣∣∣
∫

ΠT

(h(uε) − Pε)χ(x)θ′(qε)dtdx

∣∣∣∣(4.10)

≤ L

∫
ΠT

χ(x) ((α + 1)|qε| + 1) dtdx

≤ L

∫ T

0

(
(α + 1)‖χ‖L2(R)‖qε(t, · )‖L2(R) + ‖χ‖L1(R)

)
dt

≤ LT
(
(α + 1)(b− a + 2)1/2‖u0‖H1(R) + (b− a + 2)

)
.

From (4.4)–(4.10), there exists a constant c > 0 depending only on ‖u0‖H1(R), α,
T > 0, a, and b, but independent of ε, such that

γ(1 − α)

2

∫
ΠT

|qε|2χ(x)
(
|qε| + 1

)α
dtdx ≤ c.(4.11)

Then ∫ T

0

∫ b

a

∣∣∣∣∂uε

∂x
(t, x)

∣∣∣∣
2+α

dtdx ≤
∫

ΠT

|qε|χ(x) (|qε| + 1)
α+1

dtdx ≤ 2c

γ(1 − α)
,

hence estimate (4.1) is proved.

5. Viscous approximants: Basic compactness.
Lemma 5.1. There exists a positive constant C4 depending only on ‖u0‖H1(R)

such that

‖Pε(t, · )‖L∞(R), ‖Pε(t, · )‖L2(R),

∥∥∥∥∂Pε

∂x
(t, · )

∥∥∥∥
L∞(R)

,

∥∥∥∥∂Pε

∂x
(t, · )

∥∥∥∥
L2(R)

≤ C4,(5.1)
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where uε = uε(t, x) is the unique solution of (2.1). In particular, {Pε}ε is uniformly
bounded in L∞([0,∞);W 1,∞(R)) and L∞([0,∞);H1(R)).

Proof. Define

P1,ε(t, x) :=
γ

4

∫
R

e−|x−y|q2
εdy, P2,ε(t, x) :=

1

2

∫
R

e−|x−y|h
(
uε(t, y)

)
dy,(5.2)

and notice that Pε = P1,ε + P2,ε. By (2.4) and (3.3),

P1,ε(t, x)| ≤ γ

4
‖uε(t, · )‖2

H1(R) ≤
γ

4
‖u0‖2

H1(R),(5.3)

|P2,ε(t, x)| ≤ max
|ξ|≤‖u0‖H1(R)/

√
2

∣∣h(ξ)
∣∣.(5.4)

Moreover, using (3.3) and the Tonelli theorem,∫
R

|P1,ε(t, x)|dx ≤ γ

2
‖uε(t, · )‖2

H1(R) ≤
γ

2
‖u0‖2

H1(R).(5.5)

From (3.3), (5.3), (5.5), and the Hölder inequality,∫
R

|P1,ε(t, x)|2dx ≤ ‖P1,ε‖L∞([0,∞)×R)‖P1,ε(t, · )‖L1(R) ≤
γ2

8
‖u0‖4

H1(R),

so that

‖P1,ε(t, · )‖L2(R) ≤
γ

2
√

2
‖u0‖2

H1(R).(5.6)

Using (1.4), (2.4), (3.3), the Tonelli theorem, and the Hölder inequality,∫
R

|P2,ε(t, x)|2dx ≤ 1

2

∫
R

(∫
R

e−|x−y|dx

)
(h(uε(t, y)))

2
dy(5.7)

≤
(

max
|ξ|≤‖u0‖H1(R)/

√
2
(h′(ξ))

2

)∫
R

u2
ε(t, y)dy

≤
(

max
|ξ|≤‖u0‖H1(R)/

√
2
(h′(ξ))

2

)
‖u0‖2

H1(R).

Finally, observing

∂P1,ε

∂x
(t, x) =

γ

4

∫
R

sign (y − x) e−|x−y| (qε(t, y))
2
dy,

∂P2,ε

∂x
(t, x) =

1

2

∫
R

sign (y − x) e−|x−y|h
(
uε(t, y)

)
dy,

and recalling Pε = P1,ε + P2,ε, the claim is a direct consequence of (5.3), (5.4), (5.6),
and (5.7).

Lemma 5.2. There exists a sequence {εj}j∈N tending to zero and a function
u ∈ L∞([0,∞);H1(R)) ∩H1([0, T ] × R), for each T ≥ 0, such that

uεj ⇀ u in H1([0, T ] × R), for each T ≥ 0,(5.8)

uεj → u in L∞
loc([0,∞) × R),(5.9)

where uε = uε(t, x) is the unique solution of (2.1).
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Proof. Fix T > 0. Observe that, from (2.1), ∂uε

∂t = ε∂2uε

∂x2 − γuε
∂uε

∂x − ∂Pε

∂x , so, by
(2.4), (2.3), (5.1), and the Hölder inequality,

∥∥∥∥∂uε

∂t

∥∥∥∥
L2([0,T ]×R)

≤
√

ε

2
‖u0‖L∞(R) +

γ
√
T√
2

‖u0‖2
L∞(R) + C4

√
T .(5.10)

Hence {uε} is uniformly bounded in H1([0, T ] × R) ∩ L∞([0,∞);H1(R)), and (5.8)
follows.

Observe that, for each 0 ≤ s, t ≤ T ,

‖uε(t, ·)−uε(s, ·)‖2
L2(R) =

∫
R

(∫ t

s

∂uε

∂t
(τ, x)dτ

)2

dx ≤
√
|t− s|

∫
ΠT

(
∂uε

∂t
(τ, x)

)2

dτdx.

Moreover, {uε} is uniformly bounded in L∞([0, T ];H1(R)) and H1(R) ⊂⊂ L∞
loc(R) ⊂

L2
loc(R), then (5.9) is consequence of [31, Theorem 5].

Lemma 5.3. The sequence {Pε}ε is uniformly bounded in W 1,1
loc ([0,∞) × R).

In particular, there exists a sequence {εj}j∈N tending to zero and a function P ∈
L∞([0,∞);W 1,∞(R)) such that for each 1 < p < ∞

Pεj → P strongly in Lp
loc([0,∞) × R).(5.11)

Proof. We begin by proving that
{

∂Pε

∂t

}
ε

is uniformly bounded in L1
loc([0,∞)×R).

Fix T > 0. We claim that{
∂P1,ε

∂t

}
ε

is uniformly bounded in L1([0, T ] × R),(5.12) {
∂P2,ε

∂t

}
ε

is uniformly bounded in L2([0, T ] × R),(5.13)

where P1,ε and P2,ε are defined in (5.2). We begin by proving (5.12). Observe that,
from (2.5),

∂P1,ε

∂t
(t, x) =

γ

2

∫
R

e−|x−y|qε
∂qε
∂t

dy

(5.14)

=
γ

2

∫
R

e−|x−y|
(
− γqεuε

∂qε
∂x

+ εqε
∂2qε
∂x2

− γ

2
q3
ε + qε (h(uε) − Pε)

)
dy.

Using γ
2

∂
∂x (uεq

2
ε) = γ

2 q
3
ε + γqεuε

∂qε
∂x , ∂

∂x

(
qε

∂qε
∂x

)
= qε

∂2qε
∂x2 +

(
∂qε
∂x

)2
, (5.14), and inte-

gration by parts, we get

∂P1,ε

∂t
(t, x)

=
γ

4

∫
R

e−|x−y|
(
− γ

2

∂

∂x
(uεq

2
ε) + ε

∂

∂x

(
qε
∂qε
∂x

)
− ε

(
∂qε
∂x

)2

+ qε (h(uε) − Pε)

)
dy

=
γ

4

∫
R

e−|x−y|
(

sign (y − x)

[
γ

2
uεq

2
ε − εqε

∂qε
∂x

]
− ε

(
∂qε
∂x

)2

+ qε (h(uε) − Pε)

)
dy.



1056 G. M. COCLITE, H. HOLDEN, AND K. H. KARLSEN

Using (1.4), (2.3), (2.4), (5.1), the Tonelli theorem, and the Hölder inequality,∫
R×R

e−|x−y||uε|q2
εdxdy ≤

√
2‖u0‖H1(R)‖uε(t, · )‖2

H1(R) ≤
√

2‖u0‖3
H1(R),

ε

∫
ΠT×R

e−|x−y||qε|
∣∣∣∣∂qε∂x

∣∣∣∣ dtdxdy ≤ ε

∫ T

0

‖uε(t, · )‖2
H1(R)dt + ε

∫ T

0

∥∥∥∥∂uε

∂x
(t, · )

∥∥∥∥
2

H1(R)

dt

≤
(
εT +

1

2

)
‖u0‖2

H1(R),

ε

∫
ΠT×R

e−|x−y|
(
∂qε
∂x

)2

dtdxdy ≤ 2ε

∫ T

0

∥∥∥∥∂uε

∂x
(t, · )

∥∥∥∥
2

H1(R)

dt ≤ ‖u0‖2
H1(R),

∫
R×R

e−|x−y||qε||h(uε)|dxdy ≤
∫

R

q2
εdy + max

|ξ|≤‖u0‖H1(R)/
√

2
(h′(ξ))

2
∫

R

u2
εdy

≤
(

1 + max
|ξ|≤‖u0‖H1(R)/

√
2
(h′(ξ))

2

)
‖u0‖2

H1(R),

∫
R×R

e−|x−y||qε||Pε|dxdy≤‖uε(t, · )‖2
H1(R)+ ‖Pε(t, · )‖2

L2(R)≤‖u0‖2
H1(R)+ C2

4 .

It follows from these estimates that (5.12) holds.
We continue by proving (5.13). Observe that

∂P2,ε

∂t
(t, x) =

1

2

∫
R

e−|x−y|h′(uε)
∂uε

∂t
dy,(5.15)

so, using (1.4), (2.4), the Tonelli theorem, and the Hölder inequality,∥∥∥∥∂P2,ε

∂t

∥∥∥∥
2

L2(ΠT )

≤ max
|ξ|≤‖u0‖H1(R)/

√
2
(h′(ξ))

2

∥∥∥∥∂uε

∂t

∥∥∥∥
2

L2(ΠT )

.(5.16)

Then (5.13) is a direct consequence of (5.10).

Since the bound on
{

∂Pε

∂t

}
ε

is a consequence of (5.12) and (5.13), the family

{Pε}ε is bounded in W 1,1
loc ([0,∞) × R).

Finally, using also Lemma 5.1, we have the existence of a pointwise converg-
ing subsequence that is uniformly bounded in L∞([0,∞) × R). Clearly, this implies
(5.11).

Throughout this paper we use overbars to denote weak limits (the spaces in which
these weak limits are taken should be clear from the context and thus they are not
always explicitly stated).

Lemma 5.4. There exists a sequence {εj}j∈N tending to zero and two functions

q ∈ Lp
loc([0,∞) × R), q2 ∈ Lr

loc([0,∞) × R) such that

qεj ⇀ q in Lp
loc([0,∞) × R), qεj

�
⇀ q in L∞

loc([0,∞);L2(R)),(5.17)

q2
εj ⇀ q2 in Lr

loc([0,∞) × R),(5.18)

for each 1 < p < 3 and 1 < r < 3
2 . Moreover,

q2(t, x) ≤ q2(t, x) for almost every (t, x) ∈ [0,∞) × R(5.19)
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and

∂u

∂x
= q in the sense of distributions on [0,∞) × R.(5.20)

Proof. Formulas (5.17) and (5.18) are direct consequences of Theorem 2.1 and
Lemma 4.1. Inequality (5.19) is true thanks to the weak convergence in (5.18). Finally,
(5.20) is a consequence of the definition of qε, Lemma 5.2, and (5.17).

In the following, for notational convenience, we replace the sequences {uεj}j∈N,
{qεj}j∈N, {Pεj}j∈N by {uε}ε>0, {qε}ε>0, {Pε}ε>0, respectively.

In view of (5.17), we conclude that for any η ∈ C1(R) with η′ bounded, Lipschitz
continuous on R and any 1 < p < 3 we have

η(qε) ⇀ η(q) in Lp
loc([0,∞) × R), η(qε)

�
⇀ η(q) in L∞

loc([0,∞);L2(R)).(5.21)

Multiplying the equation in (2.5) by η′(qε), we get

∂

∂t
η(qε) +

∂

∂x
(γuεη(qε)) − ε

∂2

∂x2
η(qε) − εη′′(qε)

(
∂

∂x
η(qε)

)2

(5.22)

= γqεη(qε) −
γ

2
η′(qε)q

2
ε + (h(uε) − Pε) η

′(qε).

Lemma 5.5. For any convex η ∈ C1(R) with η′ bounded, Lipschitz continuous on
R, we have

∂η(q)

∂t
+

∂

∂x

(
γuη(q)

)
≤ γqη(q) − γ

2
η′(q)q2 + (h(u) − P )η′(q),(5.23)

in the sense of distributions on [0,∞) × R. Here qη(q) and η′(q)q2 denote the weak
limits of qεη(qε) and η′(qε)q

2
ε in Lr

loc([0,∞) × R), 1 < r < 3
2 , respectively.

Proof. In (5.22), by convexity of η, (1.4), (5.9), (5.17), and (5.18), sending ε → 0
yields (5.23).

Remark 5.6. From (5.17) and (5.18), it is clear that

q = q+ + q− = q+ + q−, q2 = (q+)2 + (q−)2, q2 = (q+)2 + (q−)2,

almost everywhere in [0,∞) × R, where ξ+ := ξχ[0,+∞)(ξ), ξ− := ξχ(−∞,0](ξ), ξ ∈ R.
Moreover, by (3.1) and (5.17),

qε(t, x), q(t, x) ≤ 2

γt
+ C2, t ≥ 0, x ∈ R.(5.24)

Lemma 5.7. There holds

∂q

∂t
+

∂

∂x
(γuq) =

γ

2
q2 + h(u) − P in the sense of distributions on [0,∞) × R.

(5.25)

Proof. Using (2.5), (5.9), (5.11), (5.17), and (5.18), the result (5.25) follows by
ε → 0 in (2.5).

The next lemma contains a renormalized formulation of (5.25).
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Lemma 5.8. For any η ∈ C1(R) with η′ ∈ L∞(R),

∂η(q)

∂t
+

∂

∂x
(γuη(q)) = γqη(q) +

(γ
2
q2 − γq2

)
η′(q) + (h(u) − P ) η′(q),(5.26)

in the sense of distributions on [0,∞) × R.
Proof. Let {ωδ}δ be a family of mollifiers defined on R. Denote qδ(t, x) :=

(q(t, · ) � ωδ)(x). Here and in the following all convolutions are with respect to the x
variable. According to Lemma II.1 of [19], it follows from (5.25) that qδ solves

∂qδ
∂t

+ γu
∂qδ
∂x

=
γ

2
q2 � ωδ − γq2 � ωδ + h(u) � ωδ − P � ωδ + ρδ,(5.27)

where the error ρδ tends to zero in L1
loc([0,∞)×R). Multiplying (5.27) by η′(qδ), we

get

∂η(qδ)

∂t
+

∂

∂x
(γuη(qδ)) = qη(qδ) +

γ

2

(
q2 � ωδ

)
η′(qδ) − γ

(
q2 � ωδ

)
η′(qδ)

+ (h(u) � ωδ) η
′(qδ) − (P � ωδ) η

′(qδ) + ρδη
′(qδ).

(5.28)

Using the boundedness of η, η′, we can send δ → 0 in (5.28) to obtain (5.26). The
weak time continuity is standard.

6. Strong convergence of qε and existence for (1). Following [32], in this
section we wish to improve the weak convergence of qε in (5.17) to strong convergence
(and then we have an existence result for (1)). Roughly speaking, the idea is to derive
a “transport equation” for the evolution of the defect measure (q2 − q2)(t, · ) ≥ 0, so
that if it is zero initially then it will continue to be zero at all later times t > 0. The
proof is complicated by the fact that we do not have a uniform bound on qε from
below but merely (5.24) and that in Lemma 4.1 we have only α < 1.

Lemma 6.1. There holds

lim
t→0+

∫
R

q2(t, x)dx = lim
t→0+

∫
R

q2(t, x)dx =

∫
R

(
∂u0

∂x

)2

dx.(6.1)

Proof. Since u ∈ C(R+ × R) (see Lemma 5.2), from (5.20),

lim
t→0

∫
R

q(t, x)ϕ(x)dx = − lim
t→0

∫
R

u(t, x)
∂ϕ

∂x
(x)dx

= −
∫

R

u0(x)
∂ϕ

∂x
(x)dx =

∫
R

∂u0

∂x
(x)ϕ(x)dx,

for each test function ϕ ∈ C∞(R) with compact support. Due to the boundedness of
{qε}ε>0 in L∞((0,∞);L2(R)) we get

q(t, ·) ⇀
∂u0

∂x
weakly in L2(R) as t → 0+,

so

lim inf
t→0+

∫
R

q2(t, x)dx ≥
∫

R

(
∂u0

∂x
(x)

)2

dx.(6.2)
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Moreover, from (2.2), (2.3), (5.9), and (5.18),∫
R

u2(t, x)dx +

∫
R

q2(t, x)dx ≤
∫

R

u2
0(x)dx +

∫
R

(
∂u0

∂x

)2

dx,

and, again using the continuity of u (see Lemma 5.2), limt→0+

∫
R
u2(t, x)dx =

∫
R
u2

0dx.
Hence

lim sup
t→0+

∫
R

q2(t, x)dx ≤
∫

R

(
∂u0

∂x

)2

dx.(6.3)

Clearly, (5.19), (6.2), and (6.3) imply (6.1).
Lemma 6.2. For each R > 0,

lim
t→0+

∫
R

(
η±R(q)(t, x) − η±R(q(t, x))

)
dx = 0,(6.4)

where

ηR(ξ) :=

⎧⎪⎨
⎪⎩

1

2
ξ2, if |ξ| ≤ R,

R|ξ| − 1

2
R2, if |ξ| > R,

(6.5)

and η+
R(ξ) := ηR(ξ)χ[0,+∞)(ξ), η

−
R(ξ) := ηR(ξ)χ(−∞,0](ξ), ξ ∈ R.

Proof. Let R > 0. Observe that

ηR(q) − ηR(q) =
1

2
(q2 − q2) −

(
fR(q) − fR(q)

)
,

where fR(ξ) := 1
2ξ

2 − ηR(ξ), ξ ∈ R. Since ηR and fR are convex,

0 ≤ ηR(q) − ηR(q) =
1

2

(
q2 − q2

)
−
(
fR(q) − fR(q)

)
≤ 1

2

(
q2 − q2

)
.

Then, from (6.1), limt→0+

∫
R

(
ηR(q)(t, x) − ηR(q(t, x))

)
dx = 0. Since, η±R(q)−η±R(q) ≤

ηR(q) − ηR(q), the proof is done.
Remark 6.3. Let R > 0. Then for each ξ ∈ R

ηR(ξ) =
1

2
ξ2 − 1

2
(R− |ξ|)2χ(−∞,−R)∪(R,∞)(ξ),

η′R(ξ) = ξ + (R− |ξ|) sign (ξ)χ(−∞,−R)∪(R,∞)(ξ),

η+
R(ξ) =

1

2
(ξ+)2 − 1

2
(R− ξ)2χ(R,∞)(ξ),

(η+
R)′(ξ) = ξ+ + (R− ξ)χ(R,∞)(ξ),

η−R(ξ) =
1

2
(ξ−)2 − 1

2
(R + ξ)2χ(−∞,−R)(ξ),

(η−R)′(ξ) = ξ− − (R + ξ)χ(−∞,−R)(ξ).

Lemma 6.4. Assume (1.4) and (2.2). Then for almost all t ≥ 0∫
R

(
(q+)2 − (q+)2

)
(t, x)dx ≤ 2

∫ t

0

∫
R

S(s, x) [q+(s, x) − q+(s, x)] dsdx,(6.6)

where S(s, x) := h
(
u(s, x)

)
− P (s, x).
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Proof. Let R > C2 (see Lemma 3.1). Subtract (5.26) from (5.23) using the
entropy η+

R (see Lemma 6.2). The result is

∂

∂t

(
η+
R(q) − η+

R(q)
)

+
∂

∂x

(
γu
[
η+
R(q) − η+

R(q)
])

≤ γ
[
qη+

R(q) − qη+
R(q)

]
− γ

2

[
q2(η+

R)′(q) − q2(η+
R)′(q)

]
− γ

2

(
q2 − q2

)
(η+

R)′(q) + S(t, x)
[
(η+

R)′(q) − (η+
R)′(q)

]
.

(6.7)

Since η+
R is increasing and γ ≥ 0, by (5.19),

−γ

2

(
q2 − q2

)
(η+

R)′(q) ≤ 0.(6.8)

Moreover, from Remark 6.3,

γqη+
R(q) − γ

2
q2(η+

R)′(q) = −γR

2
q(R− q)χ(R,∞)(q),

γqη+
R(q) − γ

2
q2(η+

R)′(q) = −γR

2
q(R− q)χ(R,∞)(q).

Therefore, due to (5.24),

γqη+
R(q) − γ

2
q2(η+

R)′(q) = qη+
R(q) − 1

2
q2(η+

R)′(q) = 0, in ΩR :=
(

2
R−C2

,∞
)
× R.

(6.9)

Then from (6.7), (6.8), and (6.9) the following inequality holds in ΩR:

∂

∂t

(
η+
R(q) − η+

R(q)
)

+
∂

∂x

(
γu
[
η+
R(q) − η+

R(q)
])

≤ S(t, x)
[
(η+

R)′(q) − (η+
R)′(q)

]
.

(6.10)

In view of Remark 5.6 and due to (5.24),

η+
R(q) =

1

2
(q+)2, (η+

R)′(q) = q+, η+
R(q) =

1

2
(q+)2, (η+

R)′(q) = q+, in ΩR.

Inserting this into (6.10) and integrating the result over ( 2
R−C2

, t) × R gives

1

2

∫
R

[
(q+)2(t, x) − q+(t, x)2

]
dx ≤

∫
R

[
η+
R(q)( 2

R−C2
, x) − η+

R(q)( 2
R−C2

, x)
]
dx

+

∫ t

2
R−C2

∫
R

S(s, x) [q+(s, x) − q+(s, x)] dsdx,

for almost all t > 2
R−C2

. Sending R → ∞ and using Lemma 6.2, we get (6.6).
Lemma 6.5. For any t ≥ 0 and any R > 0,

∫
R

[
η−R(q) − η−R(q)

]
(t, x)dx

(6.11)

≤ γR2

2

∫ t

0

∫
R

(R + q)χ(−∞,−R)(q)dsdx

− γR2

2

∫ t

0

∫
R

(R + q)χ(−∞,−R)(q)dsdx + γR

∫ t

0

∫
R

[
η−R(q) − η−R(q)

]
dsdx

+
γR

2

∫ t

0

∫
R

[
(q+)2 − q2

+

]
dsdx +

∫ t

0

∫
R

S(s, x)
[
(η−R)′(q) − (η−R)′(q)

]
dsdx.
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Proof. Let R > 0. By subtracting (5.26) from (5.23), using the entropy η−R (see
Lemma 6.2), we deduce

∂

∂t

(
η−R(q) − η−R(q)

)
+

∂

∂x

(
γu
[
η−R(q) − η−R(q)

])
≤ γ

[
qη−R(q) − qη−R(q)

]
− γ

2

[
q2(η−R)′(q) − q2(η−R)′(q)

]
− γ

2
(q2 − q2)(η−R)′(q) + S(t, x)

[
(η−R)′(q) − (η−R)′(q)

]
.

(6.12)

Since −R ≤ (η−R)′ ≤ 0 and γ ≥ 0, by (5.19),

−γ

2

(
q2 − q2

)
(η−R)′(q) ≤ γR

2

(
q2 − q2

)
.(6.13)

Using Remarks 5.6 and 6.3

γqη−R(q) − γ

2
q2(η−R)′(q) = −γR

2
q(R + q)χ(−∞,−R)(q),(6.14)

γqη−R(q) − γ

2
q2(η−R)′(q) = −γR

2
q(R + q)χ(−∞,−R)(q).(6.15)

Inserting (6.13), (6.14), and (6.15) into (6.12) gives

∂

∂t

(
η−R(q) − η−R(q)

)
+

∂

∂x

(
γu
[
η−R(q) − η−R(q)

])
≤ −γR

2
q(R + q)χ(−∞,−R)(q) +

γR

2
q(R + q)χ(−∞,−R)(q)

+
γR

2

(
q2 − q2

)
+ S(t, x)

[
(η−R)′(q) − (η−R)′(q)

]
.

Integrating this inequality over (0, t) × R yields

∫
R

[
η−R(q) − η−R(q)

]
(t, x)dx(6.16)

≤ −γR

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx

+
γR

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx +
R

2

∫ t

0

∫
R

[
q2 − q2

]
dsdx

+

∫ t

0

∫
R

S(s, x)
[
(η−R)′(q) − (η−R)′(q)

]
dsdx.

Using Remark 6.3,

η−R(q) −η−R(q) =
1

2

(
(q−)2− (q−)2

)
+

1

2
(R + q)2χ(−∞,−R)(q) −

1

2
(R + q)2χ(−∞,−R)(q).
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Hence, from Remark 5.6 and (6.16),∫
R

[
η−R(q) − η−R(q)

]
(t, x)dx

≤ −γR

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx

+
γR

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx + γR

∫ t

0

∫
R

[
η−R(q) − η−R(q)

]
dsdx

− γR

2

∫ t

0

∫
R

(R + q)2χ(−∞,−R)(q)dsdx +
γR

2

∫ t

0

∫
R

(R + q)2χ(−∞,−R)(q)dsdx

+
γR

2

∫ t

0

∫
R

[
(q+)2 − q2

+

]
dsdx +

∫ t

0

∫
R

S(s, x)
[
(η−R)′(q) − (η−R)′(q)

]
dsdx,

and applying twice the identity R
2 (R + q)2 − R

2 q(R + q) = R2

2 (R + q) we deduce
(6.11).

Lemma 6.6. There holds

q2 = q2 almost everywhere in [0,∞) × R.(6.17)

Proof. Adding (6.6) and (6.11) yields

∫
R

(
1

2

[
(q+)2 − (q+)2

]
+
[
η−R(q) − η−R(q)

])
(t, x)dx

(6.18)

≤ γR2

2

∫ t

0

∫
R

(R + q)χ(−∞,−R)(q)dsdx− γR2

2

∫ t

0

∫
R

(R + q)χ(−∞,−R)(q)dsdx

+ γR

∫ t

0

∫
R

[
η−R(q) − η−R(q)

]
dsdx +

γR

2

∫ t

0

∫
R

[
(q+)2 − q2

+

]
dsdx

+

∫ t

0

∫
R

S(s, x)
(
[q+ − q+] +

[
(η−R)′(q) − (η−R)′(q)

])
dsdx.

Arguing as in the proof of Lemma 3.1, there exists a constant L > 0, depending only
on ‖u0‖H1(R), such that

‖S‖L∞([0,∞)×R) =
∥∥h(u) − P

∥∥
L∞([0,∞)×R)

≤ L.(6.19)

By Remarks 5.6 and 6.3,

q+ + (η−R)′(q) = q − (R + q)χ(−∞,−R)(q), q+ + (η−R)′(q) = q − (R + q)χ(−∞,−R)(q),

so by the convexity of the map ξ 
→ ξ+ + (η−R)′(ξ),

0 ≤ [q+ − q+] +
[
(η−R)′(q) − (η−R)′(q)

]
= (R + q)χ(−∞,−R)(q) − (R + q)χ(−∞,−R)(q),

and, by (6.19),

S(s, x)
(
[q+(s, x) − q+(s, x)] +

[
(η−R)′(q) − (η−R)′(q)

])
≤ −L

(
(R + q)χ(−∞,−R)(q) − (R + q)χ(−∞,−R)(q)

)
.
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Since ξ 
→ (R + ξ)χ(−∞,−R)(ξ) is concave and choosing R large enough,

γR2

2
(R + q)χ(−∞,−R)(q) −

γR2

2
(R + q)χ(−∞,−R)(q)

+ S(s, x)
(
[q+(s, x) − q+(s, x)] +

[
(η−R)′(q) − (η−R)′(q)

])
(6.20)

≤
(
γR2

2
− L

)(
(R + q)χ(−∞,−R)(q) − (R + q)χ(−∞,−R)(q)

)
≤ 0.

Then, from (6.18) and (6.20),

0 ≤
∫

R

(
1

2

[
(q+)2 − (q+)2

]
+
[
η−R(q) − η−R(q)

])
(t, x)dx

≤ γR

∫ t

0

∫
R

(
1

2

[
(q+)2 − q2

+

]
+
[
η−R(q) − η−R(q)

])
dsdx,

and using the Gronwall inequality and Lemmas 6.1 and 6.2 we conclude that∫
R

(
1

2

[
(q+)2 − (q+)2

]
+
[
η−R(q) − η−R(q)

])
(t, x)dx = 0, for each t > 0.

By the Fatou lemma, Remark 5.6, and (5.19), sending R → ∞ yields

0 ≤
∫

R

(
q2 − q2

)
(t, x)dx ≤ 0, t > 0,(6.21)

and we see that (6.17) holds.
Lemma 6.7. Assume (1.4) and (2.2). Then there exists an admissible weak

solution of (1), satisfying conditions (k), (kk), and (kkk) of Theorem 1.2.
Proof. The conditions (i), (iii), (iv) of Definition 1.1 are satisfied, due to (2.2),

(2.3) and Lemma 5.2. We have to verify (ii). Due to (6.17), we have

qε → q in L2
loc([0,∞) × R).(6.22)

Clearly (5.9), (5.11), and (6.22) imply that u is a distributional solution of (1.7).
Finally, (k) and (kk) are consequences of Lemmas 3.1 and 4.1, respectively. For (kkk)
we can argue as in [32], so let us just sketch the proof. From Lemmas 5.8 and 6.6 we
get

∂ηR(q)

∂t
+

∂

∂x
(γuηR(q)) = γqηR(q) − γ

2
q2η′R(q) + (h(u) − P ) η′R(q).(6.23)

From the definition of ηR,

γ

(
qηR(q) − 1

2
q2η′R(q)

)
=

γR

2

(
q2 −Rq

)
χ(R,∞)(q) −

γR

2

(
q2 + Rq

)
χ(−∞,−R)(q)

=: SR
− + SR

+ .

By (1.9), it follows as in [32] that
∫∫

[0,∞)×R
SR

+dxdt ≤ C‖u0‖H1(R) and thus, by

integrating (6.23),
∫∫

[0,∞)×R
SR
−dxdt ≤ C. The latter bound implies that along a

subsequence SR
−

�
⇀ μ in the sense of measures as R → ∞, for some nonnegative

Radon measure μ. By (1.9),
∫∫

[0,∞)×R
SR

+dxdt → 0 as R → ∞. Hence sending
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R → ∞ in (6.23) and adding the result to the equation obtained by multiplying (1)
by u, we get (1.13). Finally, integrating (1.13) shows that the total mass of μ is
bounded by ‖u0‖H1(R).

Remark 6.8. It is possible to prove results similar to those obtained for (1.7) for
slightly more general equations of the form

∂u

∂t
+ γu

∂u

∂x
+

∂P

∂x
= 0, −α2 ∂

2P

∂x2
+ P = h(u) +

γα2

2

(
∂u

∂x

)2

,(6.24)

where γ ≥ 0, α > 0, and h : R → R is any locally Lipschitz continuous function with

h(0) = 0. The Green function of the operator −α2 ∂2

∂x2 + 1 is e−|x|/α/2. Formally,

by letting α → 0, we recover the conservation law ∂u
∂t + ∂

∂xF (u) = 0, where the flux
F (u) is given by F ′(u) = γu − h′(u). Hence (6.24) may be viewed as a new type of
regularization for one-dimensional conservation laws. We are currently investigating
this singular limit problem.

7. Uniqueness of the viscous limit: the semigroup. Here we prove the
existence of the semigroup.

Lemma 7.1. There exists a strongly continuous semigroup of solutions associated
with the Cauchy problem (1)

S : [0,∞) × (0,∞) × (E ∩ C∞(R)) ×H1(R) −→ C([0,∞) × R) ∩ L∞([0,∞);H1(R)
)
,

namely, for each u0 ∈ H1(R), γ > 0, g ∈ E the map u(t, x) = St(γ, g, u0)(x) is an
admissible weak solution of (1). Moreover, (k), (kk), and (kkk) of Theorem 1.2 are
satisfied.

Clearly, this lemma is a direct consequence of the following lemma and of the
lemmas in the previous sections.

Lemma 7.2. Assume (1.4), (1.5). Let {εn}n∈N, {μn}n∈N ⊂ (0,∞) and u, v ∈
L∞([0,∞);H1(R)) ∩H1([0, T ] × R), for each T ≥ 0, be such that εn, μn → 0 and

uεn → u, uμn
→ v, strongly in L∞

loc([0,∞);H1(R)),(7.1)

then

u = v.

Proof. Let t > 0, it is not restrictive to assume that

‖u0,ε − u0,μ‖H1(R) ≤ |ε− μ|, ε, μ > 0.(7.2)

Moreover, passing to subsequences, we can assume that

0 < μn < εn < μn−1, n ∈ N.(7.3)

Indeed, we can argue in the following way: we begin by considering two strictly
decreasing subsequences {εnk

}k∈N, {μnk
}k∈N. Then we start by defining μnk0

= μn0 ,
then we continue with εnk1

and μnk1
in the following way:

εnk1
= max

{
εnk

; εnk
< μnk0

}
, μnk1

= max
{
μnk

; μnk
< εnk1

}
.

Arguing inductively in this way we find two subsequences {εnkh
}h∈N, {μnkh

}h∈N sat-
isfying (7.3).
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From [4, Theorem 3.1] and (7.2), we have that

‖uε(t, · ) − uμ(t, · )‖H1(R)

≤ A(t, ε + μ)‖u0,ε − u0,μ‖H1(R) + B(t, ε + μ)|ε− μ|
≤
(
A(t, ε + μ) + B(t, ε + μ)

)
|ε− μ|,

with

A(t, ε + μ) = O
(
et/(ε+μ)

)
, B(t, ε + μ) = O

(
et/(ε+μ)

)
,

for each ε, μ > 0. Hence

‖uε(t, · ) − uμ(t, · )‖H1(R) ≤ c1e
t/(ε+μ)|ε− μ|, ε, μ > 0,(7.4)

for some constant c1 > 0. Define

εk,n := εn − ke−1/ε2n , Nn :=
[
(εn − μn)e1/ε2n

]
, k, n ∈ N,

where [·] denotes the integer part. Observe that

εNn,n ≤ μn ≤ εNn−1,n, μn − εNn,n ≤ e−1/ε2n , n ∈ N,(7.5)

and

lim
n

‖uεk,n
(t, · ) − uεn(t, · )‖H1(R)(7.6)

≤ c1 lim
n

et/(εk,n+εn)|εk,n − εn|

≤ c1k lim
n

et/εne−1/ε2n = 0,

for each k ∈ N, in other terms

uεk,n
→ u, strongly in L∞

loc([0,∞);H1(R)) as n → ∞, for each k ∈ N.(7.7)

Since, from (7.3),

εn+1 < μn < μn + εNn,n, n ∈ N,

employing (7.5), we have that

lim
n
‖uεNn,n

(t, · ) − uμn
(t, · )‖H1(R)(7.8)

≤ c1 lim
n

et/(εNn,n+μn)|εNn,n − μn|

≤ c1 lim
n

et/εn+1e−1/ε2n = 0.

Hence

uεNn,n
→ v, strongly in L∞

loc([0,∞);H1(R)) as n → ∞.(7.9)

If {Nn}n∈N is bounded, the claim is a direct consequence of (7.7) and (7.9). So we
consider the case

lim
n

Nn = ∞.(7.10)
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As before, we define the sequences

μh,n := μn + he−1/μ2
n , Mn :=

[
(εn − μn)e1/μ2

n
]
, h, n ∈ N.

Due to (7.3) and (7.10),

lim
n

Mn = ∞,(7.11)

and, arguing as for (7.7) and (7.9), we are able to prove that

lim
n

‖uμh,n
(t, · ) − uμn(t, · )‖H1(R) = lim

n
‖uμh,n

(t, · ) − v(t, · )‖H1(R) = 0,(7.12)

h ∈ N,

lim
n

‖uμMn,n
(t, · ) − uεn(t, · )‖H1(R) = lim

n
‖uμMn,n

(t, · ) − u(t, · )‖H1(R) = 0.(7.13)

Due to (7.10) and (7.11), we can choose two sequences {kn}n∈N, {hn}n∈N, such that

μn ≤ μhn,n, εkn,n ≤ εn, |μhn,n − εkn,n| ≤ c2e
−1/μ2

n , n ∈ N,(7.14)

lim
n

hn = lim
n

kn = ∞,(7.15)

for some constant c2 > 0. Observe that

‖u(t, · ) − v(t, · )‖H1(R) ≤ ‖u(t, · ) − uμh,n
(t, · )‖H1(R)(7.16)

+ ‖uμh,n
(t, · ) − uεk,n

(t, · )‖H1(R)

+ ‖uεk,n
(t, · ) − v(t, · )‖H1(R).

From (7.9) and (7.13), we have

lim inf
h,n

‖u(t, · ) − uμh,n
(t, · )‖H1(R) ≤ lim

n
‖u(t, · ) − uμMn,n

(t, · )‖H1(R) = 0,(7.17)

lim inf
k,n

‖uεk,n
(t, · ) − v(t, · )‖H1(R) ≤ lim

n
‖uεNn,n

(t, · ) − v(t, · )‖H1(R) = 0,(7.18)

respectively. Finally, from (7.4), (7.14), and (7.15),

lim inf
h,k,n

‖uμh,n
(t, · ) − uεk,n

(t, · )‖H1(R)(7.19)

≤ lim inf
n

‖uμhn,n
(t, · ) − uεkn,n

(t, · )‖H1(R)

≤ c1c2 lim inf
n

e−1/μ2
net(μhn,n+εkn,n)

≤ c1c2 lim
n

e−1/μ2
net(μn) = 0.(7.20)

Clearly, (7.16), (7.17), (7.18), (7.19), imply u = v.

8. Stability of the semigroup and proof of Theorem 1.2. Here we prove
the stability of the semigroup and then conclude the proof of Theorem 1.2.

Lemma 8.1. The semigroup S defined on [0,∞)× (0,∞)× (E ∩C∞(R))×H1(R)
satisfies the stability property (jj) of Theorem 1.2.

Proof. Fix ε > 0. Denote Sε the semigroup associated to the viscous prob-
lem (2.1). Choose {u0,n}n∈N ⊂ H1(R), {γn}n∈N ⊂ (0,∞), {gn}n∈N ⊂ E ∩ C∞(R),
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u0 ∈ H1(R), γ > 0, g ∈ E ∩ C∞(R) satisfying (1.10). The initial data satisfy
u0,ε,n, u0,ε ∈ H
(R),  ≥ 2, the condition (2.2), and

‖u0,ε,n − u0,ε‖H1(R) ≤ ‖u0,n − u0‖H1(R).(8.1)

Finally, write

uε,n := Sε(γn, gn, u0,n), un := S(γn, gn, u0,n), u := S(γ, g, u0).

Let t > 0, then

‖un(t, · ) − u(t, · )‖H1(R) ≤ ‖un(t, · ) − uε,n(t, · )‖H1(R)

(8.2)

+ ‖uε,n(t, · ) − uε(t, · )‖H1(R) + ‖uε(t, · ) − u(t, · )‖H1(R),

so

0 ≤ lim inf
n

‖un(t, · ) − u(t, · )‖H1(R) ≤ lim inf
ε,n

‖un(t, · ) − uε,n(t, · )‖H1(R)(8.3)

+ lim inf
ε,n

‖uε,n(t, · ) − uε(t, · )‖H1(R)

+ lim inf
ε

‖uε(t, · ) − u(t, · )‖H1(R).

From Lemma 5.2 we know that

lim inf
ε,n

‖un(t, · ) − uε,n(t, · )‖H1(R) = 0,(8.4)

lim inf
ε

‖uε(t, · ) − u(t, · )‖H1(R) = 0.(8.5)

We claim that

lim inf
ε,n

‖uε,n(t, · ) − uε(t, · )‖H1(R) = 0.(8.6)

Using [4, Theorem 3.1] and (8.1), we have that

‖uε,n(t, · ) − uε(t, · )‖H1(R) ≤ A(t, ε)‖u0,n − u0‖H1(R)(8.7)

+ B(t, ε)
(
‖gn − g‖L∞(I) + |γn − γ|

)
,

with

A(t, ε) = O(eT/ε), B(t, ε) = O(eT/ε), t ∈ [0, T ].

Define

εn :=
T

| log(kn)| , kn := max
{
‖u0.n − u0‖1/2

H1(R), ‖gn − g‖1/2
L∞(I), |γn − γ|1/2

}
,

clearly

lim inf
ε,n

‖uε,n(t, · ) − uε(t, · )‖H1(R) ≤ lim inf
n

‖uεn,n(t, · ) − uεn(t, · )‖H1(R),(8.8)

and

lim
n

A(εn, t)‖u0,n − u0‖H1(R) = lim
n

B(εn, t)‖gn − g‖L∞(I) = 0.(8.9)
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Then (8.6) is a consequence of (8.7), (8.8), and (8.9). From (8.3)–(8.6), we get

lim
n

‖un(t, · ) − u(t, · )‖H1(R) = 0.

Proof of Theorem 1.2. The proof is a direct consequence of Lemmas 7.1 and
8.1.

REFERENCES

[1] R. Beals, D. H. Sattinger, and J. Szmigielski, Acoustic scattering and the extended
Korteweg–de Vries hierarchy, Adv. Math., 140 (1998), pp. 190–206.

[2] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear
dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), pp. 47–78.

[3] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,
Phys. Rev. Lett., 71 (1993), pp. 1661–1664.

[4] G. M. Coclite, H. Holden, and K. H. Karlsen, Wellposedness for a parabolic-elliptic
system, Discrete Cont. in Dyn. Syst., 13 (2005), pp. 659–682.

[5] A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a
geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), pp. 321–362.

[6] A. Constantin, On the scattering problem for the Camassa–Holm equation, R. Soc. Lond.
Proc. Ser. A. Math. Phys. Eng. Sci., 457 (2001), pp. 953–970.

[7] A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), pp. 303–328.

[8] A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana
Univ. Math. J., 47 (1998), pp. 1527–1545.

[9] A. Constantin and J. Escher, On the Cauchy problem for a family of quasilinear hyperbolic
equations, Comm. Partial Differential Equations, 23 (1998), pp. 1449–1458.

[10] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,
Acta Math., 181 (1998), pp. 229–243.

[11] A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure
Appl. Math., 52 (1999), pp. 949–982.

[12] A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm.
Math. Phys., 211 (2000), pp. 45–61.

[13] A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible
elastic rods, Phys. Lett. A, 270 (2000), pp. 140–148.

[14] H.-H. Dai, Exact travelling-wave solutions of an integrable equation arising in hyperelastic
rods, Wave Motion, 28 (1998), pp. 367–381.

[15] H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin
rod, Acta Mech., 127 (1998), pp. 193–207.

[16] H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general com-
pressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci., 456 (2000),
pp. 331–363.

[17] R. Danchin, A few remarks on the Camassa–Holm equation, Differential Integral Equations,
14 (2001), pp. 953–988.

[18] R. Danchin, A note on well-posedness for Camassa–Holm equation, J. Differential Equations,
192 (2003), pp. 429–444.

[19] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Invent. Math., 98 (1989), pp. 511–547.

[20] B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations
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PARABOLIC EQUATIONS∗
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Abstract. We approximate the solution u of the Cauchy problem

∂

∂t
u(t, x) = Lu(t, x) + f(t, x), (t, x) ∈ (0, T ] × R

d,

u(0, x) = u0(x), x ∈ R
d,

by splitting the equation into the system

∂

∂t
vr(t, x) = Lrvr(t, x) + fr(t, x), r = 1, 2, . . . , d1,

where L,Lr are second order differential operators; f , fr are functions of t, x such that L =
∑

r Lr,
f =

∑
r fr. Under natural conditions on solvability in the Sobolev spaces Wm

p , we show that for any

k > 1 one can approximate the solution u with an error of order δk, by an appropriate combination of
the solutions vr along a sequence of time discretization, where δ is proportional to the step size of the
grid. This result is obtained by using the time change introduced in [I. Gyöngy and N. Krylov, Ann.
Probab., 31 (2003), pp. 564–591], together with Richardson’s method and a power series expansion
of the error of splitting-up approximations in terms of δ.

Key words. Cauchy problem, parabolic partial differential equations, splitting-up, method of
alternative direction, Richardson’s method
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1. Introduction. In this paper we are interested in the rate of convergence
of splitting-up approximations to the solution of the parabolic, possibly degenerate,
differential equation with time dependent coefficients

∂

∂t
u(t, x) = Lu(t, x) + f(t, x), (t, x) ∈ (0, T ] × R

d,(1.1)

with initial condition

u(0, x) = u0(x), x ∈ R
d,(1.2)

where L is a differential operator of the form

L = aij(t, x)
∂2

∂xixj
+ ai(t, x)

∂

∂xi
+ a(t, x)

and f is a function of t ≥ 0 and x ∈ R
d. The first step in the splitting methods is to

choose suitable decompositions L = L1 + L2 + · · · + Ld1 and f = f1 + f2 + · · · + fd1

for the operator L and the free term f such that each equation

∂

∂t
vr(t, x) = Lrvr(t, x) + fr(t, x),(1.3)
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r = 1, 2, . . . , d1, is integrable exactly or approximately.
Assume for simplicity that the operators Lr and the free terms fr, r = 1, 2, . . . , d1,

are time independent, and, for fixed T > 0 and integer n ≥ 1, consider the uniform
step

Tn :=

{
tni :=

iT

n
, i = 0, 1, 2, . . . , n

}
(1.4)

of step size δ := T/n. Then a splitting-up approximation u(n) for the solution u of
(1.1)–(1.2) is defined by

un(tni ) := (S
(d1)
δ . . .S

(2)
δ S

(1)
δ )iu0, i = 0, 1, . . . , n,(1.5)

at the grid points. Here S
(r)
t denotes the solution operator of (1.3); i.e., S

(r)
t ϕ is the

solution of (1.3) at time t with initial condition ϕ at t = 0. Formula (1.5) means that
we take u(n)(0) = u0, and we calculate the approximation at a grid point t+δ from the
approximation u(n)(t) at the previous grid point t, by solving (1.3) for r = 1, 2, . . . , d1

on the same time interval [0, δ] successively. First we solve the first equation (r = 1)
on [0, δ] with initial condition v1(0) = u(n)(t), and then we solve the second equation,
third equation, and so on, on the same interval [0, δ], by always taking the value at δ
of the solution of the previous equation as the initial value for the following equation.
Finally we solve the last equation (r = d1) on the interval [0, δ] with initial condition
vd1(0) = vd1−1(δ), and the value vd1(δ) is the value of the splitting-up approximation
at t + δ.

This kind of approximations is well known in numerical analysis, and it has been
successfully applied to various types of PDE problems. They are often combined with
other numerical methods, such as finite differences, finite elements, etc. Pioneering
applications to the heat equation, to hyperbolic equations, and to nonlinear PDEs are
presented, for example, in [16], [4], [2], in [29], [9] and in [3], [24], [1], [23], respectively.
Many applications and modifications of the splitting-up method have been developed
in various applied fields of linear and nonlinear PDEs and ODEs, under a variety
of different names, like dimensional splitting, operator splitting, predictor-corrector
method, method of alternating directions, fractional step method, Lie–Trotter–Kato
formula, Baker–Campbell–Hausdorff formula, Chernoff formula, split Hamiltonian,
split-steps, or leapfrog. For guidance in the huge varieties of methods, names, and
references we refer the reader to the survey article [13] and books [11], [12].

In the context of semigroups the splitting-up method first appears as Trotter’s
formula [25], which can be formulated as follows:

lim
n→∞

(etAd1
/n . . . etA2/netA1/n)nz = etAz ∀z ∈ B,

where A = A1 +A2 + · · ·+Ad1
and Ar are infinitesimal generators of C0-semigroups

of contractions {etA : t ≥ 0} and {etAr : t ≥ 0} on a Banach space B, such that
the intersection of the domains of the generators is dense in B. Clearly, in the con-
text of Cauchy problems, Trotter’s formula states the convergence of the splitting-up
approximations defined by the splitting

d

dt
vr(t) = Arvr(t), r = 1, 2, . . . , d1,

to the solution of the abstract Cauchy problem

d

dt
u(t) = Au(t), t ≥ 0, u(0) = z.
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Our main interest in the present paper is to increase the accuracy of the splitting-
up approximations for (1.1). It is known that the error of the splitting-up approx-
imations is proportional to δ, the step size. There are, however, modifications of
these approximations which are more accurate. A celebrated example is the Strang
symmetric scheme

un(t
(n)
i ) := (S

(1)
δ/2S

(2)
δ/2 . . .S

(d1)
δ/2 S

(d1)
δ/2 . . .S

(2)
δ/2S

(1)
δ/2)

iu0, i = 0, 1, . . . , n,

whose error is proportional to δ2. This approximation scheme is presented in [17],
[19]. Other symmetric schemes and their generalizations are given in [17], [18], and
[6]. All these schemes are of second order accuracy. Inspired by the above example,
for given k ≥ 2 one looks for a composition of splittings

m∏
i=1

d1∏
j=1

S
(j)
cijδ,(1.6)

with real numbers cij and integer m ≥ 1 to be determined, such that

u(δ) −
m∏
i=1

d1∏
j=1

S
(j)
cijδu0,

the local error of the corresponding approximation is proportional to δk+1 in appropri-
ate norms. Such local error leads to a global error, proportional to δk; i.e., composition
(1.6) represents a method of (at least) order k. The conditions on the numbers cij

and m, which lead to splitting methods of high order, have been studied intensively
in the literature. Such methods are obtained in [15] for Hamiltonian systems by
the Baker–Campbell–Hausdorff formula. Variations of the Trotter formula and the
Baker–Campbell–Hausdorff formula are used for linear and for nonlinear equations,
respectively, to show the existence of methods of any order (see [13], [21], [22], [26],
[28], and the literature therein). An adaptation of the method of rooted trees from the
theory of Runge–Kutta approximations is used in [14]. By [20] and [27], however, the
numbers cij in each scheme (1.6) of order k ≥ 3 cannot all be nonnegative. Thus, by
[20] and [27], the above splitting methods of order greater than or equal to 3 cannot
be used to approximate the solution of partial differential equations of parabolic type.
As McLachlan and Quispel write on page 392 of [13]: “... splitting was proposed as a
cheap way to retain unconditional stability. Methods with backward time steps can be
only conditionally stable; this stumbling block held up the development of high-order
compositions for years.”

Then the natural question arises as to whether there exists, in the case of parabolic
equations, a way different from the multiplicative one to accelerate the convergence
to a higher order. One of our main results consists of showing that, using the step size
of order δ but organizing the computations differently, it is indeed possible to achieve
the accuracy of order δk for any k, even if Ar are (degenerate) elliptic operators with
coefficients depending on time. In a subsequent article we intend to show that our
method is much more universal in the sense that it covers many situations in which
method (1.6) works and requires approximately the same amount of work.

In the present paper we use linear combinations of splittings of type (1.5) with
different step sizes to achieve arbitrary high accuracy. We prove that for any given
k ≥ 0 there exist absolute constants b0, b1, . . . , bk expressed by simple formulas such
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that the accuracy of the approximation

vn := b0un + b1u2n + b2u4n + · · · + bku2kn(1.7)

is of order δk+1 (see Theorem 2.3 below). Here u2jn is the splitting-up approximation
(1.5) along the grid (1.4), with 2jn in place of n. In particular, if k = 1, we have to
deal with two step sizes: δ and δ/2, and we get the order of accuracy δ2. The Strang
formula giving the same order of accuracy, generally, also requires working with step
size δ/2. By the way, if A = A1 + A2 and we construct our splitting-up scheme
according to A = (1/2)A1 +A2 +(1/2)A1, then our approximations just coincide with
the Strang one, and there is no need to use linear combinations to get the error of order
δ2. It is also worth noting that the above coefficients b = (b0, . . . , bk) are given by
b := e1V

−1, where e1 := (1, 0, 0, . . . , 0) and V −1 is the inverse of the (k+1)× (k+1)
Vandermonde matrix V ij = 2−(i−1)(j−1).

Our work is of a purely theoretical nature and, as the referees pointed out, much
work yet needs to be done before our results could be used in practical applications.
We restricted ourselves to making the first step in attacking Problem 10 on page 492
of [13]: “For systems that evolve in a semigroup, such as the heat equation, develop
effective methods of order higher than 2.” However, our results show that each time
one has any algorithm implementing standard splitting-up method to approximate the
solutions of the Cauchy problem for degenerate parabolic equations with sufficiently
smooth coefficients and free terms, one can improve the rate of convergence to any
degree. For instance, we believe that usually in practice one is not doing computations
with only one step size, and we show that having, say, three different step sizes, each
of which is of order δ of accuracy, and just taking a linear combination of the results,
one gets an approximation with error of order δ3.

We have to admit that we do not know whether our methods can be carried
over to quasi-linear equations or to equations in domains. In this connection we note
that there is a very active area of developing and applying in practice splitting-up
methods for degenerate nonlinear convection-diffusion equations (see, for instance, [5]
and references therein). Our equations can be viewed as belonging to this area only
if aij are constant. However, it is perhaps worth mentioning that our methods can be
applied to solving systems of (nonlinear) ODEs, and we are in the process of working
on this subject.

Inspired by Richardson’s method we obtain our results by expanding the error
u−un of the splitting-up approximation (1.5) in powers of δ = T/n. This is Theorem
2.2, the main theorem of our paper. We use this expansion with δ = T/2jn, j =
0, 1, 2, . . . , k, and choose the above coefficients b0, b1, . . . , bk to eliminate the terms of
order less than k + 1 in the linear combination (1.7).

The main theorem of the present paper is proved by exploiting a new approach
of [7] and [8] to splitting-up methods. As we discussed above, the splitting-up ap-
proximation (1.5) means that to get the approximation at t + δ from that at t, one
goes back and forth in time d1 times while solving (1.3), r = 1, 2, . . . , d1, successively.
A basic idea of [7] is to arrange the splitting continuously in forward time direction,
and to synchronize it with the original equation by time-scaling. In this way we have
differential equations for the rearranged splitting-up approximations and for the time-
scaled solution of the original equation, which enables us to use methods of the theory
of partial differential equations and not semigroup theory and get an expansion for
their difference in terms of powers of δ even if the coefficients depend on time. The
method of [7] and [8] appeared in connection with splitting-up for stochastic PDEs.
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It is worth mentioning that most likely it is impossible to accelerate the splitting-up
method in this more complicated situation.

The paper is organized as follows. In the next section we introduce our gen-
eral setting but state the results, Theorems 2.3 and 2.2, only for the case of time
independent data for the sake of simplicity of presentation. Theorem 2.2 is proved
immediately after its formulation on the basis of Theorem 2.3, which in turn is proved
in section 4, after we prepare some auxiliary facts in section 3. In section 5 we gen-
eralize Theorems 2.3 and 2.2 for time dependent data and derive some consequences
valid in the time-homogeneous case as well.

In conclusion we introduce some notation used everywhere below. Throughout
the paper d ≥ 1, d1 ≥ 2 are fixed positive integers, K,T are fixed finite positive
constants, and

Di :=
∂

∂xi
, Dij :=

∂2

∂xi∂xj
, Dt :=

∂

∂t
.

We denote by Wm
p the Sobolev space defined as the closure of C∞

0 functions ϕ : R
d →

R in the norm

‖ϕ‖m,p :=

⎛
⎝ ∑

|γ|≤m

∫
Rd

|Dγϕ(x)|p dx

⎞
⎠

1/p

,

where Dγ := Dγ1

1 . . . Dγd

d for multi-indices γ = (γ1, . . . , γd) of length |γ| := γ1 + γ2 +
· · · + γd. Unless otherwise indicated, we use the summation convention with respect
to repeated indices.

2. Formulation of the main results. The case of time independent
coefficients. We consider the problem

Dtu(t, x) = Lu(t, x) + f(t, x), t ∈ (0, T ], x ∈ R
d,(2.1)

u(0, x) = u0(x), x ∈ R
d,(2.2)

where L is an operator of the form

L = aij(t, x)Dij + ai(t, x)Di + a(t, x),

and f and u0 are real functions of (t, x) ∈ (0, T ]×R
d and of x ∈ R

d, respectively. We
assume that the coefficients aij , ai, a and the derivatives aij

xk of aij are bounded Borel
functions of (t, x). We fix p ≥ 2 and assume that u0 and f are measurable and |u0|p
and |f |p are integrable over R

d and over [0, T ] × R
d, respectively.

Definition 2.1. By a solution of problem (2.1)–(2.2) we mean an W 1
p -valued

weakly continuous function u(t) = u(t, ·) defined on [0, T ] such that for all φ ∈ C0(R
d)

and t ∈ [0, T ]

(u(t, ·), φ) = (u(0, ·), φ) +

∫ t

0

[−(aijDiu(s), Djφ)

+ ((ai − aijxj )Diu(s) + au(s) + fr(s), φ)] ds,
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where ( , ) denotes the usual inner product in L2(Rd). Quite often we write (2.1) and
similar equations in the form

du(t) = (Lu(t) + f(t)) dt,

bearing in mind the differential of u in t only.
Suppose that we split (2.1) into the equations

Dtv(t, x) = Lrv(t, x) + fr(t, x), t ∈ (0, T ], x ∈ R
d,(2.3)

with

Lr := aijr (t, x)Dij + air(t, x)Di + ar(t, x), L =

d1∑
r=1

Lr, f =

d1∑
r=1

fr,

such that these equations are more pleasant from the point of view of numerical
methods than the original one. This motivates the multistage splitting method, which
we describe below. First we need some assumptions.

Fix an integer l ≥ 1.
Assumption 2.1 (ellipticity of Lr). For each r = 1, 2, . . . , d1 for dt × dx-almost

every (t, x) ∈ [0, T ] × R
d

aijr (t, x)λiλj ≥ 0

for all (λ1, λ2, . . . , λd) ∈ R
d.

Assumption 2.2. (i) The partial derivatives

Ds
tD

ρaijr , Ds
tD

ρair, Ds
tD

ρar for i, j = 1, 2, . . . , d, r = 1, 2, . . . , d1

exist and by magnitude are bounded by K for all integers s ≥ 0 and multi-indices ρ,
satisfying 2s + |ρ| ≤ l.

(ii) For every integer s ∈ [0, l/2]

sup
t∈[0,T ]

‖Ds
t fr(t)‖l−2s,p ≤ K.

(iii) We have u0 ∈ W l
p and ‖u0‖l,p ≤ K.

It is well known that under the above conditions, (2.1) and (2.3) with initial
condition u(0) = u0 admit unique generalized solutions u and v, respectively, which
are W l

p-valued weakly continuous functions of t ≥ 0 (see, for instance, Theorem 3.1
below). We want to approximate the solution u by using the splitting-up method,
i.e., by solving (2.3) successively with appropriate initial conditions on appropriate
time intervals. Let us formulate now our splitting-up scheme in the case when the
coefficients aijr , a

i
r, ar and free terms fr are independent of the time variable t.

Set Tn := {ti := iT/n : i = 0, 1, 2, . . . , n}, δ := T/n for an integer n ≥ 1. Then
for fixed n we approximate the solution u of (2.1)–(2.2) at ti = iT/n recursively by
un(0) := u0,

un(ti+1) := S
(d1)
δ . . .S

(2)
δ S

(1)
δ un(ti), i = 0, 1, 2, . . . , n− 1,(2.4)

where S
(r)
t ψ := v(t) denotes the solution of (2.3) for t ≥ 0 with initial condition

v(0) = ψ.
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It is known that if Assumptions 2.1 and 2.2 are satisfied with l = m + 4, then

max
t∈Tn

‖u(t) − un(t)‖m,p ≤ N

n

for all n ≥ 1, where N depends only on d, d1, T,K, p,m. Moreover, this rate of con-
vergence is sharp (see [8], where this result is a special case of the rate of convergence
estimates for stochastic PDEs). In the present paper we want to show that by suitable
combinations of splitting-up approximations we can achieve convergence as fast as we
wish. We show this by the aid of the following theorem on expansion of un in powers
of the step size δ.

Theorem 2.2. Let m ≥ 0 and k ≥ 0 be integers. Let Assumptions 2.1 and 2.2
hold with

l ≥ 4 + m + 4k.(2.5)

Suppose that the coefficients aijr , a
i
r, ar and the free terms fr do not depend on t. Then

for all n ≥ 1 and t ∈ Tn and x ∈ R
d, the following representation holds:

un(t, x) = u(t, x) + δu(1)(t, x)

+ δ2u(2)(t, x) + · · · + δku(k)(t, x) + R
(k)
n (t, x),

(2.6)

where the functions u(1), . . . , u(k) and R
(k)
n , defined on [0, T ], are Wm

p -valued and

weakly continuous. Furthermore, u(j), j = 1, 2, . . . , k, are independent of n, and

sup
t∈Tn

‖R(k)
n (t)‖m,p ≤ Nδk+1(2.7)

for all n, where N depends only on l, k, d, d1,K,m, p, T .
Remark 2.1. If k = 0 and p = 2, the result holds under a weaker restriction on l:

l ≥ 3 + m (see, for instance [7]). For general p ≥ 2 and k = 0 the result is proved in
[8].

We prove Theorem 2.2 in section 4. Now we deduce from it a result on the
acceleration of the splitting-up method. Let V denote the square matrix defined
by V ij := 2−(i−1)(j−1), i, j = 1, . . . , k + 1. Notice that the determinant of V is the
Vandermonde determinant, generated by 1, 2−1, . . . , 2−k, and hence it is different from
0. Thus V is invertible. Set b := (b0, b1, . . . , bk) := (1, 0, 0, . . . , 0)V −1, and define

vn(t) :=

k∑
j=0

bju2jn(t), t ∈ Tn :=

{
iT

n
: i = 0, 1, . . . , n

}
,

where u2jn is the splitting-up approximation based on the grid T2jn := {iT/(2jn) :
i = 0, 1, . . . , 2jn}.

Theorem 2.3. Let m ≥ 0 and k ≥ 0 be any integers. Let Assumptions 2.1 and
2.2 hold with l satisfying (2.5). Suppose that the coefficients aijr , a

i
r, ar and the free

terms fr do not depend on t. Then

max
t∈Tn

‖vn(t) − u(t)‖m,p ≤ Nδk+1,

where N is a constant depending only on l, k, d, d1,K,m, p, T .
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Proof. By Theorem 2.2

u2jn = u +

k∑
i=1

δi

2ji
u(i) + R

(k)
2jn, j = 0, 1, . . . , k.

Therefore for all n ≥ 1

vn =

k∑
j=0

bju2jn =

⎛
⎝ k∑

j=0

bj

⎞
⎠u +

k∑
j=0

k∑
i=1

bj
δi

2ij
u(i) +

k∑
j=0

bjR
(k)
2jn

= u +

k∑
i=1

δiu(i)
k∑

j=0

bj
2ij

+

k∑
j=0

bjR
(k)
2jn = u +

k∑
j=0

bjR
(k)
2jn,

since
∑k

j=0 bj = 1 and
∑k

j=0 bj2
−ij = 0 for i = 1, 2, . . . , k by the definition of

(b0, . . . , bk). Hence vn − u =
∑k

j=0 bjR
(k)
2jn and

max
t∈Tn

‖vn(t) − u(t)‖m,p = max
t∈Tn

∥∥∥∥∥∥
k∑

j=0

bjR
(k)
2jn(t)

∥∥∥∥∥∥
m,p

≤
k∑

j=0

|bj |max
t∈Tn

‖R(k)
2jn(t)‖m,p ≤ Nδk+1,

by (2.7), where N is a constant depending only on l, T , K, d, d1,m, p, k.
Remark 2.2. Assume that u(1) = 0 in expansion (2.6). This happens, for example,

for Strang’s splitting, which is a special case of our splitting-up scheme, as is explained
in the Introduction. In this case we need take only k terms in the linear combination
to achieve accuracy of order k + 1. Namely, we now define vn(t) by

vn(t) :=

k−1∑
j=0

λju2jn(t), t ∈ Tn,

where

(λ0, λ1, . . . , λk−1) := (1, 0, . . . , 0)V −1,

and V is now a k × k Vandermonde matrix with entries Vi1 := 1, Vi,j := 2−(i−1)j

for i = 1, 2, . . . , k and j = 2, . . . , k. Then Theorem 2.3 remains valid, which one can
prove in the same way as Theorem 2.3 is proved. For example,

vn(t) := −1

3
un(t) +

4

3
u2n(t), t ∈ Tn,

is an approximation of accuracy δ3 in the case of Strang’s splitting.

3. Auxiliary results. Let us consider the PDE

du(t, x) = (Lu(t, x) + f(t, x)) dA(t), t ∈ (0, T ], x ∈ R
d,(3.1)

u(0, x) = u0(x), x ∈ R
d,(3.2)
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where L is an operator of the form

L = aij(t, x)Dij + ai(t, x)Di + a(t, x),

A = A(t) is a continuous increasing function starting from 0, and f and u0 are real
functions of (t, x) ∈ (0, T ] × R

d and of x ∈ R
d, respectively. Fix an integer l ≥ 0 and

a real number p ≥ 2. We understand the solution in the spirit of Definition 2.1 and
make the following assumptions.

Assumption 3.1 (smoothness of the coefficients). The coefficients of L are mea-
surable. The derivatives in x ∈ R

d of the coefficients aij up to order 2∨ l, of the coef-
ficients ai(t, x) up to order 1 ∨ l, and of a(t, x) up to order l exist for any t ∈ (0,∞),
and by magnitude are bounded by K.

Assumption 3.2. We have

u0 ∈ W l
p, f ∈ Lp([0, T ],W l

p).

Assumption 3.3 (ellipticity of L). For all t ≥ 0, x ∈ R
d, and λ ∈ R

d, we have

aij(t, x)λiλj ≥ 0.

Assumption 3.4. The function A is absolutely continuous and

Ȧ(t) :=
d

dt
A(t) ≤ K

for dt-almost every t ≥ 0.
The following result is well known in PDE theory (after replacing dA in (3.1) with

Ȧ dt we easily get it, for instance, from [10] or from Theorem 3.1 in [7]).
Theorem 3.1. Under Assumptions 3.1, 3.2, 3.3, and 3.4 with l ≥ 1 the Cauchy

problem (3.1)–(3.2) has a unique generalized solution u. If Assumptions 3.1, 3.2, 3.3,
and 3.4 hold with l ≥ 0, and if u is a generalized solution of (3.1)–(3.2), then for every
integer l1 ∈ [0, l]

sup
t∈[0,T ]

‖u(t)‖pl1,p ≤ N

{
‖u0‖pl1,p +

∫ T

0

‖f(t)‖pl1,p dt
}
,

where N is a constant depending only on T , K, l, p, d.
Under the assumptions of Theorem 3.1 let Rf denote the solution of (3.1) with

initial data u0 = 0. Then by virtue of Theorem 3.1

R : Lp([0, T ],W l
p) → Cw([0, T ],W l

p)

is a bounded linear operator, where Cw([0, T ],W l
p) denotes the Banach space of weakly

continuous W l
p-valued functions u = u(t), t ∈ [0, T ] with the norm supt∈[0,T ] ‖u(t)‖l,p.

Let us now consider the equation

du(t, x) = Lu(t, x) dA(t) + g(t, x) dH(t),(3.3)

(t, x) ∈ (0, T ] × R
d,

where g is a real-valued function of (t, x) ∈ [0, T ]×R
d and H is an absolutely contin-

uous function of t ∈ [0, T ].
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Assumption 3.5. We have g ∈ Lp([0, T ],W l+2
p ), and there exists g′ ∈ Lp([0, T ],W l

p)
such that

d(g(t), φ) = (g′(t), φ) dA(t), t ∈ [0, T ],

for all φ ∈ C0(R
d).

Lemma 3.2. Under Assumptions 3.1, 3.3, 3.4, and 3.5 with l ≥ 1, (3.3) with zero
initial data has a unique generalized solution u. Moreover,

u = R(H(Lg − g′)) + Hg =: Q(H, g).(3.4)

If Assumptions 3.1, 3.3, 3.4, and 3.5 hold with l ≥ 0, and (3.3) with zero initial data
admits a generalized solution u, then for every integer l1 ∈ [0, l]

sup
t∈[0,T ]

‖u(t)‖l1,p

≤ N sup
t∈[0,T ]

|H(t)|

⎛
⎝ sup

t∈[0,T ]

‖g(t)‖l1,p +

{∫ T

0

(‖g(t)‖pl1+2,p + ‖g′(t)‖pl1,p) dt
}1/p

⎞
⎠ ,

(3.5)

where N is a constant depending only on p, d,K, l, T .
Proof. Note that

d((g(t), φ)H(t)) = (g(t), φ) dH(t) + (g′(t), φ)H(t) dA(t)

for all φ ∈ C0(R
d). Therefore u solves (3.3) when w(t, x) := u(t, x)−H(t)g(t, x) solves

dw(t, x) := {Lw(t, x) + H(t)(Lg(t, x) − g′(t, x))} dA(t).

Hence equality (3.4) follows by Theorem 3.1, and it implies (3.5).
Remark 3.1. We often consider (3.3) when dH(t)/dt is bounded. Then under

Assumptions 3.1, 3.3, 3.4, and 3.5 with l ≥ 1, (3.3) with zero initial data has a
unique generalized solution u by Theorem 3.1. By Theorem 3.1 this solution belongs
to Cw([0, T ],W l

p), and its norm in this space admits an estimate with a constant

depending on the bound for Ḣ and only the Lp([0, T ],W l
p)-norm of g. It is important

that the function H enters (3.5) only through sup |H| and not any characteristic of
its derivative; however, for that we pay a price requiring g to have more derivatives.

4. Proof of Theorem 2.2. Throughout this section the assumptions of The-
orem 2.2 are supposed to be satisfied. In particular, l ≥ 4. Fix n and introduce
δ = T/n. We use the idea from [7] and [8] of rearranging the splitting method in
forward time. We achieve this by considering the equation

dw(t, x) =

d1∑
r=1

(Lrw(t, x) + fr) dAr(t), w(0, x) = u0(x),(4.1)

where the time change Ar, r = 1, . . . , d1, is defined by the requirements that Ar(0) =
0, Ar(t) be absolutely continuous, and its derivative in time Ȧr be periodic with
period d1δ and

Ȧr(t) = 1[r−1,r]

(
t

δ

)
, t ∈ [0, d1δ] (a.e.).(4.2)
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Instead of the original Cauchy problem (2.1)–(2.2) we consider

dv(t, x) = (Lv(t, x) + f) dA0(t), v(0, x) = u0(x),

where

A0(t) :=
t

d1
.(4.3)

Clearly, v(t) = u(A0(t)) and

v(d1t) = u(t), w(d1t) = un(t) for all t ∈ Tn.

Therefore our aim is to show that Theorem 2.2 holds with v and w in place of u,
and un, respectively, for all t = id1δ, i = 0, 1, . . . , n. To this end first we introduce
some notation. We call a sequence of numbers α = α1α2 . . . αi a multinumber of
length |α| := i if αj ∈ {0, 1, 2, . . . , d1}. The reader should notice the difference
between multinumbers and multi-indices. The set of all multinumbers is denoted by
N . For every multinumber α we define a function Bα : [0,∞) → R and a number cα
recursively starting as follows:

Bγ := δ−1(Aγ −A0), cγ = 0 for γ = 0, 1, 2, . . . , d1.(4.4)

If for every multinumber β = β1 . . . βi of length i the function Bβ and the number cβ
are defined, then

cβγ := δ−1

∫ d1δ

0

Bβ(s)Ȧγ(s) ds,(4.5)

Bβγ(t) := δ−1

∫ t

0

(Bβ(s)Ȧγ(s) − cβγȦ0(s)) ds(4.6)

for γ = 0, 1, 2, . . . , d1, where Ȧγ(s) := dAγ(s)/ds.
Notice that by (4.6) we have

Bβ(t) dAγ(t) = cβγ dA0(t) + δ dBβγ(t)(4.7)

for all multinumbers β and γ = 0, 1, 2, . . . , d1. We will often make use of this equality
and of the following lemma.

Lemma 4.1. For every α ∈ N the function Bα is d1δ-periodic, i.e., Bα(t+d1δ) =
Bα(t) for all t ≥ 0, and Bα(id1δ) = 0 for all integer i ≥ 0. Moreover, the numbers
cα, the functions Cα(t) := Bα(δt), and

sup
t≥0

|Bα(t)| = sup
t≥0

|Cα(t)|

are finite and do not depend on δ.
Proof. That the first assertion is true for α = 0, . . . , d1 is almost obvious. If it is

true for α = β, where β is a multinumber, then the integrand in (4.6) is d1δ-periodic,
and by definition of cβγ its integral over the period is zero. It follows that the first
assertion holds for α = βγ, so the induction on the length |α| finishes the proof of the
first assertion.
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To prove the second one we again use the induction on the length i = |α|. This
statement is true when |α| = 1. Assume that it is true for all multinumbers β of
length i and notice that, according to (4.2) and (4.3), Ȧγ(δs) are d1-periodic in s and
independent of δ. Therefore,

cβγ =
1

δ

∫ d1δ

0

Bβ(s)Ȧγ(s) ds =

∫ d1

0

Cβ(s)Ȧγ(δs) ds

is independent of δ by the induction hypothesis. Similar argument works for Cα(t).
We use the notation Rf and Qαg, α ∈ N , for the solutions of (3.1) and (3.3),

respectively, with zero initial condition and A0 and Bα in place of A and H, respec-
tively. Notice that, unlike in the case of uniformly parabolic operators, R and Qα do
not increase regularity.

The following lemma exhibits our two main technical tools: centering Bα and
integrating by parts with respect to t.

Lemma 4.2. Take some functions

h ∈ Lp([0, T ],W 1
p ), hr ∈ Lp([0, T ],W 1

p ), r = 1, . . . , d1, h0 = 0.

Let u be a solution of the “equation”

du =

d1∑
r=1

hr dAr,

u(0) ∈ W 1
p , which is a particular case of (4.1) when Lr ≡ 0. Finally, let Lu ∈

Lp([0, T ],W 1
p ). Then for any α ∈ N

R(Bαh) = cα0Rh + δQα0h,(4.8)

Qαu = R(cα0Lu− cαrhr) + δQα0Lu− δQαrhr + Bαu.(4.9)

Proof. To prove (4.8) it suffices to use the definitions of R and Qβ (see Theorem
3.1 and Lemma 3.2) and that by virtue of (4.7) for ϕ = R(Bαh) we have

dϕ = LϕdA0 + Bαh dA0 = LϕdA0 + cα0h dA0 + δh dBα0.

To prove (4.9) observe that, by definition, θ := Qαu satisfies

dθ = Lθ dA0 + u dBα, θ(0) = 0.

This and (4.7) imply that ψ := θ − uBα satisfies ψ(0) = 0 and

dψ = Lψ dA0 + LuBα dA0 − hrBα dAr

= Lψ dA0 + cα0LudA0 + δLu dBα0 − cαrhr dA0 − δhr dBαr.

Now (4.9) follows from the definitions of R and Qβ . The proof of the lemma is
complete.

Now we introduce some differential operators Lγ and functions fγ defined for
multinumbers γ as follows: L0 := 0, f0 := 0,

Lγ := Lr, fγ := fr
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for γ = r ∈ {1, 2, . . . , d1}, and

Lγ0 := LLγ , Lγr := −LγLr,

fγ0 := Lfγ , fγr := −Lγfr

for r = 1, 2, . . . , d1.
In this notation we have the following.
Lemma 4.3. Let α, β ∈ N and 2|β| + 3 ≤ l. Then

Qα(Lβw + fβ) = cαrR(Lβrw + fβr) + δQαr(Lβrw + fβr) + Bα(Lβw + fβ).(4.10)

Proof. It follows from formula (4.9) applied to u := Lβw + fβ , when hr =
LβLrw + Lβfr (remember fr are independent of t), that the left-hand side of (4.10)
equals

R[cα0(LLβw + Lfβ) − cαr(LβLrw + Lβfr)]

+ δQα0(LLβw + Lfβ) − δQαr(LβLrw + Lβfr) + Bα(Lβw + fβ),

which is easily seen to be equal to the right-hand side of (4.10).
We derive from (4.10) one of the most important formulas.
Proposition 4.4. Let κ ≥ 0 be an integer and l ≥ 2κ + 3. Then

w = v +
κ∑

i=1

δi
∑
|α|=i

Bα(Lαw + fα) +

κ∑
i=1

δi
∑

|α|=i+1

cαR(Lαw + fα) + δκ+1r(κ)

(4.11)

for all t ∈ [0, d1T ], where

r(κ) =
∑

|α|=κ+1

Qα(Lαw + fα).

Proof. First notice that for ϕ0 := w − v we have

dϕ0 = d(w − v) = Lϕ0 dA0 + δ(Lrw + fr) dBr,

which proves (4.11) for κ = 0.
Next we fix a κ ≥ 1 and transform r(i), for i = 0, . . . , κ − 1, by applying (4.10)

with α = β and |α| = i + 1 when fr ∈ W
2|β|+3
p . Then we get

r(i) =
∑

|α|=i+1,|β|=1

cαβR(Lαβw + fαβ) + δ
∑

|α|=i+1,|β|=1

Q(Lαβw + fαβ)

+
∑

|α|=i+1

Bα(Lαw + fα) =
∑

|α|=i+1

Bα(Lαw + fα)

+
∑

|α|=i+2

cαR(Lαw + fα) + δr(i+1).

This shows how r(0), r(1), . . . , r(κ) are related to each other and certainly proves the
proposition.
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Decomposition (4.11) looks very much like (2.6), the only difference being that
the factors of δj depend on the approximating function w, and the coefficients of δj in
the second term on the right contain Bα, which is not a power series in δ. However,
observe that we have to estimate the difference v−w only at the points id1δ at which
all Bα vanish.

Our next step is to “solve” (4.11) with respect to w by the method of successive
iterations, that is, by substituting w given by (4.11) into the right-hand side of the
same equation. In the process of doing so we encounter only one difficulty, when the
second term on the right is plugged into the third and we have to develop expressions
like R(Bαu) into power series in δ. We transform these terms by using (4.8) and
(4.10).

First we introduce the notation

wβ = Lβw + fβ ;

observe that in these terms (4.10) is rewritten as

Qαwβ = cαrRwβr + Bαwβ + δQαrwβr,(4.12)

and note the following.

Lemma 4.5. If κ ≥ 0 is an integer and α, β ∈ N and 2(|β| + κ) + 1 ≤ l, then

R(Bαwβ) =

κ∑
i=0

δi
∑
|γ|=i

cα0γRwβγ

+

κ∑
i=1

δi
∑

|γ|=i−1

Bα0γwβγ + δκ+1
∑
|γ|=κ

Qα0γwβγ ,(4.13)

where for any multinumbers μ, ν∑
|γ|=0

cνγRwμγ := cνRwμ,
∑
|γ|=0

Bνγwμγ := Bνwμ,

∑
|γ|=0

Qνγwμγ := Qνwμ.

Proof. If κ = 0, (4.13) follows from (4.8). If κ ≥ 1, by applying (4.12) repeatedly
as in the proof of Proposition 4.4 we find

Qαwβ =

κ−1∑
i=0

δi
∑

|γ|=i+1

cαγRwβγ

+

κ−1∑
i=0

δi
∑
|γ|=i

Bαγwβγ + δκ
∑
|γ|=κ

Qαγwβγ .

We use this formula for α0 in place of α and finish the proof by referring to (4.8).

Let M denote the set of multinumbers γ1γ2 . . . γi with γj ∈ {1, 2, . . . , d1}, j =
1, 2, . . . , i, and integers i ≥ 1.
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Lemma 4.6. The following statements hold:
(i) Let γ = γ1γ2 . . . γi ∈ M be such that |γ| = i ≤ 1 + l/2. Then

Lγ = (−1)|γ|−1Lγ1
. . . Lγi

, fγ = (−1)|γ|−1Lγ1
. . . Lγi−1

fγi
.

(ii) Let β, γ ∈ M be such that |β| + |γ| ≤ 1 + l/2. Then

LβLγ = −Lβγ , Lβfγ = −fβγ .

(iii) Let α ∈ N be such that ρ := |α| ≤ 1 + l/2. Then there exist constants
c(γ) = c(α, γ) ∈ {0,±1} defined for all γ ∈ M with |γ| = ρ such that

Lα =
∑

γ∈M,|γ|=ρ

c(γ)Lγ , fα =
∑

γ∈M,|γ|=ρ

c(γ)fγ .(4.14)

Proof. Part (i) follows immediately from the definition of Lγ , fγ by induction
on |γ|. Part (i) obviously implies part (ii). Part (iii) clearly holds for α = 0 and
α = r ∈ {1, . . . , d1}. Assume that (4.14) holds for some α ∈ N , |α| < 1 + l/2. Then

Lαr = −LαLr = −
∑

|γ|=|α|
c(γ)LγLr =

∑
|γ|=|α|

c(γ)Lγr,

fαr = −Lαfr = −
∑

|γ|=|α|
c(γ)Lγfr =

∑
|γ|=|α|

c(γ)fγr

for r ∈ {1, 2, . . . , d1}, and

Lα0 = LLα =

d1∑
r=1

Lr

∑
γ∈M,|γ|=ρ

c(γ)Lγ = −
d1∑
r=1

∑
γ∈M,|γ|=ρ

c(γ)Lrγ ,

fα0 = Lfα =

d1∑
r=1

Lr

∑
γ∈M,|γ|=ρ

c(γ)fγ = −
d1∑
r=1

∑
γ∈M,|γ|=ρ

c(γ)frγ ,

which proves (iii) by induction on |α|.
We introduce sequences σ = (β1, β2, . . . , βi) of multinumbers βj ∈ M, where

i ≥ 1 is any integer, and set |σ| := |β1|+ |β2|+ · · ·+ |βi|. We consider also the “empty
sequence” e of length |e| = 0, and denote the set of all these sequences by J . For
σ = (β1, β2, . . . , βi), i ≥ 1, we define

Sσ = RLβ1 · · · · · RLβi ,

and for σ = e we set

Se = R.

Notice that Sσ involves 2|σ| derivatives with respect to x and a certain number of
operators R which do not increase regularity. Therefore, basically, Sσ has the power
of a differential operator of 2|σ|th order. If we have a collection of functions gν indexed
by a parameter ν taking values in a set A, then we use the notation∑

*

ν∈A

gν
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for any linear combination of gν with coefficients independent of the argument of gν
and of δ. For instance,∑

*

A

Sσwγ =
∑

*

(σ,γ)∈A

Sσwγ =
∑

(σ,γ)∈A

c(σ, γ)Sσwγ ,

where c(σ, γ) are certain constants independent of δ. These constants are allowed to
change from one occurrence to another.

For functions u = u(t, x) = u(δ, t, x) depending on the parameter δ we write
u = Om(δκ) if

sup
δ

δ−κ sup
t∈[0,d1T ]

‖u(t)‖m,p < ∞.

We also use the following sets:

A(i) = {(σ, β) : σ ∈ J , β ∈ M, |σ| + |β| ≤ i},

B(i, j) = {(α, β) : α ∈ N , β ∈ M, |α| = i, |β| ≤ j}.

Lemma 4.7. Let κ, μ ≥ 0 be integers and α ∈ N , β ∈ M, σ ∈ J . Assume that

2(|σ| + |β| + κ) + μ + 2 ≤ l.(4.15)

Then

Sσ(Bαwβ) =

κ∑
i=0

δi
∑

*

A(|σ|+|β|+i)

Sσ1wβ1

+

κ∑
i=1

δi
∑

*

B(|α|+i,|σ|+|β|+i−1)

Bα1wβ1 + Oμ(δκ+1).(4.16)

Proof. For σ = e, when Sσ = R, equation (4.16) turns out to be just a different
form of (4.13), which is applicable since 2(|β| + κ) + 1 ≤ l. Indeed, owing to Lemma
4.6(iii), ∑

|γ|=i

cα0γRwβγ =
∑

*

A(|σ|+|β|+i)

Sσ1wβ1 ,

∑
|γ|=i−1

Bα0γwβγ =
∑

*

B(|α|+i,|σ|+|β|+i−1)

Bα1wβ1 .

Furthermore, for |γ| = κ (see Remark 3.1)

Qα0γwβγ = Oμ(1) since 2(|β| + κ) + μ + 2 ≤ l.

For |σ| ≥ 1 we proceed by induction on the length �(Sσ) of Sσ = RLβ1 · · · · ·RLβj ,
which we define to be j. If �(Sσ) = 1, then Sσ = RLν for a ν ∈ M with ν = σ, and
it suffices to notice that

Sσ(Bαwβ) = RLν(Bαwβ) = −R(Bαwνβ) = −Se(Bαwβ′),(4.17)

where β′ = νβ ∈ M and 2(|β′| + κ) + μ + 2 = 2(|σ| + |β| + κ) + μ + 2 ≤ l.
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Assume that (4.16) holds whenever �(Sσ) = s, and take an Sσ such that �(Sσ) =
s + 1. Then Sσ = RLνSσ′ , where ν, σ′ ∈ M, |ν| + |σ′| = |σ|, and �(Sσ′) = s.
Furthermore,

2(|σ′| + |β| + κ) + μ′ + 2 ≤ l,

where μ′ = μ + 2|ν|. By the induction hypothesis,

Sσ′(Bαwβ) =

κ∑
i=0

δi
∑

*

A(|σ′|+|β|+i)

Sσ1wβ1

+

κ∑
i=1

δi
∑

*

B(|α|+i,|σ′|+|β|+i−1)

Bα1
wβ1

+ Oμ′(δκ+1).

We apply RLν to both parts of this equality and take into account that Lνwβ1 =
−wνβ1 and |ν| + |σ′| = |σ|. Then similarly to (4.17) we get that

Sσ(Bαwβ) =

κ∑
i=0

δi
∑

*

A(|σ|+|β|+i)

Sσ1wβ1

+

κ∑
i=1

δi
∑

*

B(|α|+i,|σ|+|β|+i−1)

Se(Bα1
wβ1

) + Oμ(δκ+1).(4.18)

Now we transform the second term on the right. Take (α1, β1) ∈ B(|α| + i, |σ| +
|β|+ i− 1) and notice that then |β1| ≤ |σ|+ |β|+ i− 1. Hence, by assumption (4.15),

2(|β1| + κ− i) + μ + 2 < l.

Therefore, by the result for σ = e,

Se(Bα1wβ1) =

κ−i∑
j=0

δj
∑

*

A(|β1|+j)

Sσ2wβ2

+

κ−i∑
j=1

δj
∑

*

B(|α1|+j,|β1|+j−1)

Bα2wβ2 + Oμ(δκ−i+1).

We substitute this result into (4.18) and obtain (4.16) after collecting the coefficients
of δi+j and noticing that, if (α1, β1) ∈ B(|α| + i, |σ| + |β| + i − 1) and (α2, β2) ∈
B(|α1| + j, |β1| + j − 1), then

(α2, β2) ∈ B(|α| + i + j, |σ| + |β| + i + j − 1).

This justifies the induction and finishes the proof of the lemma.
We remind the reader that throughout this section the assumptions of Theorem

2.2 are supposed to be satisfied, and in the following proposition we use the notation

B∗(i, j) =

i⋃
i1=1

B(i1, j).
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Proposition 4.8. For any j = 0, 1, . . . , k we have

w = v +

j∑
i=1

δi
∑

*

A(2i)

Sσvβ +

k∑
i=j+1

δi
∑

*

A(i+j+1)

Sσ1wβ1

+

k∑
i=1

δi
∑

*

B∗(i,i+j)

Bα1wβ1 + Om(δk+1),(4.19)

where vβ := Lβv + fβ.

Proof. By Proposition 4.4 (notice that, due to (2.5), l ≥ 2k + 3 and 2(k + 1) +
m + 2 ≤ l) we have

w = v +
k∑

i=1

δi
∑
|β|=i

Bβwβ +

k∑
i=1

δi
∑

|β|=i+1

cβRwβ + Om(δk+1),

which means that (4.19) holds for j = 0, since by Lemma 4.6(iii),

∑
|β|=i

Bβwβ =
∑
|β|=i

Bβ

∑
γ∈M,|γ|=i

c(β, γ)wγ =
∑

*

B∗(i,i)

Bα1wβ1 ,

∑
|β|=i+1

cβRwβ =
∑

|β|=i+1

cβ
∑

γ∈M,|γ|=i+1

c(β, γ)Rwγ =
∑

*

A(i+1)

Sσ1
wβ1

.

Next, assume that k ≥ 1 and that (4.19) holds for a j ∈ {0, . . . , k−1}. Transform
the first term with i = j +1 in the second sum on the right in (4.19) by using Lemma
4.7. To prepare the transformation take (σ1, β1) ∈ A(2i) = A(i + j + 1) so that
|σ1| + |β1| ≤ 2i and apply the operator Sσ1

Lβ1
to both parts of (4.11) with k − i in

place of κ. Then we obtain

Sσ1wβ1 = Sσ1vβ1 +

k−i∑
i1=1

δi1
∑

|α1|=i1

Sσ1(Bα1Lβ1wα1)

+

k−i∑
i1=1

δi1
∑

|α1|=i1+1

cα1
Sσ1

Lβ1
Rwα1

+ δk−i+1r(k−i),

where

r(k−i) =
∑

|α|=k−i+1

Sσ1Lβ1Qαwα.

Owing to

l − 2(k − i + 1 + |β1| + |σ1|) ≥ l − 2(k + i + 1)

≥ l − 2(2k + 1) ≥ m + 2,

we have r(k−i) = Om(1). By the way, this is the only place where we need l to be not
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smaller than 4 + m + 4k. Hence by Lemma 4.6(iii),

Sσ1wβ1 = Sσ1vβ1 +

k−i∑
i1=1

δi1
∑

*

(α2,β2)∈B(i1,|β1|+i1)

Sσ1(Bα2wβ2)

+

k−i∑
i1=1

δi1
∑

*

A(|σ1|+|β1|+i1+1)

Sσ2
wβ2

+ Om(δk−i+1) =: J1 + · · · + J4.(4.20)

Now Lemma 4.7 with k−i−i1 in place of κ and m in place of μ allows us to transform
terms entering J2. For |β2| ≤ |β1| + i1 we have (remember that (σ1, β1) ∈ A(2i))

2(|σ1| + |β2| + k − i− i1) + m + 2 ≤ 2(|σ1| + |β1| + k − i) + m + 2

≤ 2(i + k) + m + 2 ≤ 4k + m + 2 < l.

Therefore

Sσ1
(Bα2

wβ2
) =

k−i−i1∑
i2=0

δi2
∑

*

A(|σ1|+|β2|+i2)

Sσ3
wβ3

+

k−i−i1∑
i2=1

δi2
∑

*

B(|α2|+i2,|σ1|+|β2|+i2−1)

Bα3wβ3 + Om(δk−i−i1+1).

We plug this result into J2 and, in order to collect the coefficients of δi1+i2 , notice
that for (σ3, β3) ∈ A(|σ1| + |β2| + i2) and (α2, β2) ∈ B(i1, |β1| + i1) it holds that

|σ3| + |β3| ≤ |σ1| + |β2| + i2 ≤ |σ1| + |β1| + i1 + i2.

Furthermore, if (α3, β3) ∈ B(|α2| + i2, |σ1| + |β2| + i2 − 1), then

|α3| = |α2| + i2 = i1 + i2, |β3| ≤ |σ1| + |β2| + i2 − 1 < |σ1| + |β1| + i1 + i2.

It follows that J2 is written as

k−i∑
i1=1

δi1

⎛
⎝ ∑

*

A(|σ1|+|β1|+i1)

Sσ2
wβ2

+
∑

*

B(i1,|σ1|+|β1|+i1)

Bα2
wβ2

⎞
⎠ + Om(δk−i+1),

which just amounts to saying that visually in the definition of J2 one can erase Sσ1 ,
carry all differentiations in it onto wβ2 , and still preserve (4.20).

Then we see that

δj+1
∑

*

A(2j+2)

Sσ1wβ1 = Om(δk+1) + δj+1
∑

*

A(2j+2)

Sσ1vβ1

+

k−j−1∑
i1=1

δi1+j+1

⎛
⎝ ∑

*

A(|σ1|+|β1|+i1+1)

Sσ2
wβ2

+
∑

*

B(i1,|σ1|+|β1|+i1)

Bα2
wβ2

⎞
⎠ .
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Next we notice again that, for (σ1, β1) ∈ A(2j+2) and |σ2|+ |β2| ≤ |σ1|+ |β1|+ i1 +1,
we have |σ2| + |β2| ≤ j + 2 + i1 + j + 1, whereas if |β2| ≤ |σ1| + |β1| + i1, then
|β2| ≤ j + 1 + i1 + j + 1. Therefore, after changing i1 + j + 1 → i (≥ j + 2), we get

δj+1
∑

*

A(2j+2)

Sσ1wβ1 = Om(δk+1) + δj+1
∑

*

A(2j+2)

Sσ1vβ1

+

k∑
i=j+2

δi

⎛
⎝ ∑

*

A(i+j+2)

Sσ2wβ2
+

∑
*

B∗(i,i+j+1)

Bα2
wβ2

⎞
⎠ .

This shows that the term with i = j + 1 in the second sum on the right-hand side in
(4.19) can be eliminated at the expense of changing j to j + 1 in the other terms of
(4.19). Thus the induction on j proves the proposition indeed.

Now we finish the proof of Theorem 2.2. By taking j = k in Proposition 4.8, we
find

w = v +
k∑

i=1

δiw(i) +
∑

B∗(k,2k)

c(α, β, δ)Bαwβ + Om(δk+1),(4.21)

where

w(i) :=
∑

*

A(2i)

Sσvβ ∈ Cw([0, T ],Wm
p ), i = 1, 2, . . . , k,

are independent of δ and c(α, β, δ) are certain constants. It is not hard to follow our
computations in order to see that

sup
t∈[0,d1T ]

sup
n,δ=T/n

δ−(k+1)‖Om(δk+1)(t, ·)‖m,p ≤ N,

where the constant N depends only on d, d1, T,K, k,m, p, l. After that, to finish the
proof it remains only to recall that Bα(jd1δ) = 0 for all integers j ≥ 0 and

v(d1t) = u(t), w(d1t) = un(t) ∀t ∈ Tn =

{
iT

n
: i = 0, 1, 2, . . . , n

}
.

5. The case of time dependent coefficients. We consider here the Cauchy
problem (1.1)–(1.2) for time dependent coefficients. We split, as before, the coefficients
and the free terms into d1 terms,

aij =

d1∑
r=1

aijr , ai =

d1∑
r=1

air, a =

d1∑
r=1

ar, f =

d1∑
r=1

fr;

define δ = T/n, ti = tni = δi, Tn = {ti : i = 0, 1, . . . , n}; and keep Assumptions 2.1
and 2.2. As before, we also denote Lr := aijr Dij + airDi + ar.

One of the splitting-up approximations un(t) for t ∈ Tn is defined as follows. Let

S
(r)
st be the operator mapping each function ϕ of an appropriate class into the solution

of the problem

Dtv(t, x) = d1Lrv(t, x) + d1fr(t, x), t > s, v(s, x) = ϕ(x).
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Then the approximations are introduced according to

un(0) := u0,

un(ti+1) := S
(d1)
tid̄,ti+1

. . .S
(2)
ti1,ti2S

(1)
ti,ti1un(ti), i = 0, 1, 2, . . . , n,(5.1)

where tij := ti + jδ/d1 for j = 1, 2, . . . , d1 − 1, d̄ := d1 − 1.
There are many other ways to extend the splitting-up approximations (2.4) to

PDEs with time dependent data. Along with (5.1) we also consider another approxi-
mation, which has the advantage that in each step we need to solve a time independent
PDE, which is usually more convenient in practice than solving time dependent PDEs.
This time we define the approximation un by

un(0) := u0,

un(tni+1) := S
(d1)
δ (tni+1) . . .S

(2)
δ (tni+1)S

(1)
δ (tni+1)un(tni ), i = 0, 1, 2, . . . , n,(5.2)

where S
(r)
δ (s)ϕ denotes the solution of the problem

Dtv(t) = Lr(s)v(t) + f(s), t ≥ 0, v(0) = ϕ,(5.3)

with

Lr(s) := aijr (s, x)Dij + air(s, x)Di + ar(s, x)

for r = 1, 2, . . . , d1. Notice that the coefficients of the operators Lr(s) and f(s) are
“frozen” at time s; thus (5.3) is a Cauchy problem with time independent data.

We extend Theorem 2.2 as follows.
Theorem 5.1. Let m ≥ 0 and k ≥ 0 be any integers. Let Assumptions 2.1 and

2.2 hold with l ≥ 4 + m + 4k. Let the splitting-up approximation un be defined by
(5.1) or by (5.2). Then there exist functions u(j) ∈ Cw([0, T ],Wm

p ), j = 1, 2, . . . , k,

R
(k)
n ∈ Cw([0, T ],Wm

p ), such that

un(t, x) = u(t, x) + δu(1)(t, x)

+δ2u(2)(t, x) + · · · + δku(k)(t, x) + R(k)
n (t, x)(5.4)

for all t ∈ Tn, x ∈ R
d, and n ≥ 1. The functions u(j), j = 1, 2, . . . , k, are independent

of n, and

sup
t∈[0,T ]

‖R(k)
n (t)‖m,p ≤ Nδk+1

for all n, where N depends only on k, d, d1,K,m, p, T .
Clearly Theorem 5.1 implies that we can again accelerate the convergence of the

splitting-up approximations by considering

vn(t, ·) :=

k∑
j=0

bju2jn(t, ·), t ∈ Tn,

where u2jn for all j = 0, 1, . . . , k are defined by either (5.1) or (5.2).
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Theorem 5.2. Let m ≥ 0 and k ≥ 0 be any integers. Let Assumptions 2.1 and
2.2 hold with l ≥ 4 + m + 4k . Then for all n ≥ 1

max
t∈Tn

‖vn(t) − u(t)‖m,p ≤ Nδk+1,

where N is a constant depending only on k, d, d1,K,m, p, T .
Hence by Sobolev’s theorem on embedding Wm

p into Cs, we immediately get the
following result.

Theorem 5.3. Let m ≥ 0 and k ≥ 0 be any integers. Let Assumptions 2.1 and
2.2 hold with l ≥ 4 + m + 4k . Let s ≥ 0 be an integer such that m ≥ s + d/p. Then
for all n ≥ 1

max
t∈Tn

sup
x∈Rd

∑
|ρ|≤s

|Dρvn(t, x) −Dρu(t, x)| ≤ Nδk+1,

where N is a constant depending only on k, d, d1,K,m, s, p, T .
We prove Theorem 5.1 by adapting the proof of Theorem 2.2 to the time depen-

dent case. If un is defined by (5.1), then we consider the problems

dv(t) =
(
L(A0(t))v(t) + f(A0(t))

)
dA0(t), v(0) = u0,(5.5)

dw(t) =

d1∑
r=1

(
Lr(A0(t))w(t) + fr(A0(t))

)
dAr(t), w(0) = u0,(5.6)

where A0(t), A1(t), A2(t), . . . , Ad1(t) are defined by (4.2) and (4.3), and L(A0(t)),
Lr(A0(t)) mean that we substitute A0(t) in place of the time variable t of the coeffi-
cients of L, Lr.

If un is defined by (5.2), then we consider problems (5.5) and (5.6) with absolutely
continuous functions A0, A1, . . . , Ad1 , defined by the following requirements:

Ar(0) = 0, Ȧr is periodic with period (d1 + 1)δ,

Ȧr(t) = 1[r,r+1]

(
t

δ

)
, t ∈ [0, (d1 + 1)δ] for r = 0, 1, . . . , d1.(5.7)

By virtue of Theorem 3.1, (5.5) and (5.6) admit unique solutions v and w, re-
spectively. Clearly v, w ∈ Cw([0, d′T ],W l

p), and

v(d′t) = u(t), w(d′t) = un(t) ∀t ∈ Tn,

where d′ = d1 if A0, A1, . . . , Ad1 are defined by (4.2) and (4.3), and d′ = d1 + 1 if
A0, A1, . . . , Ad1 are defined by (5.7). Therefore, our aim is to get an equality like (5.1)
with v and w in place of u and un, respectively.

We treat the cases of two approximations simultaneously and warn the reader
that, in order not to repeat the same arguments twice, we are going to use the same
notation for some objects that have different meanings in each case. From now on, d′

denotes d1 if we consider the splitting-up approximations un defined by (5.1), and it
denotes d1 + 1 in the case of un defined by (5.2). We keep the notation N for the set
of all multinumbers α = α1α2 . . . αj for αi ∈ {0, 1, 2, . . . , d1} and integers j ≥ 1. We
also use the numbers cα and the functions Bα, defined by (4.4), (4.5), and (4.6), with
d′ in place of d1 in (4.5). Observe that, as is easy to see, Lemma 4.1 still holds with
d′ in place of d1 in its formulation.
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Let Rf and R̄f denote the solutions of the problems

du(t) = (Lu(t) + f(t)) dt, u(0) = 0,

and

dv(t) = (L̄v(t) + f(t)) dA0(t), v(0) = 0,

respectively, where L̄ := L(A0(t)), the operator obtained from L by the substitution
of A0(t) in place of t in the coefficients of L. Notice that R̄ depends on n when A0 is
defined by (5.7). Notice also that

Rf(t, ·) := (Rf)(A0(t), ·) = R̄f̄(t, ·),(5.8)

where f̄(t, ·) = f(A0(t), ·). Let Q̄αf denote the solution of the problem

dv(t) = L̄v(t) dA0(t) + f(t) dBα(t), v(0) = 0.

We modify the definition of Lα, fα, used for time independent operators and free
terms, as follows: L0 := 0, f0 := 0,

Lγ := Lr, fγ := fr

for γ = r ∈ {1, 2, . . . , d1}, and

Lγ0 := LLγ − L̇γ , Lγr := −LγLr,

fγ0 := Lfγ − ḟγ , fγr := −Lγfr(5.9)

for r = 1, 2, . . . , d1, where ḟγ := Dtfγ and L̇γ denotes the differential operator which
we obtain from Lγ by taking the derivative in t of its coefficients. As is easy to see,
Lγ and fγ are well defined if 2(|γ| − 1) ≤ l. We use the notation L̄γ and f̄γ for the
operator which we obtain from Lγ by substituting A0(t) in place of t in its coefficients,
and for the function obtained from fγ by the same substitution, respectively. Then
we have the following counterpart of Lemma 4.2.

Lemma 5.4. Take some functions

h ∈ Lp([0, d
′T ],W 1

p ), hr ∈ Lp([0, d
′T ],W 1

p ), r = 0, 1, . . . , d1.

Let u be a solution of the “equation”

du = hr dAr =

d1∑
r=0

hr dAr

with u(0) ∈ W 1
p . Assume that Lu ∈ Lp([0, d

′T ],W 1
p ). Then for any α ∈ N

R̄(Bαh) = cα0R̄h + δQ̄α0h,

Q̄αu = R̄(cα0L̄u− cαrhr) + δQ̄α0L̄u− δQ̄αrhr + Bαu.

The proof of this lemma is an obvious modification of that of Lemma 4.2.
Next, let us use the notation

wβ = L̄βw + f̄β .
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Since w ∈ Cw([0, d′T ],W l
p), the functions wβ are well defined for 2|β| ≤ l. Under the

same condition the coefficients of Lβ and fβ have the first derivative in time, and
these derivatives are under control. Furthermore, dwβ = hr dAr, where, as long as
2|β| + 3 ≤ l, the functions

h0 = (L̄L̄β − L̄β0)w + L̄f̄β − f̄β0,

hr = L̄(L̄rw + f̄r), r = 1, . . . , d1,

are bounded W 1
p -valued functions on [0, d′T ].

Then in the same way as Lemma 4.2 was used to obtain Lemma 4.3, Proposition
4.4, and Lemma 4.5, we use Lemma 5.4 to get their counterparts, formulated as
follows.

Lemma 5.5. Let α, β ∈ N . If 2|β| + 3 ≤ l, then

Q̄αwβ = cαrR̄wβr + δQ̄αrwβr + Bαwβ .

Proposition 5.6. Let κ ≥ 0 be an integer and l ≥ 2κ + 3. Then

w = v +
κ∑

i=1

δi
∑
|α|=i

Bαwα +

κ∑
i=1

δi
∑

|α|=i+1

cαR̄wα + δκ+1
∑

|α|=κ+1

Q̄αwα.(5.10)

Lemma 5.7. If κ ≥ 0 is an integer, α, β ∈ N , and 2(|β| + κ) + 1 ≤ l, then

R̄(Bαwβ) =

κ∑
i=0

δi
∑
|γ|=i

cα0γR̄wβγ

+

κ∑
i=1

δi
∑

|γ|=i−1

Bα0γwβγ + δκ+1
∑
|γ|=κ

Q̄α0γwβγ ,

where for any multinumbers μ, ν∑
|γ|=0

cνγR̄wμγ := cνR̄wμ,
∑
|γ|=0

Bνγwμγ := Bνwμ,

∑
|γ|=0

Q̄νγwμγ := Q̄νwμ.

In order to iterate (5.10) we introduce the following class of indices. We say that

β = γν := γν1
1 γν2

2 . . . γ
νj

j(5.11)

is a graded multinumber of length |β| := j + ν1 + ν2 + · · · + νj if γi ∈ {1, 2, . . . , d1};
νi ≥ 0 is any integer for i = 1, 2, . . . , j, where j ≥ 1 is any integer. If νi = 0 for
some i, then we also write γi in place of γ0

i in (5.11). Let K denote the set of all
graded multinumbers. For each β = γν = γν1

1 γν2
2 . . . γ

νj

j ∈ K of length |β| ≤ 1 + l/2
we introduce the following operators and functions:

Lβ = Lγν := (−1)|β|−1L(ν1)
γ1

L(ν2)
γ2

· · · · · L(νj)
γj

,

fβ = fγν := (−1)|β|−1L(ν1)
γ1

· · · · · L(νj−1)
γj−1

f (νj)
γj

,(5.12)



1094 ISTVÁN GYÖNGY AND NICOLAI KRYLOV

where f
(s)
r := Ds

t fr and L
(s)
r denotes the operator which we obtain from Lr by ap-

plying the derivation Ds
t to each of its coefficients. By definition, f

(0)
r = fr and

L
(0)
r = Lr. It is easy to see that for β ∈ N , when β = β0 ∈ K, definitions (5.12) are

consistent with (5.9).
Lemma 5.8. The following statements hold:
(i) Let β, γ ∈ K be such that |β| + |γ| ≤ 1 + l/2. Then

LβLγ = −Lβγ , Lβfγ = −fβγ .

(ii) Let α ∈ N be such that ρ := |α| ≤ 1 + l/2. Then there exist constants
c(γ) = c(α, γ) ∈ {0,±1,±2, . . . } defined for all γ ∈ K with |γ| = ρ, such that

Lα =
∑

γ∈K,|γ|=ρ

c(γ)Lγ , fα =
∑

γ∈K,|γ|=ρ

c(γ)fγ .(5.13)

Proof. Part (i) follows immediately from the definition (5.12) of Lβ , fβ . Part (ii)
clearly holds for α = 0 and α = r ∈ {1, . . . , d1}. Assume that (5.13) holds for some
α ∈ N , |α| < 1 + l/2. Then

Lαr = −LαLr = −
∑

β∈K,|β|=|α|
c(β)LβLr =

∑
β∈K,|β|=|α|

c(β)Lβr,

fαr = −Lαfr = −
∑

β∈K,|β|=|α|
c(β)Lβfr =

∑
β∈K,|β|=|α|

c(β)fβr

for r ∈ {1, 2, . . . , d1}, and

Lα0 = LLα − L̇α =

d1∑
r=1

∑
β∈M,|β|=ρ

c(β)LrLβ −
∑

γν∈M,|γν |=ρ

c(γν)L̇γν ,

fα0 = Lfα − ḟα =

d1∑
r=1

∑
β∈M,|β|=ρ

c(β)Lrfβ −
∑

γν∈M,|γν |=ρ

c(γν)ḟγν .

Hence by using assertion (i) and noticing that

L̇γν =
∑
|μ|=1

Lγν+μ , ḟγν =
∑
|μ|=1

fγν+μ ,

we get (5.13) for αr with r = 0, 1, . . . , d1. Thus the induction on the length of α
completes the proof.

For β ∈ K we write L̄β and f̄β , when the time change A0(t) is done in the
coefficients of Lβ and in fβ . We set wγ := L̄γw + f̄γ for γ ∈ K, |γ| ≤ 1 + l/2. Notice
that Lemma 5.8 has an obvious translation in terms of these functions. Namely, by
Lemma 5.8(ii) for every α ∈ N such that ρ := |α| ≤ 1 + l/2 there exist constants
c(γ) = c(α, γ) ∈ {0,±1,±2, . . . } defined for all γ ∈ K with |γ| = ρ such that

wα =
∑

γ∈K,|γ|=ρ

c(γ)wγ .

For every integer i ≥ 1 we introduce finite sequences σ := (β1, β2, . . . , βi) of graded
multinumbers βi ∈ K, and we set |σ| := |β1|+ |β2|+ · · ·+ |βi|. We also introduce the
empty sequence e of length |e| := 0. The set of all these sequences is denoted by I.
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For σ = (β1, β2, . . . , βi) with |σ| ≤ 1 + l/2 we define

Sσ := RLβ1
RLβ2

· · · · · RLβi
, S̄σ := R̄L̄β1R̄L̄β2

· · · · · R̄L̄βi
,

and for |σ| = 0 we set

Se := R, S̄e := R̄.

Notice that for any g ∈ Lp([0, T ],W
2|σ|
p )

S̄σ ḡ(t, ·) = (Sσg)(A0(t), ·),(5.14)

where ḡ(t, ·) := g(A0(t), ·). This follows from (5.8) by induction on |σ|. In order to
formulate the counterparts of Lemma 4.7 and Proposition 4.8 we use the following
sets:

A(i) = {(σ, β) : σ ∈ I, β ∈ K, |σ| + |β| ≤ i},

B(i, j) = {(α, β) : α ∈ N , β ∈ K, |α| = i, |β| ≤ j},

B∗(i, j) =

i⋃
i1=1

B(i1, j).

Remember that if gν is a collection of functions indexed by a parameter ν taking

values in a set A, then
∑*

ν∈A gν means any linear combination of gν with coefficient
independent of the argument of gν and of δ.

Lemma 5.9. Let σ ∈ I, κ, μ ≥ 0 be integers, and α ∈ N , β ∈ K. Assume that

2(|σ| + |β| + κ) + μ + 2 ≤ l.

Then

S̄σ(Bαwβ) =

κ∑
i=0

δi
∑

*

A(|σ|+|β|+i)

S̄σ1
wβ1

+

κ∑
i=1

δi
∑

*

B(|α|+i,|σ|+|β|+i−1)

Bα1wβ1 + Oμ(δκ+1).

Proof. We can derive this lemma from Lemma 5.7 in the same way that we
proved Lemma 4.7. We need only use the sets K and I in place of M and J , and
the operators R̄, L̄ν , S̄σ for ν ∈ K, σ ∈ I, in place of R, Lν , Sσ for ν ∈ M, σ ∈ J ,
respectively.

Proposition 5.10. Let k,m ≥ 0 be integers, and

4 + m + 4k ≤ l.

Then for any j = 0, 1, . . . , k we have

w = v +

j∑
i=1

δi
∑

*

A(2i)

S̄σvβ +

k∑
i=j+1

δi
∑

*

A(i+j+1)

S̄σ1wβ1

+

k∑
i=1

δi
∑

*

B∗(i,i+j)

Bα1wβ1 + Om(δk+1),

where vβ := L̄βv + f̄β.
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Proof. The proof of this proposition is a straightforward translation of the proof
of the corresponding proposition, Proposition 4.8, in the time independent case. To
make this translation we use the sets K and I in place of M and J , and the operators
R̄, L̄ν , S̄σ for ν ∈ K, σ ∈ I, in place of R, Lν , Sσ for ν ∈ M, σ ∈ J , respectively.

Now we can finish the proof of Theorem 5.1 as follows. Taking j = k in Proposition
5.10, we get

w = v +

j∑
i=1

δi
∑
A(2i)

c(σ, β)S̄σvβ +
∑

B∗(k,2k)

c(α, β, δ)Bα1
wβ1

+ rδ,(5.15)

where c(σ, β), c(α, β, δ) are certain constants, rδ is a function in Cw([0, d′T ],Wm
p ) for

each δ, and

sup
t∈[0,d′T ]

sup
n,δ=T/n

δ−(k+1)‖rδ(t, ·)‖m,p ≤ N.

Observe that, in contrast with (4.21), the functions v and S̄σvβ in (5.15) may depend

on δ. To proceed further, define R
(k)
n (t, x) := rδ(d

′t, x), and

u(i) :=
∑
A(2i)

c(σ, β)Sσuβ , i = 1, 2, . . . , k,

where uβ := Lβu + fβ . Then by virtue of equality (5.14) and the fact that v(t) =
u(A0(t)), from (5.15) we get

w(t, ·) = u(A0(t), ·) +

j∑
i=1

δiu(i)(A0(t), ·)

+
∑

B∗(k,2k)

c(α, β, δ)Bα1(t)wβ1(t, ·) + R(k)
n

(
t

d′
, ·
)
.

Substituting d′t in place of t, we get the required representation (5.1) by taking into
account that

w(d′t) = un(t), A0(d
′t) = t, Bα1(d

′t) = 0 ∀t ∈ Tn.

Remark 5.1. Let 1 ≤ j ≤ d1. Then Theorems 5.1, 5.2, and 5.3 also hold when the

operator S
(r)
δ (tni+1) is replaced with S

(r)
δ (tni ) for every r = 1, 2, . . . , j in the definition

(5.2) of the splitting-up approximation un. To see this we need only repeat the proof of
the previous theorem with Aj in place of A0 in (5.6) and with A0 and Aj interchanged
in (5.5).

Acknowledgment. We express our sincere gratitude to the referees for useful
criticism which helped improve the presentation.
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PARTIAL REGULARITY FOR A SELECTIVE SMOOTHING
FUNCTIONAL FOR IMAGE RESTORATION IN BV SPACE∗
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Abstract. In this paper we study the partial regularity of a functional on BV space proposed by
Chambolle and Lions [Numer. Math., 76 (1997), pp. 167–188] for the purposes of image restoration.
The functional is designed to smooth corrupted images using isotropic diffusion via the Laplacian
where the gradients of the image are below a certain threshold ε and retain edges where gradients
are above the threshold using the total variation. Here we prove that if the solution u ∈ BV of the
model minimization problem, defined on an open set Ω, is such that the Lebesgue measure of the
set where the gradient of u is below the threshold ε is positive, then there exists a nonempty open
region E for which u ∈ C1,α on E and |∇u| < ε, and |∇u| ≥ ε on Ω\E almost everywhere. Thus we
indeed have smoothing where |∇u| < ε.

Key words. bounded variation, selective smooothing, image processing, image restoration,
noise removal, partial regularity
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1. Introduction. In the last decade PDE and variational method based dif-
fusion models have grown significantly to tackle the problems of image restoration,
reconstruction, and inpainting. The challenging aspect of these problems is to design
methods which can filter selectively the noise without losing significant features.

Total variation (TV) based regularization, as first proposed by Rudin, Osher, and
Fatemi [17], has proved to be an invaluable tool for preserving edges while reconstruct-
ing an image. This method has been studied extensively in [1, 7, 4, 20, 2, 5, 19, 16]
and a sequence of papers in the book of [2]. The definition of the total variation
seminorm for u ∈ L1(Ω), given by

TV (u) = sup

{∫
Ω

u div(ϕ)dx : ϕ ∈ C1
0 (Ω,Rn), |ϕ| ≤ 1

}
,

does not require differentiability or even continuity of u. Thus images with discon-
tinuities are allowed as solutions in the space of BV (Ω), which is the space of the
functions u ∈ L1(Ω) with TV (u) < ∞. Moreover, the diffusion resulting from mini-
mizing TV norm is strictly orthogonal to the gradient of the image, and tangential to
the edges. This is important for preserving edges while image is smoothed. However,
TV-based denoising sometimes causes a staircasing effect [6, 7, 8]. The restored image
by this regularization can consequently be blocky and even contain false edges.

To overcome this problem and make the filter self-adjustable in order to reap the
benefits of isotropic smoothing and TV based regularization, Chambolle and Lions [7]
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proposed minimizing the following energy functional for image restoration:

1

2a

∫
|∇u|<a

|∇u|2dx +

∫
|∇u|≥a

(
|∇u| − a

2

)
+

1

2

∫
Ω

(u− I)2dx,

where I is an observed noisy image, and we want to recover an image u from I, which
is related to I by

I = u + noise.

Using the above functional we then expect to have isotropic diffusion where the image
is more uniform (|∇u| < a) and feature preservation via TV-based diffusion where
the boundaries of features are present (the locations where the image gradients most
likely have high magnitude: |∇u| ≥ a). It has been shown numerically in [7] that
this model is successful in restoring images where homogeneous regions are separated
by distinct edges. The purpose of this paper is to prove this mathematically. Our
partial regularity results for a = 1 (without loss of generality) below indicates that
the restored image through this model is smooth on the region with smaller gradients.
The edges appear at the points where the gradient is larger.

More precisely, consider the problem

min
u∈BV (Ω)∩L2(Ω)

{∫
Ω

ϕ(Du) +
1

2

∫
Ω

(u− I)2dx

}
,(1.1)

where ϕ is the C1 convex function defined on Rn

ϕ(p) =

⎧⎪⎨
⎪⎩

1

2
|p|2 if |p| < 1,

|p| − 1

2
if |p| ≥ 1,

Ω ⊂ Rn is a bounded domain with Lipschitz boundary, and I ∈ L∞(Ω) ∩ BV (Ω) is
given.

For u ∈ BV (Ω) the gradient of u is a measure Du; it can be decomposed into its
absolutely continuous and singular parts with respect to Lebesgue measure, that is,

Du = ∇u dx + Dsu.

See [10] for a complete discussion. Then we define ([12] or [9])

J(u) ≡
∫

Ω

ϕ(Du) ≡
∫

Ω

ϕ(∇u)dx +

∫
Ω

|Dsu|

with ∫
Ω

|Dsu| ≡
∫

Ω

d|Dsu| = |Dsu|(Ω).

It is important to note ([21] or [12]) that the functional J can also be written as

J(u) = sup
φ∈C1

0 (Ω,Rn)

{
−
∫

Ω

(
1

2
|φ|2 + u div(φ)

)
dx : |φ(x)| ≤ 1 ∀x ∈ Ω

}
.

Using this, we see that the functional J is lower semicontinuous with respect to
convergence in L1(Ω). Then by a standard argument we can show that there is a
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unique solution u ∈ BV (Ω) ∩ L2(Ω) to (1.1). Now we are interested as to whether
this solution u ∈ BV is smooth on the region where |∇u| < 1. If so, it shows that
the denoising governed by (1.1) smoothes out lower gradients while preserving the
boundaries of features, which are the discontinuities in an image.

We now state the two main partial regularity results of this paper.
Theorem 1.1. If u is the solution to (1.1), then for any given 0 < μ < 1 there

exist positive constants ε0 and κ0 depending only on n and μ such that if

1

|Br|

∫
Br(a)

|Du− l| ≤ ε0

holds for some ball Br(a) ⊂⊂ Ω and for some l ∈ Rn, with

rC
(
1 + ‖I‖L∞(Ω)

)
< κ0 and |l| < 1 − 2μ,

for some constant C depending only on n and Ω, then

|Dsu|(Br/2(a)) = 0 and |∇u| < 1 − μ on Br/2(a)

and u solves

−Δu = I − u on Br/2(a).

Hence u ∈ C1,α(Br/2(a)) for any α < 1.
Theorem 1.2. Let u be as in Theorem (1.1). If Ln({|∇u| < 1}) > 0, then there

exists a nonempty open region E on which u is C1,α, |∇u| < 1, and u solves

−Δu = I − u on E.

In addition we have |∇u| ≥ 1 a.e. on Ω \E.
It is actually straightforward to show that Theorem 1.2 is a direct consequence of

Theorem 1.1. Thus from Theorem 1.2, we do indeed have smoothing where |∇u| < 1.
Here we should point out that partial regularity results were obtained in [3] for

minimizers in BV (Ω) of functionals of the form
∫
Ω
(F (x,Du)+G(x, u)), where F (x, p)

is a convex function in p with c1|p| ≤ F (x, p) ≤ c2(1 + |p|) for all p ∈ Rn, F is locally
Hölder continuous in x, and G(x, z) satisfies Hölder continuity conditions in both x
and z. In our case, G(x, z) = 1/2(z − I(x))2 with only the stated assumption on
I, and therefore their results cannot directly be applied in our case. Moreover, our
approach is quite different from theirs and can be applied to more general cases.

The partial regularity results for the flow associated with the minimization prob-
lem (1) is also discussed in [15] for more general ϕ. However, these hold only for
Ω ⊂ Rn for n = 1 and n = 2. We also apply some different techniques to get our
results.

2. Proof of Theorems 1.1 and 1.2. First we will show that the solution u
to (1.1) is in L∞(Ω). To prove this we could consider the time evolution problem
corresponding to (1.1), prove an L∞ bound for the time-dependent solution u(x, t),
and then consider the time-asymptotic limit u, which is the solution to (1.1). We
would then conclude that u ∈ L∞(Ω). The following, however, provides a proof of
this without having to consider the time evolution of (1.1).

Lemma 2.1. If u is the solution to (1.1), then u ∈ L∞(Ω). In fact, we have
‖u‖L∞(Ω) ≤ ‖I‖L∞(Ω).
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Proof. Let ϕε be defined on Rn by

ϕε(p) =

⎧⎪⎨
⎪⎩

1

2
|p|2 if |p| < 1,

1

1 + ε
|p|1+ε +

(
1

2
− 1

1 + ε

)
if |p| ≥ 1

for ε > 0, and consider the following minimization problem:

min
u∈W 1,1+ε(Ω)∩L2(Ω)

{∫
Ω

ϕε(∇u) +
1

2

∫
Ω

(u− I)2dx

}
.

By standard methods, there is a unique solution uε to this problem. We follow a
standard truncation argument where we fix ε and t ≥ 0 and let v = min(uε, t).
Noting that v ∈ W 1,1+ε(Ω) ∩ L2(Ω) with

∇v =

⎧⎨
⎩

∇uε if uε < t,

0 if uε ≥ t,

we have ∫
Ω

ϕε(∇uε) +
1

2

∫
Ω

(uε − I)2 dx ≤
∫

Ω

ϕε(∇v) +
1

2

∫
Ω

(v − I)2dx,(2.1)

and thus after subtracting∫
{uε≥t}

ϕε(∇uε) dx +

∫
{uε≥t}

(uε − I)2dx ≤
∫
{uε≥t}

(t− I)2dx.

Hence ∫
{uε≥t}

(uε − I)2dx ≤
∫
{uε≥t}

(t− I)2dx.

But setting t = ‖I‖L∞(Ω) we see that if ess sup uε > t, then∫
{uε≥t}

(t− I)2dx <

∫
{uε≥t}

(uε − I)2dx,

which contradicts the above, hence ess sup uε ≤ ‖I‖L∞(Ω). Applying a similar ar-
gument to v = max(uε,−t) for t = ‖I‖L∞(Ω) we get ess inf uε ≥ −‖I‖L∞(Ω) and
thus ‖uε‖L∞(Ω) ≤ ‖I‖L∞(Ω). Furthermore, letting v = 0 in (2.1) we see that uε is
bounded in W 1,1+ε(Ω) ∩ L2(Ω) ⊂ BV (Ω) ∩ L2(Ω) independent of ε. Thus there is a
ũ ∈ BV (Ω)∩L2(Ω) and a subsequence of {uε}, still denoted by {uε}, such that uε → ũ
strongly in L1(Ω), uε ⇀ ũ weakly in L2(Ω), and uε → ũ almost everywhere (a.e.) in
Ω. Letting ε → 0 in (2.1), noting that ϕ(p) ≤ ϕε(p) for all p,

∫
Ω
ϕε(∇v) →

∫
Ω
ϕ(∇v),

lower semicontinuity of the functional
∫
Ω
ϕ(∇u) defined on BV (Ω), and weak lower

semicontinuity of the second term on the left-hand side, we get∫
Ω

ϕ(∇ũ) +
1

2

∫
Ω

(ũ− I)2dx ≤
∫

Ω

ϕ(∇v) +
1

2

∫
Ω

(v − I)2dx

for all v ∈ W 1,1+ε(Ω) ∩ L2(Ω). We now note [12] that for any v ∈ BV (Ω) ∩ L2(Ω)
there exists a sequence vn in C∞(Ω) such that∫

Ω

ϕ(∇vn)dx →
∫

Ω

ϕ(∇v)
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and vn → v in L1(Ω), and since v ∈ L2(Ω) from the construction of vn [12] we
can also take vn → v in L2(Ω). Therefore we see that the above holds for all v ∈
BV (Ω) ∩ L2(Ω) as well. Hence ũ solves (1.1). By uniqueness, ũ = u. By the uniform
L∞ bound for uε and the convergence of uε to u a.e. in Ω we have u ∈ L∞(Ω) with
‖u‖L∞(Ω) ≤ ‖I‖L∞(Ω)

Throughout the rest of the paper, we fix μ > 0 and unless otherwise stated, all
constants depend at most on n, μ, u, Ω, ϕ, and possibly I.

We begin with a local lower bound estimate for any BV function u and C1

function h with gradient strictly less than 1.
Lemma 2.2. Let u ∈ BV (Br(a)) for Br(a) ⊂⊂ Ω and h ∈ C1(Br(a)) with

sup
Br(a)

|∇h| ≤ 1 − μ;

then ∫
Br(a)

ϕ(Du) −
∫
Br(a)

ϕ(∇h)dx ≥ μ

∫
Br(a)

|Dsu| +
∫
Br(a)

∇(u− h) · ∇hdx

+

∫
Br(a)

Dsu · ∇h +
μ2

2

∫
Br(a)∩{|∇u|≥1}

|∇u|dx

+
1

2

∫
Br(a)∩{|∇u|<1}

|∇(u− h)|2dx.

Proof. Where |∇u| ≥ 1, we have

ϕ(∇u) − ϕ(∇h) −∇(u− h) · ∇h

= |∇u| − 1

2
+

1

2
|∇h|2 −∇u · ∇h

≥ 1

2
(2|∇u| − 1 − 2|∇u||∇h| + |∇h|2)

=
1

2
(2|∇u| − 1 − |∇h|)(1 − |∇h|) ≥ μ2

2
|∇u|.

Where |∇u| < 1, we have

ϕ(∇u) − ϕ(∇h) −∇(u− h) · ∇h =
1

2
|∇(u− h)|2.

We now obtain the lemma by using∫
Br(a)

|Dsu| ≥
∫
Br(a)

Dsu · ∇h +

∫
Br(a)

|Dsu|(1 − |∇h|),

the assumption on h, and the above estimates.
We now fix B2r(a) ⊂⊂ Ω. Let v be a Lipschitz function defined on B2r(a) and

assume there exists an l ∈ Rn with |l| ≤ 1−2μ, such that supB2r(a) |∇v− l| ≤ β2δ for
δ > 0 and 0 < β < 1 to be chosen later. Also let v be defined by v(x) = v(x) − l · x.
Let ηε be the usual mollifier on Rn and denote vβ = ηrβ ∗ v and vβ = ηrβ ∗ v. We
then have the following estimates from [18]:

sup
Br(a)

|∇vβ − l| = sup
Br(a)

|∇vβ | ≤ β2δ,(2.2)
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sup
Br(a)

|vβ − v| = sup
Br(a)

|vβ − v| ≤ rβ sup
Br(a)

|∇vβ | ≤ rβ1+2δ,(2.3)

rδ sup
Br(a)

|x− y|−δ|∇vβ(x) −∇vβ(y)|(2.4)

≤ c1r
δ sup
Br(a)

|∇v − l| sup
x′ 	=y′

|x′ − y′|−δ|η1((rβ)−1x′) − η1((rβ)−1y′)|

≤ c2β
2δβ−δ = c2β

δ.

Now for any r̃ ∈ [ r2 , r] there exists a unique solution [11] w ∈ H1(Br̃(a))∩C1,δ(Br̃(a))
with δ ∈ (0, 1) for the problem

−Δw = I − w on Br̃(a), w = vβ on ∂Br̃(a).(2.5)

Lemma 2.3. For I ∈ L∞(Ω), the solution w to (2.5) satisfies

‖w‖L∞(Br̃(a)) ≤ ‖vβ‖L∞(∂Br̃(a)) + ‖I‖L∞(Ω).(2.6)

sup
Br̃(a)

|∇w − l| ≤ c3(β
δ + r(‖I‖L∞(Ω) + ‖vβ‖L∞(∂Br̃(a)))) for any l ∈ Rn.(2.7)

sup
x,y∈Br̃/2(a)

|∇w(x) −∇w(y)|
|x− y|1/2 ≤ c4

(
1

rn+1/2

∫
(∂Br̃(a))

|vβ | dHn−1(2.8)

+ r1/2(‖I‖L∞(Ω) + ‖vβ‖L∞(∂Br̃(a)))

)
.

Proof. Estimate (2.6) is from Theorem 8.16 in [11]. To prove (2.7) and (2.8), we
decompose w as w = w1 + w2, such that

−Δw1 = I − w on Br̃(a), w1 = 0 on ∂Br̃(a)(2.9)

and

−Δw2 = 0 on Br̃(a), w = vβ on ∂Br̃(a).(2.10)

Let w̃2 ≡ w2 − vβ . Then w̃2 solves

−Δw̃2 = −div(∇vβ − l) on Br̃(a), w̃2 = 0 on ∂Br̃(a),(2.11)

for any l ∈ Rn. Representing the solution of (2.9) using Green’s function, i.e., w1(x) =∫
Br̃(a)

Γ(x−y)(I−w)(y)dy, where Γ is the fundamental solution of Laplace’s equation,

it is not difficult to get

‖∇w1‖L∞(Br̃(a)) ≤ cr‖I − w‖L∞(Br̃(a)),(2.12)

where c is independent of r.
Moreover, by the Stobolev imbedding theorem, Theorem 9.9 in [11], and (2.6),

‖∇w1‖C0,1/2(Br̃(a)) ≤ c‖w1‖W 2,2n(Br̃(a)) ≤ c‖I − w‖L2n(Br̃(a))(2.13)

≤ cr1/2‖I − w‖L∞(Br̃(a)) ≤ cr1/2(‖vβ‖L∞(∂Br̃(a)) + ‖I‖L∞(Ω)).
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Next we shall estimate w2. Multiplying both sides of (2.11) by w̃2, and integrating
over Br̃(a), carrying out a simple computation, and using (2.2), we have for any
l ∈ Rn, ∫

Br̃(a)

|∇w2 − l|2dx ≤ c

∫
Br̃(a)

|∇vβ − l|2dx ≤ crnβ4δ,(2.14)

where c > 0 is a constant independent of r.
Furthermore, applying Theorem 8.16 and 8.33 (with a rescaling argument) in [11]

to (2.11), we get the following estimates:

‖w̃2‖L∞(Br̃) ≤ c‖∇vβ − l‖L∞(Br̃)(2.15)

and

rδ[Dw̃2]C0,δ(Br̃) ≤ c(‖w̃2‖L∞(Br̃) + ‖∇vβ − l‖L∞(Br̃) + rδ[Dvβ ]C0,δ(Br̃)),(2.16)

where c > 0 is a constant independent of r. Inserting (2.15) into (2.16), and using
(2.2) and (2.4), it yields

rδ[Dw2]C0,δ(Br̃) ≤ (rδ[Dw̃2]C0,δ(Br̃) + rδ[Dvβ ]C0,δ(Br̃))(2.17)

≤ c(‖∇vβ − l‖L∞(Br̃) + rδ[Dvβ ]C0,δ(Br̃)) ≤ cβδ.

Now we can estimate supBr̃(a) |∇w2−l|. Denoting |Br̃(a)|−1
∫
Br̃(a)

fdx by (f)Br̃(a),

and using (2.14) and (2.17), we get

sup
Br̃(a)

|∇w2 − l| ≤ sup
Br̃(a)

{|∇w2 − (∇w2)Br̃(a)| + |(∇w2)Br̃(a) − l|}(2.18)

≤ rδ[Dw2]C0,δ(Br̃) + |Br̃(a)|−1/2

(∫
Br̃(a)

|∇w2 − l|2
)1/2

dx ≤ cβδ;

here we used (2.14) and (2.17) in the last inequality.
We then have from (2.6) and (2.18)

sup
Br̃(a)

|∇w − l| ≤ sup
Br̃(a)

|∇w2 − l| + sup
Br̃(a)

|∇w1|

≤ c3(β
δ + r(‖I‖L∞(Br̃(a)) + ‖vβ‖L∞(∂Br̃(a)))).

Hence (2.7) is proved. To prove (2.8) we represent w2 by the Poisson’s formula on
the ball Br̃(a), i.e.,

w2(x) =
r̃2 − |x|2
nαnr

∫
∂Br̃(a)

vβ(y)

|x− y|n dSy, x ∈ Br̃(a),

where αn represents the volume of n dimensional unit ball. A direct computation
leads to the estimate

sup
Br̃/2(a)

|D2w2| ≤ cr−n−1

∫
∂Br̃(a)

|vβ(y)|dSy,
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where c > 0 dependents only on n. Then we have

sup
x,y∈Br̃/2(a)

|∇w2(x) −∇w2(y)|
|x− y|1/2 ≤

(
sup

x,y∈Br̃/2(a)

|D2w2|
)
|x− y|1/2(2.19)

≤ c

rn+1/2

∫
∂Br̃(a))

|vβ | dHn−1.

Now (2.8) immediately follows from (2.13) and (2.19).
Lemma 2.4. Suppose there is a v ∈ C0,1(B2r(a)) and l ∈ Rn with |l| ≤ 1 − 2μ,

supB2r(a) |∇v−l| ≤ β2δ, and supB2r(a) |v| ≤ Cu, where Cu is a constant depending only
on u. Let vβ , r̃, and w be as in the previous discussion. Then there exists constants
c5 and c6 such that if β ≤ c5 and r(Cu + ‖I‖L∞(Ω)) ≤ c6, then∫

Br̃(a)

ϕ(Du) −
∫
Br̃(a)

ϕ(∇w)dx ≥
∫
∂Br̃(a)

(u− vβ)
∂w

∂n
dHn−1

+

∫
Br̃(a)

(u− w)(I − w)dx + μ

∫
Br̃(a)

|Dsu| + μ2

2

∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx

+
1

2

∫
Br̃(a)∩{|∇u|<1}

|∇(u− w)|2dx

≥
∫
∂Br̃(a)

(u− vβ)
∂w

∂n
dHn−1 +

1

2

∫
Br̃(a)

(w − I)2dx− 1

2

∫
Br̃(a)

(u− I)2dx

+μ

∫
Br̃(a)

|Dsu| + μ2

2

∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx

+
1

2

∫
Br̃(a)∩{|∇u|<1}

|∇(u− w)|2dx.

Proof. From (2.7)–(2.8), the definition of vβ , and the assumption on l we see that

sup
Br̃(a)

|∇w| ≤ sup
Br̃(a)

|∇w − l| + |l|

≤ c3(β
δ + r(‖v‖L∞(∂Br̃(a)) + ‖I‖L∞(Ω))) + 1 − 2μ

≤ c3(β
δ + r(Cu + ‖I‖L∞(Ω))) + 1 − 2μ.

Later, v will be chosen (see, for instance, [14]) to be a Lipschitz approximation of u
so that ‖v‖L∞(B2r(a)) can be bounded by a constant Cu depending only on u. Now

choose c5 and c6 such that βδ ≤ c5 and

r(Cu + ‖I‖L∞(Ω)) ≤ c6

imply

c3(β
δ + r(Cu + ‖I‖L∞(Ω))) ≤ μ.



1106 Y. CHEN, M. RAO, Y. TONEGAWA, T. WUNDERLI

Thus

sup
Br̃(a)

|∇w| ≤ 1 − μ.(2.20)

The conditions of Lemma 2.2 now hold for h = w. Substituting in w for h in the
inequality in Lemma 2.2, integrating by parts, and using Young’s inequality for (u−
w)(I − w) = −(u− I)(w − I) + (I − w)2 the lemma is proved.

Lemma 2.5. If the function u ∈ BV (Ω) is solution to (1.1), then∫
Br

ϕ(Du) −
∫
Br

ϕ(Dw) ≤ 1/2

∫
Br

(w − I)2dx

−1/2

∫
Br

(u− I)2dx +

∫
∂Br

|Tw − Tu|dHn−1

for any w ∈ BV (Br), Br ⊂⊂ Ω. Here T denotes the trace operator on BV .
Proof. Let w ∈ BV (Br) and define

ζ =

⎧⎨
⎩

w − u on Br,

0 in Ω\Br.

Then since u is a solution we have letting v = u + ζ in (1.1) and using Theorem 1 of
section 5.4 in [10],∫

Ω

ϕ(Du) + 1/2

∫
Ω

(u− I)2dx ≤
∫
Br

ϕ(Dw) +

∫
∂Br

|Tw − Tu|dHn−1

+

∫
Ω\Br

ϕ(Du) + 1/2

∫
Br

(w − I)2dx + 1/2

∫
Ω\Br

(u− I)2dx.

Hence ∫
Br

ϕ(Du) + 1/2

∫
Br

(u− I)2dx ≤
∫
Br

ϕ(Dw) + 1/2

∫
Br

(w − I)2dx

+

∫
∂Br

|Tw − Tu|dHn−1.

We use the above lemma, Lemma 2.4, and estimates (2.2)–(2.4) to obtain the
following inequality for the solution u to (1.1).

Lemma 2.6. Let v, l be as in Lemma 2.4 with

r(Cu + ‖I‖L∞(Ω)) ≤ c6,

w as in (2.5), and u a solution to (1.1). Then∫
Br̃(a)

|Dsu| +
∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx +

∫
Br̃(a)∩{|∇u|<1}

|∇(u− w)|2dx

≤ c7

∫
∂Br̃(a)

|u− v| dHn−1 + c8r
nβ1+2δ,

where u and v on ∂Br̃(a) is understood in the sense of trace.
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Proof. By the previous lemma with w from (2.5) and Lemma 2.4 we have∫
∂Br̃(a)

|u− vβ | dHn−1 ≥
∫
Br̃(a)

ϕ(Du) +
1

2

∫
Br̃(a)

(u− I)2dx

−
∫
Br̃(a)

ϕ(∇w)dx− 1

2

∫
Br̃(a)

(w − I)2dx

≥
∫
∂Br̃(a)

(u− vβ)
∂w

∂n
dHn−1 + μ

∫
Br̃(a)

|Dsu| + μ2

2

∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx

+
1

2

∫
Br̃(a)∩{|∇u|<1}

|∇(u− w)|2dx.

The lemma is thus proved by using (2.20) and the estimate for |v−vβ | from (2.3).
The following first variational formula is from Hardt and Kinderlehrer [12]: if u

is a solution to (1.1), then∫
Ω

σ · ∇ζdx +

∫
Ω

σ · ξ|Dsu| = −
∫

Ω

(u− I)ζdx,(2.21)

where ζ is any function in BV0(Ω) with Dsζ << |Dsu|, ξ is the Radon–Nikodym
derivative of Dsζ with respect to |Dsu|, and σ ∈ L1(Ω) is the stress tensor defined by

σ(u) =

{
ϕP (∇u) in Ωa,

Dsu/|Dsu| in Ωs.

Here Dsu/|Dsu| denotes the Radon–Nikodym derivative of Dsu with respect to |Dsu|
and Ω = Ωa ∪ Ωs is the decomposition of Ω with respect to the mutually singular
measures Ln and |Dsu|. Clearly |σ(u)| ≤ 1. Note that σ(u) depends only on u. In
the sequel we will write σ instead of σ(u) and write the left-hand side of (2.21) as∫

Ω

σ ·Dζ.

We may also note that if ∫
Ω

σ ·Dζ = −
∫

Ω

(u− I)ζdx

holds for arbitrary ζ ∈ BV (Ω) for some u where σ is defined as above, then u solves
(1.1). In fact, for arbitrary v ∈ BV (Ω) we take ζ = v − u, noting that by convexity
of ϕ we have ϕ(∇v) − ϕ(∇u) ≥ ∇(v − u) · ϕP (∇u) on Ωa and that on Ωs we have∫

Ωs

|Dsv| −
∫

Ωs

|Dsu| ≥
∫

Ωs

Ds(v − u) · Dsu

|Dsu| .

The proof of the lemma below is based on [13], with some necessary modifications.
Lemma 2.7. Suppose u is a solution to our minimization problem, B2r(a) ⊂⊂ Ω,

v ∈ C0,1(B2r(a)) with supB2r(a) |∇v| ≤ 1 − μ, and

Ln({u �= v} ∩Bρ(a)) ≤
1

2
|Bρ| for all r ≤ ρ ≤ 2r;
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then there exists positive constants c9 and c10 such that if

Ln({u �= v} ∩B2r(a)) ≤ c9r
n,

then

‖u− v‖L∞(Br(a)) ≤ c10 (Ln({u �= v} ∩B2r(a)))
1
n .

Proof. First we note that the function ϕ satisfies |p| − λ ≤ ϕ(p) ≤ |p| for all
p ∈ Rn, some λ > 0. By convexity of ϕ we have ϕ(p) ≤ ϕP (p) · p + ϕ(0) for all
p ∈ Rn. Hence we have

|Du| = |∇u|dx + |Dsu| ≤ ϕ(∇u)dx + |Dsu| + λdx

≤ ϕP (∇u) · ∇udx + |Dsu| + (λ + ϕ(0))dx = σ ·Du + λdx.

Let θ : R → R be a bounded, increasing, piecewise differentiable function with
θ′(t) ≤ 1 for almost all t. Let 0 < ρ < h and

η(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 in Bρ(a),

(h− ρ)−1(h− |x− a|) in Bh(a)\Bρ(a),

0 in Ω\Bh(a).

Now apply the first variational formula to ζ = ηθ(u− v) to get∫
Bh(a)

ησ ·D[θ(u− v)] = (h− ρ)−1

∫
Bh(a)\Bρ(a)

σ · x− a

|x− a|θ(u− v)dx

−
∫
Bh(a)

ηθ(u− v)(u− I)dx.(2.22)

To obtain a lower bound for ησ · D[θ(u − v)] we use the above properties of ϕ. We
have D[θ(u− v)] = θ′(u− v)D(u− v) and hence by noting the bound of |∇v|∫

Bρ(a)

|D[θ(u− v)]| ≤
∫
Bρ(a)

θ′(u− v)|Du| +
∫
Bρ(a)

θ′(u− v)

≤
∫
Bρ(a)

θ′(u− v)ϕ(Du) +

∫
Bρ(a)

(λ + 1)θ′(u− v)

≤
∫
Bρ(a)

θ′(u− v)σ ·Du +

∫
Bρ(a)

(λ + 1)θ′(u− v)

=

∫
Bρ(a)

θ′(u− v)σ ·D(u− v) +

∫
Bρ(a)

θ′(u− v)σ ·Dv

+

∫
Bρ(a)

(λ + 1)θ′(u− v) ≤
∫
Bh(a)

ησ ·D[θ(u− v)] +

∫
Bh(a)

Cλθ
′(u− v)(2.23)
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for some constant Cλ depending only on λ. Inserting (2.22) into (2.23), and noting
the L∞ bound for u, we get ∫

Bρ(a)

|D[θ(u− v)]|

≤ (h− ρ)−1

∫
Bh(a)\Bρ(a)

|θ(u− v)|dx + Cλ|supp ηθ(u− v)|

+ 2‖I‖L∞(Ω)

∫
Bh(a)

|θ(u− v)|dx.

For 0 < k < s we choose θ as

θ(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for t ≤ k,

t− k for k < t < s,

s− k for t ≥ s.

Now let A(k, h) ≡ Bh ∩ {u− v > k}. Clearly supp [ηθ(u− v)] ⊂ A(k, h). Thus∫
Bρ(a)

|D[θ(u− v)]|

≤ ((h− ρ)−1 + 2‖I‖L∞(Ω))

∫
Bh(a)

|θ(u− v)|dx + Cλ|A(k, h)|.

By assumption, |A(0, ρ)| ≤ 1
2 |Bρ(a)| for r ≤ ρ ≤ 2r. Thus we see that

Ln{{θ(u− v) = 0} ∩Bρ(a)}
|Bρ(a)|

≥ 1

2
.

We can then apply the isoperimetric inequality for s > k > 0 to get

(s− k)|A(s, ρ)|
n−1
n ≤

(∫
Bρ(a)

|θ(u− v)| n
n−1 dx

)n−1
n

≤ c11

∫
Bρ(a)

|D[θ(u− v)]|

≤ c12((h− ρ)−1 + ‖I‖L∞(Ω))

∫
Bh(a)

|θ(u− v)|dx + c13|A(k, h)|.

So since h ≤ 2r we get

(s− k)|A(s, ρ)|
n−1
n ≤ c14(h− p)−1

∫
Bh(a)

|θ(u− v)|dx + c14|A(k, h)|.

And since ∫
Bh(a)

|θ(u− v)|dx ≤ (s− k)|A(k, h)|,
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we arrive at

|A(s, ρ)|
n−1
n ≤ c14((h− p)−1 + (s− k)−1)|A(k, h)|

for every r ≤ ρ < h ≤ 2r and s > k > 0. We now apply Lemma 2.1 in [13] to obtain
the upper bound.

The lower bound for u − v is obtained by using a similar argument for 0 < k <
s < ∞,

θ̃(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for t ≥ −k,

−t− k for − s < t < −k,

s− k for t ≤ −s,

and Ã(k, h) ≡ Bh∩{u−v < −k}. The lemma then follows by again applying Lemma
2.1 in [13].

Now define the energy function

Φ(r, l, x) =
1

|Br|

{∫
Br(x)∩{|∇u|≥1}

|∇u|dx +

∫
Br(x)∩{|∇u|<1}

|∇u− l|2dx +

∫
Br(x)

|Dsu|
}
.

The following theorem provides a decay estimate for Φ.
Theorem 2.8. If u solves (1.1) with Br(a) ⊂⊂ Ω, l1 ∈ Rn with |l1| ≤ 1 − μ,

then there exist positive constants ω, ε, κ, c37, c38, and c39 such that

Φ(4r, l1, a) ≤ ε

and

r ≤ κ

implies

Φ(ωr, l2, a) ≤
1

2
Φ(4r, l1, a) + c37r,

where

|l1 − l2| ≤ c38Φ(4r, l1, a)
1
2 + c39r.

Proof. For fixed λ > 0, define

Rλ ≡ {x ∈ B2r(a) |Φ(ρ, l1, x) ≤ λ for all 0 < ρ ≤ 2r}.

By Vitali’s covering theorem, there exist disjoint balls {Bri(xi)}∞i=1 such that

B2r(a)\Rλ ⊂ ∪∞
i=1B5ri(xi)

and Φ(ri, l1, xi) ≥ λ. Then we have

Ln(B2r(a)\Rλ) ≤ 5n
∞∑
i=1

|Bri(xi)| ≤
5n

λ
|B4r(a)|Φ(4r, l1, a).
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Let g(x) = u(x)− l1 · x. By Poincarè’s inequality we have for x ∈ Rλ and 0 < ρ ≤ 2r

1

|Bρ|

∫
Bρ(x)

|g(y) − gx,ρ|dy ≤ c15
ρn−1

∫
Bρ(x)

|Dg|

≤ c15
ρn−1

⎧⎨
⎩2

∫
Bρ(x)∩{|∇u|≥1}

|∇u|dx +

∫
Bρ(x)

|Dsu|

+ |Bρ|1/2
(∫

Bρ(x)∩{|∇u|<1}
|∇u− l1|2dx

)1/2
⎫⎬
⎭

≤ c16ρΦ(ρ, l1, x)1/2 ≤ c16λ
1/2ρ,

where gx,ρ = 1
|Bρ|

∫
Bρ(x)

g(y)dy. Then

|gx,ρ/2k+1 − gx,ρ/2k | ≤
1

|Bρ/2k+1 |

∫
B

ρ/2k+1 (x)

|g(y) − gx,ρ/2k |dy

≤ 2n
1

|Bρ/2k |

∫
B

ρ/2k
(x)

|g(y) − gx,ρ/2k |dy ≤ c17ρλ
1/2/2k.

Since g(x) = limρ→0 gx,ρ for Ln a.e. x ∈ Rλ,

|g(x) − gx,ρ| ≤
∞∑
k=1

|gx,ρ/2k+1 − gx,ρ/2k | ≤ c17ρλ
1/2.

For x, y ∈ Rλ with |x− y| ≤ 2r, set ρ = |x− y|. Then

|gx,ρ − gy,ρ| ≤
1

|Bρ(x) ∩Bρ(y)|

∫
Bρ(x)∩Bρ(y)

|gx,ρ − g(z)| + |g(z) − gy,ρ|dz

≤ c18
1

Bρ

(∫
Bρ(x)

|g(z) − gx,ρ|dz +

∫
Bρ(y)

|g(z) − gy,ρ|dz
)

≤ c19λ
1/2ρ.

So by combining the above, we have

|g(x) − g(y)| ≤ c20λ
1/2ρ = c20λ

1/2|x− y|

for Ln a.e. x, y ∈ Rλ ⊂ B2r(a). Let λ = c−2
20 β

4δ, so that

|u(x) − l1 · x− u(y) + l1 · y| = |g(x) − g(y)| ≤ β2δ|x− y|,

and let v be a Lipschitz function defined on B2r(a) such that

v = u on Rλ, and sup
B2r(a)

|∇v − l1| ≤ β2δ.(2.24)

Such a v exists by a standard extension for a Lipschitz function. Also note that for
this choice of v we have supB2r(a) |v| ≤ Cu. With the choice of λ, and by choosing

β = Φ(4r, l1, a) and δ =
1

8(n + 1)
,
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we can estimate the size of the nonzero set of u− v as

Ln(B2r(a) ∩ {u �= v}) ≤ c21r
nβ−4δΦ(4r, l1, a) ≤ c21r

nΦ(4r, l1, a)
1−4δ.

We made the choice of δ so that (1 − 4δ) · n+1
n = 1 + 1

2n > 1. Now choose r̃ ∈ [ 12r, r]
so that both ∫

∂Br̃(a)

|u− v|dHn−1 ≤ 3

r

∫
Br̃(a)

|u− v|dx

and ∫
∂Br̃(a)

|u− ua,r − l1 · (x− a)|dHn−1 ≤ 3

r

∫
Br̃(a)

|u− ua,r − l1 · (x− a)|dx

are satisfied. By the choice of r̃,∫
∂Br̃(a)

|u− v|dHn−1 ≤ 3

r
‖u− v‖L∞(Br(a)) · Ln{Br(a) ∩ {u �= v}}.

Choose r(Cu + ‖I‖L∞(Ω)) ≤ c6. By Lemma 2.7, for Φ(4r, l1, a) ≤ c22, we have

1

r
‖u− v‖L∞(Br(a)) ≤ c10

1

r
(Ln(B2r(a) ∩ {u �= v}))1/n.

Thus

1

rn

∫
∂Br̃(a)

|u− v|dHn−1 ≤ c23Φ(4r, l1, a)
1+ 1

2n .

We now apply Lemma 2.6 to the above, using the estimate for the boundary integral
of u− v, to obtain∫

Brω(a)

|Dsu| +
∫
Brω(a)∩{|∇u|≥1}

|∇u|dx +

∫
Brω(a)∩{|∇u|<1}

|∇(u− w)|2dx(2.25)

≤ c24r
n
(
Φ(4r, l1, a)

1+ 1
2n + Φ(4r, l1, a)

1+ 1
4(n+2)

)
for any ω ≤ 1/2. Let l2 ≡ ∇ω(a). By using the gradient estimate, (2.7)–(2.8), for ω,
the choice of r̃, the definition of vβ , the above bound for v, and Poincarè’s inequality,

|l1 − l2| ≤
1

|Br̃|

∫
∂Br̃(a)

|vβ − ua,r − l1 · (x− a)|dHn−1 + c25r(‖I‖L∞(Ω) + Cu)

≤ 1

|Br̃|

∫
∂Br̃(a)

|vβ − u| + |u− ua,r − l1 · (x− a)|dHn−1 + c25r(‖I‖L∞(Ω) + Cu)

≤ c26Φ(4r, l1, a) +
c27
rn

∫
Br(a)

|Du− l1| + c25r(‖I‖L∞(Ω) + Cu).

By the Hölder inequality, we obtain |l1−l2| ≤ c28Φ(4r, l1, a)
1/2+c25r(‖I‖L∞(Ω)+Cu).

The last term on the left side of inequality (2.25) satisfies∫
Brω(a)∩{|∇u|<1}

|∇(u− w)|2dx ≥
∫
Brω(a)∩{|∇u|<1}

1

2
|∇u− l2|2 − |∇w − l2|2dx.
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Thus by (2.25) and the above inequality,

|Brω|Φ(rω, l2, a) ≤ c29r
nΦ(4r, l1, a)

1+ 1
4(n+2) + c30

∫
Brω

|∇w − l2|2dx.(2.26)

To estimate the last term, we again use the estimates for the gradient of w. Note that

sup
x,y∈Br/4(a)

|∇w(x) −∇w(y)|
|x− y|1/2

≤ c4
1

rn+1/2

∫
∂Br̃(a)

|vβ − ua,r − l1 · (x− a)|dHn−1

+ c4r
1/2(‖I‖L∞(Ω) + Cu).

Therefore, similar to the estimate for |l1 − l2|, we have

sup
x,y∈Br/4(a)

|∇w(x) −∇w(y)|
|x− y|1/2

≤ c31(r
−1/2Φ(4r, l1, a)

1/2 + r1/2(‖I‖L∞(Ω) + Cu)).

Using this we then have

∫
Brω(a)

|∇w − l2|2dx ≤ c32(rω)n{ωΦ(4r, l1, a)

+ rΦ(4r, l1, a)
1/2(‖I‖L∞(Ω) + Cu) + r2(‖I‖L∞(Ω) + Cu)2}

≤ c33(rω)n{ωΦ(4r, l1, a) + r(‖I‖L∞(Ω) + Cu)}.

Hence by combining the above with (2.26) we arrive at

Φ(rω, l2, a) ≤ c34ω
−nΦ(4r, l1, a)

1+ 1
4(n+1) + c35ωΦ(4r, l1, a)

+ c36r(‖I‖L∞(Ω) + Cu).

Choose ω < 1/4 so small so that c35ω < 1/4, and again restrict Φ(4r, l1, a) so that

c34ω
−nΦ(4r, l1, a)

1+ 1
4(n+1) < 1/4. This now proves the theorem.

We now prove Theorem 1.1 using an iteration argument (see, for example, [14] or
[3]).

Proof. Assume that 1
|Br|

∫
Br(a)

|Du− l1| ≤ ε0 for some l1 ∈ Rn with |l1| ≤ 1− 4μ

and for any r with r ≤ κ. For each x ∈ Br/2(a) we have

Φ(r/2, l1, x) ≤ 2nΦ(r, l1, a) ≤ c40
1

|Br|

∫
Br(a)

|Du− l1| ≤ c40ε0.

We will use Theorem 2.8 iteratively. Choose ε0 so small so that c40ε0 ≤ ε and restrict
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r so that c37r ≤ r/2. Assume |lj−1| < 1 − 2μ and

Φ

((ω
4

)j−1 r

2
, lj , x

)
≤

(
1

2

)j−1

Φ
(r

2
, l1, x

)

+

j−1∑
i=1

(
1

2

)j−1

ωj−i−1c41r for j = 2, . . . , k.

We need to show Φ
( (

ω
4

)k−1 r
2 , lk, x

)
≤ ε and |lk| < 1 − 2μ in order to continue the

inductive step. Since ω < 1/2,

k−1∑
i=1

(
1

2

)i−1

ωk−i−1 ≤
(

1

2

)k−2

(k − 1) ≤ c42

(
1

2

)k/2

for all k. By further restricting r, we have

Φ

((ω
4

)k−1 r

2
, lk, x

)
≤ ε.

Note that

|lk| ≤
k−1∑
j=1

|lj+1 − lj | + |l1|

≤
k−1∑
j=1

{
c38Φ

((ω
4

)j−1 r

2
, lj , x

)1/2

+ c39

(ω
4

)j−1

r

}
+ 1 − 4μ

≤ c38

k−1∑
j=1

{(
1

2

)(j−1)/2

Φ(
r

2
, l1, x)1/2 + c

1/2
41

(
1

2

)j/4

c
1/2
37 r1/2

}

+c39r

k−1∑
j=1

(ω
4

)j−1

+ 1 − 4μ

≤ c42Φ
(r

2
, l1, x

)1/2

+ c42r
1/2 + 1 − 4μ.

So by restricting ε0 and r again, we see that |lk| < 1− 2μ. Thus we may continue the
iterative step indefinitely, giving

lim
k→∞

(
Φ
(ω

4

)k r

2
, lk+1, x

)
= 0 for all x ∈ Br/2(a).

Thus

lim
ρ→0

1

|Bρ|

(∫
Bρ(x)

|Dsu| +
∫
Bρ(x)∩{|∇u|≥1}

|∇u|dx
)

= 0

for all x ∈ Br/2(a). We then have (see, for instance, [10]) |Dsu|
(
Br/2(a)

)
= 0 with

|∇u| ≤ 1−μ < 1 a.e. on Br/2(a). By (2.21), u also satisfies the stated equation.
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Using Theorem 1.1, we can now easily prove Theorem 1.2.
Proof. Assume that u is a minimizer of (1.1) and that Ẽ = {|∇u| < 1} has

positive Lebesgue measure. From standard measure theory (see, for example, [10]),

lim
r→0

1

|Br|

∫
Br(x)

|Dsu| = 0(2.27)

for Ln-a.e. x ∈ Ẽ. Also, since |∇u| ∈ L1(Ω),

lim
r→0

1

|Br|

∫
Br(x)

|∇u(y) −∇u(x)|dx = 0(2.28)

for Ln-a.e. x ∈ Ẽ by Lebesgue’s differentiation theorem. Now let E be the set of all
points of Ẽ for which both (2.27) and (2.28) hold. Clearly Ln(Ẽ\E) = 0, |∇u| < 1
on E, and both (2.27) and (2.28) hold at each point of E. For each fixed x ∈ E, there
exists some μx > 0 such that

|∇u(x)| < 1 − 2μx.

Then (2.27) and (2.28) combined with Theorem 1.1 show that there exists an rx such
that

|Dsu|(Brx(x)) = 0 and |∇u| < 1 − μx on Brx(x)

and u ∈ C1,α(Brx(x)), giving Brx(x) ⊂ E in particular. Thus E is an open set in Ω
with the required properties.
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EXISTENCE AND UNIQUENESS OF SOLUTIONS
WITH LOW REGULARITY FOR A CLASS OF NONLINEAR

DISPERSIVE EQUATIONS∗

OCTAVIAN G. MUSTAFA†

Abstract. Working in Lagrangian coordinates, we prove the existence and uniqueness of so-
lutions for a class of periodic nonlinear dispersive equations with continuously differentiable initial
data. This lowers the regularity requirements available for the Cauchy problem by means of the
semigroup approach for quasi-linear hyperbolic equations of evolution or by the viscosity method.
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1. Introduction. This paper is devoted to the Cauchy problem

ut + uux + ∂x(1 − ∂2
x)−1(αu2 + βu2

x) = 0, x ∈ R, t ≥ 0,(1)

with

u(t, x + 1) = u(t, x), x ∈ R, t ≥ 0, u(0, x) = u0(x), x ∈ R,(2)

where α, β ∈ R are given constants. Nonlinear periodic dispersive equations of this
type, obtained for particular values of the constants α and β, has recently attracted
a lot of attention in mathematical physics. Setting α = 1 and β = 1

2 we obtain the
periodic Camassa–Holm equation modeling shallow water waves [1, 4]. This equation,
originally derived as a bi-Hamiltonian system with infinitely many conservation laws
[18], is also a reexpression of geodesic flow on the diffeomorphism group of the circle
[23, 9, 10]. It is a completely integrable infinite-dimensional Hamiltonian system for
a large class of initial data [11, 3]. Setting α = 3

2 and β = 0 in (1), we obtain the
Degasperis–Procesi equation [16], another model for shallow water waves (cf. [17]).
Finally, setting α = 3β− 1

2 with β ∈ R, equation (1) particularizes to a model for the
propagation of waves through cylindrical hyperelastic rods [15], rewritten as in [14]
(see relation (2.2) therein, rescaled with x �→ x

γ ). Despite their similar form, as ex-

pressed by (1), these three models have very distinct features: only the Camassa–Holm
equation and the Degasperis–Procesi equation have an integrable structure (with en-
tirely different, nonequivalent, isospectral problems) and a geometric interpretation
in terms of geodesic flow is available only for the Camassa–Holm equation.

Due to its relevance to mathematical physics, the study of the Cauchy problem
for (1) is therefore of interest. For initial data u0 ∈ Hs(S) (Sobolev spaces of periodic
functions), it is known that there exists some T = T (u0) > 0 such that (1) has a
unique solution

u ∈ C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S)).
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This fact was established in [2, 6] for s ≥ 3 using Kato’s semigroup approach for
quasi-linear hyperbolic equations. For the validity of the statement for s > 3

2 by
implementing the same approach see [24]. In [21], the viscosity method was used
to prove the existence and uniqueness of a solution u ∈ C([0, T );Hs(S)) for s >
3
2 . For the Degasperis–Procesi equation and for the hyperelastic rod equation, an
approach similar to the one devised in [2, 6] works, yielding a unique solution u ∈
C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S)) for some T = T (u0) > 0, provided u0 ∈ Hs(S)
with s > 3

2 (see [14, 27]). Let us note that in general T < ∞ for all three models:
singularities can develop by ux becoming unbounded in finite time [5, 7, 8, 14, 22, 27,
28]. Attempts to lower the regularity of the initial data from u0 ∈ Hs(S) with s > 3

2
have been successful in the case of the Camassa–Holm equation by using the special
geometric structure of the equation and imposing additional restrictions: u0 ∈ H1(S)
with u0 − ∂2

xu0 a positive or negative Radon measure (see [6, 12]). Further results
in this direction have been obtained in [25, 26]. The motivation for seeking solutions
with lower regularity is not purely academic: it is motivated by the fact that the
Camassa–Holm equation, the Degasperis–Procesi equation, and the hyperelastic rod
equation have peaked traveling wave solutions [1, 15, 17] and these special solutions
play an important role in the dynamics of these models (see [13, 19, 20]).

In this paper, we use Lagrangian coordinates to improve the previously mentioned
results by lowering the regularity requirement on the initial data for (1) to the class
of continuously differentiable periodic functions. In other words, rather than viewing
(1) as describing an evolution at every fixed spatial point x, we track the path of
each particle using a diffeomorphism that describes at each instant the location of
the particles, the initial state corresponding to the identity diffeomorphism of the real
line. Such an approach was successful in proving that the periodic Camassa–Holm
equation satisfies the least action principle (see [9, 10]). In contrast to [9, 10], where
smooth—C∞(S)—initial data were of interest, we are concerned here with initial data
of class C1. We will prove that for any u0 ∈ C1(S) there is some T = T (u0) > 0 and
a unique solution

u ∈ C([0, T );C1(S)) ∩ C1([0, T );C(S))

to the Cauchy problem (1). To compare this with the previously described results,
note that any function u0 ∈ Hs(S) is continuously differentiable if s > 3

2 but the
inclusion is strict. It is also worthwhile to point out that an implementation of Kato’s
semigroup approach for spaces of continuously differentiable functions, rather than
Sobolev spaces, leads to considerable technical difficulties. It is therefore not clear
that the same conclusion as ours can be reached by this method.

2. Main result and its proof. Let us denote first by C1
1 (R) the linear space

over the real field of all continuously differentiable functions f : R → R that are
periodic with period 1. If endowed with the Chebyshev norm

‖f‖ = sup
x∈R

|f(x)| + sup
x∈R

|f ′(x)| ,

C1
1 (R) becomes a Banach space. Let us denote now by X(R) the set of all functions

g ∈ C1(R,R) such that the derivative g′ is periodic of period 1 and g(1) = g(0) + 1.
Since

g(x + 1) − g(x) =

∫ x+1

x

g′(s)ds =

∫ 1

0

g′(s)ds = 1, x ∈ R,
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yields that the difference of two elements of X(R) is a continuously differentiable
function which is periodic of period 1, it is obvious that X(R) does not have a linear
space structure with respect to the usual sum of functions as an internal operation.
However, by introducing the distance

d(g1, g2) = |g1(0) − g2(0)| + sup
x∈R

|g′1(x) − g′2(x)| ,

X(R) becomes a complete metric space.
Certain features of these spaces are established by the next lemmas.
Lemma 1. Let r ∈ (0, 1) be fixed. The set Ur given by

Ur = {g ∈ X(R) | d(Id, g) < r, g′(x) > 0 for x ∈ R}

is open in (X(R), d).
Proof. Since |g(0)| + |1 − g′(x)| < r for all real x and g′ has the intermediate

value property (Darboux property), the inequality

|g′(x)| ≥ 1 − r

yields either g′(x) ≥ 1 − r or g′(x) ≤ r − 1 for all x ∈ R. Consequently, g(R) = R

and, due to its monotonicity and smoothness, g is a diffeomorphism of the real line.
Further, for g ∈ Ur fixed, let us consider ε ∈ (0, 1

2 min(r − d(Id, g), 1 − r)). Then, for
all z ∈ B(g, ε), we have

|z(0)| + |1 − z′(x)| ≤ |g(0) − z(0)| + |g′(x) − z′(x)|

+ |g(0)| + |1 − g′(x)| < ε + (r − 2ε)

< r.

Further, since g′(x)− ε < z′(x) and g′(x) ≥ 1− r, we obtain that z′(t) > 1
2 (1− r) > 0

for all x ∈ R yielding B(g, ε) ⊂ Ur.
Lemma 2. Let r ∈ (0, 1) be fixed. For ϕ ∈ Ur and v ∈ C1

1 (R), we have

ϕ−1 ∈ X(R) v ◦ ϕ−1 ∈ C1(R).

Here, C1(R) stands for the Banach space (with Chebyshev norm) of all real-valued
continuous functions which are periodic with period 1.

Proof. Since ϕ is onto to R and ϕ(x + 1) = ϕ(x) + 1, we deduce that

ϕ−1(y + 1) = ϕ−1(y) + 1

and

(v ◦ ϕ−1)(y + 1) = (v ◦ ϕ−1)(ϕ(x + 1)) = v(x + 1) = v(x)

= (v ◦ ϕ−1)(ϕ(x)) = (v ◦ ϕ−1)(y),

where y = ϕ(x).
The following lemma allows us to introduce an integral representation that is

essential for establishing the main result.
Lemma 3. Let V ∈ C1(R). There exists a unique y ∈ C2

1 (R) such that

y − y′′ = V in R.

Here, C2
1 (R) = C1(R) ∩ C2(R,R).
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Proof. Let us fix k ∈ R and consider the boundary value problem

⎧⎪⎨
⎪⎩

y′′ − y = −V, x ∈ [k, k + 1],

y(k + 1) = y(k),

y′(k + 1) = y′(k).

(3)

By introducing the matrix

A =

(
0 1
1 0

)
,

the second order differential equation in (3) can be written as a first order differential
system {

z′ = Az + w(x), x ∈ [k, k + 1]

z(k + 1) = z(k),

where

z(x) =

(
y(x)

y′(x)

)
, w(x) =

(
0

−V (x)

)
.

Using the variation of constants formula, we obtain

z(x) = X(x− k)zk +

∫ x

k

X(x− s)w(s)ds,(4)

where

X(x) =

(
ch x sh x
sh x ch x

)
, zk = z(k).

By imposing that zk+1 = zk, formula (4) implies that

zk = [I2 −X(1)]−1

∫ k+1

k

X(k + 1 − s)w(s)ds.

Formula (4) can now be recast as

z(x) =

∫ k+1

k

{
X(x− k)[I2 −X(1)]−1X(k + 1 − s) + h(x, s)

}
w(s)ds,

where

h(x, s) =

{
X(x− s), k ≤ s ≤ x,

0, x < s ≤ k + 1.

We have used the well-known identity

X(x)[X(s)]−1 = X(x− s).
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Straightforward computations that rely on transformations of sums of functions sh,
ch into products and vice versa lead us to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(x) =

∫ k+1

k

G(x− s)V (s)ds,

y′(x) =

∫ k+1

k

G′(x− s)V (s)ds,

(5)

where

G(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ch
(
q − 1

2

)
2sh 1

2

, q ≥ 0,

ch
(
q + 1

2

)
2sh 1

2

, q < 0.

For x ∈ R and k = [x], the periodicity of V allows us to deduce that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(x) =

∫ 1

0

G(x− [x] − s)V (s)ds,

y′(x) =

∫ 1

0

G′(x− [x] − s)V (s)ds.

(6)

Here, [x] represents the integer part of x. The proof is complete.

Let us introduce now the differential system

{
∂tϕ = v,

∂tv = P (ϕ, v),
(7)

where P (ϕ, v) = −∂x(1 − ∂2
x)−1V ◦ ϕ, V = α(v ◦ ϕ−1)2 + β(∂x(v ◦ ϕ−1))2 with α,

β ∈ R and ϕ(t) ∈ X(R), v(t) ∈ C1
1 (R). According to Lemmas 2 and 3, the system is

well-defined. We need also an initial datum:

ϕ(0) = Id, v(0) = v0 ∈ C1
1 (R).(8)

Proposition 1. Let r ∈ (0, 1) and K > 0 be fixed. Then, the operator P :
X(R) × C1

1 (R) → C1
1 (R) is Lipschitzian in Ur ×B(v0,K).

Proof. For y = (1 − ∂2
x)−1V , we deduce that P (ϕ, v) = y′ ◦ ϕ, where y′ is given

by (5). To evaluate the norm of P (ϕ, v), let us notice first that

P (ϕ, v) + ∂xP (ϕ, v) = y′ ◦ ϕ + (y′′ ◦ ϕ) · ϕ′

= y′ ◦ ϕ + ((y − V ) ◦ ϕ) · ϕ′.

Via the change of variables s = ϕ(q) and the formula ∂x(v ◦ ϕ−1) = (∂xv)◦ϕ−1

(∂xϕ)◦ϕ−1 , we
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obtain

y′(ϕ(x)) =

∫ ϕ(1)

ϕ(0)

G′(ϕ(x) − s)V (s)ds =

∫ ϕ(x)

ϕ(0)

sh
(
ϕ(x) − s− 1

2

)
2sh 1

2

V (s)ds

+

∫ ϕ(1)

ϕ(x)

sh
(
ϕ(x) − s + 1

2

)
2sh 1

2

V (s)ds

=

∫ x

0

sh
(
ϕ(x) − ϕ(q) − 1

2

)
2sh 1

2

[
αv2(q) + β

(
v′(q)

ϕ′(q)

)2
]
ϕ′(q)dq

+

∫ 1

x

sh
(
ϕ(x) − ϕ(q) + 1

2

)
2sh 1

2

[
αv2(q) + β

(
v′(q)

ϕ′(q)

)2
]
ϕ′(q)dq

= P1(ϕ, v)(x) + P2(ϕ, v)(x), x ∈ [0, 1].

Now, for ϕi ∈ Ur, vi ∈ B(v0,K), we have

|P1(ϕ1, v1)(x) − P1(ϕ2, v2)(x)|

≤
∫ 1

0

|F (a1, b1, c1, d1, e1)(q) − F (a2, b2, c2, d2, e2)(q)| dq,

where

ai(q) = ϕi(x), bi(q) = ϕi(q),

ci(q) = vi(q), di(q) =
v′i(q)

ϕ′
i(q)

,

ei(q) = ϕ′
i(q)

for i = 1, 2, and F : R
5 → R is given by

F (a, b, c, d, e) =
sh

(
a− b− 1

2

)
2sh 1

2

(
αc2 + βd2

)
e,

with a, b, c, d, e ∈ R. The quantities ai(q), bi(q), ci(q), di(q), ei(q) are uniformly
bounded for q ∈ [0, 1]. In fact, since

ϕ(q) = ϕ(0) + q −
∫ q

0

(1 − ϕ′(s))ds,

we have

|a(q)| , |b(q)| ≤ |ϕ(0)| + 1 + sup
s∈[0,1]

|1 − ϕ′(s)|

< 1 + r,

|c(q)| ≤ ‖v‖C1
1 (R) ≤ ‖v0‖C1

1 (R) + K,

|d(q)| ≤ 1

1 − r
‖v‖C1

1 (R) ≤
1

1 − r

(
‖v0‖C1

1 (R) + K
)

and

0 < e(q) ≤ 1 + sup
s∈[0,1]

|1 − ϕ′(s)| < 1 + r
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for all ϕ ∈ Ur, v ∈ B(v0,K). According to the mean value theorem

|F (a1, b1, c1, d1, e1)(q) − F (a2, b2, c2, d2, e2)(q)|
≤ sup

w∈[w1,w2]

‖∇F (w)‖ (|a1(q) − a2(q)| + |b1(q) − b2(q)|

+ |c1(q) − c2(q)| + |d1(q) − d2(q)| + |e1(q) − e2(q)|)
≤ sup

w∈R5, ‖w‖≤5C

‖∇F (w)‖ (|a1(q) − a2(q)| + |b1(q) − b2(q)|

+ |c1(q) − c2(q)| + |d1(q) − d2(q)| + |e1(q) − e2(q)|) ,

where

wi = (ai, bi, ci, di, ei)(q) ∈ R
5, i = 1, 2,

and C = max(1+ r, 1
1−r (‖v0‖C1

1 (R) +K)). Before returning to the estimate of P (ϕ, v)
, we establish that

|a1(q) − a2(q)| , |b1(q) − b2(q)|

≤ |ϕ1(0) − ϕ2(0)| +
∫ max(x,q)

0

|ϕ′
1(s) − ϕ′

2(s)| ds

≤ d(ϕ1, ϕ2)

and

|d1(q) − d2(q)| ≤
|v′1(q) − v′2(q)|

ϕ′
1(q)

+ |v′2(q)|
|ϕ′

1(q) − ϕ′
2(q)|

ϕ′
1(q)ϕ

′
2(q)

≤ 1

1 − r
‖v1 − v2‖C1

1 (R) +
(
‖v0‖C1

1 (R) + K
)

× 1

(1 − r)2
d(ϕ1, ϕ2)

≤ C

1 − r
D ((ϕ1, v1), (ϕ2, v2)) .

Here, D denotes the metric in X(R) × C1
1 (R), namely,

D ((ϕ1, v1), (ϕ2, v2)) = d(ϕ1, ϕ2) + ‖v1 − v2‖C1
1 (R) .

It is obvious that (X(R) × C1
1 (R), D) is a complete metric space. Finally,

|P1(ϕ1, v1)(x) − P1(ϕ2, v2)(x)|

≤ C(F )

[
3d(ϕ1, ϕ2) + ‖v1 − v2‖C1

1 (R) +
C

1 − r
D ((ϕ1, v1), (ϕ2, v2))

]

≤
(

3 +
C

1 − r

)
C(F ) ·D ((ϕ1, v1), (ϕ2, v2)) ,

where C(F ) = supw∈R5, ‖w‖≤5C ‖∇F (w)‖. Similar computations, performed for
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P2(ϕ, v) and ∂xP (ϕ, v), respectively, where

∂xP (ϕ, v)(x) = (y − V )(ϕ(x)) · ϕ′(x)

= [O1(ϕ, v)(x) + O2(ϕ, v)(x)]ϕ′(x)

−ϕ′(x)

[
αv2(x) + β

(
v′(x)

ϕ′(x)

)2
]

and

O1(ϕ, v)(x) =

∫ x

0

ch
(
ϕ(x) − ϕ(q) − 1

2

)
2sh 1

2

[
αv2(q) + β

(
v′(q)

ϕ′(q)

)2
]
ϕ′(q)dq,

O2(ϕ, v)(x) =

∫ 1

x

ch
(
ϕ(x) − ϕ(q) + 1

2

)
2sh 1

2

[
αv2(q) + β

(
v′(q)

ϕ′(q)

)2
]
ϕ′(q)dq

allow us to complete the proof.
Proposition 2. Let r ∈ (0, 1) and K > 0 be fixed and denote by c0 the Lipschitz

coefficient of P from Proposition 1. Fix also

0 < T < min

(
r

‖v0‖C1
1 (R) + K

,
K

c0(r + K) + ‖P (Id, v0)‖C1
1 (R)

)
.

Then, the initial value problem {
∂tv = P (ϕv, v),

v(0) = v0,

where ϕv(t, x) = x +
∫ t

0
v(s, x)ds, has a unique solution in C1([0, T ], C1

1 (R)).
Proof. Denote by M the closed ball of radius K and center v0 in C([0, T ], C1

1 (R))
and introduce the operator T : C([0, T ], C1

1 (R)) → C([0, T ], C1
1 (R)) given by

(T v)(t) = v0 +

∫ t

0

P (ϕv, v)(s)ds, t ∈ [0, T ].

For v ∈ M , we have v(t) ∈ C1
1 (R) yielding that ϕv(t) ∈ X(R). Furthermore,

d(Id, ϕv(t)) = |ϕv(t, 0)| + sup
x∈R

∣∣∣∣1 − d

dx
ϕv(t, x)

∣∣∣∣ ≤ t sup
s∈[0,t]

‖v(s)‖C1
1 (R)

≤ T
(
‖v0‖C1

1 (R) + K
)
< r,

which implies that ϕv(t) ∈ Ur for t ∈ [0, T ]. Now,

‖(T v)(t) − v0‖C1
1 (R)

≤
∫ T

0

‖P (ϕv, v)(s)‖C1
1 (R) ds

≤
∫ T

0

(
c0D((ϕv(s), v(s)), (Id, v0)) + ‖P (Id, v0)‖C1

1 (R)

)
ds

=

∫ T

0

(
c0

(
d(Id, ϕv(s)) + ‖v0 − v(s)‖C1

1 (R)

)
+ ‖P (Id, v0)‖C1

1 (R)

)
ds

≤ T
(
c0(r + K) + ‖P (Id, v0)‖C1

1 (R)

)
< K
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and so T (M) ⊆ M . Finally, according to Proposition 1, we have

‖(T v1)(t) − (T v2)(t)‖C1
1 (R)

≤
∫ t

0

‖P (ϕv1
, v1)(s) − P (ϕv2

, v2)(s)‖C1
1 (R) ds

≤
∫ t

0

c0(1 + T ) sup
q∈[0,s]

‖v1(q) − v2(q)‖C1
1 (R) ds

≤ c0(1 + T )dk(v1, v2) ·
ekt − 1

k

and, respectively,

dk (T v1, T v2) ≤
c0(1 + T )

k
dk(v1, v2),

where k > c0(1 + T ) is fixed and

dk(v, w) = sup
s∈[0,T ]

(
e−ks sup

q∈[0,s]

‖v1(q) − v2(q)‖C1
1 (R)

)
, v , w ∈ C1

1 (R).

The operator T being a contraction, the conclusion follows by application of the
Banach contraction principle.

Theorem 1. Let v be the solution obtained at Proposition 2. Then, the function
u : [0, T ] × R → R given by

u(t, x) = v
(
t, ϕ−1

v (t, x)
)

belongs to C1([0, T ], C1(R)) ∩ C([0, T ], C1
1 (R)), is periodic of period 1 with respect to

the spatial variable, and satisfies the nonlinear dispersive equation

ut + uux + ∂x(1 − ∂2
x)−1

(
αu2 + βu2

x

)
= 0, x ∈ R, t ≥ 0,

together with the initial datum u(0) = v0.
Proof. The conclusion will be reached in several steps.
Step 1. ϕ−1(·, x) ∈ C1([0, T ],R), where ϕ = ϕv. Consider t1, t2 ∈ [0, T ]. Then,∣∣ϕ−1(t1, ϕ(t2, x)) − ϕ−1(t2, ϕ(t2, x))

∣∣
=

∣∣ϕ−1(t1, ϕ(t2, x)) − ϕ−1(t1, ϕ(t1, x))
∣∣

≤
∣∣∣∣∣
∫ ϕ(t2,x)

ϕ(t1,x)

∣∣∂sϕ−1(t1, s)
∣∣ ds

∣∣∣∣∣ ≤ 1

1 − r
|ϕ(t2, x) − ϕ(t1, x)|

≤ 1

1 − r

∣∣∣∣
∫ t2

t1

|∂sϕ(s, x)| ds
∣∣∣∣ ≤ 1

1 − r

∣∣∣∣
∫ t2

t1

‖v(s)‖C1
1 (R) ds

∣∣∣∣
≤ 1

1 − r

(
‖v0‖C1

1 (R) + K
)
|t1 − t2| .

Since the estimates are independent of x, by replacing x with ϕ−1(t2, x), we get∣∣ϕ−1(t1, x) − ϕ−1(t2, x)
∣∣ ≤ C |t1 − t2| .(9)
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As a Lipschitzian funtion, ϕ−1(·, x) is a.e. differentiable. On the other hand, by
differentiating formally with respect to t the identity

ϕ−1(t, ϕ(t, x)) = x,

we obtain

∂tϕ
−1(t, ϕ(t, x)) = − ∂tϕ(t, x)

∂xϕ(t, x)

and, consequently,

∂tϕ
−1(t, x) = − ∂tϕ(t, ϕ−1(t, x))

∂xϕ(t, ϕ−1(t, x))
almost everywhere in (0, T ).(10)

The right-hand member of (10) being a continuous function, we have

ϕ−1(t, x) = x−
∫ t

0

∂tϕ(s, ϕ−1(s, x))

∂xϕ(s, ϕ−1(s, x))
ds, t ∈ [0, T ].(11)

The latter formula proves our claim, namely, that ϕ−1 is continuously differentiable
with respect to t.

Step 2. u ∈ C([0, T ], C1(R)) is Lipschitzian. We have the following estimates:

|u(t1, x) − u(t2, x)|
≤

∣∣v(t1, ϕ−1(t1, x)) − v(t1, ϕ
−1(t2, x))

∣∣
+
∣∣v(t1, ϕ−1(t2, x)) − v(t2, ϕ

−1(t2, x))
∣∣

= I1(t1, t2) + I2(t1, t2),

and

I1(t1, t2)

≤ sup
q∈R

|∂xv(t1, q)| ·
∣∣ϕ−1(t1, x) − ϕ−1(t2, x)

∣∣
≤ ‖v(t1)‖C1

1 (R) C |t1 − t2| ≤
(
‖v0‖C1

1 (R) + K
)
C |t1 − t2|

≤ C2 |t1 − t2| ,

I2(t1, t2) ≤ sup
t∈[0,T ]

∣∣∂tv(t, ϕ−1(t2, x))
∣∣ · |t1 − t2|

= sup
t∈[0,T ]

|∂xy(t, x)| · |t1 − t2| ≤ c1 · |t1 − t2| ,

where, according to (6), we take

c1 ≥ max (|α| , |β|)C2

∫ 1

0

|∂xG(x− [x] − s)| ds

≥
(
|α| sup

q∈R

|v(t, q)|2 +
|β|

(1 − r)2
sup
q∈ R

|∂qv(t, q)|2
)

×
∫ 1

0

|∂xG(x− [x] − s)| ds.
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Step 3. The family
(

∂tϕ(·,ϕ−1(·,x))
∂xϕ(·,ϕ−1(·,x))

)
x∈R

is equicontinuous in [0, T ], that is, the

usual ε - δ estimates of continuity are independent of x. Consider t1, t2 ∈ [0, T ].
Then, ∣∣∣∣ ∂tϕ(t1, ϕ

−1(t1, x))

∂xϕ(t1, ϕ−1(t1, x))
− ∂tϕ(t2, ϕ

−1(t2, x))

∂xϕ(t2, ϕ−1(t2, x))

∣∣∣∣
=

∣∣∣∣ v(t1, ϕ
−1(t1, x))

∂xϕ(t1, ϕ−1(t1, x))
− v(t2, ϕ

−1(t2, x))

∂xϕ(t2, ϕ−1(t2, x))

∣∣∣∣
≤

∣∣v(t1, ϕ−1(t1, x) − v(t2, ϕ
−1(t2, x))

∣∣
∂xϕ(t1, ϕ−1(t1, x))

+
∣∣v(t2, ϕ−1(t2, x))

∣∣ ∣∣∂xϕ(t1, ϕ
−1(t1, x)) − ∂xϕ(t2, ϕ

−1(t2, x))
∣∣

∂xϕ(t1, ϕ−1(t1, x))∂xϕ(t2, ϕ−1(t2, x))

= J1(t1, t2) + J2(t1, t2)

and

J1(t1, t2) ≤
1

1 − r
|u(t1, x) − u(t2, x)| ≤ 1

1 − r

(
C2 + c1

)
|t1 − t2| ,

J2(t1, t2)

≤ ‖v(t2)‖C1
1 (R)

1

(1 − r)2
∣∣∂xϕ(t1, ϕ

−1(t1, x)) − ∂xϕ(t2, ϕ
−1(t2, x))

∣∣
≤ C

1 − r

∣∣∂xϕ(t1, ϕ
−1(t1, x)) − ∂xϕ(t2, ϕ

−1(t2, x))
∣∣ .

Since the function ∂xϕ is periodic with period 1, its restriction to [0, T ]×R is uniformly
continuous, that is, for every ε > 0 there exists δ = δ(ε) > 0 such that

|∂xϕ(t1, x1) − ∂xϕ(t2, x2)| < ε

for all t1, t2 ∈ [0, T ] with |t1 − t2| < δ and x1 , x2 ∈ R with |x1 − x2| < δ. Let us
denote by δ1 = δ1(ε) > 0 the quantity min

(
δ, δ

C

)
. According to (9), for t1, t2 ∈ [0, T ]

with |t1 − t2| < δ1 we get∣∣∂xϕ(t1, ϕ
−1(t1, x)) − ∂xϕ(t2, ϕ

−1(t2, x))
∣∣ < ε, x ∈ R.(12)

All the preceding estimates are independent of x, thus proving our claim.
Step 4. ϕ−1 ∈ C1([0, T ], C(R,R)). Consider t, t + h ∈ [0, T ] with h �= 0. Then,

formula (11) and the computations in Step 3 yield∣∣∣∣ϕ−1(t + h, x) − ϕ−1(t, x)

h
− ∂tϕ(t, ϕ−1(t, x))

∂xϕ(t, ϕ−1(t, x))

∣∣∣∣
≤

∣∣∣∣∣ 1h
∫ t+h

t

∣∣∣∣ ∂tϕ(s, ϕ−1(s, x))

∂xϕ(s, ϕ−1(s, x))
− ∂tϕ(t, ϕ−1(t, x))

∂xϕ(t, ϕ−1(t, x))

∣∣∣∣ ds
∣∣∣∣∣

≤ ε

2
+

1

1 − r

(
C2 + c1

)
|h|
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for |h| < δ1
(
ε
2

)
. By taking |h| < δ2 (ε) = min

(
ε(1−r)

2(C2+c1)
, δ1

(
ε
2

))
, we obtain that

∣∣∣∣ϕ−1(t + h, x) − ϕ−1(t, x)

h
− ∂tϕ(t, ϕ−1(t, x))

∂xϕ(t, ϕ−1(t, x))

∣∣∣∣ < ε, x ∈ R,(13)

which proves our claim.

Step 5. u ∈ C1([0, T ], C1(R)). Consider t, t+h ∈ [0, T ] with h �= 0. The following
estimates hold

∣∣∣∣v(t + h, ϕ−1(t + h, x)) − v(t, ϕ−1(t, x))

h

−∂tv(t, ϕ
−1(t, x)) − ∂xv(t, ϕ

−1(t, x)) · 1

h

∫ ϕ−1(t+h,x)

ϕ−1(t,x)

ds

∣∣∣∣∣
≤

∣∣∣∣v(t + h, ϕ−1(t + h, x)) − v(t + h, ϕ−1(t, x))

h

− 1

h

∫ ϕ−1(t+h,x)

ϕ−1(t,x)

∂xv(t, ϕ
−1(t, x))ds

∣∣∣∣∣
+

∣∣∣∣v(t + h, ϕ−1(t, x)) − v(t, ϕ−1(t, x))

h
− ∂tv(t, ϕ

−1(t, x))

∣∣∣∣
≤

∣∣∣∣∣ 1h
∫ ϕ−1(t+h,x)

ϕ−1(t,x)

∣∣∂xv(t + h, s) − ∂xv(t, ϕ
−1(t, x))

∣∣ ds
∣∣∣∣∣

+ sup
q∈R

∣∣∣∣v(t + h, q) − v(t, q)

h
− ∂tv(t, q)

∣∣∣∣
= E(h) + o(1) as h → 0,

since v ∈ C1([0, T ], C1
1 (R)) according to Proposition 2. Similar to the situation de-

scribed at Step 3, the restriction of function ∂xv to [0, T ]×R is uniformly continuous
and so

∣∣∂xv(t + h, s) − ∂xv(t, ϕ
−1(t, x))

∣∣ < ε(14)

for |h| small enough provided that
∣∣s− ϕ−1(t, x)

∣∣ ≤
∣∣ϕ−1(t + h, x) − ϕ−1(t, x)

∣∣ ≤
C |h| is also small. Since

E(h) ≤ ε

∣∣∣∣ϕ−1(t + h, x) − ϕ−1(t, x)

h

∣∣∣∣ ≤ Cε, x ∈ R,

and taking into account (13), our claim is established.

Step 6. u ∈ C([0, T ], C1
1 (R)). We shall confine ourselves to the issue of ∂xu ∈

C([0, T ], C1(R)) since u ∈ C([0, T ], C1(R)) according to Step 2. Consider t1, t2 ∈
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[0, T ]. Then,

|∂xu(t1, x) − ∂xu(t2, x)|

≤
∣∣∂xv(t1, ϕ−1(t1, x)) − ∂xv(t2, ϕ

−1(t2, x))
∣∣

∂xϕ(t1, ϕ−1(t1, x))

+
∣∣∂xv(t2, ϕ−1(t2, x))

∣∣ ∣∣∂xϕ(t1, ϕ
−1(t1, x)) − ∂xϕ(t2, ϕ

−1(t2, x))
∣∣

∂xϕ(t1, ϕ−1(t1, x))∂xϕ(t2, ϕ−1(t2, x))

≤ 1

1 − r

∣∣∂xv(t1, ϕ−1(t1, x)) − ∂xv(t2, ϕ
−1(t2, x))

∣∣
+

C

1 − r

∣∣∂xϕ(t1, ϕ
−1(t1, x)) − ∂xϕ(t2, ϕ

−1(t2, x))
∣∣ .

A simple inspection of formulas (12), (14) establishes our claim.

The proof is complete.

Acknowledgment. The author is deeply indebted to the referees for their con-
structive comments.
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RENORMALIZED ENERGY AND FORCES ON DISLOCATIONS∗

PAOLO CERMELLI† AND GIOVANNI LEONI‡

Abstract. In this work we discuss, from a variational viewpoint, the equilibrium problem for
a finite number of Volterra dislocations in a plane domain. For a given set of singularities at fixed
locations, we characterize elastic equilibrium as the limit of the minimizers of a family of energy
functionals, obtained by a finite-core regularization of the elastic-energy functional. We give a sharp
asymptotic estimate of the minimum energy as the core radius tends to zero, which allows one to
eliminate this internal length scale from the problem. The energy content of a set of dislocations
is fully characterized by the regular part of the asymptotic expansion, the so-called renormalized
energy, which contains all information regarding self- and mutual interactions between the defects.
Thus our result may be considered as the analogue for dislocations of the classical result of Bethuel,
Brezis and Hélein for Ginzburg–Landau vortices. We view the renormalized energy as the basic tool
for the study of the discrete-to-continuum limit in plasticity of crystals, i.e., the passage from models
of isolated defects to theories of continuous distributions of dislocations. The renormalized energy is
a function of the defect positions only: we prove that its derivative with respect to the position of
a given dislocation is the resultant of the Eshelby stress on that dislocation, which can be identified
in turn with the classical Peach–Köhler force.

Key words. dislocations, variational methods, variational techniques for singularities, forces on
defects

AMS subject classifications. 35J50, 74G65, 74G70

DOI. 10.1137/040621636

1. Introduction. Dislocations are common defects in crystals and influence
their behavior in multiple ways. For instance, isolated dislocations generate concen-
trations of stress which affect the chemical and electronic properties of solids, while
the collective motion of large sets of dislocations represents the basic mechanism for
plastic slip in ductile solids (cf., e.g., [3], [16], and [23]).

Hence, it is of considerable interest to study the behavior of both isolated and
large sets of dislocations.

However, the study of isolated dislocations and of large clusters of defects re-
quires widely different approaches. Problems involving isolated defects involve scales
which are typically of the order of the interatomic distances in the crystal, while the
characteristic scales involved in the collective behavior of large clusters of dislocations,
typically in plasticity, are much larger. A typical example is self-organization of stored
dislocations in cell patterns [25]: the characteristic distance between the cell walls is
macroscopic, many orders of magnitude larger than the interatomic distances.

Such problems are better studied in terms of dislocation densities, rather than of
isolated dislocations, and require the introduction, in the expression for the macro-
scopic energy of the solid, of terms which depend on the gradients of the (plastic)
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strain [1], [15], [18], [19], [20]. These terms are necessarily phenomenological—for
instance, energies are assumed to be quadratic in the plastic strain gradients, but
such simple choices often lead to unphysical behavior, as shown in [8] for interfacial
dislocations in epitaxial films.

At a still larger scale lives classical plasticity: plastic strain gradients are ignored,
no internal length scale is introduced, and dislocations are only implicitly taken into
account. Classical models cannot describe the self-organization of defects in regular
patterns.

Hence, a major open problem in the theory of defects in solids is to correlate the
microscopic (isolated defects) and the macroscopic (gradient theories) approaches.
Specifically, it would be useful to develop a theoretical framework which allows to
characterize the constitutive relations of the continuum models, using the information
gained by ab initio models of finite sets of dislocations.

The goal for this paper may be viewed as the first stage of this project: we give a
variational formulation of the equilibrium problem for a finite number of dislocations
in a plane domain and characterize the energy content of a body with isolated defects
in terms of a regular function of the defect configuration, the so-called renormalized
energy.

Precisely, consider a finite number of dislocations in an elastic solid: since the
stress field induced by a dislocation is short ranged, it is reasonable to work in the
approximation of linear elasticity, which may be assumed to be valid sufficiently far
from the defect. (This topic has been studied extensively in the literature, and ex-
plicit solutions are known in special cases [28], [23], [29].) We restrict attention to
plane isotropic elasticity.1 Let Ω be a regular domain in R

2: in linear elasticity, a
displacement of Ω is a regular vector field u on Ω, with gradient ∇u = H. The
equilibrium equations have the form DivC[E(u)] = 0 with C a linear operator from
R

2×2 into itself and E(u) = 1
2 (∇u + (∇u)�) the infinitesimal strain tensor.

In this framework, Volterra dislocations may be viewed as singularities of the
field H. Precisely, fix a finite set of points {x1, . . . ,xN} in Ω and a set of vectors
{b1, . . . , bN} with bi ∈ R

2: we say that a tensor field H on Ω \ {x1, . . . ,xN} cor-
responds to a system of dislocations located at {x1, . . . ,xN} with Burgers vectors
{b1, . . . , bN} if2

{
Curl H =

∑N
i=1 bi δxi

DivC[E(H)] = 0
in Ω(1.1)

in the sense of distributions, where E(H) = 1
2 (H + H�) is the strain associated

to H.

Solutions of (1.1) are not unique even modulo an infinitesimal rigid motion and,
moreover, no variational principle may be associated to (1.1), since the elastic energy
of a system of Volterra dislocations is not finite.

Hence, it is necessary to regularize the theory by removing a core Bε(xi) of
radius ε around each dislocation; letting Ωε = Ω \ (∪N

i=1Bε(xi)), we solve the family

1Point defects in plane elasticity may be effectively used to model straight edge dislocations
orthogonal to the plane of strain.

2The Curl of a two-dimensional tensor field H is the vector field whose Cartesian components
are (Curl H)i = (∂1Hi2 − ∂2Hi1).
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of minimization problems

min
H∈H(b1,...,bN ;Ωε)

∫
Ωε

W (E(H)) da,(1.2)

where W (E) = 1
2E · C[E] is the elastic energy density,

H(b1, . . . , bN ; Ωε) =

{
H ∈ H(Curl 0; Ωε) :

∫
∂Bε(xi)

Ht ds = bi, i = 1, . . . , N

}
,

and t is the unit tangent vector3 to ∂Bε(xi).

Our first result shows that the solutions Hε of (1.2) converge strongly in L2
loc(Ω\

∪N
i=1{xi}; R2×2), as ε → 0, to a solution H0 of (1.1). This solution is unique modulo

a rigid motion. More precisely, we show that

Hε → H0 =

N∑
i=1

Ki + ∇u0,(1.3)

where Ki are distributional solutions of (cf. Proposition 3.1),

{
Curl H = bi δxi

DivC[E(H)] = 0
in R

2,

and u0 ∈ H1(Ω; R2) is a regular displacement field which is a minimizer of the func-
tional

I0(u) :=

∫
Ω

W (E(u)) da +

N∑
i=1

∫
∂Ω

u · C[E(Ki)]n ds(1.4)

on H1(Ω; R2).

The field H0 is independent of the internal length scale ε, but its energy is not
finite: we obtain a sharp asymptotic estimate as ε → 0 for the minimum energy in
(1.2) of the form

∫
Ωε

W (E(Hε)) da =

N∑
i=1

μ(λ + μ)

4π(λ + 2μ)
|bi|2 ln

1

ε
+ F (x1, . . . ,xN ) + O(ε) + Const.,

(1.5)

where λ, μ are the Lamé moduli, and

F (x1, . . . ,xN ) = Fself(x1, . . . ,xN ) + Fint(x1, . . . ,xN ) + Felastic(x1, . . . ,xN )(1.6)

3We choose t = n⊥ to be a counterclockwise π/2-rotation of the outward unit normal n to
∂Bε(xi).
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is the renormalized energy, with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fself(x1, . . . ,xN ) =

N∑
i=1

∫
Ω\BR(xi)

W (E(Ki)) da +

N∑
i=1

μ(λ + μ)

4π(λ + 2μ)
|bi|2 lnR,

Fint(x1, . . . ,xN ) =

N−1∑
i=1

N∑
j=i+1

∫
Ω

C[E(Ki)] · E(Kj) da,

Felastic(x1, . . . ,xN ) =

∫
Ω

W (E(u0)) da +

N∑
i=1

∫
∂Ω

u0 · C[E(Ki)]n ds,

(1.7)

and

0 < R <
1

4
min{|x − y| : x �= y, (x,y) ∈ S × (S ∪ ∂Ω)},

where S = {x1, . . . ,xN}. It can be shown that Fself is independent of R.
It is important to remark that while for special domains the asymptotic formula

∫
Ωε

W (E(Hε)) da ∼
N∑
i=1

μ(λ + μ)

4π(λ + 2μ)
|bi|2 ln

1

ε
(1.8)

is classical (see, e.g., [23], [29]) and can be obtained by solving explicitly the Euler
equation (1.1) (see [28]), for general domains there are various formal arguments in
support of (1.8) but we are not aware of any rigorous derivation prior to ours.

More importantly, the introduction of the renormalized energy in this context
appears to be new, and thus our result may be considered as the analogue for dislo-
cations of the classical result of Bethuel, Brezis, and Hélein (see Chapter 2 in [5]; see
also [4]) for Ginzburg–Landau vortices. We refer to the monograph [5] for more de-
tails about the Ginzburg–Landau functional. (See also [2], [6], [22] and the references
contained therein for more recent results.)

Note that the renormalized energy is independent of the core radius and is a
function of the defect position which fully characterizes the energy content of a dis-
located body. Hence, it provides a basis for the study of the behavior of finite sets of
dislocations.

As an example application of these ideas, we prove that the interaction energy
Fint in (1.7)2 diverges logarithmically with the relative distance between the defects:

Fint(x1, . . . ,xN ) =

N−1∑
i=1

N∑
j=i+1

μ(λ + μ)

π(λ + 2μ)
bi · bj ln

1

|xi − xj |
+ O(1)

as |xi − xj | → 0.
When more than one dislocation is present, or an external stress is applied to

the dislocated body, defects interact between themselves and with the applied field,
by means of the so-called Peach–Köhler force [30]. Since the renormalized energy
contains all the information about defect interactions, a natural question is whether it
is somehow related to the Peach–Köhler force on dislocations. Indeed, the asymptotic
analysis of a regularized Ginzburg–Landau equation, intended to model disclinations
in liquid crystals, shows that on a long time scale defects move according to a simple
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evolution equation, which has the form velocity = force on the defect [21], [27], [26],
where the force on the defect is defined as the derivative of the renormalized energy
with respect to the defect position.

In this line of thought, we prove the fundamental relation

∇xk
F = −

∫
∂BR(xk)

{
W (E(H0))1 − H�

0 C[E(H0)]
}

n ds(1.9)

for R < mini
1
2d(xi, ∂Ω), where the integrand C = W (E(H0))1 − H�

0 C[E(H0)] is
called the Eshelby stress. This object, also known as configurational stress, is usually
introduced in continuum mechanics in conjunction with an additional balance law,
the configurational balance, when defective structures such as interfaces, cracks, or
inclusions are present [18]. The configurational balance governs the evolution of the
defect, and the resultant of the Eshelby stress in (1.9) may be identified with the force
acting on a defect. In the theory of elastic dislocations, the force on a defect is defined
by means of the Peach–Köhler force, and indeed it can be shown that the resultant of
the configurational stress coincides with the Peach–Köhler force on a dislocation [7].

Hence, (1.9) shows that the derivative of the renormalized energy coincides with
the force on a dislocation.

The idea that the force on a defect is the derivative of the minimum energy with
respect to changes of the defect position is the basis of Eshelby’s treatment of defects
[12], [13], [11]. However, when dislocations are present the energy is not finite, so
that Eshelby’s approach fails without modifications. Our result may be viewed as
the generalization of Eshelby’s notion of force on a defect, when bad singularities are
associated to the defect itself.

2. The variational problem. Let Ω ⊂ R
2 be a simply connected bounded open

domain with smooth boundary ∂Ω, with outward unit normal n. In the absence of
defect, we denote by u : Ω → R

2 the displacement field, with displacement gradient
∇u and strain tensor E(u) = 1

2

(
∇u + (∇u)�

)
. We write

T = C[E]

for the (symmetric) Cauchy stress, with C : Sym → Sym the elasticity tensor, a
symmetric4 linear map on the space Sym of symmetric 2 × 2 tensors. For isotropic
materials, the stress has the form

C[E] = λ(tr E)1 + 2μE(2.1)

with λ, μ the Lamé moduli. The associated energy functional is

J(u) =

∫
Ω

W (E(u)) da,(2.2)

which is defined on H1(Ω; R2). Here W (E) = 1
2E ·C[E] is the strain energy density,

and we assume that the elasticity tensor C is positive definite.5 In plane elasticity
and for isotropic materials this is equivalent to requiring

μ > 0 and λ + μ > 0.(2.3)

4That is, E ·C[F ] = F ·C[E] for any E,F ∈ Sym, where · is the inner product of 2× 2 tensors.
5This implies that there exist constants c1, c2 > 0 such that c1|E|2 ≤ W (E) ≤ c2|E|2 for any

E ∈ Sym.
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In this paper we shall deal with isotropic materials only.
When defects such as dislocations are present, the displacement field is not single-

valued, and the equilibrium problem must be formulated in terms of a 2 × 2 tensor
field H, defined away from the defects, and such that Curl H = 0. The field H plays
the role of displacement gradient but is not necessarily the gradient of a displacement
field globally defined on Ω: we will continue to use the denomination strain tensor
associated to H for the symmetric part of H, writing

E(H) =
1

2

(
H + H�

)
.(2.4)

More precisely, we are interested in situations in which the field H has a finite number
of singularities in Ω: to this purpose, let {xi}i=1,...,N be a finite sequence of points in
Ω, and for ε > 0 let

Ωε = Ω \
(

N⋃
i=1

Bε(xi)

)
,

and consider the space

H(Curl; Ωε) :=
{

H ∈ L2(Ωε; R
2×2) : Curl H ∈ L2(Ωε; R

2×2)
}
.(2.5)

Following [10] we set

H(Curl 0; Ωε) := {H ∈ H(Curl; Ωε) : Curl H = 0} .

We say that H ∈ H(Curl 0; Ωε) corresponds to a system of dislocations located at xi,
with Burgers vectors bi and cores Bε(xi), if∫

∂Bε(xi)

Ht ds = bi, i = 1, . . . , N,(2.6)

with t the unit tangent to ∂Bε(xi), obtained by rotating counterclockwise by π/2
the outward unit normal n to ∂Bε(xi). Here we have used the fact that for each
i = 1, . . . , N the trace map

H 	→ Ht

defined on C∞(Ωε; R
2×2) extends by continuity to a continuous linear mapping, still

denoted Ht, from H(Curl; Ωε) to H− 1
2 (∂Bε(xi); R

2). (See, e.g., Theorem 2 in [10].)

With an abuse of notation for every ϕ ∈ H
1
2 (∂Bε(xi)) we continue to denote by∫

∂Bε(xi)
ϕHt ds the value of the linear mapping Ht applied to ϕ. We shall denote by

H(b1, . . . , bN ; Ωε) the closed subspace of H(Curl 0; Ωε) of tensor fields corresponding
to systems of dislocations with Burgers vectors bi, i.e.,

H(b1, . . . , bN ; Ωε) :=

{
H ∈ H(Curl 0; Ωε) :

∫
∂Bε(xi)

Ht ds = bi, i = 1, . . . , N

}
.

(2.7)

The strain energy functional is defined as in the absence of defects (cf. (2.2)),

Jε(H) =

∫
Ωε

W (E(H)) da,(2.8)

and the associated minimization problem is
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(MH,ε): minimize the strain energy functional over all systems of disloca-
tions located at given points (x1, . . . ,xN ), and with given Burgers vectors
(b1, . . . , bN ), i.e., find the solutions of

min
H∈H(b1,...,bN ;Ωε)

Jε(H).(2.9)

Proposition 2.1. Assume that the elasticity tensor C satisfies condition (2.3).
Then

Hε ∈ H(b1, . . . , bN ; Ωε)

is a minimizer of (2.9) if and only if Hε is a weak solution of the Neumann boundary
problem {

DivC[E(Hε)] = 0 in Ωε,
C[E(Hε)]n = 0 on ∂Ωε = ∂Ω ∪

(
∪N
i=1∂Bε(xi)

)
.

(2.10)

Moreover, Hε is unique modulo an infinitesimal rigid-body motion.
Proof. Since Jε is quadratic it follows from standard arguments in the calculus of

variations that Hε is a minimizer if and only if it satisfies the weak Euler equation∫
Ωε

C[Hε] · E(w) da = 0 for all w ∈ H1(Ωε; R
2).(2.11)

Indeed, note that for every H, H̃ ∈ H(b1, . . . , bN ; Ωε) there exists w ∈ H1(Ωε; R
2)

such that H̃ = H + ∇w: moreover, for t a real parameter,

Jε(H + t∇w) − Jε(H) = t

∫
Ωε

C[H] · E(w) da + t2Jε(∇w),

and this proves the assertion.
To prove uniqueness let Hε and H ′

ε be two solutions of (2.11); then H ′
ε = Hε+W

with W a constant skew-symmetric tensor. Indeed, since Hε and H ′
ε both belong to

H(b1, . . . , bN ; Ωε), then H ′
ε = Hε +∇u for some u ∈ H1(Ωε; R

2), which satisfies the
equation ∫

Ωε

C[E(u)] · E(w) da = 0 for all w ∈ H1(Ωε; R
2);

choosing w = u and using the strong ellipticity of C, this implies that E(u) = 0,
and, in turn, that u(x) = a + W x with a and W a constant vector and a constant
skew-symmetric tensor, respectively, which proves the assertion.

Remark 2.2. Uniqueness of the solution of (2.9) is guaranteed, for instance, by
assuming that the total infinitesimal rotation of the body vanishes, i.e.,∫

Ωε

(Hε − H�
ε ) da = 0.(2.12)

3. Existence for a single dislocation in a ball. In this section we consider
the special case where

Ω = BR(x0)
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and we have a single dislocation located at x0 and with Burger vector b. We are
interested in the asymptotic behavior as ε → 0+ and R → ∞ of the solutions of the
minimization problem

min
H∈H(b;BR(x0)\Bε(x0))

∫
BR(x0)\Bε(x0)

W (E(H)) da.(3.1)

Proposition 3.1. Assume that the elasticity tensor C satisfies condition (2.3)
and let Kb,ε,R be the unique solution of (3.1) such that∫

BR(x0)\Bε(x0)

(Kb,ε,R − K�
b,ε,R) da = 0.(3.2)

Then {Kb,ε,R} converges uniformly on compact subsets of R
2 \ {x0} as ε → 0 and

R → ∞ to the function6

Kb(x; x0) :=
1

2π|x − x0|2
b ⊗ (x − x0)

⊥ + ∇v(x − x0)(3.3)

with

v(x) = − μ log |x|
2π(λ + 2μ)

b⊥ − λ + μ

4π(λ + 2μ)|x|2
{
(b · x⊥)x + (b · x)x⊥} ,(3.4)

which is a solution in the distributional sense of the system{
Curl H = b δx0

DivC[E(H)] = 0
in R

2.

Proof. By Proposition 2.1 and Remark 2.2 the functions Kb,ε,R are given by the
solutions of (2.9) in BR(x0) \Bε(x0) satisfying (3.2). In the isotropic case, these are
explicitly known [28]:

Kb,ε,R(x; x0) = Kb(x; x0) + ∇wb,ε,R(x − x0),(3.5)

where

wb,ε,R(x) =
(λ + μ) |x|2

2π(λ + 2μ)(ε2 + R2)

{
−b⊥ − λ + 3μ

2(λ + μ)|x|2
(
(b · x⊥)x + (b · x)x⊥)}

+
(λ + μ) ε2R2

2π(λ + 2μ)(ε2 + R2)|x|4
{
(b · x⊥)x + (b · x)x⊥} .

A straightforward calculation shows that Kb,ε,R satisfies the constraint (3.2) and the
Euler equations (2.10). Uniform convergence to Kb is immediate.

It is easy to see that 1
2π|x−x0|2 b ⊗ (x − x0)

⊥ satisfies

Curl H = b δx0
(3.6)

6Given a vector v, we denote by v⊥ the vector perpendicular to v obtained by rotating v
counterclockwise by π/2.
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in the sense of distributions, and it is clear that all other solutions have the form
1

2π|x−x0|2 b ⊗ (x − x0)
⊥ + ∇v, v a vector field in W 1,1

loc (R2; R2). A straightforward

calculation shows that choosing v as in (3.4) we obtain that Kb also satisfies

DivC[E(H)] = 0,(3.7)

and the proof is complete.

Remark 3.2.

(i) The field Kb may be regarded as the deformation induced by a dislocation
with Burgers vector b in the whole plane. By introducing polar coordinates
(�, ϑ) centered at x0, with associated basis (e�, eϑ), we may write

Kb =
1

2π�
b ⊗ eϑ + ∇vb(3.8)

with

vb = − μ log �

2π(λ + 2μ)
b⊥ − λ + μ

4π(λ + 2μ)
{(b · eϑ)e� + (b · e�)eϑ} .(3.9)

The complete expression for Kb in polar coordinates is

Kb =
1

2π�(λ + 2μ)
[μ(b · eϑ)e� ⊗ e� + (2λ + 3μ)(b · e�)e� ⊗ eϑ

−μ(b · e�)eϑ ⊗ e� + μ(b · eϑ)eϑ ⊗ eϑ] ,

and the corresponding stress tensor is

T b =
μ(λ + μ)

π�(λ + 2μ)
{(b ·eϑ)e�⊗e�+(b ·e�)(e�⊗eϑ+eϑ⊗e�)+(b ·eϑ)eϑ⊗eϑ}.

Note that Kb is homogeneous of degree −1 in � so that we may write

Kb(�, ϑ; x0) =
1

�
Lb(ϑ),(3.10)

where Lb is independent of � and x0.
(ii) In what follows we shall use extensively the family of tensor fields

Kb,ε(x; x0) := Kb(x; x0) + ∇wb,ε(x − x0)(3.11)

with

wb,ε(x) = lim
R→∞

wb,ε,R(x) =
(λ + μ) ε2

2π(λ + 2μ)|x|4
{
(b · x⊥)x + (b · x)x⊥} ,

(3.12)

which have the property that DivC[E(Kb,ε)] = 0 on R
2 \ Bε(x0), and

C[E(Kb,ε)]n = 0 on ∂Bε(x0). Notice also that wb,ε → 0 uniformly on
compacta in R

2 \ {x0}.
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4. Existence for systems of dislocations in a bounded domain. In this
section we study the asymptotic behavior as ε → 0+ of the solutions of the minimiza-
tion problem

min
H∈H(b1,...,bN ;Ωε)

∫
Ωε

W (E(H)) da,

where, we recall,

H(b1, . . . , bN ; Ωε) =

{
H ∈ H(Curl 0; Ωε) :

∫
∂Bε(xi)

Ht ds = bi, i = 1, . . . , N

}
,

and where x1, . . . ,xN and b1, . . . , bN are given sets of points in Ω and of Burgers
vectors, respectively. The main result of this section is the following theorem.

Theorem 4.1. Assume that the elasticity tensor C satisfies condition (2.3).
Then the minimization problem

min
H∈H(b1,...,bN ;Ωε)

∫
Ωε

W (E(H)) da(4.1)

admits a unique solution, modulo an infinitesimal rigid-body motion, Hε which con-
verges as ε → 0, strongly in L2

loc(Ω \ ∪N
i=1{xi}; R2×2), to a solution, in the distribu-

tional sense, of the system{
Curl H =

∑N
i=1 bi δxi

DivC[E(H)] = 0
in Ω.(4.2)

The proof of the previous theorem is divided in several lemmas. We begin by
recalling that any tensor field H ∈ H(b1, . . . , bN ; Ωε) can be written as the sum of a
given tensor field in H(b1, . . . , bN ; Ωε) and the gradient of a vector field. In particular,
we may choose

H =

N∑
i=1

Ki,ε + ∇u(4.3)

with u ∈ H1(Ωε; R
2) and (cf. (3.5))

Ki,ε(x) := Kbi,ε(x; xi).(4.4)

Notice that Ki,ε satisfies the Euler equations (2.10) on R
2 \Bε(xi), i.e.,{

DivC[E(Ki,ε)] = 0 in R
2 \Bε(xi),

C[E(Ki,ε)]n = 0 on ∂Bε(xi).

Also,
∫
∂Bε(xi)

Ki,εt ds = bi.

Inserting (4.3) into the energy functional (2.8) and applying the divergence the-
orem we obtain

Jε(H) =

N∑
i=1

Jε(Ki,ε) +

N−1∑
i=1

N∑
j=i+1

∫
Ωε

C[E(Ki,ε)] · Kj,ε da + Iε(u)(4.5)
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with

Iε(u) :=

∫
Ωε

W (E(u)) da +

N∑
i=1

∫
∂Ω

u · T i,εn ds−
N∑
i=1

∑
j 
=i

∫
∂Bε(xi)

u · T j,εn ds(4.6)

and where T i,ε := C[E(Ki,ε)].
Hence, granted the decomposition (4.5), for ε fixed, the minimization problem

(4.1) is equivalent to the problem
(Mu,ε): minimize the functional Iε over all displacement fields u ∈ H1(Ωε; R

2),
i.e., find the solutions of

min
u∈H1(Ωε;R2)

Iε(u).(4.7)

In view of (4.3), (4.5), and the invariance of the functional Jε with respect to
infinitesimal rigid-body motions, it is clear that to minimize the functional Iε over
all displacement fields u ∈ H1(Ωε; R

2) is equivalent to minimize Iε over all u ∈
H1(Ωε; R

2) such that∫
B

u da = 0,

∫
Ωε

(∇u − (∇u)�) da = 0(4.8)

for a fixed ball B ⊂ Ωε. Conditions (4.8) guarantee the coerciveness of the functional
Iε and in turn the existence of minimizers. Indeed we have the following lemma.

Lemma 4.2. Assume that the elasticity tensor C satisfies condition (2.3). Then
there exist two positive constants c1 and c2 independent of ε such that

Iε(u) ≥ c1‖u‖2
H1(Ωε;R2) − c2‖u‖H1(Ωε;R2)(4.9)

for every uε ∈ H1(Ωε; R
2) satisfying the constraint (4.8). Moreover, for every ε the

minimization problem

min
u∈H1(Ωε;R2)

Iε(u)

admits a unique solution uε ∈ H1(Ωε; R
2) satisfying (4.8) and such that

‖uε‖H1(Ωε;R2) ≤ M(4.10)

for some positive constant M independent of ε.
Proof. By the positive definiteness of the elasticity tensor C, for u ∈ H1(Ωε; R

2),

Iε(u) ≥ K0

∫
Ωε

|E(u)|2 da−
N∑
i=1

sup
∂Ω

|T i,ε|
∫
∂Ω

|u| ds(4.11)

−
N∑
i=1

∑
j 
=i

sup
∂Bε(xi)

|T j,ε|
∫
∂Bε(xi)

|u| ds.(4.12)

By Korn’s inequality (see Proposition A.5) there exists a constant c3, independent of
ε, such that ∫

Ωε

|E(uε)|2 da ≥ c3‖uε‖2
H1(Ωε;R2).(4.13)
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Now, by Proposition A.6∫
∂Ω

|uε| ds ≤ c4‖uε‖H1(Ωε;R2), and

∫
∂Bε(xi)

|uε| ds ≤ c4‖uε‖H1(Ωε;R2)(4.14)

with c4 independent of ε. Moreover,

sup
∂Bε(xi)

|T j,ε| ≤ c5, j �= i,(4.15)

with c5 independent of ε.
Combining (4.12), (4.13), (4.14), and (4.15) yields (4.9). In turn, since the

functional Iε is convex and Iε(0) = 0 the remaining of the proof follows immedi-
ately.

We now study the asymptotic behavior of the minimizers uε.
Lemma 4.3. Assume that the elasticity tensor C satisfies condition (2.3). Let

uε ∈ H1(Ωε; R
2) be the unique solution of

min
u∈H1(Ωε;R2)

Iε(u)

satisfying (4.8). Then as ε → 0 the sequence {uε} converges strongly in H1
loc(Ω \

∪N
i=1{xi}; R2) to a solution u0 of the minimization problem

min
u∈H1(Ω;R2)

I0(u).(4.16)

Here

I0(u) :=

∫
Ω

W (E(u)) da +

N∑
i=1

∫
∂Ω

u · T in ds,(4.17)

where T i := C[E(Ki)] and

Ki(x) := Kbi
(x; xi)(4.18)

is the fundamental solution defined in (3.3). Moreover,

Iε(uε) → I0(u0).(4.19)

Proof. By Proposition A.7, we can extend uε to Ω in such a way that

‖uε‖H1(Ω;R2) ≤ cM,

where M is the constant given by (4.10). Hence there exists a subsequence of {uε}
not relabeled, such that

uε ⇀ u0 in H1(Ω; R2)

for some u0 ∈ H1(Ω; R2). By Hölder’s inequality,

∣∣∣∣∣
∫
∂Bε(xi)

uε · T j,εn ds

∣∣∣∣∣
2

≤
∫
∂Bε(xi)

|uε|2ds
∫
∂Bε(xi)

|T j,ε|2ds ≤ εc sup
Bε(xi)

|T j,ε|2M2,

(4.20)



RENORMALIZED ENERGY AND FORCES ON DISLOCATIONS 1143

which vanishes as ε → 0, and where we have used Proposition A.6, (4.10) and the
fact that T j,ε → T j uniformly on Bε(xi). Hence

lim
ε→0

∫
∂Bε(xi)

uε · T j,εn ds = 0.(4.21)

Fix now ε0 > 0. For ε < ε0, by (4.6),

Iε(uε) ≥
∫

Ωε0

W (E(uε)) da +

N∑
i=1

∫
∂Ω

uε · T i,εn ds−
N∑
i=1

∑
j 
=i

∫
∂Bε(xi)

uε · T j,εn ds.

Letting ε → 0+, by standard lower semicontinuity results and (4.21), we obtain that

lim inf
ε→0+

Iε(uε) ≥
∫

Ωε0

W (E(u0)) da +

N∑
i=1

∫
∂Ω

u0 · T in ds.

Letting ε0 → 0+ we get

lim inf
ε→0+

Iε(uε) ≥ I0(u0).

On the other hand, since

Iε(uε) ≤ Iε(u0),

we also have that

lim sup
ε→0+

Iε(uε) ≤ I0(u0).

Hence

lim
ε→0+

Iε(uε) = I0(u0).(4.22)

To prove strong convergence, notice that (4.19) implies that

lim
ε→0+

∫
Ωε

W (E(uε)) da =

∫
Ω

W (E(u0)) da,

from which we conclude that, as in Evans [14],

lim
ε→0+

∫
Ωε

|E(uε) − E(u)|2 da = 0,

and strong convergence of uε in H1
loc(Ω; R2) follows from Korn’s inequality.

Now we claim that u0 minimizes I0. Indeed for any u ∈ H1(Ω; R2) we have that

Iε(u) ≥ Iε(uε),

so that letting ε → 0+ and using (4.19),

I0(u) ≥ I0(u0).
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Next we claim that u0 satisfies∫
B

u0da = 0,

∫
Ω

(∇u0 − (∇u0)
�) da = 0,(4.23)

The first constraint follows immediately from (4.8), since {uε} converges strongly in
H1

loc(Ω \ ∪N
i=1{xi}; R2) to u0. To prove the second constraint, let Sε := 1

2 (∇uε −
(∇uε)

�) and S0 = 1
2 (∇u0 − (∇u0)

�), and notice that Sε → S0 strongly in L2
loc(Ω \

∪N
i=1{xi}; R2×2). Now, denote by S̃ε the extension of Sε to zero on Ω. Then,

since ‖∇uε‖L2(Ωε;R2×2) is bounded independently of ε, it follows that the sequence

‖S̃ε‖L2(Ω;R2×2) is bounded, so that S̃ε ⇀ S̃0 in L2(Ω; R2×2) for some S̃0 ∈ L2(Ω; R2×2).

Hence, also S̃ε ⇀ S̃0 weakly in L2
loc(Ω \ {x0}; R2×2), and S̃0 = S0. By weak conver-

gence,

0 =

∫
Ωε

Sεda =

∫
Ω

S̃εda →
∫

Ω

S0da,

and the claim follows. Since the minimization problem

min
u∈H1(Ω;R2)

I0(u),

admits a unique solution modulo an infinitesimal rigid-body displacement, we con-
clude that all sequences uε converge strongly to u0.

We are now ready to conclude the proof of Theorem 4.1.
Proof of Theorem 4.1. Let uε ∈ H1(Ωε; R

2) be the unique solution of

min
u∈H1(Ωε;R2)

Iε(u)

satisfying (4.8). It suffices to define

Hε :=

N∑
i=1

Ki,ε + ∇uε.

Since, by Proposition 3.1, Ki,ε → Ki uniformly on compact subsets of R
2 \ {xi} the

proof is concluded.

5. The renormalized energy. In this section we prove a sharp estimate for
the minimum energy

min
H∈H(b1,...,bN ;Ωε)

∫
Ωε

W (E(H)) da,

as the core radius ε → 0, and compute the renormalized energy which, being a
function of the defect position only, allows to study the equilibrium configurations of
the defects and the force acting on them.

Let Ω a bounded domain with the cone property as before, let S = {x1, . . . ,xN}
be a system of dislocations in Ω, and let

R̄ :=
1

4
min{|x − y| : x �= y, (x,y) ∈ S × (S ∪ ∂Ω)}.(5.1)

The main result of this section is the following theorem.
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Theorem 5.1. Assume that the elasticity tensor C satisfies condition (2.3). Let
Hε ∈ H(b1, . . . , bN ; Ωε) be a solution of

min
H∈H(b1,...,bN ;Ωε)

∫
Ωε

W (E(H)) da

for a system of dislocations with Burgers vectors bi. Then

∫
Ωε

W (E(Hε)) da =

N∑
i=1

μ(λ + μ)

4π(λ + 2μ)
|bi|2 ln

1

ε
+ F (x1, . . . ,xN ) + c + O(ε),(5.2)

where

F (x1, . . . ,xN ) = Fself(x1, . . . ,xN ) + Fint(x1, . . . ,xN ) + Felastic(x1, . . . ,xN )(5.3)

is the renormalized energy with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fself(x1, . . . ,xN ) =

N∑
i=1

∫
Ω\BR(xi)

W (E(Ki)) da +

N∑
i=1

μ(λ + μ)

4π(λ + 2μ)
|bi|2 lnR,

Fint(x1, . . . ,xN ) =

N−1∑
i=1

N∑
j=i+1

∫
Ω

C[E(Ki)] · E(Kj) da,

Felastic(x1, . . . ,xN ) =

∫
Ω

W (E(u0)) da +

N∑
i=1

∫
∂Ω

u0 · T in ds,

(5.4)

where Ki(x) := Kbi
(x; xi) is the fundamental solution defined in (3.3), the function

u0 is defined in Lemma 4.3, c is a constant independent of x1, . . . ,xN , and 0 < R < R̄
is arbitrary. Moreover, Fself is independent of R.

Proof. Consider the fundamental solution Ki(x) := Kbi(x; xi) defined in (3.3):
by (3.10) we may write

Ki(�i, ϑi) =
1

� i

Li(ϑi),(5.5)

where (�i, ϑi) are polar coordinates centered at xi, and Li(ϑi) is independent of �i
and is defined by (3.10), with b replaced by bi. A straightforward computation using
(3.8) and (3.9) yields

ai :=

∫ 2π

0

W (E(Li(ϑ))) dϑ =
μ(λ + μ)

4π(λ + 2μ)
|bi|2.(5.6)

By (4.5) we can write the minimum energy in the form

Jε(Hε) = Iε(uε) +

N∑
i=1

Jε(Ki,ε) +

N−1∑
i=1

N∑
j=i+1

∫
Ωε

C[E(Ki,ε)] · Kj,ε da, .(5.7)

where Iε(uε) is the functional defined by (4.6).
Notice first that the representation of the elastic contribution Felastic in (5.4)3

follows immediately from (4.19).
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We now compute the self-energy contribution Fself : fix R < R̄ and write

Jε(Ki,ε) =

∫
Ωε\BR(xi)

W (E(Ki,ε)) da +

∫
Cε,R(xi)

W (E(Ki,ε)) da(5.8)

with Cε,R(xi) = BR(xi) \Bε(xi).
Now, as ε → 0, by uniform-on-compacta convergence of Ki,ε on R

2 \ {xi},∫
Ωε\BR(xi)

W (E(Ki,ε)) da →
∫

Ω\BR(xi)

W (E(Ki)) da.(5.9)

Moreover, writing as in (3.11) Ki,ε = Ki+∇wε, with wε → 0 uniformly on compacta
in R

2 \ {xi}, we have∫
Cε,R(xi)

W (E(Ki,ε)) da =

∫
Cε,R(xi)

W (E(Ki)) da +

∫
Cε,R(xi)

C[E(Ki)] · ∇wε da

+

∫
Cε,R(xi)

W (E(wε)) da,

and, by (5.5), the first integral on the right-hand side of this identity gives∫
Cε,R(xi)

W (E(Ki)) da = ai(lnR− ln ε),(5.10)

while the second and third integral may be written as∫
∂BR(xi)

wε · C
[
E(Ki) +

1

2
E(wε)

]
n ds−

∫
∂Bε(xi)

wε · C
[
E(Ki) +

1

2
E(wε)

]
n ds

=

∫
∂BR(xi)

wε · C
[
E(Ki) +

1

2
E(wε)

]
n ds− 1

2

∫
∂Bε(xi)

wε · C[E(Ki)]n ds(5.11)

where we have used the fact that C[E(wε)]n = −C[E(Ki)]n on ∂Bε(xi), since
C[E(Ki,ε)]n = 0 on ∂Bε(xi). The first integral on the right-hand side of the above
expression vanishes as ε → 0, while by (3.12) we may write

wε(�i, ϑi) =
ε2

�2
i

w̄(ϑi),

which, in conjunction with (5.5), shows that

−1

2

∫
∂Bε(xi)

wε · C[E(Ki)]n ds = −1

2

∫ 2π

0

w̄(ϑ) · C[E(Li(ϑ))]n dϑ = c

with c a constant independent of (x1, . . . ,xN ). To summarize, (5.11) converges, as
ε → 0, to a constant c independent of R and xi. Note that this is the constant which
appears in (5.2).

Notice that Fself is independent of R, since, for R′ < R̄, say, R′ < R,∫
Ω\BR′ (xi)

W (E(Ki)) da + ai lnR′

=

∫
Ω\BR(xi)

W (E(Ki)) da +

∫
CR′,R(xi)

W (E(Ki)) da + ai lnR′
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=

∫
Ω\BR(xi)

W (E(Ki)) da + ai ln
R

R′ + ai lnR′

=

∫
Ω\BR(xi)

W (E(Ki)) da + ai lnR.

We finally compute the contribution of the interaction term Fint to the renormal-
ized energy and prove that∫

Ωε

C[E(Ki,ε)] · E(Kj,ε) da =

∫
Ω

C[E(Ki)] · E(Kj) da + O(ε).(5.12)

To see this, let as before Ki,ε = Ki + ∇wi,ε and Kj,ε = Kj + ∇wj,ε (cf. (3.11)), so
that∫

Ωε

C[E(Ki,ε)] · E(Kj,ε) da =

∫
Ωε

C[E(Ki)] · E(Kj) da +

∫
Ωε

C[E(Ki)] · ∇wj,ε da

+

∫
Ωε

C[E(Kj)] · ∇wi,ε da +

∫
Ωε

C[E(wi,ε)] · ∇wj,ε da.

It can be easily proved that∫
Ωε

C[E(Ki)] · E(Kj) da →
∫

Ω

C[E(Ki)] · E(Kj) da,

while, applying the divergence theorem, the last three integrals become∫
∂Ω

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da

−
N∑

k=1

∫
∂Bε(xk)

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da.(5.13)

Now, recall that wi,ε → 0 uniformly on compacta in R
2 \ {xi} (see Remark 3.2(ii)),

so that the integrals over ∂Ω and ∂Bε(xk) with k �= i, j vanish in the limit as ε → 0,
and (5.13) becomes

−
∫
∂Bε(xi)

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da

−
∫
∂Bε(xj)

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da,(5.14)

which tends to 0 as ε → 0. Consider in fact the first term: then∣∣∣∣∣
∫
∂Bε(xi)

wj,ε · C[E(Ki)]n da

∣∣∣∣∣ ≤ C sup
Bε(xi)

|wj,ε|
∫
∂Bε(xi)

|C[E(Ki)]n| da

≤ sup
Bε(xi)

|wj,ε|
∫
∂Bε(xi)

|Ki| da → 0

by uniform convergence of wj,ε. Consider now the second term in (5.14): as before,
we may write

wi,ε(�i, ϑi) =
ε2

�2
i

w̄i(ϑi)
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so that, since Kj is continuous at xi,

∣∣∣∣∣
∫
∂Bε(xi)

wi,ε · C[E(Kj)]n ds

∣∣∣∣∣ ≤ sup
Bε(xi)

|C[E(Kj)]|
∫
∂Bε(xi)

|w̄i| ds → 0

as ε → 0, since w̄i is bounded. The remaining terms in (5.14) can be treated analo-
gously, and this completes the proof of (5.2).

Proposition 5.2. The interaction energy Fint in (5.4)2 diverges logarithmically
with the relative distance between the defects:

Fint(x1, . . . ,xN ) =

N−1∑
i=1

N∑
j=i+1

μ(λ + μ)

π(λ + 2μ)
bi · bj ln

1

|xi − xj |
+ O(1),(5.15)

as |xi − xj | → 0.

Proof. Recall that Ki ∈ L1(Ω; R2×2) for each i, and

Fint(x1, . . . ,xN ) =

N−1∑
i=1

N∑
j=i+1

∫
Ω

C[E(Ki)] · E(Kj) da,

let xi,xj ∈ Ω, and γ a line segment parallel to xj − xi connecting xj to ∂Ω
(cf. Figure 5.1), so that γ = {x ∈ Ω : x = xj + s(xj − xi)}, with s ∈ [0, s̄].

Moreover, let m = (
xj−xi

|xj−xi| )
⊥ be the unit vector orthogonal to γ. Consider the tensor

field Kj : while Ω \ {xj} is not simply connected, Ω \ γ is, so that there exists a field
wj on Ω \ γ such that Kj = ∇wj , and

[[wj ]] = −bj ,

where [[wj ]] is the jump of wj across γ, defined by

[[wj ]](x) := lim
y→x, y·m>0

wj(y) − lim
y→x, y·m<0

wj(y)
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xi xj γ

Ω

d

m

Fig. 5.1. Connecting cut γ.

for x ∈ γ. Applying the divergence theorem to Ω\γ, and noting that ∂(Ω\γ) = ∂Ω∪γ,
we find∫

Ω

C[E(Ki)] · Kj da =

∫
Ω\γ

C[E(Ki)] · ∇wj da

=

∫
∂Ω

wj · C[E(Ki)]n ds−
∫
γ

[[wj ]] · C[E(Ki)]m ds.

The first integral in the above expression remains bounded as xi − xj → 0, since
Ki(x) = Kbi

(x; xi) → Kbi
(x; xj) uniformly on ∂Ω as xj − xj → 0. As to the

second integral, write Ki = 1
�i

Li(ϑi), and choose s = �i − d, ϑi = ϑ̄ on γ with

d = |xj − xi|: then

−
∫
γ

[[wj ]] · C[E(Ki)]m ds =

∫ s̄

0

bj · C[E(Li(ϑ̄))]m
1

d + s
ds

= bj · C[E(Li(ϑ̄))]m

(
ln

1

d
+ ln(d + s̄)

)
,

which proves (5.15) since by a straightforward computation using (3.8) and (3.9) we
have

bj · C[E(Li(ϑ̄))]m =
μ(λ + μ)

π(λ + 2μ)
bi · bj .

6. The force on a dislocation. We prove in this section that the derivative of
the renormalized energy with respect to defect position coincides with the resultant
of the Eshelby stress

C = W (E(H))1 − H�C[E(H)](6.1)

on the dislocation.7

To highlight the dependence of the minimizers on the location of the dislocations,
we write

u0(x; x1, . . . ,xN )

7Here 1 is the identity tensor.
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for a minimizer of I0 relative to a system of dislocations located at (x1, . . . ,xN ) in
Ω, and

H0 = H0(x; x1, . . . ,xN ) :=

N∑
i=1

Kbi(x; xi) + ∇u0(x; x1, . . . ,xN )(6.2)

for the corresponding solution of (4.2) as in Theorem 2.1. Let also h ∈ R
2 be a fixed

vector and t ∈ I ⊂ R a real parameter.
Lemma 6.1. The field Kbi(x; xi), u0(x; x1, . . . ,xN ) and H0(x; x1, . . . ,xN ) are

smooth with respect to xi for i ∈ {1, . . . , N}.
In particular,

K̇i(x) :=
d

dt
Kbi(x; xi + th)

∣∣∣∣
t=0

= −∇ (Kbi(x; xi)h) = −∇ (Ki(x)h) .(6.3)

Moreover, if for a fixed k ∈ {1, . . . , N} we denote by u̇0 and Ḣ0 the smooth fields
such that

u̇0(x) :=
d

dt
u0(x; x1, . . . ,xk + th, . . . ,xN )

∣∣∣∣
t=0

,

Ḣ0(x) :=
d

dt
H0(x; x1, . . . ,xk + th, . . . ,xN )

∣∣∣∣
t=0

,

then

Ḣ0 = ∇w with w = u̇0 − Kkh.(6.4)

Proof. Smoothness of Ki follows upon recalling that Kbi(x; xi) is a smooth
function of x − xi (cf. (3.3)). This implies that Kbi(x; xi + th) = Kbi(x − th; xi) =
Ki(x − th), so that

K̇i(x) = −∇(Ki(x))h,

where ∇(Ki)h is the tensor field defined by the identity [∇(Ki)h]z = [∇(Kiz)]h for
any constant vector z ∈ R

2. Since Curl Ki = 0 in R
2 \ {xi},

∇(Ki)h = ∇(Kih),

which yields (6.3).
Now, since u0 minimizes the functional I0, and satisfies the corresponding Euler

equations, it may be written in the form

u0(x; x1, . . . ,xN ) =

∫
∂Ω

G(x, ξ)

(
N∑
i=1

T i(ξ; x1, . . . ,xN )n(ξ)

)
daξ,(6.5)

modulo an infinitesimal rigid body motion, where G(x, ξ) is the Green’s function for
the Neumann problem in plane elasticity. Since

N∑
i=1

T i(x; x1, . . . ,xN ) =

N∑
i=1

C[E(Kbi(x; xi))],

the smoothness of u0 follows from the smoothness of Ki.
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Finally, the smoothness of H0 follows from (6.2), and (6.4) can be directly
verified.

Lemma 6.2. Let f = f(x, t), g = g(x, t), r = r(x, t) be smooth functions defined
on BR(x0 + th), ∂BR(x0 + th) and Ω \BR(x0 + th) for t ∈ I ⊂ R, respectively, with
R > 0 and h a constant vector. Then

d

dt

∫
BR(x0+th)

f(x, t) da

∣∣∣∣∣
t=0

=

∫
BR(x0)

Dtf(x, 0) da

=

∫
BR(x0)

∂tf(x, 0) da +

∫
∂BR(x0)

f(x, 0) h · n ds,(6.6)

and

d

dt

∫
∂BR(x0+th)

g(x, t) ds

∣∣∣∣∣
t=0

=

∫
∂BR(x0)

Dtg(x, 0) ds.(6.7)

Moreover,

d

dt

∫
Ω\BR(x0+th)

r(x, t) da

∣∣∣∣∣
t=0

=

∫
Ω\BR(x0)

∂tr(x, 0) da−
∫
∂BR(x0)

r(x, 0) h · n ds,

(6.8)

where

Dtf = ∂tf + ∇f · h.(6.9)

Proof. The first identity follows upon applying the classical theorem of derivation
under the integral

d

dt

∫
BR(x0+th)

f(x, t) da =
d

dt

∫
BR(x0)

f(x + th, t) da

=

∫
BR(x0)

(∂tf(x + th, t) + h · ∇f(x + th, t)) da;

letting t = 0 and using the divergence theorem we obtain (6.6). Relation (6.7) follows
from a similar argument. To prove (6.8), denote by r̂(x, t) a smooth extension of
r(x, t) to Ω for all t ∈ I. Then

d

dt

∫
Ω\BR(x0+th)

r(x, t) da =
d

dt

∫
Ω

r̂(x, t) da− d

dt

∫
BR(x0+th)

r̂(x, t) da

=

∫
Ω

∂tr̂(x, t) da−
∫
BR(x0+th)

∂tr̂(x, t) da

−
∫
∂BR(x0+th)

r̂(x, t)h · n ds

=

∫
Ω\BR(x0+th)

∂tr̂(x, t) da−
∫
∂BR(x0+th)

r̂(x, t)h · n ds,

which proves the assertion.
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The next theorem, one of our main results, shows that the derivative of the
renormalized energy coincides with the force on a dislocation and thus, as mentioned
in the introduction, it may be viewed as the generalization of Eshelby’s notion of force
on a defect, when bad singularities are associated to the defect itself.

Theorem 6.3. Let H0 be defined by (6.2), and let F = F (x1, . . . ,xN ) be the
renormalized energy (5.3): then

∇xk
F = −

∫
∂BR(xk)

{
W (E(H0))1 − H�

0 C[E(H0)]
}

n ds(6.10)

for R < R̄, where R̄ is defined in (5.1).
Proof. The first step is to rewrite the renormalized energy as the sum of two

contributions,

F (x1, . . . ,xN ) = FR(x1, . . . ,xN ) + G(x1, . . . ,xN ),(6.11)

where we have omitted the constant logarithmic term and

FR(x1, . . . ,xN ) =

∫
ΩR

W (E(H0)) da,(6.12)

and

G(x1, . . . ,xN ) =

N∑
i=1

∑
h
=i

∫
BR(xh)

W (E(Ki)) da +

N∑
h=1

N−1∑
i=1

N∑
j=i+1

∫
BR(xh)

C[E(Ki)] · Kj da

+

N∑
h=1

∫
BR(xh)

W (E(u0)) da +

N∑
h=1

N∑
i=1

∫
∂BR(xh)

u0 · C[E(Ki)]n da.(6.13)

Consider now a variation of the position of the kth dislocation of the form xk → xk+th
with h a fixed vector. Then

d

dt
FR(x1, . . . ,xk + th, . . . ,xN )

∣∣∣∣
t=0

=
d

dt

∫
ΩR\(BR(x1)∪···∪BR(xk+th)∪···∪BR(xN ))

W (E(H0(x; x1, . . . ,xk + th, . . . ,xN ))) da

∣∣∣∣∣
t=0

and applying Lemma 6.2 we obtain∫
ΩR

C[E(H0)] · Ḣ0 da−
∫
∂BR(xk)

W (E(H0))h · n ds.

Recalling now Lemma 6.1, writing Ḣ0 = ∇w, applying the divergence theorem, and
recalling that C[E(H0)]n = 0 on ∂Ω this becomes∫

ΩR

C[E(H0)] · ∇w da−
∫
∂BR(xk)

W (E(H0))h · n ds

= −
N∑
i=1

∫
∂BR(xi)

w · C[E(H0)]n ds−
∫
∂BR(xk)

W (E(H0))h · n ds,
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which in turn equals

−
∫
∂BR(xk)

h · (W (E(H0))1 − H�
0 C[E(H0)])n ds

−
∫
∂BR(xk)

(w + H0h) · C[E(H0)]n ds−
∑
i 
=k

∫
∂BR(xi)

w · C[E(H0)]n ds.

The first term is the resultant of the Eshelby stress on the kth dislocation, while the
second and third term may be written as

−
∫
∂BR(xk)

(u̇0 + (∇u0)h +
∑
i 
=k

Kih) · C[E(H0)]n ds

−
∑
i 
=k

∫
∂BR(xi)

(u̇0 − Kkh) · C[E(H0)]n ds(6.14)

since w = u̇0 − Kkh and

w + H0h = u̇0 − Kkh +

(∑
i

Ki + ∇u0

)
h = u̇0 + (∇u0)h +

∑
i 
=k

Kih.

We now prove that (6.14) cancels with the derivative of (6.13), i.e.,

d

dt
G(x1, . . . ,xk + th, . . . ,xN )

∣∣∣∣
t=0

.

In fact, rewriting (6.13) as the sum of the terms

∫
BR(xk)

⎧⎨
⎩
∑
i 
=k

W (E(Ki)) +
∑
i<j

C[E(Ki)] · Kj + W (E(u0))

⎫⎬
⎭ da

+

∫
∂BR(xk)

∑
i

(u0 · C[E(Ki)]n) ds(6.15)

and

∑
h
=k

∫
BR(xh)

⎧⎨
⎩
∑
i 
=h

W (E(Ki)) +
∑
i<j

C[E(Ki)] · Kj + W (E(u0))

⎫⎬
⎭ da

+
∑
h
=k

∫
∂BR(xh)

∑
i

(u0 · C[E(Ki)]n) ds(6.16)

and computing the derivative of (6.15) with respect to t and using Lemma 6.2, we
find ∫

BR(xk)

⎧⎨
⎩
∑
i 
=k

C[E(Ki)] ·DtKi +
∑
i<j

C[E(Ki)] ·DtKj

+
∑
i<j

C[E(Kj)] ·DtKi + C[E(u0)] · ∇(Dtu0)

⎫⎬
⎭ da

+

∫
∂BR(xk)

{∑
i

u0 · C[E(DtKi)]n +
∑
i

Dtu0 · C[E(Ki)]n

}
ds,
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where DtKj := K̇j + ∇(Kj)h and Dtu0 = u̇0 + (∇u0)h. Since DtKk = 0 and

DtKj = ∇(Kj)h = ∇(Kjh) for j �= k (since K̇j = 0 for j �= k), using the divergence
theorem and noting that DivC[E(DtKi)] = 0 on R

2 \ {xi}, we find

∫
∂BR(xk)

⎧⎨
⎩Dtu0 · C[E(H0)]n +

∑
i 
=k

(Kih) · C[E(u0)]n

+
∑
i 
=k

(Kih) · C[E(Ki)]n +
∑
i 
=k

∑
j 
=i

(Kih) · C[E(Kj)]n

⎫⎬
⎭ ds,

which becomes finally∫
∂BR(xk)

(Dtu0 +
∑
i 
=k

Kih) · C[E(H0)]n ds.(6.17)

Consider now the derivative of (6.16) with respect to t: using Lemma 6.2, we find

∑
h
=k

∫
BR(xh)

⎧⎨
⎩C[E(Kk)] · K̇k +

∑
i 
=k

C[E(Ki)] · K̇k + C[E(u0)] · ∇u̇0

⎫⎬
⎭ da

+
∑
h
=k

∫
∂BR(xh)

{
u0 · C[E(K̇k)]n +

∑
i

u̇0 · C[E(Ki)]n

}
ds,

and using the fact that DivC[E(K̇k)] = 0 on R
2 \ {xk}, and K̇k = −∇(Kkh) we

finally obtain

∑
h
=k

∫
∂BR(xh)

(u̇0 − Kkh) · C[E(H0)]n ds.(6.18)

Relation (6.10) follows now upon noting that the sum of (6.14), (6.17), and (6.18)
vanishes.

Appendix: Poincaré and Korn inequalities for Ωε.
The basic tool to study the compactness of a sequence of minimizers of problem

(2.9) is Korn’s inequality: we prove here that for a perforated domain such as Ωε,
under mild regularity assumptions, Korn’s and Poincaré’s inequalities hold uniformly
in ε as ε → 0. Also, we show that the trace constant for Ωε may be chosen independent
of ε.

We begin by proving that Poincaré’s inequality holds for each domain Ωε uni-
formly in ε, when Ω has the cone property.

Proposition A.1. Let Ω be a bounded open connected domain in R
2 with the

cone property: then, for any u ∈ H1(Ωε; R
2),∫

Ωε

|u − uB |2 dx ≤ c

∫
Ωε

|∇u|2 dx,(A.1)

where

uB :=
1

|B|

∫
B

u da,(A.2)
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B is any fixed ball contained in Ω \ {x1, . . . ,xN}, and the constant c is independent
of ε (but may depend on Ω \ {x1, . . . ,xN} and B).

Proof. Fix R > 2ε so small that BR(xi) ⊂ Ω \B for any i = 1, . . . , N , BR(xi) ∩
BR(xj) = ∅ for i �= j, and decompose Ωε as the union of the annuli Cε,R2

(xi) =

BR
2
(xi) \ Bε(xi) and its complement Ω′, which is independent of ε. Since Ω′ is still

connected and has the cone property, by the classical Poincaré’s inequality we may
find a constant c depending on Ω′ and B such that∫

Ω′
|u − uB |2 dx ≤ c

∫
Ω′

|∇u|2 dx.(A.3)

For each fixed i = 1, . . . , N let (�, ϑ) be polar coordinates centered at xi: for L1

almost everywhere ε ≤ s ≤ � < R and θ ∈ [0, 2π] we have

u (s, ϑ) = u (�, ϑ) −
∫ �

s

∂u

∂�
(r, ϑ) dr,

from which it follows, by Hölder’s inequality,

|u (s, ϑ)|2 ≤ 2 |u (�, ϑ)|2 + 2R

∫ R

s

∣∣∣∣∂u

∂�
(r, ϑ)

∣∣∣∣
2

dr.

Integrating with respect to ϑ and multiplying by s yields∫ 2π

0

s |u (s, ϑ)|2 dϑ ≤ 2

∫ 2π

0

� |u (�, ϑ)|2 dϑ + 2R

∫
Cε,R(xi)

|∇u|2 da,(A.4)

where we have used the fact that s ≤ �, r. By integrating first with respect to s in
[ε, R

2 ] and then to � in [R2 , R] we obtain∫
C

ε, R
2

(xi)

|u|2 da ≤ 2

∫
CR

2
,R

(xi)

|u|2 da + 2R

∫
Cε,R(xi)

|∇u|2 da.

If we now replace u with u − uB in the previous inequality we get∫
C

ε, R
2

(xi)

|u − uB |2 da ≤ 2

∫
CR

2
,R

(xi)

|u − uB |2 da + 2R

∫
Cε,R(xi)

|∇u|2 da,

which together with (A.3) and the fact that CR
2 ,R ⊂ Ω′ concludes the proof.

We now turn to Korn’s inequality. First we notice that if Ω has the cone property,
then for all ε > 0 Ωε has the cone property, and the following version of this inequality
holds [9, 17, 24].

Proposition A.2 (Korn’s inequality I). Let Ω ⊂ R
2 be an open bounded con-

nected domain with the cone property, and let u ∈ H1(Ωε; R
2) such that∫

Ωε

(
∇u − (∇u)�

)
da = 0;(A.5)

then there exists a constant cε such that∫
Ωε

|∇u|2da ≤ cε

∫
Ωε

|E(u)|2da.(A.6)



1156 PAOLO CERMELLI AND GIOVANNI LEONI

We continue to denote by cε the infimum of all constants satisfying (A.6) and
refer to it as Korn’s constant for Ωε. The following result shows that cε is bounded
from above independently of ε as ε → 0.

Proposition A.3. Let cε be Korn’s constant for Ωε as defined in (A.6): then
there exists a constant c < ∞, independent of ε (but possibly depending on Ω), such
that

cε ≤ c(A.7)

for all ε > 0.
Proof. Consider first the case N = 1, and let x1 = 0, so that Ωε = Ω \ Bε(0).

The proof follows from two results of [9]. The first result states that the minimum
value for Korn’s constant of the annulus Cε,R(0) with internal radius ε and external
radius R (under the constraint (A.5)) is

4

[
1 −
(

3R2ε2

R4 + R2ε2 + ε4

)]−1

,(A.8)

which tends to Korn’s constant for the circle c = 4 as ε → 0. The second result states
that if Korn’s inequality (A.5)–(A.6) holds for two open bounded domains Ω1 and Ω2

such that |Ω1 ∩ Ω2| > 0, then it also holds for Ω1 ∪ Ω2, and

c12 ≤ c1 + c2 +
min{|Ω1|, |Ω2|}

|Ω1 ∩ Ω2|
(
√
c1 +

√
c2)

2
(A.9)

with c12, c1, and c2 the Korn’s constants of Ω1 ∪ Ω2, Ω1, and Ω2, respectively.
To prove (A.7), choose R such that 2R < d(0, ∂Ω), let Ω1 = Cε,2R(0) and Ω2 =

Ωε \ Cε,R(0), and apply (A.9): since c2 is independent of ε and, by (A.8), c1 → 4 as
ε → 0, Korn’s constant cε = c12 is bounded from above, and the thesis follows for
N = 1.

When N > 1, to obtain the thesis it is sufficient to iterate the above procedure:
define ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ω̃0 := Ω \
(
∪N
i=1BR(xi)

)
...

Ω̃i := Ω̃i−1 ∪ (B2R(xi) \Bε(xi)) , i = 1, . . . , N − 1,
...

Ω̃N := Ωε.

Applying (A.9) to each Ω̃i we obtain

c̃i ≤ c̃i−1 + c̃ε +
min{|Ω̃i−1|, |cε,2R(xi)|}

|Ω̃i−1 ∩ cε,2R(xi)|

(√
c̃i−1 +

√
c̃ε

)2

= c̃i−1 + c̃ε +
4R2 − ε2

3R2

(√
c̃i−1 +

√
c̃ε

)2

,

where c̃i and c̃ε are Korn’s constants for Ω̃i and Cε,2R(xi), respectively. Using the
relation (a + b)2 ≤ 2(a2 + b2), and taking ε = 0, this relation implies

c̃i ≤
11

3
(c̃i−1 + c̃ε),
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which yields in turn

c̃N ≤
(

11

3

)N

c̃0 +

(
N∑
i=1

(
11

3

)i
)

c̃ε.

Since c̃ε is given by (A.8) and is bounded from above, and c̃0 is independent of ε, this
relation shows that cε = c̃N is also bounded from above as ε → 0.

Korn’s inequality extends trivially to displacement fields u which do not satisfy
(A.5).

Corollary A.4 (Korn’s inequality I′). Let Ω ⊂ R
2 be an open bounded con-

nected domain with the cone property, and u ∈ H1(Ωε; R
2): then there exists a con-

stant c, independent of ε, such that∫
Ωε

|∇u − W |2da ≤ c

∫
Ωε

|E(u)|2da,(A.10)

where

W =
1

2

∫
Ωε

(∇u − (∇u)�) da.(A.11)

Combining (A.1), (A.6), and (A.7), we finally obtain the following basic inequality.
Proposition A.5 (Korn’s inequality II). Let u ∈ H1(Ωε; R

2) such that∫
Ωε

(
∇u − (∇u)�

)
da = 0;(A.12)

then there exists a constant c, independent of ε, such that∫
Ωε

|u − uB |2da +

∫
Ωε

|∇u|2da ≤ c

∫
Ωε

|E(u)|2da,(A.13)

where

uB :=
1

|B|

∫
B

u da,(A.14)

and B is any fixed ball contained in Ω \ {x1, . . . ,xN}.
We now show that the trace constant for Ωε may be chosen to be independent

of ε.
Proposition A.6. Let u ∈ H1(Ωε; R

2): then there exists a positive constant c,
independent of ε, such that∫

∂Ωε

|u|2ds ≤ c

(∫
Ωε

|u|2da +

∫
Ωε

|∇u|2da
)
.(A.15)

Proof. Taking s = ε in (A.4) we have∫
∂Bε(xi)

|u|2ds ≤ 2

∫ 2π

0

� |u (�, ϑ)|2 dϑ + 2R

∫
Cε,R(xi)

|∇u|2 da.

By averaging with respect to � over [ε,R] we obtain∫
∂Bε(xi)

|u|2ds ≤ 2

R− ε

∫
Cε,R(xi)

|u|2 da + 2R

∫
Cε,R(xi)

|∇u|2 da.
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Hence, for ε sufficiently small, there exists a constant c1 such that∫
∂Bε(xi)

|u|2ds ≤ c1

(∫
Ωε

|u|2 da +

∫
Ωε

|∇u|2 da
)

(A.16)

for each i = 1, . . . , N . Now, let c2 be the trace constant for ΩR, so that

∫
∂Ω

|u|2ds ≤ c2

(∫
ΩR

|u|2 da +

∫
ΩR

|∇u|2 da
)

≤ c2

(∫
Ωε

|u|2 da +

∫
Ωε

|∇u|2 da
)
.

(A.17)

Adding the expressions above we finally obtain the thesis.
Finally, we show that functions in H1(Ωε; R

2) can be extended to Ω with extension
constant independent of ε.

Proposition A.7. Let u ∈ H1(Ωε; R
2): then u admits an extension û ∈

H1(Ω,R2) such that

‖û‖H1(Ω,R2) ≤ c‖u‖H1(Ωε;R2),(A.18)

where the constant c is independent of ε.
Proof. First notice that, using a partition of unity, we may assume that u ∈

H1(R2 \Bε(0); R2), and u = 0 outside a compact in R
2. Let

û(x) =

⎧⎪⎨
⎪⎩

u

(
ε2

|x|2 x

)
, x ∈ Bε(0),

u(x), x ∈ R
2 \Bε(0),

so that û(x) = u(x) when |x| = ε. Then∫
Bε(0)

|û(x)|2 da =

∫
Bε(0)

∣∣∣∣u
(

ε2

|x|2 x

)∣∣∣∣
2

da =

∫
R2\Bε(0)

ε4

|x|4 |u(x)|2 da

≤
∫

R2\Bε(0)

|u(x)|2 da,

since the modulus of the Jacobian of the transformation x → ε2x/|x|2 is |J | = ε4/|x|4,
and ε4/|x|4 ≤ 1 for |x| ≥ ε. Also, notice that

∇û(x) = ∇u

(
ε2

|x|2 x

)[
ε2

|x|2

(
1 − 2

|x|2 x ⊗ x

)]

and ∣∣∣∣1 − 2

|x|2 x ⊗ x

∣∣∣∣
2

= 1.

Hence, ∫
Bε(0)

|∇û(x)|2 da ≤ M

∫
Bε(0)

ε4

|x|4

∣∣∣∣∇u

(
ε2

|x|2 x

)∣∣∣∣
2

da

= M

∫
R2\Bε(0)

ε4

|x|4
|x|4
ε4

|∇u(x)|2 da

≤ M

∫
R2\Bε(0)

|∇u(x)|2 da
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with M a positive constant independent of ε. Since û = u on R
2 \ Bε(0), it follows

that there exists a constant c independent of ε such that

‖û‖H1(R2,R2) ≤ c‖u‖H1(R2\Bε(0);R2),

which implies the thesis.
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WATER WAVES∗
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Abstract. In order to investigate corrections to the common KdV approximation for surface
water waves in a canal, we derive modulation equations for the evolution of long wavelength initial
data. We work in Lagrangian coordinates. The equations which govern corrections to the KdV
approximation consist of linearized and inhomogeneous KdV equations plus an inhomogeneous wave
equation. These equations are explicitly solvable and we prove estimates showing that they do indeed
give a significantly better approximation than the KdV equation alone.

Key words. water wave equation, KdV equation, linearized KdV equation, modulation equa-
tions, solitary waves, solitons, collisions of solitary waves
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1. Introduction. It is often easier to write down a partial differential equation
which models a physical phenomena than it is to study solutions of such an equation.
Equations which model the evolution of the surface of a fluid in a canal have been
known since at least the 19th century; however, it has only been in recent years that
questions of existence and uniqueness for general initial data have been answered (see
[35], [36], and [22]). Moreover, numerical simulations of water waves and similarly
complex phenomena are frequently time consuming and challenging to implement.
Consequently, it can be quite difficult to say much about the behavior of a general
solution. Therefore scientists often restrict their attention to limiting cases—for in-
stance, one may assume that solutions are of long wavelength and small amplitude
(see Figure 1). Under such a supposition, a modulation equation may be (formally)
derived. In particular, one hopes that the modulation equation

• is well-posed,
• is either explicitly solvable or easy to solve numerically, and
• captures the essential behavior of the original system.

Remarkably, many seemingly disparate physical phenomena possess modulation equa-
tions of the same form. For solutions of long wavelength, Korteweg–de Vries (KdV)
equations are often used as modulation equations for a wide variety of nonlinear dis-
persive systems, including the water wave equation, the Euler–Poisson equations for
plasma dynamics, and the Fermi–Pasta–Ulam equation for the interaction of particles
in an infinite lattice.

Despite the fact that modulation equations have been in use for over a hundred
years—the KdV equation was first proposed as a model for water waves by Boussinesq
in 1872 and also by Korteweg and de Vries in 1895—only recently have attempts been
made to rigorously connect the behavior of the modulation equations to the original
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ε2

ε−1

Fig. 1. The long wave, small amplitude scaling.

physical problem. In particular, through the work of Craig [10], Kano and Nishida
[18], [19], Kalyakin [17], Schneider [27], Ben Youssef and Colin [2], and Schneider and
Wayne [28], [29], the validity of KdV equations as a leading order approximation to
the evolution of long wavelength water waves and to a number of other dispersive
partial differential equations has been established.

In many respects, the KdV equation is an ideal modulation equation; it is simple
in form and explicitly solvable via the inverse scattering transform. Nevertheless,
both experimentally and numerically one observes deviations from the predictions of
the KdV approximation. In this paper we derive a hierarchy of modulation equations
which govern corrections to the KdV model and also prove rigorously that these higher
order equations do indeed improve the accuracy of the approximation. While the
correction is valid in general long wavelength/small amplitude settings, heuristically
the model is set up to better approximate interactions between solitary waves—both
counterpropagating collisions and unidirectional interactions.

Note that in [33], as a case study, Wayne and Wright examined higher order
corrections to the KdV approximation to a Boussinesq equation. As the KdV equation
is in some sense a universal approximation for long waves, we expect that the equations
for corrections to this approximation will also be universal. Indeed, our results show
that the higher order corrections for the water wave equation are nearly identical
to those for the Boussinesq equation. Also, since a significant part of the work for
the Boussinesq problem consists of showing that the modulation equations have well-
behaved solutions over the time scales of interest, this is of use in tackling the water
wave problem.

We now describe our results in some detail. The equations of motion for a water
wave in an infinitely long canal (commonly called the water wave equation) are

xtt(1 + xα) + yα(1 + ytt) = 0,

yt = K(x, y)xt,

α ∈ R, t ≥ 0, (x(α, t), y(α, t)) ∈ R
2,

(WW)

where K(x, y) is a complicated operator (see section 3 for the definition of K) and (α+
x(α, t), y(α, t)) parameterizes the free surface. According to the KdV approximation
results of [28], to the order of the approximation long wavelength solutions of (WW)
split up into two pieces, one a right-moving wave train and one a left-moving wave
train. Each of these wave trains evolves according to a KdV equation, and there is
no interaction between the left- and right-moving pieces. That is, for 0 < ε � 1, if we
scale amplitudes to be O(ε2) (i.e., small) and wavelengths to be O(ε−1) (i.e., long),
then for times of O(ε−3), solutions to (WW) satisfy

−xα(α, t) = ε2U(ε(α− t), ε3t) + ε2V (ε(α + t), ε3t) + O(ε4),(1)
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Fig. 2. Sketch of the right- and left-moving wave trains.

where U and V satisfy the KdV equations

−2∂TU =
1

3
∂3
β−U +

3

2
∂β−(U2),

2∂TV =
1

3
∂3
β+

V +
3

2
∂β+(V 2).

(KdV)

See Figure 2. Here, β± = ε(β± t) represent long wavelength moving reference frames
and T = ε3t is the very long time scale coordinate. For technical reasons (which we
discuss later), −xα is the natural variable to estimate for the water wave equation.
To lowest order, −xα is proportional to the height of the wave. At higher order, this
ceases to be true, though for purposes of intuition one can think of −xα as representing
the wave amplitude.

The KdV equation was initially derived from the water wave equation in an at-
tempt to prove the existence of a solitary wave solution for waves in a canal. Famously,
the KdV equation admits solitary wave solutions and also multisoliton solutions. (See
Figure 3.) Note that the existence of a true solitary wave solution to (WW) was es-
tablished first by Friedrichs and Hyers in [14] and subsequently by Beale in [1]. Also
note that there exist standing wave solutions (also known as Stokes’ waves) to (WW)
which in many ways are similar to solitary waves, though our methods do not carry
over to studying such behavior—see Toland [32] and Constantin and Strauss [8] for
an overview of Stokes’ waves in the irrotational and rotational problems, respectively.

We will frequently refer to multisoliton solutions as “overtaking wave” collisions.
We remind the reader that the only notable first order effect after such a collision is
that the waves are phase shifted after the collision.

Given the results in [28], one expects to see similar behavior in solutions systems
modeled by KdV equations. Though it is unknown if these soliton-like solutions
persist globally, analogous behavior is indeed observed for very long times (see [15]).
The most notable deviation between true solutions and the KdV approximation is
the size of the phase shift after a collision. In addition, soliton-like solutions to the
type of systems we study frequently develop a very small amplitude dispersive wave
train behind each soliton, which moves in the same direction; see Figure 4. The
KdV approximation does not predict the existence of these dispersive wave trains.
As these sorts of discrepancies are observed even in the case where there is only one
wave train moving unidirectionally, we believe that they are, loosely, independent of
interactions between the left- and right-moving wave trains. They reflect intrinsic
differences between the approximation and the original system.

On the other hand, there is evidence that a noticeable interaction takes place
between the left- and right-moving waves. One can see from the form of the approxi-
mation in (1) that during a head-on collision of waves moving in opposite directions,
the KdV approximation predicts that the heights of the waves add linearly. In true
head-on collisions in solutions to the water wave equation, however, the height of the
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* dashed lines are KdV approximation

after collision

during interaction

before collision

Fig. 3. Sketch of the overtaking wave interaction.

dispersive wave solitary wave

Fig. 4. Sketch of the dispersive wave.

waves is slightly different from the sum of the heights of the waves taken separately—
it is slightly larger. (See the works of Maxworthy [23], Byatt-Smith [6], [7], Cooker,
Weidman, and Bale [9], and Su and Mirie [30], [31].) We sketch this in Figure 5.

Thus we might expect two types of corrections to the KdV approximation:

• corrections due to the fact that, even in the case of a purely right- (or
left-) moving wave train, solutions to the water wave equation are not exactly
described by solutions to the KdV equation—we will refer to this source of
error as unidirectional error;

• corrections due the fact that the left- and right-moving wave trains will in-
teract at higher order—we call such errors counterpropagation error.

Both of these types of corrections are apparent in our results, and to incorporate
these two types of corrections, we add an additional three functions to the KdV wave
trains. The first two, F and G, will correct for unidirectional errors. The third, P ,
will correct for counterpropagation errors. We scale the amplitudes of these three
functions so they are O(ε4), which is the same as the order of the error in using only
the KdV equations. F and G will take the same functional form as U and V , as they
correct for differences between the approximate and actual wave trains. Therefore we
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water wave

before collision

during collision KdV approximation

Fig. 5. Sketch of the head-on collision.

add

ε4F (ε(α− t), ε3t) + ε4G(ε(α + t), ε3t)

to the first order approximation (1).
We do not expect P to be moving strictly left or right, as it corrects for the

interaction between waves moving in opposite directions. Thus its spatial dependence
will be on β = εα. Suppose that the functions U and V are solitary wave solutions.
In the long wavelength variables we are considering, this means that the right- and
left-moving wave packets are large only over a length of O(ε−1). In addition, the
reference frame moves with unit velocity. Thus we expect any interaction of the two
waves to last a time of O(ε−1). Accordingly, we let P depend on the time variable
τ = εt. That is, we add a correction term of the form

ε4P (εα, εt)

to the KdV model.
Through formal means we find that P satisfies an inhomogeneous wave equation

∂2
τP − ∂2

βP = 3∂2
β

(
U(β − τ, ε2τ)V (β + τ, ε2τ)

)
.(IW)

Similarly, F and G satisfy a pair of driven, linearized KdV equations

−2∂TF =
1

3
∂3
β−F + 3∂β−(UF ) + J−,

2∂TG =
1

3
∂3
β+

G + 3∂β+(V G) + J+.

(LK)

Notice that these equations are linearized about the KdV solutions U and V . The
inhomogeneous terms J− and J+ are made up of a combination of sums and products
of U , V , and P . For explicit forms of these driving terms see equations (22). Linearized
KdV equations are explicitly solvable, though this is a complicated matter (see [25]
and [16]). However, solutions are simple to compute numerically.

One can solve inhomogeneous wave equations explicitly and easily via the method
of characteristics. Moreover, we can reduce such systems to a pair of transport equa-
tions by the following fact.
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Fact 1. If ∂tf−∂xf = 1/2∂xh and ∂tg+∂xg = −1/2∂xh, then q = f+g satisfies
∂2
t q − ∂2

xq = ∂2
xh.

Thus, we have

P−
τ + P−

β = −3

2
∂β(U(β − τ, ε2τ)V (β + τ, ε2τ)),

P+
τ − P+

β =
3

2
∂β(U(β − τ, ε2τ)V (β + τ, ε2τ)),

(T)

where

P (β, τ) = P+(β, τ) + P−(β, τ).

We remark that the initial data for the modulation equations is determined from
initial conditions for the original system in ways described in section 6. Also, this
hierarchy of higher order modulation equations is nearly identical to that derived in
Wayne and Wright [33] for the Boussinesq equation—the chief difference lying in the
specific forms of the inhomogeneous terms J±.

To enforce the notion of spatial localization, we will be considering initial data
which is of rapid decay, that is, initial data in

Hs(m) =
{
f(α)|(1 + α2)m/2f(α) ∈ Hs

}
.

The inner product on Hs(m) is given by

(f(·), g(·))Hs(m) =
(
(1 + ·2)m/2f(·), (1 + ·2)m/2g(·)

)
Hs

,

where we use the standard inner product in Hs. In particular, the known soliton
solutions of the KdV equations are in such spaces.

That the KdV equations have solutions for all times with this sort of initial data
is well known. In particular, we have the following theorem from [28].

Theorem 1. Let σ ≥ 4. Then for all CI , T0 > 0 there exists C1 > 0 such that if
U , V satisfy (KdV) with initial conditions U0, V0 and

max{‖U0‖Hσ(4)∩Hσ+4(2)∩Hσ+9 , ‖V0‖Hσ(4)∩Hσ+4(2)∩Hσ+9} < CI ,(2)

then

sup
T∈[0,T0]

{
‖U(·, T )‖Hσ(4)∩Hσ+4(2)∩Hσ+8 , ‖V (·, T )‖Hσ(4)∩Hσ+4(2)∩Hσ+8

}
< C1.(3)

On the other hand, it is less clear that solutions of (IW) and (LK) will remain
bounded over the very long time scales necessary for the KdV approximation. In [33]
we proved the following result which guarantees that the solutions of the modulation
equations remain bounded for sufficiently long times.

Proposition 1. Fix T0 > 0 and σ > 11/2. Suppose that U0, V0 satisfy (2) and
U , V , P±, F , and G satisfy (KdV), (T), and (LK). Then there exists a constant C2,
independent of ε, such that the solutions of (T) and (LK) satisfy the estimates

sup
τ∈[0,T0ε−2]

‖P±(·, τ)‖Hσ+3 ≤ C2,

sup
T∈[0,T0]

{
‖F (·, T )‖Hσ∩Hσ−4(2), ‖G(·, T )‖Hσ∩Hσ−4(2)

}
≤ C2.
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Moreover, P±(β, τ) = ϕ±(β±, T ) with

sup
T∈[0,T0]

‖ϕ±(·, T )‖Hσ+3∩Hσ−1(2) ≤ C2.

Finally we note that since ∂τP = ∂βP
+ − ∂βP

− we have ‖∂τP‖s ≤ ‖∂βP‖s.
With this preliminary result in hand we can state our principal results. Denote

the sum of the modulation functions, properly scaled, as

−ψd (α, t) = ε2U
(
ε (α− t) , ε3t

)
+ ε2V

(
ε (α + t) , ε3t

)
+ ε4F

(
ε (α− t) , ε3t

)
+ ε4G

(
ε (α + t) , ε3t

)
+ ε4P (εα, εt) .

(4)

As mentioned earlier, (x, y) are not the natural coordinates to study solutions to
(WW). The coordinates we use are (xα, y, xt)

tr. xα is approximated by ψd, and the
functions y and xt are approximated by functions we denote ψy and ψu, respectively.
They are given by

ψy(α, t) = ε2U(ε(α− t), ε3t) + ε2V (ε(α + t), ε3t)

+ ε4F (ε(α− t), ε3t) + ε4G(ε(α + t), ε3t) + ε4P (εα, εt)

+
1

3
ε4∂2

β−U(ε(α− t), ε3t) +
1

3
ε4∂2

β+
V (ε(α + t), ε3t)

+ ε4
(
U(ε(α− t), ε3t) + V (ε(α + t), ε3t)

)2
(5)

and

ψu(α, t) = ε2U(ε(α− t), ε3t) − ε2V (ε(α + t), ε3t)

+ ε4F (ε(α− t), ε3t) − ε4G(ε(α + t), ε3t)

+ ε4ϕ−(ε(α− t), ε3t) − ε4ϕ+(ε(α + t), ε3t)

+
1

6
ε4∂2

β−U(ε(α− t), ε3t) − 1

6
ε4∂2

β+
V (ε(α + t), ε3t)

+
3

4
ε4U2(ε(α− t), ε3t) − 3

4
ε4V 2(ε(α + t), ε3t).

(6)

We discuss the origin of these equations in section 4.
The approximation will be valid in the space

H
s = Hs ×Hs ×Hs−1/2.

Our main result is the following.
Theorem 2. Fix T0, CI > 0, s > 4, σ ≥ s + 7. Suppose that U , V , P , F ,

and G satisfy (KdV), (IW), and (LK) and that ψd, ψy, and ψu are the combinations
of these functions given in (4), (5), and (6). Then there exist ε0 > 0 and CF > 0
such that the following is true. If the initial conditions for (WW) are of the form

((xα(α, 0), y(α, 0), xt(α, 0))
tr

=
(
0, ε2Θy(εα), ε2Θu(εα)

)tr
with

max
i=y,z

{
‖Θi(·)‖Hσ(4)∩Hσ+4(2)∩Hσ+9

}
≤ CI ,

then for ε ∈ (0, ε0) there is a reparameterization of the free surface such that the
unique solution to (WW) satisfies∥∥∥∥∥∥

⎛
⎝ xα(·, t)

y(·, t)
xt(·, t)

⎞
⎠−

⎛
⎝ ψd(·, t)

ψy(·, t)
ψu(·, t)

⎞
⎠
∥∥∥∥∥∥

Hs

≤ CF ε
11/2
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for t ∈ [0, T0ε
−3]. The constant CF does not depend on ε.

Remark 1. The loss of the one-half power of ε in Theorem 2 is caused by the long
wave scaling and not a lack of sharpness in the estimates.

Remark 2. It is clear that the form of the initial conditions specified in the
hypotheses of this theorem does not agree with that found by setting t = 0 in the
approximation inequality (unless, of course, ψd ≡ 0). This is precisely why we mention
the need to reparameterize the free surface. We discuss this at length in section 6.

Remark 3. In [28], Schneider and Wayne prove the analogous result for the KdV
(i.e., O(ε4)) approximation alone. The methods used here follow largely from their
work.

Remark 4. The long time scale on which this theorem holds is natural given the
form of the approximation—t ∼ O(ε−3) corresponds to times T of O(1) in the KdV
equation. The methods of the proof rely on a Gronwall-type estimate which imposes
this time scale. Moreover, while Proposition 1 shows that the functions F and G
remain O(1) for t ∼ O(ε−3), estimates show that beyond this they are likely to grow
very rapidly, ruining any chance for the higher order correction to be valid for longer
times. Nonetheless, it is unclear whether or not the approximation of water waves by
the KdV solutions alone is valid for even longer times. Numerical experiments done
for the KdV approximation to the Euler–Poisson equations by Haragus, Nicholls, and
Sattinger in [15] indicate that the approximation is valid for very long times, but little
is known analytically.

Less technically, this theorem states that solutions to (WW), in the long wave-
length limit, satisfy

xα(α, t) = ψd(α, t) + O(ε6)

for times of O(ε−3). This is, as expected, a marked improvement over the use of KdV
alone.

We note that this is not the first time that linearized KdV equations have been
put forward as a means to improve the accuracy of the KdV approximation. Other in-
stances where linearized KdV equations appear include Sachs [26], Haragus, Nicholls,
and Sattinger [15], Kodama and Taniuti [21], and Drazin and Johnson [12]. Moreover,
there have been numerous models put forward over the years which model water waves
in the same scaling regime we are considering. We refer the reader to Kodama [20],
Olver [24], Bona, Pritchard, and Scott [5], Craig and Groves [11], Dullin, Gottwald,
and Holm [13], and Bona and Chen [4]. Much of the work done in the above papers
pertains to analyzing the behavior of the model equations and not to their connection
to the original system. A notable exception is the recent work by Bona, Colin, and
Lannes [3], wherein they prove the rigorous validity of a large number of Boussinesq-
style models. There, they prove that such models are at least as accurate as the KdV
approximation alone (though not as accurate as the model described here) and for
the same time scales. Their models are designed, in part, to be easy to approximate
numerically and are not, in general, explicitly solvable. Our particular combination of
linearized KdV equations with an inhomogeneous wave equation appears to be unique
and is asymptotically the most accurate model for long wavelength solutions to the
water wave equation which has currently been justified rigorously.

The remainder of this paper is organized as follows. First, in section 2, we conduct
a preliminary discussion of the water wave equation. Sections 3 and 5 contain a
thorough discussion of the operator K(x, y). Then, in section 4 we derive the higher
order modulation equations and prove an important estimate. In section 6 we prove
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Ω(t)

−1

0

Γ(t) = {(α + x(α, t), y(α, t)) |α ∈ R}

Fig. 6. The water wave in Lagrangian coordinates.

the validity of the approximation, i.e., Theorem 2. Finally, section 7 contains the
details for a number of proofs.

2. Preliminaries. We begin by discussing the water wave problem in greater
detail. Consider an infinitely long canal of unit mean depth in two dimensions (see
Figure 6). We denote the region occupied by the fluid at time t as Ω(t), and the
upper surface as Γ(t). We parameterize Γ(t) by (x̃(α, t), y(α, t)), where α ∈ R is the
parameter and x̃ and y are the real-valued coordinate functions. It is useful to break
x̃ up as follows:

x̃(α, t) = α + x(α, t).

We consider fluids which are inviscid and incompressible and flows which are irrota-
tional. Also, we assume that the pressure on the top surface is constant and that the
acceleration due to gravity is 1. With these assumptions, the evolution of x and y are
given by the equations

xtt(1 + xα) + yα(1 + ytt) = 0,

yt = K(x, y)xt.
(WW)

(See [10].)
The first of these two equations is found from Euler’s equations for fluid motion.

The operator K in the second line is a transformation which is linear in xt, but
depends nonlinearly on (x, y). That such an operator exists and gives a relationship
between xt and yt is discussed in sections 3 and 5, along with an analysis of K. Much
of the difficulty in answering questions about the water wave equation is related to
this operator. If the surface of the water is perfectly flat, i.e., x = y = 0, then we have

K(0, 0) = K0, where K0 is a linear operator defined by K̂0f(k) = K̂0(k)f̂(k), with

K̂0(k) = −i tanh(k). Notice that since tanh is a bounded function, K0 is bounded
from Hs to Hs. K0 will be appearing frequently.

This formulation of the water wave problem is said to be in Lagrangian, or ma-
terial, coordinates. In this point of view we are not in a fixed “lab” frame, but
instead we are tracking the position of each “particle” of water separately. That
is, (α + x(α, t), y(α, t)) gives the location of the particle which was initially at (α +
x(α, 0), y(α, 0)). The laboratory, or Eulerian, point of view is to fix a system of co-
ordinates on the fluid domain and to measure the velocity of the fluid at each point
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of this fixed reference frame. For our purposes, it is far more convenient to use La-
grangian coordinates; however, experimentalists work with Eulerian coordinates. The
coordinate change from one frame to the other is nontrivial and adapting our approx-
imation results to the Eulerian point of view requires some involved computations.
We will carry the change of variables out and give formulae for the approximation in
terms of Eulerian coordinates in a future publication. The interested reader may also
see the author’s thesis [34] for this information. We remark that the results of Bona,
Colin, and Lannes on the approximation of water waves by Boussinesq models in [3]
are proven in Eulerian coordinates, and as such do not contend with this issue.

Since the water wave equation is second order in time for both x and y, one might
suppose that four functions are necessary to specify the initial state of the system—
x(α, 0), y(α, 0), xt(α, 0), and yt(α, 0). In fact, in general only three are needed,
and for initial data with small amplitudes, only two are needed. The relationship
yt = K(x, y)xt specifies the value of yt(α, 0) given the other three functions. We
can also “do away” with the initial condition for x, provided we are in the small
amplitude, long wave limit. If x(α, 0) and its first derivative are sufficiently small,
then α + x(α, 0) will be invertible. This implies that Γ(0) will be a graph over the
horizontal coordinate. And so, without loss of generality, we can reparameterize the
initial conditions so that

Γ(0) = {(α, y(α, 0))|α ∈ R} .

Thus we need only to choose y(α, 0) and xt(α, 0). As it turns out, we need to repa-
rameterize the system one more time to prove the approximation theorem, but we
will leave this technicality until section 6. The essential point here is that due to the
freedom in choosing the initial parameterization, we can eliminate two of our initial
conditions.

Even though we can assume that x(α, 0) = 0 (or, alternately, is small), this
coordinate grows linearly in time. (See the linear estimates in Chapter 2 of [28].) As
we are concerned with very long time scales, this is a problem. As was shown in [28],
one can replace x with the new coordinate z = K0x, which is well behaved over long
times. Rewriting (WW) with this new variable, we have

∂tz = K0u,

∂ty = K(z, y)u,

∂tu = −∂αy(1 + ∂2
t y)

1 + K−1
0 ∂αz

.

(WW3)

We will see that the operator K(x, y) in truth depends not on x but on z, so the
abuse of the notation K(z, y) above is in some sense legitimate (see section 3 for
further discussion). Furthermore, even though K−1

0 is not well defined, as it blows up
at frequency k = 0, the composition

L = K−1
0 ∂α

is well defined, as its symbol, −k/ tanh(k), has no singularities; L is also invertible.

Finally, we notice that the Maclaurin expansion of K̂0(k) = −ik + O(k3). Thus to
lowest order K0 ∼ −∂α, and so z ∼ −xα. This is precisely the reason why, in the
introduction, we stated that −xα is a natural coordinate for the water wave equation.

Though we will primarily be working with the three-dimensional system (WW3),
we will need to embed this system into a four-dimensional system to prove certain
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aspects of the validity of the approximation. We introduce the new coordinate a = ut,
and (WW3) becomes

∂tz = K0u,

∂ty = K(z, y)u,

∂tu = a,

∂ta = −a∂αu + ∂α∂t(1 + ∂2
t y) + ∂ty∂

3
t y

1 + K−1
0 ∂αz

.

(WW4)

Though things appear to be getting out of hand, we remark that this is as large
a system as we will need. Results in [28] prove that solutions to (WW), (WW3),
and (WW4) do indeed exist for long times. We will be considering solutions to the
four-dimensional system which are in

H
s
e = Hs ×Hs ×Hs−1/2 ×Hs−1.

The main goal of this paper is to prove Theorem 2. To do this, we first prove a
similar theorem for solutions to (WW3), from which Theorem 2 will follow. Let

Ψd(α, t) = ψd(α, t) + ε6W3(εα, εt).(7)

The additional function W3 will solve an equation we specify later. While we assure
the reader that we will be following Chekhov’s rule and that this gun which appears
in the first act will be fired in the third, interested parties may look ahead to equation
(23) in section 4 for more information about W3. Define the functions

Ψz =L−1Ψd,

Ψy =Ψz + ε4Δ1 + ε6Δ2,

Ψu =∂−1
α ∂tΨ

d.

Δ1 and Δ2 are combinations of solutions to the modulation equations and are given
in (17) and (19) in section 4. We justify the presence of the inverse derivative in Ψu

by means of example. Ψd contains the term U which solves a KdV equation. Thus
∂tΨ

d contains the terms from the right-hand side of the KdV equation, all of which
are perfect space derivatives. These then are cancelled by the inverse derivative. It is
simple to check that this method applies to all terms in Ψd.

With these function, we have the following results.
Theorem 3. Fix T0, CI > 0, s > 4, σ ≥ s + 7. Let Ψd, Ψz, Ψy, and Ψu be as

above. Moreover assume that the initial conditions for (KdV) satisfy

max{‖U0‖Hσ(4)∩Hσ+4(2)∩Hσ+9 , ‖V0‖Hσ(4)∩Hσ+4(2)∩Hσ+9} < CI .

Then there exist ε0 > 0 and CF = CF (T0, CI , s) > 0 such that if the initial conditions
for (WW3) are of the form⎛

⎝ z(α, 0)
y(α, 0)
u(α, 0)

⎞
⎠ =

⎛
⎝ Ψz(α, 0)

Ψy(α, 0)
Ψu(α, 0)

⎞
⎠ + ε11/2R̄0(α)

with ‖R̄0‖Hs ≤ CI , then the unique solution of (WW3) satisfies the estimate∥∥∥∥∥∥
⎛
⎝ z(·, t)

y(·, t)
u(·, t)

⎞
⎠−

⎛
⎝ Ψz(·, t)

Ψy(·, t)
Ψu(·, t)

⎞
⎠
∥∥∥∥∥∥

Hs

≤ CF ε
11/2

for t ∈ [0, T0ε
−3]. The constant CF does not depend on ε.
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3. The operator K(x, y). Part I: Basics and basic expansions. This is
the first of two sections where we discuss the operator K(x, y) which gives the relation
between yt and xt in the water wave equation. Here we briefly discuss the origin of
this operator and report expansions of K found in previous work. We also state some
very basic facts about these expansions. In section 5 we quote more complicated
results and prove some new technical extensions needed for our purposes.

K(x, y) (or, more precisely −K(x, y)) is sometimes called the Hilbert transform
for the region Ω(t). Loosely, given a region Ω in the complex plane, and any function
F which is analytic in Ω, the Hilbert transform for Ω, H(Ω), is a linear operator which
relates the real and imaginary parts of F on the boundary of Ω. That is,

Im(F )|∂Ω = H(Ω)Re(F )|∂Ω.

For example, if Ω were the lower half-plane, then the Hilbert transform would be

the operator H, given by Ĥf = i sgn(k)f̂ . (This particular operator H is also
frequently called the Hilbert transform.) The nature of the operator depends greatly
on the region being studied. Unsurprisingly, the proof that such an operator exists is
connected to the Riemann mapping theorem and to techniques for solving boundary
value problems for Laplace’s equation in the plane. In this problem, since the region
Ω(t) is completely specified by the coordinate functions x and y, we denote the Hilbert
transform by H(Ω(t)) = −K(x, y).

As we are considering a fluid which is incompressible and a flow which is irro-
tational, xt(α, t) − iyt(α, t) is the value, on the upper boundary Γ(t), of an analytic
function on Ω(t), ω(α + iβ) = vx(α, β) − ivy(α, β). Here (vx, vy) is the velocity field
for the fluid in the whole region. Thus, given that K(x, y) exists, we have

yt = K(x, y)xt.

Of course, the boundary of Ω(t) is not just Γ(t), but also includes the bottom of the
canal (i.e., where β = −1). As we do not have fluid flow through the bottom, we have
vy(α,−1) = 0.

Under these conditions, K(x, y) has been analyzed extensively by Craig in [10]
and Schneider and Wayne in [28]. In particular Craig shows that K(x, y) has the
following expansion:

K(x, y)u = K0u + K1(x, y)u + S2(x, y)u,(8)

where

K̂0u(k) = −i tanh(k)û(k),

K1(x, y)u = [x,K0]∂αu− (y + K0(yK0))∂αu,

and S2 is quadratic in (x, y).
First of all we note that K0 is a bounded operator from Hs to Hs since tanh(k)

is a bounded function. That is,

‖K0u‖s ≤ ‖u‖s.

The operator L = K−1
0 ∂α, which is well defined as we discussed in section 2, will

also be used frequently. L is not a bounded operator on Hs. It effectively takes one
derivative. That is,

‖Lu‖s ≤ ‖u‖s+1.(9)
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On the other hand, L−1 replaces one derivative. That is, since

| tanh(k)/k| ≤ (1 + k2)−1/2,

we know

‖L−1u‖s ≤ ‖u‖s−1.(10)

We will be considering functions which are of long wavelength, that is, functions
of the form f(α) = F (β) where β = εα. We define operators K0,ε and Lε via

K0,εF (β) = K0f(α),

LεF (β) = Lf(α).

Taking the Maclaurin series expansion for tanh(k) shows that formally

K0,ε = −ε∂β − 1

3
ε3∂3

β − 2

15
ε5∂5

β + O(ε7).

Similarly Lε and L−1
ε have expansions in terms of derivatives

Lε = − 1 +
1

3
ε2∂2

β +
1

45
ε4∂4

β + O(ε6),

L−1
ε = − 1 − 1

3
ε2∂2

β − 2

15
ε4∂4

β + O(ε6).

We call such expansions of Fourier multiplier operators long wave approximations. The
rigorous connection between a long wave approximation and the original operator is
given in the following lemma, whose simple proof is contained in section 7.

Lemma 1. Suppose A and An are linear operators defined by Âf(k) = Â(k)f̂(k)

and Ânf(k) = Ân(k)f̂(k), where Â(k) and Ân(k) are complex-valued functions. Also

suppose that |Â(k) − Ân(k)| ≤ C|k|n (e.g., Ân is a Taylor polynomial for Â). Then
for f ∈ Hs+n we have

‖Af(·) −Anf(·)‖s ≤ C‖∂n
αf(·)‖s.

Moreover, if f(α) is of long wavelength form—that is, if f(α) = F (εα), with F ∈
Hs+n—then for 0 < ε < 1 there exists C independent of ε such that

‖Af(·) −Anf(·)‖s ≤ Cεn−1/2‖F (·)‖s+n.

In [28], Schneider and Wayne show that the operator K(x, y) does not depend
on x per se, but rather on z = K0x. We confuse the notation for the operators
intentionally. They showed that K(z, y) has the following expansion:

K(z, y)u = K0u + K1(z, y)u + S2(z, y)u,

where

K1(z, y)u = M1(z)∂αu− (y + K0yK0)∂αu

with

F[M1(z)v](k) = −
∫

K̂0(k) − K̂0(l)

K̂0(k − l)
ẑ(k − l)v̂(l)dl.
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S2 is an operator which depends quadratically on z and y. Section 5 contains an
analysis of these operators.

By using the hyperbolic trigonometric identity

tanh(l) − tanh(k)

tanh(l − k)
= 1 − tanh(k) tanh(l),(11)

we can simplify the expression for K1 to

K1(z, y)u = M1(z + y)∂αu

= − (z + y + K0(z + y)K0) ∂αu.
(12)

Since we know K0 is a bounded operator, it is clear that

‖M1(z)v‖s ≤ ‖zv‖s.(13)

4. The derivation. In this section we will derive the higher order correction to
the KdV approximation. For technical reasons, it is most convenient to work with
the water wave equation written in the form (WW3). Suppose that one is given the
function Ψ(α, t) = (Ψz(α, t),Ψy(α, t),Ψu(α, t))tr. The amount that this function fails
to satisfy (WW3) is called the residual and is given by Res[Ψ] = (Resz,Resy,Resu)tr

with

Resz = ∂tΨ
z −K0Ψ

u,

Resy = ∂tΨ
y −K(Ψz,Ψy)Ψu,

Resu = ∂tΨ
u + ∂αΨy 1 + ∂2

t Ψy

1 + LΨz
.

For a true solution, notice that Res[Ψ] is identically zero.
Remark 5. We will also consider the four-dimensional system (WW4). If we let

Ψa = ∂tΨ
u, then we have the additional Res function

Resa = ∂tΨ
a +

Ψa∂αΨu + ∂α∂t(1 + ∂2
t Ψy) + ∂tΨ

y∂3
t Ψy

1 + LΨz

= ∂tResu +
∂αΨu

1 + LΨz
Resu.

The main goal when deriving modulation equations is to choose a system of
equations such that solutions to this system yield a very small residual. This is
different from (but connected to) showing that solutions to the modulation equations
are close to true solutions for the original problem. This latter issue is precisely that
answered by the main results, Theorem 2 and Proposition 3, and is discussed in section
6. Here, we will perform a series of calculations on the residual and derive equations
(KdV), (IW), and (LK). In this process we guarantee the smallness of the residual.
While several of the steps will initially seem to have little mathematical justification
(i.e., they are formal), once the calculation is completed it will be obvious that all
steps are valid. For example, we will take

Ψu = K−1
0 ∂tΨ

z.(14)

With this choice

Resz = 0,
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which is small indeed! However, K−1
0 is not in general a well-defined operator.

Nonetheless, when we eventually select Ψz, K−1
0 ∂tΨ

z will make perfect sense.
We are looking for solutions which are small in amplitude and long in wavelength.

Thus we let

Ψz(α, t) = ε2Z(β, τ)

= ε2Z1(β, τ) + ε4Z2(β, τ) + ε6Z3(β, τ).

Recall β = εα and τ = εt. We require Res[Ψ] to be O(ε17/2). Loosely, we need three
powers of ε more than the expected error of O(ε11/2) to account for the long times
(O(ε−3)) over which our approximation will be valid. See Schneider and Wayne [28]
and Wayne and Wright [33].

Remark 6. More specifically, if we wish to prove Theorem 2 in the space Hs we
will need

‖Resz‖s ≤Cε17/2,

‖Resy‖s ≤Cε17/2,

‖Resu‖s−1 ≤Cε17/2,

‖Resa‖s−1 ≤Cε19/2

for 0 ≤ t ≤ T0ε
−3. Given the definition of Resa, the final estimate will follow auto-

matically from the estimate on Resu.
We have already chosen Ψu in terms of Ψz. We will first use the expression for

Resy to similarly determine Ψy in terms of Ψz. This is not as simple a matter because
while K0 commutes with ∂t, the full operator K(z, y) does not.

We have

Resy = − ∂tΨ
y + K0Ψ

u + M1(Ψ
z + Ψy)∂αΨu + S2(Ψ

y,Ψz)Ψu

= − ∂tΨ
y + ∂tΨ

z + M1(Ψ
z + Ψy)K−1

0 ∂α∂tΨ
z + S2(Ψ

y,Ψz)Ψu.

Notice that in the above expression we can cancel the linear terms by taking Ψy ∼ Ψz.
More precisely, we set

Ψy(α, t) = ε2Z(β, τ) + ε4Δ1(β, τ) + ε6Δ2(β, τ)

for as yet undetermined functions Δi. Thus

Resy = − ε5∂τΔ1 − ε7∂τΔ2 + M1(2ε
2Z)Lεε

3∂τZ

+ M1(ε
4Δ1 + ε6Δ2)Lεε

3∂τZ + S2(Ψ
y,Ψz)Ψu

= − ε5∂τΔ1 − ε7∂τΔ2 − 2ε5ZLε∂τZ − ε6K0,ε (2Z∂β∂τZ)

− ε7Δ1Lε∂τZ − ε8K0,ε (Δ1∂β∂τZ) + ε9M1(Δ2)Lε∂τZ

+ S2(Ψ
y,Ψz)Ψu.

A number of the terms in Resy are already O(ε17/2). By Lemma 1 we have the
following estimate on K0,ε:

‖K0,εF‖s ≤ ε1/2‖F‖s+1.(15)

Thus terms containing K0,ε can be considered to be a power of ε smaller than they
appear (though this costs a derivative). On the other hand, K0 is bounded so we have

‖K0,εF‖s ≤ ε−1/2‖F‖s.(16)
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Thus we can use K0,ε either as a bounded functional or to gain powers of ε, but not
both. Notice that Lε does not contribute any additional powers of ε in any case. We
separate out all the terms that are already sufficiently small into error terms. That
is,

Resy = − ε5∂τΔ1 − ε7∂τΔ2 − 2ε5Z1Lε∂τZ1

− 2ε7Z1Lε∂τZ2 − 2ε7Z2Lε∂τZ1

− ε6K0,ε (2Z1∂β∂τZ1) − ε7Δ1Lε∂τZ1

+ Ey
small + Ey

S2

with

Ey
small = 2ε9Z3Lε∂τZ + 2ε9(Z1 + ε2Z2)Lε∂τZ3 + 2ε9Z2Lε∂τZ2

− ε8K0,ε

(
(2Z2 + 2ε2Z3)∂β∂τZ

)
− ε8K0,ε

(
2Z1∂β∂τ (Z2 + ε2Z3)

)
− ε9Δ1Lε∂τ (Z2 + ε2Z3) − ε8K0,ε (Δ1∂β∂τZ) + ε9M1(Δ2)Lε∂τZ

Ey
S2

= S2(Ψ
y,Ψz)Ψu.

It is clear that Ey
small is O(ε17/2). That is,

‖Ey
small‖s ≤ Cε17/2.

The constant C depends on various norms of the functions Zi, ∂τZi, and Δi. Specif-
ically, chasing through the various terms in Ey

small and applying the estimates in
(9), (13), (15), and (16), one can show that C depends on ‖Z1‖s+1, ‖Z2‖s+1, ‖Z3‖s,
‖∂τZ1‖s+2, ‖∂τZ2‖s+2, ‖∂τZ3‖s+1, ‖Δ1‖s+1, and ‖Δ2‖s.

The term Ey
S2

is also O(ε17/2), though this is not as obvious. We prove this in
Proposition 3 in section 5. The proof of this relies strongly on the fact that we have
taken Ψy and Ψz such that Ψy −Ψz is O(ε4). This causes a cancellation in S2, which
in turn makes this term small.

We now expand Lε and K0,ε in the remaining low order terms in Resy to find

Resy = − ε5∂τΔ1 − ε7∂τΔ2 + 2ε5Z1∂τZ1 +
4

3
ε7Z1∂τ∂

2
βZ1

+ 2ε7Z1∂τZ2 + 2ε7Z2∂τZ1

+ 2ε7∂βZ1∂β∂τZ1 + ε7Δ1∂τZ1

+ Ey
small + Ey

S2
+ Ey

lwa

with

Ey
lwa = − 2ε5Z1

(
Lε + 1 − 1

3
ε2∂2

β

)
∂τZ1 − 2ε7Z1(Lε + 1)∂τZ2

− 2ε7Z2(Lε + 1)∂τZ1 − 2ε6(K0,ε + ε∂β)(Z1∂β∂τZ1)

− ε7Δ1(Lε + 1)∂τZ1.

Each term in Ey
lwa is O(ε17/2) by Lemma 1. That is,

‖Ey
lwa‖ ≤ Cε17/2,

where C depends on ‖Z1‖s+3,‖Z2‖s, ‖∂τZ1‖s+4,‖∂τZ2‖s+2, and ‖Δ1‖s. (The sub-
script “lwa” stands for “long wave approximation.”)
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The only O(ε5) terms remaining in Resy are

−ε5∂τΔ1 + 2ε5Z1∂τZ1

which we remove by selecting

Δ1 = Z2
1 .(17)

Therefore

Resy = − ε7∂τΔ2 +
4

3
ε7Z1∂τ∂

2
βZ1

+ 2ε7Z1∂τZ2 + 2ε7Z2∂τZ1

+ 2ε7∂βZ1∂β∂τZ1 + ε7Z2
1∂τZ1

+ Ey
small + Ey

S2
+ Ey

lwa.

The remaining O(ε7) terms in Resy are all perfect time derivatives with the ex-
ception of

4

3
Z1∂τ∂

2
βZ1.

Notice, however, that

∂τ

(
4

3
Z1∂

2
βZ1 −

2

3
(∂τZ1)

2

)
=

4

3
Z1∂τ∂

2
βZ1 +

4

3
∂τZ2

(
∂2
βZ1 − ∂2

τZ1

)
.

Given the form of the approximation in (1), it is not unreasonable to suspect that

∂2
βZ1 − ∂2

τZ1 ∼ O(ε2).(18)

We are now in a position to select Δ2. Taking

Δ2 = (∂βZ1)
2 + 2Z1Z2 +

1

3
Z3

1 +
4

3
Z1∂

2
βZ1 −

2

3
(∂τZ1)

2(19)

gives

Resy = Ey
small + Ey

S2
+ Ey

lwa + Ey
switch,

where

Ey
switch =

4

3
ε7∂τZ1(∂

2
βZ1 − ∂2

τZ1).

Given that our assumption (18) is valid, we have shown, with our choices for Ψy and
Ψu in terms of Ψz, that Resy = O(ε17/2). More specifically, we have shown that if

‖∂2
βZ1 − ∂2

τZ1‖s ≤ Cε3/2,

then

Resy ≤ Cε17/2,

where the constant depends only on ‖Z1‖s+3, ‖Z2‖s+1, ‖Z3‖s, ‖∂τZ1‖s+4, ‖∂τZ2‖s+2,
and ‖∂τZ3‖s+1.
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Now that we have computed Ψy and Ψu in terms of Ψz, we now turn our attention
to determining Ψz by examining Resu:

Resu = K−1
0 ∂2

t Ψz + ∂αΨy 1 + ∂2
t Ψy

1 + LΨz
.

We expand (1 + LΨz)−1 by the geometric series to find

Resu = K−1
0 ∂2

t Ψz + ∂αΨy(1 + ∂2
t Ψy)(1 − LΨz + (LΨz)2) + Eu

1 ,

where

Eu
geo = ∂αΨy 1 + ∂2

t Ψy

1 + LΨz
− ∂αΨy(1 + ∂2

t Ψy)(1 − LΨz + (LΨz)2).

Since Ψz is “small” this error term can be shown to be O(ε17/2). We have the following
lemma.

Lemma 2. Let f ∈ Hs+1, s > 0. Take ε0 such that ε20‖f‖L∞ ≤ 1/2. Then for
0 < ε < ε0 we have that the function

g(εx) =
1

1 + ε2f(εx)
− 1 + ε2f(εx)

satisfies ‖g(ε·)‖s ≤ Cε7/2 for C independent of ε.
Remark 7. Under the same hypotheses as in Lemma 2, arguments similar to the

proof of that lemma show that
• (1 + ε2f(εx))−1 ∈ Cs and is bounded there independent of ε,
• (1 + ε2f(εx))−1 − 1 ∈ Hs and has norm there bounded by Cε3/2 for C inde-

pendent of ε, and
• (1 + ε2f(εx))−1 − 1 + ε2f(εx) − ε4f2(εx) ∈ Hs and has norm there bounded

by Cε11/2 for C independent of ε.
Now, after substituting from the definitions of Ψy and Ψz, we collect all the terms

which are smaller than O(ε17/2) and find

Resu = ε4K−1
0,ε ∂

2
τ (Z1 + ε2Z2 + ε4Z3) + ε3∂βZ1 − ε5∂βZ1LεZ1

+ ε5∂β
(
Z2 + Z2

1

)
+ ε7∂βZ1

(
∂2
βZ1 − LεZ2 + (LεZ1)

2
)

− ε7∂β(Z2 + Z2
1 )LεZ1 + ε7∂βZ3

+ ε7∂β

(
(∂βZ1)

2 + 2Z1Z2 +
1

3
Z3

1

)

+ ε7∂β

(
4

3
Z1∂

2
βZ1 −

2

3
(∂τZ1)

2

)
+ Eu

geo + Eu
small + Eu

switch.

We omit the exact expression for Eu
small because it is both lengthy and uninteresting.

We have

‖Eu
small‖s ≤ Cε17/2,(20)

where the constant C depends on Hs+1 norms of the functions Zi and the Hs norms
of ∂2

τZi. We have also replaced one instance of ∂2
τZ1 with ∂2

βZ1 (much as we did
earlier); thus

Eu
switch = ε7∂βZ1

(
∂2
βZ1 − ∂2

τZ1

)
.
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We now define new functions Wi by Zi = L−1
ε Wi. This seemingly mysterious

(and sudden!) change of variables will seem less so if we remind the reader that at
the end of the day we wish to model not z but rather the function xα. Accordingly,
if we approximate xα by a function

Ψd = ε2W1 + ε4W2 + ε6W3,

then it is logical to take

Ψz = L−1Ψd,

and in the long wavelength limit we arrive at these functions Wi.
Therefore we have

Resu = ε3∂−1
β ∂2

τ (W1 + ε2W2 + ε4W3) + ε2K0,εW1 − ε4W1K0,εW1

+ ε4K0,εW2 + ε5∂β(L−1
ε W1)

2

+ ε2K0,εW1

(
ε3K0,ε∂βW1 − ε4W2 + ε4W 2

1

)
− (ε6K0,εW2 + ε7∂β(L−1

ε W1)
2)W1 + ε6K0,εW3

+ ε5∂β

(
(K0,εW1)

2 + 2ε2L−1
ε W1L

−1
ε W2 +

1

3
ε2(L−1

ε W1)
3

)

+ ε7∂β

(
4

3
L−1
ε W1L

−1
ε ∂2

βW1 −
2

3
(L−1

ε ∂τW1)
2

)
+ Eu

geo + Eu
small + Eu

switch.

At this time, the presence of inverse β derivatives may seem problematic. Notice that
each such inverse derivative precedes a time derivative. Once we select the functions
Wi we will see that there can be an exchange between time and space derivatives,
which will justify the instances of ∂−1

β .

Now we replace K0,ε and L−1
ε with their long wave approximates and find

Resu = ε3∂−1
β ∂2

τ (W1 + ε2W2 + ε4W3)

− ε2
(
ε∂β +

1

3
ε3∂3

β +
2

15
ε5∂5

β

)
W1

+ ε4W1

(
ε∂β +

1

3
ε3∂3

β

)
W1

− ε4
(
ε∂β +

1

3
ε3∂3

β

)
W2 + ε5∂β(W1)

2 +
2

3
ε7∂β(W1∂

2
βW1)

− ε7∂βW1

(
−∂2

βW1 −W2 + W 2
1

)
− ε7W1(−∂βW2 + ∂β(W1)

2) − ε7∂βW3

+ ε7∂β

(
(∂βW1)

2 + 2W1W2 −
1

3
W 3

1

)

+ ε7∂β

(
4

3
W1∂

2
βW1 −

2

3
(∂τW1)

2

)
+ Eu

geo + Eu
small + Eu

switch + Eu
lwa.

The error made by the long wave approximations is denoted Eu
lwa. By Lemma 1

we have

‖Eu
lwa‖s ≤ Cε17/2,
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where C depends on ‖W1‖s+7, ‖W2‖s+5, ‖W3‖s+3, and ‖∂τW1‖s+2.
Now we organize the above as

Resy = ε3∂−1
β ∂2

τW1 − ε3∂βW1

− ε5
1

3
∂3
βW1 + ε5

3

2
∂β(W1)

2

+ ε5∂−1
β ∂2

τW2 − ε5∂βW2

− ε7
1

3
∂3
βW2 + ε73∂β(W1W2)

− 2

15
ε7∂5

βW1 + ε7
1

3
W1∂

3
βW1

+ ε72∂β(W1∂
2
βW1) + ε7

3

2
∂β(∂βW1)

2

− ε7
4

3
∂β(W1)

3 − ε7
2

3
∂β(∂τW1)

2

+ ε7∂−1
β ∂2

τW3 − ε7∂βW3

+ Eu
geo + Eu

small + Eu
switch + Eu

lwa.

(21)

The term on the first line of the right-hand side looks formally like an inverse
derivative of a wave equation:

∂−1
β ∂2

τW1 − ∂βW1 = ∂−1
β

(
∂2
τW1 − ∂2

βW1

)
.

We cancel this term (to lowest order) by taking W1 of the form

W1(β, τ) = −U(β − τ, ε2τ) − V (β + τ, ε2τ).

Recall β± = β ± τ and T = ε2τ . The “minus” signs may seem arbitrary, but are
included at this stage so that they agree with previous work in the area. Noting that
the third line looks very much like the first, we also set

W2(β, τ) = −F (β − τ, ε2τ) −G(β + τ, ε2τ) − P (β, τ).

These choices for W1 and W2 are precisely those described heuristically in the intro-
duction.

The first three lines in (21) become

ε5
(

2∂TU +
1

3
∂3
β−U +

3

2
∂β−U

2

)

+ ε5
(
−2∂TV +

1

3
∂3
β+

V +
3

2
∂β+V

2

)

+ ε5
(
∂−1
β

(
∂2
βP − ∂2

τP
)

+ 3∂β(UV )
)

+ ε7
(
2∂TF − 2∂TG− ∂−1

β

(
∂2
TU + ∂2

TV
))

− ε9∂−1
β

(
∂2
TF + ∂2

TG
)
.

We cancel everything multiplied by ε5 by taking

−2∂TU =
1

3
∂3
β−U +

3

2
∂β−U

2,

2∂TV =
1

3
∂3
β+

V +
3

2
∂β+V

2,

∂2
τP − ∂2

βP = 3∂2
β(UV ),
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which are precisely equations (KdV) and (IW). By Proposition 1 we know that the
solutions to these equations are well behaved over the long time scales.

Given that the functions U and V have been chosen to solve (KdV), one computes
that

∂2
TU = ∂β−

(
1

36
∂5
β−U +

9

4
U2∂β−U +

1

2
U∂3

β−U +
3

4
∂β−U∂2

β−U

)
,

∂2
TV = ∂β+

(
1

36
∂5
β+

V +
9

4
V 2∂β+

V +
1

2
V ∂3

β+
V +

3

4
∂β+V ∂2

β+
V

)
.

Thus the term ∂−1
β

(
∂2
TU + ∂2

TV
)

is perfectly well defined. For brevity, we will con-
tinue to write these terms with the inverse derivatives instead of in the longer form
above.

Moreover, now we can put more precise estimates on Ey
switch and Eu

switch. In
particular, since each time derivative for solutions to KdV equations counts for three
space derivatives, we have

‖∂2
βW1 − ∂2

τW1‖s ≤ Cε3/2,

where C depends on ‖W1‖s+6.

Recall from Fact 1 and Proposition 1 that solutions to (IW) can be rewritten as

P (β, τ) = P+(β, τ) + P−(β, τ)

= ϕ+(β+, T ) + ϕ−(β−, T ).

The functions ϕ± are rapidly decaying. We make this decomposition so that every
remaining term in (21)

• will be a unidirectional term which is rapidly decaying;
• will be a product of two such terms which are moving in opposite directions;
• or will include a derivative of W3.

That is,

Resy = ε7
(

2∂TF +
1

3
∂3
β−F + 3∂β−(UF ) + J−

)

+ ε7
(
−2∂TG +

1

3
∂3
β+

G + 3∂β+(V G) + J+

)

+ ε7
(
∂−1
β

(
∂2
τW3 − ∂2

βW3

)
+ Js

)
− ε9∂−1

β

(
∂2
TF + ∂2

TG
)

+ Eu
geo + Eu

small + Eu
switch + Eu

lwa + Eu
time,
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where

J− = 3∂β−(Uϕ−) + 4U2∂β−U +
7

3
U∂3

β−U

+
11

3
∂β−U∂2

β−U +
2

15
∂5
β−U +

1

3
∂3
β−ϕ

−

− ∂−1
β−

∂2
TU,

J+ = 3∂β+(V ϕ+) + 4V 2∂β+V +
7

3
V ∂3

β+
V

+
11

3
∂β+

V ∂2
β+

V +
2

15
∂5
β+

V +
1

3
∂3
β+

ϕ+

− ∂−1
β+

∂2
TV,

Js = ∂β

(
U

(
3G + 3ϕ+ + 4V 2 +

7

3
∂2
β+

V

))

+ ∂β

(
V

(
3F + 3ϕ− + 4U2 +

7

3
∂2
β−U

))
+ 4∂β

(
∂β−U∂β+

V
)
,

(22)

and

Eu
time = ε9

4

3
∂β

((
∂β−U − ∂β+

V
)
(∂TU + ∂TV )

)
− ε11

2

3
∂β

(
(∂TU + ∂TV )

2
)
.

Notice that J± = J±(β±, T ). Eu
time (so called because each term in it contains some

sort of time derivative) is clearly O(ε17/2). That is,

‖Eu
time‖s ≤ Cε17/2.

The constant above depends on ‖U‖s+4 and ‖V ‖s+4.

The term ε9∂−1
β

(
∂2
TF + ∂2

TG
)

is not included in Eu
time for the following reason.

In a moment, when we select the equations F and G solve, a consequence will be that
there will be terms in ∂2

TF and ∂2
TG which are O(ε−2).

By taking

−2∂TF =
1

3
∂β−(UF ) +

3

2
∂3
β−F + J−,

2∂TG =
1

3
∂β+

(V G) +
3

2
∂3
β+

G + J+,

we cancel nearly all the terms which are not in the various Eu terms. These are the lin-
earized KdV equations (LK) discussed in the introduction. Proposition 1 guarantees
that the solutions are well behaved. We are left with

Resy = + ε7
(
∂−1
β

(
∂2
τW3 − ∂2

βW3

)
+ Js

)
− ε9∂−1

β

(
∂2
TF + ∂2

TG
)

+ Eu
geo + Eu

small + Eu
switch + Eu

lwa + Eu
time.
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Now we consider the terms in ∂−1
β

(
∂2
TF + ∂2

TG
)
. Notice that

−∂−1
β−

∂2
TF = ∂−1

β−
∂T

(
1

6
∂3
βF +

3

2
∂β(UF ) +

1

2
J−

)

=
1

6
∂2
β−∂TF +

3

2
∂T (UF ) +

1

2
∂−1
β−

∂TJ
−.

J− contains the term 3∂β−(Uϕ−)+ 1
3∂

3
β−

ϕ−. From the definition of ϕ− we know that

∂Tϕ
− = −ε−2 3

2
∂β(UV ).

Thus we have

1

2
∂−1
β−

∂T

(
3∂β−(Uϕ−) +

1

3
∂3
β−ϕ

−
)

=
3

2
ϕ−∂TU +

3

2
U∂Tϕ

− +
1

6
∂2
β−∂Tϕ

−

=
3

2
ϕ−∂TU − 9

4
ε−2U∂β(UV ) +

1

4
ε−2∂3

β(UV ).

We treat ∂2
TG in the same fashion. Therefore we can write

−ε9∂−1
β

(
∂2
TF + ∂2

TG
)

= Eu
F,G − ε7

(
9

4
(U + V )∂β(UV ) +

1

2
∂3
β(UV )

)
.

By construction Eu
F,G satisfies the estimate

‖Eu
F,G‖s ≤ Cε17/2,

where C depends on ‖U‖s+7, ‖V ‖s+7, ‖F‖s+5, and ‖G‖s+5.
We have

Resy = ε7
(
∂−1
β

(
∂2
τW3 − ∂2

βW3

)
+ Js

)
− ε7

(
9

4
(U + V )∂β(UV ) +

1

2
∂3
β(UV )

)
+ Eu

geo + Eu
small + Eu

switch + Eu
lwa + Eu

time + Eu
F,G.

By selecting

∂2
τW3 − ∂2

βW3 = ∂β

(
9

4
(U + V )∂β(UV ) +

1

2
∂3
β(UV ) − Js

)
(23)

the gun goes off and we cancel all remaining O(ε7) terms. Thus

Resy = Eu
geo + Eu

small + Eu
switch + Eu

lwa + Eu
time + Eu

F,G.

Each of the Eu is O(ε17/2).
Unlike the previous equations (KdV), (IW), and (LK), Proposition 1 does not tell

us that the solutions to (23) are controllable. Nonetheless, (23) is an inhomogeneous
wave equation where the inhomogeneity consists entirely of terms which are products
of left- and right-moving rapidly decaying functions. From Wayne and Wright [33] we
have the following lemma.
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Lemma 3. Suppose

∂τu± ∂βu = l(β + τ, ε2τ)r(β − τ, ε2τ), u(X, 0) = 0,

with ‖l(·, T )‖Hs(2) ≤ C and ‖r(·, T )‖Hs(2) ≤ C for T ∈ [0, T0]; then

‖u(β, τ)‖s ≤ C

for all τ ∈ [0, T0ε
−2]. The constant C is uniform in ε.

Thus W3 will remain O(1).
Remark 8. If we are in the situation in which Proposition 1 applies, we see that

least regular parts in the driving term are ∂2
β(UG) and ∂2

β(V F ), which are in Hσ−6(2).

Thus, by this lemma we have that W3 ∈ Hσ−5 for all times of interest.
At this time we have derived the modulation equations and shown that the resid-

ual is small. The only remaining order of business in this section is to determine how
smooth the solutions to our modulation equations need to be in order for Res[Ψ] to be
appropriately regular. This may seem to be a fairly tiresome task, but fortunately the
least regular terms in all of the sundry E functions come from only one term—Eu

small!
This is because Eu

small contains many time derivatives.
We need to control Resa in Hs−1. For this we need ∂tResu ∈ Hs−1, which in

turn implies that we must have ∂tE
u
small ∈ Hs−1. Recalling (20), we see that this

will require ∂3
τZ2 ∈ Hs−1, or rather (since L−1

ε saves a derivative) ∂3
τW2 ∈ Hs−2. For

this, we need ∂3
TF and ∂3

TG in Hs−2. Given that F solves (LK) where J+ contains
the terms ∂5

β−
U , ∂3

β−
ϕ−, one sees that ∂3

TF will include the terms ∂9
β−

F , ∂11
β−

U ,

and ∂9
β−

ϕ−. Thus ‖∂3
TF‖s−2 is controlled by the Hs+9 norms of U and V , and the

Hs+7 norms of ϕ−, F , and G. The analogous result is true for ∂3
TG. We also need

∂3
τW3 ∈ Hs−2. Since W3 solves (23), we require W3 ∈ Hs+1.

In summary we have the following proposition.
Proposition 2. Take Ψd as in (7), with U , V , F , G, P , and W3 solving their

respective equations. Let

Ψz = L−1Ψd,

Ψy = Ψz + ε4Δ1 + ε6Δ2,

Ψu = ∂−1
α ∂tΨ

d,

Ψa = ∂−1
α ∂2

t Ψd,

with Δ1 and Δ2 as in (17) and (19), and form Res[Ψ] as in (4). Then

‖Resz‖s ≤ Cε17/2,

‖Resy‖s ≤ Cε17/2,

‖Resu‖s−1 ≤ Cε17/2,

‖Resa‖s−1 ≤ Cε19/2,

where C is a constant which depends on ‖U‖s+9, ‖V ‖s+9, ‖P‖s+7, ‖F‖s+7, ‖G‖s+7,
and ‖W3‖s+1. The estimate (6) holds as long as these quantities remain bounded.
The constant C does not depend on ε.

In light of Proposition 1 and Remark 8, we see, if we take the initial conditions
for U and V to satisfy (2) with σ ≥ s + 7, that ‖U‖s+9, ‖V ‖s+9, ‖P‖s+7, ‖F‖s+7,
‖G‖s+7, and ‖W3‖s+1 are all O(1) for t ∈ [0, T0ε

−3]. Thus we move on.
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5. The operator K(x, y). Part II: Estimates and extensions. In this
section we will describe a few more estimates related to K(x, y). All such estimates
are either smoothing estimates or ones which show that certain terms are small in the
long wavelength setting.

First, since 1 + K̂0

2
(k) goes to zero exponentially fast as |k| → ∞, the operator

1 + K2
0 is smoothing. That is, for all s ≥ 0

‖(1 + K2
0 )u‖s ≤ C‖u‖L2 .

Also, commutators involving K0 are smoothing. We quote the following lemma
from [28].

Lemma 4. Let r ≥ 0, q > 1/2, and 0 ≤ p ≤ q. Then there exists a C > 0 such
that

‖[f,K0]g‖r ≤ C‖f‖r+p‖g‖q−p.

Proof. See Lemma 3.12 on page 1498 of [28].
Schneider and Wayne show that K1(z, y) is a smoothing operator.
Lemma 5. For r ≥ 0, q ≥ 1/2 and 0 ≤ p ≤ q, there is C such that

‖K1(z, y)u‖r ≤ C (‖z‖r+p + ‖y‖r+p) ‖u‖q−p.(24)

Proof. See Corollary 3.13 on page 1499 of [28].
If we let S1(z, y) = K(z, y) −K0, we also have the following estimates from [28].
Lemma 6. Fix s ≥ 4. If the free surface is sufficiently smooth, then for j = 1, 2

we have

(a) ‖Sj(z, y)u‖s ≤ C
(
‖z‖js + ‖y‖js

)
‖u‖3,

that is, Sj is a smoothing operator;

(b) ‖∂α(Sj(z, y)u)‖s ≤ C
(
‖z‖js + ‖y‖js

)
‖u‖3,

that is, ∂αSj is a smoothing operator;

(c) ‖[∂t, Sj ]u‖ ≤ C
(
‖z‖js + ‖y‖js

)
‖u‖3,

that is, [∂t, Sj ] is a smoothing operator and this operator can be bounded independently
of ∂tu; and

(d) ‖[∂2
t , Sj ]u‖ ≤ C

(
‖z‖js + ‖y‖js

)
(‖u‖4 + ‖∂tu‖4) ,

that is, [∂2
t , Sj ] is a smoothing operator and this operator can be bounded independently

of ∂2
t u.
Proof. The proof is in [28]; see Lemmas 3.14 and 3.15 and Corollary 3.16 on pages

1500, 1506, and 1507, respectively.
We will also need the following propositions concerning the behavior of the re-

mainder terms S1 and S2. The first of these says that more or less the remainder S2

is negligible for the sort of scalings we are considering. That is to say, the term Ey
S2

in section 4 is very small.
Proposition 3. Fix s > 5/2. Suppose z = ε2Z(εα), y = ε2Y (εα), and

f = ε2F (εα), with Z, Y, F ∈ Hs+1(2). Moreover, assume z − y = ε4Δ(εα) with
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Δ ∈ Hs+1(2). Then there exists ε0 such that for ε ∈ [0, ε0] there is a constant C
independent of ε such that

‖S2(z, y)f‖s ≤ Cε17/2.

The second proposition is a technical version of the mean value theorem as applied
to the operator S1.

Proposition 4. Suppose z(α, t) = ε2Z(ε(α± t), ε3t), y(α, t) = ε2Y (ε(α± t), ε3t),
u(α, t) = ε2U(ε(α ± t), ε3t), and f(α, t) = ε2F (ε(α ± t), ε3t) with Z, Y, U, F ∈ Hs(2)
for t ∈ [0, T0ε

−3]. Also suppose Rz(α, t), Ry(α, t), and Ru(α, t) ∈ Hs for the same
time interval. Then

‖S1(z(·) + ε11/2Rz(·), y(·) + ε11/2Ry(·))f(·) − S1(z(·), y(·))f(·)‖s ≤ Cε17/2

for t ∈ [0, T0ε
−3].

Proof of Proposition 3. First, notice that x(α) =
∫ α

0
Lz(a)da = εX(εα). We know

that X is in L∞ by the following lemma.
Lemma 7. Suppose f(α) = ε2F (εα) with F ∈ Hs(2). Then for all α∣∣∣∣

∫ α

0

f(a)da

∣∣∣∣ ≤ Cε‖F‖Hs(2).

Proof. See section 7.
Let Φ(x̃, y) = (Φ1,Φ2) be the analytic map which takes Ω(t) to

P− = {(ξ, γ)|γ ∈ [−1, 0]} .

That such a map exists and is analytic is guaranteed by the Riemann mapping theo-
rem. Let

h(α) = Φ1(x̃(α), y(α))

and Qf = f ◦ h. From [28], we know that

K(x, y)f(α) = Q ◦K0 ◦Q−1f(α).(25)

We can derive a very useful implicit formula for h−1 as follows. The function
Φ−1(ξ, γ) is analytic on P−; thus it satisfies the Cauchy–Riemann equations. If we
set

Φ−1(ξ, γ) = (ξ + u1(ξ, γ)) + i (γ − v1(ξ, γ))

and notice that Φ−1 sends the bottom and top of P− to the bottom and top of Ω(t),
respectively, we see that we have the following system:

∂ξu1 + ∂γv1 = 0,

∂γu1 − ∂ξv1 = 0,

v1(ξ,−1) = 0, v1(ξ, 0) = η(ξ),

where η(ξ) = y(h−1(ξ)). One can solve this system with the use of Fourier transforms
relatively simply. If one does so, one finds that

u1(ξ, 0) = −
∫ ξ

0

η(ξ1)dξ1 −Mη(ξ),
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where M is the pseudodifferential operator given by

M̂η(k) =
k cosh(k) − sinh(k)

ik sinh(k)
η̂(k).

Notice that to lowest order, M is C∂α.
Now, notice that h−1(ξ) = x̃−1(u(ξ, 0)) and so we have an implicit equation for

h−1:

h−1(ξ) = x̃−1

(
ξ −

∫ ξ

0

η(ξ1)dξ1 −Mη(ξ)

)

= x̃−1

(
ξ −

∫ ξ

0

y(h−1(ξ1))dξ1 −M(y ◦ h−1)(ξ)

)
.

(26)

Remark 9. In [28, p. 1494], Schneider and Wayne make a minor error in calcu-
lating this same function. As a result, they claim that the above representation gives
an explicit formula for h−1. Our correction here changes nothing about subsequent
steps in their proofs.

Since x̃ = α+ εX(εα), where X is well behaved, we can expect a similar form for
x̃−1.

Lemma 8. Suppose f(α) = α + g(α) with ‖g‖C2 ≤ 1/2. Then

f−1(ξ) = ξ − g(ξ) + g(ξ)g′(ξ) + E,

where E = O(‖g‖3
W 2,∞). More specifically

E ≤ C
(
‖g′‖2

L∞‖g‖L∞ + ‖g‖2
L∞‖g′′‖L∞

)
.

In particular, notice that if g(α) = εG(εα) this means that E = O(ε5).
Proof. See section 7.
We apply this lemma to x̃ and find that

x̃−1(ξ) = ξ − εX(εξ) + ε3X(εξ)∂βX(εξ) + O(ε5).

Combining this with (26) we can determine h−1(ξ) (and therefore h) in terms of x
and y to any order we wish. To lowest order we see that

h−1(ξ) = ξ + O(ε).(27)

Therefore now we have

h−1(ξ) = ξ −
∫ ξ

0

y(h−1(ξ1))dξ1 −M(y ◦ h−1)(ξ)

− εX

(
ε

(
ξ −

∫ ξ

0

y(h−1(ξ1))dξ1 −M(y ◦ h−1)(ξ)

))

+ O(ε3)

= ξ −
∫ ξ

0

ε2Y (εh−1(ξ1))dξ1 −M(ε2Y ◦ εh−1)(ξ)

− εX

(
ε

(
ξ −

∫ ξ

0

ε2Y (εh−1(ξ1))dξ1 −M(ε2Y ◦ εh−1)(ξ)

))

+ O(ε3).
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If we insert (27) into the above and expand we have

h−1(ξ) = ξ − εX(εξ) −
∫ ξ

0

ε2Y (εξ1))dξ1 − ε2M(Y (ε·))(ξ) + O(ε3).

One can continue in this manner and determine the next order terms in the
expansion of h−1. If we let

εG1(εα) = −εX(εα) −
∫ α

0

ε2Y (εα1))dα1 − ε2M(Y (ε·))(α),

the expansion is

h−1(ξ) = ξ + εG1(εξ) + ε3B1(εξ) + O(ε5),

where

B1(ξ) =

∫ ξ

0

εG1(εa)∂βε
3Y (εa)da

+ M(ε3G1(ε·)∂βY (ε·))(ξ) + ε3G1(εξ)∂βX(εξ).

Notice that since M is C∂α to lowest order, −ε2M(Y (ε·))(α) is O(ε3). Moreover,
by hypothesis, we have ε2Z(εα) − ε2Y (εα) = ε4Δ(εα). Thus

−εX(εα) −
∫ α

0

ε2Y (εa)da = −
∫ α

0

(
ε2∂βX(εa) + ε2Y (εa)

)
da

= −
∫ α

0

(
ε2L(Z(ε·))(a) + ε2Y (εa)

)
da

=

∫ α

0

(
ε2Z(εa) − ε2Y (εa)

)
da + O(ε3)

=

∫ α

0

(
ε4Δ(εa)

)
da + O(ε3)

= O(ε3).

That is, εG1 is really O(ε3)! This cancellation is the crucial step in this proof. Since
εG1 appears in each term in B1, we have shown

h−1(ξ) = ξ + ε3G(εξ) + O(ε5)

with ε3G = εG1. We appeal to Lemma 8 again, and we have

h(α) = α− ε3G(εα) + O(ε5).

Now that we have particularly good estimates on h and h−1, we can begin our
discussion of K in earnest. For notational simplicity, we will let

h(α) = α + g1(α),

h−1(ξ) = ξ + g2(ξ).

If we let

f̃ = Q−1f,
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we can make the following formal approximation using Taylor’s theorem:

K(x, y)f(α) = Q ◦K0f̃(α)

= K0f̃(h(α))

= K0f̃(α + g1(α))

= K0f̃(α) + g1(α)K0∂αf̃(α) + h.o.t.

Also by Taylor’s theorem,

f̃(α) = f(α) + g2(α)∂αf(α) + h.o.t.

Putting these together we have

K(x, y)f(α) = K0f(α) + g1(α)K0f
′(α) + K0(g2f

′)(α) + h.o.t.

Thus let

E1f = K0f(α) + g1(α)K0f
′(α) + K0(g2f

′)(α),

E2f = K(x, y)f − E1f.

We prove Proposition 3 if we can prove
• ‖E1f −K0f −K1(x, y)f‖s ≤ Cε17/2 and
• ‖E2f‖s ≤ Cε17/2.

Let us deal with E2f first. We can rewrite E2f as

E2f = E1
2f + E2

2f + E3
2f

with

E1
2f = K(x, y)f −K0f̃ − g1K0∂αf̃ ,

E2
2f = K0f̃ −K0f −K0(g2∂αf),

E3
2f = g1K0∂αf̃ − g1K0∂αf.

As our approximation for K was determined by an application of Taylor’s the-
orem, we need to prove a lemma which shows that this formal step can be made
rigorous, at least for functions in the weighted Sobolev spaces.

Lemma 9. Suppose F ∈ Hs(n), s > 1/2, n > 1/2. Then for all C0 > 0 there
exists ε0 such that for ε ∈ [0, ε0] there is a constant C independent of ε such that

(∫
|α|>C0ε−3

|F (εα)|2dα
)1/2

≤ Cε2n−3/2.

Moreover, for 1 ≤ j ≤ s we have

(∫
|α|>C0ε−3

|∂j
αF (εα)|2dα

)1/2

≤ Cε2n−3/2+j .

Proof. See section 7.
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Remark 10. If instead we are considering

(∫
|α|>C0ε−3

|F (ε(α± t), ε3t)|2dα
)1/2

with F (·, T ) ∈ Hs(n) for T ∈ [0, T0], we can maintain the same bound as above by
taking C0 ≥ 2T0.

We can use the above lemma to prove a version of Taylor’s theorem.
Lemma 10. Suppose F ∈ Hs(2), s > 5/2, and g ∈ L∞. Then

‖F (ε · +ε2g(ε·)) − F (ε·)‖L2 ≤ Cε3/2.

Proof. By Lemma 9 we have

‖F (ε · +ε2g(ε·)) − F (ε·)‖2

=

∫
|α|≤ε−3

|F (εα + ε2g(εα)) − F (εα)|2dα

+

∫
|α|≥ε−3

|F (εα + ε2g(εα)) − F (εα)|2dα

≤
∫
|α|≤ε−3

|F (εα + ε2g(εα)) − F (εα)|2dα + Cε5.

Now, we add and subtract ε2g(εα)F ′(εα) in the remaining integral,∫
|α|≤ε−3

|F (εα + ε2g(εα)) − F (εα)|2dα

≤
∫
|α|≤ε−3

|F (εα + ε2g(εα)) − F (εα) − ε2g(εα)F ′(εα)|2dα

+

∫
|α|≤ε−3

|ε2g(εα)F ′(εα)|2dα

≤
∫
|α|≤ε−3

|F (εα + ε2g(εα)) − F (εα) − ε2g(εα)F ′(εα)|2dα

+ ε3‖g(·)‖2
L∞‖F ′(·)‖2

L2 .

We naively bound the above integral and apply the mean value theorem. That is,∫
|α|≤ε−3

|F (εα + ε2g(εα)) − F (εα) − ε2g(εα)F ′(εα)|2dα

≤ Cε−3 sup
|α|≤ε−3

|F (εα + ε2g(εα)) − F (εα) − ε2g(εα)F ′(εα)|2

≤ Cε−3 sup
|α|≤ε−3

|ε4g2(εα)F ′′(εα∗)|2

≤ Cε5‖g‖4
L∞‖F ′′‖2

L∞ .

With this, we have proven the lemma.
Remark 11. With this general technique we are also able to show that

‖∂j
α(F (ε · +ε2g(ε·)) − F (ε·))‖L2 ≤ Cε3/2+j ,
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‖∂j
α

(
F (ε · +ε2g(ε·)) − F (ε·) − ε2g(ε·)F ′(·)

)
‖L2 ≤ Cε7/2+j ,

‖∂j
α

(
F (ε · +ε2g(ε·))

)
− ∂j

α

(
F (ε·) + ε2g(ε·)F ′(·) + 1/2ε4g2(ε·)F ′′(ε·)

)
‖L2 ≤ Cε11/2+j ,

and so on.
Now we will be able to control E1

2 . We can control the other functions in precisely
the same fashion. Since f is of long wavelength and rapid decay, so is f̃ . Thus we
can use Lemma 10. In what follows, ε3F̃ (εα) = K0f̃(α). (The extra ε comes from the
long wave approximation of K0.)

‖E1
2f(·)‖s = ‖K0f̃(· + g1(·)) −K0f̃(·) − g1(·)K0∂αf̃(·)‖s

≤ Cε3‖F̃ (ε · +ε4G(ε·)) − F̃ (ε·) − ε4G(ε·)∂βF̃ (ε·)‖s
≤ Cε17/2.

Now we turn our attention to E1f−K0f−K1(x, y)f . A routine calculation shows
that this is equal to

− ε3[G(εα),K0]ε
3∂βF (εα) −K1(εX, ε2Y )ε2F (εα)

+ (g1 + ε3G)K0ε
3∂βF (εα) + K0

(
(g2 − ε3G)ε3∂βF (ε·)

)
(α).

Now, g1 + ε3G and g2 − ε3G are O(ε5), so the second line above can be bounded by
Cε17/2, if we make use of K0’s long wavelength approximation. Moreover, we claim
that the first line is identically zero. Let

b(α) = −
∫ α

0

ε2Y (εα1)dα1 − ε2M(Y (ε·))(α)

= −
∫ α

0

y(α1)dα1 −My(α).

Thus ε3G(εα) = b(α) − x(α). So

ε3[G(εα),K0]ε
3∂βF (εα) = −[x(α),K0]∂αf(α) + [b(α),K0]∂αf(α).

Taking the Fourier transform of the second term we have

F ([b(α),K0]∂αf(α)) (k)

=

∫ (
K̂0(l) − K̂0(k)

)
b̂(l − k)ilf̂(l)dl

=

∫
K̂0(l) − K̂0(k)

i(l − k)
i(l − k)̂b(l − k)ilf̂(l)dl

=

∫
K̂0(l) − K̂0(k)

i(l − k)
∂̂αb(l − k)ilf̂(l)dl.

Now notice that ∂αb = Ly, so the above becomes∫
K̂0(l) − K̂0(k)

i(l − k)
L̂y(l − k)ilf̂(l)dl =

∫
K̂0(l) − K̂0(k)

K̂0(l − k)
ŷ(l − k)ilf̂(l)dl

=

∫
(1 + K̂0(k)K̂0(l))ŷ(l − k)ilf̂(l)dl

= F ((y + K0yK0)∂αf) (k),
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where we have used the trigonometric identity (11) from section 4.
That is,

ε3[G(εα),K0]ε
3∂βF (εα) = −[x(α),K0]∂αf(α) + ((y + K0yK0)∂αf) (k)

= −K1(x, y)f

and so we are done with the proof of Proposition 3.
Proof of Proposition 4. Let h be as in Proposition 3 and h2 be the analogous

function for the configuration (z2, y2) = (z+ ε11/2Rz, y+ ε11/2Ry). We also define the
function x̃2 = α + x2 by ∂αx2 = Lz2. Unlike in the previous lemma, here the time
dependence of the functions is important. Thus we determine x and x2 by integrating
in both space and time. That is,

x̃(α, t) = α + εχ (εα, εt) ,

x̃2(α, t) = α + εχ (εα, εt) + ε5/2E(t) + ε11/2ρ(α, t)

with

εχ(εα, εt) =

(∫ t

0

u (0, s) ds +

∫ α

0

Lz (w, t) dw

)
,

ε5/2E(t) = ε11/2
∫ t

0

Ru (0, s) ds,

ε11/2ρ =

∫ α

0

LRz (w, t) dw.

The functions satisfy the following estimates for all t ∈ [0, T0ε
−3]:

|εχ(εα, εt)| ≤ Cε,

|ε5/2E(t)| ≤ Cε5/2,

|ε11/2ρ(α, t)| ≤ C
√
|α|‖Rz‖Hs .

The first estimate follows from similar estimates in the previous lemma, the second
is the naive bound, and the final follows from the following simple fact.

Fact 2. If p(α) =
∫ α

0
r(a)da, where r ∈ L2, then

|p(α)| ≤
√
|α|‖r‖L2 .

In what follows we will make strong use of the fact that E(t) does not depend
on α.

Using the same techniques as were used in proving Lemma 8, one can show that

x̃−1
2 (ξ, t) = x̃−1(ξ, t) − ε5/2E(t) + ε11/2ρ2(ξ),

where |ρ2(α)| ≤
√
|α|‖Rz‖L2 . This sort of estimate carries over to the functions h.

That is,

h−1
2 (ξ, t) = h−1(ξ, t) − ε5/2E(t) + ε11/2ρ3(ξ, t),

h2(α, t) = h(α, t) + ε5/2E(t) + ε11/2ρ4(α, t),

where |ρ3(α, t)|, |ρ4(α, t)| ≤
√
|α|(‖Rz‖L2 + ‖Ry‖L2) over the long time scale.
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Now define Q2f = f ◦ h2. Therefore

S1(z + ε11/2Rz, y + ε11/2)f − S1(z, y)f

= Q2 ◦K0 ◦Q−1
2 f −Q ◦K0 ◦Q−1f

= Q ◦
(
Q−1 ◦Q2 ◦K0 ◦Q−1

2 ◦Q−K0

)
◦Q−1f.

Since Q and its inverse are bounded operators from Hs to Hs, we need only prove
the estimate for the operator

Q̃ ◦K0 ◦ Q̃−1 −K0,

where Q̃ = Q−1 ◦ Q2. Notice that Q̃ ◦ K0 ◦ Q̃−1 is the Hilbert operator K for a
domain with the “h” function given by h̃(α) = h2(h

−1(α)). Moreover, from the above
calculations for h and h2 we have

h2(h
−1(α)) = α + ε5/2E(t) + ε11/2ρ5(α, t),

with ρ5 satisfying the same type of estimates as ρ4.
At this point we can make an appeal to Lemma 3.14 on page 1500 of [28]. In this

lemma they prove that ‖S1(z, y)f‖s ≤ C (‖z‖s + ‖y‖s) ‖f‖3. In the course of their
proof, they show that if h(α) = α + g(α), then

‖Q ◦K0 ◦Q−1f(·) −K0f(·)‖s ≤ C‖∂αg‖s−1‖∂αf‖2.

(See the inequalities in Cases I–IV on pages 1501–1506.) Therefore, if we set g̃ =
ε5/2E(t) + ε11/2ρ5(α, t), we see that taking a spatial derivative leaves us with

∂αg̃ = O(ε11/2).

Thus, if we keep in mind that f(α, t) = ε2F (ε(α± t), ε3t),

‖Q̃ ◦K0 ◦ Q̃−1f(·) −K0f(·)‖s ≤ C‖∂αg̃‖s−1‖∂αf‖2

≤ Cε17/2.

This completes the proof of Proposition 4.

6. The error estimates. In this section we prove that the approximation is
rigorous. That is we will prove Theorem 2. We will be working with the three-
and four-dimensional formulations of the water wave problem (equations (WW3) and
(WW4)). From [28], we know that for initial data of the type we are considering,
solutions to these equations exist over the long times we are considering. If (z, y, u)
is a solution to (WW3), let

z(α, t) = Ψz(α, t) + ε11/2Rz(α, t),

y(α, t) = Ψy(α, t) + ε11/2Ry(α, t),

u(α, t) = Ψu(α, t) + ε11/2Ru(α, t),

(28)

with the functions Ψ defined as above. We call Rz, Ry, and Ru “error” functions
and we denote R̄ = (Rz, Ry, Ru). Our goal will be to show that R̄ remain O(1) in
Hs = Hs×Hs×Hs−1/2 over the long time scale. If we can do this, then we will have
proven the main theorem. The first step will be to determine the equations which
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these functions satisfy. Loosely, we want to be able to write for each of the error
functions an evolution equation of the form

∂tR = quasi-linear + small and smooth.

We will at times go to great lengths to achieve this!
Clearly,

∂tR
z = K0R

u.

Finding the equations for Ry and Ru is a bit more complex. First we focus on Ry.
Substituting from (28) into ∂ty = K(z, y)u, we have

∂tR
y = ε−11/2

(
K(Ψz + ε11/2Rz,Ψy + ε11/2Ry)(Ψu + ε11/2Ru) − ∂tΨ

y
)

= K(Ψz + ε11/2Rz,Ψy + ε11/2Ry)Ru

+ ε−11/2
(
K(Ψz + ε11/2Rz,Ψy + ε11/2Ry)Ψu − ∂tΨ

y
)

= K0R
u + M1(Ψ

z)∂αR
u − (Ψy + K0(Ψ

yK0))∂αR
u + Ny,

where

Ny = ε−11/2Resy + ε−11/2
((

S1(Ψ
z + ε11/2Rz,Ψy + ε11/2Ry) − S1(Ψ

z,Ψy)
)

Ψu
)

+
(
K(Ψz + ε11/2Rz,Ψy + ε11/2Ry) −K0 −K1(Ψ

z,Ψy)
)
Ru.

We claim that Ny is “small.” That is, we have the following lemma.
Lemma 11. For all CR > 0, there exists ε0 such that for all ε ∈ (0, ε0) and t such

that sup0≤t′≤t ‖R̄(·, t′)‖Hs ≤ CR we have

‖Ny‖s ≤ C
(
ε3 + ε3‖R̄‖Hs + ε11/2‖R̄‖2

Hs

)
.

Proof. First we remark that the approximating functions Ψ and their derivatives
are all bounded over the long time scales. Thus, we will not be keeping track of the
dependence of the norm of Ny on the norms of these functions. By Proposition 2, we
know that ‖ε−11/2Resy‖s ≤ Cε3.

We can bound

ε−11/2
(
S1(Ψ

z + ε11/2Rz,Ψy + ε11/2Ry) − S1(Ψ
z,Ψy)

)
Ψu

by Lemma 4.
Finally,

‖(K(Ψz + ε11/2Rz,Ψy + ε11/2Ry) −K0 −K1(Ψ
z,Ψy))Ru‖s

≤ C
(
ε3‖R̄‖Hs + ε11/2‖R̄‖2

Hs

)
by the estimates on K and its expansions which we saw in sections 3 and 5 (in
particular Lemmas 5 and 6).

Now we discuss Ru. We know that

∂tu(1 + Lz) + ∂αy(1 + ∂2
t y) = 0.(29)
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We would like an evolution-type equation for Ru. Notice that since ∂ty = K(z, y)u,
there is a “hidden” ∂tu in the term ∂2

t y. Recall that the commutator [∂t, S1(z, y)]u
can be bounded independently of ∂tu (see Lemma 6 in section 5). Therefore, we can
rewrite the above as

(1 + Lz + ∂αyK(z, y))∂tu + ∂αy(1 + [∂t, S1(z, y)]u) = 0.

Replacing u with its definition in (28) the above becomes

0 = (1 + Lz + ∂αyK(z, y)) ∂tε
11/2Ru

+ (1 + Lz + ∂αyK(z, y)) ∂tε
2Ψu

+ ∂αy (1 + [∂t, S1(z, y)]Ψ
u)

+ ∂αy
(
[∂t, S1(z, y)]ε

11/2Ru
)

or rather

0 = (1 + Lz + ∂αyK(z, y)) ∂tε
11/2Ru

+ (1 + Lz) ∂tε
2Ψu

+ ∂αy (1 + ∂t(K(z, y)Ψu))

+ ∂αy
(
[∂t, S1(z, y)]ε

11/2Ru
)
.

We rearrange this a bit and break up y and z:

0 = (1 + Lz + ∂αyK(z, y)) ∂tR
u + ∂αR

y

+ LRz∂tΨ
u + ∂αR

y∂t(K(z, y)Ψu) + ∂αy[∂t, S1(z, y)]R
u

+ ε−11/2
(
(1 + LΨz) ∂tε

2Ψu + ∂αΨy (1 + ∂t(K(z, y)Ψu))
)
.

The operator

A(z, y) = (1 + Lz + ∂αyK(z, y))

is invertible since K(z, y) is a bounded operator on Hs, provided z and y are small
(which they are). Moreover, we can approximate A−1 via the Neumann series. Thus
the above equation can be rewritten as

∂tR
u = −(1 − ε2W1)∂αR

y + Nu,

where Nu = Nu
1 + Nu

2 and

Nu
1 = − ε−11/2A−1

(
(1 + LΨz) ∂tε

2Ψu + ∂αΨy (1 + ∂t(K(z, y)Ψu))
)
,

Nu
2 = −A−1 (LRz∂tΨ

u + ∂αR
y∂t(K(z, y)Ψu) + ∂αy[∂t, S1(z, y)]R

u)

+
(
−A−1 + (1 − ε2W1)

)
∂αR

y.

Lemma 12. For all CR > 0, there exists ε0 such that for all ε ∈ (0, ε0) and t such
that sup0≤t′≤t ‖R̄(·, t′)‖Hs ≤ CR we have

‖Nu‖s−1 ≤ C
(
ε3 + ε3‖R̄‖Hs + ε11/2‖R̄‖2

Hs

)
.
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Proof. First we point out that this estimate is in Hs−1. The loss of regularity here
is easily seen. Both LRz and ∂αR

y explicitly appear in Nu
2 , and are not smoothed by

any operators. Thus, losing this derivative is unavoidable. In fact, it is easy to see
that the above estimates hold for Nu

2 by noting that A−1, K, and [∂t, S1] are bounded
operators.

Bounding Nu
1 is also easily done once we recognize that this term is almost exactly

ε−11/2Resu. We have

ε−11/2A−1
(
(1 + LΨz) ∂tε

2Ψu + ∂αΨy (1 + ∂t(K(z, y)Ψu))
)

= ε−11/2A−1
(
(1 + LΨz) ∂tε

2Ψu + ∂αΨy (1 + ∂t(K(Ψz,Ψy)Ψu))
)

+ Nu
3

= ε−11/2

(
∂tε

2Ψu + ∂αΨy 1 + ∂t(K(Ψz,Ψy)Ψu)

1 + LΨz

)
+ Nu

3 + Nu
4

= ε−11/2

(
∂tε

2Ψu + ∂αΨy 1 + ∂2
t (Ψy)

1 + LΨz

)
+ Nu

3 + Nu
4 + Nu

5

= ε−11/2Resu + Nu
3 + Nu

4 + Nu
5 ,

where

Nu
3 = ε−11/2A−1 (∂αΨy∂t (K(z, y)Ψu −K(Ψz,Ψy)Ψu)) ,

Nu
4 = ε−11/2(A−1 − (1 + LΨz)−1)

×
(
(1 + LΨz) ∂tε

2Ψu + ∂αΨy (1 + ∂t(K(Ψz,Ψy)Ψu))
)
,

Nu
5 = ε−11/2∂αΨy ∂t(Resy)

1 + LΨz
.

We bound Nu
3 using mean value theorem arguments entirely analogous to those used

when bounding Ny. To bound Ny
4 , one observes that

(1 + LΨz) ∂tε
2Ψu + ∂αΨy (1 + ∂t(K(Ψz,Ψy)Ψu))

is very nearly Resu and is thus O(ε17/2). Nu
5 is clearly small, as it contains ∂tResy.

This completes the proof.
We need to make analogous calculations for the four-dimensional system. Let

a(α, t) = ε3Ψa(εα, εt) + ε11/2Ra(α, t)

and R̄e = (Rz, Ry, Ru, Ra). This extended set of error functions lives in Hs
e = Hs ×

Hs ×Hs−1/2 ×Hs−1.
It is easy to see that

∂tR
u = Ra

but more difficult to determine the evolution of Ra. We begin by taking a time
derivative of (29):

∂2
t u(1 + Lz) + ∂tu∂αu + ∂α∂ty(1 + ∂2

t y) + ∂αy∂
3
t y = 0.(30)

Letting

I = ∂2
t u(1 + Lz) + ∂αy∂

3
t y,

II = ∂α∂ty(1 + ∂2
t y) + ∂tu∂αu,
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(30) is I + II = 0.
Manipulations very similar to those carried out in determing ∂tR

u show that

I = A(z, y)∂tε
11/2Ra + ∂αy[∂

2
t , S1(z, y)]ε

11/2Ru

+ (1 + Lz)∂tε
3Ψa + ∂αy∂

2
t (K(z, y)Ψu).

For II, we have

II = (1 + ∂2
t y)∂α∂tε

11/2Ry + ∂tu∂αε
11/2Ru

+ (1 + ∂2
t y)∂α∂tΨ

y + ∂tu∂αΨu

= ε11/2
(
(1 + ∂2

t y)∂α(K0R
u + K1(Ψ

z,Ψy)Ru + Ny) + ∂tu∂αR
u
)

+ (1 + ∂2
t y)∂α∂tΨ

y + ∂tu∂αΨu

= ε11/2
(
(1 + ∂2

t y − ∂tuK0·)K0∂αR
u + ∂αK1(Ψ

z,Ψy)Ru
)

+ (1 + ∂2
t y)∂α∂tΨ

y + ∂tu∂αΨu + ε11/2BII ,

where

BII = ∂tu(1 + K2
0 )∂αR

u + ∂2
t y∂α(K1(Ψ

z,Ψy)Ru + Ny) + ∂αN
y.

Noting that ∂2
t y = K0a + [∂t, S1]u + S1a, we see that BII is smooth in the error

functions, and is O(ε3).
Adding I and II gives

0 = A(z, y)∂tR
a + (1 + ∂2

t y − ∂tuK0·)K0∂αR
u

+ ∂αK1(Ψ
z,Ψy)Ru + B,

(31)

where

B = BII + ∂αy[∂
2
t , S1(z, y)]R

u + BRes,

ε11/2BRes = (1 + Lz)∂tε
3Ψa + ∂αy∂

2
t (K(z, y)Ψu)

+ (1 + ∂2
t y)∂α∂tΨ

y + ∂tu∂αΨu.

The terms BII and ∂αy[∂
2
t , S1(z, y)] are small and smooth, and we can bound BRes

via the residual estimates, much as we did for Nu
1 above. That is, we have

‖B‖s−1 ≤ C
(
ε3 + ε3‖R̄‖Hs

e
+ ε11/2‖R̄‖2

Hs
e

)
under the same hypotheses as in the above lemmas.

At this time, it is tempting to simply invert A(z, y). Though we could do this,
the inverse of this operator is not smoothing. In particular the presence of the term
∂αyK0 in A will cause problems. We can eliminate K0 to highest order by letting
H0(z, y) = (1 + Lz − ∂αyK0) act on (31). We have for the first term

H0(z, y)A(z, y)∂tR
a

= (1 + Lz)2∂tR
u + (1 + Lz)∂αyK0∂tR

a − ∂αyK0 ((1 + Lz)∂tR
a)

− ∂αyK0 (∂αyK0∂tR
a) + H0(z, y)(∂αyS1(z, y)∂tR

a)

=
(
(1 + Lz)2 + (∂αy)

2 + H1(z, y)·
)
∂tR

a,
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where

H1(z, y)· = ∂αy
(
[Lz,K0] · −K0[∂αy,K0] · −(1 + K2

0 )∂αy·
)

+ H0(z, y) (∂αyS1(z, y)·) .

Notice that H1 is made up of smoothing operators and is thus a smoothing operator.
Now, for the second term in (31) we have

H0(z, y)(1 + ∂2
t y − ∂tuK0·)K0∂αR

u

= (1 + Lz)(1 + ∂2
t y)K0∂αR

u − (1 + Lz)∂tuK
2
0∂αR

u

− ∂αyK0

(
(1 + ∂2

t y)K0∂αR
u
)

+ ∂αyK0

(
∂tuK

2
0∂αR

u
)

= (1 + Lz)(1 + ∂2
t y)K0∂αR

u

− ∂αy[K0, ∂
2
t y]K0∂αR

u + ∂αyK0

(
∂tuK

2
0∂αR

u
)

+
(
∂tu(1 + Lz) + ∂αy(1 + ∂2

t y)
)
K2

0∂αR
u.

Notice that by comparing the last line of the above with (29), we see that it is
identically zero! One more rearrangement of this yields(

(1 + Lz)(1 + ∂2
t y) − ∂αy∂tu

)
K0∂αR

u + B2,

where

B2 = ∂αy
(
−[K0, ∂

2
t y] + [K0, ∂tu]K0 + ∂tu(1 + K2

0 )
)
K0∂αu

is a smooth and small function by Lemma 4 in section 5.
If we let

f = ((1 + Lz)2 + (∂αy)
2)−1,

g = (1 + Lz)(1 + ∂2
t y) − ∂αy∂tu,

then we have transformed (31) into

0 = (1 + fH1(z, y))∂tR
a + fgK0∂αR

u

+ fH0(z, y) (∂α (K1(Ψ
z,Ψy)Ru))

+ f (B2 + H0(z, y)B) .

By the Neumann series,

(1 + fH1(z, y)·)−1 = 1 +

∞∑
n=0

(−1)nfnHn
1 (z, y) · .

Since H1 is smoothing, this is the identity plus a smoothing piece. Let

H2(z, y)· =

∞∑
n=0

(−1)nfnHn
1 (z, y) · .

Thus,

0 = ∂tR
a + fgK0∂αR

u

+ fH0(z, y) (∂α (K1(Ψ
z,Ψy)Ru)) −Na

1 −Na
2 ,
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where

−Na
1 = H2(z, y) (fgK0∂αR

u + fH0(z, y) (∂α (K1(Ψ
z,Ψy)Ru))) ,

−Na
2 = (1 + H2(z, y))f (B2 + H0(z, y)B) .

Finally we rewrite the above as

∂tR
a = − (1 + K0a− Lz + Na

s ) ∂αK0R
u − ∂α (K1(Ψ

z,Ψy)Ru) + Na

with

Na
s = fg − (1 + K0a− Lz),

Na = Na
1 + Na

2 + Na
3 ,

Na
4 = − (fH0(z, y) − 1) (∂α (K1(Ψ

z,Ψy)Ru)) .

Notice that (1 + K0a − Lz) is the first order approximation to fg. Thus, using
techniques exactly like those we used in proving the bounds on Ny and Nu, we have
the following.

Lemma 13. For all CR > 0, there exists ε0 such that for all ε ∈ (0, ε0) and t such
that sup0≤t′≤t ‖R̄e(·, t′)‖Hs

e
≤ CR we have

max {‖Na
s ‖s−1, ‖Na‖s−1} ≤ C

(
ε3 + ε3‖R̄e‖Hs

e
+ ε11/2‖R̄e‖2

Hs
e

)
.

Recapping, we have shown that the three-dimensional system may be rewritten
as

∂tR
z = K0R

u,

∂tR
y = K0R

u + M1(Ψ
z)∂αR

u − (Ψy + K0(ε
2ΨyK0))∂αR

u + Ny,

∂tR
u = −(1 − ε2W1)∂αR

y + Nu,

(32)

and the four-dimensional system as

∂tR
z = K0R

u,

∂tR
y = K0R

u + M1(Ψ
z)∂αR

u

− (Ψy + K0(ε
2ΨyK0))∂αR

u + Ny,

∂tR
u = Ra,

∂tR
a = − (1 + K0a− Lz + Na

s ) ∂αK0R
u

− ∂α (K1(Ψ
z,Ψy)Ru) + Na.

(33)

We remark now that these are only cosmetically different from the equations
which determine the evolution of the error for the KdV approximation alone in [28].
See page 1524 for the equations in three dimensions and page 1526 in four dimensions.
Their variables

(Z1, X2, U1, V1)

correspond to our

(z, y, u, a),
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and their functions

(N2, N3, N4, N5, N8)

are our

(Nz, Ny, Nu, Na
s , N

a).

The only difference of note is that their estimates contain a term they call q(t) while
ours do not. This term, which is related to the interaction of the left- and right-
moving wavetrains, has been removed in this paper by the inclusion of the function
W3 in the approximating functions Ψ. This simplification does not adversely affect
the means which they employ to prove that the error functions remain O(1) over the
long time scale. Therefore we appeal to their results on pages 1524–1533.

Proposition 5. For all T0 > 0, s > 4, and CI > 0, there exists ε0 such that for
all 0 ≤ ε ≤ ε0, the unique solution R̄e of (33), with initial conditions such that

‖R̄e(·, 0)‖Hs
e
≤ CI ,

satisfies

sup
t∈[0,T0ε−3]

‖R̄e(·, t)‖Hs
e
≤ C,

where C is independent of ε.
Implicit in the above proposition is the assumption that the initial conditions for

the water wave problem have the form⎛
⎝ z(α, 0)

y(α, 0)
u(α, 0)

⎞
⎠ =

⎛
⎝ Ψz(α, 0)

Ψy(α, 0)
Ψu(α, 0)

⎞
⎠ + ε11/2R̄0(α).

Thus we see that this proposition immediately proves Theorem 3.
Now that we have this result, there are a few small steps and one big step needed

to prove Theorem 2. The first simple step is to note that the z is not a very physical
coordinate and that we would prefer estimates for xα. Since L is a bounded operator
and gives the relationship between both z and xα and Ψz and Ψd, we automatically
have

sup
t∈[0,T0ε−3]

‖xα(·, t) − Ψd(·, t)‖Hs ≤ Cε11/2.

Second, the expressions for Ψd, Ψy, and Ψu contain terms of O(ε6). These terms
were needed to make the residual sufficiently small, but they are unnecessary now.
Moreover, the appearance of the operator L−1 and inverse derivatives in the definitions
of Ψy and Ψu is not very intuitive. Thus, it is a simple consequence of Lemma 1 and
the triangle inequality that

‖Ψd − ψd‖s ≤ Cε11/2,

‖Ψy − ψy‖s ≤ Cε11/2,

‖Ψu − ψu‖s ≤ Cε11/2,
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where ψd, ψy, and ψu were given in the introduction in (4), (5), and (6). Therefore
we have the following corollary.

Corollary 1. If the initial conditions for (WW) are of the form⎛
⎝ xα(α, 0)

y(α, 0)
u(α, 0)

⎞
⎠ =

⎛
⎝ ψd(α, 0)

ψy(α, 0)
ψu(α, 0)

⎞
⎠ + ε11/2R̄1(α)(34)

with ‖R̄1‖Hs ≤ CI , then the solution of (WW) satisfies the estimate∥∥∥∥∥∥
⎛
⎝ xα(·, t)

y(·, t)
u(·, t)

⎞
⎠−

⎛
⎝ ψd(·, t)

ψy(·, t)
ψu(·, t)

⎞
⎠
∥∥∥∥∥∥

Hs

≤ CF ε
11/2

for t ∈ [0, T0ε
−3]. The constant CF does not depend on ε.

Finally, we must deal with initial conditions. Recall from the discussion in section
2 that it is typical to specify the initial data for the water wave problem in the long
wavelength, small amplitude limit by

(x̄ᾱ(ᾱ, 0), ȳ(ᾱ, 0), ū(ᾱ, 0)) = (0, ε2Θy(εᾱ), ε2Θu(εᾱ)).(35)

However, the above results are applicable if the initial data is of the form seen in
(34). We eliminate this discrepancy by altering the initial parameterization of the
free surface. What should this change be? Clearly,

ᾱ = α + x(α, 0).(36)

Now set U(β, 0) = U0(β), V (β, 0) = V0(β), F (β, 0) = F0(β), G(β, 0) = G0(β),
and P (β, 0) = 0, and let

ᾱ = α +

∫ α

0

ψd(a, 0)da

= α + εX1(εα) + ε3X2(εα),

where

εX1(α) = −ε2
∫ α

0

(U0(εa) + V0(εa)) da,

ε3X2(α) = −ε4
∫ α

0

(F0(εa) + G0(εa)) da.

(37)

With this definition, we clearly have satisfied the first condition in (34). We also want

Θy(εᾱ) = ε2ψy(α) + O(ε11/2),

Θu(εᾱ) = ε2ψu(α) + O(ε11/2)

or rather

ε2Θy(εα + ε2X1(εα) + ε4X2(εα)) = ε2ψy(α) + O(ε11/2),

ε2Θu(εα + ε2X1(εα) + ε4X2(εα)) = ε2ψu(α) + O(ε11/2).
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Applying Taylor’s theorem we have

Θy + ε2X1Θ
′
y = (U0 + V0) + ε2

(
1

3
∂2
β−U0 +

1

3
∂2
β+

V0

)
+ ε2(F0 + G0) + ε2(U0 + V0)

2,

Θu + ε2X1Θ
′
u = (U0 − V0) + ε2

(
1

6
∂2
β−U0 −

1

6
∂2
β+

V0

)

+ ε2(F0 −G0) + ε2
(

3

4
U2

0 − 3

4
V 2

0

)
.

We can solve the above by taking

U0 = 1/2(Θy + Θu),

V0 = 1/2(Θy − Θu)
(38)

and

F0 = 1/2(hy + hu),

G0 = 1/2(hy − hu),
(39)

where

hy = X1Θ
′
y −

1

3
∂2
β−U0 −

1

3
∂2
β+

V0 − (U0 + V0)
2,

hu = X1Θ
′
u − 1

6
∂2
β−U0 +

1

6
∂2
β+

V0 −
3

4
U2

0 +
3

4
V 2

0 .

The functions U0, V0, F0, and G0 are all in Hs(4), and so the use of Taylor’s
theorem is justified by Lemma 10. Thus we have proven the following lemma.

Lemma 14. Given initial conditions for the water wave equation in the form (35),
define U0, V0, F0, G0, X1, and X2 as in (38), (39), and (37). Then the reparameter-
ization of the initial profile given by

ᾱ = α + εX1(εα) + εX2(εα)

results in initial conditions given by (34).
Remark 12. Let ϕ±(β±, 0) = ϕ±

0 (β±). Then this lemma will still be true if we
replace F0 with ϕ−

0 and G0 with ϕ+ and set F0 and G0 to be identically zero. That
is, we have some choice in the way we select the initial conditions for the higher order
equations.

Combining this lemma with Corollary 1 we prove Theorem 2. Thus we are done.

7. Assorted proofs.
Proof of Lemma 8. Let f−1(ξ) = ξ − g2(ξ). Since f−1(f(α)) = α we have

α = f(α) − g2(f(α)),

or rather

g2(f(α)) = g(α).(40)

Notice that this relation implies ‖g2‖L∞ = ‖g‖L∞ . Taking a derivative, we have

g′2(f(α)) =
g′(α)

1 + g′(α)
,
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which implies that ‖g′2‖L∞ ≤ C‖g′‖L∞ . If we expand the left-hand side of (40) by the
mean value theorem, we see

g2(α + g(α)) = g(α),

g2(α) + g′2(α
∗)g(α) = g(α).

This implies g2(α) = g(α) + O(‖g′‖L∞‖g‖L∞). Now, (40) can be rewritten and
expanded using Taylor’s theorem,

g2(ξ) = g(f−1(ξ))

= g(ξ − g(ξ) + O(‖g′‖L∞‖g‖L∞))

= g(ξ) + g′(ξ)(−g(ξ) + O(‖g′‖L∞‖g‖L∞))

+ 1/2g′′(ξ∗)(−g(ξ) + O(‖g′‖L∞‖g‖L∞))2

= g(ξ) − g(ξ)g′(ξ) − E

which completes the proof.
Proof of Lemma 9. Since (1 + β2)n/2F (β) ∈ Hs, by the Sobolev embedding

theorem there is a C such that

F (β) ≤ C(1 + β2)−n/2.

So ∫
|α|>C0ε−3

|F (εα)|2dα ≤ C

∫
|α|>C0ε−3

|1 + (εα)2|−ndα

≤ C

∫
|α|>C0ε−3

|εα|−2ndα

≤ Cε−2n

∫
|α|>C0ε−3

|α|−2ndα

≤ Cε−2n(ε−3)−2n+1

≤ Cε4n−3.

The higher derivatives are bounded in exactly the same fashion. The extra powers of
ε come from the long wavelength scaling.

Proof of Lemma 1. The proof is a straightforward calculation:

‖Af(·) −Anf(·)‖2
s

=

∫
(1 + k2)s|(Â(k) − Ân(k))f̂(k)|2dk

≤ C

∫
(1 + k2)s|knf̂(k)|2dk

= C

∫
(1 + k2)s|∂̂n

xf(k)|2dk

= C‖∂n
xf(·)‖2

s.

The proof for long wavelength data follows immediately from this.
Proof of Lemma 2. The fact that g(εx) is bounded as such in L2 follows auto-

matically from the geometric series approximation. That is, since |ε2f(εx)| ≤ 1/2, we
know that

|g(εx)| ≤ C|ε2f(εx)|2.
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Thus we have

‖g(ε·)‖2
L2 ≤ C

∫
ε4|f(εx)|4dx

≤ Cε4‖f(·)‖2
L∞

∫
f2(εx)dx

≤ Cε7/2‖f(·)‖s.

Now consider the L2 norm of g′(εx). A direct calculation shows that

d

dx
g(εx) = −ε3f ′(εx)

(
1

(1 + ε2f(εx))2
− 1

)
.

Taylor’s theorem shows that

∣∣∣∣ ddxg(εx)

∣∣∣∣ ≤ C|ε3f ′(εx)||ε2f(εx)|.

Therefore, just as before we have that this is bounded by Cε9/2 (which is of course
bounded by Cε7/2).

We could keep on going in this fashion, showing each derivative of g is bounded.
This is, however, difficult as finding higher and higher derivatives is a notationally
taxing job—see the expression of Faa di Bruno for proof of that!

Instead we take the following approach. Let

h(y) =
1

1 + y
− 1 + y.

For y ∈ [−1/2, 1/2], this function is real analytic and there exists another function
h̃(y) (real and analytic on the same interval) such that h(y) = yh̃(y). Now, define
h̃ε(Y ) = h̃(ε2y). We have that

‖h̃ε(·)‖Cs[−1/2ε−2,1/2ε−2] ≤ ‖h̃(·)‖Cs[−1/2,1/2].

The point here is that the Cs norm of h̃ε can be bounded independently of ε.

Now notice that g(X) = ε2f(X)h̃ε(f(X)). Since f ∈ Hs+1, we know that f ∈ Cs.
This implies that h̃ε(f(X)) ∈ Cs, with the Cs norm bounded independent of ε. Thus
we have f(X)h̃ε(f(X)) ∈ Hs, with a norm bounded independent of ε. With this in
hand, we have that ‖g(·)‖s ≤ Cε2, with C �= C(ε). Now the derivatives of g can be
bounded as follows: ∥∥∥∥ dn

dxn
g(ε·)

∥∥∥∥
L2

= εn‖g(n)(ε·)‖L2

≤ Cεn−1/2‖g(·)‖s
≤ Cεn+3/2.

Provided n ≥ 2, this term is small enough. Therefore we have shown that the first s
derivatives are sufficiently small in L2, and we have proved the lemma.
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Abstract. For a given sector a self-similar expanding solution to a crystalline flow is constructed.
The solution is shown to be unique. Because of self-similarity the problem is reduced to solve a system
of algebraic equations of degree two. The solution is constructed by a method of continuity and
obtained by solving associated ordinary differential equations. The self-similar expanding solution is
useful to construct a crystalline flow from an arbitrary polygon not necessarily admissible.
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1. Introduction. A curvature flow is important to describe motion of phase
boundaries in material sciences [13], [22] and also to modify contours in image analysis
[18]. A crystalline flow is considered as a discrete version of an anisotropic curvature
flow in the plane. It was introduced by Taylor [21] and independently by Angenent
and Gurtin [1] almost a decade ago. Let us give a typical example of anisotropic
curvature flow equations in R2:

(1.1) V = −divξ(�n) on Γt;

here V denotes the normal velocity of an evolving curve {Γt} in the direction of unit
normal �n and ξ = ∇γ with the interfacial energy density γ(p) which is positively
one-homogeneous and convex in R2; div denotes the surface divergence. If γ(p) = |p|,
then (1.1) is nothing but the curve shortening equation. If γ is piecewise linear, then
(1.1) is so singular that it cannot be interpreted as a conventional partial differential
equation. This is a typical situation where a crystalline flow arises. To understand
(1.1) one restricts {Γt} in a special class of polygonal curves, which is often called
“admissible” [21], [1]. The boundary of the Wulff shape

Wγ = {x ∈ R2; x ·m ≤ γ(m) for all m ∈ R2}

∗Received by the editors September 3, 2004; accepted for publication (in revised form) February
22, 2005; published electronically January 6, 2006. This work was partly supported by grant-in-aid
for formation of COE “Mathematics of Nonlinear Structures via Singularities” (Hokkaido University).

http://www.siam.org/journals/sima/37-4/61437.html
†Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan. Current address:

Graduate School of Mathematics, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8914,
Japan (mihogiga@ms.u-tokyo.ac.jp). The work of this author was supported in part by the 21st
century COE program at Graduate School of Mathematical Sciences, the University of Tokyo.

‡Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan. Current address:
Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo
153-8914, Japan (labgiga@ms.u-tokyo.ac.jp). The work of this author was partly supported by
grants-in-aid for scientific research 1420411 and 1563408 from the Japan Society for the Promotion
of Science (JSPS).

§Department of Informatics, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan. Cur-
rent address: Department of Computer Science and Engineering, Nagoya Institute of Technology,
Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan (h.hontani@ieee.org)

1207



1208 MI-HO GIGA, YOSHIKAZU GIGA, AND HIDEKATA HONTANI

is a typical example of an admissible polygon (crystal). Its weighted curvature
−divξ(�n) formally equals −1 if �n is taken outward. Thus if Wγ is a regular polygon
centered at the origin, then it is reasonable to say that Γt = t1/2∂Wγ is a “solution”
of (1.1). We say that a polygon Γ is an admissible crystal if the orientation of each
edge (facet) is one of that in ∂Wγ and the orientations of adjacent facets should be
adjacent in ∂Wγ . We say that {Γt} is an admissible evolving crystal if Γt is an ad-
missible crystal and the motion of all vertices of Γt is C1 in time t. Let Sj(t) denote
the jth facet of Γt. Then (1.1) is formally of the form

(1.2) Vj(t) = Λj(t) on Sj(t)

with crystalline curvature

Λj(t) = χjΔ(�nj)/Lj(t),

and Vj(t) denotes the normal velocity of Sj(t) in the direction of �nj ; here Lj(t) denotes
the length of Sj(t) and χj is the transition number (see section 2). The quantity
Δ(�nj) is the length of the facet of ∂Wγ whose orientation equals �nj . Together with a
transport equation (the first displayed formula in section 3) we have a finite system
(3.1) of ordinary differential equations (ODEs), which is at least solvable locally in
time. The resulting flow {Γt} is often called a crystalline flow.

Our goal in this paper is to construct a self-similar expanding admissible evolving
crystal {Γt}t>0 satisfying (1.2) (shortly, self-similar expanding solution) such that it
tends to the boundary of a sector as time tends to zero. We also prove its uniqueness.
(Note that a self-similar expanding solution is not necessarily a dilation of the Wulff
shape as numerical calculations in [15], [16] show.) The unique existence of self-
similar expanding solutions has been claimed in a pioneering work by Taylor [23,
Proposition 2.2(1)]. However, unfortunately the proof is rather sketchy; for example
the uniqueness is not proved. It is not at all clear how to complete the proof. In this
paper we shall give a complete proof.

There are several reasons such a solution is important. Here is a partial list:
(a) It is useful to construct a solution when initial data is a nonadmissible poly-

gon;
(b) It is useful to construct a self-similar expanding solution to (1.1) for general

γ when Γt lives in a sector and touches the boundary of the sector with
prescribed contact angle.

The first reason (a) is already explained in [23, section 2.2].
Before discussing these reasons we mention relation between crystalline flow and

curvature flow with smooth strictly convex interfacial energy density. One comes up
with two natural questions.

(i) Is a crystalline flow approximated by a curvature flow with smooth convex
γ?

(ii) Is a flow with smooth γ approximated by a crystalline flow with a piece-
wise linear γ? If so, crystalline flow provides a good numerical algorithm to
calculate (1.1).

Fortunately, these problems are affirmatively settled by now; [5], [7], [8], [9] for (i)
and [5], [12], [11], [7], [8], [9] for (ii). In [5], [7], [9] general notions of a “solution” to
(1.1) based on variational principle or comparison principle are given. Moreover, it
is shown that the “solution” in this sense exists for a general initial simple curve not
necessarily admissible. Starting from a general polygon is important for a crystalline
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algorithm (ii). Practically, for a given curve it is easier to approximate it by a polygon
rather than by an admissible crystal. However, it is not clear what is a crystalline
flow starting from a general polygon although existence of a “solution” is known in
an abstract level [5], [6], [9]. It is also numerically calculated in [4] when Γt is a graph
by a variational inequality.

We now go back to the point (a). Suppose that the initial polygon is nonadmis-
sible and that crystalline curvature of a pair of adjacent facets SA and SB equals
zero. Assume that between orientations of SA and SB there are orientations of ∂Wγ .
Then one expects that some new facets (with their missing orientations) are created
instantaneously. If one has a self-similar expanding solution (with respect to a point
where SA intersects SB), then this solution provides newly created facets. (In fact, it
is a unique solution in the level set sense [8], [9]. Even if the crystalline curvature of at
least one of SA and SB is not zero, a self-similar expanding solution represents a lead-
ing term of the length of newly created facets. We do not touch these two problems
in this paper.) A self-similar expanding solution gives a definite way to create new
facets (at least when SA and SB do not move), so it is useful to implement numerical
algorithm starting with a nonadmissible polygon. We gave such an applications in
[15], [16] for multiscale analysis of contour shape to extract its structure.

When the Frank diagram of γ (1-level set of γ) is strictly convex and smooth so
that Wγ is smooth and strictly convex, we know that there is a (unique) self-similar
expanding solution to (1.1) touching the boundary of a given sector with prescribed
angle [17], [3]. Our self-similar expanding solution to (1.2), together with approx-
imation theory [7], [9], provides a self-similar expanding solution (under prescribed
contact angle condition) for more general γ whose Frank diagram is not necessarily
strictly convex. As in [17], [3] our self-similar solutions represents the large time
behavior of general solutions. We shall discuss this topic in a forthcoming paper.
Note that our self-similar expanding solution is different from a self-similar shrinking
solution studied, for example, in [19], [20].

Let us briefly mention the method of the proof. The uniqueness is proved by a
geometric method (section 2)—comparison principle [21], [10]. To construct a self-
similar expanding solution it suffices to find a solution of ODEs with Lj(t) = t1/2/aj ,
aj > 0. The problem is reduced to find a positive aj ’s solving a system of algebraic
equations of degree two for aj ’s. Essentially the same reduction is done by Taylor
[23, p. 425]. If the number of missing orientations is small, say one or two, then one
can solve it directly. However, solving the algebraic system for a greater number of
equations is very tedious. The equation for aj ’s is of the form

(1.3)

⎛
⎜⎝

1/a1

...
1/an

⎞
⎟⎠ = H

⎛
⎜⎝

a1

...
an

⎞
⎟⎠

and H = (Hij) is a tridiagonal matrix; see (3.2). In [23, p. 425] a method to solve such
a system of algebraic equations is suggested but the proof seems to be too short to
achieve the goal. We solve this equation analytically by introducing extra parameter
s, so that our algebraic system is decoupled for s = 0 to get aj = 1/

√
Hjj and for

s = 1 it agrees with (3.2). We differentiate it with respect to s to get ODEs. We solve
the ODEs from s = 0 to s = 1 by establishing a priori estimates. A crucial step is
to calculate the determinant of H, in particular to prove its positiveness. An explicit
and beautiful formula of detH is given in Lemma 4.2 up to an explicit constant. It is
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represented by angles of Wulff shapes. Note that our method provides not only the
existence but also a way to calculate numerical values of aj ’s by solving the ODEs
numerically.

This paper is organized as follows. In section 2 we state our main results and
give a proof of uniqueness. In section 3 we derive the ODEs to solve the algebraic
equation (3.1). We prove the existence of a solution admitting several estimates for
matrices established in section 4, which is the main technical part of this paper.

After this work was completed, we were informed of the work of Campbell [2] who
partially solved our problem. In fact, she proved the unique solvability of (1.3) when
the Wulff shape is a regular polygon. Her method is a kind of shooting method for
aj . When the Wulff shape is not a regular polygon, it seems that her method does
not apply. Moreover, unfortunately her work is only in the form of a master’s thesis
and is not published. We believe it is very important to publish a complete proof in
a full generality of this fundamentally important problem.

2. Main theorems. We start by formulating the problem. Let ∂C be the
boundary of a given oriented cone C in R2 of the form ∂C = �A ∪ �B , where �A
and �B are maximal half lines starting from the origin O and are indexed clockwise as
in Figure 1. We also call C a sector. In this paper, we assume that �nj = (cos θj , sin θj)
is the outer unit normal of �j for j = A,B with |θA − θB | < π. Let n be a nonneg-
ative integer. Let Θ = {θj ; j = 1, . . . , n} with θA > θ1 > θ2 > · · · > θn > θB (resp.,
θA < θ1 < θ2 < · · · < θn < θB) if θA > θB (resp., θA < θB). We call Θ a set of
admissible angles. We interpret that Θ is an empty set if n = 0.

We call a simple oriented polygonal curve S an admissible crystal associated with
C if S is of the form S = ∪n

j=1Sj ∪ SA ∪ SB , where Sj is a nontrivial and closed
segment with the outer unit normal �nj = (cos θj , sin θj) for j ∈ {1, . . . , n} ∪ {A,B}
and Sj for j = A,B is a half line contained in �j . If n = 0, we always use the
convention that ∪n

j=1 Sj is the empty set so that S = ∂C. We implicitly assume that
segments Sj ’s are numbered clockwisely. Figure 1 shows examples of C. Figure 2
shows examples of admissible crystals S associated with C.

We say that a family of polygon {S(t)}t∈J , where J is a time interval, belongs
to a set of orientation-preserving evolving curves S if S(t) is an admissible crystal for
all t ∈ J and each corner moves continuously differentiably in time, where J is a time
interval. These conditions imply that the orientation of each line (facet) is preserved
for t ∈ J .

�

�� ��

�

��� � ���

�

��
��

�

��� � ���

Fig. 1. Oriented cones C.
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Fig. 2. Admissible crystals S.

Fig. 3. Transition number χj .

We recall the notion of crystalline curvature or weighted curvature of {S(t)}t∈J ∈
S, where S(t) is of the form

S(t) =

n⋃
j=1

Sj(t) ∪ SA(t) ∪ SB(t)

and Lj(t) is the length of facet Sj(t). Let χj(t) be a transition number defined by

χj(t) :=

⎧⎨
⎩

1 if S(t) is concave around Sj(t),
−1 if S(t) is convex around Sj(t),

0 otherwise

(see Figure 3). Let Δj be a positive given number. We define these quantities for
j = 1, 2, . . . , n. A crystalline curvature Λj(t) of Sj(t) is defined by

Λj(t) =
χj(t)Δj

Lj(t)
.

We use this formula to define crystalline curvatures ΛA and ΛB for SA and SB , and
observe that ΛA = ΛB = 0 no matter how transition number and Δ are taken since
the length of SA and SB is infinite.

We consider an evolving curve {S(t)}t∈J ∈ S solving (1.2). In other words, it
evolves such that the normal velocity Vj(t) in the direction of −→n j of jth facet Sj(t)
equals Λj(t) for j = 1, . . . , n, A,B.
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We will now introduce the notion of a self-similar expanding solution.
Definition 2.1. An orientation-preserving evolving curve {S(t)}t>0 ∈ S is called

a self-similar expanding solution to (1.2) in a sector C if there exists an admissible
crystal S∗ associated with C such that

(2.1) S(t) = t1/2S∗ = {t1/2x;x ∈ S∗} for t > 0;

(2.2) Vj(t) = Λj(t) for t > 0, j = 1, . . . , n if n ≥ 1.

By definition if n = 0, then S∗ = �a ∪ �b = ∂C. Thus the only self-similar
expanding solution in a sector C must be ∂C.

We note that for a self-similar solution {S(t)}t>0, the transition number is unique
independent of j and t, i.e., χj(t) = −1 (resp., 1) if θA > θB (resp., θA < θB) for all
j = 1, . . . , n and t > 0.

Our main results concern the existence and uniqueness of self-similar expanding
solutions governed by crystalline curvature in a sector. They are as follows.

Theorem 2.2 (existence). Let C be a given oriented cone in R2. Let Θ =
{θj ; j = 1, . . . , n} (with nonnegative integer n) be a set of admissible angles. Let
Δj be a positive number for j = 1, . . . , n. Then there exists a self-similar expanding
solution {S(t)}t>0 in a sector C.

Theorem 2.3 (uniqueness). Under the same hypotheses of Theorem 2.2 there is
at most one self-similar expanding solution {S(t)}t>0 in a sector C.

We shall prove Theorem 2.2 in section 3 based on key a priori estimates shown
in section 4. In the rest of this section we shall prove Theorem 2.3 by geometric
argument.

Proof of Theorem 2.3. Let {S(t)}t>0 and {R(t)}t>0 be self-similar expanding
solutions in a sector C. We may assume that θA > θB ; i.e., the cone C is convex. We
may also assume that n ≥ 1. Then transition numbers of all facets of S(t) and R(t)
are −1. Let S(t) (resp., R(t)) be of the form S(t) = ∪n

j=1Sj(t)∪SA(t)∪SB(t) (resp.,
R(t) = ∪n

k=1Rk(t) ∪ RA(t) ∪ RB(t)). For convenience we introduce an unbounded
region DS(t) ⊂ R2 enclosed by S(t) for t > 0; let DS(t) denote the closure of the
interior region bounded by curve S(t) (see Figure 4). Let R̃(t) be of the form R̃(t) =
∪n
k=1Rk(t).

Suppose that S 	≡ R. We may assume that R̃(1) ∩ int DS(1) 	= ∅. By this
assumption, t0 ∈ (0, 1) holds for t0 := sup{t|R̃(t) ∩ int DS(1) = ∅}. Since R̃(0) is a
singleton and S(1 − t0) 	= ∂C, there exists δ > 0 such that R̃(δ) ∩ int DS(t1) = ∅

�

����
�����

��

Fig. 4. Region DS(t) enclosed by S(t).
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~

Fig. 5. Wulff shape W .

nB nA

pApB

S(t)

Fig. 6. Self-similar expanding solution S(t).

with t1 := 1− t0. We fix such δ. Setting t2 := sup{τ > 0; R̃(σ+ δ)∩ int DS(σ+ t1) =
∅ for σ ∈ (0, τ)}, we have 0 < t2 < t0. Since R̃(σ+ δ) touches DS(σ+ t1) first time at
σ = t2, there exists a facet Rj(t2 + δ) of R̃(t2 + δ) and a facet Sj(t2 + t1) of S(t2 + t1)
such that the normal of Rj(t2 + δ) coincides with that of Sj(t2 + t1), we conclude
that Rj(t2 + δ)∩ Sj(t2 + t1) 	= ∅ and that the length of Rj(t2 + δ) does not equal the
length of Sj(t2 + t1). By geometry, the length of Rj(t2 + δ) is greater than the length
of Sj(t2 + t1), so that the weighted curvature of Rj(t2 + δ) is negative and is greater
than that of Sj(t2 + t1) (cf. [21], [10]). So the normal velocity of Rj(t2 +δ) is negative
and is greater than that of Sj(t2 + t1), which contradicts the definition of t2.

Remark. (i) The evolution equation (2.2) can be viewed as a crystalline curvature
flow equation (1.1) (or (1.2)) with a suitable polygonal Wulff shape. Indeed, if θA >
θB for example, then there exists a convex polygon W such that the set N of the
orientations of all facets in W includes all �nj ’s with j ∈ {1, . . . , n} and the length
of facet with �nj equals Δj and that N does not include any �m = (cos θ, sin θ) for
θ 	= θj , θ ∈ (θB , θA). We may assume that W contains the origin as an interior
point. The corresponding interfacial energy density γ is given as a support function:
γ(x) = sup{x · p; p ∈ W} for x ∈ R2. The case θA < θB can be treated in a similar
way.

(ii) If we dilate the Wulff shape so that the length of the jth facet equals λΔj ,

then
√
λS(t) is the corresponding self-similar expanding solution to (1.2) with Δj

replaced by λΔj , where S(t) is defined by (2.1) with (2.2).
(iii) Here is a numerical example of a profile S∗ of the self-similar expanding

solutions for given two different sectors with a fixed Wulff shape having many facets
so that it looks a smooth curve. See Figures 5, 6, and 7. We use a Newton-type
iteration which is closely related to our ODEs (3.4) to find numerical values of aj ’s.

3. Existence of self-similar solution of ODE system. We shall show the
existence theorem (Theorem 2.2). When n = 0, {S(t)}t>0 with S(t) = t1/2(∂C) is
the desired self-similar expanding solution. In the following we suppose n � 1. Let
a family of polygon {S(t)}t>0 belong to S. Then we have a transport equation of
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pA
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nB nA

S(t)

~~

Fig. 7. Self-similar expanding solution S(t).

{S(t)}t>0:

dLj(t)

dt
= (cotϕj + cotϕj+1)Vj(t) −

1

sinϕj
Vj−1(t) −

1

sinϕj+1
Vj+1(t), t > 0

for j = 1, . . . , n, where ϕj := θj − θj−1 for j = 1, . . . , n + 1. Here we set θ0 :=
θA, θn+1 := θB so that V0 := 0 and Vn+1 := 0 since SA(t) and SB(t) have infinite
length. Plugging the governing law Vj(t) = Λj(t) for j = 1, . . . , n, we have an ODE
system:

(3.1)
dLj(t)

dt
=

1

2

{
pj

Lj(t)
+

qj−1

Lj−1(t)
+

rj+1

Lj+1(t)

}
, t > 0,

for j = 1, . . . , n, where

pj = 2χjΔj
sin(ϕj + ϕj+1)

sinϕj sinϕj+1
for j = 1, . . . , n,

qj = −2χjΔj
1

sinϕj+1
for j = 1, . . . , n− 1,

rj = −2χjΔj
1

sinϕj
for j = 2, . . . , n,

and q0 = 0 and rn+1 = 0. Here we used cotϕj + cotϕj+1 =
sin(ϕj+ϕj+1)
sinϕj sinϕj+1

.

By the assumption on θA and θB in section 2, we note that |
∑n+1

j=1 ϕj | = |θA −
θB | < π. When C is convex (resp., concave), i.e., θA > θB (resp., θA < θB), then
ϕj < 0 (resp., ϕj > 0) for j = 1, . . . , n+ 1 and χj < 0 (resp., χj > 0) for j = 1, . . . , n.
Thus, we have pj > 0 for j = 1, . . . , n, qj < 0 for j = 1, . . . , n − 1, and rj < 0 for
j = 2, . . . , n.

Definition 3.1. A family of functions {Lj(t)}nj=1 is called a self-similar solution

of the ODE system (3.1) if Lj(t) is of the form Lj(t) = αjt
1/2 with positive number

αj satisfying (3.1) for j = 1, . . . , n.
Theorem 2.2 is obtained by showing the following proposition.
Proposition 3.2. Let n be a positive integer. There exists a self-similar solution

{Lj(t)}nj=1 of the ODE system (3.1).
When n = 1, (3.1) yields an ODE

dL1(t)

dt
=

p1

2L1(t)
, t > 0.

Since (d/dt){L1(t)
2} = p1, t > 0, we obtain L1(t) = t1/2p1

1/2 for t > 0, so that
Proposition 3.2 holds for n = 1.
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In the following we assume that n � 2. Our strategy to prove Proposition 3.2 is
as follows. Substituting Lj(t) = αjt

1/2 into (3.1), we have

(3.2)

⎛
⎜⎜⎜⎝

1/a1

1/a2

...
1/an

⎞
⎟⎟⎟⎠ = H

⎛
⎜⎜⎜⎝

a1

a2

...
an

⎞
⎟⎟⎟⎠

with unknowns aj = 1/αj , where

H =

⎛
⎜⎜⎜⎜⎜⎝

p1 r2
q1 p2 r3 0...

. . .
. . .

qn−2 pn−1 rn

0 qn−1 pn

⎞
⎟⎟⎟⎟⎟⎠ .

In particular

H =

(
p1 r2
q1 p2

)

when n = 2. To show the existence of solutions to the system of nonlinear algebraic
equations (3.2), we consider the following continuation method sometimes called Davi-
denko’s method. Introducing an extra parameter s ≥ 0 and the matrix K(s):

K(s) =

⎛
⎜⎜⎜⎜⎜⎝

p1 sr2 0sq1 p2 sr3
. . .

. . .
. . .

sqn−2 pn−1 srn
0 sqn−1 pn

⎞
⎟⎟⎟⎟⎟⎠ ,

we consider the system of nonlinear algebraic equations

(3.3)

⎛
⎜⎜⎜⎝

1/b1(s)
1/b2(s)

...
1/bn(s)

⎞
⎟⎟⎟⎠ = K(s)

⎛
⎜⎜⎜⎝

b1(s)
b2(s)

...
bn(s)

⎞
⎟⎟⎟⎠

for b(s) > 0. Evidently bj(0) = 1/
√
pj , since K(0) is a diagonal matrix. If the

solution can be extended up to s = 1, then bj(1) is a solution of (3.2) since K(1) = H.
Differentiating (3.3) formally with respect to parameter s, we have

−

⎛
⎜⎜⎝

...
b′j(s)/bj(s)

2

...

⎞
⎟⎟⎠ = K(s)

⎛
⎜⎜⎝

...
b′j(s)

...

⎞
⎟⎟⎠− J

⎛
⎜⎜⎝

...
bj(s)

...

⎞
⎟⎟⎠
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with

J = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 r2
q1 0 r3 0...

. . .
. . .

. . .
. . .

. . .

0 qn−2 0 rn
qn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here and thereafter ′ denotes d/ds, differentiation with respect to s. One can rewrite
the above differential equation for bj in the form

(3.4) Q(s,�b(s))

⎛
⎜⎜⎝

...
b′j(s)

...

⎞
⎟⎟⎠ = J

⎛
⎜⎜⎝

...
bj(s)

...

⎞
⎟⎟⎠ ,

i.e.,

Q(s,�b(s)) �b′(s) = J�b(s) with �b(s) = t(b1(s), . . . , bn(s)),

if we define

Q(s,�h) = K(s) + diag(1/h2
1, . . . , 1/h

2
n) with �h = t(h1, . . . , hn).

If the inverse matrix of Q exists, (3.4) formally yields

(3.5) �b′(s) = G(s,�b(s)) �b(s).

Here we set G(s,�h) = Q−1(s,�h) J . We consider the system of ODEs (3.5) for s > 0
with initial condition

(3.6) �b(0) = �h∗, �h∗ := t(1/
√
p1, . . . , 1/

√
pn).

Local-in-time unique existence of a positive solution �b(s) of (3.5) and (3.6) is guar-

anteed, since Q is smooth and det Q 	= 0 near (0,�h∗), so that Q−1 is smooth near

(0,�h∗).

As we shall prove in Lemma 3.4, the local solution �b(s) can be extended uniquely
up to s = 1 + τ with some τ > 0 (obtained in Theorem 4.1). Then aj := bj(1) (j =
1, . . . , n) is a solution of (3.2), so that {Lj(t)}nj=1, with Lj(t) = t1/2/bj(1) for t >
0, j = 1, . . . , n, is a self-similar solution of (3.1), which implies Proposition 3.2.

To prove the unique solvability up to s = 1 we need to prepare a priori estimate.
We use the notation �x < �y (resp., �x � �y for �x = t(x1, . . . , xn), �y = t(y1, . . . , yn) ∈ Rn

if xj < yj (resp., xj ≤ yj) for j = 1, . . . , n.
Lemma 3.3 (a priori estimate). Let S0 > 0 denote the maximal existence time of

a positive solution of the system of ODEs (3.5) and (3.6). Set S1 := min(S0, 1 + τ),

where τ is a positive number obtained in Theorem 4.1. Let �b(s) be the solution of (3.5)
and (3.6).

(I) The derivative of each component of �b(s) is positive, i.e., �b′(s) > �0 for s ∈
[0, S1).
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(II) In particular, �b(s) > �h∗(> �0) for s ∈ (0, S1).
(III) There exists a constant C3 > 0 independent of s such that

0 ≤ {each element of Q−1(s,�b(s))} ≤ C3 for s ∈ [0, S1).

Proof. The main steps of this lemma are proved in the next section, as summarized
in Theorem 4.1. Since each element of the matrix J is nonnegative and �b(s) > 0 for

s ∈ [0, S1), we have J�b(s) > �0. We now observe that (II) and (III) of Theorem 4.1

imply �b′(s) = G(s,�b(s))�b(s) > 0 for s ∈ [0, S1). Initial condition (3.6) and (I) yield
(II). Theorem 4.1 and (II) implies (III).

Lemma 3.4 (unique solvability up to s = 1). There exists the unique positive

solution �b(s) (i.e., �b(s) > �0) of the system of ODEs (3.5) and (3.6) for s ∈ [0, 1 + τ ],
where τ is a positive number obtained in Theorem 4.1.

Proof. Let S0 be the maximal existence time of (3.5) and (3.6), and set S1 :=

min(S0, 1 + τ). We note that G(s,�b(s)) is well defined for s ∈ [0, S1) by Lemma 3.3.
Integrating (3.5), we have

�b(s) −�b(0) =

∫ s

0

G(u,�b(u))�b(u)du for s ∈ [0, S1),

which implies

|�b(s)| � |�b(0)| +
∫ s

0

|G(u,�b(u))|op |�b(u)|du for s ∈ [0, S1).

Here | · | denotes the Euclidean norm and | · |op denotes the operator norm from Rn

to Rn. Lemma 3.3 implies that there exist a constant C1 independent of s such that

0 < |G(s,�b(s))|op ≤ C1 for s ∈ [0, S1),

since each element of J is nonnegative. So we have

|�b(s)| � |�b(0)| + C1

∫ s

0

|�b(u)|du for s ∈ [0, S1).

Gronwall’s lemma implies

|�b(s)| � |�b(0)| exp(C1 s) � |�h∗| exp(C1 S1) =: C2 for s ∈ [0, S1).

Suppose that S0 � 1 + τ . Then Lemma 3.3(II) yields

(3.7) 1/
√
pj ≤ bj(s) ≤ C2 for s ∈ [0, S0), j = 1, . . . , n.

Since S0 is the maximal existence time, by a standard extension theorem for
ODEs (e.g., [14, Chapter II, Theorem 3.1]), we have either lims→S0bj(s) = ∞ or
lims→S0

bj(s) = 0 for some j = 1, . . . , n. This evidently contradicts (3.7). Thus we
have S0 > 1 + τ .

4. A priori estimates for matrices.
Theorem 4.1 (a priori estimates). (I) There exist some positive constants C4

and τ (independent of s and �h) such that

detQ(s,�h) > C4

n∏
j=1

pj(> 0) for all s ∈ [0, 1 + τ ] and all �h ∈ (R+)n.
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(II) The matrix Q(s,�h) has its inverse for s ∈ [0, 1 + τ ] and �h ∈ (R+)n. Each

element of Q−1(s,�h) is smooth on [0, 1 + τ ] × (R+)n.

(III) Let �h� ∈ (R+)n with �h� > 0. There exists a constant C5 > 0 (independent

of s and �h) such that 0 � {each element of Q−1(s,�h)} � C5 for all s ∈ [0, 1 + τ ] and

all �h ∈ (R+)n with �h � �h�.
Here we use the notation R+ := (0,∞), so that (R+)n =

n︷ ︸︸ ︷
(0,∞) × · · · × (0,∞).

To prove the theorem we shall show the following lemmas. To show positiveness of
the determinant of the matrix Q we consider matrix Mk�(s):

Mk�(s) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 srk+1/pk+1 0
sqk/pk 1 srk+2/pk+2

sqk+1/pk+1 1 srk+3/pk+3

. . .
. . .

. . .

. . .
. . .

. . .

0 sq�−2/p�−2 1 sr�/p�

sq�−1/p�−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for s � 0 and k, � = 1, . . . , n with k � �. In particular,

Mkk(s) = (1) for s � 0, k = 1, . . . , n,

Mkk+1(s) =

(
1 srk+1/pk+1

sqk/pk 1

)
for s � 0, k = 1, . . . , n− 1.

We note that M1n(s) is obtained by dividing each jth column of K(s) by pj . We set

M̃k� = Mk�(1). Fortunately, det M̃k� is computable. Note that detH =
∏n

j=1 pj ·
det M̃1n.

Lemma 4.2. For k, � = 1, . . . , n with k � �,

(4.1) det M̃k� =
sin

(∑�+1
j=k ϕj

)
(∏�

j=k νj

)(∏�+1
j=k sinϕj

) ,

where

(4.2) νj := cotϕj+1 + cotϕj

(
=

sin(ϕj + ϕj+1)

sinϕj sinϕj+1

)
.

Proof. The quantities qj/pj and rj/pj appearing in the matrix Mk�(s) can be
calculated as follows:

qj
pj

=
−1

νj sinϕj+1
,

rj
pj

=
−1

νj sinϕj
.
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We may assume that k = 1 without loss of generality. We shall prove (4.1) by
induction. Let m� denote the right-hand side of (4.1) with k = 1.

(i) Using equality (4.2), we have

m1 =
sin(ϕ1 + ϕ2)

(cotϕ2 + cotϕ1) sinϕ1 sinϕ2
= 1 = det M̃11,

which implies (4.1) with k = 1 = �.
(ii) Next we shall show (4.1) with k = 1, � = 2. We have

det M̃12 = 1 − −1

ν1 sinϕ2
· −1

ν2 sinϕ2
=

d2

ν1ν2 sinϕ1 sin2 ϕ2 sinϕ3

(4.3)

with d2 = (ν1ν2 sin2 ϕ2 − 1) sinϕ1 sinϕ3. Equality (4.2) yields d2 = sin(ϕ1 +
ϕ2) sin(ϕ2 + ϕ3) − sinϕ1 sinϕ3. Using the identity

(4.4) sinα sinβ = −{cos(α + β) − cos(α− β)}/2,

we have

d2 = −{cos(ϕ1 + 2ϕ2 + ϕ3) − cos(ϕ1 + ϕ3)}/2.

By the identity

(4.5) cosα− cosβ = −2 sin
α + β

2
sin

α− β

2
,

we have d2 = sin(ϕ1 + ϕ2 + ϕ3) sinϕ2. Substituting this into (4.3), we obtain

det M̃12 =
sin(ϕ1 + ϕ2 + ϕ3)

ν1ν2 sinϕ1 sinϕ2 sinϕ3
= m2,

which is (4.1) for k = 1, � = 2.
(iii) We assume that � � 3 and (4.1) holds for M̃11, M̃12, . . . , M̃1 �−1. We have

det M̃1� = det M̃1 �−1 − r�
p�

q�−1

p�−1
det M̃1 �−2,

since

M̃1i =

⎛
⎜⎜⎜⎜⎜⎝

0

M̃1 i−1
...
0

ri/pi
0 · · · 0 qi−1/pi−1 1

⎞
⎟⎟⎟⎟⎟⎠ for i = 2, . . . , �.
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The assumption of the induction yields

det M̃1� =
sin

(∑�
j=1 ϕj

)
(∏�−1

j=1 νj

)(∏�
j=1 sinϕj

) − −1

ν� sinϕ�
· −1

ν�−1 sinϕ�
·

sin
(∑�−1

j=1 ϕj

)
(∏�−2

j=1 νj

)(∏�−1
j=1 sinϕj

) .
An elementary calculation yields

(4.6) det M̃1� =
d�(∏�

j=1 νj

)(∏�+1
j=1 sinϕj

)
sinϕ�

with

d� = sin

⎛
⎝ �∑

j=1

ϕj

⎞
⎠ sin(ϕ� + ϕ�+1) − sin

⎛
⎝�−1∑

j=1

ϕj

⎞
⎠ sinϕ�+1.

The identity (4.4) yields

d� =
−1

2

⎧⎨
⎩cos

⎛
⎝�+1∑

j=1

ϕj + ϕ�

⎞
⎠− cos

⎛
⎝�−1∑

j=1

ϕj + ϕ�+1

⎞
⎠
⎫⎬
⎭ ,

and the identity (4.5) yields

d� = sin

⎛
⎝�+1∑

j=1

ϕj

⎞
⎠ sinϕ�.

Substituting this into (4.6), we obtain (4.1) for det M̃1�. By induction the proof is
now complete.

Lemma 4.3. The identities

d

ds

{
detMk�(s)

}
= −s

{
�−2∑

j=k+1

qj
pj

rj+1

pj+1
detMk j−1(s) · detM j+2 �(s)

+

�−1∑
j=k+2

qj−1

pj−1

rj
pj

detMk j−2(s) · detM j+1 �(s)(4.7)

+2
qk
pk

rk+1

pk+1
detMk+2 �(s) + 2

q�−1

p�−1

r�
p�

detMk �−2(s)

}

for s � 0 and k, � = 1, . . . , n with k + 2 < � hold. Moreover,

d

ds

{
det Mkk (s)

}
= 0 for s � 0 and k = 1, . . . , n;

d

ds

{
detMk k+1(s)

}
= −2s

qk
pk

rk+1

pk+1
for s � 0 and k = 1, . . . , n− 1;

d

ds

{
detMk k+2(s)

}
= −2s

(
qk
pk

rk+1

pk+1
+

qk+1

pk+1

rk+2

pk+2

)
for s � 0 and k = 1, . . . , n− 2.
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Proof. We observe that for s � 0 and k, � = 1, . . . , n with k + 2 < �,

d

ds
{detMk�(s)}

=
�−1∑

j=k+1

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

Mk j−1(s) 0 0
rj/pj

0 · · · 0 sqj−1/pj−1 0 srj+1/pj+1 0 · · · 0
qj/pj

0 0 M j+1 �(s)
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ det

⎛
⎜⎜⎜⎜⎜⎝

0 srk+1/pk+1 0 · · · 0
qk/pk

0 Mk+1 �(s)
...
0

⎞
⎟⎟⎟⎟⎟⎠+ det

⎛
⎜⎜⎜⎜⎜⎝

0
...

Mk �−1(s) 0
r�/p�

0 · · · 0 sq�−1/p�−1 0

⎞
⎟⎟⎟⎟⎟⎠

= −
�−2∑

j=k+1

qj
pj

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

Mk j−1(s)
... 0
0

0 · · · 0 sqj−1/pj−1 srj+1/pj+1 0 · · · 0
sqj+1/pj+1

0 0 M j+2 �(s)
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− q�−1

p�−1
det

⎛
⎜⎜⎜⎝

0

Mk �−2(s)
...
0

0 · · · 0 sq�−2/p�−2 sr�/p�

⎞
⎟⎟⎟⎠

−
�−1∑

j=k+2

rj
pj

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

Mk j−2(s) 0 0
srj−1/pj−1

0 · · · 0 sqj−1/pj−1 srj+1/pj+1 0 · · · 0
0

0
... M j+1 �(s)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− rk+1

pk+1
det

⎛
⎜⎜⎜⎝

sqk/pk srk+2/pk+2 0 · · · 0
0
... Mk+2 �(s)
0

⎞
⎟⎟⎟⎠

−s
qk
pk

rk+1

pk+1
detMk+2 �(s) − s

r�
p�

q�−1

p�−1
detMk �−2(s),
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which yields (4.7). A direct calculation yields the desired formulas for k+2 ≥ �.
Lemma 4.4.

(I) For k, � = 1, . . . , n with k � �, detMk�(1) = det M̃k� > 0.
(II) There exists τ > 0 such that

d

ds
{detMk�(s)} � 0 and detMk�(s) � detMk�(1 + τ) > 0

for s ∈ [0, 1 + τ ] and k, � = 1, . . . , n with k � �.
Proof. (I) For all j = 1, . . . , n + 1 we see that ϕj < 0 (resp., ϕj > 0) if the

cone C is convex (resp., concave). Since the original assumption in section 2 yields

|
∑n+1

j=1 ϕj | = |θA − θB | < π, identity (4.1) in Lemma 4.2 implies (I).
(II) First we note that pj > 0 (j = 1, . . . , n), qj < 0 (j = 1, . . . , n − 1), and

rj < 0 (j = 2, . . . , n). We shall prove by induction.
(i) For k = 1, . . . , n, detMkk(s) = 1, so that (d/ds){detMkk(s)} = 0 for s ∈ R.
(ii) For k = 1, . . . , n − 1, (d/ds){detMk k+1(s)} � 0 for s � 0 by Lemma 4.3.

By (I) with � = k + 1, there exists τk k+1 > 0 such that detMk k+1(s) > 0 for
s ∈ [0, 1 + τk k+1].

(iii) For k = 1, . . . , n − 2, (d/ds){detMk k+2(s)} ≤ 0 for s ≥ 0 by Lemma 4.3.
By (I) with � = k + 1, there exists τk k+2 > 0 such that det Mk k+2(s) > 0 for
s ∈ [0, 1 + τk k+2].

(iv) Next we consider when n � 4. We argue by induction on �− k. By (i)–(iii)
we know (II) holds for �− k � 2. Let m be 3, 4, . . . , n− 1. Assume that (II) holds for
� − k � m − 1. We shall prove (II) for � − k = m. By assumptions of the induction
for k = 1, 2, . . . , n− (m− 1), i = 0, 1, . . . ,m− 1, there exists τk k+i > 0 such that
detMk k+i(s) > 0 for s ∈ [0, 1 + τk k+i]. For k = 1, 2, . . . , n − m, identity (4.7) in
Lemma 4.3 with � = k + m yields (d/ds){detMk k+m(s)} � 0 for s ∈ [0, 1 + τ̂k k+m]
with τ̂k k+m = min{min{τkj ; j = k + 1, k + 2, . . . , k + m − 2},min{τ j k+m; j = k +
2, k + 3, . . . , k + m − 1}}. By (I) with � = k + m, there exists τk k+m > 0 such that
detMk k+m(s) > 0 for s ∈ [0, 1 + τk k+m].

Next we shall show an inequality, which is used in the proof of Theorem 4.1. For
μj > 0 (j = 1, . . . , n), ξj ∈ R (j = 1, . . . , n− 1), and ηj ∈ R (j = 2, . . . , n), we set

Ak� : = Bk� + diag(μk, μk+1, . . . , μ�),

Bk� : =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ηk+1 0ξk 1 ηk+2

ξk+1 1 ηk+3

. . .
. . .

. . .

. . .
. . .

. . .

ξ�−3 1 η�−1

0 ξ�−2 1 η�
ξ�−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for k, � = 1, . . . , n with k � �. In particular,

Bkk := (1) for k = 1, . . . , n;

Bk k+1 :=

(
1 ηk+1

ξk 1

)
for k = 1, . . . , n− 1 when n � 2.

Lemma 4.5. Let k and � be 1, . . . , n with k � �. If detBpq > 0 for p, q =
k, k + 1, . . . , � with p � q then detAk� > detBk�.



SELF-SIMILAR SOLUTIONS FOR A CRYSTALLINE FLOW 1223

Proof. For k, � = 1, . . . , n with k ≤ � we set

Ck�(r) := Bk� + r diag(μk, . . . , μ�) for r > 0,

which yields Ck�(0) = Bk� and Ck�(1) = Ak�. We shall prove by induction on �−k =
0, 1, 2, . . . , n − 1. If 0 ≤ � − k ≤ 1, direct calculation yields (d/dr){detCk�(r)} > 0
for r > 0, which implies detCk�(r) > detBk� > 0 for r > 0. We assume that
k, � = 1, . . . , n with k + 2 ≤ �. Suppose that (d/dr){detCpq(r)} > 0 for r > 0 and for
p, q = k, k + 1, . . . , � with p ≤ q ≤ p + �− k − 1. An elementary calculation yields

d

dr
detCk�(r) = μk · detCk+1 �(r) + detCk �−1(r) · μ�

+

�−1∑
j=k+1

detCk j−1(r) · μj · detCj+1 �(r)

> 0 for r > 0,

since detCpq(r) > detCpq(0) = detBpq > 0 for r > 0 and for p, q = k, k + 1, . . . , �
with p ≤ q ≤ p + �− k − 1 by the assumption of the induction. Thus we obtain

detAk� = detCk�(1) > detCk�(0) = detBk�

for k ≤ �.
Finally, we shall show the identities on a cofactor of tridiagonal matrix, which are

used in the proof of Theorem 4.1. For λj ∈ R (j = 1, . . . , n), ξj ∈ R (j = 2, . . . , n),
and ηj ∈ R (j = 1, . . . , n− 1), we set the matrix

Ek� :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λk ξk+1

ηk λk+1 ξk+2 0ηk+1 λk+2 ξk+3

. . .
. . .

. . .

. . .
. . .

. . .

η�−3 λ�−2 ξ�−1

0 η�−2 λ�−1 ξ�
η�−1 λ�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for k, � = 1, . . . , n with k � �. In particular,

Ekk := (λk) for k = 1, . . . , n;

Ekk+1 :=

(
λk ηk+1

ηk λk+1

)
for k = 1, . . . , n− 1 when n � 2.

Let Dpq be the (p, q) cofactor of the matrix E1n for p, q = 1, . . . , n. The next lemma
is obtained by an elementary calculation.

Lemma 4.6. For p, q = 1, . . . , n the following identities hold.
(I) When p < q,

Dpq = (−1)p+q

q−1∏
j=p

ηj detE1 p−1 detEq+1 n.
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(II) When p > q,

Dpq = (−1)p+q

p∏
j=q+1

ξj detE1 q−1 detEp+1 n.

(III)

Dpp = detE1 p−1 detEp+1 n.

Here we use the convention detE10 = 1 = detEn+1 n.
Proof of Theorem 4.1. (I) We set

Qk�
(
s,�hk�

)
:= Kk�(s) + diag

(
1/h2

k, 1/h
2
k+1, . . . , 1/h

2
�

)
and

Kk�(s) :=
(
Kij(s)

)
i,j=k,k+1,...,�

,

where (Kij(s))i,j=1,...,n is the matrix K(s) defined in section 3. Note that Q1 n equals
Q defined in section 3. Setting

W k�
(
s,�hk�

)
:= Mk�(s) + diag

(
1

pkh2
k

,
1

pk+1h2
k+1

, . . . ,
1

p�h2
�

)

for s � 0,�hk� = t(hk, hk+1, . . . , h�) ∈ (R+)�−k+1, and k, � = 1, . . . , n with k � �, we
have

detQk�
(
s,�hk�

)
= detW k�

(
s,�hk�

)
·

�∏
j=k

pj .

Lemma 4.4(II) yields that there exists τ > 0 such that detMpq(s) � Cpq for s ∈
[0, 1+ τ ] and p, q = 1, . . . , n with p � q, where Cpq := detMpq(1+ τ) > 0. By Lemma

4.5 we have detW k�(s,�hk�) > detMk�(s) for s ∈ [0, 1 + τ ] and �hk� ∈ (R+)�−k+1.
Since pj > 0 (j = 1, . . . , n),

(4.8) detQk�
(
s,�hk�

)
> Ck�

�∏
j=k

pj (> 0)

for s ∈ [0, 1 + τ ] and �hk� ∈ (R+)�−k+1.
(II) Part (II) follows from (I) with k = 1 and � = n and the definition of Q.

(III) When n = 1, Q(s,�h) is a scalar and equals
(
p1 + 1/h2

1

)
, so that

0 < Q−1(s,�h) =
(
p1 + 1/h2

1

)−1
< 1/p1.

We may assume that n � 2. Since Q(s,�h) is invertible for s ∈ [0, 1+τ ] and �h ∈ (R+)n

by (I), the (p, q) element of the inverse matrix of Q(s,�h) equals Δqp(s,�h)/detQ(s,�h)

for p, q = 1, . . . , n, where Δpq(s,�h) denotes the (p, q) cofactor of Q(s,�h). By Lemma
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4.6 we have

Δpq(s,�h) = (−1)p+q

⎛
⎝q−1∏

j=p

qj

⎞
⎠ sq−p detQ1 p−1(s,�h) detQq+1 n(s,�h) for p < q;

Δpq(s,�h) = (−1)p+q

⎛
⎝ p∏

j=q+1

rj

⎞
⎠ sp−q detQ1 q−1(s,�h) detQp+1 n(s,�h) for p > q;

Δpp(s,�h) = detQ1 p−1(s,�h) detQp+1 n(s,�h)

for s � 0 and �h ∈ (R+)n. Here we use the convention

detQ10(s,�h) = 1 = detQn+1 n(s,�h).

Since qj < 0 (j = 1, . . . , n − 1) and rj < 0 (j = 2, . . . , n), inequality (4.8) yields

Δpq(s,�h) � 0 for s ∈ [0, 1 + τ ], �h ∈ (R+)n and p, q = 1, . . . , n, which implies

{(p, q) element of Q−1(s,�h)} = Δqp(s,�h)/detQ(s,�h) � 0 by (I). On the other hand,

Δpq(s,�h) is bounded from the above for s ∈ [0, 1 + τ ] and �h = (h1, . . . , hn) ∈ (R+)n

with �h ≥ �h�, since Δpq(s,�h) is a polynomial of 1/h2
1, . . . , 1/h

2
n and s. Thus (I) yields

that there exists C5 > 0 such that Δpq(s,�h)/detQ(s,�h) � C5 for s ∈ [0, 1 + τ ],�h ∈
(R+)n with �h ≥ �h� and p, q = 1, . . . , n.
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Abstract. We consider the porous medium equation on a compact Riemannian manifold and
give a new proof of the contraction of its semigroup in the Wasserstein distance. This proof is
based on the insight that the porous medium equation does not increase the size of infinitesimal
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1. Introduction. In this paper we consider the porous medium equation

∂tρ− ΔU(ρ) = 0(1.1)

and give an entirely “Eulerian” argument for the contraction of its semigroup in the
Wasserstein distance. The argument is guided by the formal gradient flow structure
of the porous medium equation proposed in [12].

More precisely, we choose as our state space M the space of probability measures
ρ(x) dx, endowed with a suitable metric tensor g; see section 2.2. The metric tensor g
induces a distance on (M, g) that coincides with the Wasserstein distance W(ρ0, ρ1).
Loosely speaking, this equivalence is a consequence of the Benamou–Brenier Eulerian
formulation of the optimal transportation problem defining W(ρ0, ρ1) [4]. Then the
porous medium equation is the gradient flow on (M, g) of the functional

E(ρ) =

∫
e(ρ) dx,(1.2)

where the “osmotic pressure” U(ρ) is related to the energy density e(ρ) via

U(ρ) = ρe′(ρ) − e(ρ) for ρ � 0.(1.3)

We notice that U is (strictly) monotone if and only if e is (strictly) convex and that
for strictly monotone U , (1.1) is of parabolic type. The contraction property for the
porous medium semigroup then follows from the convexity of E on (M, g). The latter
is a reformulation of McCann’s displacement convexity [10].

This formal argument has been made rigorous in [12] using the fact that for any
two points ρ0, ρ1 a shortest curve with respect to W exists. The existence of these
shortest curves relies on Brenier’s result [5] on the existence of a one-to-one optimal
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Hyperbolic and kinetic equations HRPN-CT-2002-00282 and by Sonderforschungsbereich 611 Singu-
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transport map y = Φ(x) between two measures ρ0(x) dx and ρ1(y) dy. This can be
seen as a Lagrangian approach. It is somewhat delicate since the optimal transport
map Φ can be nonsmooth even if the densities ρ0 and ρ1 are smooth.

In this paper, we carry out a rigorous Eulerian approach based on the new insight
• that the porous medium equation does not increase the naturally defined

action A(ρ) of smooth curves [0, 1] � s �→ ρ(s) ∈ M (see Proposition 4.2);
• that the squared Wasserstein distance 1

2W(ρ0, ρ1)
2 is the infimum of A(ρ)

over smooth curves connecting ρ0 to ρ1 (see Proposition 4.3).
Hence we can work in the “class of smooth objects.” Alternatively, contraction esti-
mates can also be derived in more elaborate frameworks based on metric space theory.
We refer the reader to the recent publications [6, 1] for further information.

Our approach allows us to obtain the contraction property on a compact Rieman-
nian manifold M

n (instead of R
n) without additional effort. A sufficient condition is

that the Ricci curvature of M
n be nonnegative. This is the well-known Bakry–Emery

criterion for the logarithmic Sobolev inequality [3] (which can be refined using Γ2-
calculus [2]). It turns out that contractivity of the semigroup for certain nonlinear
evolution equations is in fact equivalent to lower bounds for the Ricci curvature. This
has been proved for the heat semigroup in [17] and more generally in [16]. Our Eu-
lerian approach avoids the subtle existence result for optimal transport maps Φ on
Riemannian manifolds by McCann [11].

2. Gradient flows. It is instructive to discuss our approach in the language of
gradient flows. This heuristics will serve as a guideline for the rigorous argument.

2.1. Abstract framework. Let us quickly recall the mathematical structure
required for a gradient flow. One first needs a smooth function M � ρ �→ E(ρ) on a
differentiable manifold M. The differential diff E of E is a cotangent vector field:

M � ρ �→ diff E|ρ ∈ TρM∗.

Therefore one also needs a metric tensor g on M, i.e., a scalar product gρ on TρM
in every point ρ ∈ M. This scalar product allows one to identify cotangent with
tangent vectors, yielding the gradient vector field gradE. The gradient flow of E on
the Riemannian manifold (M, g) is then given by the dynamical system

dρ

dt
= − gradE|ρ.(2.1)

For subsequent use, we shall reformulate (2.1). We recall that the differential
diff E can be inferred from differentiating E along a curve [0, 1] � s �→ ρ(s) ∈ M:

d

ds
E
(
ρ(s)
)

=

〈
diff E|ρ(s),

dρ

ds
(s)

〉
.

Then the gradient gradE is defined by the requirement that for any tangent vector
field [0, 1] � s �→ δρ(s) ∈ Tρ(s)M along the above curve we have

gρ(s)
(
gradE|ρ(s), δρ(s)

)
=
〈
diff E|ρ(s), δρ(s)

〉
.

Now a trajectory [0,∞) � t �→ ρ(t) ∈ M of (2.1) is characterized by the fact that for
any tangent vector field [0,∞) � t �→ δρ(t) ∈ Tρ(t)M one has

gρ(t)

(
dρ

dt
(t), δρ(t)

)
+
〈
diff E|ρ(t), δρ(t)

〉
= 0 ∀ t.(2.2)



CONTRACTION IN THE WASSERSTEIN DISTANCE 1229

2.2. Heuristics: The porous medium equation as gradient flow. We
are interested in the porous medium equation on a compact, connected Riemannian
manifold M

n without boundary. We denote by · the metric tensor on M
n and by

∇, ∇·, and Δ = ∇ · ∇ the gradient, divergence, and Laplacian on M
n. Finally, dx

denotes the volume form on M
n; without loss of generality we assume

∫
Mn 1 dx = 1.

The porous medium equation describes the evolution of a nonnegative density ρ(t, x)
on M

n. It is given by the nonlinear diffusion equation

∂tρ− ΔU(ρ) = 0.(2.3)

The porous medium equation preserves the total mass, and we assume
∫

Mn ρ dx = 1
for definiteness. In view of this, our state space M is the space of all nonnegative
functions ρ : M

n → [0,∞) with unit integral:∫
Mn

ρ dx = 1.(2.4)

We also may think of M as the space of probability measures ρ(x) dx on M
n. For con-

venience we will not distinguish in the following between functions and the measures
they induce via the volume element dx defined on M

n.
Following [12], we now introduce the metric tensor g on M. Notice that in view

of (2.4) we may think of infinitesimal perturbations δρ ∈ TρM of a state ρ ∈ M as
functions δρ : M

n → R with ∫
Mn

δρ dx = 0.(2.5)

For given ρ ∈ M we define the scalar product gρ on TρM as

gρ
(
δρ0, δρ1

)
=

∫
Mn

∇φ0 · ∇φ1 ρ dx,(2.6)

where, up to additive constants, the functions φi : M
n → R are defined by

δρi −∇ · (ρ∇φi) = 0.(2.7)

Notice that (2.7) constitutes an elliptic equation with variable coefficient ρ � 0 for
φi; (2.5) is necessary for the existence. If ρ is strictly positive and ρ, δρi are smooth,
then (2.5) is also sufficient for the existence of a smooth solution φi. For later use we
notice that gρ(δρ0, δρ1) can be rewritten as

gρ
(
δρ0, δρ1

)
= −
∫

Mn

δρ0 φ1 dx.(2.8)

The quadratic part of the metric tensor can also be characterized variationally:

1
2gρ
(
δρ, δρ

)
= sup

φ

{
−
∫

Mn

1
2 |∇φ|2ρ dx−

∫
Mn

δρ φ dx

}
,(2.9)

where the sup is taken over all smooth functions φ : M
n −→ R. In view of (2.7), we

may think of φi as the “velocity potential” that generates the infinitesimal change δρi
of the density ρ.

We now formally argue that (2.3) is indeed the gradient flow of (1.2) on (M, g),
reproducing the argument in [12]. We are given a nonnegative function ρ = ρ(t, x)
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satisfying (2.4); we fix a time t. Let the function δρ of x be given with (2.5), and let
φ be related to δρ by (2.7). Then we have, on the one hand, that

〈
diff E|ρ, δρ

〉
=

∫
Mn

e′(ρ) δρ dx

(2.7)
= −

∫
Mn

e′′(ρ)∇ρ · ρ∇φdx

(1.3)
= −

∫
Mn

∇U(ρ) · ∇φdx

=

∫
Mn

ΔU(ρ)φdx.(2.10)

On the other hand, we have according to (2.8)

gρ
(
∂tρ, δρ

)
= −
∫

Mn

∂tρφ dx.

The combination of the last two identities gives, for any δρ satisfying (2.5),

gρ
(
∂tρ, δρ

)
+
〈
diff E|ρ, δρ

〉
= −
∫

Mn

(
∂tρ− ΔU(ρ)

)
φdx.

In view of (2.2), this proves that indeed (2.3) is the gradient flow of (1.2) with respect
to the metric tensor (2.6) defined on M.

3. Convexity and contraction. In this section we discuss heuristically how
the convexity of E on (M, g) implies contraction for the gradient flow.

3.1. Abstract framework. Recall that a function E on a Riemannian manifold
(M, g) is convex if its Hessian HessE is positive definite in any point ρ ∈ M, i.e.,

gρ

(
δρ, HessE|ρ δρ

)
� 0 ∀ δρ ∈ TρM and ρ ∈ M.

In an infinite-dimensional context, it is convenient to have alternative ways of probing
convexity. We mention two possibilities:

• The standard way to probe convexity is by geodesics: If [0, 1] � s �→ ρ(s) ∈ M
is a geodesic, i.e., any curve for which

D

ds

dρ

ds
= 0,

where D
ds denotes the covariant derivative along s �→ ρ(s), then we have

d2

ds2
E
(
ρ(s)
)

� 0.

Indeed, this follows from the chain rule

d2

ds2
E
(
ρ(s)
)

=
d

ds
gρ

(
dρ

ds
, gradE|ρ

)

= gρ

(
dρ

ds
, HessE|ρ

dρ

ds

)
+ gρ

(
D

ds

dρ

ds
, gradE|ρ

)

= gρ

(
dρ

ds
, HessE|ρ

dρ

ds

)
.(3.1)
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• There is another way to probe convexity of E: For any gradient flow trajectory
[0,∞) � t �→ ρ(t) ∈ M, i.e., any curve for which

dρ

dt
= − gradE|ρ,

and any infinitesimal perturbation [0,∞) � t �→ δρ(t) ∈ Tρ(t)M along this
curve for which by the chain rule

D

dt
δρ = −HessE|ρ δρ,(3.2)

we have that the size of this perturbation does not increase over time:

d

dt
1
2gρ
(
δρ, δρ

)
� 0.(3.3)

Indeed, this follows from

d

dt
1
2gρ
(
δρ, δρ

)
= gρ

(
δρ,

D

dt
δρ

)
= −gρ

(
δρ, HessE|ρ δρ

)
.(3.4)

The property (3.3) has a finite counterpart: Recall that the distance dist(ρ0, ρ1)
between ρ0, ρ1 ∈ M induced by the metric tensor g is defined by

1
2 dist(ρ0, ρ1)

2 = inf

{
A(ρ)

∣∣∣∣∣ [0, 1] � s �→ ρ(s) ∈ M,

{
ρ(0, ·) = ρ0

ρ(1, ·) = ρ1

} }
,(3.5)

where A(ρ) is the natural action of a curve, i.e.,

A(ρ) :=

∫ 1

0

1
2gρ

(
dρ

ds
,
dρ

ds

)
ds.(3.6)

We now argue that (3.3) easily yields a global consequence of the convexity of E: The
gradient flow of E is a contraction in dist. This means that for any two gradient flow
trajectories [0,∞) � t �→ ρi(t) ∈ M, i = 0, 1, i.e., any curves with

dρi
dt

= − gradE|ρi
,

we have

dist(ρ0, ρ1) is nonincreasing in t.

Indeed, by translational invariance in time, it is enough to show that

1
2 dist

(
ρ0(t), ρ1(t)

)2 � 1
2 dist

(
ρ0(0), ρ1(0)

)2 ∀ t � 0.(3.7)

According to (3.5), for given ε > 0, there exists a curve [0, 1] � s �→ ρ̄(s) ∈ M such
that ρ̄(s = 0) = ρ0(t = 0) and ρ̄(s = 1) = ρ1(t = 0), with

1
2 dist

(
ρ0(0), ρ1(0)

)2
= 1

2 dist
(
ρ̄(0), ρ̄(1)

)2 � A(ρ̄) − ε.(3.8)

Now for every s ∈ [0, 1] let [0,∞) � t �→ ρ(s, t) ∈ M denote the solution of

dρ(s, ·)
dt

= − gradE|ρ(s,·),(3.9)
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with ρ(s, 0) = ρ̄(s). Notice that then ρ(0, t) = ρ0(t) and ρ(1, t) = ρ1(t) so that

1
2 dist

(
ρ0(t), ρ1(t)

)2 � A
(
ρ(·, t)

)
.(3.10)

Taking the covariant derivative of (3.9) with respect to s yields

D

∂t

∂ρ

∂s
=

D

∂s

∂ρ

∂t
= −HessE|ρ

∂ρ

∂s
.

Thus we obtain from (3.3) applied to δρ = ∂ρ
∂s

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
� 0.

Integration over s yields

d

dt
A
(
ρ(·, t)

)
=

∫ 1

0

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
ds � 0.

Integration over t yields

A
(
ρ(·, t)

)
� A
(
ρ(·, 0)

)
.

Together with (3.10) and (3.8) we therefore end up with

1
2 dist

(
ρ0(t), ρ1(t)

)2 � 1
2 dist

(
ρ0(0), ρ1(0)

)2
+ ε,

and since ε > 0 was arbitrary, (3.7) is proved.
Remark 3.1 (added in proof). It is possible to give an argument in favor of

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
= −gρ

(
∂ρ

∂s
, HessE|ρ

∂ρ

∂s

)
(3.11)

that avoids using the covariant derivative altogether: Consider first a family of curves
[0, 1] � s �→ ρ̃(s, t) ∈ M for t ∈ [0,∞) such that s �→ ρ̃(s, 0) is a geodesic. Then

∂

∂t
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
=

∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)
for t = 0.(3.12)

Indeed, given any function [0, 1] � s �→ α(s) ∈ R with α(0) = α(1) = 0 let

ρ̂(s, t) := ρ̃
(
s, α(s)t

)
∀ s, t.

Since ρ̂(0, t) = ρ̃(0, 0) and ρ̂(1, t) = ρ̃(1, 0), the definition of geodesic yields

0 =
d

dt |t=0

∫ 1

0

1
2gρ̂

(
∂ρ̂

∂s
,
∂ρ̂

∂s

)
ds =

∫ 1

0

∂

∂t |t=0

1
2gρ̂

(
∂ρ̂

∂s
,
∂ρ̂

∂s

)
ds.(3.13)

On the other hand, we have ∂ρ̂
∂s (s, t) = ∂ρ̃

∂s (s, α(s)t)+α′(s)t ∂ρ̃
∂t (s, α(s)t), and therefore[

1
2gρ̂

(
∂ρ̂

∂s
,
∂ρ̂

∂s

)]
(s, t) =

[
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)](
s, α(s)t

)
+ α′(s)t

[
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)](
s, α(s)t

)
+ 1

2

(
α′(s)t

)2[
gρ̃

(
∂ρ̃

∂t
,
∂ρ̃

∂t

)](
s, α(s)t

)
.
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Using this identity in (3.13) then gives

0 =

∫ 1

0

α
∂

∂t |t=0

1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
ds +

∫ 1

0

α′ gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)
|t=0

ds

=

∫ 1

0

α

{
∂

∂t
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
− ∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)}
|t=0

ds.

This proves (3.12) because α was arbitrary. Consider now the family of gradient flows
ρ = ρ(s, ·) satisfying (3.9). For any s0 ∈ [0, 1] there exists a map ρ̃ such that

⎧⎪⎪⎨
⎪⎪⎩

[0, 1] � s �→ ρ̃(s, t) is a geodesic

ρ̃(s0, t) = ρ(s0, t)
∂ρ̃
∂s (s0, t) = ∂ρ

∂s (s0, t)

⎫⎪⎪⎬
⎪⎪⎭ ∀ t ∈ [0,∞).(3.14)

At s = s0 we then find

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
(3.14)
=

∂

∂t
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
(3.12)
=

∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)
(3.14)
=

∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ

∂t

)
(2.2)
=

∂

∂s

[
−
〈

diff E|ρ,
∂ρ̃

∂s

〉]
(3.14)
=

∂

∂s

[
−
〈

diff E|ρ̃,
∂ρ̃

∂s

〉]
= − ∂2

∂s2
E(ρ̃).

By definition of the Hessian, we have

∂2

∂s2
E(ρ̃) = gρ̃

(
∂ρ̃

∂s
, HessE|ρ̃

∂ρ̃

∂s

)
(3.14)
= gρ

(
∂ρ

∂s
, HessE|ρ

∂ρ

∂s

)
,

and (3.11) follows.

3.2. Heuristics: Convexity and induced metric. In this section we show
heuristically how the abstract framework of the previous section yields a contraction
property in the Wasserstein distance for the porous medium equation. This argument
will be made rigorous in the remainder of the paper.

We recall the heuristic argument for the convexity of E on (M, g) for which we
probe the convexity along geodesics. Therefore we start by heuristically deriving the
equation for geodesics, essentially reproducing [13]. An alternative heuristic deriva-
tion can be found in [12]. Notice first that within the abstract framework, the geodesic
equation is the Euler–Lagrange equation (i.e., the first variation) of the action func-
tional (3.6). In view of (2.6), our action functional for a curve in M, i.e., for a function
ρ : [0, 1] × M

n → [0,∞) with
∫

Mn ρ(s, x) dx = 1 for all s ∈ [0, 1], takes the form

A(ρ) =

∫∫
[0,1]×Mn

1
2 |∇φ|2 ρ dx ds,(3.15)
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where the function φ : [0, 1] × M
n → R is determined by

∂sρ−∇ · (ρ∇φ) = 0(3.16)

and plays the role of the tangent vector field along the curve. Like for the metric
tensor itself (cf. (2.9)), the action functional can be written variationally:

A(ρ) = sup
φ

{
−
∫∫

[0,1]×Mn

1
2 |∇φ|2 ρ dx ds−

∫∫
[0,1]×Mn

φ∂sρ dx ds

}

= sup
φ

{
−
∫∫

[0,1]×Mn

1
2 |∇φ|2 ρ dx ds +

∫∫
[0,1]×Mn

∂sφρ dx ds

+

∫
Mn

φ(0, x) ρ0(x) dx−
∫

Mn

φ(1, x) ρ1(x) dx

}
,(3.17)

where the sup is taken over all smooth functions φ : [0, 1] × M
n → R. Here ρ0, ρ1 are

the fixed endpoints of the curve; i.e., we have

ρ(0, ·) = ρ0 and ρ(1, ·) = ρ1.(3.18)

To obtain the induced distance in M, the expression (3.17) needs to be minimized
over all functions ρ : [0, 1]×M

n → [0,∞) with
∫

Mn ρ(·, x) dx = 1; see (3.5). In fact, we
may think of minimizing (3.17) over all functions ρ : [0, 1] × M

n → R because (3.17)
is +∞ if (3.16) or (3.18) is violated. Maximizing in φ and minimizing in ρ amounts
to a saddle-point problem. The first variation in φ is given by (3.16) and (3.18). The
first variation in ρ is given by the Hamilton–Jacobi equation

∂sφ− 1
2 |∇φ|2 = 0.(3.19)

Hence the combination of the transport equation (3.16) and the Hamilton–Jacobi
equation (3.19) forms the geodesic equation. Note that the system (3.16) and (3.19)
is of hyperbolic nature as a partial differential equation. The velocity u = −∇φ
satisfies the “pressureless Euler equation”

D

ds
u + Duu = 0,

and thus the flow ∂sΦ = u◦Φ consists of geodesic trajectories, i.e., D
ds

∂
∂sΦ = 0. Notice

that (3.16) states that ρ(s, ·) is the push-forward of ρ(s = 0) under Φ(s, ·). This is
what we call the Lagrangian approach. Geodesics in the sense of shortest curves were
given a rigorous meaning for a Riemannian manifold M

n in [11].

Having identified the geodesic equation, we can probe the convexity of (1.2) along
geodesics. This was first done in the Lagrangian framework in [10] and gave rise to the
notion of displacement convexity. We reproduce the heuristic Eulerian argument from
[13]. Let ρ : [0, 1]×M

n → [0,∞) be a geodesic with tangent field φ : [0, 1]×M
n → R;

i.e., let (3.16) and (3.19) be satisfied. As in (2.10), we find for the first derivative

dE

ds
=

∫
Mn

ΔU(ρ)φdx =

∫
Mn

U(ρ) Δφdx.
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For the second derivative, we obtain

d2E

ds2
=

∫
Mn

(
U ′(ρ) ∂sρΔφ + U(ρ) Δ∂sφ

)
dx

(3.16)
(3.19)
=

∫
Mn

(
U ′(ρ)∇ · (ρ∇φ) Δφ + U(ρ) Δ 1

2 |∇φ|2
)
dx

=

∫
Mn

(
ρU ′(ρ) (Δφ)2 + ∇U(ρ) · ∇φΔφ + U(ρ) Δ 1

2 |∇φ|2
)
dx

=

∫
Mn

(
ρU ′(ρ) (Δφ)2 + U(ρ)

(
−∇ · (∇φΔφ) + Δ 1

2 |∇φ|2
))

dx

=

∫
Mn

((
ρU ′(ρ) − U(ρ)

)
(Δφ)2 + U(ρ)

(
−∇φ · ∇Δφ + Δ 1

2 |∇φ|2
))

dx.

We appeal to Bochner’s formula (see [14]):

−∇φ · ∇Δφ + Δ 1
2 |∇φ|2 = |D2φ|2 + ∇φ · Ric∇φ,

where D2φ denotes the Hessian of φ, |A|2 stands for the trace of AtA, and Ric denotes
the Ricci curvature of M

n. We thus obtain the formula

d2E

ds2
=

∫
Mn

((
ρU ′(ρ) − U(ρ)

)
(Δφ)2 + U(ρ)

(
|D2φ|2 + ∇φ · Ric∇φ

))
dx.(3.20)

In view of (3.1), the right-hand side of (3.20) can be understood as the quadratic
part of the Hessian of E in the direction of the infinitesimal variation δρ = ∇· (ρ∇φ).
We notice that it is nonnegative for all functions ρ � 0 and φ if and only if

ρU ′(ρ) �
(
1 − 1

n

)
U(ρ) � 0 and Ric(x) � 0 ∀ x ∈ M

n

because (Δφ)2 � n|D2φ|2. The convexity of E along geodesics in the Riemannian
case M

n was given a rigorous meaning in [7].
To conclude, it remains only to prove that (3.5) with (3.15) and (3.16) coincides

with 1
2W2(ρ0, ρ1). Recall that for ρ0, ρ1 ∈ Prob(Mn), W2(ρ0, ρ1) is defined as

inf

{∫∫
Mn×Mn

d(x, y)2 dπ(x, y)

∣∣∣∣∣ π ∈ Prob(Mn × M
n),∫

Mn

dπ(·, y) = ρ0,

∫
Mn

dπ(x, ·) = ρ1

}
;

cf. [18]. Several heuristic arguments are possible here (cf. [12] and [13]). However, the
rigorous proof we provide in the next section is no more difficult than a heuristic one;
therefore we refer the reader to Proposition 4.3.

4. Rigorous result: Contraction. We recall that M
n is a compact connected

Riemannian manifold without boundary, with geodesic distance d and
∫

Mn 1 dx = 1.
Here is our main result.
Theorem 4.1 (contraction estimate). Assume that ρU ′(ρ) �

(
1 − 1

n

)
U(ρ) � 0

for all ρ � 0 and that Ric(x) � 0 for all x ∈ M
n. For nonnegative initial data ρ̄0, ρ̄1

with
∫

Mn ρ̄i dx = 1 consider solutions ρi of the porous medium equation

∂tρi − ΔU(ρi) = 0

ρi(t = 0) = ρ̄i

}
for i = 0, 1.
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Then the Wasserstein distance of ρ0 and ρ1 is nonincreasing in time, i.e.,

d+

dt
W2(ρ0, ρ1) � 0.(4.1)

Remark 4.1. We have seen in section 3.2 that heuristically the convexity of E is
equivalent to the conditions on U and Ric required in Theorem 4.1. We have seen in
section 3.1 that convexity of E is equivalent to the contractivity of the corresponding
gradient flow. Hence we expect that the conditions on U and Ric are also necessary.
This has been rigorously proven in [16]. Also in [16], the sufficiency of these conditions
has been established using the Lagrangian approach mentioned in section 1 which
relies on [11].

The theorem will be a consequence of the following two propositions.
Proposition 4.2. Assume that ρU ′(ρ) �

(
1− 1

n

)
U(ρ) � 0 for all ρ � 0 and that

Ric(x) � 0 for all x ∈ M
n. Consider a family of smooth positive solutions of

∂tρ− ΔU(ρ) = 0,(4.2)

depending smoothly on the parameter s ∈ [0, 1]. For any (s, t) let φ be defined by

∂sρ−∇ · (ρ∇φ) = 0.

Then the following holds:

d

dt

∫∫
[0,1]×Mn

|∇φ|2ρ dx ds � 0.

Remark 4.2. Proposition 4.2 is guided by the abstract observation of section 3.1:
Convexity can be probed by the gradient flow. More precisely, convexity expresses
itself by the fact that the action of curves is reduced when the points along the curve
are evolved by the gradient flow.

Proposition 4.3. Consider ρ0 dx, ρ1 dx ∈ Prob(Mn), where ρ0, ρ1 are smooth
and positive functions. Then the Wasserstein distance squared 1

2W2(ρ0, ρ1) equals

inf

{∫∫
[0,1]×Mn

1
2 |∇φ|2ρ dx ds

∣∣∣∣∣ (ρ > 0, φ) smooth functions on [0, 1] × M
n,

∂sρ−∇ · (ρ∇φ) = 0,

{
ρ(0, ·) = ρ0

ρ(1, ·) = ρ1

} }
.(4.3)

Proof of Theorem 4.1. Assume first that the initial data are smooth and positive
and that U is linear for ρ 
∈ [α, 1/α] with α > 0 small. Then standard parabolic
theory yields that solutions of the porous medium equation for smooth and positive
initial data are also smooth and positive. By Proposition 4.3 we can, for any ε > 0,
find smooth functions

(
ρ̄ > 0, φ̄

)
on [0, 1] × M

n, with

∂sρ̄−∇ ·
(
ρ̄∇φ̄
)

= 0,

{
ρ̄(0, ·) = ρ̄0

ρ̄(1, ·) = ρ̄1

}

such that ∫∫
[0,1]×Mn

∣∣∇φ̄
∣∣2ρ̄ dx ds � W2(ρ̄0, ρ̄1) + ε.
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For any s ∈ [0, 1], let ρ̄(·, s) evolve according to the porous medium equation. This
yields a family ρ of solutions depending smoothly on s for which Proposition 4.2
applies. Using again the characterization of Proposition 4.3 then yields

W2
(
ρ0(t), ρ1(t)

)
�
∫∫

[0,1]×Mn

|∇φ(t)|2ρ(t) dx ds

�
∫∫

[0,1]×Mn

∣∣∇φ̄
∣∣2ρ̄ dx ds � W2(ρ̄0, ρ̄1) + ε ∀ t > 0.(4.4)

Since ε > 0 was arbitrary, we obtain (4.1) in this case.

The general case follows by an approximation argument that we do not discuss
in detail here. For general nonnegative initial data one can find sequences of smooth
positive functions, converging strongly to the given ρ̄0, ρ̄1. Then standard theory for
the porous medium equation yields that the solutions converge strongly in L1(Mn),
hence a posteriori also in the Wasserstein distance which metrizes the weak* topology
of measures. Therefore the contraction estimate generalizes to this setting. Similarly,
one can approximate a given U with ρU ′(ρ) �

(
1 − 1

n

)
U(ρ) � 0 for all ρ � 0 by a

sequence of functions that have the same property and are linear for small and large
ρ and that converge uniformly. Then standard theory applies and allows one to con-
clude. We refer the reader to [12], where this program has been carried out in R

n.

Proof of Proposition 4.2. The following remark is at the core of Proposition 4.2.

Lemma 4.4. Consider smooth functions
(
ρ > 0, δρ

)
on [0,∞) × M

n solving

⎧⎨
⎩

∂tρ − ΔU(ρ) = 0,

∂t(δρ) − Δ
(
U ′(ρ) δρ

)
= 0.

(4.5)

For any t let φ be defined by

δρ−∇ ·
(
ρ∇φ
)

= 0.(4.6)

Then we have

d

dt

∫
Mn

1
2 |∇φ|2ρ dx

= −
∫

Mn

((
ρU ′(ρ) − U(ρ)

)
(Δφ)2 + U(ρ)

(
|D2φ|2 + ∇φ · Ric∇φ

))
dx.(4.7)

Remark 4.3. Observe that the second equation in (4.5) describes the evolution of
an infinitesimal perturbation δρ of ρ; see (3.2). Notice further that in view of (4.6),
the left-hand side of (4.7) measures how the squared norm of δρ changes in time; cf.
(3.3). Observe finally that the right-hand side expression of (4.7) coincides with what
we expect to be—up to the sign—the Hessian; see (3.20). In this sense the formula
(4.7) reproduces (3.4).

Proof. The left-hand side of (4.7) equals, after an integration by parts,

d

dt

∫
Mn

1
2 |∇φ|2ρ dx =

∫
Mn

(
− φ∇ ·

(
ρ ∂t∇φ

)
+ 1

2 |∇φ|2 ∂tρ
)
dx.(4.8)
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We express −∇ · (ρ ∂t∇φ) in terms of ρ and φ. We find by differentiating (4.6)

−∇ ·
(
ρ ∂t∇φ

)
= −∂t(δρ) + ∇ ·

(
∂tρ∇φ

)
(4.5)
= −Δ

(
U ′(ρ) δρ

)
+ ∇ ·

(
ΔU(ρ)∇φ

)
(4.6)
= −Δ

(
U ′(ρ)∇ · (ρ∇φ)

)
+ ∇ ·

(
ΔU(ρ)∇φ

)
= −Δ

((
ρU ′(ρ) − U(ρ)

)
Δφ
)
− Δ∇ ·

(
U(ρ)∇φ

)
+ ∇ ·

(
ΔU(ρ)∇φ

)
.

Using this identity and (4.5) in (4.8) gives, after throwing all derivatives onto φ,

d

dt

∫
Mn

1
2 |∇φ|2ρ dx

= −
∫

Mn

((
ρU ′(ρ) − U(ρ)

)
(Δφ)2 + U(ρ)

(
−∇Δφ · ∇φ + Δ 1

2 |∇φ|2
))

dx.

Then we use Bochner’s formula

−∇Δφ · ∇φ + Δ 1
2 |∇φ|2 = |D2φ|2 + ∇φ · Ric∇φ

(see Proposition 3.3 of [14]) to conclude.
Fix s ∈ [0, 1], and let δρ = ∂sρ(·, s). Differentiating (4.2) with respect to s gives

∂t
(
∂sρ
)
− Δ
(
U ′(ρ) ∂sρ

)
= 0.

Then Lemma 4.4 applies and yields

d

dt

∫
Mn

1
2 |∇φ|2ρ dx

= −
∫

Mn

((
ρU ′(ρ) − U(ρ)

)
(Δφ)2 + U(ρ)

(
|D2φ|2 + ∇φ · Ric∇φ

))
dx.(4.9)

Notice that (Δφ)2 � n|D2φ|2. By the assumption on U , we therefore get(
ρU ′(ρ) − U(ρ)

)
(Δφ)2 + U(ρ)|D2φ|2 � U(ρ)

(
− 1

n (Δφ)2 + |D2φ|2
)

� 0.

Furthermore, we have ∇φ · Ric∇φ � 0. This proves the proposition.
Remark 4.4. The same reasoning also yields convergence rates: In fact, if

U(ρ) ξ · Ric(x)ξ � λρ|ξ|2 ∀ρ � 0 and (x, ξ) ∈ TM
n(4.10)

for a suitable constant λ ∈ R, then (4.9) gives

d

dt

∫
Mn

1
2 |∇φ|2ρ dx = −

∫
Mn

U(ρ)
(
∇φ · Ric∇φ

)
dx � −2λ

∫
Mn

1
2 |∇φ|2ρ dx.

We obtain exponential decay of
∫

Mn
1
2 |∇φ|2ρ dx with rate 2λ, thus of W2(ρ1, ρ0), by

(4.4). For the heat equation on the unit sphere, for example, condition (4.10) is
satisfied with constant λ = 1.

Proof of Proposition 4.3. We proceed in five steps.
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Step 1. We first prove that 1
2W2(ρ0, ρ1) � (4.3). Therefore assume that (ρ, φ) is

admissible in (4.3). For abbreviation we introduce the velocity field u := −∇φ, such
that ∂sρ + ∇ · (ρu) = 0, and consider the flow induced by u:

Φ: [0, 1] × M
n −→ M

n with ∂sΦ(s, x) = u
(
s,Φ(s, x)

)
, Φ(0, x) = x,(4.11)

for all (s, x) ∈ [0, 1] × M
n. Then the measure ρ(s, x) dx is the push-forward of the

measure ρ0(x) dx under Φ(s, ·); i.e., we have for all smooth functions ζ on M
n

∫
Mn

ζ(x)ρ(s, x) dx =

∫
Mn

ζ
(
Φ(s, x)

)
ρ0(x) dx ∀ s ∈ [0, 1].(4.12)

Moreover, by definition of the geodesic distance d we have

d
(
x,Φ(1, x)

)2 �
∫ 1

0

|∂sΦ(s, x)|2 ds.(4.13)

Let π be the nonnegative measure defined by∫∫
Mn×Mn

ζ(x, y) dπ(x, y) =

∫
Mn

ζ
(
x,Φ(1, x)

)
ρ0(x) dx(4.14)

for all smooth functions ζ on M
n × M

n. Thanks to (4.12), π is admissible in the
definition of the Wasserstein distance W2(ρ0, ρ1). Furthermore, we have∫∫

Mn×Mn

d(x, y)2 dπ(x, y)

(4.14)
=

∫
Mn

d
(
x,Φ(1, x)

)2
ρ0(x) dx

(4.13)

�
∫

Mn

(∫ 1

0

|∂sΦ(s, x)|2 ds
)
ρ0(x) dx

(4.11)
=

∫ 1

0

∫
Mn

∣∣u(s,Φ(s, x)
)∣∣2ρ0(x) dx ds

(4.12)
=

∫ 1

0

∫
Mn

|u(s, x)|2ρ(s, x) dx ds =

∫∫
[0,1]×Mn

|∇φ|2ρ dx ds.

This proves our claim.
Step 2. Notice that any smooth vector field on [0, 1] × M

n can be identified with
a pair (ρ,m), where ρ is a function on [0, 1] × M

n and m is an s-dependent vector
field on M

n (such as m = −ρ∇φ). We will now show that (4.3) equals

inf

{∫∫
[0,1]×Mn

1
2ρ

−1|m|2 dx ds
∣∣∣∣∣ (ρ > 0,m) smooth vector field on [0, 1] × M

n,

∂sρ + ∇ ·m = 0,

{
ρ(0, ·) = ρ0

ρ(1, ·) = ρ1

} }
.(4.15)

That (4.15) does not exceed (4.3) is obvious. To prove the converse consider an
admissible pair (ρ,m) in the sense of (4.15). By positivity of ρ we then find, for any
s ∈ [0, 1], a smooth function φ on M

n solving the elliptic equation

∇ ·
(
m + ρ∇φ

)
= 0 on M

n.(4.16)



1240 FELIX OTTO AND MICHAEL WESTDICKENBERG

This φ depends smoothly on s because (ρ,m) does. Since M
n has no boundary,∫

Mn

(
m + ρ∇φ

)
· ∇φdx = 0.

Therefore by Cauchy–Schwarz∫
Mn

ρ|∇φ|2 dx (4.16)
=

∫
Mn

−m · ∇φdx

�
(∫

Mn

ρ−1|m|2 dx
)1/2(∫

Mn

ρ|∇φ|2 dx
)1/2

,

and thus ∫
Mn

1
2ρ|∇φ|2 dx �

∫
Mn

1
2ρ

−1|m|2 dx.

Step 3. Now we generalize the functional (4.15) to a certain class of distributions
and prove that then the inf is bounded by the Wasserstein distance for any measures
ρ0, ρ1 ∈ Prob(Mn). To achieve this, notice first that thanks to the Riemannian metric
on M

n, any smooth 1-form ω on [0, 1]×M
n can be identified with a pair (σ, ξ), where

σ is a function on [0, 1] × M
n and ξ is an s-dependent vector field on M

n, via〈
ω, (ρ,m)

〉
= σρ + ξ ·m

for all (smooth) vector fields (ρ,m). We write

ω = σ ds + ξ · dx.

The space of 1-forms can be topologized as usual in the theory of distributions, but
we do not want to go into details and refer the reader to [8, 9] instead. A linear
functional on the space of smooth 1-forms is called a current. Any smooth vector
field (ρ,m) defined on [0, 1] × M

n gives rise to a current T via〈
T, σ ds + ξ · dx

〉
:=

∫∫
[0,1]×Mn

ρσ + m · ξ dx ds.(4.17)

But of course not all currents T can be represented in this form.
We consider currents defined on [0, 1] × M

n that satisfy〈
T, ∂sζ ds + ∇ζ · dx

〉
=

∫
Mn

ζ(1, x) dρ1(x) −
∫

Mn

ζ(0, x) dρ0(x)(4.18)

for all test functions ζ for given ρ0, ρ1 ∈ Prob(Mn). If now T is of the form (4.17),
then (4.18) is just the weak formulation of the continuity equation ∂sρ + ∇ ·m = 0
with initial and final data ρ0 and ρ1. Following [4], we can generalize the action∫∫

[0,1]×Mn

1
2ρ

−1|m|2 dx ds(4.19)

as follows. For any current T with (4.18) we consider

A(T ) := sup

{〈
T, σ ds + ξ · dx

〉 ∣∣∣∣ (σ, ξ) smooth vector field on [0, 1] × M
n

with σ + 1
2 |ξ|

2 � 0

}
.(4.20)
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We claim that this A(T ) coincides with (4.19) if T is of the form (4.17): Indeed,
setting ξ = ρ−1m and σ = − 1

2 |ξ|2 = − 1
2ρ

−2|m|2 shows that (4.19) � A(T ); and

ρσ + m · ξ � −ρ 1
2 |ξ|

2 + m · ξ � 1
2ρ

−1|m|2

for all admissible (σ, ξ) implies that A(T ) � (4.19).

Step 4. Now we prove that 1
2W2(ρ0, ρ1) is bigger than or equal to

inf
{
A(T )

∣∣∣ T current on [0, 1] × M
n satisfying (4.18)

}
.(4.21)

Consider any transference plan π ∈ Prob(Mn×M
n) that is admissible in the definition

of W2(ρ0, ρ1), and let Φ: [0, 1] × M
n × M

n −→ M
n be defined by

[0, 1] � s �→ Φ(s, x, y) is the shortest geodesic between x and y.

Then we have in particular

∫ 1

0

|∂sΦ(s, x, y)|2 ds = d(x, y)2 and

{
Φ(0, x, y) = x
Φ(1, x, y) = y

}
.(4.22)

We define a current T on [0, 1] × M
n as follows: For all 1-forms σ ds + ξ · dx let

〈
T, σ ds + ξ · dx

〉
:=

∫∫ ∫ 1

0

{
σ
(
s,Φ(s, x, y)

)
+ ξ
(
s,Φ(s, x, x)

)
· ∂sΦ(s, x, y)

}
ds dπ(x, y).

This current satisfies the admissibility condition (4.18). Indeed, we have

〈
T, ∂sζ ds + ∇ζ · dx

〉
=

∫∫ ∫ 1

0

{
∂sζ
(
s,Φ(s, x, y)

)
+ ∇ζ

(
s,Φ(s, x, y)

)
· ∂sΦ(s, x, y)

}
ds dπ(x, y)

=

∫∫ ∫ 1

0

d

ds

{
ζ
(
s,Φ(s, x, y)

)}
ds dπ(x, y)

=

∫∫
ζ
(
1,Φ(1, x, y)

)
dπ(x, y) −

∫∫
ζ
(
0,Φ(0, x, y)

)
dπ(x, y)

(4.22)
=

∫∫
ζ(1, y) dπ(x, y) −

∫∫
ζ(0, x) dπ(x, y)

=

∫
ζ(1, y) dρ1(y) −

∫
ζ(0, x) dρ0(x)

for all test functions ζ. Now we argue that A(T ) �
∫∫

1
2d(x, y)

2 dπ(x, y). Indeed, we
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have for any vector field (σ, ξ) admissible in (4.20) that〈
T, σ ds + ξ · dx

〉
=

∫∫ ∫ 1

0

{
σ
(
s,Φ(s, x, y)

)
+ ξ
(
s,Φ(s, x, y)

)
· ∂sΦ(s, x, y)

}
ds dπ(x, y)

�
∫∫ ∫ 1

0

{
− 1

2

∣∣ξ(s,Φ(s, x, y)
)∣∣2 + ξ

(
s,Φ(s, x, y)

)
· ∂sΦ(s, x, y)

}
ds dπ(x, y)

�
∫∫ ∫ 1

0

1
2 |∂sΦ(s, x, y)|2 ds dπ(x, y)

(4.22)
=

∫∫
1
2d(x, y)

2 dπ(x, y).

Step 5. To conclude the proof of the proposition it is then sufficient to show
that the two inf in (4.15) and (4.21) coincide. This will follow from Proposition 5.1
below, which shows that any current T satisfying the admissibility condition (4.18)
for smooth and positive data ρ0, ρ1 can in fact be approximated by a current Tε that
is representable by a smooth vector field (ρε � 0,mε) in such a way that (4.18) still
holds with Tε in place of T and lim supε→0 A(Tε) � A(T ).

The only detail that needs to be settled is (strict) positivity of ρε. We argue as
follows. Since ρ0, ρ1 > 0 and M

n is compact, there exists 0 < δ < 1 with ρ0, ρ1 � δ.
Recall that by assumption

∫
Mn 1 dx = 1. Then we consider

ρ̃0 :=
ρ0 − δ

1 − δ
and ρ̃1 :=

ρ1 − δ

1 − δ
,

which are in Prob(Mn). Let T̃ be the current constructed in Step 4, based on an
admissible transference plan π in the definition of W2(ρ̃0, ρ̃1). As shown there,

A(T̃ ) � 1
2W

2(ρ̃0, ρ̃1).(4.23)

We apply Proposition 5.1 to T̃ . This gives an approximation T̃ε that satisfies (4.18)
and is representable by smooth vector fields (ρ̃ε � 0, m̃ε), such that

lim sup
ε→0

A(T̃ε) � A(T̃ ).(4.24)

In view of the remark in Step 3, the admissibility condition (4.18) amounts to

∂sρ̃ε + ∇ · m̃ε = 0,

{
ρ̃ε(0, ·) = ρ̃0

ρ̃ε(1, ·) = ρ̃1

}
.

Now notice that ρ̃0 and ρ̃1 are constructed in such a way that

(ρε,mε) :=
(
(1 − δ)ρ̃ε + δ, (1 − δ)m̃ε

)
is admissible in (4.15) because ρε � δ > 0. We have ρ−1

ε |mε|2 � (1− δ) ρ̃−1
ε |m̃ε|2, and

thus by the remark in Step 3

∫∫
[0,1]×Mn

1
2ρ

−1
ε |mε|2 dx ds � (1 − δ)

∫∫
[0,1]×Mn

1
2 ρ̃

−1
ε |m̃ε|2 = (1 − δ)A(T̃ε).

(4.25)
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In view of (4.23), (4.24), and (4.25) it remains to argue that

W(ρ̃0, ρ̃1) � W(ρ0, ρ1) + o(1) as δ → 0.

By the triangle inequality for the Wasserstein distance (see Theorem 7.3 of [18]),

W(ρ̃0, ρ̃1) � W(ρ0, ρ1) + W(ρ0, ρ̃0) + W(ρ1, ρ̃1).(4.26)

In order to conclude, it suffices therefore to prove that the last two terms on the
right-hand side of (4.26) can be made small by choosing δ appropriately. We consider
the transference plan π ∈ Prob(Mn × M

n) defined by∫∫
Mn×Mn

ζ(x, y) dπ(x, y)

:=

∫
Mn

ζ(x, x)
(
ρ0(x) − δ

)
dx + δ

1−δ

∫∫
Mn×Mn

ζ(x, y)
(
ρ0(y) − δ

)
dx dy(4.27)

for all ζ. This π is admissible in the definition of W2(ρ0, ρ̃0) because∫∫
Mn×Mn

ζ(x) dπ(x, y)

=

∫
Mn

ζ(x)
(
ρ0(x) − δ

)
dx + δ

1−δ

∫
Mn

ζ(x) dx

∫
Mn

(
ρ0(y) − δ

)
dy

=

∫
Mn

ζ(x) ρ0(x) dx

and similarly∫∫
Mn×Mn

ζ(y) dπ(x, y)

=

∫
Mn

ζ(y)
(
ρ0(y) − δ

)
dy + δ

1−δ

∫
Mn

dx

∫
Mn

ζ(y)
(
ρ0(y) − δ

)
dy

=

∫
Mn

ζ(y)
ρ0(y) − δ

1 − δ
dy.

Using ζ(x, y) := d(x, y)2 in (4.27) then yields

W2(ρ0, ρ̃0) � δ diam(Mn)2.

The same argument applies to W2(ρ1, ρ̃1), thereby finishing the proof.

5. Approximation of currents. In this section we prove the approximation
result for currents used in the proof of Proposition 4.3. Notice that the regularization
of currents is well understood; see, e.g., [15, 9]. Here we need to adopt the standard
arguments somewhat in order to obtain convergence of the action functional (4.20).

Proposition 5.1. Let M
n be a compact connected Riemannian manifold without

boundary. For given measures ρ0, ρ1 ∈ Prob(Mn) consider a current T on [0, 1]×M
n

with A(T ) < ∞ which satisfies the admissibility condition〈
T, ∂sζ ds + ∇ζ · dx

〉
=

∫
Mn

ζ(1, x) dρ1(x) −
∫

Mn

ζ(0, x) dρ0(x)(5.1)

for all test functions ζ defined on [0, 1] × M
n. Then we have the following:
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(1) There exists a family of currents {Tε}ε>0 representable in the form

〈
Tε, σ ds + ξ · dx

〉
=

∫∫
[0,1]×Mn

ρεσ + mε · ξ dx ds(5.2)

for suitable vector fields (ρε � 0,mε) which are smooth inside (0, 1) × M
n.

The admissibility condition (5.1) still holds with Tε in place of T and

lim sup
ε→0

A(Tε) � A(T ).

(2) If ρ0 and ρ1 are smooth functions, we may assume that the fields (ρε,mε) are
smooth up to the boundary, and thus ρε(0, ·) = ρ0 and ρε(1, ·) = ρ1.

Remark 5.1. Since the action functional A(T ) is lower semicontinuous in the
usual weak* topology of currents (see [9]), it even holds that limε→0 A(Tε) = A(T ).

Proof. We start with a remark on notation. Because of the action and the
admissibility condition, the s- and x-variables have to be treated differently. However,
it will often be convenient to lump s- and x-variables together; therefore we will write
x = (s, x), ξ = (σ, ξ), and m = (ρ,m). As a rule, bold symbols always denote
(n + 1)-dimensional objects (vector fields, parameters, operators, sets).

The approximating currents Tε are obtained by regularization of T . We proceed
as usual (see [15, 9]): Since a current is a linear form on 1-forms, we regularize T by
duality, i.e., by constructing a linear operator that regularizes 1-forms ξ · dx. This
must be done in such a way that exact 1-forms ξ · dx = ∇ζ · dx turn into exact
1-forms since, by assumption (5.1), T vanishes on exact 1-forms that are compactly
supported in (0, 1) × M

n. Recall that pulling back a 1-form under a smooth map
preserves exactness. Therefore we regularize ξ · dx as follows: We construct a family
of diffeomorphisms {Φ(z, ·)}z of R × M

n, parametrized by z ∈ R × R
n, and then

consider its pull-back Φ(z, ·)#(ξ · dx) and average over z.
In order to preserve the boundary condition (5.1), it is necessary that Φ(z, ·) leaves

the complement of (0, 1) × M
n invariant. On the other hand, in order to achieve the

regularizing effect, it is important that z ∈ R×R
n “acts transitively” on (0, 1)×M

n.
Because of topological reasons, this cannot be achieved globally by a single map Φ in
general. We have to work locally with several maps Φ, each of which is attached to
some open set U of a suitable covering of M

n.
More precisely, we consider a finite covering {Ui}Ni=1 of M

n subordinate to some
atlas, with Ui ⊂ M

n homeomorphic to the unit ball B1(0) ⊂ R
n and φi : Ui −→ R

n

the corresponding smooth coordinate map. We may assume that each φi extends to
a neighborhood of Ui and B1(0). Based on this map, we shall construct an operator
T �→ TUi

εi for εi > 0 with the following properties:
(a) The operator T �→ TUi

εi regularizes in (0, 1) × Ui; i.e., TUi
εi is representable in

(0, 1) × Ui by a smooth vector field (ρεi � 0,mεi) as in (5.2).
(b) The operator T �→ TUi

εi does not destroy smoothness; i.e., if T is representable
by a smooth vector field in (0, 1) × V with V ⊂ M

n open, then also TUi
εi is

representable by a smooth vector field in (0, 1) × V .
(c) The new current is admissible in the sense that (5.1) still holds with TUi

εi in
place of T , and we have upper semicontinuity of the action

lim sup
εi→0

A
(
TUi
εi

)
� A(T ).
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Then the composition

T �→ TU1
ε1 �→

(
TU1
ε1

)
U2
ε2 �→ · · · �→

(
· · ·
(
TU1
ε1

)
U2
ε2 · · ·

)
UN
εN

yields an approximate current Tε with all the properties required by the proposition.
In particular, we obtain a vector field (ρε � 0,mε) that represents Tε in the sense
of (5.2) and is smooth throughout (0, 1) × M

n. It suffices to consider each operator
T �→ TUi

εi separately and check that (a)–(c) are satisfied. To simplify the notation,
we will suppress the index i and do not indicate the dependence on Ui. The idea of
regularizing a current defined on a manifold by composing several operators attached
to local coordinate maps already appeared in [15].

We proceed in eight steps.
Step 1. As mentioned before, the regularization T �→ Tε is based on a family of

diffeomorphisms {Φ(z, ·)}z of R × M
n, parametrized by z ∈ R × R

n and attached to
the open set U ⊂ M

n. We would like these diffeomorphisms to leave the complement
of (0, 1)×U invariant, but we cannot impose this since in order to control the action
we need that the first component of Φ does not depend on x.

We shall use
• a smooth map Φ = (Φ0,Φ): (R × R

n) × (R × M
n) −→ R × M

n (whose
construction is postponed until Step 7) with the following properties:

∀ z ∈ R × R
n Φ(z, ·) is a diffeomorphism of R × M

n onto R × M
n,(5.3a)

∀ x ∈ R × M
n Φ(0,x) = x,(5.3b)

∀ x ∈ (0, 1) × U Φ(·,x) is a diffeomorphism of R × R
n onto (0, 1) × U ,(5.3c)

Φ0 does not depend on x,(5.3d)

∀ (z,x) ∈ (R × R
n) ×
(
(0, 1) × (Mn − U)

)
Φ(z,x) = x,(5.3e)

∀ (z,x) ∈ (R × R
n) ×
((

R − (0, 1)
)
× M

n
)

Φ(z,x) = x.(5.3f)

We shall also need the following maps which exist by (5.3a) and (5.3c):
• the right inverse Θ = (Θ0,Θ): (R×R

n)× (R×M
n) −→ R×M

n of Φ which
is characterized by

∀ (z,x) ∈ (R × R
n) × (R × M

n) Φ
(
z,Θ(z,x)

)
= x;(5.4)

• the left inverse Ψ = (Ψ0,Ψ):
(
(0, 1) × U

)
×
(
(0, 1) × U

)
−→ R × R

n of Φ
which is characterized by

∀ (x,y) ∈
(
(0, 1) × U

)
×
(
(0, 1) × U

)
Φ
(
Ψ(y,x),x

)
= y.(5.5)

For later reference we collect some properties: Let D1Φ and D2Φ denote the
derivatives of Φ with respect to the first (resp., second) variable. Then

∀ (z,x) ∈ (R × R
n) × (R × M

n) D2Φ(z,x) has full rank,(5.6)

∀ (z,x) ∈ (R × R
n) ×
(
(0, 1) × U

)
D1Φ(z,x) has full rank,(5.7)

as a consequence of (5.3a) and (5.3c). From (5.4) we obtain

DzΘ(z,x) = −
(
D2Φ
(
z,Θ(z,x)

))−1

D1Φ
(
z,Θ(z,x)

)
,

DxΘ(z,x) =
(
D2Φ
(
z,Θ(z,x)

))−1

,
(5.8)
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which together with (5.6) implies that Θ is smooth. Similarly, (5.5) yields

DyΨ(y,x) =
(
D1Φ
(
Ψ(y,x),x

))−1

,

DxΨ(y,x) = −
(
D1Φ
(
Ψ(y,x),x

))−1

D2Φ
(
Ψ(y,x),x

)
,

(5.9)

so Ψ is smooth by (5.7). Moreover, we gather from (5.3b) that

D2Φ(z, ·) = Id +O(|z|) as |z| → 0.(5.10)

Finally, we notice that the properties above entail that

∀ y ∈ (0, 1) × U lim
x∈(0,1)×U

x→∂((0,1)×U)

|Ψ(y,x)| = +∞.(5.11)

We argue by contradiction. Indeed, suppose that (5.11) fails. Then there exist a
sequence {xν}ν ⊂ (0, 1) × U and x ∈ ∂

(
(0, 1) × U

)
, z ∈ R × R

n with

lim
ν→∞

xν = x and lim
ν→∞

Ψ(y,xν) = z.

Passing to the limit in (5.5) yields by continuity of Φ that

Φ(z,x) = y ∈ (0, 1) × U.(5.12)

Now recall that x ∈ ∂
(
(0, 1) × U

)
=
(
(0, 1) × ∂U

)
∪
(
{0, 1} × Ū

)
. If x ∈ (0, 1) × ∂U ,

then (5.12) contradicts (5.3e); if x ∈ {0, 1} × Ū , then (5.12) contradicts (5.3f).

We now introduce our Tε. We select a smooth nonnegative function k on R×R
n

with compact support in B1(0) and
∫∫

R×Rn k(z) dz = 1. For ε > 0, we denote by

kε(z) = k(z/ε)/εn+1 the rescaled kernel. Given a smooth 1-form ξ · dx on R × M
n

and z ∈ R×R
n we consider its pull-back Φ(z, ·)#(ξ · dx) =: ξ(z, ·) · dx. Observe that

in terms of the vector fields this means

∀ x ∈ R × M
n ξ(z,x) =

(
DxΦ(z,x)

)t
ξ
(
Φ(z,x)

)
,(5.13)

where At denotes the transpose of A with respect to the metric on R×M
n. Then we

define the smeared out 1-form ξε · dx by averaging ξ(z, ·) · dx over z with respect to
kε. On the level of the vector fields this means

∀ x ∈ R × M
n ξε(x) =

∫∫
R×Rn

ξ(z,x) kε(z) dz.(5.14)

Finally, we introduce Tε by duality; i.e., for all 1-forms ξ · dx we put

〈
Tε, ξ · dx

〉
:=
〈
T, ξε · dx

〉
.(5.15)
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Step 2. We first argue that Tε has a smooth representative in (0, 1)×U . In order
to see this, we write (5.14) in the form of

ξε(x) =

∫∫
(0,1)×U

Kε(y,x) ξ(y) dy for x ∈ (0, 1) × U .(5.16)

Indeed, we shall see that (5.16) holds for the tensor field

Kε(y,x) =

⎧⎪⎨
⎪⎩
(
−
(
DyΨ(y,x)

)−1
DxΨ(y,x)

)t
kε
(
Ψ(y,x)

)
detDyΨ(y,x)

for x ∈ (0, 1) × U
0 otherwise

⎫⎪⎬
⎪⎭

∀ y ∈
(
0, 1) × U.(5.17)

Notice that Kε(y,x) is an endomorphism from the tangent space Ty(R × M
n) into

Tx(R×M
n) and that Kε(y,x) is smooth in (y,x) ∈

(
(0, 1)×U

)
× (R×M

n). Indeed,

if y varies in a compact subset of (0, 1)×U and x ∈ (0, 1)×U is close to ∂
(
(0, 1)×U

)
,

we learn from (5.11) that kε
(
Ψ(y,x)

)
= 0 and thus Kε(y,x) = 0, because kε has

bounded support. We check (5.16): For all x ∈ (0, 1) × U

ξε(x)
(5.14)
=

∫∫
R×Rn

ξ(z,x) kε(z) dz

(5.13)
=

∫∫
R×Rn

(
DxΦ(z,x)

)t
ξ
(
Φ(z,x)

)
kε(z) dz

(5.5)
=

∫∫
(0,1)×U

(
D2Φ
(
Ψ(y,x),x

))t
ξ(y) kε

(
Ψ(y,x)

)
detDyΨ(y,x) dy

(5.9)
=

∫∫
(0,1)×U

(
−
(
DyΨ(y,x)

)−1
DxΨ(y,x)

)t
ξ(y) kε

(
Ψ(y,x)

)
× detDyΨ(y,x) dy

(5.17)
=

∫∫
(0,1)×U

Kε(y,x) ξ(y) dy.

We now argue that in (0, 1) × U , Tε is represented by mε defined through

mε(y) · ξ :=
〈
T,
(
Kε(y, ·) ξ

)
· dx
〉

for y ∈ (0, 1) × U, ξ ∈ Ty(R × M
n).(5.18)

Since Kε(y,x) is smooth in (y,x) ∈
(
(0, 1) × U

)
× (R × M

n), mε is smooth in
y ∈ (0, 1)×U . We check that mε is indeed the representative of Tε in (0, 1)×U . Let
ξ be a smooth vector field compactly supported in (0, 1) × U : Then

〈
Tε, ξ · dx

〉
(5.15)
=
〈
T, ξε · dx

〉
(5.16)
=

∫∫
(0,1)×U

〈
T,
(
Kε(y, ·) ξ(y)

)
· dx
〉
dy

(5.18)
=

∫∫
(0,1)×U

mε(y) · ξ(y) dy.
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Step 3. We now prove that the operator T �→ Tε does not destroy smoothness.
More precisely, we shall argue that for V ⊂ M

n open

T has a smooth representative in (0, 1) × V
=⇒ Tε has a smooth representative in (0, 1) × (U ∪ V )

(5.19)

and that

T has a smooth representative in a neighborhood of {0, 1} × M
n

=⇒ Tε has the same property.
(5.20)

To treat both situations simultaneously, we consider a set V that is relatively open
in [0, 1] × M

n and in which T is represented by a smooth vector field m in the sense
that for all smooth vector fields ξ compactly supported in V:

〈
T, ξ · dx

〉
=

∫∫
R×Mn

m · ξ dx.(5.21)

Then we claim that in the set

Vε :=
⋂

z∈Bε(0)

Φ(z,V)(5.22)

the regularized current Tε is represented by

mε(x) :=

⎧⎪⎪⎨
⎪⎪⎩

∫∫
R×Rn

(
DxΘ(z,x)

)−1
m
(
Θ(z,x)

)
kε(z) detDxΘ(z,x) dz

for x ∈ Vε ∩
(
(0, 1) × M

n
)

m(x) for x ∈ Vε ∩
(
{0, 1} × M

n
)

⎫⎪⎪⎬
⎪⎪⎭ .

(5.23)

Notice first that Vε is relatively open in [0, 1] × M
n since (5.3a) and (5.3f) give

Vε =
(
[0, 1] × M

n
)
− Φ
(
Bε(0),

(
[0, 1] × M

n
)
− V
)
.

According to (5.21), (5.22), and (5.4), the vector field mε is well defined. Moreover,
mε inherits the smoothness of m separately in both subsets of Vε. Hence we only
need to check that mε is regular throughout Vε. By smoothness of Θ and (5.3f), the
function (s, x) �→ Θ

(
z, (s, x)

)
approaches the identity map as s → {0, 1}, uniformly

in all derivatives and in both z ∈ Bε(0) and x ∈ M
n. This implies in particular that

DxΘ → Id and detDxΘ → 1. Since, by assumption, m is smooth in V, regularity
of mε then follows easily by standard arguments. Therefore the operator T �→ Tε

does not destroy smoothness in the above sense. We now check that mε is indeed the
representative. Let a smooth vector field ξ be given that is compactly supported in
Vε. Because of (5.22), ξ(z, ·) defined in (5.13) is compactly supported in V for all
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z ∈ Bε(0), and so ξε is compactly supported in V by definition (5.14). We obtain〈
Tε, ξ · dx

〉
(5.15)
=
〈
T, ξε · dx

〉
(5.21)
=

∫∫
R×Mn

m · ξε dx

(5.14)
=

∫∫
R×Rn

∫∫
R×Mn

m(x) · ξ(z,x) dx kε(z) dz

(5.13)
=

∫∫
R×Rn

∫∫
R×Mn

DxΦ(z,x)m(x) · ξ
(
Φ(z,x)

)
dx kε(z) dz

(5.4)
=

∫∫
R×Rn

dz kε(z)

×
∫∫

R×Mn

DxΦ
(
z,Θ(z,y)

)
m
(
Θ(z,y)

)
· ξ(y) detDyΘ(z,y) dy

(5.8)
=

∫∫
R×Rn

dz kε(z)

×
∫∫

R×Mn

(
DyΘ(z,y)

)−1
m
(
Θ(z,y)

)
· ξ(y) detDyΘ(z,y) dy

(5.23)
=

∫∫
Vε

mε(y) · ξ(y) dy.

If now V = (0, 1) × V with V ⊂ M
n open, then (5.3d)–(5.3f) entail

Vε −
(
(0, 1) × U

)
= V −

(
(0, 1) × U

)
.

In particular, Vε contains an open neighborhood of V ∩
(
(0, 1) × ∂U

)
. Therefore Tε

is smooth in V ∪
(
(0, 1) × U

)
. This establishes (5.19). Similarly, if V = [0, α) × M

n

for some 0 < α < 1, then Vε = [0, α′)×M
n for some 0 < α′ � α by (5.3d) and (5.3f).

Therefore Tε is smooth up to the boundary {0}×M
n. The same argument applies to

V = (1 − α, 1] × M
n. This establishes (5.20).

Step 4. We now argue that Tε is admissible if T is, i.e., if〈
T, ∇ζ · dx

〉
=

∫
Mn

ζ(1, x) dρ1(x) −
∫

Mn

ζ(0, x) dρ0(x)(5.24)

for all smooth functions ζ on R×M
n. Consider the gradient field ξ := ∇ζ. We gather

from (5.13) and the chain rule that

ξ(z,x) = ∇xζ(z,x), where ζ(z,x) := ζ
(
Φ(z,x)

)
.

We thus infer from (5.14) that

ξε(x) = ∇ζε(x), where ζε(x) :=

∫∫
R×Rn

ζ(z,x) kε(z) dz.(5.25)

Then (5.3f) implies that

∀ (z,x) ∈ (R × R
n) ×
((

R − (0, 1)
)
× M

n
) ⎧⎨⎩

ζ(z,x) = ζ(x)
and thus

ζε(x) = ζ(x)

⎫⎬
⎭ .(5.26)
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Hence we obtain as desired

〈
Tε, ∇ζ · dx

〉 (5.15)
(5.25)
=
〈
T, ∇ζε · dx

〉
(5.24)
=

∫
Mn

ζε(1, x) dρ1(x) −
∫

Mn

ζε(0, x) dρ0(x)

(5.26)
=

∫
Mn

ζ(1, x) dρ1(x) −
∫

Mn

ζ(0, x) dρ0(x).

Step 5. Now we address the action estimate. We claim that for small ε

A(Tε) �
(
1 + O(ε)

)
A(T ) + O(ε)(5.27)

with the modulus O(ε) depending only on Φ. Let ξ = (σ, ξ) be an admissible vector
field in the definition of A, i.e., for which

σ + 1
2 |ξ|

2 � 0.(5.28)

Consider ξ(z,x) =
(
σ(z,x), ξ(z,x)

)
defined in (5.13). We will then show that the

modified vector field(
λ(z)
(
σ(z, ·) − μ(z)

)
, λ(z) ξ(z, ·)

)
is admissible

for suitable constants λ(z) = 1 −O(|z|), μ(z) = O(|z|).
(5.29)

Indeed, the anisotropy condition (5.3d) on Φ = (Φ0,Φ) and (5.13) give

σ(z,x) = ∂sΦ0(z, s)σ
(
Φ(z,x)

)
+ ∂sΦ(z,x) · ξ

(
Φ(z,x)

)
,

ξ(z,x) =
(
DxΦ(z,x)

)t
ξ
(
Φ(z,x)

)
.

Because of (5.10) this yields the estimates

σ(z,x) �
(
1 −O(|z|)

)
σ
(
Φ(z,x)

)
+ O(|z|)

∣∣ξ(Φ(z,x)
)∣∣,

|ξ(z,x)| �
(
1 + O(|z|)

) ∣∣ξ(Φ(z,x)
)∣∣.(5.30)

Using Young’s inequality

2λ(z)
∣∣ξ(Φ(z,x)

)∣∣ � 1 + λ(z)2
∣∣ξ(Φ(z,x)

)∣∣2,(5.31)

we notice that the latter implies

λ(z)
(
σ(z,x) − μ(z)

)
+ 1

2 |λ(z) ξ(z,x)|2

(5.30)

� λ(z)
((

1 −O(|z|)
)
σ
(
Φ(z,x)

)
+ O(|z|)

∣∣ξ(Φ(z,x)
)∣∣− μ(z)

)
+ λ(z)2

(
1 + O(|z|)

)2 1
2

∣∣ξ(Φ(z,x)
)∣∣2

(5.31)

� λ(z)
(
1 −O(|z|)

)
σ
(
Φ(z,x)

)
+ λ(z)2

(
1 + O(|z|)

)
1
2

∣∣ξ(Φ(z,x)
)∣∣2

+ O(|z|) − λ(z)μ(z)

(5.28)

� λ(z)
(
−
(
1 −O(|z|)

)
+
(
1 + O(|z|)

)
λ(z)
)

1
2

∣∣ξ(Φ(z,x)
)∣∣2

+ O(|z|) − λ(z)μ(z),

which in turn yields (5.29).
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Choosing ζ(s, x) = s in the admissibility condition (5.24) yields〈
T, 1 ds

〉
= 1.(5.32)

Thus we have by definition of A(T )〈
T, σ(z, ·) ds + ξ(z, ·) · dx

〉
=

1

λ(z)

〈
T, λ(z)

(
σ(z, ·) − μ(z)

)
ds + λ(z) ξ(z, ·) · dx

〉
+ μ(z)

〈
T, 1 ds

〉
(5.29)
(5.32)

� 1

λ(z)
A(T ) + μ(z)

(5.29)
=
(
1 + O(|z|)

)
A(T ) + O(|z|).(5.33)

We therefore obtain as desired〈
Tε, σ ds + ξ · dx

〉
(5.15)
=
〈
T, σε ds + ξε · dx

〉
(5.14)
=

∫∫
R×Rn

〈
T, σ(z, ·) ds + ξ(z, ·) · dx

〉
kε(z) dz

(5.33)
=
(
1 + O(ε)

)
A(T ) + O(ε).

Since (σ, ξ) was arbitrary with (5.28), this yields (5.27) by definition of A(Tε).
Step 6. Let Tε have a smooth representative (ρε,mε) in (0, 1) × M

n and satisfy
A(Tε) < ∞. We now argue that ρε � 0. More precisely, we shall show that〈

Tε, ζ ds
〉

� 0 ∀ smooth test function ζ with ζ � 0.(5.34)

Indeed, for n ∈ N the vector field ξ = (−nζ, 0) is admissible and yields

−n
〈
Tε, ζ ds

〉
=
〈
Tε, ξ · dx

〉
� A(Tε),

which gives (5.34) in the limit n → ∞. By (5.2), this proves that ρε � 0.
Step 7. It remains to construct the map Φ = (Φ0,Φ). This is done in a series of

short steps. The starting point is the diffeomorphism h0 : (0, 1) −→ R defined by

h0(s) =
(
s− 1

2

)
exp

(
1

s(1 − s)

)
.

Next we introduce the map Φ0 : R × R −→ R:

Φ0(u, s) =

{
h−1

0

(
h0(s) + u

)
for s ∈ (0, 1)

s otherwise

}
.(5.35)

The properties of the exponential function imply that Φ0 is smooth. In particular,
we have by the inverse function theorem that

∂uΦ0(u, s) =

⎧⎨
⎩
(
h′

0

(
Φ0(u, s)

))−1

for s ∈ (0, 1)

0 otherwise

⎫⎬
⎭ ,

∂sΦ0(u, s) =

⎧⎨
⎩
(
h′

0

(
Φ0(u, s)

))−1

h′
0(s) for s ∈ (0, 1)

1 otherwise

⎫⎬
⎭ .
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The map Φ0 obviously has the homomorphism property

∀ u, u′ ∈ R, s ∈ R Φ0(u + u′, s) = Φ0

(
u,Φ0(u

′, s)
)
,

∀ s ∈ R Φ0(0, s) = s.
(5.36)

In a similar way, we introduce the diffeomorphism h̃ : B1(0) → R
n defined by

h̃(x̃) = x̃ exp

(
1

1 − |x̃|2

)

and the map Φ̃: R
n × R

n −→ R
n through

Φ̃(z, x̃) =

{
h̃−1
(
h̃(x̃) + z) for x̃ ∈ B1(0)

x̃ otherwise

}
.(5.37)

Again, the properties of the exponential function imply that Φ̃ is smooth, and

DzΦ̃(z, x̃) =

⎧⎨
⎩
(
Dh̃
(
Φ̃(z, x̃)

))−1

for x̃ ∈ B1(0)

0 otherwise

⎫⎬
⎭ ,

Dx̃Φ̃(z, x̃) =

⎧⎨
⎩
(
Dh̃
(
Φ̃(z, x̃)

))−1

Dh̃(x̃) for x̃ ∈ B1(0)

Id otherwise

⎫⎬
⎭ .

As for Φ0 above, the map Φ̃ has the homomorphism property

∀ z, z′ ∈ R
n, x̃ ∈ R

n Φ̃(z + z′, x̃) = Φ̃
(
z, Φ̃(z′, x̃)

)
,

∀ x̃ ∈ R
n Φ̃(0, x̃) = x̃.

(5.38)

Recall that U ⊂ M
n is an open subset homeomorphic to the ball B1(0) ⊂ R

n, with
φ : U −→ R

n a coordinate map. We may assume that φ extends to some neighborhood
of U and B1(0). Then the composition

h(x) := h̃
(
φ(x)
)

∀ x ∈ U

defines a diffeomorphism h : U −→ R
n. In view of (5.37),

Φ(z, x) =

{
φ−1
(
Φ̃
(
z, φ(x)

))
for x ∈ U

x otherwise

}

defines a smooth map Φ: R
n × M

n −→ M
n, and it is immediately clear that the

properties (5.37) and (5.38) are conserved; i.e., we have

Φ(z, x) =

{
h−1
(
h(x) + z

)
for x ∈ U

x otherwise

}
(5.39)

and

∀ z, z′ ∈ R
n, x ∈ M

n Φ(z + z′, x) = Φ
(
z,Φ(z′, x)

)
,

∀ x ∈ M
n Φ(0, x) = x.

(5.40)
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Finally, we consider the smooth function δ : R −→ R defined through

δ(s) =

⎧⎨
⎩ exp

(
− 1

s(1 − s)

)
for s ∈ (0, 1)

0 otherwise

⎫⎬
⎭ .(5.41)

We now introduce the smooth map Φ : (R × R
n) × (R × M

n) −→ (R × M
n):

Φ
(
(u, z), (s, x)

)
:=
(
Φ0(u, s),Φ

(
δ(s)z, x

))
.

Let us quickly check that Φ has the required properties. We establish the diffeomor-
phism properties (5.3a) by explicitly giving the right inverse

Θ
(
(u, z), (s, x)

)
=
(
Φ0(−u, s),Φ

(
− δ
(
Φ0(−u, s)

)
z, x
))

which defines a smooth map Θ : (R×R
n)× (R×M

n) −→ (R×M
n). Then (5.36) and

(5.40) imply (5.4) and (5.3b). The anisotropy property (5.3d) is clear by construction.
The first invariance property (5.3e) can be read off from (5.39); the second invariance
property (5.3f) follows from (5.35) for the Φ0-component and from (5.41) combined
with (5.40) for the Φ-component. The second diffeomorphism property (5.3c) follows
from an explicit formula for the left inverse

Ψ
(
(t, y), (s, x)

)
=

(
h0(t) − h0(s),

h(y) − h(x)

δ(s)

)

which defines a smooth map Ψ :
(
(0, 1)×U

)
×
(
(0, 1)×U

)
−→ R × R

n (recall that δ
is positive on (0, 1)). The identities (5.35) and (5.39) imply (5.5) as desired.

Step 8. In this last step, we prove that if ρ0 and ρ1 are smooth functions and if T
is a current defined on [0, 1]×M

n satisfying the admissibility condition (5.1), then the
regularization Tε of T is representable by a vector field (ρε � 0,mε) that is smooth
up to the boundary {0, 1}×M

n. This can be achieved by first approximating T by an
admissible current Tα that is representable by a smooth vector field in [0, α)×M

n and
(1 − α, 1] × M

n for suitable α and then applying to Tα the regularization procedure
described above. Since the operators T �→ TUi

εi do not destroy smoothness in stripes
around the boundary {0, 1} × M

n (see Step 3), the regularized current (Tα)ε can be
represented by a vector field that attains the data ρ0 and ρ1 smoothly as desired.

We proceed as follows: For 0 < α < 1
2 we consider the map

Φα(s, x) :=
(
α + (1 − 2α)s, x

)
for (s, x) ∈ [0, 1] × M

n.

Given a smooth 1-form ξ ·dx, let Φ#
α (ξ ·dx) =: ξα ·dx be its pull-back under the map

Φα. In terms of the vector field ξ = (σ, ξ) this means

∀ x ∈ [0, 1] × M
n ξα(x) =

(
DxΦα(x)

)t
ξ
(
Φα(x)

)
,(5.42)

and hence ξα = (σα, ξα) with

σα(x) = (1 − 2α)σ
(
Φα(x)

)
and ξα(x) = ξ

(
Φα(x)

)
.(5.43)

We define the approximate current Tα by duality as〈
Tα, ξ · dx

〉
:=
〈
T, ξα · dx

〉
+

∫∫
[0,α]×Mn

σ(s, x) ρ0(x) dx ds

+

∫∫
[1−α,1]×Mn

σ(s, x) ρ1(x) dx ds(5.44)
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for all smooth 1-forms ξ · dx = σ ds + ξ · dx. This Tα is admissible: If ζ is a smooth
function and ξ := ∇ζ the gradient field, then (5.42) implies that

ξα(x) = ∇ζα(x), where ζα(x) := ζ
(
Φα(x)

)
,

and therefore〈
Tα, ∇ζ · dx

〉
=

∫
Mn

ζ(1 − α, x) ρ1(x) dx +

∫∫
[1−α,1]×Mn

∂sζ(s, x) ρ1(x) dx ds

−
∫

Mn

ζ(α, x) ρ0(x) dx +

∫∫
[0,α]×Mn

∂sζ(s, x) ρ0(x) dx ds

=

∫
Mn

ζ(1, x) ρ1(x) dx−
∫

Mn

ζ(0, x) ρ0(x) dx.

It follows easily from (5.44) that Tα is represented by the smooth vector field (ρ0, 0) in
the stripe [0, α)×M

n and by (ρ1, 0) in (1−α, 1]×M
n. Consider the action functional.

Notice first that if ξ = (σ, ξ) is admissible in the definition of A, then also the modified
vector field (1 − 2α) ξα is admissible since by (5.43)

(1 − 2α)σα + 1
2 |(1 − 2α)ξα|2 = (1 − 2α)2

(
σ ◦ Φα + 1

2 |ξ ◦ Φα|2
)

� 0.

The extra integrals in (5.44) do not contribute to A(Tα) because σ � − 1
2 |ξ|2 � 0 and

ρ0, ρ1 � 0. This yields as above A(Tα) � (1 − 2α)−1A(T ), and thus

lim sup
α→0

A(Tα) � A(T ).

Now we regularize as before to conclude.
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2005.
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ZERO-VISCOSITY LIMIT OF THE LINEARIZED COMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH HIGHLY OSCILLATORY

FORCES IN THE HALF-PLANE∗

YA-GUANG WANG† AND ZHOUPING XIN‡

Abstract. We study the asymptotic behavior of the solution to the linearized compressible
Navier–Stokes equations with highly oscillatory forces in the half-plane with nonslip boundary con-
ditions for small viscosity. The wavelength of oscillation is assumed to be proportional to the square
root of the viscosity. By means of asymptotic analysis, we deduce that the leading profiles of the
solution have four terms: the first one is the outflow satisfying the linearized Euler equations, the
second one is an oscillatory wave propagated along the characteristic field tangential to the bound-
ary associated with the linearized Euler operator in the half-plane, the third one is a boundary layer
satisfying a linearized Prandtl equation, the fourth one represents the oscillation propagated in the
boundary layer, and it is described by an initial-boundary value problem for an Poisson–Prandtl
coupled system. By using the energy method and mode analysis, we obtain the well-posedness of
this Poisson–Prandtl coupled problem, and a rigorous theory on the asymptotic analysis of the zero-
viscosity limit. Finally, we have briefly discussed the case that the wavelength of the oscillatoy force
is shorter than the square root of the viscosity.

Key words. linearized compressible Navier–Stokes equations, boundary layers, oscillatory waves

AMS subject classifications. 35Q30, 76N20, 35B05

DOI. 10.1137/040614967

1. Introduction. Consider the following initial-boundary value problem for the
two-dimensional isentropic compressible Navier–Stokes equations with nonslip bound-
ary conditions in {t, x1 > 0, x2 ∈ R}:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tρ + (v · ∇)ρ + ρ∇ · v = f(t, x),

ρ(∂tv + (v · ∇)v) + ∇p = ∇ · (2μP + λI2∇ · v) + g(t, x),

v|x1=0 = 0,

(ρ, v)|t=0 = (ρ0, v0)(x),

(1.1)

where f and g represent the source and force terms, P = 1
2{∂xj

vi + ∂xivj}i×j is a
2 × 2 matrix with v = (v1, v2)

T , p = p(ρ) is the equation of state, μ and λ denote
the coefficient and the second coefficient of viscosity, respectively, with μ > 0 and
μ′ = μ + λ ≥ 0. Corresponding to (1.1), the motion of an inviscid compressible fluid
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is governed by the following Euler equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tρ + (v · ∇)ρ + ρ∇ · v = f(t, x),

ρ(∂tv + (v · ∇)v) + ∇p = g(t, x),

v1|x1=0 = 0,

(ρ, v)|t=0 = (ρ0, v0)(x).

(1.2)

For simplicity, we assume that μ and μ′ are proportional to a parameter, say ε2

with ε > 0.
One interesting problem is to study the convergence of the solution of the Navier–

Stokes equations (1.1) to that of the Euler equations (1.2) in the limit of small vis-
cosity. It is expected that uniform convergence can take place only away from the
physical boundary {x1 = 0} even for smooth solutions of (1.2) due to the dispar-
ity of the boundary conditions in (1.1) and (1.2), and a thin region comes out near
the boundary {x1 = 0} (the boundary layer) in which values of unknowns change
drastically in the process of this limit.

It is a challenging problem to analyze rigorously this boundary layer phenomena
displayed by the actual Navier–Stokes solutions. For the problem of incompressible
Navier–Stokes equations, Prandtl carried out a formal analysis in his speech [6] at the
International Congress of Mathematicians in 1904, and derived a nonlinear degenerate
parabolic-elliptic coupled system for the velocity fields in the boundary layer, which is
now called the Prandtl system. Under the monotonic assumption on the velocity of the
outflow, Oleinik and Samokhin established the local existence of smooth solutions for
boundary value problems of the Prandtl system since the 1960’s, and their works were
surveyed recently in the monography [5]. The existence and uniqueness of global weak
solutions to the Prandtl system are recently established by Xin and Zhang [13] and
Xin, Zhang, and Zhao [14], respectively. In [7, 8], Sammartino and Caflisch obtained
the local existence of analytic solutions to the Prandtl system, and a rigorous theory
on the boundary layer in incompressible fluids with analytic data in the frame of
the abstract Cauchy–Kowaleskaya theory. Grenier [2, 3] investigated the stability of
boundary layer type solutions to the Euler equations and the instability of solutions
to the incompressible Navier–Stokes equations. Till now, there existed no general
rigorous theory of viscous boundary layer in the case of nonslip boundary conditions;
this is reviewed in [1, 11]. The problem of the viscous boundary layer in the case of
slip boundary conditions was studied rigorously by Temam and Wang in [10].

To study the theory of the viscous boundary layer for compressible fluids with
nonslip boundary conditions, recently, Xin and Yanagisawa [12] obtained a rigorous
justification of the Prandtl boundary layer theory for the linearized compressible fluids
when the viscosity goes to zero.

The purpose of this paper is to study the asymptotic behavior of solutions to
the linearized compressible Navier–Stokes equations on the half-plane with nonslip
boundary conditions perturbed by high frequency oscillatory force terms, and to in-
vestigate the interaction between the linearized boundary layer and rapidly oscillatory
waves.

In the case that the oscillation of the force term is propagated along the tangen-
tial characteristic field of the boundary with respect to the linearized Euler operator,
see (2.6)–(2.9), and the wavelength is proportional to the square root of the viscos-
ity, we establish a rigorous theory on the boundary layer and its oscillatory behavior.
Roughly speaking, it is shown that the leading profiles of the solution to the linearized
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compressible Navier–Stokes equations can be divided into four terms: the first one is
the outflow satisfying the linearized Euler equations, the second one is an oscillatory
wave propagated along the characteristic field tangential to the boundary associated
with the linearized Euler operator in the half-plane, and its amplitude satisfies a
linear degenerate parabolic equation with the second order term coming from the
viscous term in the linearized Navier–Stokes equations, the third one is the classical
linearized Prandtl boundary layer supported in a thin neighborhood of the bound-
ary, and the fourth one is an oscillatory wave propagated in the boundary layer, this
term together with its vorticity with respect to the normal variable and the fast vari-
able satisfy an initial-boundary value problem for an Poisson–Prandtl coupled system.
This result shows that the zero-viscosity limit of the solution to the linearized com-
pressible Navier–Stokes equations with highly oscillatory forces satisfies the linearized
Euler equations away from the boundary, and the oscillation is propagated in a way
of linear geometric optics in free space. The boundary layer is of the Prandtl type as
usual, but the novelties are that the oscillation is propagated in the layer, and there
is an interaction between the boundary layer and highly oscillatory waves near the
boundary; for details see Theorem 2.1.

When the wavelength of the oscillatory force term is shorter than the square
root of the viscosity, we observe that both the oscillation in the outflow and in the
boundary layer appear only in the high order profiles, and the leading profiles are
the same as the case studied in [12] with the force term without oscillation. This
phenomenon will be explained in the appendix for the case that the wavelength of the
oscillatory force term is the same order as the viscosity. The case that the wavelength
of the oscillatory force term is longer than the square root of the viscosity is more
complicated and challenging as it may destabilize the boundary layer. We shall study
this problem in a forthcoming paper.

The nonlinear interaction between the boundary layer and high frequency oscil-
lating waves for the artificial viscosity problem of a semilinear hyperbolic system was
studied by Gues in [4], for which the leading profiles of solutions have three terms:
the outflow satisfying the hyperbolic problem, an oscillatory wave propagated in the
half space (its amplitude satisfies an initial value problem for a degenerate parabolic
equation), and the boundary layer, which satisfies an initial-boundary value problem
for a degenerate parabolic equation. Due to the nonlinearity of the system, problems
for these three profiles are coupled together. Main differences between this paper and
Gues’ work [4] are that the profile of the boundary layer in the Navier–Stokes system
satisfies the Prandtl system even when the force term without oscillation, and the
phase function of oscillation we will study is nonlinear in general, which gives rise to
the above fourth profile, describing the oscillation in the boundary layer, while the
phase function of the oscillatory waves considered by Gues in [4] is linear and vanishes
at the boundary, which implies that the above fourth term does not appear in that
case (see Remark 5.1).

Another related work is that of Szepessy in [9], which gave a geometric optics
expansion for a linearized viscous shock profile perturbed by a highly oscillatory wave
in two space variables.

The remainder of this paper shall be arranged as follows. In section 2, we carry
out the formal analysis to derive problems for the leading profiles of the asymptotic
expansion of the solution to the linearized Navier–Stokes equations with respect to
ε, proportional to the square root of the viscosity, and observe that one of leading
profiles describes the oscillation propagated in the boundary layer, and this profile
together with its vorticity with respect to the normal variable and the oscillatory
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variable satisfy an initial-boundary value problem for an Poisson–Prandtl coupled
system. The derivation of problems for higher order profiles will be given in the
appendix. The problem for the Poisson–Prandtl coupled equations is not a classical
one. To our knowledge, there is no any literature devoted to this kind of problem,
so we shall establish the well-posedness of this problem in section 3. In section 4, we
rigorously justify the formal analysis of the zero-viscosity limit for the solution to the
linearized Navier–Stokes equations. Finally, in the appendix, we shall also study the
problem with the wavelength of the oscillatory force term being the same order as the
viscosity.

2. Asymptotic analysis and main results. Corresponding to the problem
(1.1) for the compressible Navier–Stokes equations, we consider the following lin-
earized problem at a state V ′ = (ρ′, v′1, v

′
2)

T with a high frequency oscillatory force
term in the half-space {t, x1 > 0, x2 ∈ R}:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0(V
′)∂tV

ε + A1(V
′)∂x1

V ε + A2(V
′)∂x2

V ε = B(ε2, Dε2)V ε + Φ(t, x; ϕ(t,x)
ε )

M+V ε =

(
0 1 0
0 0 1

)
V ε = 0, on x1 = 0

V ε|t=0 = V0(x),

(2.1)

where V ε = (ρε, vε1, v
ε
2)

T , Φ(t, x; θ) is periodic in θ ∈ T 1 = R/2πZ,

A0(V
′) =

⎛
⎝ 1 0 0

0 ρ′ 0
0 0 ρ′

⎞
⎠, A1(V

′) =

⎛
⎝ v′1 ρ′ 0

c2 ρ′v′1 0
0 0 ρ′v′1

⎞
⎠, A2(V

′) =

⎛
⎝ v′2 0 ρ′

0 ρ′v′2 0
c2 0 ρ′v′2

⎞
⎠

with c =
√

dp(ρ′)
dρ > 0 being the sound speed at V ′, and

B(ε2, Dε2)V ε = ε2(B1∂
2
x1
V ε + B2∂

2
x2
V ε + B3∂

2
x1x2

V ε)

with D ≥ 0 being a constant, and

B1 =

⎛
⎝ 0 0 0

0 1 + D 0
0 0 1

⎞
⎠, B2 =

⎛
⎝ 0 0 0

0 1 0
0 0 1 + D

⎞
⎠, B3 =

⎛
⎝ 0 0 0

0 0 D
0 D 0

⎞
⎠,

where we have assumed that μ = ε2 and μ′ = Dε2 in (1.1).

For convenience we shall assume that the background state V ′ is smooth and
bounded. The case of finite order regularity can be handled as well, but much more
bookkeeping is needed.

Suppose that

v′1|x1=0 = 0.(2.2)

For any fixed (ξ1, ξ2) �= (0, 0), denote by

τ1 = −(ξ1v
′
1 + ξ2v

′
2), τ2,3 = −

(
ξ1v

′
1 + ξ2v

′
2 ± c

√
ξ2
1 + ξ2

2

)
(2.3)
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eigenvalues of the symbol L(τ, ξ1, ξ2) associated with the linearized Euler operator
at V ′,

L(∂t, ∂x) = A0(V
′)∂t + A1(V

′)∂x1
+ A2(V

′)∂x2
(2.4)

which means that τk are roots to the following characteristic equation:

det(τA0(V
′) + ξ1A1(V

′) + ξ2A2(V
′)) = 0.

Denote by {
rk}3
k=1 and {
lk}3

k=1 the associated right and left eigenvectors, respec-
tively, {

(τkA0(V
′) + ξ1A1(V

′) + ξ2A2(V
′))
rk = 0


lk(τkA0(V
′) + ξ1A1(V

′) + ξ2A2(V
′)) = 0

(2.5)

with the normalization


ljA0
rk = δjk =

{
1, j = k
0, j �= k.

It follows from (2.2) that the boundary {x1 = 0} is uniformly characteristic with
respect to the eigenvalue τ1 = −(ξ1v

′
1 + ξ2v

′
2) associated with the linearized Euler

operator (2.4).
As in the classical theory of nonlinear geometric optics [4], it is assumed that the

oscillation phase ϕ(t, x) in (2.1) satisfies the eikonal equation with respect to τ1,

∂tϕ + v′1∂x1
ϕ + v′2∂x2

ϕ = 0.(2.6)

In this paper, we shall assume

ϕ0(t, x2) := ϕ(t, 0, x2) �= 0.(2.7)

Obviously, the assumption v′1|x1=0 = 0 implies

∂tϕ
0 + v′2(0)∂x2ϕ

0 = 0(2.8)

with v′2(0) denoting v′2(t, 0, x2).
Moreover, we assume

∂x2ϕ
0 = ∂x2ϕ|x1=0 �= 0(2.9)

at each point of {(t, x2) ∈ R
+ × R}. If ∂x2ϕ

0 ≡ 0, then from (2.8) we have ∂tϕ
0 = 0

as well, which implies

ϕ0(t, x2) ≡ const

yielding no oscillation factor in the boundary layer. The problem in the general case
of ϕ, e.g., ϕ(t, 0, x2) degenerates in a subset of (t, x2) ∈ R

+ × R is interesting, and
shall be investigated in the future. As we shall see, the case ϕ(t, 0, x2) ≡ 0 is easier
to handle.

In the case of (2.6)–(2.9), we take the following ansatz for the solution of (2.1):

V ε(t, x) = V ε
in(t, x) + V ε

bd(t, x),(2.10)
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where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V ε
in(t, x) =

∑
j≥0

εj
(
aj(t, x) + cj

(
t, x;

ϕ(t, x)

ε

))

V ε
bd(t, x) =

∑
j≥0

εj
(
bj

(
t, x2;

x1

ε

)
+ dj

(
t, x2;

x1

ε
,
ϕ0(t, x2)

ε

))
,

(2.11)

where cj(t, x; θ) and dj(t, x2; z, θ) are 2π−periodic in θ with mean value vanishing,
and bj(t, x2; z) and dj(t, x2; z, θ) are rapidly decreasing in z when z → +∞.

In what follows, we shall always denote by Ck
p (T 1

θ ) the set of kth order smooth
functions which are 2π−periodic in θ ∈ T 1, S(R+

z ) the set of smooth functions rapidly

decreasing in z when z → +∞, and a
(k)
j (k = 1, 2, 3) the kth component of aj etc.

Taking the formal expansion as

(A0(V
′)∂t + A1(V

′)∂x1 + A2(V
′)∂x2)V

ε
in −B(ε2, Dε2)V ε

in − Φ

(
t, x; ϕ(t,x)

ε

)
=

∑
j≥−1 ε

jFj ,
(2.12)

in ε, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F−1 =

2∑
k=0

ϕxk
Ak(V

′)∂θc0,

F0 = L(∂t, ∂x)(a0 + c0) − (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)∂

2
θc0 − Φ(t, x; θ)

+
2∑

k=0

ϕxk
Ak(V

′)∂θc1,

. . . . . .
Fj = L(∂t, ∂x)(aj + cj) − (ϕ2

x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)∂

2
θcj

+
2∑

k=0

ϕxk
Ak(V

′)∂θcj+1 + fj

(2.13)

for each j ≥ 1, where ϕxk
= ∂xk

ϕ with x0 = t, and

fj = −(ϕx1x1
B1 + ϕx2x2

B2 + ϕx1x2
B3)∂θcj−1 − (2ϕx1

B1 + ϕx2
B3)∂

2
θx1

cj−1

−(2ϕx2
B2 + ϕx1

B3)∂
2
θx2

cj−1 − (B1∂
2
x1

+ B2∂
2
x2

+ B3∂
2
x1x2

)(aj−2 + cj−2)

with a−1 = c−1 = 0.
Set z = x1

ε . Then

(A0(V
′)∂t + A1(V

′)∂x1 + A2(V
′)∂x2)V

ε
bd −B(ε2, Dε2)V ε

bd =
∑
j≥−1

εjGj(2.14)

implies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G−1 = (ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θd0 + A1(0)∂z(b0 + d0),

G0 = Lbd(∂t, ∂x2)(b0 + d0) + z(ϕ0
tA

′
0(0) + ϕ0

x2
A′

2(0))∂θd0 −B1∂
2
zb0

+ zA′
1(0)∂z(b0 + d0) − (B1∂

2
z + (ϕ0

x2
)2B2∂

2
θ + ϕ0

x2
B3∂

2
zθ)d0

+ (ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θd1 + A1(0)∂z(b1 + d1),

. . . . . .

Gj = Lbd(∂t, ∂x2)(bj + dj) + z(ϕ0
tA

′
0(0) + ϕ0

x2
A′

2(0))∂θdj −B1∂
2
zbj

+ zA′
1(0)∂z(bj + dj) − (B1∂

2
z + (ϕ0

x2
)2B2∂

2
θ + ϕ0

x2
B3∂

2
zθ)dj

+ (ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θdj+1 + A1(0)∂z(bj+1 + dj+1) + gj

(2.15)
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for any j ≥ 1, where gj depends smoothly on {bk, dk}k≤j−1 and their derivatives up
to order two, Ak(0) = Ak(V

′)|x1=0, A
′
k(0) = ∂x1(Ak(V

′))|x1=0, and

Lbd(∂t, ∂x2
) = A0(0)∂t + A2(0)∂x2

.

From the equations in (2.1) and the assumption that each term (bj , dj) in V ε
bd is

rapidly decreasing in z when z → +∞, it is natural to set

Fj ≡ 0 and Gj ≡ 0(2.16)

in (2.12) and (2.14), respectively, for all j ≥ −1.
The next step is to derive the governing problems for various order of profiles

from (2.16) and initial and boundary conditions given in (2.1).

Let {
rk(∇ϕ),
lk(∇ϕ)}3
k=1 be the right and left eigenvectors given in (2.5) associ-

ated with (ξ1, ξ2) = (ϕx1 , ϕx2).
It follows from F−1 = 0 that

c0(t, x; θ) = v0(t, x; θ)
r1(∇ϕ)(2.17)

with v0(t, x; θ) being a scalar unknown.
Acting upon the mean value operator

mθ(u) =
1

2π

∫ 2π

0

u(θ)dθ

on the equation F0 = 0, we deduce

L(∂t, ∂x)a0 = mθ(Φ)(2.18)

and the difference between (2.18) and F0 = 0 gives

L(∂t, ∂x)c0 − (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)∂

2
θc0 − Φ + mθ(Φ)

= −
2∑

k=0

ϕxk
Ak(V

′)∂θc1.
(2.19)

Multiplying 
l1(∇ϕ) from the left of (2.19), and using (2.17), one discovers that
v0(t, x; θ) satisfies the following problem:

⎧⎪⎪⎨
⎪⎪⎩

[(
l1A0
r1)∂t + (
l1A1
r1)∂x1 + (
l1A2
r1)∂x2 ]v0 +
l1(A0∂t
r1 + A1∂x1
r1 + A2∂x2
r1)v0

−
l1(ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)
r1∂

2
θv0 = 
l1(Φ − mθ(Φ))

v0|t=0 = 0.

(2.20)

Note that the vector field

(
l1A0
r1)∂t + (
l1A1
r1)∂x1 + (
l1A2
r1)∂x2

is tangential to the boundary {x1 = 0}, and


l1(ϕ
2
x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)
r1 =

1

ρ′
(ϕ2

x1
+ ϕ2

x2
) > 0.
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The problem (2.20) is the one for a linear degenerate parabolic equation, which
can be easily solved.

To solve a0 from (2.18), we need to impose a boundary datum for a
(2)
0 on {x1 = 0}.

It follows from the ansatz (2.10) and (2.11) that the 0(ε0)−term of the boundary
condition M+V ε|x1=0 = 0 in (2.1) gives rise to

a
(k)
0 (t, x) + c

(k)
0 (t, x; θ) + b

(k)
0 (t, x2; z) + d

(k)
0 (t, x2; z, θ

0) = 0(2.21)

on {x1 = 0, z = 0, θ = θ0} for k ∈ {2, 3}. Since c
(k)
0 and d

(k)
0 are 2π−periodic in θ and

θ0, with mean values vanishing, respectively, the condition (2.21) is equivalent to{
a
(k)
0 (t, x) + b

(k)
0 (t, x2; z) = 0 on {x1 = z = 0}

c
(k)
0 (t, x; θ) + d

(k)
0 (t, x2; z, θ

0) = 0 on {x1 = z = 0, θ = θ0}
(2.22)

for k ∈ {2, 3}.
Thus, we should first study b

(2)
0 in order to determine the boundary value of a

(2)
0 .

Acting upon the mean value operator mθ on G−1 = 0 leads to

A1(0)∂zb0 = 0.(2.23)

So, G−1 = 0 gives rise to

(ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θd0 + A1(0)∂zd0 = 0.(2.24)

From (2.23), we obtain immediately that

∂zb
(1)
0 = ∂zb

(2)
0 = 0

which implies

b
(1)
0 = b

(2)
0 ≡ 0(2.25)

by using b0 ∈ S(IR+
z ).

Thus, it follows from (2.18) and (2.22) that a0(t, x) satisfies the following problem
for the linearized Euler equations:⎧⎪⎨

⎪⎩
(A0(V

′)∂t + A1(V
′)∂x1

+ A2(V
′)∂x2

)a0 = mθ(Φ), t, x1 > 0,

a
(2)
0 |x1=0 = 0,

a0|t=0 = V0(x).

(2.26)

To determine b
(3)
0 (t, x2; z), by acting upon the mean value operator mθ on G0 = 0

we deduce that

Lbd(∂t, ∂x2)b0 + zA′
1(0)∂zb0 + A1(0)∂zb1 = B1∂

2
zb0,(2.27)

and the difference between (2.27) and G0 = 0 gives rise to

Lbd(∂t, ∂x2)d0 + z(ϕ0
tA

′
0(0) + ϕ0

x2
A′

2(0))∂θd0 + zA′
1(0)∂zd0(2.28)

−(B1∂
2
z + (ϕ0

x2
)2B2∂

2
θ + ϕ0

x2
B3∂

2
zθ)d0

= −(ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θd1 −A1(0)∂zd1.
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From the third component of (2.27), we conclude that b
(3)
0 (t, x2; z) satisfies the fol-

lowing problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂t + v′2(0)∂x2)b
(3)
0 + z

∂v′1(0)

∂x1
∂zb

(3)
0 − 1

ρ′(0)
∂2
zb

(3)
0 = 0, t, z > 0,

b
(3)
0 |z=0 = −a

(3)
0 (t, 0, x2),

b
(3)
0 |t=0 = 0,

(2.29)

where a
(3)
0 is given by (2.26).

The problem (2.29) is the one for a linearized Prandtl equation, which has been
solved by Xin and Yanagisawa in [12].

Now, let us derive the problems for d0(t, x2; z, θ) from (2.24) and (2.28).
It follows from ϕ0

t + v′2(0)ϕ0
x2

= 0 that

(ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θd + A1(0)∂zd =

⎛
⎜⎝

ρ′(0)(ϕ0
x2
∂θd

(3) + ∂zd
(2))

c2(0)∂zd
(1)

c2(0)ϕ0
x2
∂θd

(1)

⎞
⎟⎠.

Thus, (2.24) yields

ϕ0
x2
∂θd

(3)
0 + ∂zd

(2)
0 = 0(2.30)

and

ϕ0
x2
∂θd

(1)
0 = 0, ∂zd

(1)
0 = 0

which implies

d
(1)
0 ≡ 0.(2.31)

To solve (d
(2)
0 , d

(3)
0 ), we define the operator E by

E

⎛
⎝ d(1)

d(2)

d(3)

⎞
⎠ =

(
mθd

(1)

ϕ0
x2
∂θd

(2) − ∂zd
(3)

)

for any d = (d(1), d(2), d(3))T ∈ C1(R+
z × T 1

θ ). It is easy to know that for any
d(t, x2; z, θ) ∈ C1

p(T 1
θ ) ∩ S(R+

z ) with mθ(d) = 0, we have

E((ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θd + A1(0)∂zd) = 0.(2.32)

Acting upon the operator E on (2.28) and using (2.32), one gets

E(left-hand side of (2.28)) = 0.(2.33)

Denote by A and B the second and the third components of the left-hand side of
(2.28), respectively. Then, one obtains from (2.30) and (2.31) that⎧⎪⎪⎨
⎪⎪⎩
A= ρ′(0)((∂t + v′2(0)∂x2)d

(2)
0 + z

∂v′1(0)

∂x1
∂zd

(2)
0 + z

∂v′2(0)

∂x1
ϕ0
x2
∂θd

(2)
0 )−(∂2

z + (ϕ0
x2

)2∂2
θ )d

(2)
0 ,

B = ρ′(0)((∂t + v′2(0)∂x2
)d

(3)
0 + z

∂v′1(0)

∂x1
∂zd

(3)
0 + z

∂v′2(0)

∂x1
ϕ0
x2
∂θd

(3)
0 )−(∂2

z + (ϕ0
x2

)2∂2
θ )d

(3)
0 .



LINEARIZED COMPRESSIBLE NAVIER–STOKES EQUATIONS 1265

Now, (2.33) implies that

ϕ0
x2
∂θA− ∂zB = 0,

which can be explicitly written as

(∂t + v′2(0)∂x2)ω0 + z

(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
ω0 −

1

ρ′(0)
(∂2

z + (ϕ0
x2

)2∂2
θ )ω0(2.34)

−
(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
d
(3)
0 = 0,

where ω0(t, x2; z, θ) = ϕ0
x2
∂θd

(2)
0 − ∂zd

(3)
0 .

Combining (2.30) with (2.34) and using (2.22), one obtains that d
(3)
0 and ω0 satisfy

the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
z + (ϕ0

x2
)2∂2

θ )d
(3)
0 = −∂zω0

(∂t + v′2(0)∂x2
)ω0 + z

(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
ω0

− 1

ρ′(0)
(∂2

z + (ϕ0
x2

)2∂2
θ )ω0 −

(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
d
(3)
0 = 0

d
(3)
0 |z=0 = −c

(3)
0 (t, 0, x2; θ)

(ω0 + ∂zd
(3)
0 )|z=0 = −ϕ0

x2
(∂θc

(2)
0 )(t, 0, x2; θ)

(d
(3)
0 , ω0) ∈ S(R+

z )

ω0|t=0 = 0

(2.35)

and d
(2)
0 (t, x2; z, θ) satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(∂2

z + (ϕ0
x2

)2∂2
θ )d

(2)
0 = ϕ0

x2
∂θω0

d
(2)
0 |z=0 = −c

(2)
0 (t, 0, x2; θ)

d
(2)
0 ∈ S(R+

z ),

(2.36)

where (c
(2)
0 , c

(3)
0 ) are given by (2.17) and (2.20).

The problems for high order terms in the expansion of V ε
in(t, x)+V ε

bd(t, x) can be
formulated in a similar way. For completeness, we shall derive these problems in the
appendix.

In section 3, we study the well-posedness of the problem (2.35) in detail, and in
section 4 we justify rigorously the above formal analysis to conclude the following
main result of this paper.

Theorem 2.1. Suppose that compatibility conditions for problems (2.1), (2.29),
(2.35), and (5.11), (5.13), (5.22) given later are satisfied. Then, the solution V ε =
(ρε, vε1, v

ε
2) of (2.1) admits the following asymptotics:

V ε(t, x) = a0(t, x) + c0

(
t, x;

ϕ(t, x)

ε

)
+ b0

(
t, x2;

x1

ε

)
+ d0

(
t, x2;

x1

ε
,
ϕ0(t, x2)

ε

)
+ O(ε)

(2.37)
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in L∞([0, T ], L2(R2
+)) for any T > 0, where a0(t, x) satisfies the problem for the

linearized Euler equations (2.26), c0 = v0(t, x; ϕ(t,x)
ε )
r1(∇ϕ) with v0 satisfying the

degenerate parabolic equation (2.20), (b
(1)
0 , b

(2)
0 ) = 0 and b

(3)
0 (t, x2; z) satisfies the lin-

earized Prandtl equation (2.29), d
(1)
0 = 0, and (d

(2)
0 , d

(3)
0 )(t, x2; z, θ) together with its

vorticity with respect to (z, θ)−variables satisfy the Poisson–Prandtl coupled system
(2.35) and the Poisson equation (2.36), respectively.

Remark 2.2. When the wavelength of the force term Φ is shorter than ε, i.e.,

Φ = Φ(t, x; ϕ(t,x)
εα ) with α > 1, we obtain c0 = d0 ≡ 0, and (a0, b0) are the same as the

case studied in [12] with Φ ≡ 0. This phenomenon will be studied for the case α = 2
in the appendix.

3. The study of a Poisson–Prandtl coupled system. It is clear from prob-

lems (2.35), (2.36), and (5.22), (5.23) given later that in order to determine (d
(2)
j , d

(3)
j )

for any j ≥ 0, we need to study the following initial-boundary value problem for a
Poisson–Prandtl coupled system in {t, z > 0, x ∈ R, θ ∈ T 1}:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
z + a2∂2

θ )u = f(t, x; z, θ) − ∂zw

(∂t + a1∂x)w + z(a2∂z + a3∂θ)w − a2
4(∂

2
z + a2∂2

θ )w − (a2∂z + a3∂θ)u = g(t, x; z, θ)

u|z=0 = b0(t, x; θ), u ∈ S(R+
z )

(w + ∂zu)|z=0 = b1(t, x; θ), (u,w) ∈ S(R+
z )

w|t=0 = 0

(3.1)

for the unknowns (u,w), where (f, g) are rapidly decreasing in z when z → +∞, and
periodic in θ ∈ T 1 = R/2πZ as well as for (b0, b1)(t, x; θ) with mean values vanishing,

mθ(f) = mθ(g) = mθ(b0) = mθ(b1) = 0,

all coefficients in (3.1) are smooth functions of (t, x), with a(t, x) ≥ a0, a4(t, x) ≥ a0

for a positive constant a0.
For simplicity, we assume that (f, g, b0, b1) are smooth. To study smooth solutions

to (3.1), as usual, one needs to impose compatibility conditions on data.
(1) The zero-th order compatibility condition.
From the initial data w|t=0 = 0, we have ∂zw|t=0 = 0. Thus, from the first and

third equations of (3.1), the datum u0(x, z, θ) = u|t=0 should satisfy the problem{
(∂2

z + a2
0∂

2
θ )u0 = f(0, x; z, θ)

u0|z=0 = b0(0, x, θ), u0 ∈ S(R+
z ),

(3.2)

where a0(x) = a(0, x).
By using Remark 3.2 given later, the problem (3.2) has a unique solution u0(x, z, θ),

and can be explicitly given by f(0, x; z, θ) and b0(0, x, θ)
From the fourth equation in (3.1), we conclude the zero-th order compatibility

condition for (3.1) as follows:

b1(0, x; θ) = ∂zu0|z=0.(3.3)

(2) The kth order compatibility condition for any fixed integer k ≥ 1.
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In the discussion of compatibility conditions of (3.1) up to order k − 1, we first
suppose that one has the data ul(x, z, θ) = ∂l

tu|t=0 and wl(x, z, θ) = ∂l
tw|t=0 for

any integer l ≤ k − 1 in terms of (f, g, b0, b1). From the second equation in (3.1),
we immediately obtain the datum wk(x, z, θ) = ∂k

t w|t=0 in terms of {ul, wl}l≤k−1.
By differentiating the first equation of (3.1) k-times with respect to t, and applying
Remark 3.2 (given later) to solve the problem{

(∂2
z + a2

0∂
2
θ )uk = Fk(x, z, θ)

uk|z=0 = (∂k
t b0)(0, x, θ), uk ∈ S(R+

z )

with Fk(x, z, θ) = (∂k
t f − ∂k

t (a2∂2
θu) + a2∂2

θ∂
k
t u− ∂z∂

k
t w)|t=0 being given in terms of

{ul}l≤k−1 and {wl}l≤k, we can determine the data uk(x, z, θ) = ∂k
zu|t=0.

In this way, we get formulae of (uk, wk) in terms of (f, g, b0, b1). From the bound-
ary condition of (3.1), it follows that the kth order compatibility condition should
be

(wk + ∂zuk)|z=0 = (∂k
t b1)(0, x; θ)(3.4)

which can be explicitly formulated in terms of (f, g, b0, b1).
In the remainder of this section, for simplicity, we assume that any order com-

patibility condition is satisfied for the problem (3.1).
The goal of this section is to study the solvability of the problem (3.1) in the

class that u and w are rapidly decreasing when z → +∞ and periodic in θ ∈ T 1

with mθ(u,w) = 0, which constitutes the main part of the rigorous justification for
the formal analysis given in section 2. To this end, first, we derive a functional
representation u = u(w) of u in terms of w from the first and the third equations of
(3.1), second, by substituting the relation u = u(w) into the second and the fourth
equations of (3.1), we solve the unknown w = w(t, x; z, θ).

3.1. Derivation of the representation u = u(w). To deduce the relation
u = u(w), we first consider the following boundary value problem:{

(∂2
z + a2∂2

θ )u = F (t, x; z, θ)

u|z=0 = b0(t, x; θ), u ∈ S(R+
z ),

(3.5)

where F is rapidly decreasing when z → +∞, and (b0, F ) are periodic in θ ∈ T 1 with
mean values vanishing.

Obviously, to solve the problem (3.5) is equivalent to studying the following prob-
lem: {

(∂2
z + a2∂2

θ )u = F (t, x; z, θ)

u|z=0 = b0(t, x; θ), uz|z=0 = u0(t, x; θ),
(3.6)

where u0, periodic in θ ∈ T 1 with mθ(u0) = 0, will be determined by (b0(t, x; θ),
F (t, x; z, θ)) such that the problem (3.6) admits a unique solution u(t, x; z, θ) ∈
C2

p(T 1
θ ) ∩ S(R+

z ) with mθ(u) = 0.
Denote by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
F (t, x; z, θ) =

∑
k �=0

F (k)(t, x; z)eikθ

b0(t, x; θ) =
∑
k �=0

b
(k)
0 (t, x)eikθ

(3.7)
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the Fourier expansions of (F, b0) with respect to θ ∈ T 1.
Lemma 3.1. The necessary and sufficient condition for the solution u(t, x; z, θ)

of (3.6) to be rapidly decreasing when z → +∞ is

u0(t, x; θ) =−
∞∑
k=1

(
kab

(k)
0 +

∫ ∞

0

e−kaξF (k)(t, x; ξ)dξ

)
eikθ

(3.8)

+

−∞∑
k=−1

(
kab

(k)
0 −

∫ ∞

0

ekaξF (k)(t, x; ξ)dξ

)
eikθ.

Proof. (1) First, we solve the following problem:{
(∂2

z + a2∂2
θ )w = F (t, x; z, θ)

w|z=0 = 0, wz|z=0 = w0(t, x; θ).
(3.9)

We will find w0(t, x; θ), periodic in θ ∈ T 1 with mθ(w0) = 0, such that the solution
w(t, x; z, θ) to (3.9) is rapidly decreasing when z → +∞.

If we set ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(t, x; z, θ) =
∑
k �=0

w(k)(t, x; z)eikθ

w0(t, x; θ) =
∑
k �=0

w
(k)
0 (t, x)eikθ,

(3.10)

then the problem (3.9) is equivalent to the following one for w(k)(t, x; z):{
(∂2

z − k2a2)w(k) = F (k)(t, x; z)

w(k)|z=0 = 0, w
(k)
z |z=0 = w

(k)
0 (t, x; θ)

(3.11)

for any k �= 0.
Obviously, the solution to (3.11) can be expressed as

w(k)(t, x; z) =
1

2ka

(
w

(k)
0 (t, x) +

∫ z

0

e−kaξF (k)(t, x; ξ)dξ

)
ekaz

(3.12)

− 1

2ka

(
w

(k)
0 (t, x) +

∫ z

0

ekaξF (k)(t, x; ξ)dξ

)
e−kaz.

When k > 0, the necessary condition for w(k) ∈ S(R+
z ) is

lim
z→+∞

(
w

(k)
0 (t, x) +

∫ z

0

e−kaξF (k)(t, x; ξ)dξ

)
= 0

which implies

w
(k)
0 (t, x) = −

∫ ∞

0

e−kaξF (k)(t, x; ξ)dξ.(3.13)

Substituting (3.13) into (3.12) it follows

(3.14)

w(k)(t, x; z) = − 1

2ka

∫ ∞

z

eka(z−ξ)F (k)(t, x; ξ)dξ +
1

2ka

∫ ∞

0

e−ka(z+ξ)F (k)(t, x; ξ)dξ

− 1

2ka

∫ z

0

eka(ξ−z)F (k)(t, x; ξ)dξ.
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Since F (k) ∈ S(R+
z ), we deduce∫ ∞

0

e−ka(z+ξ)F (k)(t, x; ξ)dξ ∈ S(R+
z )

and ∫ ∞

z

eka(z−ξ)F (k)(t, x; ξ)dξ ∈ S(R+
z ).

On the other hand, we have∣∣∣∣zl
∫ z

0

eka(ξ−z)F (k)(t, x; ξ)dξ

∣∣∣∣ ≤ ∑
0≤j≤l

(
l
j

) ∣∣∣∣
∫ z

0

(z − ξ)l−jξje−ka(z−ξ)F (k)(t, x; ξ)dξ

∣∣∣∣
which is bounded for all l ≥ 0 by using F (k) ∈ S(R+

z ). Thus, we also have∫ z

0

eka(ξ−z)F (k)(t, x; ξ)dξ ∈ S(R+
z ).

Therefore, the function w(k)(t, x; z) given in (3.14) is rapidly decreasing when
z → +∞.

Similarly, we deduce that when k < 0, the necessary and sufficient condition for
w(k) given in (3.1) belonging to S(R+

z ) is

w
(k)
0 (t, x) = −

∫ ∞

0

ekaξF (k)(t, x; ξ)dξ(3.15)

and in this case, the solution to (3.11) can be expressed as

w(k)(t, x; z) =
1

2ka

∫ ∞

z

eka(ξ−z)F (k)(t, x; ξ)dξ +
1

2ka

∫ z

0

eka(z−ξ)F (k)(t, x; ξ)dξ

(3.16)

− 1

2ka

∫ ∞

0

eka(ξ+z)F (k)(t, x; ξ)dξ.

Combining (3.13), (3.14), and (3.15) with (3.16) shows that

w(t, x; z, θ) =
∞∑
k=1

1

2ka

[ ∫ ∞

0

e−ka(z+ξ)F (k)(t, x; ξ)dξ −
∫ z

0

e−ka(z−ξ)F (k)(t, x; ξ)dξ

−
∫ ∞

z

eka(z−ξ)F (k)(t, x; ξ)dξ

]
eikθ +

−∞∑
k=−1

1

2ka

[ ∫ z

0

eka(z−ξ)F (k)(t, x; ξ)dξ

−
∫ ∞

0

eka(z+ξ)F (k)(t, x; ξ)dξ +

∫ ∞

z

e−ka(z−ξ)F (k)(t, x; ξ)dξ

]
eikθ

∈ S(R+
z )(3.17)

is the unique solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂2
z + a2∂2

θ )w = F (t, x; z, θ)

w|z=0 = 0

wz|z=0 = −
∞∑
k=1

∫ ∞

0

ek(iθ−aξ)F (k)(t, x; ξ)dξ −
−∞∑
k=−1

∫ ∞

0

ek(iθ+aξ)F (k)(t, x; ξ)dξ.

(3.18)
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(2) Let v = u−w with u being the solution to (3.6). Then v solves the following
problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂2
z + a2∂2

θ )v = 0

v|z=0 = b0(t, x; θ)

vz|z=0 = u0(t, x; θ)+

∞∑
k=1

∫ ∞

0

ek(iθ−aξ)F (k)(t, x; ξ)dξ+

−∞∑
k=−1

∫ ∞

0

ek(iθ+aξ)F (k)(t, x; ξ)dξ.

(3.19)

Denote by ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(t, x; z, θ) =
∑
k �=0

v(k)(t, x; z)eikθ,

u0(t, x; θ) =
∑
k �=0

u
(k)
0 (t, x)eikθ

the Fourier expansions of (v, u0). Then, from (3.19), v(k) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
z − k2a2)v(k) = 0,

v(k)|z=0 = b
(k)
0 (t, x),

v
(k)
z |z=0 =

⎧⎪⎪⎨
⎪⎪⎩

u
(k)
0 (t, x) +

∫ ∞

0

e−kaξF (k)(t, x; ξ)dξ, k ≥ 1,

u
(k)
0 (t, x) +

∫ ∞

0

ekaξF (k)(t, x; ξ)dξ, k ≤ −1.

(3.20)

It follows that

v(k)(t, x; z) =

[
1

2
b
(k)
0 +

1

2ka

(
u

(k)
0 +

∫ +∞

0

e−kaξF (k)(t, x; ξ)dξ

)]
ekaz

+

[
1

2
b
(k)
0 − 1

2ka

(
u

(k)
0 +

∫ +∞

0

e−kaξF (k)(t, x; ξ)dξ

)]
e−kaz

(3.21)

when k > 0, and

v(k)(t, x; z) =

[
1

2
b
(k)
0 +

1

2ka

(
u

(k)
0 +

∫ +∞

0

ekaξF (k)(t, x; ξ)dξ

)]
ekaz

+

[
1

2
b
(k)
0 − 1

2ka

(
u

(k)
0 +

∫ +∞

0

ekaξF (k)(t, x; ξ)dξ

)]
e−kaz

(3.22)

when k < 0.
From (3.21) and (3.22), we conclude that one should have the condition (3.8) to

guarantee v(k) ∈ S(R+
z ), and in this case we have

v(t, x; z, θ) =

∞∑
k=1

b
(k)
0 (t, x)e−k(az−iθ) +

−∞∑
k=−1

b
(k)
0 (t, x)ek(az+iθ).(3.23)
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Remark 3.2. From (3.17) and (3.23), it immediately follows that the unique
solution to the problem (3.5) is given by

(3.24)

u(t, x; z, θ) =

∞∑
k=1

b
(k)
0 (t, x)e−k(az−iθ) +

−∞∑
k=−1

b
(k)
0 (t, x)ek(az+iθ)

+

∞∑
k=1

1

2ka

[ ∫ ∞

0

e−ka(z+ξ)F (k)(t, x; ξ)dξ −
∫ z

0

e−ka(z−ξ)F (k)(t, x; ξ)dξ

−
∫ ∞

z

eka(z−ξ)F (k)(t, x; ξ)dξ

]
eikθ +

−∞∑
k=−1

1

2ka

[ ∫ z

0

eka(z−ξ)F (k)(t, x; ξ)dξ

−
∫ ∞

0

eka(z+ξ)F (k)(t, x; ξ)dξ +

∫ ∞

z

e−ka(z−ξ)F (k)(t, x; ξ)dξ

]
eikθ.

For the problem (3.1), let the Fourier expansion of w be

w(t, x; z, θ) =
∑
k �=0

w(k)(t, x; z)eikθ.

Using (3.24), we conclude with the following proposition.
Proposition 3.3. For the problem (3.1), the solution u has the following repre-

sentation in terms of w:

u(t, x; z, θ) =
∞∑
k=1

b
(k)
0 (t, x)ek(iθ−az) +

−∞∑
k=−1

b
(k)
0 (t, x)ek(iθ+az)

+

∞∑
k=1

1

2

{∫ ∞

0

e−ka(z+ξ)

(
f (k)(t, x; ξ)

ka
− w(k)(t, x; ξ)

)
dξ

−
∫ z

0

e−ka(z−ξ)

(
f (k)(t, x; ξ)

ka
+ w(k)(t, x; ξ)

)
dξ

−
∫ ∞

z

eka(z−ξ)

(
f (k)(t, x; ξ)

ka
− w(k)(t, x; ξ)

)
dξ

}
eikθ(3.25)

−
−∞∑
k=−1

1

2

{∫ ∞

0

eka(z+ξ)

(
f (k)(t, x; ξ)

ka
+ w(k)(t, x; ξ)

)
dξ

−
∫ z

0

eka(z−ξ)

(
f (k)(t, x; ξ)

ka
+ w(k)(t, x; ξ)

)
dξ

−
∫ ∞

z

e−ka(z−ξ)

(
f (k)(t, x; ξ)

ka
+ w(k)(t, x; ξ)

)
dξ

}
eikθ

and

∂zu|z=0 =

−∞∑
k=−1

kab
(k)
0 (t, x)ekiθ −

∞∑
k=1

kab
(k)
0 (t, x)ekiθ

−
∞∑
k=1

∫ ∞

0

ek(iθ−aξ)(f (k)(t, x; ξ) − ∂ξw
(k)(t, x; ξ))dξ(3.26)

−
−∞∑
k=−1

∫ ∞

0

ek(iθ+aξ)(f (k)(t, x; ξ) − ∂ξw
(k)(t, x; ξ))dξ.
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3.2. The problem of a linear integro-Prandtl equation. It follows from
Proposition 3.3 that to solve the problem (3.1), it suffices to use (3.25) and (3.26) to
study the following problem for w:

⎧⎪⎪⎨
⎪⎪⎩

(∂t + a1∂x)w + z(a2∂z + a3∂θ)w − a2
4(∂

2
z + a2∂2

θ )w − (a2∂z + a3∂θ)u = g,

w|z=0 = b1(t, x; θ) − ∂zu(t, x; 0, θ), w ∈ S(R+
z ),

w|t=0 = 0.

(3.27)

Obviously, in (3.27) both the equation and boundary condition have integral
terms coming from those of u. First, let us transform (3.27) into a problem with the
boundary condition being a standard Dirichlet form.

The compatibility conditions for the problem (3.27) follow immediately from those
for the problem (3.1) given at the beginning of this section.

Denote by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w(t, x; z, θ) =
∑
k �=0

w(k)(t, x; z)eikθ,

g(t, x; z, θ) =
∑
k �=0

g(k)(t, x; z)eikθ,

b1(t, x; θ) =
∑
k �=0

b
(k)
1 (t, x)eikθ

(3.28)

the Fourier expansions with respect to θ ∈ T 1.

It follows from (3.27) that w(k)(t, x; z) satisfies the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)w(k) + z(a2∂z + ika3)w
(k) − a2

4(∂
2
z − k2a2)w(k) + a2w

(k)

+
k

2
(ia3 − aa2)

[ ∫ +∞

0

e−ka(z+ξ)

(
w(k)(t, x; ξ) − f (k)(t, x; ξ)

ka

)
dξ

+

∫ z

0

e−ka(z−ξ)

(
w(k)(t, x; ξ) +

f (k)(t, x; ξ)

ka

)
dξ

]

− k

2
(aa2 + ia3)

∫ +∞

z

eka(z−ξ)

(
w(k)(t, x; ξ) − f (k)(t, x; ξ)

ka

)
dξ

= g(k)(t, x; z) − k(aa2 + ia3)b
(k)
0 e−kaz

w(k)|z=0 = b
(k)
1 + kab

(k)
0 +

∫ +∞

0

e−kaξ(f (k)(t, x; ξ) − ∂ξw
(k)(t, x; ξ))dξ

w(k)|t=0 = 0, w(k) ∈ S(R+
z )

(3.29)
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for any k ≥ 1, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)w(k) + z(a2∂z + ika3)w
(k) − a2

4(∂
2
z − k2a2)w(k) + a2w

(k)

+
k

2
(aa2 + ia3)

[ ∫ +∞

0

eka(z+ξ)

(
w(k)(t, x; ξ) +

f (k)(t, x; ξ)

ka

)
dξ

+

∫ z

0

eka(z−ξ)

(
w(k)(t, x; ξ) − f (k)(t, x; ξ)

ka

)
dξ

]

+
k

2
(aa2 − ia3)

∫ +∞

z

e−ka(z−ξ)

(
w(k)(t, x; ξ) +

f (k)(t, x; ξ)

ka

)
dξ

= g(k)(t, x; z) + k(aa2 + ia3)b
(k)
0 ekaz

w(k)|z=0 = b
(k)
1 − kab

(k)
0 +

∫ +∞

0

ekaξ(f (k)(t, x; ξ) − ∂ξw
(k)(t, x; ξ))dξ

w(k)|t=0 = 0, w(k) ∈ S(R+
z )

(3.30)

for any k ≤ −1.

The boundary conditions of w(k)(t, x; z) at {z = 0} given in (3.29) and (3.30) can
be expressed as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ +∞

0

e−kaξ(f (k) − kaw(k))(t, x; ξ)dξ + b
(k)
1 (t, x) + kab

(k)
0 (t, x) = 0, k ≥ 1,

∫ +∞

0

ekaξ(f (k) + kaw(k))(t, x; ξ)dξ + b
(k)
1 (t, x) − kab

(k)
0 (t, x) = 0, k ≤ −1.

(3.31)

In terms of the transformation

Y (k)(t, x; z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ +∞

z

eka(z−ξ)w(k)(t, x; ξ)dξ, k ≥ 1

∫ +∞

z

eka(ξ−z)w(k)(t, x; ξ)dξ, k ≤ −1,

(3.32)

problems (3.29), (3.30), and (3.31) can be reformulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)Y (k) − a2
4(∂

2
z − k2a2)Y (k) + z(a2∂z + ika3)Y

(k)

+ ka5

∫ +∞

z

eka(z−ξ)Y (k)(t, x; ξ)dξ + ka6

∫ z

0

eka(ξ−z)Y (k)(t, x; ξ)dξ

= G(k)(t, x; z)

Y (k)|z=0 = W
(k)
0 (t, x), Y (k) ∈ S(R+

z )

Y (k)|t=0 = 0

(3.33)
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for any k ≥ 1, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)Y (k) − a2
4(∂

2
z − k2a2)Y (k) + z(a2∂z + ika3)Y

(k)

+ ka5

∫ +∞

z

eka(ξ−z)Y (k)(t, x; ξ)dξ + ka6

∫ z

0

eka(z−ξ)Y (k)(t, x; ξ)dξ

= G(k)(t, x; z)

Y (k)|z=0 = W
(k)
0 (t, x), Y (k) ∈ S(R+

z )

Y (k)|t=0 = 0

(3.34)

for any k ≤ −1, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(k) =

∫ +∞

z

eka(z−ξ)g(k)(t, x; ξ)dξ +
aa2 − ia3

4ka2

(∫ +∞

0

e−ka(z+ξ)f (k)(t, x; ξ)dξ

+

∫ +∞

z

eka(z−ξ)f (k)(t, x; ξ)dξ +

∫ z

0

eka(ξ−z)f (k)(t, x; ξ)dξ

)

− aa2 + ia3

2a

∫ ∞

z

(ξ − z)eka(z−ξ)f (k)(t, x; ξ)dξ +
aa2 − ia3

2ka2
e−kazb

(k)
1 (t, x)

W
(k)
0 (t, x) = b

(k)
0 +

1

ka
b
(k)
1 +

1

ka

∫ +∞

0

e−kaξf (k)(t, x; ξ)dξ

for any k ≥ 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(k) =

∫ +∞

z

eka(ξ−z)g(k)(t, x; ξ)dξ − aa2 + ia3

4ka2

(∫ +∞

0

eka(z+ξ)f (k)(t, x; ξ)dξ

+

∫ ∞

z

eka(ξ−z)f (k)(t, x; ξ)dξ +

∫ z

0

eka(z−ξ)f (k)(t, x; ξ)dξ

)

− aa2 − ia3

2a

∫ ∞

z

(ξ − z)eka(ξ−z)f (k)(t, x; ξ)dξ − aa2 + ia3

2ka2
ekazb

(k)
1 (t, x)

W
(k)
0 (t, x) = b

(k)
0 − 1

ka
b
(k)
1 − 1

ka

∫ +∞

0

ekaξf (k)(t, x; ξ)dξ

for any k ≤ −1, and⎧⎪⎪⎨
⎪⎪⎩

a5 = at + a1ax +
aa2 + ia3

2
, a6 = −1

2
(aa2 + ia3), k ≥ 1,

a5 = −
(
at + a1ax +

aa2 − ia3

2

)
, a6 =

1

2
(aa2 + ia3), k ≤ −1.

The compatibility conditions for problems (3.33) and (3.34) can be easily formu-
lated in a classical way. For example, the zero-th order compatibility condition for
(3.33) is

W
(k)
0 (0, x) = 0

and the first order one is

G(k)(0, x; 0) = (∂tW
(k)
0 )(0, x).

It is not difficult to verify that compatibility conditions for problems (3.33) and
(3.34) are implied directly by those for the problem (3.1).

The problem (3.33) shall be solved in the following steps, and (3.34) can be studied
similarly.
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3.2.1. Step 1: Homogenization of the initial data. Let χ(z) ∈ C∞
0 (R) be

an arbitrary smooth function with compact support and χ(0) = 1. Then, the function

Y
(k)
0 (t, x; z) = χ(z)W

(k)
0 (t, x)

satisfies the initial and boundary conditions given in (3.33) due to the compatibility
conditions.

Using the transformation Ỹ (k)=Y (k)−Y
(k)
0 , if necessary, it suffices to study the

problem (3.33) for the special case Y (k)|z=0 ≡ 0, which will be assumed in what follows.

3.2.2. Step 2: Construction of approximation solutions. We construct an

approximate solution sequence {Y (k)
n }n≥1 of (3.33) by solving the following problem

for each n ≥ 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)Y (k)
n − a2

4(∂
2
z − k2a2)Y (k)

n + z(a2∂z + ika3)Y
(k)
n − 1

n
∂2
xY

(k)
n

+ka5

∫ +∞

z

eka(z−ξ)Y
(k)
n−1(t, x; ξ)dξ + ka6

∫ z

0

eka(ξ−z)Y
(k)
n−1(t, x; ξ)dξ = G(k)(t, x; z)

Y
(k)
n |z=0 = 0, Y

(k)
n ∈ S(R+

z )

Y
(k)
n |t=0 = 0,

(3.35)

where Y
(k)
0 (t, x, z) ≡ 0.

It remains to study properties of the sequence {Y (k)
n }n≥1. Most of this part will

follow the idea of Xin and Yanagisawa in section 4 of [12] for studying the linearized
Prandtl equation.

In what follows, for any j ∈ N, we shall denote by Cj a constant depending only
upon the bounds of derivatives of coefficients appeared in (3.35) up to order j.

3.2.3. Step 3: The boundedness of {Y (k)
n }n≥1 in L2− norm. Denote by

〈z〉 = (1 + z2)
1
2 , and Ω = R

2
+ = {(x, z) ∈ R

2| z > 0}. For any fixed integer l ∈ N,

multiplying (3.35) by < z >2l Y
(k)

n , and integrating the resulting equation over Ω,
one gets

d

dt

∫
Ω

〈z〉2l|Y (k)
n |2dxdz −

∫
Ω

∂xa1〈z〉2l|Y (k)
n |2dxdz

+ 2k2

∫
Ω

a2a2
4〈z〉2l|Y (k)

n |2dxdz + 4lR
∫

Ω

a2
4z〈z〉2(l−1)Y (k)

n ∂zY
(k)

n dxdz

+ 2

∫
Ω

a2
4〈z〉2l|∂zY (k)

n |2dxdz +
2

n

∫
Ω

〈z〉2l|∂xY (k)
n |2dxdz + 2kA0

= 2R
∫

Ω

〈z〉2lG(k)Y
(k)

n dxdz,

(3.36)

where R(·) denotes the real part of the related functions, and

A0 = R
∫

Ω

〈z〉2lY (k)

n

(
a5

∫ +∞

z

eka(z−ξ)Y
(k)
n−1(t, x; ξ)dξ

+ a6

∫ z

0

eka(ξ−z)Y
(k)
n−1(t, x; ξ)dξ

)
dxdz.

(3.37)
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By a simple computation, one deduces∫
Ω

〈z〉2l|Y (k)

n

∫ z

0

eka(ξ−z)Y
(k)
n−1(t, x; ξ)dξ|dxdz

≤ 1

2

∫
Ω

∫ z

0

〈z〉2leka(ξ−z)(|Y (k)
n (t, x; z)|2 + |Y (k)

n−1(t, x; ξ)|2)dξdxdz(3.38)

≤ c(l, a0)

k

∫
Ω

〈z〉2l(|Y (k)
n |2 + |Y (k)

n−1|2)dxdz,

where c(l, a0) is a constant depending only upon l ∈ N and a0 satisfying 0 < a0 ≤
a(t, x).

Similarly, we have∫
Ω

〈z〉2l|Y (k)

n

∫ +∞

z

eka(z−ξ)Y
(k)
n−1(t, x; ξ)dξ|dxdz

≤ c(l, a0)

k

∫
Ω

〈z〉2l(|Y (k)
n |2 + |Y (k)

n−1|2)dxdz.
(3.39)

Substituting (3.38) and (3.39) into (3.37) shows that

|A0| ≤
C0

k

∫
Ω

〈z〉2l(|Y (k)
n |2 + |Y (k)

n−1|2)dxdz.(3.40)

Combining (3.40) and (3.36), we get

d

dt

∫
Ω

〈z〉2l|Y (k)
n |2dxdz +

∫
Ω

〈z〉2l(|∂zY (k)
n |2 + k2|Y (k)

n |2)dxdz

≤ C0

∫
Ω

〈z〉2l(|Y (k)
n |2 + |Y (k)

n−1|2)dxdz +

∫
Ω

〈z〉2l|G(k)|2dxdz.
(3.41)

To study (3.41), first we have to note the following lemma.
Lemma 3.4. Given nonnegative functions f ∈ C0[0,∞), bn ∈ C0[0,∞), an ∈

C1[0,∞) satisfying an(0) ≤ a for a constant a for any n ∈ N, if we have

a′n(t) + bn(t) ≤ C0(an(t) + an−1(t)) + f(t) ∀n ≥ 1

for a constant C0 ≥ 0 independent of n, then the estimate

an(t) +

∫ t

0

eC0(t−s)bn(s)ds ≤ ae2C0t +

∫ t

0

e2C0(t−s)f(s)ds

holds for any n ∈ N.
This Gronwall type estimate can be obtained by induction on n.
By using Lemma 3.4 in (3.42), we immediately refer to the following lemma.

Lemma 3.5. Denote by 〈z〉= (1 + z2)
1
2 and Ω = R

2
+ = {(x, z) ∈ R

2| z > 0}. For
any fixed integer l ∈ N, there is a constant C0 depending only upon l and a0 satisfying
0 < a0 ≤ a(t, x), such that the following estimate

max
0≤t≤T

∫
Ω

〈z〉2l|Y (k)
n |2dxdz +

∫ T

0

∫
Ω

〈z〉2l(|∂zY (k)
n |2 + k2|Y (k)

n |2)dxdzdt

≤
∫ T

0

∫
Ω

e2C0(T−t)〈z〉2l|G(k)|2dxdzdt
(3.42)

holds for any T ≥ 0 and n ∈ N.
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3.2.4. Step 4: Estimates of spatial tangential derivatives ∂α
x Y (k)

n . For

any α ∈ N, set Y
(k)
n,α = ∂α

xY
(k)
n . From (3.35), we know that Y

(k)
n,α satisfies the following

problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)Y (k)
n,α − a2

4(∂
2
z − k2a2)Y (k)

n,α + z(a2∂z + ika3)Y
(k)
n,α − 1

n
∂2
xY

(k)
n,α

+ka5

∫ +∞

z

eka(z−ξ)Y
(k)
n−1,α(·, ξ)dξ + ka6

∫ z

0

eka(ξ−z)Y
(k)
n−1,α(·, ξ)dξ + Rα = ∂α

xG
(k)

Y
(k)
n,α |z=0 = 0, Y

(k)
n,α ∈ S(R+

z )

Y
(k)
n,α |t=0 = 0,

(3.43)

where

Rα = [∂α
x , a1∂x − a2

4(∂
2
z − k2a2) + z(a2∂z + ika3)]Y

(k)
n

+ k
∑

0<j≤α

(
α

j

)(
∂j
xa5

∫ +∞

z

∂α−j
x (eka(z−ξ)Y

(k)
n−1(·, ξ))dξ

+ ∂j
xa6

∫ z

0

∂α−j
x (eka(ξ−z)Y

(k)
n−1(·, ξ))dξ

)

+ ka5

∫ +∞

z

[∂α
x , e

ka(z−ξ)]Y
(k)
n−1(t, x; ξ)dξ + ka6

∫ z

0

[∂α
x , e

ka(ξ−z)]Y
(k)
n−1(t, x; ξ)dξ.

Similar to (3.41), by multiplying the equation in (3.43) by 〈z〉2lY (k)

n,α for any fixed
l ∈ N, and integrating the resulting equation over Ω, we obtain

d

dt

∫
Ω

〈z〉2l|Y (k)
n,α |2dxdz +

∫
Ω

〈z〉2l(|∂zY (k)
n,α |2 + k2|Y (k)

n,α |2)dxdz

≤ C0

∫
Ω

〈z〉2l(|Y (k)
n,α |2 + |Y (k)

n−1,α|2)dxdz +

∫
Ω

< z >2l |∂α
xG

(k)|2dxdz(3.44)

−2R
∫

Ω

〈z〉2lRαY
(k)

n,αdxdz.

On the other hand, we have

∣∣∣∣
∫

Ω

〈z〉2lRαY
(k)

n,αdxdz

∣∣∣∣
≤ C0

∫
Ω

〈z〉2l|Y (k)
n,α |2dxdz + ε

∫
Ω

〈z〉2l(|∂zY (k)
n,α |2 + k2|Y (k)

n,α |2)dxdz

+
∑

0<j≤α

Cj

ε

∫
Ω

〈z〉2l(|∂zY (k)
n,α−j |2 + k2|Y (k)

n,α−j |2 + 〈z〉2|Y (k)
n,α−j |2)dxdz

+
∑

0<j≤α

Cj

∫
Ω

〈z〉2l(〈z〉2|∂zY (k)
n,α−j |2 + |Y (k)

n−1,α−j |2)dxdz

(3.45)

for any ε > 0.
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Substituting (3.45) into (3.44), and letting ε be small, we obtain

d

dt

∫
Ω

〈z〉2l |Y (k)
n,α |2dxdz +

∫
Ω

〈z〉2l(|∂zY (k)
n,α |2 + k2|Y (k)

n,α |2)dxdz

≤ C0

∫
Ω

〈z〉2l(|Y (k)
n,α |2 + |Y (k)

n−1,α|2)dxdz +

∫
Ω

〈z〉2l|∂α
xG

(k)|2dxdz

+
∑

0<j≤α

Cj

(∫
Ω

〈z〉2(l+1)(|∂zY (k)
n,α−j |2 + |Y (k)

n,α−j |2)dxdz

+

∫
Ω

〈z〉2l(|Y (k)
n−1,α−j |2 + k2|Y (k)

n,α−j |2)dxdz
)
.

By using Lemma 3.4 and induction on α ∈ N, Lemma 3.6 follows.

Lemma 3.6. For the problem (3.35), let Y
(k)
n,α = ∂α

xY
(k)
n ; the following estimate

max
0≤t≤T

∫
Ω

〈z〉2l|Y (k)
n,α |2dxdz +

∫ T

0

∫
Ω

〈z〉2l(|∂zY (k)
n,α |2 + k2|Y (k)

n,α |2)dxdzdt

≤ C(T )

α∑
j=0

∫ T

0

∫
Ω

〈z〉2(l+α−j)|∂j
xG

(k)|2dxdzdt
(3.46)

holds for any α ∈ N.

3.2.5. Step 5: Estimates of derivatives ∂α
t,xY (k)

n . For any fixed integer

j ≥ 0, set V
(k)
n,j = ∂j

t Y
(k)
n .

From (3.35) we know that V
(k)
n,j satisfies the following problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)V
(k)
n,j − a2

4(∂
2
z − k2a2)V

(k)
n,j + z(a2∂z + ika3)V

(k)
n,j − 1

n∂
2
xV

(k)
n,j

+ka5

∫ +∞

z

eka(z−ξ)V
(k)
n−1,j(·, ξ)dξ + ka6

∫ z

0

eka(ξ−z)V
(k)
n−1,j(·, ξ)dξ + Qj = ∂j

tG
(k)

V
(k)
n,j |z=0 = 0, V

(k)
n,j ∈ S(R+

z )

V
(k)
n,j |t=0 = V

(k)
n,j,0(x, z),

(3.47)

where

Qj = [∂j
t , a1∂x − a2

4(∂
2
z − k2a2) + z(a2∂z + ika3)]Y

(k)
n

+ k
∑

0<m≤j

(
j

m

)(
∂m
t a5

∫ +∞

z

∂j−m
t (eka(z−ξ)Y

(k)
n−1(t, x; ξ))dξ

+ ∂m
t a6

∫ z

0

∂j−m
t (eka(ξ−z)Y

(k)
n−1(t, x; ξ))dξ

)

+ ka5

∫ +∞

z

[∂j
t , e

ka(z−ξ)]Y
(k)
n−1(t, x; ξ)dξ + ka6

∫ z

0

[∂j
t , e

ka(ξ−z)]Y
(k)
n−1(t, x; ξ)dξ

and

(3.48)

V
(k)
n,j,0 = ∂j−1

t G(k)|t=0 −
(
a1∂x − a2

4(∂
2
z − k2a2) + z(a2∂z + ika3) −

1

n
∂2
x

)
V

(k)
n,j−1,0

−ka5

∫ +∞

z

eka(z−ξ)V
(k)
n−1,j−1,0dξ − ka6

∫ z

0

eka(ξ−z)V
(k)
n−1,j−1,0dξ −Qj−1|t=0
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is defined by induction on j with V
(k)
n,1,0 = G(k)(0, x, z).

Multiplying (3.47) by 〈z〉2lV (k)

n,j , and integrating the resulting equation over Ω,
one gets

d

dt

∫
Ω

〈z〉2l |V (k)
n,j |2dxdz +

∫
Ω

〈z〉2l(|∂zV (k)
n,j |2 + k2|V (k)

n,j |2)dxdz

≤ C0

∫
Ω

〈z〉2l(|V (k)
n,j |2 + |V (k)

n−1,j |2)dxdz +

∫
Ω

〈z〉2l|∂j
tG

(k)|2dxdz(3.49)

−2R
∫

Ω

〈z〉2lQjV
(k)

n,jdxdz.

On the other hand, we have∣∣∣∣
∫

Ω

〈z〉2l QjV
(k)

n,jdxdz

∣∣∣∣(3.50)

≤ C0

∫
Ω

〈z〉2l|V (k)
n,j |2dxdz + ε

∫
Ω

〈z〉2l(|∂zV (k)
n,j |2 + k2|V (k)

n,j |2)dxdz

+
∑

0<m≤j

Cm

ε

∫
Ω

〈z〉2l(|∂zV (k)
n,j−m|2 + k2|V (k)

n,j−m|2

+ 〈z〉2|V (k)
n,j−m|2 + |V (k)

n−1,j−m|2)dxdz

+
∑

0<m≤j

Cm

∫
Ω

〈z〉2l(〈z〉2|∂zV (k)
n,j−m|2 + |∂xV (k)

n,j−m|2)dxdz

for any ε > 0.

Substituting (3.50) into (3.49), and letting ε be small, we obtain

d

dt

∫
Ω

〈z〉2l |V (k)
n,j |2dxdz +

∫
Ω

〈z〉2l(|∂zV (k)
n,j |2 + k2|V (k)

n,j |2)dxdz(3.51)

≤ C0

∫
Ω

〈z〉2l(|V (k)
n,j |2 + |V (k)

n−1,j |2)dxdz +

∫
Ω

〈z〉2l|∂j
tG

(k)|2dxdz

+
∑

0<m≤j

Cm

(∫
Ω

〈z〉2(l+1)(|∂zV (k)
n,j−m|2 + |V (k)

n,j−m|2)dxdz

+

∫
Ω

〈z〉2l(|V (k)
n−1,j−m|2 + k2|V (k)

n,j−m|2 + |∂xV (k)
n,j−m|2)dxdz

)
.

Thus, to complete the estimate on V
(k)
n,j , we should study {∂xV (k)

n,m}j−1
m=1 first.

It follows from (3.47) that ∂p
xV

(k)
n,j = ∂p

x∂
j
t Y

(k)
n satisfies the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x − a2
4(∂

2
z − k2a2) + z(a2∂z + ika3) − 1

n∂
2
x)∂p

xV
(k)
n,j

+ ka5

∫ +∞

z

eka(z−ξ)∂p
xV

(k)
n−1,jdξ + ka6

∫ z

0

eka(ξ−z)∂p
xV

(k)
n−1,jdξ + Qj,p = ∂p

x∂
j
tG

(k)

∂p
xV

(k)
n,j |z=0 = 0, ∂p

xV
(k)
n,j ∈ S(R+

z )

∂p
xV

(k)
n,j |t=0 = ∂p

xV
(k)
n,j,0(x, z),

(3.52)
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where V
(k)
n,j,0(x, z) is given in (3.48), and

Qj,p = ∂p
xQj + [∂p

x, a1∂x − a2
4(∂

2
z − k2a2) + z(a2∂z + ika3)]V

(k)
n,j

+ k
∑

0<m≤p

(
p

m

)(
∂m
x a5

∫ +∞

z

∂p−m
x (eka(z−ξ)V

(k)
n−1,j(t, x; ξ))dξ

+ ∂m
x a6

∫ z

0

∂p−m
x (eka(ξ−z)V

(k)
n−1,j(t, x; ξ))dξ

)

+ ka5

∫ +∞

z

[∂p
x, e

ka(z−ξ)]V
(k)
n−1,j(t, x; ξ)dξ + ka6

∫ z

0

[∂p
x, e

ka(ξ−z)]V
(k)
n−1,j(t, x; ξ)dξ

with Qj being given in (3.47).

Multiplying (3.52) by < z >2l ∂p
xV

(k)

n,j , and integrating the resulting equation over
Ω, one gets

d

dt

∫
Ω

〈z〉2l |∂p
xV

(k)
n,j |2dxdz +

∫
Ω

〈z〉2l(|∂z∂p
xV

(k)
n,j |2 + k2|∂p

xV
(k)
n,j |2)dxdz

≤ C0

∫
Ω

〈z〉2l(|∂p
xV

(k)
n,j |2 + |∂p

xV
(k)
n−1,j |2)dxdz(3.53)

+

∫
Ω

〈z〉2l|∂p
x∂

j
tG

(k)|2dxdz − 2R
∫

Ω

〈z〉2lQj,p∂
p
xV

(k)

n,jdxdz.

A direct computation shows∣∣∣∣
∫

Ω

〈z〉2lQj,p∂
p
xV

(k)

n,jdxdz

∣∣∣∣
≤ C0

∫
Ω

〈z〉2l|∂p
xV

(k)
n,j |2dxdz + ε

∫
Ω

〈z〉2l(|∂z∂p
xV

(k)
n,j |2 + k2|∂p

xV
(k)
n,j |2)dxdz

+
∑

0<m≤j,q≤p

Cq+m

ε

∫
Ω

〈z〉2(l+1)(|∂z∂q
xV

(k)
n,j−m|2 + |∂q

xV
(k)
n,j−m|2)dxdz

+ k2
∑

0<m≤j,q≤p

Cq+m

ε

∫
Ω

〈z〉2l|∂q
xV

(k)
n,j−m|2dxdz

+
∑
q<p

Cq

ε

∫
Ω

〈z〉2l(|∂z∂q
xV

(k)
n,j |2 + k2|∂q

xV
(k)
n,j |2)dxdz

+
∑
q<p

Cq

∫
Ω

〈z〉2l(〈z〉2|∂z∂q
xV

(k)
n,j |2 + |∂q

xV
(k)
n−1,j |2)dxdz

+
∑

1≤q≤p

Cq

∫
Ω

〈z〉2l|∂q
xV

(k)
n,j |2dxdz +

∑
0<m≤j

Cm

∫
Ω

〈z〉2l|∂q+1
x V

(k)
n,j−m|2dxdz

+
∑

0<m≤j,q≤p

Cq+m

∫
Ω

〈z〉2l|∂q
xV

(k)
n−1,j−m|2dxdz.
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Thus, from (3.53) one has

d

dt

∫
Ω

〈z〉2l|∂p
xV

(k)
n,j |2dxdz +

∫
Ω

〈z〉2l(|∂z∂p
xV

(k)
n,j |2 + k2|∂p

xV
(k)
n,j |2)dxdz

≤ C0

∫
Ω

〈z〉2l(|∂p
xV

(k)
n,j |2 + |∂p

xV
(k)
n−1,j |2)dxdz +

∫
Ω

〈z〉2l|∂p
x∂

j
tG

(k)|2dxdz

+ Cj+p

{ ∑
0<m≤j,q≤p

(∫
Ω

〈z〉2(l+1)(|∂z∂q
xV

(k)
n,j−m|2 + |∂q

xV
(k)
n,j−m|2)dxdz

+

∫
Ω

〈z〉2l(k2|∂q
xV

(k)
n,j−m|2 + |∂q

xV
(k)
n−1,j−m|2)dxdz

)}

+ Cp

∑
q<p

∫
Ω

〈z〉2l(〈z〉2|∂z∂q
xV

(k)
n,j |2 + k2|∂q

xV
(k)
n,j |2 + |∂q

xV
(k)
n−1,j |2)dxdz

+ Cj

∑
0<m≤j

∫
Ω

〈z〉2l|∂q+1
x V

(k)
n,j−m|2dxdz.

(3.54)

By using Lemmas 3.4 and 3.5 in (3.51) for the case j = 1, it follows that V
(k)
n,1 =

∂tV
(k)
n satisfies

max
0≤t≤T

∫
Ω

〈z〉2l|V (k)
n,1 |2dxdz +

∫ T

0

∫
Ω

〈z〉2l(|∂zV (k)
n,1 |2 + k2|V (k)

n,1 |2)dxdzdt

≤ C(T )

∫ T

0

∫
Ω

〈z〉2l(|∂xG(k)|2 + |∂tG(k)|2 + |G(k)|2)dxdzdt.
(3.55)

Using Lemma 3.6 and (3.55) in (3.54) for the case j = 1 and p = 1, and using

Lemma 3.4, it follows that ∂xV
(k)
n,1 = ∂t∂xY

(k)
n satisfies

max
0≤t≤T

∫
Ω

< z >2l |∂xV (k)
n,1 |2dxdz +

∫ T

0

∫
Ω

〈z〉2l(|∂z∂xV (k)
n,1 |2 + k2|∂xV (k)

n,1 |2)dxdzdt

≤ C(T )

(
2∑

j=0

∫ T

0

∫
Ω

〈z〉2(l+2−j)|∂j
xG

(k)|2dxdzdt(3.56)

+

1∑
j=0

∫ T

0

∫
Ω

〈z〉2(l+1−j)|∂j
x∂tG

(k)|2dxdzdt
)
.

Employing (3.56), (3.46), and (3.55) in (3.51) for the case j = 2, and using Lemma

3.4 we deduce that V
(k)
n,2 = ∂2

t Y
(k)
n satisfies

max
0≤t≤T

∫
Ω

〈z〉2l|V (k)
n,2 |2dxdz +

∫ T

0

∫
Ω

〈z〉2l(|∂zV (k)
n,2 |2 + k2|V (k)

n,2 |2)dxdzdt

≤ C(T )

(∫
Ω

〈z〉2l|V (k)
n,2,0|2dxdz +

∑
|α|≤2

∫ T

0

∫
Ω

〈z〉2(l+2−|α|)|∂α
t,xG

(k)|2dxdzdt
)
,
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which implies

max
0≤t≤T

∫
Ω

〈z〉2l|V (k)
n,2 |2dxdz +

∫ T

0

∫
Ω

〈z〉2l(|∂zV (k)
n,2 |2 + k2|V (k)

n,2 |2)dxdzdt

≤ C

( ∑
|α|≤2

∫ T

0

∫
Ω

〈z〉2(l+2−|α|)|∂α
t,xG

(k)|2dxdzdt

+ k4

∫ T

0

∫
Ω

〈z〉2l(|G(k)|2 + |∂tG(k)|2)dxdzdt(3.57)

+
2∑

j=1

1∑
i=0

∫ T

0

∫
Ω

〈z〉2(l+2−j)|∂i
t∂

j
zG

(k)|2dxdzdt

+

2∑
j=1

∫ T

0

∫
Ω

〈z〉2l|∂t∂j
xG

(k)|2dxdzdt
)

from the formula of V
(k)
n,2,0 given in (3.48), where the positive constant C depends only

on T,C0, and C2.

By induction on |α| ∈ N, we obtain the following lemma.

Lemma 3.7. Let Y
(k)
n be the solution sequence to the problem (3.35). Then for

any α ∈ N
2, ∂α

t,xY
(k)
n satisfies the following estimate:

(3.58)

max
0≤t≤T

∫
Ω

〈z〉2l|∂α
t,xY

(k)
n |2dxdz +

∫ T

0

∫
Ω

〈z〉2l(|∂z∂α
t,xY

(k)
n |2 + k2|∂α

t,xY
(k)
n |2)dxdzdt

≤C(T )

⎛
⎜⎜⎜⎜⎜⎝

|α|∑
j=2

|α|−j∑
m=0

∑
r + i + p ≤ j − 1

0 ≤ q ≤ 2i
0 ≤ h ≤ 1

∫ T

0

∫
Ω

〈z〉2(l+|α|−j−m+2i−q)k4r|∂h
t ∂

q
z∂

m+2p
x G(k)|2dxdzdt

+
∑

|β|≤|α|

∫ T

0

∫
Ω

〈z〉2(l+|α|−|β|)|∂β
t,xG

(k)|2dxdzdt

⎞
⎟⎟⎟⎟⎟⎠.

3.2.6. Step 6: Estimates of normal derivatives ∂j
z∂α

t,xY (k)
n . For any j ∈ N

and α = (α1, α2) ∈ N
2, set W

(k)
n,α,j = ∂j

z∂
α
t,xY

(k)
n .

From (3.58) and the obvious identity

∂j
z∂

α1
t ∂α2

x Y (k)
n (t, x, z) = ∂j

z∂
α1
t ∂α2

x Y (k)
n (0, x, z) +

∫ t

0

∂j
z∂

α1+1
t ∂α2

x Y (k)
n (s, x, z)ds
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we get

max
0≤t≤T

∫
Ω

〈z〉2l|∂z∂α1
t ∂α2

x Y (k)
n |2dxdz ≤

∫
Ω

〈z〉2l|∂z∂α1
t ∂α2

x Y (k)
n (t = 0)|2dxdz(3.59)

+C(T )

( |α|+1∑
j=2

|α|+1−j∑
m=0

∫
Ω

〈z〉2(l+|α|+1−j−m)|∂m
x ∂j

t Y
(k)
n (t = 0)|2dxdz

+
∑

|β|≤|α|+1

∫ T

0

∫
Ω

〈z〉2(l+|α|+1−|β|)|∂β
t,xG

(k)|2dxdzdt
)
.

From (3.52) it follows that

(3.60)∫
Ω

〈z〉2l |∂2
z∂

α1
t ∂α2

x Y (k)
n |2dxdz

≤ C0

{∫
Ω

〈z〉2(l+1)(|∂z∂α1
t ∂α2

x Y (k)
n |2 + k2|∂α1

t ∂α2
x Y (k)

n |2)dxdz

+

∫
Ω

〈z〉2l(|∂α1+1
t ∂α2

x Y (k)
n |2 + |∂α1

t ∂α2+1
x Y (k)

n |2 + |∂α1
t ∂α2+2

x Y (k)
n |2

+ k4|∂α1
t ∂α2

x Y (k)
n |2 + |∂α1

t ∂α2
x Y

(k)
n−1|2 + |∂α1

t ∂α2
x G(k)|2 + Qα1,α2

)dxdz

}

and

(3.61)∫
Ω

〈z〉2l|Qα1,α2
|2dxdz

≤ C

{ ∑
j≤α1−1,m≤α2

∫
Ω

〈z〉2l(|∂2
z∂

j
t ∂

m
x Y (k)

n |2+ k4|∂j
t ∂

m
x Y (k)

n |2+ |∂j
t ∂

m
x Y

(k)
n−1|2)dxdz

+
∑

j≤α1−1,m≤α2

∫
Ω

〈z〉2(l+1)(|∂z∂j
t ∂

m
x Y (k)

n |2 + k2|∂j
t ∂

m
x Y (k)

n |2)dxdz

+

∫
Ω

〈z〉2l(|∂α1
t ∂α2

x Y (k)
n |2 +

∑
j≤α1−1

|∂j
t ∂

α2+1
x Y (k)

n |2)dxdz

+
∑

m≤α2−1

∫
Ω

〈z〉2l(|∂2
z∂

α1
t ∂m

x Y (k)
n |2+ k4|∂α1

t ∂m
x Y (k)

n |2+ |∂α1
t ∂m

x Y
(k)
n−1|2)dxdz

+
∑

m≤α2−1

∫
Ω

〈z〉2(l+1)(|∂z∂α1
t ∂m

x Y (k)
n |2 + k2|∂α1

t ∂m
x Y (k)

n |2)dxdz
}
.
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Substituting (3.61) into (3.60) yields

∫
Ω

〈z〉2l |∂2
z∂

α1
t ∂α2

x Y (k)
n |2dxdz

≤ C

{ ∑
β≤α

∫
Ω

〈z〉2(l+1)(|∂z∂β
t,xY

(k)
n |2 + k2|∂β

t,xY
(k)
n |2)dxdz

+

∫
Ω

〈z〉2l
( ∑

β≤α

(k4|∂β
t,xY

(k)
n |2 + |∂β

t,xY
(k)
n−1|2) +

∑
β<α

|∂2
z∂

β
t,xY

(k)
n |2(3.62)

+
∑
j≤α1

|∂j
t ∂

α2+1
x Y (k)

n |2 + |∂α1
t ∂α2+2

x Y (k)
n |2

+ |∂α1+1
t ∂α2

x Y (k)
n |2 + |∂α1

t ∂α2
x G(k)|2

)
dxdz

}
,

where the notations β ≤ α and β < α for α, β ∈ N
2 mean that β1 ≤ α1, β2 ≤ α2, and

β1 ≤ α1, β2 ≤ α2, β1 + β2 < α1 + α2, respectively.

By using (3.59) and (3.58) in (3.62), we get

max
0≤t≤T

∫
Ω

〈z〉2l|∂2
z∂

α
t,xY

(k)
n |2dxdz

≤ C

{
k4

∑
β≤α

(∫
Ω

〈z〉2(l+|α|−|β|)|∂β
t,xY

(k)
n (t = 0)|2dxdz

+

∫ T

0

∫
Ω

〈z〉2(l+|α|−|β|)|∂β
t,xG

(k)|2dxdzdt
)

+
∑

|β|≤|α|+2

(∫
Ω

〈z〉2(l+|α|+2−|β|)|∂β
t,xY

(k)
n (t = 0)|2dxdz

+

∫ T

0

∫
Ω

〈z〉2(l+|α|+2−|β|)|∂β
t,xG

(k)|2dxdzdt
)

+
∑
β≤α

∫
Ω

〈z〉2(l+1)|∂z∂β
t,xY

(k)
n (t = 0)|2dxdz

+
∑
β<α

∫ T

0

∫
Ω

〈z〉2l|∂2
z∂

β
t,xY

(k)
n |2dxdzdt

}
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which implies

max
0≤t≤T

∫
Ω

〈z〉2l|∂2
z∂

α
t,xY

(k)
n |2dxdz

≤ C(T )

{
k4

∑
β≤α

(∫
Ω

〈z〉2(l+|α|−|β|)|∂β
t,xY

(k)
n (t = 0)|2dxdz

+

∫ T

0

∫
Ω

〈z〉2(l+|α|−|β|)|∂β
t,xG

(k)|2dxdzdt
)

+
∑

|β|≤|α|+2

(∫
Ω

〈z〉2(l+|α|+2−|β|)|∂β
t,xY

(k)
n (t = 0)|2dxdz

+

∫ T

0

∫
Ω

〈z〉2(l+|α|+2−|β|)|∂β
t,xG

(k)|2dxdzdt
)

+
∑
β≤α

∫
Ω

〈z〉2(l+1)|∂z∂β
t,xY

(k)
n (t = 0)|2dxdz

}
.

(3.63)

Differentiating (3.52) with respect to z and by induction on j ∈ N, one can obtain
the following lemma.

Lemma 3.8. The solution Y
(k)
n of (3.35) satisfies the following estimate:

(3.64)

max
0≤t≤T

∫
Ω

〈z〉2l|∂j
z∂

α
t,xY

(k)
n |2dxdz

≤ C(T )

{
[j/2]∑
m=0

k4m
∑

|β|≤|α|+j−2m

(∫
Ω

〈z〉2(l+|α|+j−2m−|β|)|∂β
t,xY

(k)
n (t = 0)|2dxdz

+

∫ T

0

∫
Ω

〈z〉2(l+|α|+j−2m−|β|)|∂β
t,xG

(k)|2dxdzdt
)

+
∑

|β|≤|α|+j−1−2m

∫
Ω

< z >2(l+|α|+j−1−2m−|β|) |∂z∂β
t,xY

(k)
n (t = 0)|2dxdz

+ max
0≤t≤T

j−2∑
m=1

∫
Ω

〈z〉2(l+j−2−m)|∂m
z ∂α

t,xG
(k)|2dxdzdt

}
.

Remark 3.9. From the problem (3.35), it is easy to estimate the first and third
terms on the right-hand side of (3.64) by the source term G(k). For example, one can
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obtain

(3.65)∫
Ω

〈z〉2(l+|α|+j−2m−|β|)|∂β
t,xY

(k)
n (t = 0)|2dxdz

≤ C(T )

⎛
⎜⎜⎜⎝

∑
r + i + p ≤ βt − 1

0 ≤ q ≤ 2i

∫
Ω

〈z〉2(l+|α|+j−2m−|β|+2i−q)k4r|∂q
z∂

βx+2p
x G(k)|t=0|2dxdz

+
∑

r+i+p≤βt−1

∫
Ω

〈z〉2(l+|α|+j−2m−|β|)k4r|∂i
t∂

βx+2p
x G(k)|t=0|2dxdz

+
∑

i + p ≤ βt − 2
0 ≤ q ≤ 2i

∫
Ω

〈z〉2(l+|α|−j−2m−|β|+2i−q)|∂t∂q
z∂

βx+2p
x G(k)|t=0|2dxdz

⎞
⎟⎟⎟⎠

with β = (βt, βx).
In summary, we conclude with the following proposition.

Proposition 3.10. The approximate solution sequence {Y (k)
n }n≥1 constructed by

(3.35) is bounded in W k,∞([0, T ], Hs(Ω)) for any fixed k, s ∈ N; moreover, {Y (k)
n }n≥1

satisfies the estimates given in Lemmas 3.6, 3.7, and 3.8.

3.2.7. Step 7: Convergence of {Y (k)
n }n≥1. As usual, based on the high order

norm boundedness estimate (3.64) of {Y (k)
n }n≥1, it suffices to consider the convergence

of {Y (k)
n }n≥1 in the L2−norm.

Let W
(k)
n = Y

(k)
n+1 − Y

(k)
n . It follows from (3.35) that W

(k)
n solves the following

problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + a1∂x)W (k)
n − a2

4(∂
2
z − k2a2)W (k)

n + z(a2∂z + ika3)W
(k)
n − 1

n + 1
∂2
xW

(k)
n

+ ka5

∫ +∞

z

eka(z−ξ)W
(k)
n−1(·, ξ)dξ + ka6

∫ z

0

eka(ξ−z)W
(k)
n−1(·, ξ)dξ = − 1

n(n + 1)
∂2
xY

(k)
n

W
(k)
n |z=0 = 0, W

(k)
n ∈ S(R+

z )

W
(k)
n |t=0 = 0.

(3.66)

In a way similar to (3.42), we deduce that for all n ≥ 1,

d

dt

∫
Ω

〈z〉2l|W (k)
n |2dxdz +

∫
Ω

〈z〉2l(|∂zW (k)
n |2 + k2|W (k)

n |2)dxdz

≤ C0

∫
Ω

〈z〉2l(|W (k)
n |2 + |W (k)

n−1|2)dxdz +
C0

n(n + 1)

(3.67)

by using the boundedness of {Y (k)
n }n≥1. Applying Lemma 3.4 in (3.67) we achieve

the following proposition.
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Proposition 3.11. For any fixed T > 0 and l ∈ N, it holds that

max
0≤t≤T

∫
Ω

〈z〉2l|Y (k)
n+1 − Y (k)

n |2dxdz −→ 0(3.68)

when n goes to infinite.
By bringing together Propositions 3.10 with 3.11, we deduce the following theo-

rem.
Theorem 3.12. Consider problems (3.33) and (3.34). Let T > 0 be fixed. Sup-

pose that coefficients a and {aj}6
j=1 belong to H∞([0, T ] × Rx) with a(t, x) ≥ a0 and

a4(t, x) ≥ a0 for a constant a0 > 0, W
(k)
0 ∈ H∞([0, T ]× Rx) and G(k) ∈ H∞([0, T ]×

Rx ×R
+
z ) satisfying all compatibility conditions, with zlG(k) ∈ H∞([0, T ]×Rx ×R

+
z )

for all l ∈ N. Then there exist unique solutions {Y (k)}k∈Z\{0} to problems (3.33) and

(3.34) satisfying < z >l Y (k) ∈ H∞([0, T ] × Rx × R
+
z ) for all l ∈ N.

Combining Theorem 3.12 with the transformation (3.32) and Proposition 3.3,
we obtain the following existence and uniqueness result of solutions (u,w) to the
Poisson–Prandtl coupled problem (3.1).

Theorem 3.13. Let T > 0 be fixed and all coefficients a and {aj}4
j=1 be the

same as given in Theorem 3.12. Assume that (b0, b1) ∈ C∞
p (T 1, H∞([0, T ]×Rx)) and

(f, g) ∈ C∞
p (T 1, H∞([0, T ] × Rx × R

+
z )), smooth periodic in θ ∈ T 1 with valued in

H∞([0, T ] × Rx) and H∞([0, T ] × Rx × R
+
z ), respectively, satisfying

mθ(f) = mθ(g) = mθ(b0) = mθ(b1) = 0

and (zlf, zlg) ∈ C∞
p (T 1, H∞([0, T ] × Rx × R

+
z )) for any l ∈ N, and, moreover, all

compatibility conditions for (3.1) hold. Then, there exist unique solutions (u,w) ∈
C∞

p (T 1, H∞([0, T ] × Rx × R
+
z )) to the problem (3.1) satisfying mθ(u) = mθ(w) = 0

and (zlu, zlw) ∈ C∞
p (T 1, H∞([0, T ] × Rx × R

+
z )) for all l ∈ N.

4. Rigorous justification of the zero-viscosity limit. In this section, we
shall rigorously justify the formal analysis given in section 2.

First, let us suppose that
(H1) all compatibility conditions for the problem (2.1) are satisfied,
(H2) all compatibility conditions for problems (2.29), (2.35), and (5.11), (5.13),

and (5.22) given later are satisfied,
which will be studied in detail at the end of this section. It is easy to see that
compatibility conditions for the problem (2.26) follow from those for (2.1) by setting
ε = 0.

Let V ε be the solution to the problem (2.1). From section 3, we know that one

can uniquely determine (d
(2)
0 , d

(3)
0 ) and {(d(2)

j+1, d
(3)
j+1)}j≥0 from problems (2.35) and

(2.36) and (5.22) and (5.23), respectively. Thus, from sections 2 and 5.1 we obtain
each order smooth profile {(aj , cj , bj , dj)}j≥0 in the formal expansion of the solution

V ε(t, x) ∼
∑
j≥0

εj(aj(t, x) + cj

(
t, x;

ϕ(t, x)

ε

)
+ bj

(
t, x2;

x1

ε

)
+ dj

(
t, x2;

x1

ε
,
ϕ0(t, x2)

ε

)
.

(4.1)

Denote by

V ε
J (t, x) =

J∑
j=0

εj
(
aj(t, x) + cj

(
t, x;

ϕ(t, x)

ε

)
+ bj

(
t, x2;

x1

ε

)
+ dj

(
t, x2;

x1

ε
,
ϕ0(t, x2)

ε

))
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the Jth order approximate solution for any fixed J ∈ N.
From the discussion in sections 2 and 5.1, it is easy to see that W ε

J = V ε − V ε
J

satisfies the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0(V
′)∂tW

ε
J + A1(V

′)∂x1W
ε
J + A2(V

′)∂x2W
ε
J = B(ε2, Dε2)W ε

J + Rε
J ,

M+W ε
J =

(
0 1 0
0 0 1

)
W ε

J = 0, on x1 = 0,

W ε
J |t=0 = 0,

(4.2)

where the remainder Rε
J(t, x) satisfies

‖Rε
J‖L∞([0,T ],L2(R2

+)) ≤ CεJ−1(4.3)

for any T > 0 and a constant C > 0.
By using the classical theory of the linearized Navier–Stokes equations in the

problem (4.2), we immediately conclude

‖V ε − V ε
J ‖L∞([0,T ],L2(R2

+)) ≤ C1ε
J−1(4.4)

which implies

‖V ε − V ε
J ‖L∞([0,T ],L2(R2

+)) ≤ C2ε
J+1(4.5)

for any J ∈ N with the constant C2 depending only upon T and J .
Therefore, we obtain the following theorem.
Theorem 4.1. Under the assumptions (H1) and (H2), the solution V ε=(ρε, vε1, v

ε
2)

of (2.1) has the following asymptotics:

V ε(t, x) =

J∑
j=0

εj
(
aj(t, x) + cj

(
t, x;

ϕ(t, x)

ε

)
+ bj

(
t, x2;

x1

ε

)

+ dj

(
t, x2;

x1

ε
,
ϕ0(t, x2)

ε

))
+ O(εJ+1)

(4.6)

in L∞([0, T ], L2(R2
+)) for any fixed J ∈ N, where aj(t, x) satisfy problems (2.26) and

(5.11) for the linearized Euler equations; cj(t, x; ϕ(t,x)
ε ) are determined from (2.17)

and (2.20), and (5.3)–(5.5); (b
(1)
j , b

(2)
j ) are given in (2.25) and (5.10); and b

(3)
j (t, x2; z)

satisfy problems (2.29) and (5.13) for the linearized Prandtl equation; d
(1)
j are given in

(2.31) and (5.17); and (d
(2)
j , d

(3)
j )(t, x2; z, θ) together with their vorticity with respect

to (z, θ)−variables satisfy problems (2.35) and (2.36), and (5.22) and (5.23) for the
Poisson–Prandtl coupled system.

Remark 4.2. (1) From (4.6), one immediately concludes Theorem 2.1.
(2) The asymptotic relation (4.6) holds in high order Sobolev spaces with weighted

norms due to the high frequency of oscillations in {cj , dj}j≥0 and the multiple scales
in boundary layers {bj , dj}j≥0, e.g., in L∞([0, T ], Hs

ε (R2)) with the norm of Hs
ε (R2)

being defined as

‖u‖s,ε =

( ∑
|α|≤s

ε2|α|‖∂α
x u‖2

L2(IR2
+)

) 1
2

.

Finally, for completeness, let us investigate the assumptions (H1) and (H2).
(I) The compatibility condition for the problem of linearized Navier–Stokes equa-

tions (2.1) can be formulated in the classical way as follows.
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(I1) The zero-th order compatibility condition is

V
(2)
0 = V

(3)
0 = 0 on {x1 = 0}.(4.7)

(I2) The jth order compatibility condition (j ≥ 1).

Set Φε(t, x) = Φ(t, x; ϕ(t,x)
ε ). For any fixed j ∈ N with j ≥ 1, it follows from the

equations in (2.1) that

∂j
tV

ε = (A0(V
′))−1{B(ε2, Dε2)∂j−1

t V ε + ∂j−1
t Φε

−[∂j−1
t , A0(V

′)]∂tV
ε − ∂j−1

t (A1(V
′)∂x1

V ε + A2(V
′)∂x2

V ε)}

by induction on j. By using the initial data V ε|t=0 = V0(x), we know that V ε
j (x) =

∂j
tV

ε|t=0 is a linear function of {∂α
xV0}|α|≤2j and {∂k

t ∂
α
x Φε(t = 0)}k≤j−1,|α|≤2(j−1−k).

Then, the jth order compatibility condition for the problem (2.1) is(
0 1 0

0 0 1

)
V ε
j = 0 on {x1 = 0}.(4.8)

Next, we study the assumption (H1).
(I) The compatibility condition for the problem of linearized Prandtl equation

(2.29).
(I1) The zero-th order compatibility condition is

a
(3)
0 = 0 on {t = x1 = 0},(4.9)

which is a simple consequence of the zero-th order compatibility condition (4.7) by
noting a0|t=0 = V0(x) in (2.26).

(I2) The jth order compatibility condition (j ≥ 1).
It follows from the equation and the initial data in (2.29) that

∂j
t b

(3)
0 |t=0 = 0.

So, the jth order compatibility condition for the problem (2.29) is

∂j
t a

(3)
0 = 0 on {t = x1 = 0},(4.10)

where a
(3)
0 (t, x) is determined by the problem (2.26).

The compatibility conditions for the problem (5.13) can be obtained in the same
ways as those for the problem (2.29) given above.

Both of problems (2.35) and (5.22) are the special cases of the problem (3.1), so
their compatibility conditions can be stated in the same way as those for the problem
(3.1) given in section 3.

Finally, we note that in general compatibility conditions for problems of profiles,
{aj , cj , bj , dj}j≥0 could not be implied by those for the original linearized Navier–
Stokes equations (2.1). The simplest case to guarantee all compatibility conditions
given as above valid is that{

∂k
t ∂

α
x Φ(t, x; θ) = 0, on {t = x1 = 0}

∂α
xV0(x) = 0, on {x1 = 0}

hold for any k ∈ N and α ∈ N
2.
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5. Appendix.

5.1. Problems of high order profiles. In section 2, we derived problems for
the leading profiles in the expansion of the solution V ε(t, x) = V ε

in(t, x) + V ε
bd(t, x) to

the problem (2.1). In this subsection, let us briefly derive problems for high order
terms in the expansion.

By induction, suppose that {ak(t, x), ck(t, x; θ), bk(t, x2; z), dk(t, x2; z, θ
0)}k≤j are

known already, we want to determine profiles {aj+1(t, x), cj+1(t, x; θ), bj+1(t, x2; z),
dj+1(t, x2; z, θ

0)} in the expansion (2.11).
It follows from (2.13) and the fact mθ(Fj) = 0 that

L(∂t, ∂x)aj = (B1∂
2
x1

+ B2∂
2
x2

+ B3∂
2
x1x2

)aj−2(5.1)

and the difference between Fj = 0 and (5.1) gives rise to

2∑
k=0

ϕxk
Ak(V

′)∂θcj+1 = f̃j ,(5.2)

where

f̃j = (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1ϕx2B3)∂

2
θcj − L(∂t, ∂x)cj

+ (ϕx1x1B1 + ϕx2x2B2 + ϕx1x2B3)∂θcj−1

+ (2ϕx1
B1 + ϕx2

B3)∂
2
θx1

cj−1 + (2ϕx2
B2 + ϕx1

B3)∂
2
θx2

cj−1

+ (B1∂
2
x1

+ B2∂
2
x2

+ B3∂
2
x1x2

)cj−2

satisfies mθ(f̃j) = 0.
If we set

cj+1(t, x; θ) =

3∑
k=1

v
(k)
j+1(t, x; θ)
rk(∇ϕ),(5.3)

then from (5.2) it follows

(ϕt − τk(∇ϕ))∂θv
(k)
j+1 = (
lk(∇ϕ) · f̃j)(t, x; θ), k = 2, 3,(5.4)

where τk(∇ϕ) are defined in (2.3). Due to the assumption (2.6), we obtain that

(v
(2)
j+1, v

(3)
j+1) can be uniquely determined by (5.4) with mθ(v

(2)
j+1, v

(3)
j+1) = 0.

To solve v
(1)
j+1, acting 
l1(∇ϕ) from the left on the same equation as (5.2) with j

being replaced by j + 1, and using (5.3), one gets that v
(1)
j+1 satisfies the following

problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(
l1A0
r1)∂t + (
l1A1
r1)∂x1 + (
l1A2
r1)∂x2 ]v
(1)
j+1 +
l1(A0∂t
r1 + A1∂x1
r1 + A2∂x2
r1)v

(1)
j+1

−
l1(ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1ϕx2B3)
r1∂

2
θv

(1)
j+1 = hj+1

v
(1)
j+1|t=0 = 0,

(5.5)

which is similar to the problem (2.20), where

hj+1 = 
l1[(ϕx1x1B1 + ϕx2x2B2 + ϕx1x2B3)∂θcj + (2ϕx1B1 + ϕx2B3)∂
2
θx1

cj

+ (2ϕx2
B2 + ϕx1

B3)∂
2
θx2

cj + (B1∂
2
x1

+ B2∂
2
x2

+ B3∂
2
x1x2

)cj−1

− (L(∂t, ∂x) − (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)∂

2
θ )(v

(2)
j+1
r2 + v

(3)
j+1
r3)].
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As in (2.21) and (2.22), the 0(εj+1)−term of the boundary condition M+V ε|x1=0 =
0 in (2.1) gives⎧⎨

⎩
a
(k)
j+1(t, x) + b

(k)
j+1(t, x2; z) = 0 on {x1 = z = 0}

c
(k)
j+1(t, x; θ) + d

(k)
j+1(t, x2; z, θ

0) = 0 on {x1 = z = 0, θ = θ0}
(5.6)

for k ∈ {2, 3}.
Thus, to solve aj+1 from the same equation as (5.1) with j being replaced by

j + 1, one should study b
(2)
j+1 first in order to determine the boundary value of a

(2)
j+1

on {x1 = 0}.
Acting upon the averaging operator mθ on Gj = 0 from (2.15), and using the

assumption mθ(dk) = 0 for any k ≥ 0, we get

A1(0)∂zbj+1 = g̃j(t, x2; z),(5.7)

and the difference between Gj = 0 and (5.7) gives rise to

(ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θdj+1 + A1(0)∂zdj+1 = g
j (t, x2; z, θ),(5.8)

where⎧⎪⎪⎨
⎪⎪⎩

g̃j(t, x2; z) = B1∂
2
zbj − (A0(0)∂t + A2(0)∂x2)bj − zA′

1(0)∂zbj − mθ(gj),

g
j (t, x2; z, θ) = (B1∂
2
z + (ϕ0

x2
)2B2∂

2
θ + ϕ0

x2
B3∂

2
zθ)dj − (A0(0)∂t + A2(0)∂x2)dj

−z(ϕ0
tA

′
0(0) + ϕ0

x2
A′

2(0))∂θdj − zA′
1(0)∂zdj − gj + mθ(gj).

From (5.7), we deduce immediately that (b
(1)
j+1, b

(2)
j+1) solves the following problem:⎧⎪⎪⎨

⎪⎪⎩
(

0 ρ′(0)

c2(0) 0

)⎛
⎝ ∂zb

(1)
j+1

∂zb
(2)
j+1

⎞
⎠ =

⎛
⎝ g̃

(1)
j

g̃
(2)
j

⎞
⎠

(b
(1)
j+1, b

(2)
j+1) ∈ S(R+

z ),

(5.9)

which implies ⎧⎨
⎩

b
(1)
j+1(t, x2; z) = −c−2(0)

∫ +∞
z

g̃
(2)
j (t, x2; ξ)dξ

b
(2)
j+1(t, x2; z) = −(ρ′(0))−1

∫ +∞
z

g̃
(1)
j (t, x2; ξ)dξ.

(5.10)

Therefore, from the same equation as (5.1) with j being replaced by j + 1, we
know that aj+1(t, x) solves the following problem:⎧⎪⎪⎨

⎪⎪⎩
L(∂t, ∂x)aj+1 = (B1∂

2
x1

+ B2∂
2
x2

+ B3∂
2
x1x2

)aj−1,

a
(2)
j+1|x1=0 = (ρ′(0))−1

∫ +∞
0

g̃
(1)
j (t, x2; ξ)dξ,

aj+1|t=0 = 0.

(5.11)

To determine b
(3)
j+1(t, x2; z), we act upon the averaging operator mθ on Gj+1 = 0

with Gj+1 being given as in (2.15), and obtain

Lbd(∂t, ∂x2)bj+1 + zA′
1(0)∂zbj+1 −B1∂

2
zbj+1 + A1(0)∂zbj+2 + mθ(gj+1) = 0.

(5.12)
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The third component of (5.12) shows that b
(3)
j+1 solves the following initial-boundary

value problem for the linearized Prandtl equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∂t + v′2(0)∂x2
)b

(3)
j+1 + z

∂v′1(0)

∂x1
∂zb

(3)
j+1 −

1

ρ′(0)
∂2
zb

(3)
j+1 = −c2(0)

ρ′(0)
∂x2

b
(1)
j+1 − mθ(g

(3)
j+1)

b
(3)
j+1|z=0 = −a

(3)
j+1(t, 0, x2), b

(3)
j+1 ∈ S(R+

z )

b
(3)
j+1|t=0 = 0,

(5.13)

where a
(3)
j+1 is the third component of aj+1 given in (5.11), and b

(1)
j+1 is given already

in (5.10).

However, it remains to be determined that dj+1(t, x2; z, θ). From (5.8), we get

⎧⎪⎨
⎪⎩

ϕ0
x2
∂θd

(1)
j+1 =

1

c2(0)
g

(3)
j , ∂zd

(1)
j+1 =

1

c2(0)
g

(2)
j

d
(1)
j+1 ∈ S(R+

z )

(5.14)

and

∂zd
(2)
j+1 + ϕ0

x2
∂θd

(3)
j+1 =

1

ρ′(0)
g

(1)
j .(5.15)

By using the fact (2.32) in (5.8), we know

E(g
j ) = 0,

which implies especially

∂zg

(3)
j − ϕ0

x2
∂θg


(2)
j = 0.(5.16)

Obviously, (5.16) is the compatibility condition for solving d
(1)
j+1 from (5.14), and

d
(1)
j+1 = −c−2(0)

∫ +∞

z

g

(2)
j (t, x2; ξ, θ)dξ.(5.17)

Acting upon the operator E on the same equations as in (5.8) with j being replaced
by j + 1, it follows that

E(Lbd(∂t, ∂x2)dj+1 + z(ϕ0
tA

′
0(0) + ϕ0

x2
A′

2(0))∂θdj+1 + zA′
1(0)∂zdj+1

−(B1∂
2
z + (ϕ0

x2
)2B2∂

2
θ + ϕ0

x2
B3∂

2
zθ)dj+1 + gj+1 − mθ(gj+1)) = 0.(5.18)

Denote by Ã and B̃ the second and third components of the above term on which E
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acts. Due to (5.15), they can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã = ρ′(0)

(
(∂t + v′2(0)∂x2

)d
(2)
j+1 + z

(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
d
(2)
j+1

)

− (∂2
z + (ϕ0

x2
)2∂2

θ )d
(2)
j+1 + z

∂c2(0)

∂x1
∂zd

(1)
j+1 + g

(2)
j+1 − mθ(g

(2)
j+1) −

D

ρ′(0)
∂zg


(1)
j

B̃ = ρ′(0)

(
(∂t + v′2(0)∂x2)d

(3)
j+1 + z

(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
d
(3)
j+1

)

− (∂2
z + (ϕ0

x2
)2∂2

θ )d
(3)
j+1 + c2(0)∂x2d

(1)
j+1 + z

∂c2(0)

∂x1
ϕ0
x2
∂θd

(1)
j+1 + g

(3)
j+1

−mθ(g
(3)
j+1) −

Dϕ0
x2

ρ′(0) ∂θg

(1)
j .

We deduce from (5.18) that

ωj+1(t, x2; z, θ) = ϕ0
x2
∂θd

(2)
j+1 − ∂zd

(3)
j+1(5.19)

satisfies

(5.20)

(∂t + v′2(0)∂x2)ωj+1 + z

(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
ωj+1 −

1

ρ′(0)
(∂2

z + (ϕ0
x2

)2∂2
θ )ωj+1

−
(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
d
(3)
j+1 = Rj+1,

where

Rj+1 =
1

ρ′(0)

[
∂zg

(3)
j+1 − mθ(∂zg

(3)
j+1) − ϕ0

x2
∂θg

(2)
j+1 + c2(0)∂2

zx2
d
(1)
j+1 +

∂c2(0)

∂x1
ϕ0
x2
∂θd

(1)
j+1

](5.21)

with d
(1)
j+1 being given in (5.17).

Combining (5.15), (5.19), (5.20), and (5.6) leads to (d
(2)
j+1, d

(3)
j+1, ωj+1) satisfying

the following problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
z + (ϕ0

x2
)2∂2

θ )d
(3)
j+1 =

ϕ0
x2

ρ′(0)
∂θg


(1)
j − ∂zωj+1

(∂t + v′2(0)∂x2)ωj+1+z

(
∂v′1(0)

∂x1
∂z +ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
ωj+1 −

1

ρ′(0)
(∂2

z+ (ϕ0
x2

)2∂2
θ )ωj+1

−
(
∂v′1(0)

∂x1
∂z + ϕ0

x2

∂v′2(0)

∂x1
∂θ

)
d
(3)
j+1 = Rj+1

d
(3)
j+1|z=0 = −c

(3)
j+1(t, 0, x2; θ)

(ωj+1 + ∂zd
(3)
j+1)|z=0 = −ϕ0

x2
(∂θc

(2)
j+1)(t, 0, x2; θ)

(d
(3)
j+1, ωj+1) ∈ S(R+

z )

ωj+1|t=0 = 0

(5.22)
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂2
z + (ϕ0

x2
)2∂2

θ )d
(2)
j+1 = ϕ0

x2
∂θωj+1 +

1

ρ′(0)
∂zg


(1)
j ,

d
(2)
j+1|z=0 = −c

(2)
j+1(t, 0, x2; θ),

d
(2)
j+1 ∈ S(R+

z ),

(5.23)

which are similar to problems (2.35) and (2.36).
Remark 5.1. When ϕ|x1=0 = ϕ0(t, x2) ≡ 0, the terms dj disappear, similar to

Gues [4], the boundary conditions (2.21) and (5.6) become

(a
(k)
j (t, x) + c

(k)
j (t, x; θ) + b

(k)
j (t, x2; z))|x1=z=θ=0 = 0

for any j ≥ 0, k = 2, 3. In this case, we obtain that a0(t, x) and c0(t, x; θ) satisfy the
same problems as (2.26) and (2.17), but for j ≥ 0, bj(t, x2; z) satisfies problems (2.29)
and (5.13) with different boundary conditions.

5.2. The case of shorter wavelength. In this subsection, we are going to
study the problem (2.1) when the wavelength of the oscillatory force term is shorter

than the square root of the viscosity, i.e., Φ = Φ(t, x; ϕ(t,x)
εα ) with α > 1. It is observed

in this case that the leading profiles of the solution V ε are the same as the case without
oscillations [12], and the oscillation shall appear only at the high order profiles. To
explain the idea, we shall investigate the case that α = 2.

Take the following ansatz for the solution of (2.1) with Φ = Φ(t, x; ϕ(t,x)
ε2 ) and

ϕ(t, x) being the same as in (2.6):

V ε(t, x) = V ε
in(t, x) + V ε

bd(t, x),(5.24)

where the outflow V ε
in admits the expansion

V ε
in(t, x) =

∑
j≥0

εj
(
aj(t, x) + cj

(
t, x;

ϕ(t, x)

ε2

))
(5.25)

and the flow near the boundary V ε
bd(t, x) will be developed later, where cj(t, x; θ) are

2π-periodic in θ with mean value vanishing.
Plugging the expansion (5.25) into

L(∂t, ∂x)V ε
in −B(ε2, Dε2)V ε

in − Φ

(
t, x;

ϕ(t, x)

ε2

)
= 0,(5.26)

it follows that the vanishing of the O(ε−2), O(ε−1), and O(ε0)−terms on the left side
of (5.26) give rise to

2∑
k=0

ϕxk
Ak(V

′)∂θc0 = (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1ϕx2B3)∂

2
θc0,(5.27)

2∑
k=0

ϕxk
Ak(V

′)∂θc1 = (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)∂

2
θc1,(5.28)

and

L(∂t, ∂x)(a0 + c0) +

2∑
k=0

ϕxk
Ak(V

′)∂θc2 − (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1ϕx2B3)∂

2
θc2

− Φ(t, x, θ) = 0,

(5.29)
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respectively.
Using the assumption (2.6) in (5.27), it follows that⎧⎪⎪⎨

⎪⎪⎩
ϕx1∂θc

(2)
0 + ϕx2

∂θc
(3)
0 = 0,

c2ϕx1
∂θc

(1)
0 = ((1 + D)ϕ2

x1
+ ϕ2

x2
)∂2

θc
(2)
0 + Dϕx1ϕx2∂

2
θc

(3)
0 ,

c2ϕx2
∂θc

(1)
0 = (ϕ2

x1
+ (1 + D)ϕ2

x2
)∂2

θc
(3)
0 + Dϕx1ϕx2∂

2
θc

(2)
0 ,

(5.30)

which implies

ϕx2
∂2
θc

(2)
0 − ϕx1

∂2
θc

(3)
0 = 0.(5.31)

Combining (5.31) and the first equation in (5.30) leads to

c
(2)
0 = c

(3)
0 ≡ 0(5.32)

by using mθ(c0) = 0.
By substituting (5.32) into the last two equations in (5.30), it follows that

c
(1)
0 ≡ 0.(5.33)

Similarly, from (5.28) it follows that

c1(t, x, θ) ≡ 0.(5.34)

From (5.29) we obtain

L(∂t, ∂x)a0 = mθ(Φ)(5.35)

and

2∑
k=0

ϕxk
Ak(V

′)∂θc2 − (ϕ2
x1
B1 + ϕ2

x2
B2 + ϕx1

ϕx2
B3)∂

2
θc2 = Φ − mθ(Φ).(5.36)

which implies that c2 = (c
(1)
2 , c

(2)
2 , c

(3)
2 )T satisfies

⎧⎪⎪⎨
⎪⎪⎩

ρ′(ϕx1
∂θc

(2)
2 + ϕx2

∂θc
(3)
2 ) = Φ(1) − mθ(Φ

(1)),

c2ϕx1∂θc
(1)
2 = ((1 + D)ϕ2

x1
+ ϕ2

x2
)∂2

θc
(2)
2 + Dϕx1ϕx2∂

2
θc

(3)
2 + Φ(2) − mθ(Φ

(2)),

c2ϕx2∂θc
(1)
2 = (ϕ2

x1
+ (1 + D)ϕ2

x2
)∂2

θc
(3)
2 + Dϕx1ϕx2∂

2
θc

(2)
2 + Φ(3) − mθ(Φ

(3)).

(5.37)

From (5.37), it follows that

⎧⎨
⎩

ρ′(ϕx1∂
2
θc

(2)
2 + ϕx2

∂2
θc

(3)
2 ) = ∂θΦ

(1),

(ϕ2
x1

+ ϕ2
x2

)(ϕx2∂
2
θc

(2)
2 − ϕx1∂

2
θc

(3)
2 ) = ϕx1(Φ

(3) − mθ(Φ
(3))),−ϕx2(Φ

(2) − mθ(Φ
(2)))

(5.38)

from which c
(2)
2 (t, x; θ) and c

(3)
2 (t, x; θ) are determined uniquely. Consequently, c

(1)
2

can be uniquely determined from the last two equations in (5.36) as well.
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To determine a0(t, x) from the linearized Euler equations (5.35), one needs to
have the boundary data on {x1 = 0}, which shall be deduced from the boundary layer
profiles given later. Suppose that this is known already, then we have determined the
leading profiles of the flow away from the boundary {x1 = 0}. In this way, one can
obtain profiles of V ε

in(t, x) up to any fixed order, which satisfy problems similar to
those of a0 and c2(t, x, θ). Therefore, the outflow V ε

in has the formal expansion

V ε
in(t, x) =

∑
j≥0

εjaj(t, x) +
∑
j≥2

εjcj

(
t, x;

ϕ(t, x)

ε2

)
.(5.39)

The formula (5.39) inspires us to take the following ansatz for the boundary layer
part V ε

bd to (2.1):

V ε
bd(t, x) =

∑
j≥0

εjbj

(
t, x2;

x1

ε

)
+
∑
j≥2

εjdj

(
t, x2;

x1

ε2
,
ϕ0(t, x2)

ε2

)
,(5.40)

where dj(t, x2; η, θ) are 2π−periodic in θ with mean value vanishing, and bj(t, x2; z)
and dj(t, x2; η, θ) are rapidly decreasing in z = x1

ε and η = x1

ε2 , respectively, when
z, η → +∞.

Plugging the ansatz (5.40) into

L(∂t, ∂x)V ε
bd −B(ε2, Dε2)V ε

bd = 0

and grouping each power of ε, it follows from the vanishing of O(ε−1) and O(ε0)-terms
that

A1(0)∂zb0 = 0(5.41)

and

{
(A0(0)∂t + A2(0)∂x2 + zA′

1(0)∂z)b0 = B1∂
2
zb0,

(ϕ0
tA0(0) + ϕ0

x2
A2(0))∂θd2 + A1(0)∂ηd2 = B1∂

2
ηd2 + (ϕ0

x2
)2B2∂

2
θd2 + ϕ0

x2
B3∂

2
ηθd2.

(5.42)

From (5.41), we deduce

∂zb
(1)
0 = ∂zb

(2)
0 = 0,

which implies

b
(1)
0 = b

(2)
0 ≡ 0(5.43)

by using b0 ∈ S(R+
z ).

As in (2.22), from the boundary condition in (2.1) we get⎧⎨
⎩

a
(k)
0 (t, x) + b

(k)
0 (t, x2; z) = 0, on {x1 = z = 0},

c
(k)
2 (t, x; θ) + d

(k)
2 (t, x2; η, θ

0) = 0, on {x1 = η = 0, θ = θ0}
(5.44)

for k ∈ {2, 3}.
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Therefore, from (5.35), (5.43), and (5.44) we obtain that a0(t, x) satisfies the
same initial boundary value problem of the linearized Euler equations (2.26) as for
the case studied in section 2. From the first equation in (5.42), it also implies that

the boundary layer profile b
(3)
0 (t, x2, z) satisfies the same problem of the linearized

Prandtl equation (2.29) derived in section 2.

From the second equation in (5.42), we deduce that d2 = (d
(1)
2 , d

(2)
2 , d

(3)
2 )T satisfies⎧⎪⎪⎨

⎪⎪⎩
∂ηd

(2)
2 + ϕ0

x2
∂θd

(3)
2 = 0,

c2(0)∂ηd
(1)
2 = (1 + D)∂2

ηd
(2)
2 + (ϕ0

x2
)2∂2

θd
(2)
2 + Dϕ0

x2
∂2
ηθd

(3)
2 ,

c2(0)ϕ0
x2
∂θd

(1)
2 = ∂2

ηd
(3)
2 + (1 + D)(ϕ0

x2
)2∂2

θd
(3)
2 + Dϕ0

x2
∂2
ηθd

(2)
2 .

(5.45)

From (5.45), it is easy to see that ω = ϕ0
x2
∂θd

(2)
2 − ∂ηd

(3)
2 and d

(3)
2 satisfy the

following problem: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[∂2
η + (ϕ0

x2
)2∂2

θ ]ω = 0,

[∂2
η + (ϕ0

x2
)2∂2

θ ]d
(3)
2 = −∂ηω,

(ω + ∂ηd
(3)
2 )|η=0 = −ϕ0

x2
∂θc

(2)
2 |x1=0,

d
(3)
2 |η=0 = −c

(3)
2 |x1=0,

(5.46)

where c
(2)
2 and c

(3)
2 are given in (5.38).

In an argument even simpler than in section 3, one concludes that the problem

(5.46) admits unique smooth solutions (d
(3)
2 , ω) ∈ C∞

p (T 1, H∞([0, T ] × Rx2
× R

+
η ))

rapidly decreasing in η when η → +∞.
Obviously, from the definition of ω and the first equation in (5.45) we know that

d
(2)
2 (t, x2; η, θ) satisfies the following problem:{

[∂2
η + (ϕ0

x2
)2∂2

θ ]d
(2)
2 = ϕ0

x2
∂θω,

d
(2)
2 |η=0 = −c

(2)
2 (t, 0, x2, θ),

(5.47)

which is the same as (2.36). Thus, from (5.47) one can uniquely determine d
(2)
2 ∈

C∞
p (T 1, H∞([0, T ] × Rx2

× R
+
η )) rapidly decreasing in η when η → +∞.

Substituting (d
(2)
2 , d

(3)
2 ) into the right-hand side of the third equation in (5.45) we

can determine d
(1)
2 (t, x2, η, θ) by using mθ(d

(1)
2 ) = 0.

Up to now, we have solved all leading profiles of the solution V ε(t, x) to (2.1) with

Φ = Φ(t, x, ϕ(t,x)
ε2 ) both near and away from the boundary. Similar to the discussion

given at the last subsection, one can obtain all other high order profiles for this
problem.

In a way similar to section 4, we can obtain the following theorem.
Theorem 5.2. Under the assumption that all compatibility conditions are sat-

isfied for the problem (2.1) with Φ = Φ(t, x, ϕ(t,x)
ε2 ), the solution V ε of (2.1) has the

following asymptotics:

V ε(t, x) = a0(t, x) + b0

(
t, x2;

x1

ε

)
+ O(ε)

in L∞([0, T ]×R
2
+) for any T > 0, where a0(t, x) satisfies the problem for the linearized

Euler equations (2.26), (b
(1)
0 , b

(2)
0 ) = 0, and b

(3)
0 (t, x2; z) satisfies the linearized Prandtl

equation (2.29).
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PERIODICITY AND UNIQUENESS OF
GLOBAL MINIMIZERS OF AN ENERGY FUNCTIONAL

CONTAINING A LONG-RANGE INTERACTION∗

XINFU CHEN† AND YOSHIHITO OSHITA‡

Abstract. We consider, on an interval of arbitrary length, global minimizers of a class of energy
functionals containing a small parameter ε and a long-range interaction. Such functionals arise
from models for phase separation in diblock copolymers and from stationary solutions of FitzHugh–
Nagumo systems. We show that every global minimizer is periodic with a period of order ε1/3. Also,
we identify the number of global minimizers and provide asymptotic expansions for the periods and
global minimizers.

Key words. singular perturbation, elliptic systems, transition layer
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1. Introduction. We consider global minimizers of the energy functional

E(u, v, ε, �) :=

∫ �

0

{
1
2ε

2u2
x + F (u) + 1

2v
2
x + 1

2γv
2
}
dx(1.1)

under the constraint

−vxx + γv = u−m in (0, �), vx(0) = vx(�) = 0.(1.2)

Here γ � 0 and m ∈ (0, 1) are fixed constants, ε is a small positive parameter, and
� > 0 is arbitrary. The function F is a smooth double-equal-well potential; more
precisely,

F ∈ C3(R), F (0) = F (1) = 0 < F (s) ∀s ∈ R \ {0, 1}, F ′′(0)F ′′(1) �= 0.(1.3)

When γ = 0, the solvability of v in (1.2) requires the average ū of u be equal to
m. In this case, the functional (1.1) was first introduced by Ohta and Kawasaki [20],
and later by Bahiana and Oono [3], as a free energy modeling a microphase separation
in diblock copolymers. In this model, u and 1−u represent the concentrations of two
different repulsive monomers that constitute the diblock copolymers. The nonlocal
term v represents the long-range interaction of copolymer chains. In numerical simu-
lations, phase separations with fine structures were observed to be in agreement with
those from laboratory experiments. In [18], Nishiura and Ohnishi derived and studied
a gradient flow of the functional defined on a finite interval. For a detailed physi-
cal background on diblock copolymers, see Hamley [10]; other related mathematical
treatments can be found in [6, 9, 11, 19, 22, 23, 24].
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The Euler–Lagrange equation for a critical point of the functional is

ε2uxx = F ′(u) + v in (0, �), ux(0) = ux(�) = 0.(1.4)

Any solution to the system (1.2), (1.4) can be regarded as a stationary pattern of
the FitzHugh–Nagumo equations; see [7, 8, 12, 16, 17] and the references therein.
Recently, one of the authors used the functional (1.1) for γ > 0 obtaining mesoscopic
patterns of the FitzHugh–Nagumo dynamics in higher space dimensions [21].

The functional (1.1) admits many local minimizers [16, 19, 22]; this paper focuses
on global minimizers. Recently, Ren and Wei [24] carried out an impressive mathe-
matical analysis on global minimizers of (1.1) with � = 1 and γ = 0. Their results are
in line with a classical result of Müller [15] on energy functionals of the type∫ 1

0

{
ε2w2

xx + (w2
x − 1)2 + w2

}
dx.

Under periodic or homogeneous Dirichlet boundary conditions, Müller proved that
global minimizers have periods of order ε1/3 and are in general unique; see also [1].
The above energy can be regarded as a special case of (1.1), after taking γ = 0, � = 1,
m = 1/2, and F (s) = 2s2(1 − s)2, and setting w = −2vx. In this paper we provide
a unified framework to analyze the stationary diblock copolymer equation (γ = 0)
and the stationary FitzHugh–Nagumo system (γ > 0). Besides using many ingenious
ideas from Müller [15], Alberti and Müller [1], Nishiura [16], Ohnishi et al. [19], and
Ren and Wei [22, 23, 24], we develop new techniques to

(i) treat the case γ > 0,
(ii) remove technical assumptions on F in [1, 15, 24] (here we only assume (1.3)),
(iii) simplify some of their proofs, and
(iv) provide a (seemingly) more complete result by introducing � as a parameter.
The energy functional (1.1) is designed to have two length scales (e.g., [6, 16, 20,

19, 24]). To see this, let’s denote the average of u and v over (0, �) by

ū =
1

�

∫ �

0

u(x)dx, v̄ =
1

�

∫ �

0

v(x)dx.

An integration of the equation for v gives γv̄ = ū−m. As ‖v‖2
L2 = ‖v− v̄‖2

L2 +‖v̄‖2
L2 ,

the functional can also be written as

E(u, v, ε, �) =

∫ �

0

{
1
2ε

2u2
x + F (u) + 1

2γ (ū−m)2
}
dx +

∫ �

0

{
1
2v

2
x + γ

2 (v − v̄)2
}
dx.

(1.5)

We call the first integral the interfacial energy and the second integral the interaction
energy.

For the interfacial energy to be small, u has to stay close to either 0 or 1, whereas
its average stays close to m. The transition layer (interface) where u changes from 0
to 1 has to be of ε scale; see Carr, Gurtin, and Slemrod [4], who studied minimizers of
the interfacial energy functional in the class {u | ū = m}. Indeed, near each interface
located at z, u(x) ∼ Q(±(x− z)/ε), where Q is the profile of the transition being the
unique solution to{

Q̈(ξ) = f(Q(ξ)) ∀ξ ∈ R,

Q(−∞) = 0, Q(∞) = 1,
∫

R
ξQ̇(ξ) dξ = 0.
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Here f(u) ≡ F ′(u) and the last condition is a normalization to fix the translation
invariance. Each layer (interface) contains an interfacial energy about σε, where

σ =
∫ 1

0

√
2F (s)ds; the fewer the interfaces there are, the smaller the total interfacial

energy is. The thickness of each interfacial region is of order ε.
On the other hand, the interaction energy is proportional to the cubic power of

the length of phase regions (the sets where u ∼ 0 or 1): when the distance between
two interfaces is l and the equation for v is approximated by vxx ≈ m or m − 1, the
interaction energy can be calculated to be about 1

6m
2(1 −m)2l3. Hence, the energy

density

interfacial energy + interaction energy

length
≈ 1

l

(
σε +

m2(1 −m)2

6
l3

)
.

Consequently, the energy density becomes optimal (the smallest) if l ∼ L0ε
1/3, where

L0 :=

(
3σ

m2(1 −m)2

)1/3

, σ :=

∫ 1

0

√
2F (s)ds.(1.6)

Thus, at least formally, energies are minimized under an interaction scale of size ε1/3

and an interfacial scale of size ε. An arbitrary sample of the material studied would
in general exhibit a high oscillating pattern of frequency about ε−1/3 per unit length.

To state our analytical result, we introduce the following:

KN (�) = {(u, v) | u ∈ H1(0, �), v′′ − γv = m− u, v′(0) = v′(�) = 0},

E(ε, �) = inf
(u,v)∈KN (�)

E(u, v, ε, �), ρ(ε, �) =
1

�
E(ε, �).

Associated with each (u, v) ∈ KN (�), there are two natural companions of the
same energy density:

(i) Reflection about x = �/2: (ũ(x), ṽ(x)) := (u(�− x), v(�− x)).
(ii) Even-periodic extension: extend (u, v) first evenly to [−�, 0) and then period-

ically to R.
The reflection (ũ, ṽ) can be viewed as an �-spatial translation of the even-periodic
extension (û, v̂): for every x ∈ (0, �), û(x+ �) = û(x+ �− 2�) = û(x− �) = u(�− x) =
ũ(x).

Using the even-periodic extensions as test functions, one immediately derives that

ρ(ε, k�) ≤ ρ(ε, �) or ρ(ε, �) ≤ ρ(ε, �/k) ∀ � > 0, k = 2, 3, . . . .

Hence, for the uniqueness of global minimizers, it would be better to modulo out
the periodicity. For this purpose, we introduce

K+
N (�) = {(u, v) ∈ KN (�) | v′ ≥ 0 in (0, �)},

E+(ε, �) = inf
(u,v)∈K+

N (�)
E(u, v, ε, �), ρ+(ε, �) =

1

�
E+(ε, �).

In what follows, we always assume that F satisfies (1.3), m ∈ (0, 1) is a fixed
constant, and γ = γ(ε) ∈ [0, γ0], where γ0 is a fixed constant. The following technical
result, stated first for easy reference, can be regarded as a lemma.

Theorem 1. There exists ε0 > 0 such that when ε ∈ (0, ε0], the following holds.
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1. With σ and L0 defined as in (1.6),

L0

σε2/3
ρ+(ε, �) � 3

√
5 if

1
3
√

3
� �

L0ε1/3
� 2

3
√

3
,(1.7)

L0

σε2/3
ρ+(ε, �) � 3

√
6 if

�

L0ε1/3
� 3

√
4 or

�

L0ε1/3
� 1

4
.(1.8)

2. For each � ∈ [ 1
16L0ε

1/3, 3
√

5L0ε
1/3], there is a unique minimizer of E(·, ·, ε, �)

in K+
N (�).

3. As a function of �, E+(ε, �) is smooth in [ 1
16L0ε

1/3, 3
√

5L0ε
1/3] and, denoting

E+
� = d

d�E
+,

E+(ε, �) = σε + 1
6m

2(1 −m)2�3 + O(1)�4,

E+
� (ε, �) = 1

2m
2(1 −m)2�2 + O(1)�3,

E+
��(ε, �) = m2(1 −m)2� + O(1)�2,

�2ρ+
� (ε, �) = 1

3m
2(1 −m)2�3 − σε + O(1)�4,

�3ρ+
��(ε, �) = 1

3m
2(1 −m)2�3 + 2σε + O(1)�4.

In particular, both E+(ε, ·) and ρ+(ε, ·) are strictly convex in[
1

16
L0ε

1/3,
3
√

5L0ε
1/3

]
.

4. There is a unique positive constant �ε = L0ε
1/3[1 + O(1)ε1/3] such that

ρ+(ε, �) > ρ+(ε, �ε) ∀� ∈ (0, �ε) ∪ (�ε,∞).

In addition, for each positive integer n, there is a unique solution �n = �n(ε)
to

ρ+

(
ε,

�n
n + 1

)
= ρ+

(
ε,

�n
n

)
,

�n
n + 1

< �ε <
�n
n
.(1.9)

Furthermore, uniformly in n ≥ 1, the solution has the expansion

�n(ε)

�ε
=
(
n + 1

2

)[ n2 + n

n2 + n + 1/4

]2/3

+ O(1)ε1/3.(1.10)

In this paper, every O(1) refers to a quantity that is bounded uniformly in ε and
in �.

The following is our main result, where �0(ε) := �1(ε)/2.
Theorem 2 (periodicity and uniqueness of global minimizers). For every suffi-

ciently small positive ε the following holds:
1. For every integer n ≥ 1 and � ∈ (�n−1(ε), �n(ε)), (1.1) under the constraint

(1.2) has a global minimizer. It must have a half-period �/n and is unique up to a
half-period translation.

2. If � = �n (n ≥ 1), (1.1) under the constraint (1.2) has exactly (modulo a
half-period translation) two minimizers; one has a half-period �/n and the other a
half-period �/(n + 1).
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In both cases 1 and 2, a global minimizer in a half-period l is the unique global
minimizer of E(·, ·, ε, l) in K+

N (l) or its reflection about the quarter-period x = l/2.
Here letting û be the even-periodic extension of u, we call û(· − l) the half-period

translation of u if û has the period 2l.
Remark 1.1. (1) Suppose {(u�, v�)}�≥�0(ε) is a family of global minimizers nor-

malized so that v�xx(0) ≥ 0. Then their even-periodic extensions satisfy

lim
�→∞

(u�, v�) = (u�ε , v�
ε

) = (uk�ε , vk�
ε

) ∀x ∈ (−∞,∞), k = 2, 3, . . . ,

lim
�→∞

ρ(ε, �) = ρ(ε, �ε) = ρ(ε, k�ε) ∀ k = 2, 3, . . . .

These limits follow from the continuous dependence of global minimizers in K+
N (�)

for � near �ε.
(2) The maximum period of all minimizers (for � ≥ �ε) is

2�1 =
4L0
3
√

3
ε1/3 + O(1)ε2/3.

Namely, every global minimizer in any length of interval has a fine structure of length
scale ε1/3.

(3) Theorem 1 part 3 is indeed the announced Proposition 4.7 in [19], stating that
the minimum energy and the corresponding energy density are convex functions of �
in a neighborhood of L0ε

1/3.
The paper is organized as follows. In section 2, we use Theorem 1 to prove our

main result, Theorem 2. The proof of part 4 of Theorem 1 is also included. In
section 3 and section 4, we establish energy upper and lower bounds, respectively;
that is, we prove Theorem 1 part 1. The rest of the paper is devoted to the proof of
Theorem 1 parts 2 and 3. First we provide certain estimates on energy minimizers
in section 5; in particular, we provide rigorously up to O(ε�) order expansions. Then
in section 6 we estimate the principal eigenvalue of the linearized operator around
any minimizer. We remark that Nishiura [16] has already proven the positivity of
the principal eigenvalue. Here we identify its precise value. The estimate shows that
minimizers in any o(�2) neighborhood are unique. Since the expansion provided in
section 5 for minimizers is unique, we conclude that minimizers, for � close to L0ε

1/3,
are unique. The uniqueness of minimizers allows us to differentiate the minimizer
with respect to � and to prove the convexity of minimum energy with respect to �,
which will be done in the last section.

2. Proof of the main result. In this section, we use Theorem 1 to prove our
main result, Theorem 2.

2.1. The idea. The key to the proof is to show that all zeros of vx of a global
minimizer (u, v) are equally spaced, with a distance approximately equal to L0ε

1/3.
Once this is done, the rest of the proof follows from a straightforward calculation
using the estimates of ρ+ and the uniqueness of global minimizers in K+

N stated in
Theorem 1.

To show that the zeros of vx are equally spaced, we compare the energy E(ε, �)
with H(ε, P ) :=

∑n
i=1 E

+(ε, li), where P = {l1, . . . , ln} is an arbitrary partition of �,
defined as follows.

Definition 1. A partition P of a positive number � is a collection of finitely
many positive numbers l1, . . . , ln satisfying

∑n
i=1 li = �. A partition P = {l1, . . . , ln}

is called an equal partition if all l1, . . . , ln are identical, namely, equal to �/n.
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Using a step-by-step modification of partition lengths, we show that if E(ε, �) ≥
H(ε, P ), where P is a partition of �, then P must be an equal partition with parti-
tion length as “close” to �ε as possible. The modification involves combining short
lengths with, and splitting long lengths into, intermediate ones. The criteria for short,
intermediate, and long are the two numbers 1

16L0ε
1/3 and 3

√
4L0ε

1/3.
To treat minimizers on short intervals, we need the following energy lower bound

estimate whose proof will be given later in this section.
Lemma 2.1. There exists a positive constant c1 (depending only on m and F )

such that

ρ(ε, �) � min { c1 , σε/(2�) } ∀ε > 0, � > 0.

2.2. Proof of Theorem 2. Let � ≥ 1
3√3

L0ε
1/3 be given and consider the mini-

mization of (1.1) under the constraint (1.2).
Step 1. Since each term that appeared in E defined in (1.1) is nonnegative, one

can easily show that in KN (�), E(·, ·, �, ε) admits at least one global minimizer. In
addition, any global minimizer is smooth and satisfies the Euler–Lagrange equation
(1.4). Furthermore, applying a classical uniqueness result to an initial value problem
of the ode system (1.2), (1.4), one can conclude that if all vx, vxx, vxxx, vxxxx vanish
at the same point, say y ∈ [0, �], then ux(y) = uxx(y) = 0, which implies that
(ux(x), vx(x)) ≡ (0, 0) for all x ∈ [0, �]; namely (u, v) is a constant function.

Now let (u, v) ∈ KN (�) be an arbitrary global minimizer of E(·, ·, �, ε) in KN (�);
that is, E(u, v, ε, �) = E(ε, �). Assume that ε is small. We see ρ(ε, �) is small uni-
formly in � ≥ L0ε

1/3/ 3
√

3. Then (u, v) cannot be a constant function, and thus all
vx, vxx, vxxx, vxxxx cannot vanish simultaneously at any point. Hence all roots to
vx = 0 are isolated. We denote all the roots to v′ = 0 in [0, �] by {x0, x1, . . . , xn}, in
increasing order with x0 = 0 and xn = �. Set li = xi−xi−1. In each interval (xi−1, xi),
i = 1, . . . , n, either vx > 0 or vx < 0. Set (ui(y), vi(y)) = (u(xi−1 + y), v(xi−1 + y)) in
the former case and set (ui(y), vi(y)) = (u(xi − y), v(xi − y)) in the latter case. Then
(ui, vi) ∈ K+

N (li). Consequently,∫ xi

xi−1

[
1
2u

2
x + F (u) + 1

2v
2
x + γ

2 v
2
]
dx = E(ui, vi, ε, li) ≥ E+(ε, li).

Hence, for the partition P := {l1, . . . , ln} of �,

H(ε, P ) :=

n∑
i=1

E+(ε, li) ≤ E(ε, �).(2.1)

If each li is in the range [L0ε
1/3/16, 3

√
5L0ε

1/3], we can apply the convexity of
E+ to show that all li are the same (Step 5). If not, we show (Steps 2–4) that
different partitions with decreased values of H could be found, and that after finitely
many steps the partition found has the property that all its partition lengths lie in
[L0ε

1/3/16, 3
√

5L0ε
1/3].

Step 2. We shall show that short partition lengths, if there are any, can com-
bine with some others to form new partitions with smaller H. For this we need the
following:

Any partition P̃ = {l̃1, . . . , l̃ñ} of � satisfying H(ε, P̃ ) � E(ε, �) admits at least
one l̃j, j ∈ {1, . . . , ñ} such that

l̃j
(L0ε1/3)

∈
[

1
4 ,

3
√

4
]
.(2.2)
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Indeed, since ρ(ε, �) ≤ ρ(ε, �/k) ≤ ρ+(ε, �/k) for every integer k ≥ 1, dividing
H(ε, P̃ ) ≤ E(ε, �) by � gives us

ñ∑
i=1

l̃i
�
ρ+(ε, l̃i) ≤ ρ(ε, �) ≤ min

k≥1
ρ+

(
ε,

�

k

)
≤ 3

√
5
σε2/3

L0

by picking a test k such that �/(kL0ε
1/3) ∈ [1/ 3

√
3, 2/ 3

√
3] and using (1.7). Since∑

l̃i = �, in view of (1.8), we see that there is at least one j ∈ {1, . . . , ñ} such that
(2.2) holds.

Step 3. We now combine, one at a time, the short partition lengths, if there are
any, with intermediate ones.

Suppose, for some i, that li/(L0ε
1/3) ≤ 1

16 . Pick an arbitrary lj satisfying (2.2).

Then li + lj ≤ ( 1
16 + 3

√
4)L0ε

1/3 < 3
√

5L0ε
1/3. We can calculate, by the mean value

theorem,

E+(ε, li) + E+(ε, lj) − E+(ε, lj + li) = li
{
ρ+(ε, li) − d

d�E
+(ε, lj + θli)

}
for some θ ∈ (0, 1). Using Lemma 2.1 we find that ρ+(ε, li) ≥ ρ(ε, li) ≥ 8σε2/3/L0. On
the other hand, using Theorem 1 we have d

d�E
+(ε, lj+θli) ≤ 1

2m
2(1−m)2( 3

√
5L0ε

1/3)2 =
3 3√25

2 σε2/3/L0, since L3
0 = 3σ/[m2(1 −m)2]. Thus,

E+(ε, li) + E+(ε, lj) > E+(ε, li + lj).

Now deleting two members li and lj from and adding one new member li + lj to P ,

we obtain a new partition P̃ satisfying H(ε, P̃ ) < H(ε, P ) � E(ε, �). Repeating the
same process finitely many times, we then obtain a partition P ′ = {l′1, . . . , l′n′} of �
such that l′i/(L0ε

1/3) > 1
16 for all i = 1, . . . , n′ and H(ε, P ′) � H(ε, P ), where the

strict inequality holds if P ′ �= P .
Step 4. Here we split longer partition lengths, if there are any, into shorter ones.
Suppose l′i/(L0ε

1/3) ≥ 3
√

4 for some i. For each such i, let ki > 1 be an integer
such that l′i/(kiL0ε

1/3) ∈ [1/ 3
√

3, 2/ 3
√

3]. Then, by (1.7) and (1.8),

E+(ε, l′i) = l′iρ
+(ε, l′i) ≥ l′i

3
√

6σε2/3/L0 ≥ l′i
3

√
6
5 ρ+(ε, l′i/ki)

= 3

√
6
5

ki∑
j=1

(l′i/ki)ρ
+(ε, l′i/ki) = 3

√
6
5

ki∑
j=1

E+(ε, lji ), l1i = · · · = lki
i := l′i/ki.

Hence, splitting each such l′i into ki copies of l′i/ki (ki = 1 if l′i <
3
√

4L0ε
1/3) we obtain

a new partition P ′′ = ∪n′

i=1 ∪ki
j=1 {l

j
i } of � satisfying, after renaming the entries of P ′′,

H(ε, P ′′) ≤ H(ε, P ′), P ′′ = {l′′1 , . . . , l′′n′′}, 1
16 < l′′i /(L0ε

1/3) <
3
√

4 ∀ i = 1, . . . , n′′,

(2.3)

where the strict inequality holds if P ′′ �= P ′.
Step 5. Now we can use the convexity of E+(ε, ·) in [L0ε

1/3/16, 3
√

5L0ε
1/3] to

conclude that

E(ε, �) ≥ H(ε, P ′′) = n′′
n′′∑
i=1

1
n′′E

+(ε, l′′i ) ≥ n′′E+
(
ε,Σn′′

i=1
l′′i
n′′

)
= n′′E+(ε, �

n′′ ).
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n�ε �n (n + 1)�ε

ρ+(ε, �
n
)

ρ+(ε, �
n+1

)

�

�0 �1�ε

ρ+(ε, �)

ρ+(ε, �
2
)

�
O

Fig. 1.

Dividing both sides by � we then obtain ρ+(ε, �/n′′) ≤ ρ(ε, �) ≤ mink≥1 ρ
+(ε, �/k).

This implies that

ρ+(ε, �/n′′) = ρ(ε, �) = min
k≥1

ρ+(ε, �/k).(2.4)

Since any one of the nontrivial reductions in Steps 3 and 4 gives a strict inequality,
we conclude that P = P ′ = P ′′. In addition, for each i, (ui, vi) must be equal to the
unique minimizer of E in K+

N (�/n). Thus, (u, v) is even with a half-period �/n (the
half-period cannot be an integer fraction of �/n since v′ �= 0 in (0, �/n)).

Step 6. It remains to identify n. Let s ≥ 1 be the unique integer such that
�/(s + 1) < �ε ≤ �/s. Consider three cases:

(i) ρ+(ε, �/(s + 1)) > ρ+(ε, �/s),
(ii) ρ+(ε, �/(s + 1)) < ρ+(ε, �/s),
(iii) ρ+(ε, �/(s + 1)) = ρ+(ε, �/s).
Here we include Figure 1 to help readers to follow our argument.
In the first case we must have n = s. Indeed if n < s, then �/n > �/s ≥ �ε. As

ρ+(ε, ·) is strictly increasing in [�ε, 3
√

5L0ε
1/3], we derive that ρ+(ε, �/n) > ρ+(ε, �/s),

contradicting (2.4). Similarly, if n > s, then �/n ≤ �/(1 + s) < �ε. As ρ+(ε, ·) is
strictly decreasing in ( 1

16L0ε
1/3, �ε), ρ+(ε, �/n) ≥ ρ+(ε, �/(s + 1)) > ρ+(ε, �/s), again

contradicting (2.4). Hence, we must have n = s.
In case (ii), we can derive in a similar manner that n = s + 1.
Finally, in case (iii), we can only have either n = s or n = s + 1.
This completes the proof of Theorem 2.
Remark 2.1. Our proof is simpler than that in [15] and [24] since we do not need

any a priori estimation on the distances between any successive zeros of vx. In [24],
great efforts (tens of pages) were devoted to the estimation that C1ε

1/3 < xi−xi−1 <
C2ε

1/3, whereas in [15] such estimation was bypassed after imposing more symmetric
conditions on the nonlinearity F and on m. Our proof relies on estimates (1.7) and
(1.8).

Since the last assertion of Theorem 1 follows from the previous assertion of the
same theorem, it is convenient to provide its proof here.

2.3. Proof of Theorem 1 part 4. (a) From the third assertion of Theorem 1,
ρ+(ε, ·) is strictly convex in [ 1

16L0ε
1/3, 3

√
5L0ε

1/3] and d
d�ρ

+ changes sign in the inter-

val. Hence ρ+(ε, ·) attains a unique strict minimum in [ 1
16L0ε

1/3, 3
√

5L0ε
1/3]. Denote
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this minimum by �ε. Then ρ+
� (ε, �ε) = 0 so that �ε/(L0ε

1/3) = 1 + O(1)ε1/3. In view
of (1.7), and (1.8), this minimum is also global.

(b) Now we solve (1.9) for �n. Writing �n/n = μ�ε, we need only find μ ∈
(1, 1 + 1/n) such that

ρ+

(
ε,

n

n + 1
μ�ε

)
− ρ+(ε, μ�ε) = 0.

Since ρ+(ε, ·) is strictly increasing in [�ε, 3
√

5L0ε
1/3] and strictly decreasing in [L0ε

1/3/16,
�ε], as a function of μ ∈ [1, 1 + 1/n], the left-hand side is decreasing and has different
signs at μ = 1 and μ = 1 + 1/n. Thus the above equation admits a unique solution
μ ∈ (1, 1 + 1/n).

It remains to estimate μ. For � ∈ [L0ε
1/3/16, 3

√
5L0ε

1/3], writing ρ+(ε, �) as ρ+(�)
and using ρ�(�

ε) = 0, we obtain

ρ+(�) − ρ+(�ε) =

∫ �

�ε
ρ+
s (s) ds =

∫ �

�ε
(�− s)ρ+

ss(s) ds

=

∫ �

�ε
(�− s)

{
2σε

s3
+

m2(1 −m)2

3
+ O(s)

}
ds

=
m2(1 −m2)

6
(�− �ε)2

{
O(�) + 1 +

2�ε

�

}

=
m2(1 −m2)

6

{
�2 +

2�ε3

�
− 3�ε2 + O(�)(�− �ε)2

}

by using the expansion for ρ+
�� in Theorem 1 part 3, the definition of L0, and expansion

�ε = [1 + O(ε1/3)]L0ε
1/3.

Upon setting � = μ�ε and � = nμ�ε/(n + 1), respectively, and noting that μ ∈
(1, 1 + 1/n) we obtain

μ2 +
2

μ
=

n2μ2

(n + 1)2
+

2(n + 1)

nμ
+

O(�ε)

n2
.

Therefore,

μ =

[
2(n + 1)2

(2n + 1)n

]1/3[
1 +

(
O(�ε)

n

)]
,

�n
�ε

= nμ =

[
n2(n + 1)2

(n + 1/2)

]1/3[
1 +

O(�ε)

n

]
=

(
n +

1

2

)(
n2 + n

n2 + n + 1/4

)2/3

+ O(ε1/3).

This completes the proof of Theorem 1 part 4.

2.4. Proof of Lemma 2.1. Let δ be a small positive fixed number that is
independent of ε and let (u, v) ∈ KN (�) be any function. We consider three cases:

(i) There exist x1 and x2 in [0, �] such that u(x1) < δ and u(x2) > 1 − δ,
(ii) u ≤ 1 − δ in [0, �], and
(iii) u ≥ δ in [0, �].
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In case (i), since δ is small,

E(u, v, ε, �) ≥
∫ �

0

ε|ux|
√

2F (u)dx ≥ ε

∫ 1−δ

δ

√
2F (s)ds ≥ 1

2σε.

In case (ii) we consider two subcases:

(a) |{x | δ ≤ u ≤ 1 − δ}| ≥ 1
2m�; (b) |{x | δ ≤ u ≤ 1 − δ}| < 1

2m�.

In case (a),

E(u, v, ε, �) ≥
∫ �

0

F (u) dx ≥ 1

2
m�c(δ), c(δ) := min

δ<s<1−δ
F (s).

In case (b), �ū =
∫ �

0
u ≤ 1

2 (1− δ)m�+ δ� ≤ 3
4m� since δ is small. Thus, |ū−m| ≥

1
4m and, by (1.5),

E(u, v, ε, �) ≥ 1

2γ

∫ �

0

(ū−m)2 ≥ 1

32γ
m2�.

Similarly, we can consider case (iii). Hence, combining all the cases we see that

1/�E(u, v, ε, �) ≥ min{σε/(2�),mc(δ)/2, (1 −m)c(δ)/2,m2/(32γ), (1 −m)2/(32γ)}.

Taking c1 := min{m(1 − m)c(δ)/2,m2(1 − m)2/(32γ)}, the assertion of Lemma 2.1
follows.

3. An energy upper bound. In what follows, we use notation

ψ = K�
Nφ ⇐⇒

{
−ψ′′ + γψ = φ in (0, �),

ψ′(0) = ψ′(�) = 0.
(3.1)

When γ = 0, ψ is unique up to an additive constant which does not affect the energy
at all.

Lemma 3.1. For every ε > 0 and � > 0,

min
(u,v)∈K+

N (�)
E(u, v, �, ε) < σε + 1

6m
2(1 −m)2�3.(3.2)

Consequently, (1.7) holds for every ε > 0.
Proof. (a) Test function. With K�

N defined in (3.1), we choose a test function

u(x) = Q
(x− z

ε

)
, v = K�

N (u−m),

where z is a constant chosen such that the average of u over (0, �) is m. Such a z exists
and is unique since Q̇ > 0, Q(−∞) = 0, and Q(∞) = 1. Also, since −(vx)xx + γvx =
ux > 0, and vx(0) = vx(�) = 0, the maximum principle implies that vx > 0 on (0, �).
Thus, (u, v) ∈ K+

N (�).

(b) Interfacial energy. Using Q̇ =
√

2F (Q) > 0, we have εux =
√

2F (u) and thus

∫ �

0

{
1
2ε

2u2
x + F (u)

}
dx = ε

∫ �

0

ux

√
2F (u)dx < ε

∫ 1

0

√
2F (s)ds = σε.
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(c) Interaction energy. We compare the energies of v and ṽ ≡
∫ x

0

∫ x′

0
[m −

u(x′′)]dx′′dx′.
Note ṽx =

∫ x

0
(m − u(x′))dx′ and ṽxx = m − u. Since the average of u is m,

ṽx(�) = 0. Also, as −ṽxxx = ux > 0, the maximum principle implies that ṽx > 0 in

(0, �). Furthermore, ṽx(x) =
∫ x

0
(m − u(x′))dx′ < mx, ṽx(x) =

∫ �

x
(u(x′) − m)dx′ <

(1 −m)(�− x). Hence,

0 < ṽx(x) < min{mx, (1 −m)(�− x)} ∀x ∈ (0, �).

Finally, using −vxx + γv = u−m = −ṽxx we calculate

∫ �

0

(v2
x + γv2) dx =

∫ �

0

v(−vxx + γv) dx =

∫ �

0

v(u−m) dx

= −
∫ �

0

vṽxx dx =

∫ �

0

vxṽx ≤ 1
2

∫ �

0

(v2
x + ṽ2

x) dx.

Thus∫ �

0

(v2
x + 2γv2) dx ≤

∫ �

0

ṽ2
x ≤

∫ �

0

(
min{mx, (1 −m)(�− x)}

)2

dx = 1
3m

2(1 −m)2�3.

Combining this with the estimation in (b), the assertion (3.2) thus follows.
(d) Proof of (1.7). Since m2(1 −m)2 = 3σ/L3

0, (3.2) implies, for every ε > 0 and
� = μL0ε

1/3 with μ ∈ [1/ 3
√

3, 2/ 3
√

3], that

ρ+(ε, �) <
σε + σ�3/(2L3

0)

�
=

σε2/3

L0

( 1

μ
+

μ2

2

)
≤ 7 3

√
3

6

σε2/3

L0
<

3
√

5
σε2/3

L0
.

4. Energy lower bounds. Lemma 2.1 provides an energy lower bound that
can be used to prove (1.8) for all � < 1

4L0ε
1/3. Here we establish energy lower bounds

for all � ≥ 1
16L0ε

1/3, aimed at (i) completing the proof of (1.8) and (ii) sandwiching

tightly the energy with the upper bound (3.2) for � ∈ [ 1
16L0ε

1/3, 3
√

5L0ε
1/3] so that a

leading order expansion of the energy minimizer can be obtained.

4.1. The idea about how to deal with arbitrarily large �. When �/ε1/3

is bounded uniformly in ε, estimates can be obtained via a limiting process, e.g., the
Γ-convergence presented in the next subsection. However, for arbitrarily large �, this
process may not work. For this reason, we shall not estimate ρ+(ε, �) directly for large
�. Instead, we estimate ρ∗(ε, �) defined as follows:

K+(�) = {(u, v)| u ∈ H1(0, �), v′′ − γv = m− u, v′ ≥ 0 in (0, �)},

E∗(ε, �) = inf
(u,v)∈K+(�)

E(u, v, ε, �), ρ∗(ε, �) =
1

�
E∗(ε, �).

There are the relations, for every ε > 0, � > 0, and positive integer k,

ρ+(ε, �) ≥ ρ∗(ε, �) ≥ ρ∗(ε, �/k).(4.1)

Here the first inequality follows from the fact that the class K+
N (�) of test functions

for ρ+ is a subset of the class K+(�) of test functions for ρ∗. For the second inequality,
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one observes that any portion of a minimizer in K+ can be extracted to be used as a
test function for smaller length intervals; more precisely, for any (u, v) ∈ K+(�),

E(u, v, ε, �)

�
≥ k

�
min

0≤j≤k−1

∫ (j+1)�/k

j�/k

{
1

2
u2
x + F (u) +

1

2
v2
x +

γ

2
v2

}
dx ≥ k

�
E∗

(
ε,

�

k

)

= ρ∗

(
ε,

�

k

)
.

Note that (4.1) gives, for each fixed ε,

inf
μ≥6

ρ+(ε, μL0ε
1/3) ≥ inf

μ≥6
ρ∗(ε, μL0ε

1/3) = min
6≤μ≤12

ρ∗(ε, μL0ε
1/3).(4.2)

In this manner, the estimate of ρ+(ε, �) for all � ≥ 6L0ε
1/3 can be obtained by

estimating ρ∗(ε, μL0ε
1/3) for all μ ∈ [6, 12].

Finally, we remark that for every positive ε and �, the energy functional E(·, ·, ε, �)
admits at least one global minimizer in each of the three function classes K+

N (�),
K+(�), and KN (�).

4.2. The Γ-convergence. The Γ-convergence was used by Modica [13] to the
interfacial energy functional in the class of functions with prescribed average in arbi-
trary high space dimensions. This technique applies directly to the current situation
if we impose ∫ ∞

0

√
2F (s) ds = ∞,

∫ 0

−∞

√
2F (s) ds = ∞.(4.3)

Since this theory is elegant and the result is clean, we present it here under the
above assumption. Though this is a very reasonable assumption, we still want to
drop it. This will be done in the next subsection with a direct approach using neither
assumption (4.3) nor the Γ-convergence. It is certainly not true that the Γ-convergence
theory cannot be used without (4.3).

To set up the Γ-convergence, we use the scaling change

x = � y, � = Lε1/3, ε = ε�, u(x) = U(y), v(x) = �2V (y).(4.4)

Then

E(u, v, ε, �) = εΨ(U, V, ε, L),(4.5)

Ψ(U, V, ε, L) :=

∫ 1

0

{
ε

2
U2
y +

1

ε
F (U)

}
dy +

L3

2

∫ 1

0

{
V 2
y + γL3εV 2

}
dy,(4.6)

where V satisfies Vyy = m− U + γL3εV in (0, 1).
Denote by (U ε, V ε) a global minimizer of Ψ(·, ·, ε, L) in a space analogous to any

one of KN (�), K+
N (�), or K+(�). The energy upper bound (3.2) translates to

Ψ(U ε, V ε, ε, L) < σ +
L3m2(1 −m)2

6
∀ε > 0, L > 0.

For fixed L > 0, the right-hand side is independent of ε, so the ε ↘ 0 limit can be
studied to derive energy lower bounds. The key here is that the function Ũε defined
by

Ũ ε(y) :=

∫ Uε(y)

0

√
2F (s)ds ∀y ∈ [0, 1]
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satisfies the estimate∫ 1

0

∣∣∣Ũ ε
y(y)

∣∣∣dy =

∫ 1

0

√
2F (U ε)

∣∣U ε
y

∣∣dy �
∫ 1

0

{
ε

2
U ε
y
2 +

1

ε
F (Uε)

}
dy

< σ +
L3m2(1 −m)2

6
.

Since (U ε, V ε) are energy minimizers (in the space where at least V ε
y ≥ 0), without

using assumption (4.3) one can still show that there is at least one point at which
U ε takes a value in [0, 1]. Indeed, if everywhere U ε < 0 or everywhere U ε > 1, then
(i) if L ≥ 6L0, the interaction energy will be too large to allow (U ε, V ε) to be an
energy minimizer (see the calculation later in this section), and (ii) if L ∈ (0, 6L0],

one derives a similar contradiction after adding (Ūε−m)2

2εγ to the interfacial energy.

Thus, {Ũ ε}0<ε<1 is a bounded family in the function space of bounded variations
(BV (0, 1)). Hence, along a subsequence, it converges pointwisely to a limit, say Ũ0,
a BV function. In addition, along the sequence,

lim inf
ε→0

∫ 1

0

{
ε

2
U ε
y
2 +

1

ε
F (U ε)

}
dy ≥ σ

∫ 1

0

|DŨ0(y)| dy.

A pointwise convergence of Ũ ε implies a pointwise convergence of U ε to a limit

U0. Furthermore, as
∫ 1

0
F (U ε(y))dy < O(1)ε, by Fatou’s lemma the limit U0 satisfies

∫ 1

0

F (U0(y))dy = 0, Ũ0(y) =

∫ U0(y)

0

√
2F (s)ds ∀ y ∈ [0, 1].

Under assumption (4.3), one infers from the uniform boundedness of Ũε that {U ε} is
also uniformly bounded, and hence along the sequence converges to U0 in L2. Thus,
almost everywhere, U0 takes only two values, 0 and 1; that is, for some set Ω ⊂ [0, 1],
U0 = χΩ a.e.

The uniform bound on the energy provides a uniform bound on the L2 norm
of {V ε

y } and the L2 limit, limε→0(γL
3εV ε) = 0. The uniform L∞ bound on {U ε}

gives a uniform Lipschitz continuity of {V ε
y }. Hence, along a subsequence, V ε

y → W
uniformly for some Lipschitz continuous function W . In conclusion,

U0 = χΩ, Wy = m− χΩ,

lim inf
ε→0

Ψ(U ε, V ε, ε, L) � Ψ0(Ω̄,W,L) := σ

∫ 1

0

|DχΩ|dy +
L3

2

∫ 1

0

W 2(y)dy,

where
∫ 1

0
|DχΩ|dy is the number of boundary points of Ω (after it is defined in a unique

way). With a related reverse inequality established (which we omit here), the func-
tional Ψ0 is then called the Γ-limit of the original functional sequence {Ψ(·, ·, ε, ·)}0<ε<1;
see [13] for more details.

For a given L, minimizers of Ψ0 can be calculated explicitly.

1. First, we consider the functional in the class that corresponds to the original
K+. This is the set

J+ := {(Ω,W ) ∈ BV (0, 1) ×H1(0, 1) | Wy = m− χΩ,W ≥ 0}.
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Write Ω = ∪k1
i=1[ci, di] and Ωc = ∪k0

i=1(ai, bi), where di < ci+1 and bi < ai+1. Note
that

|k0 − k1| ≤ 1,

∫ 1

0

|DχΩ|dy = k0 + k1 − 1.

On [ai, bi], we integrate Wy = m over [ai, y] to obtain W (y) = W (ai)+m(y−ai) �
m(y − ai), so that

∫ bi
ai

W 2dy ≥ 1
3m

2(bi − ai)
2.

On [ci, di], we integrate Wy = m− 1 over [y, di] to obtain W (y) = W (di) + (1 −
m)(di − y) � (1 −m)(di − y), so that

∫ di

ci
W 2dy ≥ 1

3 (1 −m)2(di − ci)
3. Thus,

∫ 1

0

W 2dy � m2

3

k0∑
i=1

(bi − ai)
3 +

(1 −m)2

3

k1∑
i=1

(di − ci)
3

� m2

3k2
0

(
k0∑
i=1

(bi − ai)

)3

+
(1 −m)2

3k2
1

(
k1∑
i=1

(di − ci)

)3

=
m2(1 − |Ω|)3

3k2
0

+
(1 −m)2|Ω|3

3k2
1

� min
0≤t≤1

{
m2t3

3k2
0

+
(1 −m)2(1 − t)3

3k2
1

}
,

where in the second inequality we have used
∑

ei ≤ (
∑

e3
i )

1/3(
∑

1)2/3. The minimum
is attained at t = (1 −m)k0/[mk1 + (1 −m)k0] so that∫ 1

0

W 2(y) dy ≥ m2(1 −m)2

3[mk1 + (1 −m)k0]2
.(4.7)

Note that this estimate holds even if k0 = 0 (e.g., Ω = [0, 1]) or k1 = 0 (e.g., Ω = ∅).
Thus,

Ψ0(Ω,W,L) ≥ σ(k0 + k1 − 1) +
L3m2(1 −m)2

6[mk1 + (1 −m)k0]2
.

We remark that here the equality can be attained for any given k0, k1 satisfying
|k0 − k1| � 1 � k1 + k0. Indeed, set t = (1 − m)k0/[mk1 + (1 − m)k0] and take
(1) a1 = 0 if k0 ≥ k1 and c1 = 0 if k0 < k1; (2) bi = ai + l0, l0 := t/k0 for all i;
(3) di = ci + l1, l1 := (1 − t)/k1 for all i; (4) W = m(y − ai) for all y ∈ [ai, bi]; and
(5) W (y) = (1−m)(di − y) for all y ∈ [ci, di]. Then W is a continuous function since
ml0 = (1 −m)l1. For this particular choice, (Ω,W ) ∈ J+ and the above inequality is
indeed an equality. Thus, for any L > 0,

min
J+

Ψ0 = min
|p−q|≤1≤p+q

(
σ(p + q − 1) +

L3m2(1 −m)2

6[mp + (1 −m)q]2

)
.

2. Next we consider the space that corresponds to the original space K+
N . This

is the space

J+
N := {(Ω,W ) ∈ J+ | W (0) = W (1) = 0}.

Suppose (Ω,W ) ∈ J+
N . Use the same notation as in the previous case. Note that

W (0) = 0, W ≥ 0, and Wy = m− χΩ imply that Ω ⊂ [b, 1] for some b > 0. Similarly,
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W (1) = 0 implies that [c, 1] ⊂ Ω for some c < 1. Hence, we must have k0 = k1 ≥ 1.
Thus, for every L > 0,

min
J+
N

Ψ0 = min
k≥1

(
σ(2k − 1) +

L3m2(1 −m)2

6k2

)
.

Remark 4.1. With a little extra work, i.e., constructing test functions for upper
bounds, one can indeed prove the following: For every μ > 0,

lim
ε→0

L0

σε2/3
ρ∗(ε, μL0ε

1/3) = min
|p−q|≤1≤p+q

(
p + q − 1

μ
+

μ2

2[pm + (1 −m)q]2

)
,

lim
ε→0

L0

σε2/3
ρ+(ε, μL0ε

1/3) = min
k≥1

(
2k − 1

μ
+

μ2

2k2

)
,

lim
ε→0

L0

σε2/3
ρ(ε, μL0ε

1/3) = min
n≥1

(
n

μ
+

μ2

2n2

)
.

We leave the details to interested readers.
When condition (4.3) is dropped, we face technical difficulties on the convergence

of {U ε} and the equation V ε
yy = m−U ε + γL3εV ε. Though these difficulties could be

overcome by establishing a uniform L∞ bound of {U ε}, we prefer to present another
approach.

4.3. Assumption (4.3) dropped. Let δ ∈ (0, 1/2) be any small positive num-
ber. Define

σδ :=

∫ 1−δ

δ

√
2F (s)ds, A(δ) = sup

0<s<1−δ

s√
F (s)

+ sup
δ<s<1

1 − s√
F (s)

.

Since F ′′(0) > 0 = F (0) = F ′(0) and F ′′(1) > 0 = F (1) = F ′(1), A(δ) is bounded.
Lemma 4.1. Assume (1.3) only. Suppose U ∈ H1(0, 1), V satisfies Vyy =

m − U + γL3εV , and Vy ≥ 0 on [0, 1]. Then, for every δ ∈ (0, 1/2) there exist
non-negative integers k0, k1, and k such that k0 + k1 � k + 1, |k0 − k1| � 1, and

(k + 1)σδ �
∫ 1

0

{
ε

2
U2
y +

1

ε
F (U)

}
dy > kσδ,(4.8)

∫ 1

0

(V 2
y + γεL3V 2)dy +

1

4
γL3ε + A

√
(k + 1)σε � m2(1 −m)2

3[mk1 + (1 −m)k0]2
.(4.9)

Proof. The idea is to approximate the equation for V by Vyy � m− error in one
set Ω0, and Vyy � m− 1 + error in the other set Ω1, where the error terms are either
positively small or negative. The numbers k0 and k1 of disjoint pieces of Ω0 and Ω1

are taken as small as possible so that after integration Vy will not be underestimated
too much.

We are only interested in the case U �≡ 0 and U �≡ 1. Then (4.8) defines a unique
nonnegative integer k. Set y0 = 0, yk+1 = 1. When k > 0, define y1, . . . , yk by

jσδ =

∫ yj

0

{
ε

2
U2
y +

1

ε
F (U)

}
dy ∀ j = 1, . . . , k.
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Then for each j = 0, . . . , k, either U ≥ δ on [yj , yj+1] or U ≤ 1− δ on [yj , yj+1], since∫ 1−δ

δ

√
2F (s)ds = σδ �

∫ yj+1

yj

|Uy|
√

2F (U)dy.

Now define

Ω0 =
{

[yj , yj+1] | U ≤ 1 − δ on [yj , yj+1]
}

=: ∪k0
i=1[ai, bi],

(
bi < ai+1

)
,

Ω1 = [0, 1] \
(
∪k0
i=1(ai, bi)

)
=: ∪k1

i=1[ci, di],
(
di < ci+1

)
.

Note that each maximal connected component of Ω0 or Ω1 is one interval or a union
of several consecutive intervals of [yj , yj+1] so that k0 + k1 ≤ k + 1. Also, maxi-
mal connected components of Ω0 and Ω1 interlace each other so that |k0 − k1| � 1.
Furthermore, U ≤ 1 − δ on Ω0 and U � δ on Ω1. Hence,

U ≤ A(δ)
√
F (U) on Ω0, 1 − U ≤ A(δ)

√
F (U) on Ω1.

Pick any maximal connected component [ai, bi] of Ω0. Integrating Vyy = m−U +
γL3εV over [ai, y], y ∈ [ai, bi] gives

Vy(y) = m(y − ai) +

{
Vy(ai) +

∫ y

ai

(γL3εV − U)

}
.(4.10)

First squaring both sides and then using Vy(ai) � 0 and U � A(δ)
√
F (U) we obtain

V 2
y (y) � m2(y − ai)

2 + 2m(y − ai)

(
Vy(ai) +

∫ y

ai

(γL3εV − U)

)

� m2(y − ai)
2 − 2m(y − ai)

∫ bi

ai

{
γL3ε|V | + A(δ)

√
F (U)

}
,

∫ bi

ai

V 2
y dy � m2

3
(bi − ai)

3 −m

∫ bi

ai

{
γL3ε|V | + A

√
F (U)

}
dy.

Similarly, for any interval [ci, di] of Ω1, we integrate the equation for V over [y, di]

for y ∈ [ci, di] to obtain Vy(y) = (1 −m)(di − y) + Vy(di) +
∫ di

y
(U − 1 − γL3εV ) and

∫ di

ci

V 2
y dy � (1 −m)2

3
(di − ci)

3 − (1 −m)

∫ di

ci

{
γL3ε|V | + A

√
F (U)

}
.

Now adding them up we obtain

∫ 1

0

V 2
y dy ≥ m2

3

k0∑
i=1

(bi − ai)
3 +

(1 −m)2

3

k1∑
i=1

(di − ci)
3 −
∫ 1

0

{
γL3ε|V | + A

√
F (U)

}
dy.

The first two sums can be estimated from below by the right-hand side of (4.7),
whereas the integral can be estimated by∫ 1

0

{
γL3ε|V | + A

√
F (U)

}
dy � 1

4εγL
3 +

∫ 1

0

γεL3V 2 +
√
εA
√

(k + 1)σ,

since
∫ 1

0

√
Fdy ≤

√∫ 1

0
Fdy ≤

√
(k + 1)σε. This completes the proof.
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4.4. Energy lower bounds. Now we are ready to calculate explicitly energy
lower bounds. Depending on the size of μ := L/L0 we consider three cases.

Case I. μ = L/L0 = �/[L0ε
1/3] ∈ [6, 12].

Let (u, v) be a minimizer of E(·, ·, ε, �) in K+(�) so that E(u, v, ε, �) = ρ∗(ε, �).
Define (U, V ) as in (4.4). Applying Lemma 4.1, we obtain (4.8) and (4.9) for

some integers k, k1, k0 satisfying k0 + k1 � k + 1, |k0 − k1| � 1. Translating to (u, v)
(recalling L = μL0, m

2(1 −m)2 = 3σ/L3
0, ε = ε2/3/(μL0)) we obtain

L0E(u, v, ε, �)

σ�ε2/3
+

μ2L3
0

2σ

{
A(δ)

√
(k+1)σ
μL0

ε1/3 +
γμ2L2

0ε
2/3

4

}
+

k(σ − σδ)

σμ

� k

μ
+

μ2

2[mk1 + (1 −m)k0]2
.(4.11)

There are two cases to consider: (i) k ≤ 5, (ii) k ≥ 6.
(i) k ≤ 5. Then k0 ≤ 3 and k1 ≤ 3, so that the right-hand side of (4.11) is

≥ μ2/18 ≥ 2.
(ii) k ≥ 6. Then using max{k0, k1} ≤ k

2 +1 and a+ 1
2b ≥

3
2 (a2b)1/3, the right-hand

side of (4.11) is no smaller than 3
2 l(

k2

(k+1/2)2 )1/3 � ( 243
32 )1/3.

Thus, in both cases the right-hand side of (4.11) is ≥ ( 243
32 )1/3 > 3

√
7. Taking δ

small we see that for all sufficiently small positive ε,

L0

σε2/3
ρ∗(ε, μL0ε

1/3) >
3
√

7 ∀μ ∈ [6, 12].(4.12)

Case II. μ = L/L0 = �/(L0ε
1/3) ∈ [ 3

√
4, 6].

Let (u, v) be a minimizer of E in K+
N (�). We claim that in (4.11) we can have

k1 = k0 (and k ≥ k0 + k1 − 1 = 2k0 − 1), at a cost of at most an O(ε) term added.
Suppose k0 > k1. Then k0 = k1 + 1. This implies that bk0

= 1. Since V ′(1) = 0,
(4.10) with y = 1 gives

0 = m(1 − ak0
) + Vy(ak0

) +

∫ 1

ak0

(γL3εV − U)

� m(1 − ak0) −
∫ 1

ak0

{
γL3ε|V | + A(δ)

√
F (U)

}
.

After using the Hölder inequality∫ 1

ak0

(γL3ε|V | + A
√
F ) ≤

√
(1 − ak0)

∫ 1

ak0

{γL3ε|V | + A
√
F}2,

we then obtain

m2(1 − ak0) ≤
∫ 1

ak0

{
γL3ε|V | + A

√
F
}2

≤ 2ε

∫ 1

0

{
γ2L6εV 2 +

A2

ε
F (U)

}
dy = O(1)ε.

Thus, the component [ak0 , bk0 ] = [ak0 , 1] has length of size O(1)ε. In the estimation
in deriving the right-hand side of (4.7), we redo the estimate for the first term by

k0∑
i=1

(bi − ai)
3 ≥

k0−1∑
i=1

(bi − ai)
3 ≥ 1

(k0 − 1)2

(
k0−1∑
i=1

(bi − ai)

)3

=
m2(|Ω0| − (1 − ak0))

3

3(k0 − 1)2
=

m2|Ω0|3
3(k0 − 1)2

+ O(1)ε.
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Hence, k0 in (4.11) can be replaced by k0 − 1, with the cost of adding a term of order
O(1)ε = O(1)ε2/3. The case k1 > k0 can be similarly treated.

We remark that we are working on a finite range of μ ∈ [1/2, 12], so all k0 and k1

cannot be too large, e.g., ≥ 12, since otherwise interfacial energy kσδε alone will be
large enough to eliminate the possibility. Hence, all O(1) may depend on k, but it is
irrelevant.

Once we know k0 = k1, (4.11) can be expressed simply as

L0

σε2/3
ρ+(ε, μL0ε

1/3) + O(1)ε1/3 + O(1)(σ − σδ) ≥ 2k0 − 1

μ
+

μ2

2k2
0

.

If k0 = 1, then the right-hand side is ≥ 1
μ + μ2

2 ≥ 3

√
27
4 since μ ≥ 3

√
4.

If k0 ≥ 2, then by a + 1
2b ≥

3
2 (a2b)1/3, the right-hand side is � 3

2 (1 − 1/k0)
2/3 ≥

3

√
243
32 > 3

√
7.

In any case, the right-hand side is ≥ 3
√

27/4 > 3
√

6. Thus, for all sufficiently small
positive ε,

L0

σε2/3
ρ+(ε, μL0ε

1/3) >
3
√

6 ∀μ ∈ [
3
√

4, 6].(4.13)

Proof of (1.8). The estimate for μ ≤ 1/4 follows from Lemma 2.1 since we have

L0

σε2/3
ρ+(ε, �) ≥ L0

σε2/3
ρ(ε, �) ≥ min

{
c1L0

σε2/3
,

1

2μ

}
,

where c1 is a constant depending only on m and F . The estimate for μ ≥ 3
√

4 follows
from (4.2), (4.12), and (4.13).

Case III. μ = L/L0 = �/(L0ε
1/3) ∈ [ 1

16 ,
3
√

5].

Let (u, v) be a minimizer of E in K+
N (�). The same consideration as above leads

to the conclusion that (4.11) holds with k0 = k1. From the energy upper bound, we
conclude that we must have k = k0 = k1 = 1, and the total energy is E(u, v, ε, �) ≥
[σε + �3m2(1 −m)2/6](1 − o(1)). As the energy upper bound differs from the energy
lower bound by a tiny fraction, the separate lower bound estimates on the interfacial
and potential energy in Lemma 4.1 then give us

∫ �

0

{
ε

2
u2
x +

1

ε
F (u) +

1

2γε
(ū−m)2

}
dx = σ + o(1),(4.14)

1

�3

∫ �

0

{
v2
x + γ(v − v̄)2

}
dx =

1

3
m2(1 −m)2 + o(1).(4.15)

Furthermore, after checking the lower bound estimation that leads to the right-hand
side of (4.7), we conclude that we must have b1 = c1 = 1 −m + o(1). Namely,

u =

{
o(1) in [0, (1 −m− o(1))�],

1 − o(1) in [(1 −m + o(1))�, �],
(4.16)

vx =

{
[m + o(1)]x in [0, (1 −m)�],

−(1 −m + o(1))(x− �) in [(1 −m)�, �].
(4.17)
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5. Certain quantitative estimates for minimizers. To complete the proof
of Theorem 1, it remains to show its parts 2 and 3. The rest of this paper is devoted
to this task. Hence, in what follows we always assume that

0 < ε � 1, 1
16 L0ε

1/3 ≤ � ≤ 3
√

5 L0ε
1/3.(5.1)

Our plan is as follows. First, in this section we provide certain quantitative estimates
for energy minimizers in K+

N (�). In particular, we show that any two minimizers are
at most O(�4) apart. In the next section, we study the principal eigenvalue of the
linearized operator around any minimizer. We show that the eigenvalue is bigger than
c�2 for some c independent of ε. As a consequence, energy minimizers are unique.
Once we have the uniqueness, we can differentiate the solution with respect to � to
calculate the derivatives of E+ and ρ+ with respect to �, and show that E+ and ρ+

are convex in � in the range specified in (5.1).

5.1. The Euler–Lagrange equation. In what follows, differentiation with re-
spect to x will be denoted by ′. Also, (u, v) is always a global minimizer of E(·, ·, ε, �)
in K+

N (�) with � in the range specified in (5.1). Since K+
N (�) is not an open set, that

(u, v) satisfies the Euler–Lagrange equation is not obvious.

Lemma 5.1. Let (u, v) be a minimizer of E in K+
N (�). Then v′ > 0 in (0, �),

v′′(0) > 0 > v′′(�), and (u, v) satisfies the Euler–Lagrange system

⎧⎪⎪⎨
⎪⎪⎩

ε2u′′ = f(u) + v in (0, �),

v′′ = m + γv − u in (0, �),

u′(0) = v′(0) = u′(�) = v′(�) = 0.

Furthermore, for all φ ∈ H1(0, �) and ψ = K�
Nφ,

∫ �

0

{
ε2φ′2 + fu(u)φ2 +

1

γ
φ̄2 + ψ′2 + γ(ψ − ψ̄)2

}
dx ≥ 0.(5.2)

Proof. We shall start from the elementary estimates (4.14)–(4.17).

(a) Note that γv is small since (i) (4.17) gives v′ = O(�), (ii) γv̄ = ū−m (obtained
by integrating v′′ − γv = m − u), and (iii) the energy upper bound and (1.5) give
m− ū = O(

√
ε/�).

(b) As long as we know that γv is small, we immediately conclude that v′′(0) =
m+ γv−u = m+ o(1) and v′′(�) = m+ γv−u = m− 1+ o(1). Together with (4.17),
we have v′′(0) > 0 > v′′(�) and v′ > 0 in (0, �). This will allow us to do the standard
calculus of variation.

(c) For every φ ∈ H1(0, �), consider the test function

ũ = u + tφ, ṽ = v + tψ, ψ := K�
Nφ = 1

γ φ̄ + K�
N (φ− φ̄).

Here K�
N is the operator defined in (3.1). This operator is uniquely defined for γ > 0.

When γ = 0, it is defined only for functions of zero mean, and ψ is unique up to an
additive constant. Hence, here we use φ̄/γ to denote such an additive constant when
γ = 0.
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Note that ‖ψ‖C2 is bounded and ψ′(0) = ψ′(�) = 0. Since vx > 0 in (0, �) and
v′′(0) > 0 > v′′(�), it follows that (ũ, ṽ) ∈ K+

N (�) if |t| is small enough. Hence,

0 =
d

dt
E(u + tφ, v + tψ, ε, �)

∣∣∣
t=0

=

∫ �

0

{
ε2u′φ′ + f(u)φ + v′ψ′ + γvψ

}

= ε2u′φ
∣∣∣�
0

+

∫ �

0

{
−ε2u′′ + f(u) + v

}
φdx

after integrating by parts and using equation −ψ′′ + γψ = φ. This integral identity
implies that u is a weak solution to ε2u′′ = f(u)+v in (0, �) with the natural boundary
condition u′(0) = u′(�) = 0. Since (u, v) is bounded, (u, v) is a classical solution.

(d) Finally, since (u, v) is a minimizer, d2

dt2 E(u+ tφ, v + tψ, ε, �)|t=0 ≥ 0, which is
equivalent to (5.2).

Once we have the Euler–Lagrange equation, we can estimate the L∞ bound of v.
First of all, from the equation for u we derive that

v̄ = −1

�

∫ �

0

f(u)dx =
1

�

∫ �

0

O(
√
F (u))dx

= O(1)�−1/2

(∫ �

0

F (u)dx

)1/2

= O(1)�−1/2ε1/2 = O(�).

Here we used the fact that u ∈ [−o(1), 1 + o(1)] and that

sup
s∈[−1,2]\{0,1}

|f(s)|√
F (s)

< ∞.

Since ‖v′‖2
L2 = O(ε), we conclude that ‖v‖L∞ = O(�). Improvements will be made

later.

5.2. The profile of u. Note that

d
dx

(
1
2ε

2u′2 − F (u) − γ
2 v

2 + vv′′ − 1
2v

′2
)

= 0.(5.3)

After integration we see that 1
2ε

2u′2 = F (u)+o(1). Hence, for any fixed small positive
δ and ε sufficiently small, |u′| > 0 whenever δ < u < 1−δ. Since u has only one layer,
it follows that u′ > 0 whenever δ < u < 1 − δ. In summary, we have the following
basic estimate.

Lemma 5.2. In [0, �], v = o(1), εu′ =
√

2F (u) + o(1), and there exists a unique
z = (1 −m + o(1))� such that

u(z) = Q(0), u(x) = Q
(x− z

ε

)
+ o(1) ∀x ∈ [0, �].

5.3. A relation between the tails of u and v. Away from the interface
x = z, we expect f(u) + v = ε2u′′ = O(ε2). Thus, formally u ∼ f−1(−v), where
f−1 represents the inverse of f near 0 or 1. To make this statement more precise, we
introduce below functions h0 and h1, which will later be shown to be exponentially
O(e−c|x−z|/ε) close to u−Q.

Lemma 5.3. For each i = 0 and i = 1 there exists a unique solution hi to{
ε2h′′

i = f(hi) + v in (0, �),

h′
i(0) = h′

i(�) = 0, hi = i + O(v).
(5.4)
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In addition, hi satisfies the following estimates:

f(hi) + v = O(ε2), h′
i = O(�), h′′

i = O(1) on [0, �].

Proof. Denote by f−1
i the inverse of f near i = 0 or i = 1. As v = o(1), v′(0) =

v′(�) = 0, and v′′ = O(1), it is easy to show that for some large enough constant M ,
f−1
i (−v)±Mε2 is a super- or sub-solution. As f ′(0) > 0 and f ′(1) > 0, it then follows

from a standard elliptic theory that (5.4) admits a unique solution and the solution
satisfies |hi − f−1

i (−v)| ≤ Mε2 on [0, �]. Consequently, ε2h′′
i = f(hi) + v = O(ε2) so

that h′′
i = O(1), which implies, as h′

i(0) = 0, that h′
i = O(�).

Lemma 5.4. Let θ, h be defined as

θ(x) = u(x) −
{

h0(x), x ∈ (0, z),
h1(x) − 1, x ∈ (z, �],

h(x) =

{
h0(x), x ∈ (0, z),
h1(x), x ∈ (z, �].

Then ⎧⎪⎪⎨
⎪⎪⎩

ε2θ′′ − f(θ) = [O(v) + O(ε2)]θ(1 − θ) in [0, �] \ {z},

θ′(0) = 0 = θ′(�),

θ(z±) = Q(0) + O(v(z)) + O(ε2).

(5.5)

Proof. The boundary conditions of θ at 0 and � follow from that of u and hi. The
condition at z± follows from the fact that u(z) = Q(0) and hi = f−1

i (−v) + O(ε2) =
i + O(v) + O(ε2).

For x ∈ [0, z−], θ = u − h0 and thus ε2θ′′ = ε2(u′′ − h′′
0) = f(θ + h0) − f(h0).

Note that

f(θ + h0) − f(h0) − f(θ) =

∫ θ

0

∫ h0

0

fuu(ξ + η) dη dξ = O(1)h0θ.

The assertion for x ∈ [0, z−] thus follows. The case x ∈ [z+, �] is similar.
Note that (5.5) shows that θ(x) is very close to Q = Q((x− z)/ε). The following

lemma shows that θ is similar to Q.
Lemma 5.5. For all x ∈ (0, z−] ∪ [z+, �), we have 0 < θ(x) < 1, θ′(x) > 0, and

εθ′ = [1 + O(v(z)) + O(ε� ln(θ − θ2))]
√

2(F (θ) − F (θi)) ∀x ∈ [0, z−] ∪ [z+, �],

θ(1 − θ) = O(1)e−c|x−z|/ε ∀x ∈ [0, �],

where θi = θ(0) if x < z, θi = θ(�) if x > z, and c = 1
2 min{

√
f ′(0),

√
f ′(1)}.

Note that the assertion implies that u is exponentially O(e−c|x−z|/ε) close to h,
which has expansion h = f−1(−v) + O(ε2).

Proof. Since f ′(0) > 0 and f ′(1) > 0, it is easy to see from equation ε2θ′′ =
f(θ) + o(1)θ(1 − θ) that 0 < θ < 1 and θ′ > 0 in (0, z−] ∪ [z+, �).

For x ∈ [0, z−], we have

1

2
ε2θ′2 =

∫ x

0

{
f(θ) + [O(v) + O(ε2)]θ

}
θ′ = [1 + o(1)][F (θ) − F (θ(0))]

by the mean value theorem
∫ b

a
A(x)B(x)dx = A(ξ)

∫ b

a
B(x)dx (for B ≥ 0) and the

fact that there exist positive constants c1 and c2 such that c21(s
2 − ŝ2) ≤ 2(F (s) −
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F (ŝ)) ≤ c22(s
2 − ŝ2) for all ŝ ∈ (0, δ] and s ∈ (ŝ, Q(0) + δ] (for fixed small positive δ).

Consequently,

c1
√
θ2 − θ(0)2 ≤ εθ′ ≤ c2

√
θ2 − θ(0)2.

Dividing both sides by
√
θ2 − θ(0)2 and integrating over [x, z] then gives

c1(z − x) ≤ ε ln
θ(z) +

√
θ2(z) − θ2(0)

θ(x) +
√

θ2(x) − θ2(0)
≤ c2(z − x).

This gives us

z − x = O(ε ln θ), θ = O(e−c1(z−x)/ε).

Using v(x) = v(z) +
∫ x

z
v′ = v(z) + O(�)(x− z) = v(z) + O(ε� ln θ), we then obtain

1
2ε

2θ′2 =

∫ θ(x)

θ(0)

{
f(θ) + O(v(z))θ + O(ε�θ ln θ)

}
dθ

= [1 + O(v(z)) + O(ε� ln θ)][F (θ) − F (θ(0))].

After taking the square root and using O(ln θ) = O(ln[θ−θ2]), we obtain the assertion
of the lemma for x ∈ [0, z−]. The proof for the case x ∈ [z+, �] is similar and is
omitted.

5.4. The value v(z). Usually one writes u = Q+φ and solves φ iteratively from
the equation −ε2φ′′ + fu(Q)φ = −v + O(φ2). This equation has a small amplitude
solution if and only if the right-hand side is (almost) orthogonal to Q′, which renders
to a small value of v(z) since Q′ = 1/εQ̇((x − z)/ε) is similar to a Delta function;
see, e.g., Ren and Wei [24]. In this approach, an accurate enough, say O(ε1/2),
a priori estimate on φ is needed to control the O(φ2) term; also, rigorous higher
order expansions are needed for more accurate results, which requires higher order
differentiability of F . Here we replace Q by θ and take an approach where the a priori
estimate on φ is replaced by that of h ≈ f−1(−v). The key is to carry out the
computation that v is almost orthogonal to Q′ ∼ θ′.

Lemma 5.6. For C0 defined as in (5.8) below, v(z) = C0ε
2 + O(ε2�2).

Proof. For x �= z we have θ′ = u′−h′ and v = ε2u′′− f(u) = ε2h′′− f(h). Hence,∫
[0,�]\{z}

θ′v =

∫
[0,�]\{z}

{u′(ε2u′′ − f(u)) − h′(ε2h′′ − f(h))}

= [F (h) − F (u)]
∣∣∣�
0

+
(

1
2ε

2h′2 − F (h)
)∣∣∣z+

z−

= O(ε2�2 + v2(z)),(5.6)

since 1− θ(�) = O(e−c�/ε), θ(0) = O(e−c�/ε), h′
i = O(�), and F (h(z±)) = O((|v(z)|+

ε2)2).
On the other hand, integration by parts twice gives

∫
[0,�]\{z}

θ′v = v(z)

{
θ
∣∣∣z−
0

+ (θ − 1)
∣∣∣�
z+

}
− v′(z)

{∫ z

0

θ +

∫ �

z

(θ − 1)

}

+

∫ z

0

v′′
∫ x

0

θ +

∫ �

z

v′′
∫ x

�

(θ − 1) + θ(0)v
∣∣∣z
0

+ (θ(�) − 1)v
∣∣∣�
z
.(5.7)
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First, {θ|z−0 + (θ − 1)|�z+} = 1 + O(v(z)) + O(ε2). Second,

∫ z

0

θ = ε

∫ θ(z−)

θ(0)

θ

εθ′
dθ = ε

∫ θ(z−)

θ(0)

[1 + O(v(z)) + O(ε� ln(s− s2))]s√
2F (s) − 2F (θ(0))

ds

= ε

∫ Q(0)

0

s√
2F (s)

ds + O(εv(z)) + O(ε2�),

since θ(z−) = Q(0)+O(v(z))+O(ε2). After a similar estimate for
∫ �

z
(1−θ) we derive

that

∫ z

0

θ(x)dx +

∫ �

z

(θ(x) − 1)dx = ε

(∫ Q(0)

0

s√
2F (s)

ds +

∫ 1

Q(0)

s− 1√
2F (s)

ds

)

+O(εv(z)) + O(ε2�) = O(εv(z)) + O(ε2�),

since the sum of integrals on the right-hand side equals
∫ 0

−∞ Qdξ +
∫∞
0

(Q− 1) dξ =∫
R
ξQ̇ dξ = 0.
At this moment, we can compare the two results from (5.6) and (5.7) to conclude

that v(z) = O(ε2) since for x ∈ [0, z−],
∫ x

0
θ = O(εθ(x)) and

∫ x

0

∫ x̂

0
θ = O(ε2θ(x)) after

using εθ′ = [1 + o(1)]
√

2F (θ) − 2F (θ(0)) and dx = dθ/θ′. Consequently, v = O(�2),
u = θ + O(v) + O(ε2) = θ + O(�2), and v′′ = m + γv − u = m − θ + O(�2). It then
follows that∫ z

0

v′′
∫ x

0

θ =

∫ z

0

(m− θ + O(�2))

∫ x

0

θ

= ε2

∫ Q(0)

0

(m− s) ds√
2F (s)

∫ s

0

ŝ√
2F (ŝ)

dŝ + O(ε2�2).

After a similar calculation for the integral on [z, �], we then derive that

[1 + O(v(z)) + O(ε)]v(z) = C0ε
2 + O(ε2�2),

where

C0 =

∫ Q(0)

0

(s−m) ds√
2F (s)

∫ s

0

ŝ√
2F (ŝ)

dŝ +

∫ 1

Q(0)

(s−m) ds√
2F (s)

∫ 1

s

1 − ŝ√
2F (ŝ)

dŝ.(5.8)

The assertion of the lemma thus follows.

5.5. The location z of interface. The rough estimate of z originates from
integrating the equation v′′ = m − u + γv ≈ m − u so the boundary conditions of v
give ū ≈ m. That u ≈ 0 in [0, z) and u ≈ 1 in (z, 1] gives the first order estimate
z ≈ (1 − m)�. Equipped with the better estimate that u = θ + h0 for x < z and
u = θ+ (h1 − 1) for x > z, where f(hi) + v = O(ε2), we can perform such integration
in a much more accurate manner. Here we notice that∫ z

0

∫ x

0

θ ≈ ε2

∫ Q(0)

0

1√
F (s)

∫ s

0

ŝ√
2F (ŝ)

dŝ = O(ε2).

A similar integral on [z, �] can also be estimated.
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As v = O(�2), by Taylor’s expansion, with

A0 = γ + 1/f ′(0) and B0 = f ′′(0)/(2[f ′(0)]3),

we have

γv − h0 = γv − f−1
0 (−v) + O(ε2) = A0v + B0v

2 + O(�6) ∀x ∈ [0, z].

Hence, when x ∈ [0, z],

v′(x) =

∫ x

0

(m + γv − h0 − θ)

= mx +

∫ x

0

(A0v + B0v
2) −

∫ x

0

θ + O(�7),

v(x) = v(z) +

∫ x

z

v′

= v(z) + 1
2m(x2 − z2) + A0

∫ x

z

dx̂

∫ x̂

0

v + O(ε2 + �6).

This gives v = 1
2m(x2 − z2) +O(�4 + ε2), and thus inserting it into the integral gives

v(x) =
m

2
(x2 − z2) +

A0m

24
(x2 − z2)(x2 − 5z2) + O(�6 + ε2).

Substituting this back into the equation for v′ gives

v′(z) = mz − A0m

3
z3 +

2A2
0m + 2B0m

2

15
z5 −

∫ z

0

θ + O(ε2�).

In a similar manner, working on [z, �] and denoting A1 = γ + 1/f ′(1) and B1 =
f ′′(1)/(2[f ′(1)]3), we can derive

v′(z) = (1 −m)(�− z) − A1(1 −m)

3
(�− z)3

+
2A2

1(1 −m) − 2B1(1 −m)2

15
(�− z)5 −

∫ �

z

(1 − θ) + O(ε2�).

After equating both expressions and using
∫ z

0
θ +
∫ �

z
(θ − 1) = O(ε2�), we obtain

z = (1 −m)� +
1

3

{
mA0z

3 − (1 −m)A1(�− z)3
}

+
2

15

{
[A2

1(1 −m) −B1(1 −m)2](�− z)5 − [A2
0m + B0m

2]z5
}

+ O(ε2�).

This “algebraic” equation can be solved iteratively. We state the result as follows.
Lemma 5.7. There exist constants c1, c2 that depend only on f , m, and γ such

that

z = (1 −m)� + c1�
3 + c2�

5 + O(ε2�).

Remark 5.1. Here we implicitly assumed that f ∈ C3, i.e., F ∈ C4. If we assumed
only F ∈ C3, namely (1.3), then we simply add an o(�5) error.

Here we keep separate traces of error terms in ε and �. They can be used to
consider � ∈ [π

√
ε, 3
√

5L0ε
1/3].
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5.6. Conclusion. Finally, we provide an estimate for u. Writing Q = Q((x −
z)/ε) and Q̇ = εQ′ =

√
2F (Q), we have

dθ

dQ
=

[1 + O(ε2) + O(ε� ln(θ − θ2))]
√

2F (θ)√
2F (Q)

.

This provides a relation between θ and Q by∫ θ

θ(z±)

dθ

[1 + O(ε2) + O(ε� ln(θ − θ2))]
√

2F (θ)
=

∫ Q

Q(0)

dQ√
2F (Q)

.

Since θ(z±) = Q(0) + O(ε2), we can integrate the above equation to obtain

θ(x) = Q((x− z)/ε) + O(ε�), εθ′(x) = Q̇((x− z)/ε) + O(ε�).

Hence we have the following lemma.
Lemma 5.8. For all x ∈ [0, �],

v(x) = O(ε�) +

{
m
2 (x2 − z2), x < z,

(1−m)
2 [(�− z)2 − (�− x)2], x > z,

u(x) = O(ε�) + Q
(x− z

ε

)
−

⎧⎨
⎩

v(x)
fu(0) , x ≤ z,

v(x)
fu(1) , x ≥ z,

εu′(x) = O(ε�) + Q̇
(x− z

ε

)
.

In addition, u′′(0) = O(1) and u′′(�) = O(1).
Here the conclusion for u′′(0) follows by u′′(0) = h′′(0)+θ′′(0) = O(1)+O(e−c�/ε).

The estimate for u′′(�) is analogous.

6. An eigenvalue estimate. In this section, we study the linear operator

Lφ := −ε2φ′′ + fu(u)φ + K�
N (φ)

= −ε2φ′′ + fu(u)φ + γ−1 φ̄ + K�
N (φ− φ̄),

where (u, v) is a minimizer in K+
N (�). As mentioned earlier, φ̄/γ is written here to

remind the reader that when γ = 0, we work in the class of functions with zero mean
value. The additive constant is indeed a Lagrange multiplier which makes L map zero
mean functions to zero mean functions. More precisely,

φ̄

γ
:= −

∫ 1

0

fu(u)φdx when φ̄ = γ = 0.

Such a convention is always imposed when γ = 0.
The eigenvalue problem has been studied by Nishiura in [16], who showed that

the principal (smallest) eigenvalue λ1 is positive and small. For the case γ = 0, Ren
and Wei [24] demonstrated that λ1 > cε/� for some positive constant c. The precise
value of λ1 in the γ = 0 case was given in [23] assuming that F is symmetric, i.e.,
F (s) = F (1 − s). Here we present a complete analysis giving the precise value of λ1.
The idea [2, 5] is to construct approximate eigenfunctions.

In what follows ‖ · ‖ is the L2 norm and (·, ·) the L2 inner product. Also, ‖ · ‖p
stands for the Lp norm.



1324 XINFU CHEN AND YOSHIHITO OSHITA

6.1. The approximate eigenvalue pair. Denote by Q1 the solution to

−Q̈1 + fu(Q)Q1 = σ − Q̇ in R, Q1 ∈ L∞(R),

∫
R

Q1Q̇dξ = 0.

It is easy to show that Q1 exists, is unique, and satisfies

∫ 0

−∞

∣∣∣Q1(ξ) −
σ

fu(0)

∣∣∣dξ +

∫ ∞

0

∣∣∣Q1(ξ) −
σ

fu(1)

∣∣∣dξ < ∞.

In what follows, we write

Q = Q
(x− z

ε

)
, Q̇ = εQ′, Q1 = Q1

(x− z

ε

)
, Q̄1 =

1

�

∫ �

0

Q1dx.

We define

φ̂1(x) =

√
ε√
σ

(
u′(x) − α

�
Q1

)
, ψ̂1 = K�

N φ̂1, λ̂1 =
αε

�
,(6.1)

where

α :=
u(�) − u(0)

σγ + Q̄1
=

1 + O(�2)

σ[γ + (1 −m)/fu(0) + m/fu(1)]
.

We shall show that (λ̂1, φ̂1) is a good approximation to the principal eigenpair. Here
the coefficient is taken so that

‖φ̂1‖1 = O(
√
ε), ‖φ̂1‖ = 1 + o(1), ‖φ̂1‖∞ = O(1/

√
ε).

6.2. An estimation of ψ.

Lemma 6.1. For ψ = K�
Nφ, there holds

‖ψ − ψ̄‖∞ ≤
√
�‖ψx‖ ≤ �‖φ− φ̄‖1 ≤ �3/2‖φ− φ̄‖ ≤ �2‖φ− φ̄‖∞.

Proof. We need only prove the second inequality. Multiplying the equation for ψ
by ψ− ψ̄, integrating the resulting equation over (0, �), and using integration by parts
we obtain

∫ �

0

(ψ2
x + γ(ψ − ψ̄)2)dx =

∫ �

0

φ(ψ − ψ̄) =

∫ �

0

(φ− φ̄)(ψ − ψ̄)

� ‖ψ − ψ̄‖∞‖φ− φ̄‖1 �
√
�‖ψx‖ ‖φ− φ̄‖1.

The assertion thus follows.

From the lemma, we see that

∫ �

0

{
ψ̂′

1
2 + γ(ψ̂1 − ¯̂

ψ1)
2
}
≤ �‖φ̂1 − ¯̂

φ1‖2
1 = O(ε�).
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6.3. The approximate equation for the principal eigenvalue. Using −ε2u′′′+
fu(u)u′ = −v′, Q̇ = εQ′, and the definition of α, we can calculate

Lφ̂1 =

√
ε√
σ

(
−v′ +

α

�
(εQ′ − σ) +

u(�) − u(0) − αQ̄1

γ�

)

+ ψ̂1 − ¯̂
ψ1 +

α
√
ε

�
√
σ

(fu(Q) − fu(u))Q1

=
αε

√
ε

�
√
σ

Q′ + ψ̂1 − ¯̂
ψ1 −

√
ε√
σ
v′ +

α
√
ε

�
√
σ

(fu(Q) − fu(u))Q1 = λ̂1φ̂1 + R,

where

λ̂1 :=
αε

�
, R = λ̂1

√
ε√
σ

(
Q′ − u′ +

α

�
Q1

)
−

√
ε√
σ
v′ + ψ̂1 − ¯̂

ψ1 +
α
√
ε

�
√
σ

(fu(Q) − fu(u))Q1.

(6.2)

Using Q′ − u′ = O(�2/ε), v′ = O(�), one sees that

‖R‖∞ = O(�5/2), ‖R‖ = O(�3).

Lemma 6.2. Let (φ̂1, λ̂1) be defined as in (6.1). Then

Lφ̂1 = λ̂1φ̂1 + R, ‖φ̂1‖ = 1 + o(1), ‖R‖ = O(�3).(6.3)

6.4. Positivity of second eigenvalue. As in [2, 5], a successful analysis on
the sign of the tiny principal eigenvalue relies on the fact that the second eigenvalue,
if it exists, is positive, uniformly in ε. This allows one to extract information on the
principal eigenvalue from an approximate eigenequation, such as (6.3).

Lemma 6.3. There exists a positive constant ν that is independent of ε such that
if φ ⊥ φ̂1, then with ψ = K�

N (φ),

L(φ, φ) :=

∫ �

0

(
ε2φ′2 + fu(u)φ2 + γ−1φ̄2 + ψ′2 + γ(ψ − ψ̄)2

)

≥ ν

{
ε|φ(0)|2 + ε|φ(�)|2 +

∫ �

0

(ε2φ′2 + φ2 + ψ′2 + ψ2)

}
.

Proof. (a) One need only show the existence of a positive constant ν1 such that∫ �

0

(ε2φ′2 + fu(Q)φ2) dx ≥ ν1

∫ �

0

φ2 dx.(6.4)

The reason is as follows. Suppose this is true. Then, for a ∈ (0, 1) to be chosen at
the end,∫ �

0

(ε2φ′2 + fu(u)φ2) dx �
∫ �

0

{
ε2φ′2 + fu(Q)φ2 − C‖u−Q‖∞φ2

}

� (1 − a)

∫ �

0

{
ε2φ′2 + fu(Q)φ2

}
+ a{ε2‖φ′‖2 − ‖fu(Q)‖∞‖φ‖2} − C‖u−Q‖∞‖φ‖2

� aε2‖φ′‖2 +
{

(1 − a)ν1 − a‖fu(Q)‖∞ − C‖u−Q‖∞
}
‖φ‖2

= a{ε2‖φ′‖2 + ‖φ‖2}
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if we take a = (ν1−C‖u−Q‖∞)/(1+ν1 +‖fu(Q)‖∞). Upon observing that ε‖φ‖2
∞ ≤

C{ε2‖φ′‖2 + ‖φ‖2), one obtains the required estimate.
(b) The proof of (6.4) is quite standard; see, for example, de Mottoni and Schatz-

man [14] or Chen [5]. It is based on the fact that the operator L0 := − d2

dξ2 + fu(Q(ξ))

on R has zero as its principal eigenvalue, with a positive eigenfunction Q̇(ξ). Namely,
there exists a positive constant λ2 > 0 such that for any Φ ⊥ Q̇

L0(Φ,Φ) :=

∫
R

{
Φ̇2 + fu(Q)Φ2

}
dξ ≥ λ2

∫
R

Φ2 dξ .

This inequality can be generalized in two ways.
First, the orthogonal condition Φ ⊥ Q̇ can be relaxed by the assumption that

the angle between Φ and Q̇ is larger than π
4 , e.g.,

√
2|(Φ, Q̇)| ≤ ‖Φ‖ ‖Q̇‖. Indeed,

decomposing Φ = cQ̇ + Φ⊥ and using L0(Q̇, Q̇) = 0 and L0(Φ
⊥, Q̇) = 0, one has

L0(Φ,Φ) = L0(Φ
⊥,Φ⊥) ≥ λ2‖Φ⊥‖2 ≥ 1

2λ2‖Φ‖2.
Second, since fu(Q(−∞)) = fu(0) > 0 and fu(Q(∞)) = fu(1) > 0, the whole

space R can be replaced by a finite interval large enough. Namely, there exists an
M > 0 such that for any interval [a, b] that contains [−M,M ] and any Φ satisfying√

2|(Φ, Q̇)| ≤ ‖Φ‖ ‖Q̇‖ (in the L2([a, b]) metric),∫ b

a

{
Φ̇2 + fu(Q)Φ2

}
dξ ≥ λ2

3

∫ b

a

Φ2 dξ.

Translating it into the current situation via ξ = (x − z)/ε, we obtain (6.4) with

ν1 = λ2/3. Here one observes that φ̂1 is almost parallel to Q′ so that φ ⊥ φ̂1 implies
that the angle between Q′ and φ is larger than π

4 . This completes the proof.

6.5. A boundary value problem. To finish our eigenvalue analysis and, more
important, for our later applications, we consider the boundary value problem

Lφ = g in (0, �), φ′(0) and φ′(�) given.

Suppose there is a solution. We write it as

φ = cφ̂1 + φ⊥, φ⊥ ⊥ φ̂1.

Then

(g, φ̂1) = (Lφ, φ̂1) = (−ε2φ′φ̂1 + ε2φφ̂′
1)
∣∣∣�
0

+ (φ,Lφ̂1)

=
(
−ε2φ′φ̂1 + ε2(cφ̂1 + φ⊥)φ̂′

1

)∣∣∣�
0

+ λ̂1c‖φ̂1‖2 + c(R, φ̂1) + (R,φ⊥).

Since ‖R‖ = O(�3), λ̂1 = αε/� ∼ �2, and φ̂′
1 = O(

√
ε) at x = 0 and �, we see that

λ̂1‖φ̂1‖2c = O(1)

{
(g, φ̂1) + ε2φ′φ̂1

∣∣∣�
0

}
+ O(�3)

{
‖φ⊥‖ +

√
ε|φ⊥(0)| +

√
ε|φ⊥(�)|

}
.

On the other hand,

(g, φ⊥) = (Lφ, φ⊥) = −ε2φ′φ⊥

∣∣∣�
0

+ cε2φ̂′
1φ⊥

∣∣∣�
0

+ L(φ⊥, φ⊥) + c(Lφ̂1, φ⊥)

= −ε2φ′φ⊥

∣∣∣�
0

+ O(�3)c
{
‖φ⊥‖ +

√
ε|φ⊥(0)| +

√
ε|φ⊥(�)|

}
+ L(φ⊥, φ⊥).
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Substituting the estimate for c, we then find that

L(φ⊥, φ⊥) = O(1)
(
‖g‖ + ε3/2|φ′(0)| + ε3/2|φ′(�)|

)(
‖φ⊥‖ + O(

√
ε)[|φ⊥(0)| + |φ⊥(�)|]

)
.

After using Lemma 6.3 for L(φ⊥, φ⊥), we conclude that

εφ2
⊥(0) + εφ2

⊥(�) +

∫ �

0

(
ε2φ′

⊥
2 + φ2

⊥

)
= O(1)

{
‖g‖2 + ε3|φ′(0)|2 + ε3|φ′(�)|2

}
,(6.5)

λ̂1‖φ̂1‖2c = O(1)
{

(g, φ̂1) + ε2φ′φ̂1

∣∣∣�
0

}
+ O(�3)

{
‖g‖ + ε3/2|φ′(0)| + ε3/2|φ′(�)|

}
.

(6.6)

We can summarize our calculation as follows.
Lemma 6.4. Assume that Lφ = g in (0, �). Write φ = cφ̂1 +φ⊥, where φ⊥ ⊥ φ̂1.

Then (6.5) and (6.6) hold.

We remark that the combined quantity (g, φ̂1) + ε2φ′φ̂1|�0 measures the main
contribution of the boundary value problem toward the orthogonal projection of the
solution in the principal eigenfunction direction. That is, if this quantity is of order 1,
then the solution will be of order 1/λ̂1 > c�−2.

6.6. The principal eigenvalue. We can now complete our eigenvalue analysis.
Lemma 6.5. The principal (smallest) eigenvalue λ1 of the self-adjoint operator

L is given by

λ1 = λ̂1 + O(�3) =
ε

σ�[γ + (1 −m)/fu(0) + m/fu(1)]
+ O(ε).

Proof. Note that

λ1 = inf
‖φ‖=1

L(φ, φ).

Taking φ = φ̂1/‖φ̂1‖ as a test function we see that λ1 ≤ O(�2). From (5.2), we
see that λ1 ≥ 0. Thus, λ1 = O(�2). Let φ1 be the eigenfunction of unit length,

Lφ1 = λ1φ1. Write g = λ1φ1 and φ1 = cφ̂1 + φ⊥, and apply the previous lemma.
Since φ′

1(0) = φ′
1(�) = 0 and ‖g‖ = |λ1| = O(�2), the estimate (6.5) then gives

‖φ⊥‖ = O(�2). This implies that c2‖φ̂1‖2 = 1 − ‖φ⊥‖2 = 1 − O(�4). The equation
Lφ1 = λ1φ1 can be written as

Lφ⊥ − λ1φ⊥ = (λ1 − λ̂1)cφ̂1 − cR.

Taking the inner product with φ̂1 and using (Lφ⊥, φ̂1) = −ε2φ′
⊥φ̂1

∣∣�
0

+ ε2φ⊥φ̂
′
1

∣∣�
0

+

(φ⊥,Lφ̂1) = ε2O(ε/�)+ε2O(
√
ε�)+(φ⊥, λ̂1φ̂1 +R) = O(�5) (note φ′

⊥(0) = −cφ̂′
1(0) =

O(
√
ε), φ̂1(0) = O(

√
ε/�), φ⊥(0) = O(

√
�) by (6.5), etc.), we then obtain the required

result.

7. Proof of Theorem 1. Now we complete the proof of Theorem 1 parts 2
and 3.

7.1. Uniqueness of the minimizers. Suppose (u, v) and (ũ, ṽ) are two mini-
mizers in K+

N (�). Denote their interfaces by z and z̃. From the estimate in section 5
we see that

φ := u− ũ = O(�4) + O(1)
z − z̃

ε
= o(1)�2 in L∞((0, �)).



1328 XINFU CHEN AND YOSHIHITO OSHITA

Note that φ satisfies

Lφ = f(u + φ) − f(u) − fu(u)φ = O(φ2) = o(�2)φ.

Hence,

λ1‖φ‖2 ≤ (Lφ, φ) = o(�2)‖φ‖2.

This implies that φ ≡ 0. Hence, minimizers are unique.

7.2. The first order derivative ρ+
� . Once we know the uniqueness of the

minimizer, we can then show that minimizers are smooth in the parameter � ∈
[L0ε

1/3/16, L0ε
1/3 3

√
5]. For simplicity, if possible, we use (u(x), v(x)) = (u(x, �), v(x, �))

to denote the energy minimizer in K+
N (�). Also, we use (u�, v�) to denote the derivative

of (u, v) with respect to �. Then (u�, v�) satisfies⎧⎪⎪⎨
⎪⎪⎩

−ε2u′′
� + fu(u)u� + v� = 0 in (0, �),

−v′′� + γv� = u� in (0, �),

v′�(0) = u′
�(0) = 0, u′

�(�) = −u′′(�), v′�(�) = −v′′(�),

where the boundary conditions are obtained by differentiating u′(0, �) = v′(0, �) =
u′(�, �) = v′(�, �) = 0.

First we calculate

E+
� (ε, �) = F (u) + γ

2 v
2|x=� +

∫ �

0

(ε2u′u′
� + f(u)u� + v′v′� + γvv�)

= F (u) + γ
2 v

2 − vv′′
∣∣∣x=�

=: c(ε, �)

after integrating by parts and using the equation for u and v�. Using (5.3) we find
that

E+
� = c(ε, �) =

1

�

∫ �

0

{
−1

2
ε2u′2 +

1

2
v′2 + F (u) +

γ

2
v2 − vv′′

}

=
E+(ε, �)

�
+

1

�

∫ �

0

(v′2 − ε2u′2)dx.

Hence, as E+(ε, �) = �ρ+(ε, �),

�2ρ+
� (ε, �) = �E+

� − E+ =

∫ �

0

(v′2 − ε2u′2)dx.

Using the estimate on the interaction and interfacial energy, we then see that

�2ρ+
� =

m2(1 −m)2

3
�3 − σε + O(�4).

Here one observes an interesting phenomenon: ρ+
� does not depend on the first

order derivative of (u, v) with respect to �. That is, it does not need equations
involving the derivatives of f .
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7.3. The second order derivative ρ+
��. To calculate the second order deriva-

tive, we need to use (u�, v�). For this purpose, we make the change of variables

v� = ψ(x) + A[v′′(0)(x− z) − v′(x)], u� = φ(x) + A[γv′′(0)(x− z) − u′],

where

A =
−v′′(�)

v′′(0) − v′′(�)
= 1 −m + O(�2).

As one shall see in a moment, φ and ψ are small. That is, v� ≈ A[v′′(0)(x − z) −
v′(x)]. This function is obtained from the observation that v ≈ 1

2m(x2 − z2) for
x < z and v = 1

2 (1 − m)[(� − z)2 − (� − x)2] for x > z ≈ (1 − m)�, and thus
v� ≈ (1−m)[−m(1−m)+ (x− z)χ[z,�]]. We found that a good approximation to this
function is A[v′′(0)(x− z) − v′(x)].

It is easy to verify that ψ′(0) = ψ′(�) = 0 and −ψ′′ + γψ = φ; namely, ψ =
K�

Nφ = γ−1φ̄ + K�
N (φ− φ̄). In addition, φ satisfies

Lφ = g := Av′′(0)(z − x)[1 + γfu(u)],

φ′(0) = A[u′′(0) − γv′′(0)] = O(1),

φ′(�) = (A− 1)u′′(�) −Aγv′′(0) = O(1).

Now we can calculate

d

d�

(
�2ρ+

� (ε, �)
)

= 2

∫ �

0

(v′v′� − ε2u′u′
�)dx

= I + 2

∫ �

0

(v′ψ′ − ε2u′φ′)dx,

where

I = 2A

∫ �

0

{
v′[v′′(0) − v′′] − ε2u′[γv′′(0) − u′′]

}
= 2Av′′(0)[v(�) − v(0)] − 2Aγv′′(0)ε2[u(�) − u(0)] = m2(1 −m)2�2 + O(�4).

To estimate the integral involving φ and ψ, we write

φ = cφ̂1 + φ⊥, ψ = cψ̂1 + ψ⊥, φ⊥ ⊥ φ̂1.

Then, by Lemma 6.4,

∫ �

0

{
ε2φ′

⊥
2 + φ2

⊥ + ψ′
⊥

2 + γψ2
⊥

}
= O(1)

{
‖g‖2 + ε3|φ′(0)|2 + ε3|φ′(�)|2

}
= O(�3).

Since ‖εu′‖ + ‖v′‖ = O(�3/2), it then follows that

∫ �

0

(v′ψ′
⊥ − ε2u′φ′

⊥) = O(�3).
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Also, by Lemma 6.4,

λ̂1‖φ̂1‖2c = O(1)

{∫ �

0

gφ̂1dx + ε2φ̂1φ
′
∣∣∣�
0

}
+ O(�4)

= O(�4) + O(
√
ε)

∫ �

0

(x− z)[1 + γfu(u)]
{
u′ − α

�
Q1

}

= O(
√
ε�) + O(

√
ε)

{∫ z

0

(u + γf(u))dx +

∫ �

z

(u− 1 + γf(u))dx

}

= O(
√
ε�) = O(�5/2).

Thus, c = O(
√
�). Consequently, since ‖v′‖2 = O(�3) and ‖ψ̂1‖2 = O(ε�) = O(�4),

c

∫ �

0

v′ψ̂′
1dx = O(

√
�)‖v′‖ ‖ψ̂′

1‖ = O(�4).

Using the definition of φ̂1,

c

∫ �

0

ε2u′φ̂′
1 =

c
√
ε√
σ

∫ �

0

ε2u′
(
u′′ − α

�
Q′

1

)
= −cα

√
ε

�
√
σ

∫ �

0

ε2u′Q′
1 = O

(cε√ε

�

)
= O(�4),

since ‖u′‖2 = O(1/ε) and ‖Q′
1‖2 = O(1/ε). Thus,

d

d�

(
�2ρ+

� (ε, �)
)

= m2(1 −m)2�2 + O(�3).

From this, assertion 3 of Theorem 1 follows. Here note that the estimates of E+
� (ε, �)

and E+
��(ε, �) follow from the ones of ρ+

� (ε, �) and ρ+
��(ε, �) since E+(ε, �) = �ρ+(ε, �).

This also completes the whole proof of Theorem 1.

8. A final remark for the case � ∈ (0, �ε]. To make our result more complete,
here we provide a final analysis on minimizers for small �.

First of all, one can follow the analysis in the previous sections to conclude that
for all sufficiently small positive ε, ρ+(ε, ·) = ρ(ε, ·) is strictly decreasing and convex
on [

√
ε, �ε]. In addition,

lim
ε→0,�∈[

√
ε,2L0ε1/3/ 3√3]

E(ε, �) − σε

�3
=

m2(1 −m)2

6
.

We omit the proof here.
For � ∈ (0, π

√
ε] we provide the following as a complement.

Lemma 8.1. For every ε > 0, ρ(ε, ·) is a decreasing function on (0, π
√
ε].

More precisely, for every ε > 0, there exists a number l̂(ε) ∈ (0, π
√
ε] such that

(i) when � ∈ (0, l̂(ε)), every global minimizer is a constant function, and thus

ρ(ε, �) = ρ0 := min
s∈R

{
F (s) +

1

2γ
(s−m)2

}
∀� ∈ (0, l̂(ε)];

(ii) in [l̂(ε), π
√
ε], ρ(ε, ·) is a strictly decreasing function.

Proof. If for every � ∈ (0, π
√
ε] any minimizer is a constant function, then the

assertion holds with l̂(ε) = π
√
ε. Hence, we consider the case that there are non-

constant minimizers for some � ∈ (0, π
√
ε).
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Suppose � ∈ (0, π
√
ε) and (u, v) is a global nonconstant minimizer of E(·, ·, ε, �)

in KN (�).
Take any �1 ∈ (�, π

√
ε]. Set η = �/�1. Let ṽ be the solution to

−η2ṽxx + γṽ = u−m in (0, �), ṽx(0) = 0 = ṽx(�).

Define

(u1(y), v1(y)) = ( u(ηy), ṽ(ηy)) ∀ y ∈ (0, �1).

Then one can verify that (u1, v1) ∈ KN (�1). We shall show that 1
�1

E(u1, v1, ε, �1) <
ρ(ε, �).

Note that the interaction energy can be written as∫ �

0

(v2
x + γv2) =

∫ �

0

v(−vxx + γv) =

∫ �

0

v(u−m).

A similar calculation for the interaction energy of v1 then leads to

ρ(ε, �) − E(u1, v1, ε, �1)

�1
=

1

2�

∫ �

0

{
ε2[1 − η2]u2

x + (u−m)(v − ṽ)
}
dx.

The difference v − ṽ can be estimated as follows:∫ �

0

{
η2(vx − ṽx)2 + γ(v − ṽ)2

}
dx =

∫ �

0

(v − ṽ)
{

(−η2vxx + γv) − (−η2ṽxx + γṽ)
}

=

∫ �

0

(v − ṽ)(1 − η2)vxx = (1 − η2)

∫ �

0

(ṽx − vx)vx ≤ (1 − η2)‖vx − ṽx‖ ‖vx‖.

This implies that

‖vx − ṽx‖ ≤ 1 − η2

η2
‖vx‖.

To continue, we recall the Sobolev inequality ‖g− ḡ‖ ≤ �
π‖gx‖ for every g ∈ H1((0, �)).

Hence,∫ �

0

v2
x + γ(v − v̄)2 =

∫ �

0

(u−m)(v − v̄) =

∫ �

0

(u− ū)(v − v̄) ≤ �2

π2
‖ux‖ ‖vx‖.

It then follows that ‖vx‖ ≤ �2

π2 ‖ux‖. Consequently, since the averages of v and ṽ
are the same,∫ �

0

(m− u)(v − ṽ) =

∫ �

0

(ū− u)(v − ṽ) ≤ �2

π2
‖ux‖ ‖vx − ṽx‖ ≤ �4(1 − η2)

π4η2
‖ux‖2.

Thus, recalling η = �/�1,

ρ(ε, �) − E(u1, v1, ε, �1)

�1
≥ 1 − η2

2�

(
ε2 − �2�21

π4

)∫ �

0

u2
x dx > 0.

This implies that ρ(ε, �) > ρ(ε, �1). This also implies that any minimizer of E(·, ·, ε, �1)
in KN (�1) cannot be a constant function (since if it is, then ρ = ρ0).

Now let l̂(ε) = sup{� | ρ(ε, �) = ρ0}. We see that when � ∈ (0, l̂), any minimizer

has to be a constant. On the other hand, ρ(ε, ·) is strictly decreasing in (l̂, π
√
ε] (if

l̂ < π
√
ε).

One observes that the above analysis is for any ε ∈ (0,∞).
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MULTISCALE MODELING FOR THE BIOELECTRIC ACTIVITY OF
THE HEART∗

MICOL PENNACCHIO† , GIUSEPPE SAVARÉ‡ , AND PIERO COLLI FRANZONE‡

Abstract. This paper deals with the mathematical models for the electrical activity of the heart
at the micro- and macroscopic levels. By using the tools of the Γ-convergence theory, a rigorous
mathematical derivation of the macroscopic model, called “bidomain” and derived directly from the
microscopic properties of the tissue, is presented.

Key words. homogenization, Γ-convergence, degenerate evolution equations, reaction-
diffusion systems, FitzHugh–Nagumo dynamic, cardiac electric field, bidomain model

AMS subject classifications. 35B27, 35K57, 35K65, 92C30, 93A30

DOI. 10.1137/040615249

1. Introduction. The aim of this work is to study, in the framework of Γ-
convergence theory, the asymptotic behavior of a microscopic-level (i.e., cellular level)
modeling problem for the bioelectric activity of the heart.

The cardiac tissue is composed of an arrangement of elongated cells physically
interconnected by specialized membrane structures of densely packed channels called
gap junctions; see, e.g., [30, 22]. The gap junction channels connect the cytoplasmatic
compartments of adjacent cells and allow the intercellular flow of ionic currents. The
intercellular communication between cardiac myocytes occurs in an end-to-end orien-
tation and in a side-to-side apposition. At a cellular level the tissue can be viewed as
composed of two conducting volumes, the intra- and extracellular spaces, separated
by the cellular membrane. The two spaces are considered ohmic conducting media
and since the junctional resistance between two adjoining cells is different from the
myoplasm of either cell, the intracellular conductivity is space dependent. The micro-
scopic mathematical model consists of a system of two partial differential equations
of elliptic type and the unknown functions are the intra- and extracellular electric
potentials. These equations are coupled by means of a distinctive evolutive boundary
condition in the potential jump at the interface separating the two media, i.e., the
cellular membrane.

The problem, written in a nondimensional form, contains a small parameter ε
related to the microstructure.

In spite of the discrete cellular structure, it is well known that the cardiac tissue
can be represented by a continuous model, called the bidomain model, which attempts
to describe the averaged electric potentials and current flows inside (intracellular
space) and outside (extracellular space) the cardiac cells. Despite the widespread use
of the macroscopic bidomain model, its rigorous derivation directly from the micro-
scopic properties of the tissue is still lacking. Formally, the macroscopic equations
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can be obtained from the microscopic ones by multiple scale expansion and averaging.
For instance, a first formal derivation, based on current balances and expressed by
averages of integral identities, was obtained in [28]. By standard multiscale arguments
of homogenization the same formal derivation can be found also in the appendix of
[16] and in [25, 26].

We investigate the homogenization limit when ε → 0 under the simplifying as-
sumption that cardiac cells are arranged in a periodic box structure. In this work the
micro- and the macroscopic structures of the cardiac tissue are studied by using the
tools of the Γ-convergence theory, and a rigorous mathematical derivation of the limit
problem at the tissue level (i.e., the bidomain model) is presented.

The microscopic model of the cardiac tissue.
Intra- and extracellular regions. At a microscopic level the cardiac tissue Ω (a

bounded Lipschitz open subset of R
d, d = 3) is composed of a collection of elongated

cardiac cells, connected end-to-end and/or side-to-side by junctions, surrounded by
the extracellular fluid. The end-to-end contacts form the fiber structure of the cardiac
muscle, whereas the presence of lateral junctions establishes a connection between the
elongated fibers.

We can consider the cardiac tissue Ω as composed of two connected regions, the
intracellular (inside the cells) Ωε

i , separated from the extracellular (fluid outside the
cells) Ωε

e by a membrane surface Γε; thus Ω = Ωε
i ∪ Ωε

e ∪ Γε, and Γε = ∂Ωε
i ∩ ∂Ωε

e is
the common part of the two boundaries of Ωε

i,e. Here ε > 0 is a small dimensionless
parameter (whose precise definition in terms of the various physical constants will be
discussed in the appendix) which is proportional to the ratio between the “micro”
scale of the length of the cells and the “macro” scale of the length of the cardiac
fibers.

The periodic lattice of the cells. Following the standard approach of the homog-
enization theory, we are assuming that the cells are distributed according to an ideal
periodic organization similar to a regular lattice of interconnected cylinders.

If e1, . . . ,ed is an orthogonal basis of R
d, we denote by

Ei, Ee := R
d \ Ei with common boundary Γ := ∂Ei ∩ ∂Ee,

two reference open, connected, and periodic subsets of R
d with Lipschitz boundary,

i.e., satisfying

Ei,e + ek = Ei,e, k = 1, . . . , d.(1.1)

The elementary periodicity region

Y :=

{
d∑

k=1

αkek : 0 ≤ αk < 1, k = 1, . . . , d

}
(1.2)

where its intra- and extracellular parts Yi,e = Y ∩ Ei,e represents a reference unit
volume box containing a single cell Yi. The main geometrical assumption is that the
physical intra- or extracellular regions are the ε-dilation of the reference lattices Ei,e,
defined as

εEi,e =
{
εξ : ξ ∈ Ei,e

}
with εΓ :=

{
εξ : ξ ∈ Γ

}
,(1.3)

and therefore the decomposition of the physical region Ω occupied by the heart into
the intra- and extracellular domains Ωε

i,e (see, e.g., Figure 1.1) can be obtained simply
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Ωε
e Ωε

e

Ωε
e

Ωε
i Ωε

i

Ωε
i

Γε

Γε

Γε

Ω

Γ
ξ = x

ε

ε

Y

Yi

Ye

Fig. 1.1. Right: The ideal periodic geometry in a bidimensional section of the simplified three-
dimensional periodic network of interconnected cells. Left: Unit cell in the microscopic variable
ξ = x/ε.

by intersecting Ω with εEi,e, i.e.,

Ωε
i = Ω ∩ εEi, Ωε

e = Ω ∩ εEe, Γε = Ω ∩
(
∂Ωε

i ∩ ∂Ωε
e

)
= Ω ∩ εΓ.(1.4)

Unknowns and equations. The electric properties of the tissue are described by
the couple,

u
¯
ε = (uε

i , u
ε
e), uε

i,e : Ωε
i,e → R,(1.5)

of intra- and extracellular potentials, each one admitting a trace uε
i,e|Γε

on Γε, whose

difference

vε := uε
i |Γε − uε

e|Γε : Γε → R(1.6)

is the transmembrane potential (in the following, we will simply write vε = uε
i − uε

e

on Γε) and satisfies a dynamic condition on Γε involving auxiliary functions

wε : Γε → R
h,(1.7)

the so-called gating (or recovery) variables. We denote by σε
i,e suitably rescaled sym-

metric conductivity matrices,

σε
i,e(x) = σi,e

(
x,

x

ε

)
,(1.8)

obtained by continuous functions σi,e(x, ξ) : Ω × Ei,e → M
d×d satisfying the usual

uniform ellipticity and periodicity conditions

σ|y|2 ≤ σi,e(x, ξ)y · y ≤ σ−1|y|2

σi,e(x, ξ + ek) = σi,e(x, ξ)
∀ (x, ξ) ∈ Ω × Ei,e, y ∈ R

d,(1.9)

for a given constant σ > 0; νεi,e are the exterior unit normals to the boundaries of
Ωε

i,e: observe that νεi = −νεe on Γε.
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We can formulate the reaction-diffusion system satisfied by the vector (uε
i , u

ε
e, w

ε),
with vε = uε

i − uε
e on Γε, in the following way:

−div
(
σε
i,e∇uε

i,e

)
= 0 in Ωε

i,e × (0, T ) (quasi-stationary conduction),(P ε
1a)

−σε
i∇uε

i ·νεi
σε
e∇uε

e ·νεe

}
= Iεm on Γε × (0, T ) (continuity equation),(P ε

1b)

ε (∂tv
ε + I(vε, wε)) = Iεm on Γε × (0, T ) (reaction surface condition),(P ε

2 )

∂tw
ε + r(vε, wε) = 0 on Γε × (0, T ) (dynamic coupling)(P ε

3 )

supplemented by the boundary and initial conditions

σε
i,e∇uε

i,e ·νi,e = 0 on (∂Ωε
i,e \ Γε) × (0, T ),(P ε

4 )

vε(·, 0) = vε0 on Γε,(P ε
5 )

wε(·, 0) = wε
0 on Γε,(P ε

6 )

where the coupling terms I(vε, wε) (the membrane ionic current) and r(vε, wε) depend
on the particular model of the ionic flux through the cellular membrane chosen.

Here we are mainly concerning with the so-called FitzHugh–Nagumo model, first
introduced as a simplified membrane kinetic of the Hodgkin–Huxley equations for the
transmission of nervous electric impulses (see, e.g., [13, 20]) that requires only one
scalar recovery variable wε (thus h = 1 in (1.7)). Therefore, I and r take the form

I(vε, wε) := F (vε) + Θwε, r(vε, wε) := γwε − ηvε,(P ε
7 )

where Θ, γ, η are nonnegative constants, and

F ∈ C1(R) is a cubic-like function with inf
x∈R

F ′(x) > −∞.(1.10)

If (uε
i , u

ε
e, w

ε) is a solution of this system, it is easy to check that (uε
i + c, uε

e + c, wε)
is still a solution, where c = c(t) is an arbitrary family of additive time-dependent
constants. We avoid the use of quotient spaces by fixing a reference open subdomain

Ω0 ⊂⊂ Ω with L d(∂Ω0) = 0, L d(Ω0 ∩ Ωε
e) > 0,(1.11)

(here L d denotes the usual Lebesgue measure on R
d) and imposing that

∫
Ωε

e∩Ω0

uε
e(x) dx = 0.(P ε

8 )

We refer to the system (P ε
1a,P

ε
1b,. . . ,P

ε
8 ) as the (microscopic or cellular) problem P ε .

Well posedness of P ε and energy estimate. The well posedness of problem P ε in
suitable function spaces has been studied in [16], whose main result we will report in
section 4; here we recall only one of the basic a priori estimates, which involves the
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energy-like functionals

a
¯
ε
(
u
¯
ε
)

:=
∑
i,e

∫
Ωε

i,e

σε
i,e∇uε

i,e · ∇uε
i,e dx, u

¯
ε = (uε

i , u
ε
e),(1.12a)

bε
(
vε) := ε

∫
Γε

|vε|2 dH d−1, bε
(
wε) := ε

∫
Γε

|wε|2 dH d−1,(1.12b)

φε
(
vε
)

:= ε

∫
Γε

ϕ(vε) dH d−1,(1.12c)

jε
(
vε
)

:= inf
{
a
¯
ε
(
u
¯
ε
)

: uε
i,e ∈ H1(Ωε

i,e), uε
i − uε

e = vε on Γε
}
,(1.12d)

where ϕ is a positive, convex, primitive function of x �→ F (x) + λFx for a sufficiently
big λF > − infx∈R F ′(x) (see (4.1)) and H d−1 denotes the usual (d− 1)-dimensional
Hausdorff measure.

For every vε0, w
ε
0 ∈ L2(Γε) (the L2 space with respect to H d−1) with j(vε0) < +∞,

there exists a unique variational solution uε
i,e, w

ε, vε = uε
i − uε

e on Γε, of problem
P ε satisfying the uniform energy bound

sup
t∈[0,T ]

(
a
¯
ε
(
u
¯
ε
)

+ bε
(
wε

)
+ φε

(
vε
))

≤ C
(
jε
(
vε0
)

+ bε
(
wε

0) + φε(vε)
)

(1.13)

for a constant C = C(T, λF , η,Θ) independent of ε.

Convergence to the solution of the macroscopic bidomain model. One
possible way to describe the asymptotic behavior of uε

i,e, v
ε, wε as ε ↓ 0 is to consider

local averages. First, we denote by βi,e, β the asymptotic local ratios (uniform in
space) of the intra- and extracellular volumes and of the membrane surface area to
the volume occupied by the tissue, i.e.,

βi,e := lim
ε↓0

L d(Ωε
i,e ∩Bρ(x))

L d(Ω ∩Bρ(x))
=

L d(Yi,e)

L d(Y )

β := lim
ε↓0

εH d−1(Γε ∩Bρ(x))

L d(Ω ∩Bρ(x))
=

H d−1(Γ ∩ Y )

L d(Y )

∀ ρ > 0, x ∈ Ω.(1.14)

Taking into account the a priori bound (1.13), we will introduce the following definition
(where zε represents either the transmembrane potential vε or the recovery variable
wε).

Definition 1.1 (a weak notion of convergence). Let uε
i,e ∈ L1

loc(Ω
ε
i,e), z

ε ∈
L1
loc(Γ

ε), ε > 0, be given families of functions. We say that uε
i,e converges to ui,e ∈

L1
loc(Ω) and zε converges to z ∈ L1

loc(Ω) as ε ↓ 0 if for every test function ζ ∈ C0
c (Ω)

we have

lim
ε↓0

∫
Ωε

i,e

uε
i,e(x)ζ(x) dx = βi,e

∫
Ω

u(x)ζ(x) dx,(1.15)

lim
ε↓0

ε

∫
Γε

zε(x)ζ(x) dH d−1(x) = β

∫
Ω

z(x)ζ(x) dx.(1.16)

We say that a vector (uε
i , u

ε
e, z

ε) ∈ L1
loc(Ω

ε
i ) × L1

loc(Ω
ε
e) × L1

loc(Γ
ε) is converging to

(ui, ue, z) ∈
(
L1
loc(Ω)

)
3 if each component is converging to the corresponding one

according to (1.15) and (1.16).
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Remark 1.2 (weak∗ convergence of the associated measures). The above formu-
lae correspond to considering the local weak∗ convergence in the sense of (signed)
measures: to clarify this point, we introduce the reference positive measures

λε
i,e := L d|Ωε

i,e

, λε := εH d−1|Γε
, λi,e := βi,eL

d|Ω, λ := βL d|Ω(1.17)

and the Radon measures

ũε
i,e := uε

i,e · λε
i,e, z̃ε := zε · λε(1.18)

whose densities are uε
i,e and z, respectively. The convergence introduced in Defini-

tion 1.1 is then equivalent to asking whether

ũε
i,e ⇀

∗ ũi,e := ui,eλi,e, z̃ε ⇀∗ z̃ := z · λ(1.19)

in the local weak∗ topology of the space of Radon measures [4, Definition 1.58].
Since the microscopic problem is strictly related to the energy functionals (1.12a),

(1.12b), it is natural to introduce the corresponding homogenized ones, which are
defined by

a
¯
(u
¯
) :=

∑
i,e

∫
Ω

Mi,e(x)∇ui,e(x) · ∇ui,e(x) dx, u
¯

:= (ui, ue),(1.20a)

b(v) :=β

∫
Ω

|v(x)|2 dx, b(w) := β

∫
Ω

|w(x)|2 dx,(1.20b)

φ(v) :=β

∫
Ω

ϕ(v(x)) dx,(1.20c)

j(v) := inf
{
a
¯
(u
¯
) : u

¯
= (ui, ue) ∈ H1(Ω) ×H1(Ω), ui − ue = v in Ω

}
,(1.20d)

where Mi(x),Me(x) are the symmetric and positive definite matrices obtained by
solving the cellular problems for every y ∈ R

d,

Mi,e(x) y · y := min

{
1

L d(Y )

∫
Yi,e

σi,e(x, ξ)
(
∇u(ξ) + y

)
·
(
∇u(ξ) + y

)
dξ :

u ∈ H1
loc(R

d), u Y -periodic

}
,

(1.21)

and satisfying the usual uniform ellipticity condition for a constant μ > 0,

μ|y|2 ≤ Mi,e(x)y ·y ≤ μ−1|y|2 ∀ y ∈ R
d, x ∈ Ω.(1.22)

We have now all the elements to state our main result.
Theorem 1.3 (convergence to the macroscopic problem P ). Let us suppose

that, as ε ↓ 0, the initial data vε0, w
ε
0 ∈ L2(Γε) converge to v0, w0 ∈ L2(Ω) according

to (1.16), and the related energies satisfy

lim
ε↓0

bε(vε0) = b(v0), lim
ε↓0

bε(wε
0) = b(w0), lim sup

ε↓0

(
jε(vε0) + φε(vε0)

)
< +∞.(1.23)

Then there exists u
¯

= (ui, ue), v = ui − ue, w with

ui,e, v, w ∈ C0(0, T ;H1(Ω)), ∂tv, ∂tw ∈ L2(0, T ;L2(Ω)),
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such that for every time t ∈ [0, T ]

(uε
i,e, v

ε, wε) → (ui,e, v, w) as ε ↓ 0 according to Definition 1.1,(1.24)

with

a
¯
ε(u
¯

ε) = jε(vε) → a
¯

(u
¯

) = j(v), bε(vε) → b(v), bε(wε) → b(w).(1.25)(
ui,e, w

)
with v = ui − ue is the (unique) variational solution of the macroscopic

reaction-diffusion system

div(Mi∇ui)
−div(Me∇ue)

}
= Im in Ω × (0, T ) (continuity equation),(P1)

β (∂tv + I(v, w)) = Im in Ω × (0, T ) (reaction-diffusion condition),(P2)

∂tw + r(v, w) = 0 in Ω × (0, T ), (dynamic coupling)(P3)

supplemented by the boundary and initial conditions

Mi,e∇ui,e ·νi,e = 0 on ∂Ω × (0, T ),(P4)

v(·, 0) = v0 in Ω,(P5)

w(·, 0) = w0 in Ω;(P6)

again, the coupling terms I and r take the same form as (P ε
7 ),

I(v, w) := F (v) + Θw, r(v, w) := γw − ηv,(P7)

and a reference value for the potential ue is determined by imposing∫
Ω0

ue(x) dx = 0.(P8)

Thus we find the equations of the so-called bidomain model (see, e.g., [21, 14,
15, 31, 24]): it describes at a macroscopic level the averaged electric potentials and
current flows inside (intracellular space) and outside (extracellular space) the cardiac
cells, disregarding the discrete cellular structure and representing the cardiac tissue
as the superposition of two interpenetrating and superimposed continua. In this rep-
resentation Ω, the physical region occupied by the heart, coincides with the intra- and
extracellular domains and at every point the two media are connected by a distributed
cellular membrane on Ω. The two superposed conducting media are ohmic, i.e., their
current densities are given by ji,e = −Mi,e∇ui,e with Mi,e the conductivity tensors.
Thus condition P1 is the current conservation law

div(ji + je) = 0 and − divji = divje = Im,

where Im is the current per unit volume crossing the cellular membrane.
Convergence by extensions of the data. One could also consider a different ap-

proach to capture the asymptotic behavior of uε
i,e, v

ε, wε by performing a preliminary
extension of them to the whole Ω and considering the limit of such extensions in a
suitable (ε-independent) function space.

Theorem 1.4 (weak convergence in H1
loc for extended solutions). Let us assume

that the initial data vε0, w
ε
0 converge to v0, w0 according to (1.15), (1.16) of Defini-

tion 1.1, they satisfy the energy condition (1.23), and there exist extensions w̌ε
0 of wε

0
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which are bounded in H1(Ω′), for every Ω′ ⊂⊂ Ω. Then there exist extensions ǔε
i,e,

w̌ε of the microscopic solutions uε
i,e, w

ε of problem P ε satisfying

sup
t∈[0,T ],ε>0

∫
Ω′

(
|ǔε

i,e|2 + |w̌ε|2 + |∇ǔε
i,e|2 + |∇w̌ε|2

)
dx < +∞ ∀Ω′ ⊂⊂ Ω;(1.26)

moreover, for every Ω′ ⊂⊂ Ω and t ∈ [0, T ], any family ǔε
i,e, w̌

ε of such extensions will
satisfy

ǔε
i,e ⇀ ui,e, w̌ε ⇀ w weakly in H1(Ω′) as ε ↓ 0,(1.27)

where (ui,e, w) is the solution of the macroscopic problem P .
Remark 1.5. As we will discuss in section 2 the existence of admissible extensions

ǔε
i,e, w̌

ε satisfying the uniform bounds (1.26) follows by a general result of Acerbi
et al. [1]; they also show that only local a priori bounds like (1.26) are available,
due to the particular geometry of this problem: in fact, the boundary of Ωε

i,e could
be quite irregular and one cannot find global extension operators which preserve the
H1-norm.

Homogenization and Γ-convergence of the associated stationary problems. As we
shall discuss in more detail in section 5, the microscopic problems (P ε

1a,. . . ,P
ε
8 ) can be

considered as a sort of (perturbation of) gradient flows of ε-dependent energies with
respect to a varying family of degenerate metrics, which are induced by nonnegative
quadratic forms with a nontrivial kernel (the forms bε of (1.12b)).

The characterization of the asymptotic behavior of the energy functionals, in
the framework of Γ-convergence theory, is one of the crucial step of the proof of
Theorem 1.3 and it is naturally related to a stationary homogenization problem,
which is of independent interest. Here we state the stationary homogenization result
in a simplified version, obtained by neglecting the role of the recovery variable wε.

We first introduce the family of convex functionals defined on H1(Ωε
i )×H1(Ωε

e),

F ε(u
¯
) :=

h

2
bε(v − vε0) +

1

2
a
¯
ε(u

¯
) + φε(v), v := ui − ue on Γε,(1.28)

with h ≥ 0 a given constant, vε0 ∈ L2(Γε), bε, a
¯
ε, φε defined in (1.12), and the limit

functional defined in
(
H1(Ω)

)2
F (u

¯
) :=

h

2
b(v − v0) +

1

2
a
¯
(u
¯
) + φ(v), v := ui − ue in Ω(1.29)

for a given v0 ∈ L2(Ω) and b, a
¯
, φ introduced in (1.20).

Theorem 1.6 (coercivity and Γ-convergence). Let us suppose that vε0 ∈ L2(Γε)
converge to v0 ∈ L2(Ω) as ε ↓ 0 according to (1.16) and satisfy

lim
ε↓0

bε(vε0) = b(v0), lim sup
ε↓0

(
jε(vε0) + φε(vε0)

)
< +∞.(1.30)

Then the following properties hold:
(a) Compactness. If u

¯
ε = (uε

i , u
ε
e) ∈ H1(Ωε

i ) ×H1(Ωε
e) satisfies

lim inf
ε↓0

F ε(u
¯

ε) < +∞ and

∫
Ωε

e∩Ω0

uε
e(x) dx = 0(1.31)
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then there exists u
¯
∈ H1(Ω) ×H1(Ω) satisfying∫

Ω0

ue(x) dx = 0(1.32)

and a vanishing subsequence εn such that u
¯

εn converges to u according to
Definition 1.1 as n → ∞.

(b) lim inf inequality. For every family u
¯

εn converging to u
¯

according to Defini-
tion 1.1,

lim inf
n→∞

F εn(u
¯

εn) ≥ F (u
¯

).(1.33)

(c) lim sup inequality. For every u
¯

= (ui, ue) ∈
(
H1(Ω)

)2
satisfying (1.32)

there exist u
¯

ε ∈ H1(Ωε
i ) ×H1(Ωε

e) converging to u
¯

as in Definition 1.1 with
vε = uε

i − uε
e converging to v = ui − ue as in (1.16) such that∫

Ωε
e∩Ω0

uε
e(x) dx = 0, lim sup

ε↓0
F ε(u

¯
ε) ≤ F (u

¯
).(1.34)

Whenever a suitable weak (and metrizable) topology is introduced in the spaces
of (signed) Radon measures (we postpone the discussion of this point to section 3),
the above result shows that F is the Γ-limit of the coercive family of functionals F ε.

Well-known results on Γ-convergence [19, Cor. 2.4] and a standard computation
of the first variation of the functionals F ε,F [16] immediately yield the following.

Corollary 1.7 (homogenization of the stationary problems). Under the as-
sumptions of Theorem 1.6, each functional F ε admits a unique minimizer u

¯
ε =

(uε
i , u

ε
e) ∈ H1(Ωε

i ) × H1(Ωε
e) satisfying (1.31) with vε = uε

i − uε
e ∈ H1/2(Γε) and

characterized by the system

−div
(
σε
i,e∇uε

i,e

)
= 0 in Ωε

i,e,(1.35a)

−σε
i∇uε

i ·νεi
σε
e∇uε

e ·νεe

}
= Iεm on Γε,(1.35b)

ε
(
(h + λF )vε + F (vε)

)
= Iεm + εhvε0 on Γε,(1.35c)

σε
i,e∇uε

i,e ·νi,e = 0 on ∂Ωε
i,e \ Γε,(1.35d) ∫

Ωε
e∩Ω0

uε
e(x) dx = 0.(1.35e)

(uε
i,e, v

ε) converge to (ui,e, v) ∈
(
H1(Ω)

)3
as ε ↓ 0 according to Definition 1.1; u

¯
=

(ui, ue) with v = ui − ue is the (unique) minimizer of F satisfying (1.32) and it is
characterized by the system

div(Mi∇ui)
−div(Me∇ue)

}
= Im in Ω,(1.36a)

β
(
(h + λF )v + F (v)

)
= Im + βhv0 in Ω,(1.36b)

Mi,e∇ui,e ·νi,e = 0 on ∂Ω,(1.36c) ∫
Ω0

ue(x) dx = 0.(1.36d)
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Plan of the paper. The paper is divided into two parts: the first part (sections 2
and 3) is devoted to the stationary homogenization result stated in Theorem 1.6 and
can be read independently of the remaining sections. The next section contains some
preliminary technical results related to the extension problem of functions defined on
Γε and Ωε

i,e; we also present a natural generalization of the Riemann–Lebesgue lemma
and some properties of the notion of convergence introduced in Definition 1.1; finally
we discuss some applications to lower semicontinuity and approximation results for
integral functionals defined on Γε.

Section 3 will conclude the proof of Theorem 1.6 and its corollary. Here we com-
bine very general results on Γ-convergence of noncoercive functionals [12] (related to
elliptic problems with Neumann boundary conditions) with the more recent extension
techniques of [1]. Our main contribution is to extend this framework to the homoge-
nization of integral functionals defined on the interface between the two ε-domains.

The second part of the paper is more specifically devoted to the evolutive systems
P ε,P. The well posedness of their variational formulation and some preliminary
accessory results are collected in section 4.

In section 5 we outline and carry out the main steps of the proof of Theorems 1.3
and 1.4. Here we adopt the point of view of the “Minimizing movement” approach to
evolution equations suggested by De Giorgi in [18]: we perform an auxiliary “semi-
implicit time discretization” of the microscopic reaction-diffusion system, which con-
sists of a recursive family of variational problems depending on the step size τ > 0.
The final macroscopic model will thus result in two limit procedures: the first one in
the time discretization, as the time step τ goes to 0 keeping ε fixed, and the second
in the homogenization process as ε ↓ 0.

Uniform approximation estimates for the discretized problem (which are strictly
related to the convexity of the underlying functionals) allow us to “invert” the order of
the limits: we can therefore pass first to the limit as ε ↓ 0 keeping τ fixed, and in this
way we obtain a family of homogenized discrete macroscopic problems; a final limit as
τ ↓ 0 recovers the continuous form of the macroscopic problem. By this approach, the
homogenization of the time-dependent problem P ε is reduced to the homogenization
of a finite sequence of stationary problems of elliptic type, which exhibit (up to lower
order perturbation terms) the same structure we studied in section 3.

Applications of Γ-convergence to evolution problems are well known for gradi-
ent flows of convex (or λ-convex ) functionals in Hilbert spaces [6]: in that case the
uniform convergence of the induced evolution semigroups can be deduced from the
Γ-convergence and Mosco-convergence [27, 19] of the underlying functionals.

In our case things are more difficult due to the degeneration of the parabolic
structure of our systems (as was discussed in [16]) and to the lack of a “fixed” (i.e.,
independent of ε) Hilbert space, where the evolution can be settled.

Therefore, a general abstract result for studying the convergence of the present
problem seems to be missing. Nevertheless, we tried to develop a general proce-
dure (uniform discretization estimates and Γ-convergence of the discretized variational
problems) to attack this kind of λ-convex but “degenerate” evolution problems: even
if our arguments could have been presented in a more compact (but maybe more
obscure) form, we decided to clarify their structure as much as possible, hoping that
a better understanding of the main ideas of this approach could also be helpful for
other applications in different contexts.

In section 6 we briefly sketch the rigorous derivation of the error estimates for
the semi-implicit discretization of Problems P ε and P : here we adapt to our setting
the technique introduced in [29] (but see also [7, 32, 33]) to obtain optimal a priori
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estimates for gradient flows of convex functionals in Hilbert spaces.
Such estimates could have also been derived by standard perturbation arguments

from the general results of [9] for a fully implicit discretization scheme; here we chose a
direct approach to have precise control of the various constants involved (which should
be independent of ε) and to keep the presentation simpler and almost self-contained.

The main advantage of the semi-implicit discretization (instead of an implicit
one) lies in the variational structure of the problems, which should be solved at each
time step: in fact, they are associated with the minimum of convex functionals.

For the sake of completeness, in the appendix we briefly recall the derivation of
the model at the cellular level from well established physical laws and introduce its
dimensionless form.

2. Notation, extension results, and related convergence properties.

2.1. Vector notation, function spaces, and bilinear forms. In order to
write the micro- and macroscopic problems in a compact form, we introduce a vector
notation, which will also be useful for dealing with the evolution systems; thus

u
¯
ε, u

¯
will denote the vectors (uε

i , u
ε
e), (ui, ue),(2.1)

and we will use underlined letters (as u
¯
, φ
¯
, V̄, . . . ) for vectors, functions, and spaces

involving intraextracellular couples. We set

Hε :=L2(Γε), V̄ε :=
{
u
¯
∈ H1(Ωε

i ) ×H1(Ωε
e) : v = uε

i − uε
e ∈ L2(Γε)

}
,

H :=L2(Ω), V̄ := H1(Ω) ×H1(Ω), V̄loc := H1
loc(Ω) ×H1

loc(Ω),
(2.2)

together with their closed subspaces

V̄ε
0 :=

{
u
¯
ε ∈ V̄ε :

∫
Ωε

e∩Ω0

uε
e(x) dx = 0

}
, V̄0 :=

{
u
¯
∈ V̄ :

∫
Ω0

ue(x) dx = 0

}
.(2.3)

Remark 2.1. Since Ωε
i,e could have a very irregular boundary, we do not know

if the traces uε
i,e|Γε

of uε
i,e ∈ H1(Ωε

i,e) belong to H1/2(Γε) ⊂ L2(Γε): a priori we

only know uε
i,e|Γε

∈ H
1/2
loc (Γε) ⊂ L2

loc(Γ
ε). Therefore, the integrability condition on

v = uε
i − uε

e on Γε imposed in the definition (2.2) of V̄ε
0 is not redundant.

We now introduce some continuous and symmetric bilinear forms on V̄ε,Hε, V̄,H
which will play a crucial role in the following. Recalling (1.12a,b,c) and (1.20a,b,c),
we set

a
¯
ε(u

¯
, û
¯
) :=

∑
i,e

∫
Ωε

i,e

σε
i,e∇ui,e · ∇ûi,e dx ∀u

¯
, û
¯
∈ V̄ε,(2.4)

a
¯
(u
¯
, û
¯
) :=

∑
i,e

∫
Ω

Mi,e∇ui,e · ∇ûi,e dx ∀u
¯
, û
¯
∈ V̄,(2.5)

and we introduce the scalar products on Hε,H,

bε(w, ŵ) := ε

∫
Γε

w ŵ dH d−1 ∀w, ŵ ∈ Hε,

b(w, ŵ) :=β

∫
Ω

w ŵ dx ∀w, ŵ ∈ H.

(2.6)
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We also set

b
¯
ε(u

¯
, û
¯
) := ε

∫
Γε

(ui − ue)(ûi − ûe) dH
d−1 = bε(B

¯
εu
¯
ε, B

¯
εû
¯
ε) ∀u

¯
, û
¯
∈ V̄ε,(2.7)

b
¯
(u
¯
, û
¯
) :=β

∫
Ω

(ui − ue)(ûi − ûe) dx = b(B
¯
u
¯
, B
¯
û
¯
) ∀u

¯
, û
¯
∈ V̄,(2.8)

φ
¯

ε(u
¯
) := ε

∫
Γε

ϕ(ui − ue) dH
d−1 = φε(B

¯
εu
¯
) ∀u

¯
∈ V̄ε,(2.9)

φ
¯
(u
¯
) :=β

∫
Ω

ϕ(ui − ue) dx = φ(B
¯
u
¯
) ∀u

¯
∈ V̄,(2.10)

where B
¯
ε, B

¯
are the linear continuous operators

B
¯
ε : V̄ε → Hε,B

¯
εu
¯

:=ui|Γε
− ue|Γε

∀u
¯
∈ V̄ε

0 ,

B
¯

: V̄ → H, B
¯
u
¯

:=ui − ue ∀u
¯
∈ V̄0.

(2.11)

It is easy to check that the bilinear forms a
¯
ε(·, ·) + b

¯
ε(·, ·) and a

¯
(·, ·) + b

¯
(·, ·) are

scalar products on V̄ε
0 and V̄0; they induce on V̄ε

0 and V̄0 the usual topology as closed
subspaces of V̄ε and V̄, respectively. As in (1.12a,b,c) and (1.20a,b,c), we adopt the
convention of writing the associated quadratic forms as

b
¯
ε(u

¯
) := b

¯
ε(u

¯
, u
¯
), a

¯
ε(u

¯
) := a

¯
ε(u

¯
, u
¯
), b

¯
(u
¯
) := b

¯
(u
¯
, u
¯
), a

¯
(u
¯
) := a

¯
(u
¯
, u
¯
).(2.12)

2.2. Uniform bounds for extension operators. Let us now discuss some
extension results for functions defined in Ωε

i,e,Γ
ε, which will be applied to the notion

of convergence introduced in Definition 1.1.
Definition 2.2 (extensions). We say that ǔ

¯
ε ∈ V̄loc = H1

loc(Ω) ×H1
loc(Ω) is an

extension of u
¯

ε ∈ V̄ε if

ǔε
i,e|Ωε

i,e

= uε
i,e.(2.13)

Analogously, we say that w̌ε ∈ H1
loc(Ω) is an extension of wε ∈ H

1/2
loc (Γε) if

w̌ε|Γε = wε in the sense of traces.(2.14)

One of the technical difficulties in the present setting is to find suitable extension
operators T ε

i,e of functions defined only on Ωε
i,e to the whole Ω which preserve uni-

form bounds of the L2 and H1 norms. Due to the possible irregular behavior of the
boundary of Ωi,e, only local bounds are available.

The following result proved by Acerbi et al. [1] is almost optimal. The crucial
assumption, here is that the sets Ei,e are Lipschitz and connected; we denote by Ω(δ),
δ ≥ 0, the open subset of Ω defined by

Ω(δ) :=
{
x ∈ Ω : d(x,Rd \ Ω) > δ

}
.(2.15)

Theorem 2.3 (see [1]). There exists linear and continuous extension operators
T ε
i,e : H1(Ωε

i,e) → H1
loc(Ω) and three constants k0, h0, h1 > 0 independent of ε > 0 and

Ω, such that for every u ∈ H1(Ωε
i,e) we have

T ε
i,eu = u a.e. in Ωε

i,e,(2.16) ∫
Ω(εk0)

|T ε
i,eu|2 dx ≤ h0

∫
Ωε

i,e

|u|2 dx,(2.17)

∫
Ω(εk0)

|∇T ε
i,eu|2 dx ≤ h1

∫
Ωε

i,e

|∇u|2 dx.(2.18)
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As usual we set T
¯

ε :=
(
T ε
i , T

ε
e

)
: V̄ε → V̄loc.

Remark 2.4. In general, it is not possible to construct a family of extension op-
erators T ε

i,e : H1(Ωε
i,e) → H1(Ω) satisfying (2.16), (2.17), (2.18) with Ω(εk0) replaced

by Ω, since we do not have any control of the behavior of Eε near ∂Ω. For more
details and an explicit counterexample we refer to [1].

2.3. Generalized Riemann–Lebesgue lemma. Let us first recall a well-
known version of the Riemann–Lebesgue lemma.

Lemma 2.5 (generalized Riemann–Lebesgue lemma). Let A be a bounded open
subset of R

d with L d(∂A) = 0 and let ζ ∈ C0(A). Then

lim
ε↓0

∫
A∩Eε

i,e

ζ(x) dx = βi,e

∫
A

ζ(x) dx,(2.19)

lim
ε↓0

ε

∫
A∩Γε

ζ(x) dH d−1(x) = β

∫
A

ζ(x) dx,(2.20)

where the coefficients βi,e, β are defined in (1.14).
Remark 2.6 (weak∗ convergence in L∞

). Limit (2.19) shows that the characteris-
tic functions χA∩Eε

i,e
of A∩Eε

i,e are converging to βi,e χA in the sense of distributions as

ε ↓ 0; since they are also uniformly bounded in L∞(Ω), an obvious weak∗-compactness
argument shows that

χA∩Eε
i,e

⇀∗ βi,e χA in L∞(Ω) as ε ↓ 0.(2.21)

Remark 2.7 (weak∗ convergence in the space of measures). Lemma 2.5 also shows
that the measures λε

i,e, λ
ε defined by (1.17) converge to λi,e, λ, respectively, as ε ↓ 0

in the weak∗ topology of the space of finite Radon measures on Ω.
The next result reinforces Lemma 2.5 and how weak convergence in H1

loc(Ω) im-
plies the convergence in the sense of Definition 1.1. Since we will deal with functionals
depending on the continuous parameter ε > 0 or on the discrete values of a suitable
decreasing infinitesimal sequence {εn}n∈N, for notational convenience we will treat
both cases in the same way by considering a general nonempty set Λ of real numbers
such that

Λ ⊂ (0,+∞), inf Λ = 0.(2.22)

Expressions like limε↓0,ε∈Λ, lim infε↓0,ε∈Λ, etc., have an obvious meaning as limits for
ε going to 0 in Λ. Of course, when Λ contains an open interval (0, δ), δ > 0, we will
use the usual notation limε↓0.

Proposition 2.8 (weak H1
loc-convergence yields convergence of Definition 1.1).

Let us suppose that zε weakly converge to z in H1
loc(Ω) for ε ↓ 0, ε ∈ Λ. Then for

every continuous function ζ ∈ C0
c (Ω) we have

lim
ε↓0,ε∈Λ

∫
Ωε

i,e

zε(x)ζ(x) dx = βi,e

∫
Ω

z(x)ζ(x) dx,(2.23)

lim
ε↓0,ε∈Λ

ε

∫
Γε

zε(x)ζ(x) dH d−1(x) = β

∫
A

z(x)ζ(x) dx.(2.24)

In particular zε|Γε
and zε|Ωε

i,e

converge to z according to Definition 1.1.

Proof. By the Rellich compactness theorem, we know that zε → z strongly in
L2
loc(Ω) as ε ↓ 0, ε ∈ Λ. Equation (2.23) thus follows directly from Remark 2.6 since

χΩε
i,e

⇀∗ βi,e in L∞(Ω), and therefore zεχΩε
i,e

⇀ βi,ez weakly in L2
loc(Ω).
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In order to prove (2.24), we first observe that for ε sufficiently small, we can find
pluricellular regions (recall (1.2))

Rε =

Mε⋃
m=1

ε

(
Y +

d∑
k=1

jεm,kek

)
for some jε

m = (jεm,1, · · · , jεm,d) ∈ Z
d,

and a regular open set A such that

supp ζ ⊂ Rε ⊂ A ⊂⊂ Ω.

Poincaré inequality and a rescaling argument easily yield

εH d−1(Rε ∩ εΓ) = βL d(Rε), ε2‖z‖2
L1(Rε∩εΓ) ≤ εβL d(A)‖z‖2

L2(Rε∩εΓ),(2.25)

ε‖z‖2
L2(Rε∩εΓ) ≤ c1

(
‖z‖2

L2(Rε
i,e

) + ε2‖∇z‖2
L2(Rε

i,e
)

)
.(2.26)

Then, if S := supx∈Ω |ζ(x)|, we have

∣∣∣∣ε
∫

Γε

(
zε(x) − z(x)

)
ζ(x) dH d−1(x)

∣∣∣∣ ≤ εS‖zε − z‖L1(Rε∩εΓ)

(2.27)

≤ C
(
‖zε − z‖L2(A) + ε‖∇zε −∇z‖L2(A)

)
,

where C := S
√
c1βL d(A); since zε is bounded in H1(A) and converges to z in L2(A),

(2.27) vanishes as ε ↓ 0. Thus we simply have to prove (2.24) for zε ≡ z.
Choosing now another arbitrary function η ∈ H1(A) ∩ C0(A) and taking into

account Lemma 2.5, we get

lim sup
ε↓0,ε∈Λ

∣∣∣∣ε
∫

Γε

z(x)ζ(x) dH d−1(x) − β

∫
Ω

z(x)ζ(x) dx

∣∣∣∣
≤ lim sup

ε↓0,ε∈Λ

∣∣∣∣ε
∫

Γε

(
z(x) − η(x)

)
ζ(x) dH d−1(x)

∣∣∣∣ +

∣∣∣∣β
∫

Ω

(
z(x) − η(x))ζ(x) dx

∣∣∣∣
≤ (1 + β)Z

(
ε‖z − η‖L1(Rε∩εΓ) + ‖z − η‖L1(Rε)

)
≤ C ′‖z − η‖H1(A)

for a constant C ′ independent of z and η. Being η arbitrary and A regular, a standard
density result yields (2.24).

Corollary 2.9. Suppose that wε ∈ H
1/2
loc (Γε) converge to w ∈ L1

loc(Ω) according
to Definition 1.1 and let w̌ε ∈ H1

loc(Ω) be an extension of wε which is uniformly
bounded in H1(A) for every open subset A ⊂⊂ Ω. Then w ∈ H1

loc(Ω) and w̌ε ⇀ w in
H1

loc(Ω).
Proof. By Proposition 2.8 w is the unique limit point of any weakly convergent

subsequence of w̌ε in H1
loc(Ω).

2.4. Compactness properties. Recall that in (1.11) we introduced an open
subset Ω0 ⊂⊂ Ω which induces closed subspaces of H1(Ωε

e) and H1(Ω) through the
integral conditions (2.3). By Lemma 2.5 with A := Ω0 and ζ ≡ 1 we have that

lim
ε↓0

L d(Ω0 ∩ εEe) = βeL
d(Ω0), lim

ε↓0
εH d−1(Ω0 ∩ εΓ) = βL d(Ω0),(2.28)
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so that we can always assume that

L d(Ω0 ∩ εEe) ≥
βe

2
L d(Ω0), εH d−1(Ω0 ∩ εΓ) ≥ β

2
L d(Ω0) ∀ ε ∈ Λ.(2.29)

Lemma 2.10 (uniform local H1 bounds and compactness). Let u
¯

ε ∈ V̄ε
0 , ε ∈ Λ,

be a family of functions satisfying

sup
ε∈Λ

(
a
¯
ε(u
¯

ε) + b
¯
ε(u
¯

ε)
)

= S < +∞.(2.30)

Then for every open subset A ⊂⊂ Ω we have

sup
ε∈Λ

‖T
¯

εu
¯

ε‖H1(A) < +∞.(2.31)

In particular, there exists an infinitesimal subsequence Λ′ = (εj)j∈N ⊂ Λ and a limit
function u

¯
∈ V̄0 such that

lim
ε↓0,ε∈Λ′

T
¯

εu
¯

ε = u
¯

weakly in V̄loc = H1
loc(Ω) ×H1

loc(Ω).(2.32)

Proof. Let u
¯
ε = (uε

i , u
ε
e) ∈ V̄ε

0 , ǔ¯
ε := T

¯
εu
¯
ε ∈ V̄loc, and let us choose δ > 0

sufficiently small such that (see (2.15) and, e.g., [34])

A ⊂ Ω(δ), Ω0 ⊂ Ω(2δ), Ω(δ) is Lipschitz.(2.33)

We can suppose that (k0 + �)ε < δ; by using the properties (2.16), (2.17), (2.18) of
the extension operators T ε

i,e, we get

‖∇ǔε
i,e‖2

L2(A) ≤ ‖∇ǔε
i,e‖2

L2(Ω(δ)) ≤ h1‖∇uε
i,e‖2

L2(Ωε
i,e

) ≤ h1σ
−1a

¯
ε(u

¯
ε).(2.34)

Poincaré inequality yields constants cεi,e (depending on uε
i,e) and cP (depending only

on Ω) satisfying

‖ǔε
i,e − cεi,e‖L2(Ω(δ)) ≤ cP ‖∇ǔε

i,e‖L2(Ω(δ)).(2.35)

Setting Ωε
0,e := Ω0 ∩ εEe, by the properties of the extension operator we know that∫

Ωε
0

ǔε
e dx = 0,(2.36)

so that

|cεe|L d(Ωε
0,e) ≤

∫
Ωε

0,e

|cεe − ǔε
e| dx ≤ L d(Ωε

0,e)
1/2‖ǔε

e − cεe‖L2(Ωε
0,e)

and therefore by (2.29) we have

|cεe| ≤
(βe

2
L d(Ω0)

)−1/2

‖ǔε
e − cεe‖L2(Ω(δ)),

which, together with (2.35) and (2.34), shows that cεe is uniformly bounded with
respect to ε. In order to get an analogous bound for cεi we will use the estimate

ε

∫
Γε

|uε
i − uε

e|
2
dH d−1 = b

¯
ε(u

¯
ε) ≤ S,(2.37)



1348 M. PENNACCHIO, G. SAVARÉ, AND P. COLLI FRANZONE

observing that by (2.33) and (2.26),

ε

∫
Ω0∩εΓ

|uε
i,e − cεi,e|2 dH d−1 ≤c1

∫
Ω(δ)∩εEi,e

(
(uε

i,e − cεi,e)
2 + ε2

∣∣∇uε
i,e

∣∣2) dx

≤c1(cP
2 + ε2)‖∇ǔε

i,e‖2
L2(Ω(δ)) ≤ c2 := c1(cP + ε2)h1σ

−1S.

Thus we get

β

2
L d(Ω0)|cεi − cεe|2 ≤ ε

∫
Ω0∩εΓ

|cεi − cεe|
2
dH d−1

≤ ε

∫
Ω0∩εΓ

∣∣cεi − cεe − (uε
i − uε

e) + (uε
i − uε

e)
∣∣2 dH d−1

≤ 3ε

∫
Γε

|uε
i − uε

e|
2
dH d−1 + 6c2 = 3b

¯
ε(u

¯
ε) + 6c2 ≤ 3S + 6c2.

It follows that also cεi is uniformly bounded with respect to ε, so that ǔε
i,e are bounded

in H1(A).
A standard diagonal argument yields (2.32) for some u

¯
∈ V̄; the fact that u

¯
belongs to V̄0, too, follows from Proposition 2.8.

Corollary 2.11. Let us consider u
¯
∈ L2

loc(Ω)×L2
loc(Ω) and let us suppose that

u
¯

ε ∈ V̄ε
0 , ε ∈ Λ, satisfy

sup
ε∈Λ

(
a
¯
ε(u
¯

ε) + b
¯
ε(u
¯

ε)
)
< +∞.(2.38)

Then u
¯

∈ V̄0 and u
¯

ε → u
¯

according to Definition 1.1 if and only if there exist exten-
sions ǔ

¯
ε ∈ V̄loc of u

¯
ε such that

ǔ
¯

ε ⇀ u
¯

weakly in V̄loc = H1
loc(Ω) ×H1

loc(Ω) as ε ↓ 0, ε ∈ Λ.(2.39)

Moreover, if u
¯

ε → u
¯

according to Definition 1.1, then every extension ǔ
¯

ε bounded in
V̄loc is weakly convergent to u

¯
in V̄loc; in particular, we always have

T
¯

ε(u
¯

ε) ⇀ u
¯

weakly in V̄loc = H1
loc(Ω) ×H1

loc(Ω),(2.40)

and setting vε := B
¯

εu
¯

ε = uε
i |Γε

− uε
e|Γε

we have

vε → ui − ue according to Definition 1.1.(2.41)

Proof. If ǔ
¯
ε is an extension of u

¯
ε which is bounded in V̄loc, then any weak

limit point ǔ
¯

in V̄loc should coincide with u
¯

and belongs to V̄0 by Proposition 2.8.
Lemma 2.10 and (2.38) show that T

¯
ε provides such an extension, so that the equiva-

lence between the two notions of convergence is proved.
Remark 2.12. Observe that for a general family u

¯
ε ∈ V̄ε

0 converging to u
¯

according
to Definition 1.1, such that vε = B

¯
εu
¯
ε converges to v as ε ↓ 0, ε ∈ Λ, it may happen

that v �= ui − ue in Ω. The above corollary shows that this inconvenience can be
avoided if u

¯
satisfies the equibounded energy condition (2.38).

Proposition 2.13 (compactness for the convergence of Definition 1.1). For ε ∈
Λ let u

¯
ε ∈ V̄ε

0 (resp., wε ∈ L2(Γε)) satisfy (2.38) (resp., supε∈Λ bε(wε) < +∞). Then
there exists a decreasing vanishing subsequence Λ′ = (εj)j∈N ⊂ Λ and an element u

¯
∈

V̄0 (resp., w ∈ H) such that u
¯

εj converges to u
¯

as j → ∞ according to Definition 1.1
(resp., wεj → w).



MULTISCALE MODELING FOR CARDIAC EXCITATION 1349

Proof. The compactness of u
¯
ε follows directly from Lemma 2.10 and Corol-

lary 2.11. In the case of wε we observe that the total variation of the measures
w̃ε introduced in (1.18) is easily bounded by

|w̃ε|(Ω) = ε

∫
Γε

|wε(x)| dH d−1(x) ≤ Cbε(wε)1/2

thanks to (2.28). Therefore we can extract a subsequence Λ′ = (εj)j∈N and a limiting
Radon measure w̃ in Ω such that w̃ε ⇀∗ w̃, i.e.,

lim
ε→0,ε∈Λ′

ε

∫
Γε

wε(x)ζ(x) dH d−1(x) =

∫
Ω

ζ(x) dw̃(x) ∀ ζ ∈ C0
c (Ω).(2.42)

On the other hand, keeping the same notation of (1.17), we have

wε =
dw̃ε

dλε
, bε(wε) =

∫
Ω

∣∣∣∣dw̃ε

dλε
(x)

∣∣∣∣
2

dλε(x).

Since λε ⇀∗ λ = βL d, as shown by Remark 2.7, general lower semicontinuity results
on integral functionals defined on measures [4, Thm. 2.34] show that for every convex
function ψ : R → [0,+∞] with superlinear growth (in our case ψ(s) := s2)

lim inf
ε↓0,ε∈Λ′

∫
Ω

ψ
(dw̃ε

dλε
(x)

)
dλε(x) < +∞ ⇒ w̃ = w · λ << λ(2.43)

and ∫
Ω

ψ
(
w(x)

)
dλ(x) ≤ lim inf

ε→0,ε∈Λ′

∫
Ω

ψ
(dw̃ε

dλε

)
dλε.(2.44)

It follows that w̃ = βwL d for w ∈ H = L2(Ω) and (2.42) yields (1.16).

2.5. Lower semicontinuity and convergence results for integral func-
tionals on Γε. Arguing as in the last part of the proof of Proposition 2.13 and
taking into account (2.43) and (2.44), we have the following.

Proposition 2.14 (lower semicontinuity for the convergence of Definition 1.1).
Let vε ∈ L1

loc(Γ
ε), ε ∈ Λ, converge to v ∈ L1

loc(Ω) according to Definition 1.1 and let
ψ : R → [0,+∞] be a convex, lower semicontinuous function with superlinear growth.
We have

lim inf
ε↓0,ε∈Λ

ε

∫
Γε

ψ(vε(x)) dH d−1(x) ≥ β

∫
Ω

ψ(v(x)) dx.(2.45)

When ψ is locally Lipschitz and vε are uniformly bounded with uniformly bounded
extensions in H1

loc(Ω), we can prove a convergence result.
Lemma 2.15. If ψ : R → R is a locally Lipschitz function and

vε ⇀ v weakly in H1
loc(Ω) as ε ↓ 0, ε ∈ Λ, sup

ε∈Λ
‖vε‖L∞(Ω) = S < +∞,

then

lim
ε↓0,ε∈Λ

ε

∫
Γε

ψ(vε) dH d−1 = β

∫
Ω

ψ(v) dx.(2.46)
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Proof. Up to a possible modification of ψ outside [−S, S], it is not restrictive to
assume that ψ is globally Lipschitz; since ψ(vε) ⇀ ψ(v) in H1

loc(Ω), it is not restrictive
to assume that ψ is the identity in (2.46).

If ζ ∈ C0
c (Ω), Proposition 2.8 yields

lim sup
ε↓0,ε∈Λ

∣∣∣∣ε
∫

Γε

v dH d−1 − β

∫
Ω

v dx

∣∣∣∣
≤ lim sup

ε↓0
ε

∫
Γε

|vε| |1 − ζ| dH d−1 + β

∫
Ω

|v| |1 − ζ| dx

≤ S lim sup
ε↓0

ε

∫
Γε

|1 − ζ| dH d−1 + Sβ

∫
Ω

|1 − ζ| dx

≤ 2Sβ

∫
Ω

|1 − ζ| dx.

Taking the infimum of the last integral with respect to ζ, we conclude the proof.
Combining Proposition 2.14, Lemma 2.15, and the equivalence property stated

by (2.41) of Corollary 2.11, we obtain the following.
Corollary 2.16. If u

¯
ε ∈ V̄ε

0 , ε ∈ Λ, is a family satisfying the bounded energy
condition (2.30) and converging to u

¯
∈ V̄0 according to Definition 1.1, then for every

convex functional ψ : R → [0,+∞) we have

lim inf
ε↓0,ε∈Λ

ε

∫
Γε

ψ(uε
i − uε

e) dH
d−1 ≥ β

∫
Ω

ψ(ui − ue) dx.(2.47)

Moreover, if supε∈Λ ‖uε
i − uε

e‖L∞(Γε) < +∞, then

lim
ε↓0,ε∈Λ

∫
Γε

ψ(uε
i − uε

e) dH
d−1 = β

∫
Ω

ψ(ui − ue) dx.(2.48)

We conclude this section with a final auxiliary result.
Lemma 2.17 (bulk energy approximation). Let ψ : R → [0,+∞) be a locally

Lipschitz function such that ψ′ ≥ 0 in (a,+∞), ψ′ ≤ 0 in (−∞,−a) for some a > 0,
and let u

¯
∈ V̄0 such that ∫

Ω

ψ(ui − ue) dx < +∞.(2.49)

There exists a sequence (u
¯ k)k∈N ⊂ V̄0 such that

ui,k − ue,k ∈ L∞(Ω), lim
k↑∞

u
¯ k → u

¯
strongly in V̄0,

lim
k↑∞

∫
Ω

ψ(ui,k − ue,k) dx =

∫
Ω

ψ(ui − ue) dx.
(2.50)

Proof. Recalling that v := ui − ue, we set

vk := (v ∧ k) ∨ (−k), s = (ui + ue)/2, γk :=
1

L d(Ω0)

∫
Ω0

(
s(x) − vk(x)/2

)
dx

and

ui,k := s− γk + vk/2, ue,k := s− γk − vk/2.
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By construction, u
¯k ∈ V̄0 and

ui,k − ue,k = vk ∈ L∞(Ω), lim
k↑∞

vk = v strongly in H1(Ω).

In particular,

lim
k↑∞

γk =
1

L d(Ω0)

∫
Ω0

(
s(x) − v(x)/2

)
dx =

1

L d(Ω0)

∫
Ω0

ue(x) dx = 0,

so that

u
¯k → u

¯
strongly in V̄0 as k ↑ ∞.

Finally, since k �→ ψ(vk(x)) is (definitively) nondecreasing and converges pointwise to
ψ(v(x)), Levi’s theorem yields

lim
k↑+∞

∫
Ω

ψ(vk(x)) dx =

∫
Ω

ψ(v(x)) dx.

3. Γ-convergence results.

3.1. Γ-convergence. For the reader’s convenience, we include hereafter a few
definitions and theorems used in what follows [17, 19].

Definition 3.1 (Γ-convergence). Let (X, d) be a metric space and F ε, F ,
ε ∈ Λ, be functionals from X into [−∞,+∞]. We say that (F ε)ε∈Λ Γ(X)-converges
to F as ε ↓ 0, ε ∈ Λ, i.e.,

F = Γ(X)- lim
ε↓0,ε∈Λ

F ε,

if for every x ∈ X the following conditions are fulfilled:

∀xε ∈ X : lim
ε↓0,ε∈Λ

xε = x ⇒ lim inf
ε↓0,ε∈Λ

F ε(xε) ≥ F (x),(3.1)

∃x̂ε ∈ X : lim
ε↓0,ε∈Λ

x̂ε = x, lim sup
ε↓0,ε∈Λ

F ε(x̂ε) ≤ F (x).(3.2)

Remark 3.2. Notice that by (3.1) the “lim sup” in (3.2) is in fact a limit. We will
sometimes use a slight variant of this property, when F ε,F admit the decomposition
F ε = F ε

1 + F ε
2 , F = F1 + F2, and F ε

1 ,F
ε
2 satisfy condition (3.1) with respect to

F1,F2. In this case, every “optimal” family x̂ε for F ε satisfies

x̂ε → x, lim sup
ε↓0,ε∈Λ

F ε(x̂ε) ≤ F (x) ⇒ lim
ε↓0,ε∈Λ

F ε
j (x̂ε) = Fj(x), j = 1, 2.(3.3)

Theorem 3.3 (see [19, Cor. 2.4]). Let (X, d) be a metric space, F ε,F , ε ∈ Λ,
be functionals from X into (−∞,+∞] such that F = Γ(X)- limε↓0,ε∈Λ F ε, and let
xε ∈ X be a minimizer for F ε, i.e.,

F ε(xε) = min {F ε(x) : x ∈ X} .

If the family (xε)ε∈Λ is relatively compact in X and x0 is the unique minimizer for
F , then

lim
ε↓0,ε∈Λ

xε = x0, lim
ε↓0,ε∈Λ

F ε(xε) = F (x0).(3.4)
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The following useful criterion [11, p. 97] allows us to check (3.2) on a smaller
F -dense subset D ⊂ X.

Proposition 3.4 (a density argument for Γ-lim sup). Let X,F ε,F as in Defi-
nition 3.1 and let D ⊂ X satisfy

∀x ∈ X ∃xε ∈ D : lim
ε↓0,ε∈Λ

xε = x, lim
ε↓0,ε∈Λ

F (xε) = F (x).(3.5)

If

∀x ∈ D, ∃xε ∈ X : lim
ε↓0,ε∈Λ

xε = x, lim sup
ε↓0,ε∈Λ

Fε(x
ε) ≤ F (x),(3.6)

then the Γ-lim sup condition (3.2) for Γ-convergence is satisfied.
Combining the results of Braides ([10]; see also [12, Thm. 14.8]) and of Acerbi et al.

[1] we obtain the following homogenization result for noncoercive integral functionals.
Theorem 3.5. Let us consider the family of integral functionals in L2

loc(Ω),

aεi,e(u) :=

⎧⎪⎨
⎪⎩
∫

Ωε
i,e

σε
i,e(x)∇u(x) · ∇u(x) dx if u ∈ L2

loc(Ω), u|Ωi,e
∈ H1(Ωi,e),

+∞ otherwise,

(3.7)

where σε
i,e were introduced in (1.8) and (1.9), and let us define

ai,e(u) :=

⎧⎨
⎩
∫

Ω

Mi,e(x)∇u(x) · ∇u(x) dx if u ∈ H1(Ω),

+∞ if u ∈ L2
loc(Ω) \H1(Ω)

(3.8)

with Mi,e defined as in (1.21). Then we have

ai,e(u) = Γ(L2
loc(Ω))- lim

ε↓0
aεi,e(u) = Γ(L∞(Ω))- lim

ε↓0
aεi,e(u).(3.9)

3.2. Γ-convergence of Fε and proof of Theorem 1.6. In this section we
want to prove Theorem 1.6. The natural topology for this variational approach
should be the one introduced by Definition 1.1. Therefore, in order to apply the
Γ-convergence technique, we have to imbed the domain of the functionals F ε,F in a
fixed underlying metric space, whose converging sequences with equibounded energy
coincide with those characterized by Definition 1.1.

To this aim, we consider the space of finite signed Radon measures on Ω [4, Section
1.57],

M := M(Ω) =
(
Cc(Ω)

)′
=

(
C0(Ω)

)′
,(3.10)

endowed with the dual norm

‖μ‖M := |μ|(Ω)(3.11)

and the (weaker) continuous distance

d(μ, ν) := sup

{∫
Ω

ζ(x) d(μ− ν)(x) : ζ ∈ Cc(Ω) ∩ Lip(Ω),

sup
x∈Ω

|ζ(x)| ≤ 1, Lip(ζ,Ω) ≤ 1

}
,

(3.12)
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where Lip(Ω) (resp., Lip(ζ,Ω)) is the space of the Lipschitz real functions defined in
Ω (resp., the Lipschitz constant of ζ).

Since C0(Ω) is a separable Banach space, the dual unit ball of M is weakly∗

compact and separable, so that the distance d induces the weak∗ topology of M on
each norm-bounded subset of M; in particular, (M, d) is a separable metric space and
norm-bounded sequences are relatively compact with respect to the weaker topology
induced by the distance d.

We then identify vectors u
¯
ε = (uε

i , u
ε
e) ∈ V̄ε

0 , u¯
= (ui, ue) ∈ V̄0 with measures

ũ
¯
ε = (ũε

i , ũ
ε
e), ũ¯

= (ũi, ũe) ∈ M2 as in (1.18) and (1.19), denoting by m
¯
ε : V̄ε

0 →
M2, m

¯
: V̄0 → M2 the corresponding maps.

This operator allows us to extend all the functionals on V̄ε
0 to M2; e.g., in the

case of F ε we set

F̃ ε(ũ
¯
) :=

{
F ε(u

¯
) if ũ

¯
= mε(u

¯
), in M2,

+∞ otherwise.
(3.13)

We can thus consider coercivity and Γ-convergence of F̃ ε in M2 as ε ↓ 0 which are in
fact equivalent to statements (a), (b), (c) of Theorem 1.6. We split the proof of these
properties in three steps. Recall that by (1.30) we can assume that vε0 = B

¯
εu
¯
ε
0 with

lim sup
ε↓0

(
a
¯
ε(u

¯
ε
0) + b

¯
ε(u

¯
ε
0)
)
< +∞,(3.14)

vε0 converges to v0 according to Definition 1.1, and bε(vε0) → b(v0); the functional F ε

takes the form

F ε(u
¯
ε) :=

h

2
bε(vε − vε0) +

1

2
a
¯
ε(u

¯
ε) + φε(vε), vε := B

¯
εu
¯
ε.(3.15)

(a) Compactness. It follows directly from Proposition 2.13, thanks to (1.31).

(b) lim inf inequality. Suppose that u
¯
ε ∈ V̄ε

0 , ε ∈ Λ, converges to u
¯

∈ V̄0 as
ε ↓ 0, ε ∈ Λ according to Definition 1.1 and satisfies

lim sup
ε↓0,ε∈Λ

(
a
¯
ε(u

¯
ε) + b

¯
ε(u

¯
ε)
)
< +∞.(3.16)

Corollary 2.11 and Theorem 3.5 yield

lim inf
ε↓0,ε∈Λ

a
¯
ε(u

¯
ε) ≥ a

¯
(u
¯
),(3.17)

whereas (2.47) of Corollary 2.16 and (3.14) show that

lim inf
ε↓0,ε∈Λ

bε(vε − vε0) ≥ b(u
¯
− u

¯0), lim inf
ε↓0,ε∈Λ

φε(vε) ≥ φ(v), v := B
¯
u
¯
.(3.18)

(c) lim sup inequality. We introduce the set

D :=
{
u
¯

= (ui, ue) ∈ V̄0 : B
¯
u
¯

= v = ui − ue ∈ L∞(Ω)
}
,

which satisfies the density condition (3.5) thanks to Lemma 2.17. By Proposition 3.4
it is then sufficient to prove the lim sup inequality for u

¯
∈ D.
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By Theorem 3.5 we find a uniformly bounded family ǔ
¯
ε = (ǔε

i , ǔ
ε
e) converging to

u
¯

in L∞(Ω) × L∞(Ω), whose restriction u
¯
ε to Ωε

i × Ωε
e belongs to V̄ε

0 (we can add a
vanishing constant to ǔε

e as in Lemma 2.17) such that

lim
ε↓0

a
¯
ε(u

¯
ε) = a

¯
(u
¯
).

The boundedness and the regularity of Ω show that b
¯
ε(u

¯
ε) is bounded so that (3.16)

holds. Therefore, a simple application of (2.48) of Corollary 2.16 yields

lim
ε↓0

bε(vε) = b(v), lim
ε↓0

φε(vε) = φ(v), vε := B
¯
εu
¯
ε, v = B

¯
u
¯
.(3.19)

In order to conclude the proof we have to pass to the limit in the term bε(vε − vε0).
We invoke the next lemma.

Lemma 3.6. For every couple vε0, v
ε ∈ Hε converging to v0, v as in Definition 1.1,

we have

lim
ε↓0,ε∈Λ

bε(vε0) = b(v0)

lim sup
ε↓0,ε∈Λ

bε(vε) = S < +∞

⎫⎪⎬
⎪⎭ ⇒ lim

ε↓0,ε∈Λ
bε(vε0, v

ε) = b(v0, v).(3.20)

Proof. Let us recall that

lim inf
ε↓0,ε∈Λ

bε(zε) ≥ b(z)(3.21)

for every family zε ∈ Hε converging to z according to Definition 1.1. For every positive
scalar ρ > 0 we have

2bε(vε0, v
ε) = 2bε(ρ−1vε0, ρv

ε) = bε(ρ−1vε0 + ρvε) − ρ−2bε(vε0) − ρ2bε(vε).

Taking the inferior limit as ε ↓ 0, ε ∈ Λ we get

lim inf
ε↓0,ε∈Λ

2bε(vε0, v
ε) ≥ b(ρ−1v0 + ρv) − ρ−2b(v0) − ρ2S

= 2b(v0, v) + ρ2
(
b(v) − S

)
.

Since ρ > 0 is arbitrary, we obtain

lim inf
ε↓0,ε∈Λ

bε(vε0, v
ε) ≥ b(v0, v);

inverting sign to vε0 we prove the lemma.
As a corollary, we also obtain the following accessory result.
Corollary 3.7. Let vε ∈ Hε converge to v ∈ H according to Definition 1.1 and

let us suppose that

lim
ε↓0

bε(vε) = b(v), lim sup
ε↓0

jε(vε) < +∞.(3.22)

If u
¯

ε = (uε
i , u

ε
e) is the unique solution of the minimum problem

min
{
a
¯
ε(u
¯

) : u
¯
∈ V̄ε

0 , B¯
εu
¯

= vε
}
,(3.23)

then u
¯

ε → u
¯

as ε ↓ 0 according to Definition 1.1 and

a
¯
ε(u
¯

ε) = jε(vε) → a
¯

(u
¯

) = j(v),(3.24)

with u
¯

being the unique solution of

min
{
a
¯

(u
¯

) : u
¯
∈ V̄0, B¯

u
¯

= v
}
.(3.25)
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4. Variational formulation of the evolution problems. In this section we
collect some basic notation and preliminary results on the variational formulation and
the related well posedness of the micro- and macroscopic problems as discussed in [16].

4.1. Nonlinear terms and convex primitives. Recalling (1.10), from now
on we set

λF := 1 +
(

inf
x∈R

F ′(x)
)−

, f(x) := F (x) + λF x,(4.1)

ϕ(x) :=

∫ x

0

f(ρ) dρ =
1

2
λFx

2 +

∫ x

0

F (ρ) dρ.(4.2)

Observe that f is a strictly increasing C1 function with f ′ ≥ 1, so that ϕ is a strictly
convex function with (at least) quadratic growth, thus satisfying

ϕ(x) ≥ ϕ(0) = 0, ϕ(x) ≥ 1

2
|x|2 ∀x ∈ R.(4.3)

The conjugate function ϕ∗ : R → R defined by

ϕ∗(y) = sup
x∈R

(
yx− ϕ(x)

)
(4.4)

is still a strictly convex function which satisfies

ϕ∗(y) ≥ ϕ∗(0) = 0 ∀ y ∈ R, lim
|y|→∞

ϕ∗(y)

|y| = +∞,(4.5)

xy ≤ ϕ(x) + ϕ∗(y), xf(x) = ϕ(x) + ϕ∗(f(x)) ∀x, y ∈ R.(4.6)

In particular, we have

|f(x)| ≤ ϕ∗(f(x)) + sup
|z|≤1

ϕ(z) ∀x ∈ R(4.7)

and the “subdifferential inequality”

y = f(x) ⇔ y(z − x) ≤ ϕ(z) − ϕ(x) ∀ z ∈ R.(4.8)

4.2. Vector notation for the complete system. Besides the couples u
¯
ε =

(uε
i , u

ε
e), u

¯
= (ui, ue), the micro- and macroscopic evolution problems involve a third

“recovery” variable, wε, w. Thus the electric state of the heart will be determined by
the three-component vectors

uε := (u
¯
ε, wε), u := (u

¯
, w).(4.9)

As a general rule, boldface letters (as u,φ,V , . . . ) will occur when the three-component
vectors that determine the electric state of our systems are involved.

We will adopt the usual convention to identify functions u = u(x, t) defined in
the space-time cylinders A × (0, T ) (A being some open subset of R

d endowed with
the Lebesgue measure L d or some Lipschitz hypersurface endowed with the (d− 1)-
dimensional Hausdorff measure H d−1) with the time-dependent function u(·, t) taking
its values in suitable function subspaces of L1

loc(A) (we do not indicate explicitly the
dependence on the underlying measure L d or H d−1). Vector functions will therefore
take their values in suitable product vector spaces, which we are now introducing.
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As we said before in section 2.1, the electric potentials u
¯
ε (resp., u

¯
) will take their

values in V̄ε
0 (resp., V̄0), whereas the recovery variables wε (resp., w) are valued into

Hε (resp., H). Therefore, we will also introduce the following product spaces for the
vector functions uε,u:

Vε := V̄ε ×Hε, Vε
0 := V̄ε

0 ×Hε, V := V̄ × H, V0 := V̄0 ×H.(4.10)

4.3. The variational formulation of the microscopic problem and its
well posedness. As shown in [16], the variational formulation of Problem P ε can
be easily obtained by performing the following steps:

1. Choose test functions û = (ûi, ûe, ŵ) ∈ Vε
0 ;

2. multiply (P ε
1a) by ûi,e, integrate by parts using (P ε

1b) and (P ε
4 ), and sum up

taking (P ε
2 ) into account;

3. take the bε-scalar product in Hε of (P ε
3 ) with ŵ;

4. sum up the results of the previous two steps.
In order to write the variational formulation in a compact form, we introduce the
bilinear forms which are defined for every u, û ∈ Vε = V̄ε ×Hε,

bε(u, û) := b
¯
ε(u

¯
, û
¯
) + bε(w, ŵ), aε(u, û) := a

¯
ε(u

¯
, û
¯
) + γbε(w, ŵ),(4.11)

gε(u, û) := λF b
¯
ε(u

¯
, û
¯
) − Θbε(w,B

¯
εû
¯
) + ηbε(B

¯
εu
¯
, ŵ),(4.12)

together with the related quadratic forms

aε(u) := aε(u,u), bε(u) := bε(u,u),(4.13)

the functionals

φε(u) := ε

∫
Γε

ϕ(ui − ue) dH
d−1, ψε(u) := ε

∫
Γε

ϕ∗(f(ui − ue)) dH
d−1,(4.14)

and the nonlinear form

Fε(u, û) = ε

∫
Γε

f(ui − ue)(ûi − ûe) dH
d−1 = ε

∫
Γε

f(v)v̂ dH d−1,(4.15)

which is well defined by (4.6) if ψε(u),φε(û) < +∞. Viewing uε
i , u

ε
e, w

ε as time-
dependent functions with values in a “space-dependent” functional space, as we dis-
cussed in section 4.2, we see that Problem P ε can be solved by looking for the
solution uε : (0, T ) → Vε

0 of the abstract variational equation,⎧⎨
⎩

d

dt
bε(uε, û) + aε(uε, û) + Fε(uε, û) = gε(uε, û),

bε(uε(0), û) = bε(uε
0, û),

(4.16)

for any û ∈ Vε
0 with φε(û) < +∞. Here the initial datum uε

0 := (uε
0,i, u

ε
0,e, w

ε
0)

satisfies

uε
0 ∈ Vε

0 , φε(uε
0) < +∞,(4.17)

and it is related to vε0 by

B
¯
εu
¯
ε
0 = vε0, a

¯
ε(u

¯
ε
0) = jε(vε0) = min

{
a
¯
ε(û

¯
ε) : B

¯
εû
¯
ε = vε0

}
.(4.18)
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The following theorem provides an existence result for the microscopic problem; see
[16] for more details.

Theorem 4.1. Let us assume that uε
0 satisfies (4.17) and (4.18). Then, there

exists a unique solution of the variational formulation (4.16) of Problem P ε,

uε = (uε
i , u

ε
e, w

ε) ∈ C0
(
[0, T ];Vε

0

)
, vε := B

¯
εu
¯

ε,

with

∂t
(
B
¯

εu
¯

ε
)

= ∂tv
ε, ∂tw

ε ∈ L2(0, T ;Hε),(4.19)

sup
t∈(0,T )

φε(uε) = sup
t∈(0,T )

ε

∫
Γε

ϕ(vε) dH d−1 < +∞,(4.20)

∫ T

0

ψε(uε) dt = ε

∫ T

0

∫
Γε

ϕ∗(f(vε)) dH d−1 dt < +∞.(4.21)

Moreover, the solution uε satisfies the a priori estimates

sup
t∈[0,T ]

(
bε(uε) + φε(uε) + aε(uε)

)
∫ T

0

(
bε(∂tv

ε) + bε(∂tw
ε)
)
dt

⎫⎪⎪⎬
⎪⎪⎭ ≤ C

(
bε(uε

0) + φε(uε
0) + aε(uε

0)
)

(4.22)

for a constant C independent of ε and of the initial datum; finally, at each time
t ∈ [0, T ], u

¯
ε(t) is the unique solution of the minimum problem

B
¯

εu
¯

ε(t) = vε(t), a
¯
ε(u
¯

ε(t)) = jε(vε(t)) = min
{
a
¯
ε(û
¯

ε) : B
¯

εû
¯

ε = vε(t)
}
.(4.23)

Theorem 4.1 and (4.22) rely on two a priori estimates which are interesting by
themselves: we will briefly present their formal derivation after a short discussion on
the abstract structure of the system (4.16). As we will see in the next section, the
main interest of this approach is that the macroscopic problem P can be formulated
in the same way.

4.4. The variational formulation of the macroscopic problem and its
well posedness. The derivation of the variational formulation of this problem is
completely analogous to the previous one; as before, we introduce the bilinear forms
on V ⊃ V0,

b(u, û) := b
¯
(u
¯
, û
¯
) + b(w, ŵ), a(u, û) := a

¯
(u
¯
, û
¯
) + γb(w, ŵ),(4.24)

g(u, û) := λF b
¯
(u
¯
, û
¯
) − Θb(w,B

¯
û
¯
) + ηb(B

¯
u
¯
, ŵ),(4.25)

together with the related quadratic forms

a(u) := a(u,u), b
¯
(u) := b

¯
(u,u),(4.26)

the functionals

φ(u) := β

∫
Ω

ϕ(ui − ue) dx, ψ(u) := β

∫
Ω

ϕ∗(f(ui − ue)) dx,(4.27)

and the nonlinear form

F(u, û) = β

∫
Ω

f(ui − ue)(ûi − ûe) dx = β

∫
Ω

f(v)v̂ dx,(4.28)
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which is well defined by (4.6) if ψ(u),φ(û) < +∞. The solution u : (0, T ) → V0 of
the macroscopic problem thus satisfies the variational evolution equation,⎧⎨

⎩
d

dt
b(u, û) + a(u, û) + F(u, û) = g(u, û),

b(u(0), û) = b(u0, û),
(4.29)

for any û ∈ V0 with φ(û) < +∞. Again the initial datum u0 := (u0,i, u0,e, w0)
satisfies

u0 ∈ V0, φ(u0) < +∞,(4.30)

and it is related to v0 by

B
¯
u
¯0 = v0, a

¯
(u
¯0) = j(v0) = min

{
a
¯
(û
¯
) : B

¯
û
¯

= v0

}
.(4.31)

Theorem 4.2. Let us assume that u0 satisfies (4.30), (4.31). Then, there exists
a unique solution of the variational formulation of Problem P,

u = (ui, ue, w) ∈ C0
(
[0, T ];V0

)
, v = B

¯
u
¯
,

with

∂t
(
B
¯
u
¯

)
= ∂tv, ∂tw ∈ L2(0, T ;H),(4.32)

sup
t∈(0,T )

φ(u) = sup
t∈(0,T )

∫
Ω

ϕ(v) dx < +∞,(4.33)

∫ T

0

ψ(u) dt =

∫ T

0

∫
Ω

ϕ∗(f(v)
)
dx dt < +∞.(4.34)

Moreover, the solution u satisfies the a priori estimates

sup
t∈[0,T ]

(
b(u) + φ(u) + a(u)

)
∫ T

0

(
b(∂tw) + b(∂tv)

)
dt

⎫⎪⎪⎬
⎪⎪⎭ ≤ C

(
b(u0) + φ(u0) + a(u0)

)
(4.35)

for a constant C independent of the initial datum; at each time t ∈ [0, T ], u
¯

(t) is the
unique solution of the minimum problem

B
¯
u
¯

(t) = v(t), a
¯

(u
¯

(t)) = j(v(t)) = min
{
a
¯

(û
¯

) : B
¯
û
¯

= v(t)
}
.(4.36)

4.5. Structural properties and a priori estimates. Now, we point out some
distinctive properties of aε, bε,Fε, and φε (see [16]): they are also valid for the macro-
scopic model, which corresponds to ε = 0.

Notation 4.3. In order to avoid tedious repetitions, whenever it is possible we
will systematically include the case ε = 0 in our statements simply by making the
obvious identifications

u
¯
0 := u

¯
, w0 := w, v0 := v, u0 := u, a

¯
0 := a

¯
, b0 := b, V̄0 := V̄, . . . .(4.37)

It can be verified that aε, bε, Fε, and φε satisfy (see [16]):
(A) bε is continuous and symmetric; the associated quadratic form (still denoted

by bε) is nonnegative but its kernel has infinite dimension, so that (4.16) is a
degenerate evolution equation.
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(B) aε is a continuous, symmetric, and nonnegative bilinear form, too.
(C) The sum of the quadratic forms aε + bε is coercive in Vε

0 , thus providing an
equivalent scalar product.

(D) The bilinear form gε satisfies

∃G ≥ 0 : |gε(u, û)|2 ≤ G2 bε(u) bε(û) ∀u, û ∈ Vε
0 ,(4.38)

where G is independent of ε; in the present case we can choose G = λF +Θ+η.
(E) The nonlinear form F satisfies the subdifferential inequalities

Fε(u,u) = ψε(u) + φε(u) ∀u ∈ Vε
0 ,(4.39)

Fε(u, û − u) + φε(u) ≤ φε(û) ∀u, û ∈ Vε
0(4.40)

for the

convex and lower semicontinuous functional φε,(4.41)

with φε(u) ≥ bε(u) ∀u ∈ Vε
0 .

Remark 4.4 (regularity of F ). Concerning the nonlinearity of the problems, we
note that the regularity assumptions on F can be relaxed, so F : R → R can be a
continuous function such that F (0) = 0 and

∃λF ≥ 0 : (F (x) − F (y))(x− y) + (λF − 1)|x− y|2 ≥ 0 ∀x, y ∈ R.(4.42)

Now we briefly show a formal derivation of the basic a priori estimates for the macro-
scopic problem (for the microscopic one, one can simply add the superscript ε to each
occurrence of a, b,F ,φ, g,u, . . . ); we assume that u ∈ H1(0, T ;V0) and f has a linear
growth, so that F is a continuous form. The computations below can be made rig-
orous, e.g., by passing to the limit in the analogous stability estimates for a suitably
discretized or regularized system, and will be studied in section 6.

Recalling that

d

dt
b(u(t), û) = b(u′(t), û),

1

2

d

dt
b(u(t)) = b(u′(t),u) ∀ û ∈ V0,

choosing û := u(t) in (4.29) we get

1

2

d

dt
b(u(t)) + a(u(t)) + F(u(t),u(t)) = g(u(t),u(t)) ≤ G b(u(t)),(4.43)

so that a simple application of the Gronwall lemma and the relation

F(u,u) = φ(u) + ψ(u)(4.44)

yields

max

[
sup

t∈[0,T ]

b(u(t)),

∫ T

0

(
a(u) + φ(u) + ψ(u)

)
dt

]
≤ e2GT b(u0).(4.45)

Choosing now û := u′ and observing that

d

dt
φ(u(t)) = F(u(t),u′(t)),

1

2

d

dt
a(u(t)) = a(u(t),u′(t)),
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the previous estimate and the Cauchy inequality yield

b(u′(t)) +
d

dt

(1

2
a(u(t)) + φ(u(t))

)
= g(u(t),u′(t))

≤ G b(u(t))1/2b(u′(t))1/2 ≤ 1

2
b(u′(t)) +

G2

2
e2Gtb(u0).

(4.46)

Integrating in time we get

sup
t∈[0,T ]

(
1

2
a(u) + φ(u)

)

1

2

∫ T

0

b(u′) dt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ 1

2
a(u0) + φ(u0) +

G

4
e2GT b(u0).(4.47)

Combining (4.45) with (4.47) we obtain (4.35) with C = max
(
2, (G2 + 1)e2GT

)
.

5. Proof of Theorems 1.3 and 1.4.

5.1. Outline. As we said in the introduction, our approach (inspired by the so-
called “minimizing movement” method introduced by De Giorgi [18, 3, 5]) combines
general approximation results, yielding uniform error estimates for a semi-implicit
Euler time discretization of evolution equations such as (4.16) and (4.29), with ho-
mogenization results for the discretized problems.

More precisely, we begin in section 5.2 by considering the approximation of P ε and
P in the time interval [0, T ] by the semi-implicit Euler method of time step τ =
T/N > 0: thus we will consider a uniform partition Pτ of the time interval [0, T ] into
N subintervals

Pτ := {0 = t0 < t1 < · · · < tN−1 < tN = T}, tn := nτ,(5.1)

and we will replace the continuous problems by a sequence of discrete microscopic and
macroscopic problems P ε,τ

n , P 0,τ
n , n = 1, . . . , N , whose solutions U ε,τ

n ,U0,τ
n provide

an approximation of uε(t),u(t) for t in the time interval (tn−1, tn].
Denoting by U ε,τ ,U0,τ the piecewise linear interpolant on Pτ of the values

U ε,τ
n ,U0,τ

n , general error estimates for variational evolution problems with the struc-
ture discussed in section 4.5 show that the error (measured in the natural energy
norms) between the continuous solution uε of P ε (resp., u of P ) and the discrete
solution U ε,τ (resp., U0,τ ) vanishes as τ ↓ 0 uniformly with respect to ε. We will
devote section 6 to proving these estimates.

Since the nonsymmetric parts gε, g are discretized “explicitly” it turns out (see
section 5.3) that each step of the discretization scheme (the problems P ε,τ

n and P 0,τ
n )

involves the minimization of suitable functionals Φε,τ
n ,Φ0,τ

n , which depend only on ε, τ
and on the discrete solutions U ε,τ

n−1,U
0,τ
n−1 at the previous node of the partition Pτ ;

therefore U ε,τ
n and U0,τ

n are the unique minima of Φε,τ
n and Φ0,τ

n , respectively.
By adapting the Γ-convergence results of section 3, we shall see (Theorem 5.2)

that each discrete value U ε,τ
n converges, as ε ↓ 0 to U0,τ

n , whenever τ is fixed. Since
for each τ > 0 the discrete interpolant U ε,τ is determined only by a finite number of
vectors U ε,τ

n , it follows that the discrete solution U ε,τ converges to the homogenized
one U0,τ in the time interval [0, T ] as ε ↓ 0.

Combining this result with the above uniform error estimate between uε, u and
U ε,τ , U0,τ , we will conclude also that the continuous solution uε converges to u at
each time t ∈ [0, T ].
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Thus, by introducing the auxiliary problems P ε,τ
n , P 0,τ

n , the homogenization of
time-dependent evolution equations is reduced to the homogenization of a family of
functionals depending on the parameters τ, n, which can be tackled by Γ-convergence
arguments.

Let us reproduce the above argument in the following scheme:

uε :=

{
Continuous solution of

the evolution problem P ε
←→ U ε,τ :=

{
Discrete solution of the

variational problem P ε,τ

uniform error

estimates ↓ Γ-convergence

u :=

{
Continuous solution of

the evolution problem P
←→ U0,τ :=

{
Discrete solution of the

variational problem P 0,τ

uniform error

estimates

Let us now consider in more detail each step of the proof.

5.2. Time discretization. We look for a suitable approximation {U ε,τ
n }Nn=0 ⊂

Vε
0 of the values of uε on the grid Pτ (5.1), which solves the following discrete problem

P ε,τ: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Given U ε,τ
0 :=uε

0 find U ε,τ
1 , . . . ,U ε,τ

N ∈ Vε
0 which recursively solve

bε

(
U ε,τ

n − U ε,τ
n−1

τ
, Û

)
+ aε(U ε,τ

n , Û) + Fε(U ε,τ
n , Û) = gε(U ε,τ

n−1, Û)

for every choice of Û ∈ D(φ) ⊂ Vε
0 .

(P ε,τ )

In fact, due to the convexity of φ and to the coercivity of the quadratic form aε + bε

on Vε
0 , it is easy to check that each step of (P ε,τ ) is equivalent to the minimum

problem

find U ε,τ
n ∈ Vε

0 which attains the minimum min
{

Φε,τ
n (U) : U ∈ Vε

0

}
,(P ε,τ

n )

where

Φε,τ
n (U) :=

1

2τ
bε(U − U ε,τ

n−1) + aε(U) + φε(U) − gε(U ε,τ
n−1,U).(5.2)

We can proceed in a completely analogous way for the macroscopic problem, simply
by setting ε := 0 and recalling Notation 4.3. The corresponding discrete solutions
U ε,τ (t) and U0,τ (t) are the piecewise linear interpolants of {U ε,τ

n }Nn=0 and {U0,τ
n }Nn=0

on the grid Pτ , i.e.,

U ε,τ (t) := (n− t/τ)U ε,τ
n−1 + (t/τ − (n− 1))U ε,τ

n if t ∈ ((n− 1)τ, nτ ].(5.3)

The next theorem shows that the discrete solutions of the above schemes converge
uniformly to the solutions of P ε and P in the intrinsic energy norms induced by the
bilinear forms aε, bε. We denote by Eε,E = E0 (recall Notation 4.3) the (squared)
errors

Eε = max
t∈(0,T )

bε(uε(t) − U ε,τ (t)) +

∫ T

0

aε(uε(t) − U ε,τ (t)) dt.(5.4)
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Theorem 5.1 (uniform error estimates). There exists a constant C = C(G,T )
independent of ε such that

Eε ≤ Cτ
(

aε(uε
0) + bε(uε

0) + φε(uε
0)
)
.(5.5)

The proof of Theorem 5.1 is presented in section 6: it is the extension to a semi-
implicit discretization scheme of the arguments developed in [9]; in order to give a
self-contained simpler proof, we decided to follow the general scheme introduced by
[29] for the derivation of optimal a priori and a posteriori error estimates for evolution
variational problems.

5.3. Discrete problems and the role of Γ-convergence. Let us now consider
the convergence as ε ↓ 0 of the solutions U ε,τ

n of the discrete problem P ε,τ
n . The

following crucial result provides the main induction step.

Theorem 5.2 (convergence of the discrete approximations). Let us suppose that
the vector U ε,τ

n−1 = (U
¯

ε,τ
n ,W ε,τ

n ) ∈ Vε
0 converges to U0,τ

n−1 according to Definition 1.1
as ε ↓ 0, with

lim
ε↓0

bε(U ε,τ
n−1) = b(U0,τ

n−1), lim sup
ε↓0

aε(U ε,τ
n−1) + φε(U ε,τ

n−1) < +∞,(5.6)

and let us define the functional Φε,τ
n ,Φ0,τ

n as in (5.2). Then the unique minimum
U ε,τ

n ∈ Vε
0 of Φε,τ

n converges to the unique minimum U0,τ
n of Φ0,τ

n as ε ↓ 0 according
to Definition 1.1 and

lim
ε↓0

bε(U ε,τ
n ) = b(U0,τ

n ), lim
ε↓0

aε(U ε,τ
n ) = a(U0,τ

n ), lim
ε↓0

φε(U ε,τ
n ) = φ(U0,τ

n ).(5.7)

Corollary 5.3 (convergence of the discrete solutions). Let us suppose that the
assumption (1.23) of Theorem 1.3 on the initial data (vε0, w

ε
0) and (v0, w0) holds and

that uε
0 ∈ Vε

0 is chosen as in (4.18). Then each vector U ε,τ
n , n = 1, . . . , N , of the

discrete solution U ε,τ converges to the corresponding one U0,τ
n of the discrete solution

U0,τ as ε ↓ 0 according to Definition 1.1.

Thanks to Theorem 3.3, we will deduce Theorem 5.2 from a corresponding co-
ercivity and Γ-convergence result for the functionals Φε,τ

n . Observe that (5.7) is a
consequence of the convergence of the energies Φε,τ

n (U ε,τ
n ) → Φ0,τ

n (U0,τ
n ) given by

(3.4) and Remark 3.2, thanks to the separate lower semicontinuity property (3.17).

As in section 3.2 we identify vectors uε = (uε
i , u

ε
e, w

ε) ∈ Vε
0 ,u = (ui, ue, w) ∈ V0

with measures ũε = (ũε
i , ũ

ε
e, ũ

ε), ũ = (ũi, ũe, ũ) ∈ M3 through (1.18) and (1.19),
denoting by mε : Vε

0 → M3, m : V0 → M3 the corresponding maps. We also extend
all the functionals on Vε

0 to M3 as we did in (3.13). We can thus consider the Γ-limit
of Φ̃ε,τ

n in M3 as ε ↓ 0, keeping τ fixed.

Theorem 5.4 (Γ-convergence). Let us fix τ > 0 and let us suppose that the
vectors U ε,τ

n−1 ∈ Vε
0 satisfy the same assumption as in Theorem 5.2. If a family

Ũ
ε

= mε(U ε), U ε ∈ Vε
0 for ε ∈ Λ, satisfies

lim sup
ε↓0,ε∈Λ

Φ̃ε,τ
n (Ũ

ε
) = lim sup

ε↓0,ε∈Λ
Φε,τ

n (U ε) < +∞,(5.8)

then Ũ
ε
is relatively compact in M3; it converges to Ũ in M3 if and only if Ũ = m(U)

for some U ∈ V0 and U ε converges to U according to Definition 1.1.
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The functionals Φ̃ε,τ
n , extensions of (5.2), satisfy

Γ(M3)- lim
ε↓0

Φ̃ε,τ
n = Φ̃0,τ

n .(5.9)

The proof of Theorem 5.4 is completely analogous to that of Theorem 1.6: if we
write

U ε,τ
n−1 = (U

¯
ε,τ
n−1,W

ε,τ
n−1), U ε = (U

¯
ε,W ε), U

¯
ε ∈ V̄ε

0 , W ∈ Hε,

we choose h := τ−1 and the term vε0 of (1.28) as B
¯
εU
¯
ε,τ
n−1, then

Φε,τ
n (U ε) = F ε(U

¯
ε) + gε,τ

n (U ε),(5.10)

where

gε,τ
n (U ε) :=

1

2τ
bε(W ε −W ε,τ

n−1) +
γ

2
bε(W ε)

− λb
¯
ε(U

¯
ε,τ
n−1, U¯

ε) + Θbε(W ε,τ
n−1, B¯

εU
¯

ε),−ηbε(B
¯
εU
¯

ε,τ
n−1,W

ε).
(5.11)

Thus the asymptotic behavior of Φε,τ
n can be easily deduced from Theorem 1.6 and

Lemma 3.6.

Remark 5.5. Usually, when one considers gradient flows of convex functionals F ε

in a fixed Hilbert space, their asymptotic behavior is determined by the Γ-convergence
and Mosco-convergence of Lyapunov functionals F ε (see, e.g., [6]), and it is not
necessary to take into account the dependence of τ .

Here also the underlying Hilbert spaces are changing in a singular way with respect
to ε and the major novelty is the explicit presence of the mesh size τ in the minimizing
functionals Φε,τ

n , which reflects the metric of the functional spaces governing the
gradient flows. In the present case, this metric is related to the quadratic forms bε:
therefore it is degenerate and it depends on ε.

5.4. Conclusion of the proof of Theorems 1.3 and 1.4. By Corollary 3.7,
the a priori estimates (4.22) and (4.23), and the variational characterizations (4.23),
(4.36), we simply have to show that vε := B

¯
εu
¯
ε and wε are converging to v := B

¯
u
¯

and w for every t ∈ [0, T ] according to Definition 1.1.

Let us consider the case of vε, the argument for wε being completely analogous.
We set V ε,τ (t) := B

¯
εU
¯

ε,τ (t), ε ≥ 0: for every ζ ∈ C0
c (Ω) and every t ∈ [0, T ] (which

will not be indicated explicitly) we have

ε

∫
Γε

vεζ dH d−1 − β

∫
Ω

vζ dx = ε

∫
Γε

(
vε − V ε,τ

)
ζ dH d−1 − β

∫
Ω

(
v − V 0,τ

)
ζ dx

+ ε

∫
Γε

V ε,τζ dH d−1 − β

∫
Ω

V 0,τζ dx

so that, if Z := supΩ |ζ| and S2 ≥ εH d−1(Γε) + βL d(Ω),∣∣∣∣ε
∫

Γε

vεζ dH d−1 − β

∫
Ω

vζ dx

∣∣∣∣ ≤ SZbε
(
vε − V ε,τ

)1/2
+ SZb

(
v − V 0,τ

)1/2
+

∣∣∣∣ε
∫

Γε

V ε,τζ dH d−1 − β

∫
Ω

V 0,τζ dx

∣∣∣∣ ≤ Cτ1/2 + rε,



1364 M. PENNACCHIO, G. SAVARÉ, AND P. COLLI FRANZONE

where we applied the uniform estimates of Theorem 5.1 and the bounds on the initial
data. Passing now to the limit as ε ↓ 0 keeping τ fixed, we get

lim sup
ε↓0

rε = lim sup
ε↓0

∣∣∣∣ε
∫

Γε

vεζ dH d−1 − β

∫
Ω

vζ dx

∣∣∣∣ ≤ Cτ1/2

thanks to Corollary 5.3. Finally letting τ ↓ 0 we get the desired convergence.
The corresponding property for the energy bε(vε) follows by the same argument.
Let us eventually consider Theorem 1.4: if we show the existence of a suitable

extension satisfying the uniform bound (1.26), then the thesis follows immediately
from Theorem 1.3 and Corollary 2.11. Thanks to the a priori estimates (4.22) and
Lemma 2.10, the choice ǔε

i,e := T ε
i,eu

ε
i,e will surely satisfy (1.26); therefore we should

find an analogous extension for wε. Recalling that wε satisfies on Γε the ordinary
differential equation

∂tw
ε + γwε = ηvε,

so that

wε(x, t) = wε
0e

−γt + η

∫ t

0

e−γ(t−s)vε(x, s) ds ∀x ∈ Γε, t ∈ [0, T ],

we can use the same formula to extend wε to Ω starting from the initial datum
w̌ε

0 ∈ H1
loc(Ω). Therefore, we set v̌ε(x, s) := ǔε

i − ǔε
e ∈ H1

loc(Ω) and correspondingly

w̌ε(x, t) = w̌ε
0e

−γt + η

∫ t

0

e−γ(t−s)v̌ε(x, s) ds ∀x ∈ Ω, t ∈ [0, T ],(5.12)

and it is easy to see by differentiating under the integral sign that (1.26) is satisfied.

6. Uniform error estimates. In this section we prove Theorem 5.1; since all
the estimates will depend only on the structural assumptions of section 4.5 and will
therefore be independent of ε, for the sake of simplicity we will not indicate the explicit
dependence on ε.

Thus, {U τ
n}Nn=0 is a discrete solution of the variational algorithm introduced in

section 5.2. We already denoted by U τ the piecewise linear interpolant of the discrete
values, which can be expressed in the form

U τ (t) := (1 − �(t))Uτ
n−1 + �(t)Uτ

n if t ∈ ((n− 1)τ, nτ ],(6.1)

where � is the piecewise linear (but discontinuous) function associated with the mesh
Pτ by

�(t) :=
t

τ
− (n− 1) if t ∈ ((n− 1)τ, nτ ].

The piecewise constant interpolant Ū τ is defined by

Ū τ (t) := U τ
n if t ∈ ((n− 1)τ, nτ ].(6.2)

The basic quantity which will control our estimates is

E (U) :=
1

2
a(U) + φ(U) ≥ b(U).(6.3)

We split the proof into several steps, denoting by C different constants which solely
depend on G and T .
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Discrete variational inequality. The discrete solution solves

b

(
U τ

n − U τ
n−1

τ
,U τ

n − V

)
+

1

2
a(U τ

n − V ) + E (U τ
n)

≤ E (V ) + g(U τ
n−1,U

τ
n − V ) ∀V ∈ D(φ).

(6.4)

This property follows from the well-known (see, e.g., [8]) variational characterization
of the minima for a functional, such as Φτ

n, which is the sum of a quadratic continuous
form (involving a, b, g) and a convex functional (φ in this case).

Stability estimates. There exists a constant C = C(G,T ) such that

N∑
n=1

τb
(U τ

n − U τ
n−1

τ

)
+ a(U τ

n − U τ
n−1) + sup

n=0,...,N
E (U τ

n) ≤ CE (u0).(6.5)

We use a “discrete” version of the arguments of the formal a priori estimate of sec-
tion 4.5. We choose V := 0 in (6.4); recalling the identity 2b(x−y, x) = b(x)−b(y)+
b(x− y) and multiplying by 2τ we obtain

b(U τ
n) + b(U τ

n − U τ
n−1) + 2τa(U τ

n) + 2τφ(U τ
n)

≤ b(U τ
n−1) + 2τg(U τ

n−1,U
τ
n)

= b(U τ
n−1) + 2τ

(
g(U τ

n−1,U
τ
n−1) + g(U τ

n−1,U
τ
n − U τ

n−1)
)

≤ b(U τ
n−1) + 2τG2(1 + τ)b(U τ

n−1) + b(U τ
n − U τ

n−1).

(6.6)

A simple application of the discrete Gronwall lemma yields

sup
0≤m≤N

b(U τ
m) ≤ C0b(u0) for C0 := e2G2(1+τ)T .(6.7)

Choosing V := U τ
n−1 in (6.4) and summing up for n = 1 to m ≤ N we get

m∑
n=1

(
τ−1b

(
U τ

n − U τ
n−1) +

1

2
a(U τ

n − U τ
n−1)

)
+ E (U τ

m)

≤ E (u0) +

m∑
n=1

g(U τ
n−1,U

τ
n − U τ

n−1)

≤ E (u0) + G

m∑
n=1

(
b(U τ

n−1)b(U τ
n − U τ

n−1)
)1/2

≤ E (u0) +
G2τ

2

m∑
n=1

b(U τ
n−1) +

τ−1

2

m∑
n=1

b(U τ
n − U τ

n−1)

(6.8)

so that choosing m = N we get

N∑
n=1

(
τ−1b

(
U τ

n − U τ
n−1) + a(U τ

n − U τ
n−1)

)
≤ 2E (u0) + C0G

2Tb(u0),

sup
1≤m≤N

E (U τ
m) ≤ E (u0) +

1

2
C0G

2Tb(u0).
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A continuous version of the discrete variational inequalities. The piecewise linear
interpolant U τ satisfies

b

(
d

dt
U τ (t),U τ (t) − V

)
+

1

2
a(Ū τ (t) − V ) + E (U τ (t))

≤ E (V ) + g(U τ (t) − τ�(t)
d

dt
U τ (t),U τ (t) − V ) + Rτ (t),

(6.9)

where

Rτ (t) := (1 − �)
(
E (U τ

n−1) − E (U τ
n) + g(U τ

n−1,U
τ
n − U τ

n−1)
)
,

and ∫ T

0

(
b

(
d

dt
U τ (t)

)
+ τ−1a(U τ (t) − Ū τ (t))

)
dt ≤ CE (u0).(6.10)

We check (6.9) simply by writing the discrete value of all the terms for t ∈ (tn−1, tn),
recalling that

d

dt
U τ (t) =

U τ
n − U τ

n−1

τ
for t ∈ (tn−1, tn).(6.11)

Thus we have

b

(
d

dt
U τ ,U τ − V

)
= b

(
U τ

n − U τ
n−1

τ
, (1 − �)U τ

n−1 + �U τ
n − V

)

= b

(
U τ

n − U τ
n−1

τ
,U τ

n − V

)
− (1 − �)τ−1b(U τ

n − U τ
n−1)(6.12)

E (U τ ) = E ((1 − �)U τ
n−1 + �U τ

n) ≤ (1 − �)E (U τ
n−1) + �E (U τ

n)

= E (U τ
n) + (1 − �)

(
E (U τ

n−1) − E (U τ
n)
)

(6.13)

g

(
U τ − τ�

d

dt
U τ ,U τ − V

)
= g((1 − �)U τ

n−1 + �U τ
n − �(U τ

n − U τ
n−1), (1 − �)U τ

n−1 + �U τ
n − V )

= g(U τ
n−1,U

τ
n − V ) − (1 − �)g(U τ

n−1,U
τ
n − U τ

n−1).(6.14)

Equation (6.10) follows directly from (6.5) by (6.11) and

Ū τ (t) − U τ (t) = (1 − �)
(
U τ

n − U τ
n−1

)
for t ∈ (tn−1, tn).(6.15)

An estimate for the remainder term.∫ T

0

∣∣Rτ (t)| dt ≤ C1E (u0)τ.(6.16)

First of all, since U τ
n minimizes Φτ

n, we easily have

E (U τ
n) − g(U τ

n−1,U
τ
n) ≤ E (U τ

n−1) − g(U τ
n−1,U

τ
n−1)

so that Rτ (t) ≥ 0. Moreover∫ T

0

Rτ (t) dt =
1

2
τ

N∑
n=1

(
E (U τ

n−1) − E (U τ
n) + g(U τ

n−1,U
τ
n − U τ

n−1)
)

=
1

2
τ
(
E (u0) + E (u0) + C0G

2Tb(u0)
)
≤ C1τE (u0),
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where we used, as in (6.8),

N∑
n=1

g(U τ
n−1,U

τ
n − U τ

n−1) ≤
G2τ

2

N∑
n=1

b(U τ
n−1) +

τ−1

2

N∑
n=1

b(U τ
n − U τ

n−1)

≤ C0G
2T

2
b(u0) + E (u0) +

C0G
2T

2
b(u0).

A Gronwall-type estimate for the error. If Uη, η > 0, is the discrete solution
associated with the partition Pη, we have

sup
t∈[0,T ]

b(U τ (t) − Uη(t)) +

∫ T

0

a(U τ (t) − Uη(t)) ≤ C(τ + η)E (u0).(6.17)

Let �τ , �η be the interpolating functions corresponding to Pτ ,Pη. Choosing V :=
Uη(t) in (6.9) and V := U τ (t) in the analogous inequality written for Uη, we obtain

d

dt
b(U τ − Uη) + a(Ū τ − Uη) + a(Uη − Ū τ )

≤ 2g(U τ − Uη,U τ − Uη) − 2g

(
τ�τ

d

dt
U τ − η�η

d

dt
Uη,U τ − Uη

)
+ Rτ + Rη

≤ 3Gb(U τ − Uη) + 2Gτ2b

(
d

dt
U τ

)
+ 2Gη2b

(
d

dt
Uη

)
+ Rτ + Rη.

A direct application of the Gronwall lemma, (6.16), and (6.10) yields

sup
t∈[0,T ]

b(Uτ (t) − Uη(t)) ≤
(∫ T

0

2Gτ2b

(
d

dt
U τ

)
+ 2Gτ2b

(
d

dt
Uη

)

+ Rτ + Rη dt

)
e3GT

≤ CτE (u0).

An analogous argument and (6.10) provide the integral bound for a(U τ − Ū τ ).
If now we pass to the limit as η ↓ 0 we obtain the estimates of (5.5).

Appendix. The derivation of the scaled problem P ε. For completeness,
in this appendix, we present the scaling used to obtain problem P ε .

The basic equations modeling the electrical activity of the heart at the cellu-
lar level can be obtained as follows. Cardiac tissue consists of interconnected cells
surrounded by extracellular fluid. Let Ωε

i , Ωε
e be the intra- and extracellular ohmic

conductive media, Γε be the excitable membrane that separates Ωε
i and Ωε

e, and let
νεi , ν

ε
e denote the unit exterior normals to the boundary of Ωε

i and Ωε
e, respectively,

satisfying νεi = −νεe on Γε. The electric behavior of the tissue is described by the
intra- and extracellular potentials uε

i and uε
e and by their driven current densities

jεi,e = −Σi,e∇uε
i,e. Due to the current conservation law, the normal current flux

through the membrane Γε is continuous νεi · jεi = νεe · jεe ; hence we have

Σi∇uε
i ·νεi + Σe∇uε

e ·νεe = 0 on Γε × (0, T ),

where Σi,e are the cellular conductivity matrices in the intra- and extracellular media.



1368 M. PENNACCHIO, G. SAVARÉ, AND P. COLLI FRANZONE

Since the only active source elements lie on the membrane Γε, each flux equals
the membrane current per unit area Jm, i.e.,

Jm =

{
−Σi∇uε

i ·νεi
Σe∇uε

e ·νεe
on Γε × (0, T ).(A.1)

The membrane current per unit area Jm consists of a capacitive term and an ionic
term (see [23]):

Jm := Cm∂tv
ε + I(vε, wε) on Γε,(A.2)

with Cm the surface capacitance of the membrane.
Moreover, disregarding the presence of applied current terms, we have that cur-

rents are conserved in Ωε
i and Ωε

e; then the intra- and extracellular potentials are
solutions of

−div(Σi∇uε
i ) = 0 in Ωε

i × (0, T ) − div(Σe∇uε
e) = 0 in Ωε

e × (0, T )(A.3)

with Neumann boundary conditions for uε
i , u

ε
e on the remaining part of the boundaries

Γε
i,e = ∂Ωε

i,e \ Γε.
We now want to rewrite problem (A.1)–(A.3) in a nondimensional form. To this

end we note that we can consider two characteristic length scales: the microscopic
scale, related to a typical dimension dc of the cells (e.g., the cell diameter 15–20 μm
or the length of the cell 100 μm), and the macroscopic one determined by a suitable
length constant of the tissue denoted by L. The cellular conductivity matrices Σi and
Σe are symmetric positive definite matrices; let λ̄ = λ̄i+ λ̄e with λ̄i, λ̄e be the average
eigenvalues on a cell element and let us consider

σi,e = Σi,e/λ̄.

Here we assume that vε = 0, wε = 0 is the equilibrium point for problem (A.1)–(A.3);
then we can define the macroscopic space scale along fibers L as

L =
√

dcRmλ̄ with R−1
m = ∂vI(0, 0).

Now, we can convert the cellular problem into a nondimensional form by scaling
space and time with the macroscopic units of length L = dc/ε and with respect to the
membrane constant T = Rm Cm; i.e., we perform the space and time scaling

x̂ = x/L, t̂ = t/T.

The dimensionless parameter ε is then a small parameter whose order of magnitude
is the ratio of the two macro- and microscopic space scales, i.e.,

ε = dc/L.

We take x̂ to be the variable of the macroscale behavior and

ξ := x̂/ε

to be the microscopic space variable measured in a unit cell. For simplicity, in what
follows, we omit the hats ̂ on the dimensionless variables.
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Cardiac tissue exhibits a number of significant inhomogeneities, in particular,
those related to cell-to-cell communications. The conductivity tensors are considered
dependent on both the slow and the fast variables, i.e., σi,e(x,

x
ε ). The latter depen-

dence of the intracellular conductivity represents an attempt to include the effects of
the gap junctions.

We then define the rescaled symmetric conductivity matrices

σε
i,e(x) = σi,e

(
x,

x

ε

)
obtained by the continuous functions σi,e(x, ξ) : Ω × Ei,e → M

d×d satisfying

0 < σ|y|2 ≤ σi,e(x, ξ)y · y ≤ σ−1|y2|
σi,e(x, ξ + ek) = σi,e(x, ξ)

∀ (x, ξ) ∈ Ω × Ei,e, y ∈ R
d.(A.4)

Finally, rescaling (A.1)–(A.3) in the intra- and extracellular potentials we obtain

−div
(
σε
i,e∇uε

i,e

)
= 0 in Ωε

i,e × (0, T ),

−σε
i∇uε

i ·νεi = ε (∂tv + I(vε, wε)) on Γε × (0, T )

σε
e∇uε

e ·νεe = ε (∂tv + I(vε, wε)) on Γε × (0, T ),

that is, problem P ε .
A homogenization process for different mathematical models, describing the re-

sponse of biological tissues to electromagnetic fields and based on a completely differ-
ent scaling, can be found in [2].
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[5] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space
of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2005.
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[18] E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for PDE

and Applications, C. Baiocchi and J. L. Lions, eds., Masson, 1993, pp. 81–98.
[19] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Rend. Semin. Mat.

Brescia, 3 (1979), pp. 63–101.
[20] R. FitzHugh, Mathematical models of excitation and propagation in nerve, in Biological En-

gineering, H. P. Schwan, ed., McGraw-Hill, New York, 1969.
[21] C. S. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model,

Crit. Rev. Biomed. Engrg., 21 (1993), pp. 1–77.
[22] R. H. Hoyt, M. L. Cohen, and J. E. Saffitz, Distribution and three-dimensional structure

of intercellular junctions in canine myocardium, Circ. Res., 64 (1989), pp. 563–574.
[23] J. Jack, D. Noble, and R. W. Tsien, Electric Current Flow in Excitable Cells, Clarendon

Press, Oxford, 1983.
[24] J. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 1998.
[25] J. P. Keener and A. V. Panfilov, A biophysical model for defibrillation of cardiac tissue,

Biophys. J., 71 (1996), pp. 1335–1345.
[26] J. P. Keener, The effect of gap junctional distribution on defibrillation, Chaos, 1 (1998),

pp. 175–187.
[27] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math.,

3 (1969), pp. 510–585.
[28] J. S. Neu and W. Krassowska, Homogenization of syncitial tissues, Crit. Rev. Biomed.

Engrg., 21 (1993), pp. 137–199.
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LAGRANGIAN SOLUTIONS OF SEMIGEOSTROPHIC EQUATIONS
IN PHYSICAL SPACE∗

MICHAEL CULLEN† AND MIKHAIL FELDMAN‡

Abstract. The semigeostrophic equations are a simple model of large-scale atmosphere/ocean
flows. Previous work by J.-D. Benamou and Y. Brenier, M. Cullen and W. Gangbo, and M. Cullen
and H. Maroofi proves that the semigeostrophic equations can be solved in the cases, respectively,
of 3-dimensional (3-d) incompressible flow between rigid boundaries, vertically averaged 3-d incom-
pressible flow with a free surface, and fully compressible flow. However, all these results prove only
the existence of weak solutions in “dual” variables, where the dual variables result from a change of
variables introduced by Hoskins. This makes it difficult to relate the solutions to the full Euler or
Navier–Stokes equations, or to those of other simple atmosphere/ocean models. We therefore seek
to extend these results to prove existence of a solution in physical variables. We do this using the
Lagrangian form of the equations in physical space. The proof is based on the recent results of L.
Ambrosio on transport equations and ODE for BV vector fields.

Key words. semigeostrophic equations, Lagrangian solutions, transport equations, BV vector
fields

AMS subject classifications. 35A05, 35Q35
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1. Introduction. The semigeostrophic equations are a simple model of large-
scale atmosphere/ocean flows, where “large-scale” is defined to mean that the flow is
rotation-dominated [4]. They are also accurate in the case where one horizontal scale
becomes small, allowing them to describe weather fronts and jet streams. Previous
work by Benamou and Brenier [2], Cullen and Gangbo [5], and Cullen and Maroofi [6]
proves that the semigeostrophic equations can be solved in the cases, respectively, of
3-dimensional (3-d) incompressible flow between rigid boundaries, vertically averaged
3-d incompressible flow with a free surface, and fully compressible flow. However, all
these results only prove the existence of weak solutions in “dual” variables, where the
dual variables result from the change of variables introduced by [11]. This makes it
difficult to relate the solutions to the full Euler or Navier–Stokes equations, or to those
of other simple atmosphere/ocean models. We therefore seek to extend the results of
[2] and [5] to prove existence of a solution in physical variables. We do this using the
Lagrangian form of the equations in physical space. The proof is based on the recent
results of L. Ambrosio [1] on transport equations and ODE for BV vector fields. It is
not clear whether it is possible to prove existence of a weak solution to the Eulerian
form of the equations.

The transport theory of [1] gives uniqueness. However, the analysis of [2], [5], and
[6] does not give uniqueness, because of the dependence of the transport velocity on
the transported quantity. This question remains open.
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The remaining part of the paper is organized as follows: in section 2 we consider
a 3-d incompressible semigeostrophic system in a domain with rigid boundary, and in
section 3 we consider the semigeostrophic shallow water model.

2. Lagrangian solutions of 3-d incompressible semigeostrophic system
in a domain with rigid boundary in physical space.

2.1. Background. Let Ω ⊂ R3 be an open bounded set. We study the following
semigeostrophic system:

Dt(v
g
1 , v

g
2) + (∂1p, ∂2p) = (u2,−u1), (vg1 , v

g
2) = (−∂2p, ∂1p),

Dtρ = 0, divu = 0, ∂3p + ρ = 0,
Dt = ∂t + u · ∇, ∇ = (∂x1

, ∂x2
, ∂x3

),
(2.1)

where u = (u1, u2, u3) is the velocity, p is the pressure, and ρ is the density. All these
quantities are functions of (t, x) ∈ (0, T ) × Ω. The initial and boundary data are

u · ν = 0 on [0, T ) × ∂Ω,
p(0, x) = p0(x) in Ω,

(2.2)

ν is the outward normal to ∂Ω, and p0(x) is a given function.
Introducing the function

P (t, x) = p(t, x) +
1

2
(x2

1 + x2
2),

we rewrite (2.1) as the following system of equations for P , u = (u1, u2, u3) depending
on (t, x) ∈ (0, T ) × Ω:

DtX = J(X − x),
divu = 0,
X = ∇P,
u · ν = 0 on [0, T ) × ∂Ω,
P (0, x) = P0(x) in Ω,

(2.3)

where P0(x) = p0(x) + 1
2 (x2

1 + x2
2). Here

J =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ .

Note that a solution of (2.3) determines a solution of the original system (2.1),
(2.2). Indeed, given a solution (P, u) of (2.3), we have X = ∇P , we set the function
u in (2.1) to be equal to the function u in (2.3), and

p(t, x) = P (t, x) − 1

2
(x2

1 + x2
2),

ρ(t, x) = −∂3p(t, x).

Then (2.1), (2.2) holds, in particular the equation Dtρ = 0 follows from the equation
DtX3 = 0 of (2.3). The form (2.3) is more convenient than the original system because
it allows the system to be stated in the Lagrangian sense.

The solutions of [2] and [5] were obtained by interchanging dependent and inde-
pendent variables in (2.3) to give a set of equations in the dual coordinates (t,X),
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where X = (X1, X2, X3). We now regard x as a function of (t,X) which is shown in
[2] to be given by defining

P ∗(t,X) = sup
x∈Ω

(x ·X − P (t, x)) for (t,X) ∈ [0, T ) × R3(2.4)

and setting x = ∇P ∗(t,X). The semigeostrophic system then takes the form

∂tα + ∇ · (Uα) = 0 in [0, T ) × R3,(2.5)

∇P (t, ·)#χΩ = α(t, ·) for any t ∈ [0, T );(2.6)

U(t,X) = J(X −∇P ∗(t,X)),(2.7)

α(0, X) = α0(X) for a.e. X ∈ R3.(2.8)

The initial data α0(X) are chosen by applying (2.6) with P (0, ·) = P0(x). Here
(2.6) means that the map ∇P (t, ·) pushes χΩ forward to α(t, ·); see Definition A.1 in
Appendix A.

The proofs in [2] and [5] depended on the use of the convexity principle introduced
by Cullen and Purser [7], which requires that the function P (t, ·) is convex. Shutts
and Cullen [13] relate this condition to a physical stability condition required for the
semigeostrophic approximation to be appropriate. Equation (2.4) shows that P ∗(t, ·)
also has to be convex, as the Legendre–Fenchel transform of P .

In this paper we are interested in the solution of the problem in the original
(“physical”) coordinates, i.e., in the solution of problem (2.3). The unknown functions
in this problem are the (modified) pressure P and the velocity u. The Eulerian form
of the first equation of (2.3) is

∂tX + u · ∇X = J(X − x).(2.9)

Using divu = 0, this expression can be written in the divergence form, which yields
the following definition of a weak (Eulerian) solution of (2.3).

Definition 2.1. Let u : [0, T ) × Ω → R3 and P : [0, T ) × Ω → R1 satisfy
u ∈ L1([0, T )×Ω,R3), ∇P ∈ L∞([0, T )×Ω)∩C([0, T );L1(Ω)); and P (t, ·) is convex
in Ω for every t ∈ [0,∞). The pair (u, P ) is a weak Eulerian solution of (2.3) if∫

(0,T )×Ω

{∇P (t, x) · [∂tφ(t, x) + (u(t, x) · ∇)φ(t, x)](2.10)

+J [∇P (t, x) − x] · φ(t, x)}dtdx +

∫
Ω

∇P0(x) · φ(0, x)dx = 0

for any φ ∈ C1
c ([0, T ) × Ω;R3), and∫

[0,T )×Ω

u(t, x) · ∇ψ(t, x)dtdx = 0(2.11)

for any ψ ∈ C1
c ([0, T ) × Ω).

Remark 2.2. Equality (2.11) is a weak form of the equation div u = 0 in (0, T )×Ω
with the boundary condition uν = 0 on (0, T ) × ∂Ω in (2.3).

In order to obtain a solution (u, P ), we can find P and x(t,X) = ∇P ∗ by solving
the problem (2.5)–(2.8) in the dual coordinates, using the results of [2], [5]. Thus the
problem is to find u such that (2.10), (2.11) hold. Since u in physical coordinates is
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by definition equal to Dtx(t,X), (2.7) and (2.4) yield the following expression for u
in terms of P and P ∗:

u(t, x) = ∂t∇P ∗(t,X) + U · ∇(∇P ∗(t,X))(2.12)

= ∂t∇P ∗(t,∇P (t, x)) + D2P ∗(t,∇P (t, x))[J(∇P (t, x) − x)].

Formally, if (P, α) satisfy (2.5)–(2.8), P ∗ is defined by (2.4), and u is defined by
(2.12), then (P, u) satisfy (2.3). However, because of the low regularity of P (t, x)
obtained as a weak solution of the problem (2.5)–(2.8), it is not clear how to make
these calculations rigorous. There is a further difficulty. The product terms ui∂jP
that appear in (2.10) are not well defined given that ∇P ∈ L∞ and that u defined by
(2.12) is a measure, which is all the regularity of P currently available.

In this paper we circumvent these difficulties by defining Lagrangian solutions of
the problem (2.3). We prove existence of such Lagrangian solutions for initial data
P0 satisfying some mild strict convexity conditions. The proof is based on the recent
results of L. Ambrosio [1] on transport equations and ODE for BV vector fields.

In the conclusion of this introduction, we show that the time-stepping procedure
and estimates of [5] can be applied to the model considered in [2] to improve some
estimates of [2]. This is required to allow the solutions in the dual variables to be
transferred to real space.

Let q > 1. Denote by C([0, T );Lq
w(R3)) the set of all measurable functions v(t, x)

on [0, T ) × R3, such that vt(·) = v(t, ·) ∈ Lq(R3) for any t ∈ [0, T ), and for any
{tk}∞k=1, t

∗ ∈ [0, T ) satisfying limk→∞ tk = t∗ there holds vtk ⇀ vt∗ weakly in Lq(R3)
(weakly-* if q = ∞).

Theorem 2.3 (see [2], [5]). Let Ω ⊂ R3 be an open bounded set and Ω ⊂ B, where
B is an open ball B(0, S). Let P0(x) be a convex bounded function in B satisfying

α0 := DP0#χΩ ∈ Lq(R3)(2.13)

for some q > 1. Then for any T > 0 there exist functions α(t,X), P (t,X) on [0, T )×
R3 such that

i. α, P satisfy

α ∈ L∞([0, T );Lq(R3)) ∩ C([0, T );Lq
w(R3)),

P ∈ L∞([0, T );W 1,∞(Ω)) ∩ C([0, T );W 1,r(Ω)),

where r is any number in [1,∞);
ii. let R0 = S(1 + T ), then

supp(α(t, ·)) ⊂ B(0, R0) for all t ∈ [0, T );(2.14)

iii. P (t, ·) is convex in Ω;
iv. P ∗ defined by (2.4) satisfies

P ∗(t, ·) is convex in R3 for any t ∈ [0, T ),

P ∗ ∈ L∞
loc([0, T ) × R3),

∇P ∗ ∈ L∞([0, T ) × R3;R3) ∩ C([0, T );Lr(B(0, R);R3))

for any R > 0 and any r ∈ [1,∞). Moreover,

‖∇P ∗(t, ·)‖L∞(R3) ≤ S for every t ∈ [0, T );(2.15)
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v. (α, P, P ∗) satisfy (2.5)–(2.8), where the evolution equation (2.5) and the initial
condition (2.8) are understood in the weak sense: for any φ ∈ C1

c ([0, T )×R3)∫
(0,T )×R3

[∂tφ(t,X) + U(t,X) · ∇φ(t,X)]α(t,X)dtdX

+

∫
R3

α0(X)φ(0, X)dX = 0.
(2.16)

Proof. We sketch the proof.
Since P0 is convex and bounded in B, then

‖∇P0‖L∞(Ω) ≤ C(B,Ω, ‖P0‖L∞(B)).(2.17)

Thus α0 defined by (2.13) has compact support.
As in [2], [5], we construct solutions using a time-stepping procedure. Fix x∗ ∈ Ω.

Let h > 0 be small, chosen so that T/h is an integer. Let ηh(·) = 1
h3 η(

·
h ) be a

standard mollifier. Define

α0
h = (α0) ∗ ηh,

and then inductively define the following quantities for k = 0, 1, . . . , T/h.
Suppose αk

h ∈ Lq(R3), with compact support, is defined. Then let P k
h be the

unique convex function satisfying

∇P k
h#χΩ = αk

h, P k
h (x∗) = P0(x

∗).

Existence and uniqueness of such P k
h follows from Brenier [3].

(P k
h )∗(X) = sup

x∈Ω
(x ·X − P k

h (x)) for X ∈ R3,

Qk
h = ηh ∗ (P k

h )∗,

Uk
h (X) = J

[
X −∇Qk

h(X)
]
.

(2.18)

Since Ω ⊂ B(0, S), it follows that

‖∇(P k
h )∗, ∇Qk

h‖L∞(R3) ≤ S.(2.19)

From (2.18), (2.19)

‖(P k
h )∗ −Qk

h‖L∞(R3) ≤ hS.

To define αk+1
h we solve

∂αh

∂t
+ div (αhU

k
h ) = 0 in R3 × [kh, (k + 1)h],(2.20)

αh(kh,X) = αk
h(X),(2.21)

and set

αk+1
h (X) = αh((k + 1)h,X).(2.22)

Similar to [5, Lemma 4.1] we show that αh ∈ L∞([kh, (k + 1)h], Lq(R3)) and that

‖αh(t, ·)‖Lq(R3) = ‖α0‖Lq(R3) for every t ∈ [kh, (k + 1)h],(2.23)

supp(αh(t, ·)) ⊂ B(0, S(1 + (k + 1)h)) for every t ∈ [kh, (k + 1)h],(2.24)

W1(αh(t1, ·), αh(t2, ·)) ≤ C(T )|t1 − t2| for all t1, t2 ∈ [kh, (k + 1)h],(2.25)
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where q is from (2.13), and W1(αh(t1, ·), αh(t2, ·)) is the 1-Wasserstein distance be-
tween αh(t1, ·) and αh(t2, ·) (see, e.g., [5, Appendix A] for the definition of W1).

We repeat this procedure for k = 1, . . . , T/h. In particular, we thus define a
function

αh ∈ L∞([0, T ], Lq(R3)).(2.26)

For every t ∈ (0, T ) define Ph(t, ·) to be the unique convex function satisfying

∇Ph(t, ·)#χΩ = αh(t, ·), Ph(t, x∗) = P0(x
∗),

and then define Qh(t, ·), Uh(t, ·) by using the Ph(t, ·) in (2.18) instead of P k
h .

We also define functions Ph on [0, T ]×Ω and αh, Qh, Uh on [0, T ]×R3 by setting
them equal to P k

h , α
k
h, Q

k
h, U

k
h , respectively, on the time interval t ∈ [kh, (k + 1)h).

We note the following fact.
Lemma 2.4 (see [3]). Let p ≥ 1. Let Ω ⊂ Rn be an open bounded set, x∗ ∈ Ω,

a ∈ R. Let ρj , ρ ∈ Lp(Rn) for j = 1, . . . be such that ρj ⇀ ρ weakly in Lp(Rn) and
supp(ρj , ρ) ⊂ B(0, R). Let φj, φ be the convex functions on Rn satisfying ∇φj#χΩ =
ρj, ∇φ#χΩ = ρ, φ(x∗), φj(x

∗) = a for j = 1, . . .. Then φj → φ in W 1,r(Ω) for any
r ∈ [1,∞).

From (2.23)–(2.25), repeating the argument of [5, pp. 263–268], with the use of
Lemma 2.4 we obtain a sequence hj → 0+ and a function α ∈ Lq([0, T ]×R3), where
q is from (2.13), such that

supp(αhj (t, ·)) ⊂ B(0, S(1 + T )) for each t ∈ [0, T ], j = 1, 2, . . . ,(2.27)

αhj ⇀ α weakly in Lq([0, T ] × R3),(2.28)

αhj
(t, ·) ⇀ α(t, ·) weakly in Lq(R3) for each t ∈ [0, T ],(2.29)

and such that, denoting by P (t, ·), for every t ∈ (0, T ), the unique convex function
satisfying

∇P (t, ·)#χΩ = α(t, ·), P (t, x∗) = P0(x
∗),

and denoting by P ∗(t, ·) the convex dual of P (t, ·) defined by (2.4), we have

P
∗
hj

(t, ·) → P ∗(t, ·) in C(B(0, R)) for each R > 0, t ∈ [0, T ],(2.30)

Qhj
(t, ·) → P ∗(t, ·) in C(B(0, R)) for each R > 0, t ∈ [0, T ],(2.31)

αhjUhj ⇀ αJ(id−∇P ∗) weakly in Lq([0, T ] × R3;R3).(2.32)

Then the proof of Theorem 2.3 is completed as in [5, pp. 268–269].

2.2. Statement of results. In this paper we study the system in the “physical”
space (t, x) and define its weak Lagrangian solutions. In order to do that, we first
rewrite system (2.3) in terms of F, P , where F : [0, T ] × Ω → Ω is the (formal)
Lagrangian flow corresponding to the full wind velocity u = (u1, u2, u3), and then we
define the corresponding weak solution F, P . This gives the following.

Definition 2.5. Let Ω ⊂ R3 be an open bounded set, and let T > 0. Let
P0(x) ∈ W 1,∞(Ω)) be convex. Let r ∈ [1,∞). Let P : [0, T ) × Ω → R1 satisfy

P ∈ L∞([0, T );W 1,∞(Ω)) ∩ C([0, T );W 1,r(Ω)),(2.33)

P (t, ·) is convex in Ω for each t ∈ [0, T ).(2.34)
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Let F : [0, T ) × Ω → Ω be a Borel map satisfying

F ∈ C([0, T );Lr(Ω;R3)).(2.35)

Then the pair (P, F ) is called a weak Lagrangian solution of (2.3) in [0, T ) × Ω if
(P, F ) has the following properties:

i. F (0, x) = x, P (0, x) = P0(x) for a.e. x ∈ Ω.
ii. For any t > 0 the mapping Ft = F (t, ·) : Ω → Ω is Lebesgue measure preserv-

ing, in the sense that Ft#χΩ = χΩ.
iii. There exists a Borel map F ∗ : [0, T ) × Ω → Ω such that for every t ∈ (0, T )

the map F ∗
t = F ∗(t, ·) : Ω → Ω is Lebesgue measure preserving: F ∗

t #χΩ = χΩ

and satisfies F ∗
t ◦ Ft(x) = x, and Ft ◦ F ∗

t (x) = x for a.e. x ∈ Ω.
iv. The function

Z(t, x) = ∇P (t, Ft(x))(2.36)

is a weak solution of

∂tZ(t, x) = J [Z(t, x) − F (t, x)] in [0, T ) × Ω,
Z(0, x) = ∇P0(x) in Ω

(2.37)

in the following sense: for any ϕ ∈ C1
c ([0, T ) × Ω;R3)∫

(0,T )×Ω

[Z(t, x) · ∂tϕ(t, x) + J(Z(t, x) − F (t, x)) · ϕ(t, x)]dtdx

+

∫
Ω

∇P0(x) · ϕ(0, x)dx = 0.
(2.38)

Remark 2.6. We comment on Definition 2.5:
• Continuity in time of P, F , considered as maps on [0, T ) with values in
W 1,r(Ω) and Lr(Ω), respectively, required in (2.33), (2.35), combined with
initial conditions in Definition 2.5(i), imply that

lim
t→0+

‖Ft − Id‖Lr(Ω) = 0, lim
t→0+

‖Pt − P0‖W 1,r(Ω) = 0,(2.39)

where Id : Ω → Ω is the identity mapping. Furthermore, the continuity
property of F in (2.35) can be interpreted as “generic continuity” of particle
paths in physical space.

• The property Definition 2.5(ii) of the flow F is the Lagrangian form of the
equation divu = 0 in (0, T ) × Ω with the boundary condition uν = 0 on
(0, T ) × ∂Ω in (2.3).

• (2.38) is a weak Lagrangian form of the first equation of (2.3) with an initial
condition for P .

Remark 2.7 (semigroup property). The weak Lagrangian solution in Definition
2.5 satisfies the following semigroup property. For every t1, t2 ≥ 0 define F(t1,t2) =
Ft1 ◦ F ∗

t2 , where F ∗
t is defined as in Definition 2.5(iii). Then for any t1, t2, t3 ≥ 0

F(t1,t2) ◦ F(t2,t3) = F(t1,t3) for a.e. x ∈ Ω.(2.40)

This follows from the property F ∗
t ◦ Ft(x) = x for a.e. x ∈ Ω in Definition 2.5(iii),

and from L3-measure-preserving properties of maps Ft, F
∗
t . Indeed, it follows that

Ft1 ◦ F ∗
t3(x) = Ft1 ◦ F ∗

t2 ◦ Ft2 ◦ F ∗
t3(x) = Ft1 ◦ F ∗

t2 ◦ Ft2 ◦ F ∗
t3 ◦ Ft3 ◦ F ∗

t3(x)
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for a.e. x ∈ Ω, which is (2.40).
To justify Definition 2.5 we now show that a weak Lagrangian solution (F, P ) with

the additional regularity property ∂tF ∈ L∞([0, T ) × Ω) determines a weak Eulerian
solution of (2.3), and that a smooth Lagrangian solution determines a classical solution
of (2.3).

Lemma 2.8 (consistency of weak Lagrangian solutions). Let Ω ⊂ R3 be an open
bounded set, and let T > 0. Let (F, P ) be a weak Lagrangian solution of (2.3) in
[0, T ) × Ω.

i. If ∂tF ∈ L∞([0, T ) × Ω;R3), then the function

u(t, x) := (∂tF )(t, F ∗
t (x))(2.41)

satisfies u ∈ L∞([0, T ) × Ω;R3), and (u, P ) is a weak Eulerian solution of
(2.3) in [0, T ) × Ω in the sense of Definition 2.1;

ii. If (F, F ∗, P ) ∈ C2([0, T ]×Ω), then the function (2.41) satisfies u ∈ C1([0, T ]×
Ω;R3), and (u, P ) is a classical solution of (2.3) in [0, T ) × Ω.

Proof. We first prove (i). Since F ∗ is a Borel map, and ∂tF ∈ L∞([0, T )×Ω), the
right-hand side of (2.41) is a bounded measurable function, and thus u ∈ L∞([0, T )×
Ω). It remains to prove that (P, u) is a weak Eulerian solution. We prove first that
(2.11) holds. Let ψ ∈ C1

c ([0, T ) × Ω). Fix t ∈ (0, T ). Since Ft#χΩ = χΩ, then∫
Ω

(∂tψ)(t, Ft(x))dx =

∫
Ω

∂tψ(t, x)dx.

Integrating with respect to t and using ∂tF ∈ L∞([0, T ) × Ω), we get∫
[0,T )×Ω

{∂t[ψ(t, Ft(x))] − ∂tFt(x) · (∇ψ)(t, Ft(x))}dtdx =

∫
[0,T )×Ω

∂tψ(t, x)dtdx.

Using ψ(T, ·) ≡ 0 and (2.39), we get∫
[0,T ]×Ω

∂tFt(x) · (∇ψ)(t, Ft(x))dtdx = 0.

Making the change of variables y = Ft(x) and using properties (ii) and (iii) of Defini-
tion 2.5, we get ∫

[0,T ]×Ω

(∂tFt)(F
∗
t y) · ∇ψ(t, y)dtdy = 0.

Since (2.41) defines u, then (2.11) follows.
Now we prove (2.10). From properties P and F in Definition 2.5 it follows that

Z(t, x) defined by (2.36) satisfies Z ∈ L∞([0, T ] × Ω). Then, since Ω is a bounded
set and Ft#χΩ = χΩ for all t ∈ [0, T ), (A.2) of Corollary A.3 allows us to make
the change of variables y = Ft(x) in the first integral of (2.38). Then x = F ∗

t (y)
for a.e. (t, x) ∈ [0, T ) × Ω by (iii) in Definition 2.5, and from (2.38) we get for any
ϕ ∈ C1

c ([0, T ) × Ω)∫
(0,T )×Ω

[∇P (t, y) · (∂tϕ)(t, F ∗
t (y)) + J(∇P (t, y) − y)ϕ(t, F ∗

t (y))]dtdy(2.42)

+

∫
Ω

∇P0(x)ϕ(0, x)dx = 0.
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Next we show that (2.42) holds for all ϕ ∈ L∞([0, T ) × Ω) satisfying ∂tϕ ∈
L∞([0, T ) × Ω) and supp(ϕ) ⊂ [0, T − ε] × Ω for some ε > 0. Indeed, for such ϕ
we construct an approximating sequence ϕj ∈ C1

c ([0, T ) × Ω) as follows. Extend ϕ
to [0,∞) × Ω by defining ϕ(t, ·) ≡ 0 for t ≥ T , and further extend ϕ to (−∞,∞) ×
Ω by defining ϕ(t, x) = ϕ(−t, x) for t < 0, x ∈ Ω. Let h > 0 and Ωh = {x ∈
Ω | dist(x, ∂Ω) > h}. Now ϕχΩh

is defined on R1 × R3. Let ηh(t, x) = 1
h4 η(

|(t,x)|
h ),

where η(·) is a standard mollifier. Let j > 1
ε be integer. Then functions ϕj = (ϕχΩ4h

)∗
ηh with h = 1

j < ε satisfy ϕj ∈ C1
c ([0, T )×Ω) with ‖ϕj , ∂tϕj‖L∞([0,T )×Ω) ≤ C, where

C does not depend on j, and (ϕj , ∂tϕj) → (ϕ, ∂tϕ) a.e. on [0, T )×Ω as j → ∞. Since
F ∗
t #χΩ = χΩ for all t, it follows that (ϕj , ∂tϕj)(t, F

∗
t (y)) → (ϕ, ∂tϕ)(t, F ∗

t (y)) for a.e.
(t, y) ∈ [0, T ) × Ω. With this, since Ω is bounded, ∇P ∈ L∞([0, T ) × Ω), and (2.42)
holds for each ϕj ; the bounded convergence theorem implies (2.42) for ϕ.

Let ϕ(t, x) = η(t, Ft(x)), where η ∈ C1
c ([0, T ) × Ω). Then ϕ ∈ L∞([0, T ) × Ω),

and supp(ϕ) ⊂ [0, T − ε]×Ω since supp(η) ⊂ [0, T − ε]×Ω for some ε > 0. Moreover,
since ∂tF ∈ L∞([0, T ) × Ω), it follows that ∂tϕ ∈ L∞([0, T ) × Ω) with

∂tϕ(t, x) = (∂tη)(t, Ft(x)) +

3∑
i=1

∂tF
j
t (x)(∂xjη)(t, Ft(x)) a.e. in [0, T ) × Ω,

where we used notation F (t, x) = (F 1, F 2, F 3)(t, x).
Thus (2.42) holds for ϕ. By properties (ii) and (iii) in Definition 2.5

ϕ(t, F ∗
t (y)) = η(t, y), ∂tϕ(t, F ∗

t (y)) = ∂tη(t, y) + [(∂tF )(t, F ∗
t (y))] · ∇η(t, y)

for a.e. (t, y) ∈ [0, T )×Ω. Thus, inserting ϕ(t, x) = η(t, Ft(x)) into (2.42), we obtain
for every η ∈ C1

c ([0, T ) × Ω)∫
(0,T )×Ω

[∇P (t, y) · (∂tη(t, y) + [(∂tF )(t, F ∗
t (y))] · ∇η(t, y))

+J(∇P (t, y) − y)η(t, y)]dtdy +

∫
Ω

∇P0(x)η(0, F0(x))dx = 0.

Using property (i) in Definition 2.5 and (2.41), and changing notations y to x and η
to ϕ, we obtain (2.10). Assertion (i) of Lemma 2.8 is proved.

Now assertion (ii) follows directly from (i).
Our main result is the following.
Theorem 2.9. Let Ω ⊂ R3 be an open bounded set and Ω ⊂ B where B is an

open ball B(0, S). Let P0(x) be a convex bounded function in B. Assume that P0

satisfies

DP0#χΩ ∈ Lq(R3)(2.43)

for some q > 1. Then for any T > 0 there exists a weak Lagrangian solution (P, F ) of
(2.3) in [0, T )×Ω, where (2.33), (2.35) are satisfied for any r ∈ [1,∞). Moreover, the
function Z(t, x) defined by (2.36) satisfies Z(·, x) ∈ W 1,∞([0, T );R3) for a.e. x ∈ Ω,
and (2.37) is satisfied, in addition to the weak form (2.38), in the following sense:

∂tZ(t, x) = J(Z(t, x) − F (t, x)) for L4-a.e. in (t, x) ∈ (0, T ) × Ω,
Z(0, x) = ∇P0(x) for L3-a.e. in x ∈ Ω.

(2.44)

Remark 2.10. The condition (2.43) is equivalent to

detD2P ∗
0 ∈ Lq(∇P0(Ω)),
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where P ∗
0 is the Legendre–Fenchel transform of P0, i.e., P ∗

0 (X) = supx∈Ω[x·X−P0(x)]
for X ∈ R3. The condition (2.43) is a certain strict convexity condition for P0. In
particular, if P0 is uniformly strictly convex in B, in the sense that there exists ε > 0
such that P0(x)− ε|x|2 is a convex function in B, then detD2P ∗

0 ∈ L∞(∇P0(Ω)), and
∇P0(Ω) is a bounded set by (2.17). Thus (2.43) is satisfied.

We prove Theorem 2.9 in sections 2.3 and 2.4.

2.3. Lagrangian flow in the dual space. Let Ω, T , P0 be as in Theorem 2.9.
Let α0 = ∇P0#χΩ. By Theorem 2.3, there exists a solution (α, P, P ∗) of the

problem (2.5)–(2.7) with initial data α0 satisfying all assertions of Theorem 2.3.
Note that the vector field U defined by (2.7) is divergence free. Thus the evolution

equation (2.5) and its weak form (2.16) can be seen as the transport equation

∂tα + U · ∇α = 0.(2.45)

Since ∇P ∗ ∈ L∞([0, T ) ×R3)), and P ∗
t (·) is convex in R3 for all t ∈ [0, T ), it follows

from (2.7) that

U ∈ L∞
loc([0, T ) × R3) and U ∈ L∞([0, T );BV (B(0, R))) for all R > 0.

By (2.14) α has compact support in [0, T ] × R3. Thus we can modify U away from
B(0, R1), where large R1 will be chosen below so that, in particular, supp(α) ⊂
[0, T ] ×B(0, R1) and the modified function Ũ satisfies

Ũ ∈ L∞([0, T ) × R3), Ũ ∈ L∞([0, T );BV (B(0, R))) for all R > 0;

div Ũ(t, ·) = 0 in R3 for all t ∈ [0, T ).
(2.46)

To construct Ũ satisfying (2.46), we choose ζ ∈ C∞(R1) such that

ζ ≡ 1 on {|s| < R1}, ζ ≡ 0 on {|s| > R1 + 1}, 0 ≤ ζ ≤ 1 on R1,(2.47)

and define, for X ∈ R3,

H(X) = (ζ(|X1|)X1, ζ(|X2|)X2, ζ(|X3|)X3) .(2.48)

Define Ũ by

Ũ(t,X) = J [H(X) −∇P ∗(t,X)] .(2.49)

Then Ũ satisfies (2.46), and from (2.47)–(2.48), (2.15)

U = Ũ in B(0, R1),(2.50)

‖U(t, ·)‖L∞(R3) ≤ S + R1 + 1 for all t ∈ [0, T ).(2.51)

Now the theory developed by Ambrosio [1] applies to (2.45) with U replaced by Ũ .
Lemma 2.11. Let Ũ be defined by (2.47)–(2.49). There exists a unique locally

bounded Borel measurable map Φ : [0, T ) × R3 → R3 satisfying
i. Φ(·, X) ∈ W 1,∞([0, T );R3) for a.e. X ∈ R3;
ii. Φ(0, X) = X for L3-a.e. X ∈ R3;
iii. for a.e. (t,X) ∈ R3 × (0, T )

∂tΦ(t,X) = Ũ(t,Φ(t,X));(2.52)
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iv. Φ(t, ·) : R3 → R3 is a L3-measure-preserving map for every t ∈ [0, T ).
Proof. Since Ũ satisfies (2.46), by [1, section 6] there exists a unique regular

flow relative to Ũ . This flow determines a locally bounded Borel measurable map
Φ : [0, T ) × R3 → R3 satisfying (i)–(iii) and the following property.

Let Ũε : [0, T ) × R3 → R3 be a family of approximations to Ũ satisfying the
following:

Ũε ∈ C([0, T ) × R3;R3), sup
ε

‖Ũε‖L∞([0,T )×R3;R3) < ∞,

Ũε → Ũ in L1
loc((0, T ) × R3;R3),

‖∇Ũε‖L∞([0,T )×BR;R3) ≤ C(ε,R) < ∞ for any ε,R > 0,

div Ũε = 0.

(2.53)

Let Φε(t,X) be the unique solution in [0, T ] of the ODE d
dtΦε(t,X) = Ũ(t,Φε(t,X))

with the initial condition Φε(0, X) = X. Then

lim
ε→0

∫
BR

sup
t∈[0,T ]

|Φ(t,X) − Φε(t,X)| dX = 0 for any R > 0.(2.54)

Note that a family Ũε satisfying the conditions stated above exists. Indeed, let
ηε : R3 × R1 → R1 be a family of mollifiers. Extend P ∗(t,X) to the time interval
(−∞,∞) by setting P ∗(t,X) = P ∗(0, X) for t < 0 and P ∗(t,X) = P ∗(T,X) for t > 0,
and let

Ũε(t,X) = J [H(X) − (∇P ∗ ∗ ηε)(t,X)] ,

where the convolution is with respect to (t,X)-variables. Then all properties in (2.53)
are satisfied.

Also, since Ũε is smooth and div Ũε = 0, it follows that each Φε(t, ·) is a measure-
preserving diffeomorphism. Thus (2.54) implies (iv).

Conversely, a map Φ satisfying (i)–(iv) determines a regular Lagrangian flow
relative to Ũ . This implies uniqueness of Φ by Theorem 6.4 of [1].

Lemma 2.12. Let Ũ be defined by (2.47)–(2.49), and let Φ be the map defined in
Lemma 2.11. Then we have the following conditions:

i. If R1 in the definition of Ũ is chosen sufficiently large depending only on Ω,
T and ‖∇P0‖L∞(Ω), then

Φ(t,X) ⊂ B(0, R1) for a.e. (t,X) ∈ [0, T ) ×∇P0(Ω).(2.55)

In particular,

∂tΦ(t,X) = U(t,Φ(t,X)) for a.e. (t,X) ∈ [0, T ) ×∇P0(Ω).(2.56)

ii. There exists a Borel map Φ∗ : [0, T )×R3 → R3 such that for every t ∈ (0, T )
the map Φ∗

t : R3 → R3 is L3-measure preserving, and such that Φ∗
t ◦Φt(x) = x

and Φt ◦ Φ∗
t (x) = x for a.e. x ∈ R3.

Proof. We prove (i). For the family Ũε satisfying (2.53) constructed in the proof
of Lemma 2.11, we have for 0 < ε < 1/2, using (2.15),

|Ũε(t,X)| ≤ |X| + 1 + S.(2.57)

Thus

1

2

d

dt
|Φε(t,X)|2 = Ũ(t,Φε(t,X)) · Φε(t,X) ≤ 3

2
|Φε(t,X)|2 +

1

2
(1 + S)2.
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Thus, by the Gronwall inequality,

|Φε(t,X)| ≤ e3T/2
(
|X|2 + (1 + S)2T 2

) 1
2 for all (t,X) ∈ [0, T ] × R3.(2.58)

The same is true for |Φ(t,X)| for a.e. (t,X) ∈ [0, T ] × R3. Now choosing

R1 = 2e3T/2
(
‖∇P0‖2

L∞(Ω) + (1 + S)2T 2
)1/2

+ 1,(2.59)

we obtain (2.55), which implies (2.56).
It remains to prove (ii). This is in fact a general property of regular Lagrangian

flows constructed by Ambrosio [1, section 6]. It can be seen as follows. For t1, t2 ∈
[0, T ] with t1 ≥ t2 and x ∈ R3, denote by Φ̂(t1, t2, x) the regular Lagrangian flow
relative to Ũ and starting at time t1; i.e., Φ̂(t1, ·, ·) satisfies properties (i), (iii), (iv)
of Lemma 2.11 on time interval [t1, T ] and Φ̂(t1, t1, X) = X for L3-a.e. X ∈ R3. In
the case t2 ≤ t1, Φ̂(t1, t2, x) denotes the regular flow Lagrangian flow relative to Ũ
backwards in time; i.e., Φ̂(t1, ·, ·) satisfies properties (i), (iii), (iv) of Lemma 2.11 on
time interval [0, t1] and Φ̂(t1, t1, X) = X for L3-a.e. X ∈ R3. Repeating the argument
of Remark 6.7 of [1], we see that the following semigroup property holds: for every
t1, t2, t3 ∈ [0, T ]

Φ̂(t1, t2, Φ̂(t2, t3, x)) = Φ̂(t1, t3, x) for a.e. x ∈ Rn.

Also, from the proof of Theorem 6.6 of [1], one can see that if Ũε is a family of
approximations to Ũ satisfying (2.53), and if Φ̂ε(t1, t2, x) is the regular Lagrangian
flow of Ũε starting at time t1, then Φ̂ε converges to Φ̂ in L1

loc([0, T ] × [0, T ] × R3).

Thus, possibly after a modification on a negligible set, Φ̂ is a Borel map since it is
an a.e. limit of continuous maps. Since Φ = Φ̂(0, ·, ·), the map Φ∗(t, x) = Φ̂(t, 0, x)
satisfies all properties asserted in (ii).

Now we prove the following property of transport equations.
Lemma 2.13. Let Ũ ∈ L∞((0, T )×R3) with Ũ(t, ·) ∈ BVloc(R

3) and div Ũ(t, ·) =
0 in R3 in the sense of distributions for every t ∈ (0, T ). Let a locally bounded Borel
measurable map Φ : R3 × [0, T ) → R3 satisfy properties (i)–(iv) of Lemma 2.11. Let
q ∈ (1,∞], v0 ∈ Lq(R3), and supp(v0) ⊂ B(0, R). Let v(t, x) := (Φt#v0)(x). Then

v ∈ L∞((0, T );Lq(R3)) ∩ C([0, T ];Lq
w(R3)), supp v ⊂ B(0, RT ) × [0, T ],

where RT = R + T‖Ũ‖L∞ , and v is a weak solution of

∂tv + div(vŨ) = 0(2.60)

on (0, T )×R3, with initial data v|t=0 = v0, in the sense that for any ϕ ∈ C1
c ([0, T )×

R3) ∫
[0,T )×R3

v
(
∂tϕ + Ũ · ∇ϕ

)
dtdx +

∫
R3

v0(x)ϕ(0, x)dx = 0.

Proof. Let p be such that 1
p + 1

q = 1 (where p = 1 if q = ∞). Fix t ∈ [0, T ). From

the definition of v and using that Φt is L3-measure preserving and locally bounded,
we get for all ϕ ∈ Cc(R

3)∫
R3

ϕ(x)vt(x)dx =

∫
R3

ϕ(Φt(x))v0(x)dx ≤ ‖v0‖Lq

[∫
R3

∣∣∣∣ϕ(Φt(x))

∣∣∣∣
p

dx

] 1
p

= ‖v0‖Lq

[∫
R3

|ϕ(x)|pdx
] 1

p

= ‖v0‖Lq‖ϕ‖Lp .
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Thus vt ∈ Lq(R3) with ‖vt‖Lq ≤ ‖v0‖Lq for any t.
Also, weak continuity of v with respect to t also follows: if {tk}∞k=1, t∗ ∈ [0, T ),

and limk→∞ tk = t∗, then we get for every ϕ ∈ Cc(R
3) using (i), (iv) of Lemma 2.11

and the dominated convergence theorem∫
R3

vtk(x)ϕ(x)dx =

∫
R3

v0(x)ϕ(Φtk(x))dx →
∫
R3

v0(x)ϕ(Φt∗(x))dx =

∫
R3

vt∗(x)ϕ(x)dx.

The bounds on the support of vt follow from |Φt(X)| ≤ |X|+T‖Ũ‖L∞ , which can
be obtained by approximating Ũ by smooth vector fields as in the proof of Lemmas
2.11 and 2.12.

Now we prove that v is a weak solution of (2.60) with initial data v|t=0 = v0. Let
ϕ ∈ C∞

c (R3 × [0, T )). Then using the definition vt = Φt#v0 of v, the properties of Φ
stated in (i)–(iv) of Lemma 2.11, we get∫
R3×[0,T )

v∂tϕdtdx =

∫
R3×[0,T )

v0(x)(∂tϕ)(t,Φt(x))dtdx

=

∫
R3

v0(x)

∫ T

0

d

dt
[ϕ(t,Φt(x))] dtdx

−
∫
R3×[0,T )

v0(x)∇ϕ(t,Φt(x)) · ∂tΦt(x)dtdx

= −
∫
R3

v0(x)ϕ(0, x)dx−
∫
R3×[0,T )

v0(x)∇ϕ(t,Φt(x)) · Ũ(t,Φt(x))dx

= −
∫
R3

v0(x)ϕ(0, x)dx−
∫
R3×[0,T )

vt(x)∇ϕ(t, x) · Ũ(t, x)dx.

Lemma 2.13 is proved.
Now we prove that the solution (α, P ) of (2.5)–(2.8) satisfies the property that α

is a Lagrangian solution of the transport equation (2.5), in the sense of (2.61).
Proposition 2.14. Let Ω, T , q, P0 be as in Theorem 2.3. Let (α, P ) be the weak

solution of (2.5)–(2.8) constructed in Theorem 2.3. Let Ũ be defined by (2.47)–(2.49),
and let Φ be the regular Lagrangian flow of Ũ defined in Lemma 2.11. If R1 in the
definition of Ũ is chosen sufficiently large depending only on Ω, T , and ‖∇P0‖L∞(Ω),
then for every t ∈ [0, T ]

αt = Φt#α0.(2.61)

Moreover, for every t ∈ [0, T ]

αt(x) = α0(Φ
∗
t (x)) for a.e. x ∈ R3,(2.62)

where the map Φ∗
t is defined in Lemma 2.12(ii).

Proof. We choose R1 to be defined by (2.59). Then, in particular, R1 ≥ R0 + 1
where R0 = S(1 + T ) is the number in (2.14).

We use notations introduced in the proof of Theorem 2.3, and for h, k considered
there define

Ũk
h (X) = J

[
H(X) −∇Qk

h(X)
]
,(2.63)

where Qk
h is defined by (2.18), and H(X) is defined by (2.47)–(2.48) with R1 given

by (2.59). Define functions Ũh on [0, T ] × Ω by setting them equal to Ũk
h on the
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time interval t ∈ [kh, (k + 1)h). Then, from (2.19) and (2.47)–(2.48), we have Ũh ∈
L∞((0, T ) × R3) with

‖Ũh(t, ·)‖L∞(R3) ≤ S + R1 + 1 for all t ∈ [0, T ), h ∈ (0, 1).(2.64)

Let hj → 0 be a sequence for which (2.27)–(2.32) hold. From (2.31), using
convexity of Qhj (t, ·) we conclude that

∇Qhj
(t, ·) → ∇P ∗(t, ·) a.e. in R3 for each t ∈ [0, T ),

and from this, noting that Uhj (X, t) = J [H(X) −∇Qhj
(X, t)] on [0, T ) ×R3, we get

Ũhj (t, ·) → Ũ(t, ·) a.e. in R3 for each t ∈ [0, T ),(2.65)

where Ũ is defined by (2.47)–(2.49). By (2.64), (2.65) and the dominated convergence
theorem

Ũhj → Ũ in Lr([0, T ) ×B(0, R);R3) for all R > 0, r ∈ [1,∞).(2.66)

Our choice R1 ≥ R0 +1 implies that Uh(t,X) = Ũh(t,X) in [0, T )×B(0, R0 +1).
Then from (2.24) it follows that αh satisfy (2.20) with Uk

h replaced by Ũk
h . Thus each

αh is a weak solution of

∂αh

∂t
+ div (αhŨh) = 0 in R3 × (0, T ),

αh(0, X) = α0
h(X).

(2.67)

For each h ∈ (0, 1), from (2.19), (2.47)–(2.48), and (2.63)

‖∇Ũh‖L∞((0,T )×R3) ≤ C

(
S

h
+ 1

)
,(2.68)

where C depends only on functions η, ζ. Also, from its definition, Ũh is a divergence-
free vector field. Then there exists a unique Lagrangian flow Φh : R3 × R1 → R3

induced by Ũh, and for each t the map (Φh)t : R3 → R3 is L3 measure-preserving (see,
e.g., [8, Theorem III.2]). From this, for the sequence {hj} considered above, using also

the properties (2.64), (2.68) of Ũhj , the properties (2.46) of Ũ , and the convergence
in (2.66), we can apply [1, Theorem 6.5] to conclude that for each t ∈ [0, T ]

(Φhj )t → Φt in L1
loc(R

3) as j → ∞.(2.69)

Let q > 1 be as in (2.13). Then ‖α0
h‖Lq(R3) ≤ ‖α0‖Lq(R3). From Lemma 2.13, it

follows that the function v(t, ·) = (Φh)t#α0
h satisfies v ∈ L∞([0, T ], Lq(R3)) and v is

a weak solution of (2.67). Since Ũh ∈ L∞((0, T ),W 1,∞(R3)) by (2.64) and (2.68)), it
follows that (2.67) has at most one weak solution in v ∈ L∞([0, T ], Lq(R3)); see, e.g.,
[8, Theorem II.2]. Using (2.26), we conclude that

αh(t, ·) = (Φh)t#α0
h.(2.70)

From (2.70) and (2.27), we get for any t > 0, j = 1, . . . and any ϕ ∈ Cc(R
3)∫

R3

ϕ(Φhj
(t,X))α0

hj
(X)dX =

∫
R3

ϕ(y)αhj
(t, y)dy.
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Passing to the limit j → ∞ in the last equality, by using (2.69), the fact that α0
hj

→ α0

in Lq(R3), the dominated convergence theorem in the left-hand side, and (2.29) in
the right-hand side we obtain∫

R3

ϕ(Φ(t,X))α0(X)dX =

∫
R3

ϕ(y)α(t, y)dy(2.71)

for any ϕ ∈ Cc(R
3). This implies (2.61).

Since Φt is a measure-preserving map, we use Lemma 2.12(ii) to conclude that
the left-hand side of (2.71) is equal to

∫
R3 ϕ(y)α0(Φ

∗
t (y))dy, and now (2.71) implies

(2.62).

2.4. Lagrangian flow in the physical space. Throughout this section we
assume that Ω, T , P0, α, P , U , Ũ , Φ are as in Proposition 2.14. Moreover, we fix
R1 in the definition of Ũ sufficiently large so that the conclusions of Proposition 2.14
hold.

Below we use the following notation: for a function g(t, x) we denote gt(x) :=
g(t, x).

We intend to define a Lagrangian flow in the physical space F : [0, T ) × Ω → Ω
by defining Ft : Ω → Ω for t ∈ [0, T ) by

Ft := ∇P ∗
t ◦ Φt ◦ ∇P0,(2.72)

where P ∗
t is the convex dual of Pt, and Φt : R3 → R3 is the Lagrangian flow in the

dual space constructed in Lemma 2.11. For that, we need to prove first the following.
Lemma 2.15. The right-hand side of (2.72) is defined L4-a.e. in [0, T ) × Ω.

Moreover, for any t ∈ [0, T ) the right-hand side of (2.72) is defined L3-a.e. in Ω. The
map F : [0, T ) × Ω → Ω defined by (2.72) is Borel.

Proof. Since P0 is a bounded convex function on B, then ∇P0 exists on Ω \N1
0 ,

where N1
0 is a Borel subset of Ω with L3(N1

0 ) = 0. Also, since P ∗ is a bounded Borel
function on [0, T ]×R3 and for every t the function P ∗(t, ·) is convex in R3, then ∇P ∗

exists on ([0, T ]×R3)\N2, where N2 is a Borel subset of [0, T ]×R3 with L4(N2) = 0;
moreover, denoting N2

t := N2 ∩ ({t} × R3), we have L3(N2
t ) = 0 for every t ∈ [0, T ].

Then the right-hand side of (2.72) is defined for all

(t, x) ∈ ([0, T ] × Ω) \ (([0, T ] ×N1
0 ) ∪M),

where M =
{
(s, y) ∈ [0, T ] × (Ω \N1

0 ) | (s,Φ(s,∇P0(y))) ∈ N2
}
.

From its definition, M is a Borel set.
It remains to prove that L4(M) = 0 and L3(Mt) = 0 for every t ∈ [0, T ], where

Mt := M ∩ ({t}×R3). By Fubini’s theorem, it is sufficient to prove that L3(Mt) = 0
for every t ∈ [0, T ].

Fix t ∈ [0, T ). Then, since Φt : R3 → R3 is L3-measure preserving, we have
L3

(
Φ−1

t (N2
t )
)

= 0, and using that ∇P0#χΩ = α0 and thus ∇P0#χΩ\N1
0

= α0, we
compute

|Mt| = |
{
x ∈ Ω \N1

0 | ∇P0(x) ∈ Φ−1
t (N2

t )
}
| =

∫
Φ−1

t (N2
t )

α0(z)dz = 0

since α0 ∈ L1
loc(R

3).
Thus we can define F : [0, T ) × Ω → Ω by (2.72). Then by Lemma 2.11, F is a

Borel mapping.
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It remains to prove that if F is defined by (2.72), then (F, P ) is a weak Lagrangian
solution in the sense of Definition 2.5.

We first show that the initial condition for the flow is satisfied.

Proposition 2.16. F (0, x) = x for a.e. x ∈ Ω.

Proof. By (2.72), F0(x) = ∇P ∗
0 ◦ Φ0 ◦ ∇P0(x) for all x ∈ Ω \ N0, where N0 is a

Borel set with L3[N0] = 0.

From convexity of P0 in B and (2.4), there exist Borel sets N1 ⊂ Ω, N2 ⊂ R3

with L3(N1) = L3(N2) = 0 such that P0 (resp. P ∗
0 ) is differentiable on Ω \N1 (resp.

R3 \N2). Moreover, if x ∈ Ω \ [N1 ∪ (∇P0)
−1(N2)], then ∇P ∗

0 ◦ ∇P0(x) = x.

By Lemma 2.11(ii), Φ0(x) = x in R3\N3, where N3 is a Borel set with L3[N3] = 0.

Thus F0(x) = x for all x ∈ Ω\ [N0∪N1∪(∇P0)
−1(N2∪N3)]. In order to complete

the proof of the proposition, we need to show that L3[(∇P0)
−1(N2 ∪N3) ∩ Ω] = 0.

Denote μ = α0dx in R3. Since α0 ∈ Lq(R3), then μ[N2 ∪ N3] = 0, and since
∇P0#χΩ = α0, we get L3[(∇P0)

−1(N2 ∪N3) ∩ Ω] = μ[N2 ∪N3] = 0.

The next step is to prove that the property stated in Definition 2.5(ii) is satisfied.

Proposition 2.17. For every t > 0 the map Ft : Ω → Ω is L3-measure preserv-
ing.

Proof. In order to complete the proof, we need to justify the following calculation:
for any ϕ ∈ C(R3),

∫
Ω

ϕ(Ft(x))dx =

∫
Ω

ϕ ◦ ∇P ∗
t ◦ Φt ◦ ∇P0(x)dx(2.73)

=

∫
R3

ϕ ◦ ∇P ∗
t ◦ Φt(y)α0(y)dy(2.74)

=

∫
R3

ϕ ◦ ∇P ∗
t (z)αt(z)dz(2.75)

=

∫
Ω

ϕ(x)dx.(2.76)

Then the proposition follows from Lemma A.2.

Now we prove these equalities.

Equality (2.73) follows from the definition of Ft.

Since ∇P0#χΩ = α0 and α0 ∈ Lq(R3) with compact support, Corollary A.3
implies

∫
Ω

ψ(∇P0(x))dx =

∫
R3

ψ(y)α0(y)dy for all ψ ∈ L∞(R3).

Choosing ψ = ϕ ◦∇P ∗
t ◦Φt ∈ L∞(R3), we conclude that the right-hand side of (2.73)

is equal to (2.74).

Equality of expressions (2.75) and (2.74) follows from (2.61) and Corollary A.3,
since ϕ ◦ ∇P ∗

t ∈ L∞(R3) and α0 ∈ Lq(R3) with compact support.

Equality of expressions (2.75) and (2.76) follows from ∇P ∗
t #αt = χΩ.

Now we prove that (2.35) holds for all r ∈ [1,∞).

Proposition 2.18. For any t0 ∈ [0, T ), any r ∈ [1,∞) and

lim
t→t0, t∈[0,T )

∫
Ω

|Ft(x) − Ft0(x)|rdx = 0.
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Proof. By Lemma 2.15, for any t ∈ [0, T ) (2.72) holds L3-a.e. in Ω. Also,
∇P0#χΩ = α0. Thus we get for any t, t0 ∈ [0, T )∫

Ω

|Ft(x) − Ft0(x)|rdx =

∫
Ω

|∇P ∗
t ◦ Φt ◦ ∇P0(x) −∇P ∗

t0 ◦ Φt0 ◦ ∇P0(x)|rdx

=

∫
R3

|∇P ∗
t ◦ Φt(y) −∇P ∗

t0 ◦ Φt0(y)|rα0(y)dy

≤ C

∫
R3

|∇P ∗
t ◦ Φt(y) −∇P ∗

t0 ◦ Φt(y)|rα0(y)dy

+ C

∫
R3

|∇P ∗
t0 ◦ Φt(y) −∇P ∗

t0 ◦ Φt0(y)|rα0(y)dy

=: C(I1 + I2).

We show first that I1 → 0 as t → t0. Note that ‖αt‖Lq(R3) = ‖α0‖Lq(R3) for
t ∈ (0, T ); this follows from (2.62) since Φ∗

t is a L3-measure-preserving map. Now we
use (2.61) to estimate

I1 =

∫
R3

|∇P ∗
t ◦ Φt(y) −∇P ∗

t0 ◦ Φt(y)|rα0(y)dy

=

∫
R3

|∇P ∗
t (y) −∇P ∗

t0(y)|
rαt(y)dy

≤ ‖∇P ∗
t −∇P ∗

t0‖
r
rq′‖αt‖q

= ‖∇P ∗
t −∇P ∗

t0‖
r
rq′‖α0‖q → 0 as t → t0

by Theorem 2.3.
Now we show that I2 → 0 as t → t0. Since ∇P ∗

t (y) ∈ B for a.e. y for each t, and
α0 ∈ L1(R3) (since α0 is in Lq and has compact support), then by the dominated
convergence theorem it remains to prove that, for every t0,

∇P ∗
t0 ◦ Φt(y) −∇P ∗

t0 ◦ Φt0(y) → 0 as t → t0(2.77)

for a.e. y ∈ R3. First we note that, since Φt is measure preserving, then it follows
from Lemma 2.11(i) that

Φt(y) → Φt0(y) as t → t0 in [0, T ] for a.e. y ∈ R3.

If y is such a point, and if in addition Φt0(y) is a point of continuity for ∇P ∗
t0 , then

convergence in (2.77) holds at y. As P ∗
t0 is convex, ∇P ∗

t0 is differentiable a.e. Since
Φt0 is measure preserving, it follows that Φt0(y) is a point of continuity for ∇P ∗

t0 for
a.e. y. Thus (2.77) holds for a.e. y ∈ R3. The proposition is proved.

It remains to show that properties (iii) and (iv) in Definition 2.5 are satisfied.
The first step is the following.

Lemma 2.19. ∇Pt ◦ Ft(x) = Φt ◦ ∇P0(x) for a.e. (t, x) ∈ (0, T ) × Ω.
Proof. To prove the lemma, we need to justify the formal computation

∇Pt ◦ Ft = ∇Pt ◦ ∇P ∗
t ◦ Φt ◦ ∇P0 = Φt ◦ ∇P0,

since ∇Pt ◦ ∇P ∗
t is the identity on the support of αt.

Now we make this argument rigorous.
Since P (t, x) is a bounded Borel function in [0, T ] × B and P (t, ·) is a convex

function in B for every t ∈ [0, T ], then ∇P exists in ([0, T ] × Ω) \N1, where N1 is a
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Borel subset of [0, T ]×Ω with L4(N1) = 0; moreover, denoting N1
t := N1∩({t}×R3),

we have L3(N1
t ) = 0 for every t ∈ [0, T ].

Then F−1(N1) is a Borel subset of [0, T ] × Ω satisfying

L4(F−1(N1)) = 0.

Indeed, it is enough to show that L3(F−1
t (N1

t )) = 0 for every t ∈ [0, T ], and this
follows from L3(N1

t ) = 0 and Proposition 2.17.
Now we can conclude, using Lemma 2.15, that

Zt(x) = ∇Pt ◦∇P ∗
t ◦Φt ◦∇P0(x) for (t, x) ∈ ([0, T ]×Ω) \ Ñ , where L4(Ñ) = 0.

Let M̃ = {(t, x) ∈ [0, T ] × R3 | ∇P (∇P ∗(t, x), t) �= x}, where we include (t, x)
such that either ∇P ∗(t, x) or ∇P (∇P ∗(t, x), t) do not exist. Then M̃ is a Borel set.

The proof of the lemma will be completed if we show that

L4
[
{(t, x) ∈ ([0, T ] × Ω) \ Ñ | (Φt ◦ ∇P0(x), t) ∈ M̃}

]
= 0.(2.78)

Since ∇Pt#χΩ = αt and ∇P ∗
t #αt = χΩ, it follows that for any t

∇Pt ◦ ∇P ∗
t (x) = x for αt-a.e. x ∈ R3.

Then, denoting M̃t = M̃ ∩ (R3 × {t}), we have∫
M̃t

αt(x)dx = 0 for any t ∈ [0, T ].

Thus for any t ∈ [0, T ] we get, using that L3(Ñt) = 0 and thus ∇P0#χΩ\Ñt
= α0,

and also using Lemma 2.11(iv), Lemma 2.12(ii), and (2.62), the following:

L3
[
{x ∈ Ω \ Ñt | Φt ◦ ∇P0(x) ∈ M̃t}

]
= L3

[
{x ∈ Ω \ Ñt | ∇P0(x) ∈ Φ∗

t (M̃t)}
]

=

∫
Φ∗

t (M̃t)

α0(x)dx =

∫
M̃t

α0(Φ
∗
t (x))dx

=

∫
M̃t

αt(x)dx = 0.

Now (2.78) follows from Fubini’s theorem. The lemma is proved.
Now we show existence of the map F ∗ from Definition 2.5(iii).
Proposition 2.20. The map F satisfies property (iii) in Definition 2.5.
Proof. Similar to Lemma 2.15, we can show that for every t ∈ [0, T ] the expression

∇P ∗
0 ◦ Φ∗

t ◦ ∇Pt(x) is defined for a.e. x ∈ Ω, and that the map F ∗
t : Ω → Ω defined

by F ∗
t = ∇P ∗

0 ◦ Φ∗
t ◦ ∇Pt is Borel.

Since Ft is measure preserving, then F ∗
t ◦ Ft(x) = ∇P ∗

0 ◦ Φ∗
t ◦ ∇Pt ◦ Ft(x) for

a.e. x ∈ Ω. Using Lemma 2.19, get F ∗
t ◦ Ft(x) = ∇P ∗

0 ◦ Φ∗
t ◦ Φt ◦ ∇P0(x) a.e. in Ω.

Since Φ∗
t ◦Φt(y) = y for a.e. y and thus for α0-a.e. y ∈ R3, and ∇P0#1|Ω = α0, then

Φ∗
t ◦Φt ◦ ∇P0(x) = ∇P0(x) for a.e. x ∈ Ω. Thus F ∗

t ◦ Ft(x) = ∇P ∗
0 ◦ ∇P0(x) = x for

a.e. x ∈ Ω.
By a similar argument, Ft ◦ F ∗

t (x) = x for a.e. x ∈ Ω.
Finally we show property (iv) of Definition 2.5.
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Proposition 2.21. Equality (2.38) holds for any φ ∈ C1
c ((0, T )×Ω,R3). More-

over, possibly after modifying Z(t, x) on a negligible subset of (0, T ) × Ω, we have
Z(·, x) ∈ W 1,∞([0, T );R3) for a.e. x ∈ Ω, and (2.44) holds.

Proof. From the definition of the Lagrangian flow Φ, i.e., properties (i)–(iii) of
Lemma 2.11, for a.e. X ∈ R3 and every t ∈ [0, T )

Φ(t,X) = X +

∫ t

0

Ũ(s,Φs(X))ds.

Thus the above equality holds for all X ∈ R3\N , where |N | = 0. Since ∇P0#χΩ = α0

and α0 ∈ Lq(R3), it follows that
∣∣(∇P0)

−1(N) ∩ Ω
∣∣ =

∫
N
α0(z)dz = 0. Thus for a.e.

x ∈ Ω and every t ∈ [0, T )

Φ(t,∇P0(x)) = ∇P0(x) +

∫ t

0

U(s,Φs(∇P0(x)))ds,(2.79)

where we replaced Ũ(s,Φs(∇P0(x))) by U(s,Φs(∇P0(x))) based on (2.55), (2.56).
Multiplying the last equality by ∂tη(t, x), where η ∈ C1

c ([0, T )×R3), and integrating
we get

∫
[0,T )×Ω

∂tη(t, x)Φ(t,∇P0(x))dtdx =

∫
[0,T )×Ω

∂tη(t, x)∇P0(x)dtdx

+

∫
[0,T )×Ω

∂tη(t, x)

∫ t

0

U(s,Φs(∇P0(x)))dsdtdx.

Note that η(T, x) ≡ 0. In the right-hand side, we perform the integration with respect
to t in the first integral, and integrate by parts with respect to t in the second integral,
to get

∫
[0,T )×Ω

∂tη(t, x)Φ(t,∇P0(x))dtdx = −
∫

Ω

η(0, x)∇P0(x)dx

−
∫

[0,T )×Ω

η(t, x)U(t,Φt(∇P0(x)))dtdx.(2.80)

Now we compute using (2.7), (2.72), and Lemma 2.19

U(t,Φt(∇P0(x))) = J [Φt(∇P0(x)) −∇P ∗
t (Φt(∇P0(x)))] = J [Z(t, x) − F (t, x)]

for a.e. (t, x). Substituting this into the right-hand side of (2.80) and using Lemma
2.19 to replace Φ(t,∇P0(x)) by Z(t, x) in the left-hand side of (2.80), we obtain (2.38).

Finally, Z(·, x) ∈ W 1,∞([0, T );R3) for a.e. x ∈ Ω (possibly after modifying Z(t, x)
on a negligible subset of (0, T )×Ω) follows from Lemmas 2.19 and 2.11(i). Then (2.79)
and Lemma 2.19 imply (2.44).

Now the properties of P in Theorem 2.3, and the properties of (F, P ) proved in
Propositions 2.16, 2.17, 2.18, 2.20, and 2.21 imply Theorem 2.9.

3. Lagrangian solutions of 2-dimensional semigeostrophic shallow wa-
ter equations in physical space.
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3.1. Model formulation and background. In this section we extend the ap-
proach of the previous section to the model considered by Cullen and Gangbo in [5].
They study a shallow water approximation to the following free boundary problem
for the system (2.1) in an evolving region D(t): the free boundary condition is

u · ν = normal speed of the boundary on ∂
[
∪t∈[0,T ){t} × D(t)

]
,(3.1)

and the initial conditions are

D(0) = D0,
p(0, x) = p0(x) in Ω,

(3.2)

where D0, p0(x) are a given set and function, respectively. In [5], problem (2.1), (3.1),
(3.2) is considered in the following shallow water approximation.

The fluid is contained within a region Ω of (x1, x2)-plane but the height h(t, x1, x2)
above the reference level is unknown and can evolve in time:

D(t) = {(x1, x2, x3) ∈ R3 | (x1, x2) ∈ Ω, 0 ≤ x3 ≤ h(t, x1, x2)}.(3.3)

The pressure on the top boundary of the fluid is a given constant p0, and

p(t, x1, x2, x3) = [h(t, x1, x2) − x3] + p0.(3.4)

The horizontal components of velocity are independent of x3.
Then the problem (2.1), (3.1), (3.2) in an evolving 3-d domain can be rewritten

as a problem in the 2-d domain Ω, for the unknown height function h(t, x) defined
on [0, T ) × Ω, and horizontal components of velocity v = (v1, v2). As noted by [5], it
is possible for h to become zero on part of Ω. We set v = 0 in such regions. Then
the problem (2.1), (3.1), (3.2) in the shallow water approximation (3.3)–(3.4) can be
written as the following problem for h(t, x) and v = (v1, v2) defined on [0, T )×Ω and
v = (v1, v2) defined in Ω:

DtX = J(X − x) in [0, T ) × Ω,(3.5)

∂th + div (hv) = 0 in [0, T ) × Ω,(3.6)

X = ∇P, where P (t, x1, x2) = h(t, x1, x2) +
1

2
(x2

1 + x2
2),(3.7)

Dt = ∂t + v · ∇, ∇ = (∂x1
, ∂x2),(3.8)

v · ν = 0 on [0, T ) × ∂Ω,(3.9)

h(0, x) = h0(x) in Ω.(3.10)

Here J ≡ J2 = ( 0
1
−1
0 ). Note that (3.6) corresponds to the condition (3.1) on the

surface {(x1, x2, x3) | h(x1, x2) > 0, x3 = h(x1, x2)}, which is the top of the fluid.
The Cullen–Purser stability condition implies that the function x → P (t, x) is

convex in Ω for any t, where P (t, x) is defined in (3.7). Thus the initial height
function h0(x) must satisfy

h0 +
1

2
|x|2 is convex in Ω.

Cullen and Gangbo in [5] rewrite the system (3.5)–(3.10) in dual variables (t,X):

∂tα + ∇ · (Uα) = 0 in [0, T ) × R2,(3.11)
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∇Pt#ht = αt for any t ∈ [0, T ),(3.12)

U(t,X) = J2(X −∇P ∗(t,X)) in [0, T ) × R2,(3.13)

P ∗(t,X) = sup
x∈Ω

(x ·X − P (t, x)) for (t,X) ∈ [0, T ) × R2,(3.14)

α0(X) is prescribed on R2.(3.15)

Cullen and Gangbo in [5] prove existence of a weak solution of system (3.11)–
(3.15). The precise statement of their result is Theorem 2.3 with the following changes:
R3 replaced by R2; DP0#χΩ replaced by DP0#h0 in (2.13); and (2.5)–(2.8) replaced
by (3.11)–(3.15) in the assertion Theorem 2.3(v), where h(t, x) = P (t, x) − 1

2 |x|2.
In this section we study the shallow water semigeostrophic model (3.5)–(3.10) in

physical space. The unknown functions in this problem are the (modified) pressure P
and the velocity v. The Eulerian formulation of weak solutions is obtained from the
following argument. The Eulerian form of (3.5) is

∂tX + v · ∇X = J(X − x).(3.16)

Multiplying (3.16) by h and adding (3.5) multiplied by X, we get

∂t(hX) +

2∑
j=1

∂xj (hvjX) = hJ(X − x).

Thus we have the following.
Definition 3.1. Let v : [0, T ) × Ω → R2 and P : [0, T ) × Ω → R1 satisfy

v ∈ L1([0, T )×Ω,R2), ∇P ∈ L∞([0, T )×Ω)∩C([0, T );L1(Ω)), and P (t, ·) is convex
in Ω for every t ∈ [0,∞). Let h(t, x) = P (t, x) − 1

2 |x|2. The pair (v, P ) is a weak
Eulerian solution of (3.5)–(3.10) if∫

(0,T )×Ω

{∇P (t, x) · [∂tφ(t, x) + (v(t, x) · ∇)φ(t, x)]

+J [∇P (t, x) − x] · φ(t, x)}h(t, x)dtdx

+

∫
Ω

[∇h0(x) + x] · φ(0, x)h0(x)dx = 0

(3.17)

for any φ ∈ C1
c ([0, T ) × Ω;R2) and∫

[0,T )×Ω

[∂tψ(t, x) + v(t, x) · ∇ψ(t, x)]hdtdx +

∫
Ω

ψ(0, x)h0(x)dx = 0(3.18)

for any ψ ∈ C1
c ([0, T ) × Ω).

Remark 3.2.

• Equality (3.17) is a weak form of (3.5). In the second integral in the left-hand
side of (3.17), we used the fact that P0(x) = h0(x) + 1

2 |x|2.
• Equality (3.18) is a weak form of (3.6) with the boundary condition (3.9) and

initial condition (3.10).
Remark 3.3. Equality (3.17) of Definition 3.1 essentially requires the evolution

equation (3.5) to hold only in the fluid region D = {(t, x) ∈ [0, T ) × Ω | h(t, x) > 0}.
This is natural since, physically, the evolution is defined only in D.

As in the case of the incompressible model (2.3), we can find P by solving the
problem (3.11)–(3.15) in the dual coordinates, and v then is expressed by (2.12), but
regularity of this solution is not sufficient to show that such v, P satisfy (3.5) in the
Eulerian sense. Thus we define a Lagrangian solution.
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3.2. Lagrangian solutions for shallow water model in physical space.
Similar to section 2.2, we rewrite (3.5)–(3.10) in terms of (F, P ), where F : [0, T ] ×
Ω → Ω is a (formal) Lagrangian flow corresponding to the full wind velocity v =
(v1, v2), and then we define the corresponding weak solution F, P . The difference is
now that the vector field v is not divergence-free, but instead the transport equation
∂th+div (hv) = 0 holds. Since F is a Lagrangian flow of v, solutions h of this transport
equation satisfy Ft#h0 = ht for any t ∈ (0, T ). This property in the present replaces
the Lebesgue-measure-preserving property of F in section 2.2.

Then we come to the following.
Definition 3.4. Let Ω ⊂ R2 be an open set, and let T > 0. Let P0(x) be a convex

bounded function in Ω such that h0(x) = P0(x) − 1
2 |x|2 ≥ 0 in Ω. Let r ∈ [1,∞). Let

P : [0, T ) × Ω → R1 satisfy

P ∈ L∞([0, T );W 1,∞(Ω)) ∩ C([0, T );W 1,r(Ω)),(3.19)

P (t, ·) is convex in Ω for each t ∈ [0, T ).(3.20)

Let h(t, x) = P (t, x) − 1
2 |x|2. Let F : [0, T ) × Ω → Ω be a Borel map satisfying

F ∈ C([0, T );Lr(Ω, h0dx)).(3.21)

Then the pair (P, F ) is called a weak Lagrangian solution of (3.5)–(3.10) in [0, T )×Ω
if (P, F ) has the following properties:

i. F (0, x) = x for h0L2-a.e. x ∈ Ω, and P (0, x) = P0(x) for a.e. x ∈ Ω.
ii. For any t ∈ [0, T ] the mapping Ft = F (t, ·) : Ω → Ω satisfies Ft#h0 = ht.
iii. There exists a Borel map F ∗ : [0, T ) × Ω → Ω such that for every t ∈ (0, T )

the map F ∗
t = F ∗(t, ·) : Ω → Ω satisfies F ∗

t #ht = h0, F ∗
t ◦ Ft(x) = x for

h0L2-a.e. x ∈ Ω, and Ft ◦ F ∗
t (x) = x for htL2-a.e. x ∈ Ω.

iv. The function

Z(t, x) = ∇P (t, F (t, x))(3.22)

is a weak solution of

∂tZ(t, x) = J [Z(t, x) − F (t, x)] on supp h0 in (0, T ) × Ω,
Z(0, x) = ∇P0(x) on supp h0 in Ω

(3.23)

in the following sense: for any φ ∈ C1
c ([0, T ) × Ω;R2)∫

(0,T )×Ω

[Z(t, x) · ∂tφ(t, x)

+J(Z(t, x) − F (t, x))φ(t, x)]h0(x)dtdx

+

∫
Ω

∇P0(x) · φ(0, x)h0(x)dx = 0.

(3.24)

Remark 3.5. Remark 2.6, with obvious modifications, applies to the present
case. In particular, continuity in time of P, F in (3.19), (3.21), combined with initial
conditions in Definition 3.4(i), imply that

lim
t→0+

∫
Ω

|Ft(x) − x|rh0(x)dx = 0,

lim
t→0+

‖Pt − P0‖W 1,r(Ω) = 0, lim
t→0+

‖ht − h0‖W 1,r(Ω) = 0,
(3.25)
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where r ∈ [1,∞) is from (3.19), (3.21).
Remark 3.6 (semigroup property). Similar to Remark 2.7, weak Lagrangian

solution in Definition 3.4 satisfies the semigroup property: for any t1, t2, t3 ≥ 0 (2.40)
holds for ht3dx a.e. x ∈ Ω, where F(ti,tj) = Fti ◦F ∗

tj . The proof is based on properties
of Ft, F

∗
t in Definition 3.4(ii) and (iii), and the argument is similar to the one in

Remark 2.7.
Remark 3.7. In Definition 3.4 we essentially consider the flow mapping Ft and its

inverse F ∗
t only in the fluid region D = {(t, x) ∈ [0, T )×Ω | h(t, x) > 0}. That is, for

any t ∈ [0, T ), Definition 3.4 does not contain any conditions for the map Ft away from
D(0) = {x ∈ Ω | h0(x) > 0} or for the map F ∗

t away from D(t) = {x ∈ Ω | ht(x) > 0}.
This is natural since, physically, the evolution is defined only in D. A similar feature
of weak Eulerian solutions is discussed in Remark 3.3. In particular, we can define
F and F ∗ arbitrarily outside the domains [0, T ) ×D0 and D, respectively. Note also
that the set Ω \ D(t) is htL2-negligible for each t; thus Definition 3.4 determines the
maps Ft and F ∗

t almost everywhere with respect to the measures h0L2 and htL2,
respectively.

We now justify Definition 3.4 by showing that a smooth Lagrangian solution
(F, P ) with additional regularity property ∂tF ∈ L∞([0, T ) × Ω) determines a weak
Eulerian solution of (3.5)–(3.10).

Lemma 3.8 (consistency of weak solutions for shallow water model). Let Ω ⊂ R2

be an open bounded set and T > 0. Let (F, P ) be a weak Lagrangian solution of (3.5)–
(3.10) in [0, T ) × Ω satisfying ∂tF ∈ L∞([0, T ) × Ω;R2). Then the function

v(t, x) :=
∂F

∂t
(t, F ∗

t (x)) for (t, x) ∈ [0, T ) × Ω(3.26)

satisfies v ∈ L∞([0, T )×Ω;R2), and (v, P ) is a weak Eulerian solution of (3.5)–(3.10)
in the sense of Definition 3.1.

Proof. The proof is similar to the proof of Lemma 2.8(i). Thus we only sketch
the argument and emphasize the structural differences between the models (2.3) and
(3.5)–(3.10).

We show (3.18). Fix t ∈ [0, T ). Since Ft#h0 = ht, then for each ψ ∈ C1
c ([0, T )×Ω)∫

Ω

(∂tψ)(t, Ft(x))h0(x)dx =

∫
Ω

∂tψ(t, x)h(t, x)dx.

Integrating with respect to t and using ∂tF ∈ L∞([0, T ) × Ω), we get∫
[0,T )×Ω

{∂t[ψ(t, Ft(x))h0(x)] − ∂tFt(x) · (∇ψ)(t, Ft(x))h0(x)} dtdx

=

∫
[0,T )×Ω

∂tψ(t, x)h(t, x)dtdx.

Since ψ(T, x) ≡ 0 and F (0, x) = x for all x ∈ Ω and using that h ∈ C([0, T );W 1,r(Ω))
by (3.25), we get

−
∫

Ω

∂tψ(0, x)h0(x)dx−
∫

[0,T ]×Ω

∂tF (t, x) · (∇ψ)(t, Ft(x))h0(x)dtdx

=

∫
[0,T )×Ω

∂tψ(t, x)h(t, x)dtdx.
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Now, changing variables y = Ft(x) in the second integral in the left-hand side using
Ft#h0 = ht, we rewrite this integral as

∫
[0,T ]×Ω

(∂tF )(t, F ∗
t (x)) · ∇ψ(t, x)h(t, x)dtdx.

Recalling the definition (3.26) of v, we get (3.18).
To show (3.17), we change variables y = Ft(x) in (3.24), and using Ft#h0 = ht

get ∫
(0,T )×Ω

[∇P (t, y) · ∂tφ(t, F ∗
t (y)) + J(∇P (t, y) − y)φ(t, F ∗

t (y))]h(t, y)dtdy

+
∫
Ω
∇P0(x) · φ(0, x)h0(x)dx = 0,

for all φ ∈ C1
c ([0, T )×Ω;R2). Now, similar to the proof of Lemma 2.8(i), we show that

this equality holds for all φ of the form ϕ(t, x) = η(t, Ft(x)), where η ∈ C1
c ([0, T )×Ω),

and this, with use of the property in Definition 3.4(iii), implies (3.17).
The main result of this section is the following.
Theorem 3.9. Let Ω ⊂ R2 be an open bounded set and Ω ⊂ B, where B is

an open ball B(0, S). Let h0(x) ≥ 0 be such that P0(x) = h0(x) + 1
2 |x|2 is a convex

bounded function in B and that

DP0#h0 ∈ Lq(∇P0(Ω)) for some q > 1.(3.27)

Then for any T > 0 there exists a weak Lagrangian solution (P, F ) of (3.5)–(3.10)
in [0, T ) × Ω, where the properties stated in (3.19) are satisfied for any r ∈ [1,∞).
Moreover, the function Z(t, x) defined by (3.22) satisfies Z(·, x) ∈ W 1,∞([0, T );R2)
for h0L2-a.e. x ∈ Ω, and (3.23) is satisfied, in addition to the weak form (3.24), in
the following sense:

∂tZ(t, x) = J(Z(t, x) − F (t, x)) for h0L2 × L1-a.e. in (t, x) ∈,
Z(0, x) = ∇P0(x) for h0L2-a.e. in x ∈ Ω.

(3.28)

The proof of this theorem follows closely the proof of Theorem 2.9. Indeed,
since in the present case we have U ∈ BV (R2) and divU(t, ·) = 0 in the sense of
distributions by (3.13), we can repeat the argument of section 2.3 to define Lagrangian
flow Φt : R2 → R2 in the dual space, with the same properties as Φt in section 2.3.
Then we define Ft : Ω → Ω by (2.72) and repeat the argument of section 2.4 with
some obvious changes which come from the fact that the property ∇Pt#χΩ = αt is
now replaced by ∇Pt#ht = αt.

Appendix A. Some properties of measure-preserving maps.
Definition A.1. Let Ψ : Rm → Rn be a Borel map.

i. Let μ, ν be Radon measures on Rm and Rn, respectively. The map Ψ pushes
μ forward to ν, denoted Ψ#μ = ν, if μ[Ψ−1(A)] = ν[A] for all Borel A ⊂ Rm.

ii. Let f ∈ L1(Rm) and g ∈ L1(Rn). The map Ψ pushes f forward to g, denoted
Ψ#f = g, if Ψ pushes the measure fLm forward to gLn.

Lemma A.2. Let Ψ : Rm → Rn be a Borel map. Let μ, ν be Radon measures on
Rm and Rn, respectively. Then ν = Ψ#μ if and only if∫

Rm

φ(Ψ(x))dμ(x) =

∫
Rn

φ(y)dν(y)

for all ν-integrable functions φ on Rn.
Proof. Since every ν-measurable function φ on Rn can be represented as

f =
∞∑
k=1

1

k
χAk
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for some ν-measurable sets Ak in Rn [9, sect. 1.1.2, Thm. 7], and since μ and ν are
Radon measures, Lemma A.2 follows directly from Definition A.1.

Corollary A.3. Let Ψ, μ, ν be as in Lemma A.2. Assume also that ν = gLn,
where g ∈ L1(Rn). If ν = Ψ#μ, then∫

Rm

φ(Ψ(x))dμ(x) =

∫
Rn

φ(y)g(y)dy for all φ ∈ L∞(Rn).(A.1)

In particular, if f ∈ L1(Rm), g ∈ L1(Rn), and Ψ#f = g, then∫
Rm

φ(Ψ(x))f(x)dx =

∫
Rn

φ(y)g(y)dy for all φ ∈ L∞(Rn).(A.2)

Proof. If ν = gLn, where g ∈ L1(Rn), then every φ ∈ L∞(Rn) is ν-integrable.
Now we apply Lemma A.2 to get (A.1). Finally, (A.2) follows from (A.1).

Note added in proof. After this paper was accepted for publication, we were
informed by Helena Nussenzveig Lopes that, by combining the techniques of this paper
with the ones of Lopes Filho and Nussenzveig Lopes [12], the results of Theorems 2.9
and 3.9 can be extended to the case q = 1.
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Abstract. We consider singular perturbed functionals with a nonlocal term which are a one-
dimensional model for an austenite/twinned martensite interface. The parameter range is chosen in
a way that a limit functional can be derived. By examining the limit problem, we show the existence
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1. Introduction. Mathematical models for phase transitions often lead to vari-
ational problems involving nonlocal terms. Examples are given by phase separation in
two-phase fluids (cf. [2], [3]) and the formation of diblock copolymer (cf. [20], [19], [21],
[22], [23]). Nonlocal terms also appear in models for microstructure in solid-to-solid
phase transitions.

In martensitic transformations, the phenomenon of twinning can occur. Hereby,
a homogeneous phase called austenite is separated from a family of thin lamellae
called twinned martensite. A nonlinear theory based on energy minimization has been
established by Ball and James (cf. [5], [6]). In [12], Kohn and Müller have introduced
a two-dimensional nonlocal model for an austenite/twinned martensite interface and
discussed mathematical properties in [13]. Restriction of the model to the common
boundary of the phases delivers a one-dimensional problem (cf. [4]), which is given by
the functionals

Jε(u) =

∫ 1

−1

ε2(u′′)2 + W (u′)dy + σ‖u‖2
H1/2(1.1)

with parameters ε > 0 and σ > 0, where

u ∈ H2,0
per(−1, 1) = H2(−1, 1) ∩ {u(−1) = u(1), u′(−1) = u′(1)} ∩

{∫ 1

−1

u = 0

}
.

Hereby, W is a smooth double-well potential with W (v) ≥ 0 and W (v) = 0 if and
only if v = −1 or v = 1. We assume that W has at least quadratic growth at infinity;
i.e., there exist k > 0, v0 > 0 with W (v) ≥ k|v|2 for every v ≥ v0. The H1/2-norm is
given by

‖u‖2
H1/2 = 2π

∞∑
k=−∞

|k||uk|2 =

∫ 1

−1

∫ 1

−1

g(x− y)(u(x) − u(y))2dxdy,
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2005; published electronically January 10, 2006. This article provides an overview of the author’s
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where uk are the Fourier coefficients of u, and g(t) = π
4(1−cos(πt)) (cf. [4], [13]). The

W -term is the elastic energy in the martensite, while ‖u‖2
H1/2 , which is a nonlocal

term, is derived from the energy in the austenite in the two-dimensional model by
restriction to the interface. The variable u models the deformation of the material
at the interface. The second-order singular perturbation term describes the surface
energy and mathematically has the meaning of selecting certain “regular” minimizing
sequences for the unperturbed functional J0. It is easy to see that J0 has no minimizer
in H1(−1, 1) and that any sequence of functions (un) with u′

n = ±1 on (−1, 1) and
un → 0 is a minimizing sequence. The perturbed functionals, however, do have
minimizers due to convexity in the highest derivative (cf. [7, Chapter 3, Theorem
4.1]) and one is interested in the asymptotic behavior of the minimizers for ε → 0.

Functionals similar to (1.1) have been studied in the literature but with a simpler
right-hand term. In the parameter range σ ∼ 1, and with ‖ · ‖2

H1/2 replaced by ‖ · ‖2
L2 ,

Müller has shown in [18] that for small ε, the minimizers uε of Jε are periodic with
period P ε ∼ ε1/3 and that intervals where u′

ε ≈ 1 and u′
ε ≈ −1 are separated by

transition layers of size ∼ ε where u′
ε switches between these two values. In [4], where

a new rescaling technique involving the Young measure on micropatterns has been
introduced to characterize the minimizers of this problem, it has been conjectured
that a similar result holds for the problem with the H1/2-norm. More precisely, it
is expected that the minimizers of (1.1) are close to periodic functions with period
P ε ∼ ε1/2 if ε is sufficiently small. However, the characterization of global minimizers
turns out to be very difficult due to the nonlocal structure of ‖u‖2

H1/2 .
In this work, we examine a simpler but general nonlocal term whose kernel g

is bounded and has no singularities but possesses the same symmetry and period-
icity properties as the function g defined above. Following Ren and Wei (cf. [21]),
we consider the parameter range σ = ε rather than σ = 1. Physically, this has an
interpretation related to the size of the sample (see [23]). Mathematically, it has the
advantage that we can easily derive a limit functional via the Modica–Mortola theo-
rem. Otherwise, the rescaling method introduced by Alberti and Müller [4] becomes
necessary. The aim is to show a result similar to [21]. In that work, Ren and Wei
have identified near-periodic local minimizers of functionals which in the special case
where m = 0 (the parameter m being the average of u) can be written in the form
(1.1) with σ = ε but with ‖ · ‖H1/2 replaced by ‖ · ‖L2 . We consider

Iε(u) =

∫ 1

−1

ε(u′′)2 +
1

ε
W (u′)dy + E(u)(1.2)

for ε > 0, where u ∈ H2,0
per(−1, 1) and

E(u) =

∫ 1

−1

∫ 1

−1

g(x− y)(u(x) − u(y))2dxdy

with a kernel g : R → R that satisfies the following conditions:
(g1) g(x + 2) = g(x) for every x ∈ R.
(g2) g(x) = g(−x) for every x ∈ R.
(g3) 0 < g0 ≤ g(x) ≤ g1 for every x ∈ R.
(g4) g

∣∣
[0,1]

∈ C3[0, 1].

(g5) g′(1) = 0.
In particular, g is Lipschitz continuous on R. For examples, see Figure 1.1. W is
a potential as described above, the most common example being given by W (v) =
(v2 − 1)2. The main result of the paper is the following.
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g

−2 −1 0 1 2

g

−2 −1 0 1 2

Fig. 1.1. Examples of the kernel g.

Theorem 1.1. For ε > 0, let Iε be as defined by (1.2). Then there exists N0 ∈ N

such that for every even N ≥ N0, we find ε0 > 0 and δ > 0 satisfying the following
condition:

For every ε ∈ (0, ε0), there is a local minimizer uε ∈ H2,0
per(−1, 1) of Iε with respect

to the H1(−1, 1)-norm such that

Iε(uε) ≤ Iε(u) for every u ∈ H2,0
per(−1, 1) with ‖u− ūN‖H1(−1,1) < δ

and

lim
ε→0

‖uε − ūN‖H1(−1,1) = 0,

where ūN is a sawtooth function with N equidistant corners. More precisely, ūN is

the unique function in H1(−1, 1) satisfying
∫ 1

−1
ūN (x)dx = 0 and

ū′
N (x) = (−1)i−1 for x ∈

(
−1 +

2

N
(i− 1),−1 +

2

N
i

)
, i = 1, . . . , N.

Remarks.
(a) The theorem states that if ε > 0 is chosen sufficiently small, the functionals

Iε have strongly oscillating local minimizers close to a sawtooth function
with equidistant corners (see Figure 1.2). Near the corners of ūN , the local
minimizers uε have transition layers where u′

ε switches between −1 and 1 (see
Figure 1.3).

(b) Since we consider periodic functions, only the case where N is even makes
sense.

(c) To some extent, this theorem generalizes Theorem 1.1 in [21], since the func-
tionals considered there can, in the case where m = 0, be written in the form
(1.2) with g = 1. However, Ren and Wei found necessary conditions for crit-
ical points and thus identified local minimizers with an arbitrary number N

−1 1

ūN

Fig. 1.2. The function ūN for N = 12.

uε

Fig. 1.3. Near-periodic local minimizer uε resembling ūN .
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of transition layers, which we cannot do here due to the very general nonlocal
term E in (1.2). One has to let N → ∞ to gain information, so that we are
only able to characterize local minimizers with a sufficiently large number of
oscillations.

Unfortunately, it was not possible to include all steps of the proof in this paper,
since some of them are very long and technical. The complete proof is found in [24],
which we cite whenever it is necessary. In this paper, we often make use of generic
constants C whose value may change during estimations. Also, we sometimes make
use of the 2-periodicity of functions and identify them with their periodical extensions
to R, so the integration domain may change from (−1, 1) to (0, 2), for example. a∨ b
denotes the maximum of two real numbers a and b, while a ∧ b is their minimum.
C∞

0 (a, b) is the space of C∞-functions with compact support in (a, b). For a set
I ⊂ R, χI denotes the characteristic function of I.

2. The Γ-limit of Iε. The Γ-limit of the functionals Iε is easily obtained via the
Modica–Mortola theorem, which is found in [15], [16], [17] in its original form, while
Alberti [1] gives an alternative proof. Although we consider periodic functions and use
the L2-topology rather than L1, the proof can be easily transferred to the functionals
Iε, and only minor modifications are required (for details, see [24, Chapter 3], where
Alberti’s proof is transferred to this case). For a general theory on Γ-convergence, we
refer the reader to [8]. We define the Hilbert space

Y = H1,0
per(−1, 1) =

{
u ∈ H1(−1, 1) |u(−1) = u(1),

∫ 1

−1

u(x)dx = 0

}
,

equipped with the usual H1-norm. We define the set of sawtooth functions with slope
−1 and 1 only by

S(−1, 1) = {u : [−1, 1] → R |u′ ∈ BV ((−1, 1), {−1, 1})}(2.1)

and the set of periodic sawtooth functions with average zero by

S0
per(−1, 1) =

{
u ∈ S(−1, 1) |u(−1) = u(1),

∫ 1

−1

u(x)dx = 0

}
.(2.2)

We extend the functionals Iε to Y by

Iε(u) =

⎧⎨
⎩

∫ 1

−1

ε(u′′)2 +
1

ε
W (u′)dx + E(u) for u ∈ H2,0

per(−1, 1),

+∞ for u ∈ Y \H2,0
per(−1, 1)

(2.3)

and define I : Y → [0,∞] by

I(u) =

⎧⎨
⎩

A0#(Su′ ∩ [−1, 1)) + E(u) for u ∈ S0
per(−1, 1),

+∞ for u ∈ Y \ S0
per(−1, 1),

(2.4)

where

A0 = 2

∫ 1

−1

√
W (v)dv

and the term #(Su′∩ [−1, 1)) counts the corners of u (i.e., the discontinuity points of
u′) on [−1, 1), which means that if the periodic extension of u has a corner at −1 (and
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thus at 1), this corner is counted once. The Modica–Mortola theorem yields that the
integral in (2.3) Γ-converges to the counting term in (2.4). Since the nonlocal energy
E is L2-continuous (see Lemma 4.2 in [24]), this implies (cf. [8] or Proposition 2.11
(iv) in [4]) the following theorem.

Theorem 2.1.

(i) Let (uε)ε>0 ⊂ H2,0
per(−1, 1), u ∈ Y , such that ‖uε − u‖H1(−1,1) → 0 for ε → 0.

Then

I(u) ≤ lim inf
ε→0

Iε(uε).

(ii) For every u ∈ S0
per(−1, 1), we find a sequence (uε)ε>0 ⊂ H2,0

per(−1, 1) such
that ‖uε − u‖H1(−1,1) → 0 for ε → 0 and

lim sup
ε→0

Iε(uε) ≤ I(u).

In particular, Iε
Γ→ I in Y .

The connection between local minimizers of singularly perturbed functionals and
those of the Γ-limit has been studied by De Giorgi (cf. section 3 in [10]), Kohn and
Sternberg (cf. Theorem 4.1 in [14]), and Ren and Wei (cf. Proposition 2.3 in [21]).
However, these results assume that the Γ-limit I has an isolated local minimizer u,
which cannot hold in this case due to the translation invariance of I. By considering
orbits of functions rather than the functions themselves, one can transfer the proof of
Proposition 2.3 in [21] to this case to obtain the theorem below (for details see [24,
Chapter 4]). For u ∈ Y , we also denote by u the periodic extension of u to R. Then,
obviously, u ∈ H1

loc(R). For τ ∈ R, we define the τ -translation Tτu : R → R by

Tτu(x) = u(x− τ) for every x ∈ R,

and the orbit of u is defined as the set

O(u) = {Tτu | τ ∈ R}

of all translations of u. Then the following holds.
Theorem 2.2. Let ū ∈ S0

per(−1, 1). Assume that there exists a δ > 0 such that
for every u ∈ S0

per(−1, 1) with ‖u− ū‖H1(−1,1) < δ and u /∈ O(ū) we have

I(u) > I(ū).

Then there exists ε0 > 0 such that for every ε ∈ (0, ε0) we find uε ∈ H2,0
per(−1, 1) with

‖uε − ū‖H1(−1,1) <
δ
2 and

Iε(uε) ≤ Iε(u) for every u ∈ H2,0
per(−1, 1) satisfying ‖u− ū‖H1(−1,1) <

δ

2
.

Furthermore,

lim
ε→0

‖uε − ū‖H1(−1,1) = 0.

In particular, for every ε ∈ (0, ε0), uε is an H1-local minimizer of Iε in H2,0
per(−1, 1).

Thus, Theorem 1.1 follows if we can show that for large N , the regular sawtooth
function ūN is a strict local minimizer of I on S0

per(−1, 1) “up to translation” in the
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sense of the condition in Theorem 2.2. Since I is a sum of a counting term and
the nonlocal energy E, it is sufficient to identify ūN (N large) as a strict H1-local
minimizer of E (up to translation) in the set of all u ∈ S0

per(−1, 1) with N corners

on [−1, 1), since—roughly speaking—a sufficiently small H1-ball around ūN can only
contain such sawtooth functions which have at least N corners. A larger number of
corners, however, would increase I by an integer, so that functions with more than N
corners need not be considered.

3. Perturbation of periodic sawtooth functions. In order to show that for
large N the sawtooth function ūN with N equidistant corners is a local minimizer of
the nonlocal energy E on the set of all u ∈ S0

per(−1, 1) with #(Su′ ∩ [−1, 1)) = N , we
consider all possible perturbations of ūN in this set. The periodicity will be dropped
for the moment, and we consider E as a functional on S(−1, 1). The corners of ūN

are given by

ti = −1 +
2

N
i for i = 0, . . . , N,(3.1)

and we have

ū′
N (x) = (−1)i−1 for x ∈ (ti−1, ti)

for i = 1, . . . , N . Let r = (r1, . . . , rN−1) ∈ R
N−1 be an arbitrary vector, and set

r0 = rN = 0. For δ ∈ (−δ0, δ0), we define the shifted corners by

t
(δ)
i = ti + riδ for i = 0, . . . , N,(3.2)

where δ0 > 0 is chosen such that for every δ ∈ (−δ0, δ0), the monotonicity

−1 = t
(δ)
0 < t

(δ)
1 < · · · < t

(δ)
N−1 < t

(δ)
N = 1(3.3)

still holds. For every δ ∈ (−δ0, δ0), we define uδ ∈ S(−1, 1) as the unique function
satisfying {

uδ(−1) = ūN (−1) = − 1
N ,

u′
δ(x) = (−1)i−1 for x ∈ (t

(δ)
i−1, t

(δ)
i ), i = 1, . . . , N

(3.4)

(see Figure 3.1).
We define the function Fr : (−δ0, δ0) → R by

Fr(δ) = E(uδ)(3.5)

for every δ ∈ (−δ0, δ0). Clearly, we have u0 = ūN , and thus Fr(0) = E(ūN ).

tN = 1

−1 = t0

ūN

uδ

t1 t
(δ)
1 t3 = t

(δ)
3

t4t
(δ)
4

t
(δ)
5 t5

Fig. 3.1. Example of a perturbation uδ of ūN with r3 = 0; case N = 6.
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Remarks.
(i) Since the corner at −1 is fixed, this definition does not cover all possible per-

turbations of ūN but indeed all relevant ones, which is due to the translation
invariance of I.

(ii) To avoid ugly notation, we drop the dependence of uδ on r.
(iii) The zero average condition

∫
u = 0 can be ignored due to the invariance of

the functionals under the addition of constants.
We introduce a bilinear form by

(u, v)g =

∫ 1

−1

∫ 1

−1

g(x− y)(u(x) − u(y))(v(x) − v(y))dxdy.(3.6)

Since we want to show that ūN is a local minimizer of E in the sense described above,
we have to consider derivatives of Fr. To compute F ′

r, we need the following technical
lemma.

Lemma 3.1. With the above definitions, let δ ∈ (−δ0, δ0). Then for a.e. x ∈
(−1, 1), we have

lim
ε→0

1

ε
(uδ+ε(x) − uδ(x)) = 2

N∑
i=1

i−1∑
j=1

(−1)j−1rjχ(t
(δ)
i−1,t

(δ)
i )

(x),(3.7)

lim
ε→0

(uδ+ε(x) − uδ(x)) = 0.

Furthermore, |uδ(x)|, |uδ+ε(x)|, | 1ε (uδ+ε(x) − uδ(x))| ≤ C with C independent of δ,
ε, x (but dependent on r).

Proof. For fixed δ ∈ (−δ0, δ0), choose ε0 > 0 such that (δ− ε0, δ+ ε0) ⊂ (−δ0, δ0)

and t
(δ+ε)
i−1 ∨ t

(δ)
i−1 < t

(δ+ε)
i ∧ t

(δ)
i for every ε ∈ (−ε0, ε0) and i ∈ {1, . . . , N}. Then,

according to (3.4), we have

(u′
δ+ε − u′

δ)(x) = 0 for x ∈ (t
(δ)
i−1, t

(δ)
i ) ∩ (t

(δ+ε)
i−1 , t

(δ+ε)
i ) = (t

(δ+ε)
i−1 ∨ t

(δ)
i−1, t

(δ+ε)
i ∧ t

(δ)
i )

for i = 1, . . . , N . Thus, up to a finite subset of [−1, 1], (u′
δ+ε − u′

δ)(x) �= 0 can

only hold if x ∈ (t
(δ+ε)
i ∧ t

(δ)
i , t

(δ+ε)
i ∨ t

(δ)
i ) for an i ∈ {1, . . . , N − 1}. Consider a

fixed x ∈ (t
(δ)
i−1, t

(δ)
i ), i ∈ {1, . . . , N}. Then x ∈ (t

(δ+ε)
i−1 ∨ t

(δ)
i−1, t

(δ+ε)
i ∧ t

(δ)
i ) for small

ε ∈ (−ε0, ε0) since t
(δ+ε)
j → t

(δ)
j for ε → 0. Thus, using uδ(−1) = uδ+ε(−1) we obtain

uδ+ε(x) − uδ(x) =

∫ x

−1

(u′
δ+ε − u′

δ)(ξ)dξ =

i−1∑
j=1

∫ t
(δ+ε)
j ∨t

(δ)
j

t
(δ+ε)
j ∧t

(δ)
j

(u′
δ+ε − u′

δ)(ξ)dξ(3.8)

for x ∈ (t
(δ)
i−1, t

(δ)
i ) if ε is sufficiently small. Let j ∈ {1, . . . , N}. If rjε > 0, we have

t
(δ+ε)
j > t

(δ)
j , so that by (3.4) and (3.2), we get

∫ t
(δ+ε)
j ∨t

(δ)
j

t
(δ+ε)
j ∧t

(δ)
j

(u′
δ+ε − u′

δ)(ξ)dξ =

∫ t
(δ+ε)
j

t
(δ)
j

(u′
δ+ε − u′

δ)(ξ)dξ = 2(−1)j−1rjε

for ε sufficiently small since (t
(δ)
j , t

(δ+ε)
j ) ⊂ (t

(δ)
j , t

(δ)
j+1) ∩ (t

(δ+ε)
j−1 , t

(δ+ε)
j ). If rjε < 0, we

analogously show the same formula, which obviously also holds if rjε = 0. Setting
this into (3.8), we obtain

uδ+ε(x) − uδ(x) = 2ε

i−1∑
j=1

(−1)j−1rj for x ∈ (t
(δ)
i−1, t

(δ)
i ), i = 1, . . . , N,
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if ε is small, and thus

uδ+ε − uδ = 2ε

N∑
i=1

i−1∑
j=1

(−1)j−1rjχ(t
(δ)
i−1,t

(δ)
i )

for a.e. x ∈ (−1, 1) if ε is sufficiently small, which implies (3.7), while the other
conditions are obvious.

Theorem 3.2. For arbitrary r = (r1, . . . , rN−1) ∈ R
N−1, choose δ0 > 0 as

above. Then the function Fr : (−δ0, δ0) → R as defined in (3.5) is differentiable, and
for every δ ∈ (−δ0, δ0), we have

F ′
r(δ) = 4

N∑
i=1

αih
(i)
r (δ),(3.9)

where αi ∈ R, h
(i)
r : (−δ0, δ0) → R are given by

αi =

i−1∑
j=1

(−1)j−1rj , h(i)
r (δ) =

(
χ

(t
(δ)
i−1,t

(δ)
i )

, uδ

)
g

(3.10)

for i = 1, . . . , N .

Proof. Let δ ∈ (−δ0, δ0), ε0 > 0 such that (δ − ε0, δ + ε0) ⊂ (−δ0, δ0). Then for
every ε ∈ (−ε0, ε0)

Fr(δ + ε) − Fr(δ) = (uδ+ε, uδ+ε)g − (uδ, uδ)g = (uδ+ε − uδ, uδ+ε + uδ)g.(3.11)

Hence

1

ε
(Fr(δ + ε) − Fr(δ)) =

(
1

ε
(uδ+ε − uδ) , uδ+ε + uδ

)
g

,

which due to Lemma 3.1 and Lebesgue’s convergence theorem yields

lim
ε→0

1

ε
(Fr(δ + ε) − Fr(δ)) = 4

N∑
i=1

i−1∑
j=1

(−1)j−1rj

(
χ

(t
(δ)
i−1,t

(δ)
i )

, uδ

)
g
,

i.e.,

F ′
r(δ) = lim

ε→0

1

ε
(Fr(δ + ε) − Fr(δ)) = 4

N∑
i=1

αih
(i)
r (δ),

with αi ∈ R, h
(i)
r : (−δ0, δ0) → R, i = 1, . . . , N , as given in (3.10), which completes

the proof of Theorem 3.2.

As for the second derivative, we have the following result, the proof of which
is extremely technical, so that we refer the reader to Theorem 5.3 in [24], where a
detailed proof can be found.

Theorem 3.3. For arbitrary r = (r1, . . . , rN−1) ∈ R
N−1, choose δ0 > 0 as above.

Then the function Fr : (−δ0, δ0) → R as defined in (3.5) satisfies Fr ∈ C2(−δ0, δ0),
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and for every δ ∈ (−δ0, δ0), we have

F ′′
r (δ) = 8

N∑
i=1

N∑
k=1

αiαk

(
χ

(t
(δ)
k−1,t

(δ)
k )

, χ
(t

(δ)
i−1,t

(δ)
i )

)
g

+ 8

N∑
i=1

αiri

∫ 1

−1

g(t
(δ)
i − y)(uδ(t

(δ)
i ) − uδ(y))dy(3.12)

− 8

N∑
i=1

αiri−1

∫ 1

−1

g(t
(δ)
i−1 − y)(uδ(t

(δ)
i−1) − uδ(y))dy,

with αi, i = 1, . . . , N , defined as in (3.10).

4. Criticality. From Theorem 3.2, we conclude that ūN is critical for the non-
local energy in the following sense.

Theorem 4.1. Let (r1, . . . , rN−1) ∈ R
N−1, and choose δ0 > 0 as above. For

every δ ∈ (−δ0, δ0), let uδ be as defined by (3.4). Then

F ′
r(0) = 0.(4.1)

Proof. Theorem 3.2 and (3.2) yield

F ′
r(0) = 4

N∑
i=1

αi(χ(ti−1,ti), ūN )g,

with α1, . . . , αN as defined in (3.10). We aim to show that

(χ(ti−1,ti), ūN )g = 0

for i = 1, . . . , N , which yields (4.1). The symmetry of g implies that the function
ϕ(x, y) = g(x− y)(ūN (x) − ūN (y)) satisfies ϕ(y, x) = −ϕ(x, y), so that∫ ti

ti−1

∫ ti

ti−1

g(x− y)(ūN (x) − ūN (y))dxdy = 0.

Thus, using the symmetry and the 2-periodicity of g,

(χ(ti−1,ti), ūN )g =

∫ 1

−1

∫ 1

−1

g(x− y)(χ(ti−1,ti)(x) − χ(ti−1,ti)(y))(ūN (x) − ūN (y))dxdy

= 2

∫ ti−1

−1

∫ ti

ti−1

g(x− y)(ūN (x) − ūN (y))dxdy

+ 2

∫ 1

ti

∫ ti

ti−1

g(x− y)(ūN (x) − ūN (y))dxdy

= 2

∫ 1

−1

∫ ti

ti−1

g(x− y)(ūN (x) − ūN (y))dxdy

= 2

∫ ti

ti−1

ūN (x)dx

∫ 1

−1

g(y)dy − 2

∫ ti

ti−1

∫ 1

−1

g(y − x)ūN (y)dydx

= −2

∫ ti

ti−1

∫ 1

−1

g(y − x)ūN (y)dydx,
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since
∫ ti
ti−1

ūN (x)dx = 0, which is easy to see. We claim that

x �→
∫ 1

−1

g(y − x)ūN (y)dy

is antisymmetric on (ti−1, ti), which implies (χ(ti−1,ti), ūN )g = 0. To show this, we

set x1 = ti−1 + β, x2 = ti − β with β ∈ [0, ti−1+ti
2 ]. The 2-periodicity of ūN and g

and the antisymmetry of ūN with respect to the center of each interval [ti−1, ti] yield

∫ 1

−1

g(y − x1)ūN (y)dy =

∫ 1

−1

g(y)ūN (y + x1)dy =

∫ 1

−1

g(y)ūN (y + ti−1 + β)dy

= −
∫ 1

−1

g(y)ūN (ti − β − y)dy = −
∫ 1

−1

g(y)ūN (x2 − y)dy

= −
∫ 1

−1

g(y)ūN (x2 + y)dy = −
∫ 1

−1

g(y − x2)ūN (y)dy,

which implies the antisymmetry.

It is obvious that the perturbation uδ of ūN as defined in (3.4) is not necessarily
periodic (see Figure 3.1). However, to show the local minimizing property for an
equidistant sawtooth function, we have to treat the periodicity as a constraint which
is given as follows.

Lemma 4.2. Let δ ∈ (−δ0, δ0) \ {0}, where δ0 > 0 is chosen as above. Then uδ

as given by (3.4) is periodic (i.e., uδ(−1) = uδ(−1)) if and only if

N−1∑
i=1

(−1)i−1ri = 0,(4.2)

which in terms of (3.10) is equivalent to αN = 0.

Proof. Periodicity holds if and only if uδ(1) = uδ(−1) = − 1
N , i.e.,

0 =

∫ 1

−1

u′
δ(ξ)dξ =

N∑
i=1

∫ t
(δ)
i

t
(δ)
i−1

(−1)i−1dξ =

N∑
i=1

(−1)i−1 (ti − ti−1 + (ri − ri−1)δ)

=

N∑
i=1

(−1)i−1

(
2

N
+ (ri − ri−1)δ

)
= δ

N∑
i=1

(−1)i−1(ri − ri−1) = 2δ

N−1∑
i=1

(−1)i−1ri,

where we used the fact that N is even and r0 = rN = 0. Since δ �= 0, the condition
now follows.

Application of Theorem 3.3 leads to the following property on the second vari-
ation. Since the proof is a very technical but straightforward computation, we refer
the reader to Theorem 6.4 in [24].

Theorem 4.3. For N ∈ N even, let ūN ∈ S0
per(−1, 1) as defined in Theorem 1.1.

Let (r1, . . . , rN−1) ∈ R
N−1 such that the periodicity condition (4.2) holds, and choose

δ0 > 0 as before. Let Fr : (−δ0, δ0) → R as given in (3.5). Let α = (α1, . . . , αN )t ∈ R
N

as defined in (3.10) (in particular, α1 = αN = 0). Then Fr ∈ C2(−δ0, δ0) with

1

8
F ′′
r (0) =

2

N
αtANα,
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where AN = (a
(N)
|i−j|)i,j=1,...,N ∈ R

N×N is a symmetric circulant matrix, i.e., a
(N)
k =

a
(N)
N−k for k = 1, . . . , N − 1. The coefficients are given by

a
(N)
0 = b

(N)
0 + c

(N)
0 + d

(N)
0

a
(N)
1 = a

(N)
N−1 = b

(N)
1 + c

(N)
1 + d

(N)
1 = 1

2 (b
(N)
0 − d

(N)
0 ) + c

(N)
1

a
(N)
k = c

(N)
k for k = 2, . . . , N − 2,

(4.3)

where

b
(N)
0 =

∫ 1

−1

g(y)dy, b
(N)
1 =

1

2
b
(N)
0 ,

d
(N)
0 = N(−1)

N
2 +1

∫ 1

−1

g(y)ūN (y)dy, d
(N)
1 = −1

2
d
(N)
0 ,(4.4)

and

c
(N)
k = −N

∫ 2
N

0

∫ 2
N (k+1)

2
N k

g(x− y)dydx(4.5)

for k = 0, . . . , N − 1. The circulant matrix CN = (c
(N)
|i−j|)i,j=1,...,N can alternatively

be defined as CN = (c
(N)
ij )i,j=1,...,N ∈ R

N×N with

c
(N)
ij = −N

∫ 2
N i

2
N (i−1)

∫ 2
N j

2
N (j−1)

g(x− y)dydx(4.6)

for i, j = 1, . . . , N .

5. Eigenvalues of AN . Theorem 4.3 shows that the positivity of the second
variation is connected to a definiteness condition for the matrix AN . Since the matrix
is circulant, its eigenvalues and eigenvectors can be written down explicitly. Using
Theorem 3.2.2 in [9] (or see Chapter 3 in [11]), the eigenvalues are

λ
(N)
t = a

(N)
0 + (−1)ta

(N)
N
2

+ 2

N
2 −1∑
k=1

a
(N)
k cos

[
2πkt

N

]
for t = 0, . . . ,

N

2
(5.1)

with coefficients given in Theorem 4.3, where λ
(N)
1 , . . . , λ

(N)
N
2 −1

are double eigenvalues.

For every t ∈
{
0, . . . , N

2

}
, an eigenvector corresponding to λ

(N)
t is given by

vt = (v
(0)
t , . . . , v

(N−1)
t ) ∈ R

N ,

v
(k)
t = cos

[
2πkt

N

]
, k = 0, . . . , N − 1.(5.2)

A long but straightforward calculation (see [24, proof of Theorem 7.3]) yields the
following.

Theorem 5.1. For every even number N ∈ N, we have

λ
(N)
0 = λ

(N)
N
2

= 0.(5.3)
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Using this property and the fact that in view of (5.2), the associated eigenvectors
are given by v0 = (1, . . . , 1) and vN

2
= (1,−1, . . . , 1,−1), it is easy to show that if

the double eigenvalues λ
(N)
t , t = 1, . . . , N

2 − 1, are positive, then the quadratic form
associated with AN is positive definite on the (N − 2)-dimensional subspace

XN = {α = (α1, . . . , αN ) ∈ R
N |α1 = αN = 0}

(see Theorem 7.4 in [24]). Thus, if we can show that λ
(N)
t > 0 for t = 1, . . . , N

2 − 1,
it follows from Theorem 4.3 that F ′′

r (0) > 0 for every r ∈ R
N−1 satisfying (4.2),

since this periodicity condition is equivalent to αN = 0 (note that α1 = 0 is always
the case). Another very technical approach (see Chapter 8 in [24]) shows that the
condition F ′′

r (0) > 0 for every r satisfying (4.2) indeed implies that ūN is an H1-local
minimizer of E on the set

{u ∈ S0
per(−1, 1)|#(Su′ ∩ [−1, 1)) = N},

so that ūN is an H1-local minimizer of I on S0
per(−1, 1), which together with Theorem

2.2 yields Theorem 1.1. The most important idea in the proof of this correlation is
to rewrite the nonlocal energy E—viewed as a functional E : S(−1, 1) → R—as a
function of the corners t1, . . . , tN of sawtooth functions and to apply Ljusternik’s
sufficient condition for local minima under equality constraints (see [25, Theorem
43.D]). In this case, the constraint is given by a periodicity condition similar to (4.2).

6. Asymptotic behavior of eigenvalues. In view of the remarks in the pre-
vious section, our aim is to show that the existence of near-periodic local minimizers

of Iε for small ε > 0 is reduced to the positivity of the eigenvalues λ
(N)
1 , . . . , λ

(N)
N
2 −1

of AN for large N . A first step is to assume the existence of arbitrarily large even
numbers N for which at least one of these eigenvalues is nonpositive. We obtain the
following “critical index” property.

Theorem 6.1. For every even number N ∈ N, let λ
(N)
t , t = 0, . . . , N

2 , be the
eigenvalues of AN as given in (5.1). Assume there is a sequence of even numbers
(Nn)n∈N ⊂ N with Nn ↗ ∞ for n → ∞ and a sequence (tn)n∈N ⊂ N with tn ∈
{1, . . . , Nn

2 − 1} for every n ∈ N such that

lim sup
n→∞

λ
(Nn)
tn ≤ 0.

Then we find a subsequence of (Nn)n∈N (not relabelled) such that

lim
n→∞

λ
(Nn)
tn = 0, lim

n→∞

tn
Nn

=
1

2
.

The proof needs some preparations. First, we will compare AN to a different

circulant symmetric matrix ĀN = (ā
(N)
|i−j|)i,j=1,...,N ∈ R

N×N with coefficients

ā
(N)
0 = b

(N)
0 + c

(N)
0 ,

ā
(N)
1 = ā

(N)
N−1 = b

(N)
1 + c

(N)
1 = 1

2b
(N)
0 + c

(N)
1 ,

ā
(N)
k = c

(N)
k for k = 2, . . . , N − 2,

(6.1)

where the coefficients c
(N)
i and b

(N)
i are defined as in Theorem 4.3. Thus, ĀN is the

matrix that results from AN by removing the d
(N)
i -terms. As remarked in the previous
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chapter, the eigenvalues are given explicitly by

λ̄
(N)
t = ā

(N)
0 + (−1)tā

(N)
N
2

+ 2

N
2 −1∑
k=1

ā
(N)
k cos

[
2πkt

N

]
for t = 0, . . . ,

N

2
(6.2)

for t = 0, . . . , N
2 with corresponding eigenvectors vt = (v

(0)
t , . . . , v

(N−1)
t ) ∈ R

N , where

v
(k)
t = cos

[
2πkt

N

]
, k = 0, . . . , N − 1.(6.3)

For large N , the eigenvalues of ĀN are close to those of AN .
Lemma 6.2. There exists a constant C > 0, dependent only on g, such that for

every even N ∈ N, we have

|λ(N)
t − λ̄

(N)
t | ≤ C

N
(6.4)

for t = 0, . . . , N
2 .

Proof. From (5.1), (6.2), (6.1), and the definition of AN in Theorem 4.3 we
conclude that

λ
(N)
t − λ̄

(N)
t = d

(N)
0 + 2d

(N)
1 cos

[
2πt

N

]
= d

(N)
0

[
1 − cos

[
2πt

N

]]

= N(−1)
N
2 +1

∫ 1

−1

g(y)ūN (y)dy

[
1 − cos

[
2πt

N

]]
.

Since
∫ ti
ti−1

ūN (y)dy = 0 for i = 1, . . . , N and |ūN | ≤ 1
N by definition of ūN , we obtain

|λ(N)
t − λ̄

(N)
t | ≤ 2N

∣∣∣∣
∫ 1

−1

g(y)ūN (y)dy

∣∣∣∣ = 2N

∣∣∣∣∣
N∑
i=1

∫ ti

ti−1

g(y)ūN (y)dy

∣∣∣∣∣
= 2N

∣∣∣∣∣
N∑
i=1

∫ ti

ti−1

(g(y) − g(ti−1))ūN (y)dy

∣∣∣∣∣ ≤ 2

N∑
i=1

∫ ti

ti−1

|g(y) − g(ti−1)|dy

≤ C

N∑
i=1

∫ ti

ti−1

|y − ti−1|dy ≤ C

N∑
i=1

(ti − ti−1)
2 ≤ C

N
,

where we used the Lipschitz continuity of g and ti − ti−1 = 2
N (cf. (3.1)).

We also need the boundedness of the eigenvalues.
Lemma 6.3. There is a constant C > 0, dependent only on g, such that for every

even N ∈ N, we have

|λ(N)
t |, |λ̄(N)

t | ≤ C(6.5)

for t = 0, . . . , N
2 .

Proof. By Lemma 6.2, we only have to show the estimate for λ̄
(N)
t . Let λ̄

(N)
t ,

t ∈ {0, . . . , N
2 }, be an eigenvalue of ĀN and α = (α1, . . . , αN ) ∈ R

N a corresponding
normed eigenvector of AN (i.e., ‖α‖ = 1) and set αN+1 = α1. Then, by definition of
ĀN (cf. (6.1)) and the characterization of the matrix CN in Theorem 4.3,

λ̄
(N)
t = λ̄

(N)
t αtα = αtĀNα = b

(N)
0

N∑
i=1

(α2
i + αiαi+1) +

N∑
i=1

N∑
j=1

αiαjc
(N)
ij .
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From (4.6) and the boundedness of g, we deduce |c(N)
ij | ≤ C

N for every i, j = 1, . . . , N ,
and we conclude, using the Cauchy–Schwarz inequality, αN+1 = α1, and ‖α‖ = 1,
that

|λ̄(N)
t | ≤ b

(N)
0

N∑
i=1

(α2
i + |αiαi+1|) +

N∑
i=1

N∑
j=1

|αiαjc
(N)
ij | ≤ 2b

(N)
0

N∑
i=1

α2
i +

C

N

(
N∑
i=1

|αi|
)2

≤ 2b
(N)
0 +

C

N

(
N∑
i=1

|αi|2
)(

N∑
i=1

12

)
≤ 2b

(N)
0 + C ≤ C,

and the proof of the lemma is complete.
Finally, we need the following property, which is easy to show (cf. [24, Lemma

9.3]).
Lemma 6.4. Let B : L2(0, 2) × L2(0, 2) → R, given by

B(ψ,ϕ) = 2

∫ 1

−1

g(y)dy

∫ 2

0

ψ(x)ϕ(x)dx− 2

∫ 2

0

∫ 2

0

g(x− y)ψ(x)ϕ(y)dydx.(6.6)

Then B is a continuous, symmetric bilinear form.
We can now show Theorem 6.1.
Sketch of the proof of Theorem 6.1. Let (Nn)n∈N ⊂ N with Nn ↗ ∞ for n → ∞,

(tn)n∈N ⊂ N as described. Due to Lemma 6.3, we may choose a subsequence (not

relabelled) with limn→∞ λ
(Nn)
tn = λ ≤ 0. For the eigenvalues λ̄

(N)
t of ĀN (cf. (6.2)),

Lemma 6.2 then yields

lim
n→∞

λ̄
(Nn)
tn = λ ≤ 0.(6.7)

For every n ∈ N, the vector vn = (v
(0)
n , . . . , v

(Nn−1)
n ) ∈ R

Nn with

v(k)
n =

√
2

Nn
cos

[
2πktn
Nn

]
for k = 0, . . . , Nn − 1(6.8)

is an eigenvector of ĀNn
corresponding to the eigenvalue λ̄

(Nn)
tn (cf. (6.3)). We define

a sequence of step functions (ϕn)n∈N ⊂ L2(0, 2) by

ϕn =

Nn−1∑
k=0

cos

[
2πktn
Nn

]
χ( 2

Nn
k, 2

Nn
(k+1)) =

√
Nn

2

Nn−1∑
k=0

v(k)
n χ( 2

Nn
k, 2

Nn
(k+1)).

Obviously, |ϕn| ≤ 1, so that ‖ϕn‖L2(0,2) ≤
√

2 for every n ∈ N; hence we can choose
a subsequence (not relabelled) weakly converging to a function ϕ ∈ L2(0, 2), i.e.,

ϕn −⇀
n→∞

ϕ in L2(0, 2).(6.9)

Furthermore, since tn
Nn

/∈ Z, we can apply Euler’s formula to obtain

∫ 2

0

ϕn(x)dx =

Nn−1∑
k=0

∫ 2
Nn

(k+1)

2
Nn

k

ϕn(x)dx =
2

Nn

Nn−1∑
k=0

cos

[
2πktn
Nn

]
= 0(6.10)

for every n ∈ N. Now, take an arbitrary ψ ∈ C∞
0 (0, 2) and set

ψn =

Nn−1∑
k=0

ψ

(
2

Nn
k

)
χ( 2

Nn
k, 2

Nn
(k+1))
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for every n ∈ N. Then

ψn −→
n→∞

ψ in L2(0, 2).(6.11)

For every n ∈ N, we define wn = (w
(0)
n , . . . , w

(Nn−1)
n ) ∈ R

Nn by

w(k)
n =

√
2

Nn
ψ

(
2

Nn
k

)

for k = 0, . . . , Nn − 1, and together with (6.8) we get

wt
nvn =

∫ 2

0

ψn(x)ϕn(x)dx,(6.12)

and if ϕn and ψn also denote the periodic extensions of ϕn, ψn on R, a careful

calculation that makes use of v
(0)
n =

√
2

Nn
and w

(0)
n = 0 yields

Nn−1∑
i=1

w(i−1)
n v(i)

n + w(Nn−1)
n v(0)

n =

∫ 2

0

ψn(x)ϕn

(
x +

2

Nn

)
dx,

Nn−1∑
i=1

w(i)
n v(i−1)

n + w(0)
n v(Nn−1)

n =

∫ 2

0

ψn(x)ϕn

(
x− 2

Nn

)
dx.

Recalling (6.1) and the definitions in Theorem 4.3, a further computation leads to

wt
nĀNnvn =

∫ 1

−1

g(y)dy

∫ 2

0

ψn(x)

[
ϕn(x) +

1

2
ϕn

(
x +

2

Nn

)
+

1

2
ϕn

(
x− 2

Nn

)]
dx

− 2

∫ 2

0

∫ 2

0

g(x− y)ψn(x)ϕn(y)dydx

=: Bn(ψn, ϕn).

Since vn is an eigenvector of ĀNn corresponding to the eigenvalue λ̄
(Nn)
tn , we derive

from (6.12)

λ̄
(Nn)
tn

∫ 2

0

ψn(x)ϕn(x)dx = λ̄
(Nn)
tn wt

nvn = wt
nĀNnvn = Bn(ψn, ϕn).(6.13)

By straightforward methods, we obtain, using (6.9), (6.11), and the boundedness of
g,

lim
n→∞

Bn(ψn, ϕn) = B(ψ,ϕ),(6.14)

where B : L2(0, 2)×L2(0, 2) → R is the symmetric, continuous bilinear form given by

(6.6). Furthermore, we deduce from (6.9), (6.11), and λ̄
(Nn)
tn → λ that

lim
n→∞

λ̄
(Nn)
tn

∫ 2

0

ψn(x)ϕn(x)dx = λ(ψ,ϕ)L2(0,2),

which by (6.14) and (6.13) implies

B(ψ,ϕ) = λ(ψ,ϕ)L2(0,2).(6.15)
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Since ψ ∈ C∞
0 (0, 2) was chosen arbitrarily, (6.15) holds for every ψ ∈ C∞

0 (0, 2). Since
C∞

0 (0, 2) is dense in L2(0, 2) and because of the L2(0, 2)-continuity of both sides, (6.15)
holds for every ψ ∈ L2(0, 2). Choosing ψ = ϕ we obtain, using the 2-periodicity of g
on R and the symmetry of g,

λ‖ϕ‖2
L2(0,2) = B(ϕ,ϕ) = 2

∫ 1

−1

g(y)dy

∫ 2

0

ϕ(x)2dx− 2

∫ 2

0

∫ 2

0

g(x− y)ϕ(x)ϕ(y)dydx

=

∫ 2

0

∫ 2

0

g(x− y)(ϕ(x) − ϕ(y))2dydx.

Equations (6.10) and (6.9) immediately imply
∫ 2

0
ϕ(x)dx = 0, so that due to (6.7) and

the positivity of g (i.e., g ≥ g0 > 0 on R; see the conditions on g in the introduction),
we get

0 ≥ λ‖ϕ‖2
L2(0,2) ≥ g0

∫ 2

0

∫ 2

0

(ϕ(x) − ϕ(y))2dydx = 4g0‖ϕ‖2
L2(0,2),

which, since g0 > 0, can only hold if ϕ = 0, and due to (6.9), this implies

ϕn −⇀
n→∞

0 in L2(0, 2).(6.16)

Recalling (6.2) and the definitions in Theorem 4.3, we obtain

λ̄
(Nn)
tn = b

(Nn)
0 + 2b

(Nn)
1 cos

[
2πtn
Nn

]
+ c

(Nn)
0 + (−1)tnc

(Nn)
Nn
2

+ 2

Nn
2 −1∑
k=1

c
(Nn)
k cos

[
2πktn
Nn

]

= b
(Nn)
0

(
1 + cos

[
2πtn
Nn

])
+

Nn
2 −1∑
k=0

c
(Nn)
k cos

[
2πktn
Nn

]
+

Nn
2∑

k=1

c
(Nn)
k cos

[
2πktn
Nn

]
.

Setting

c̃
(Nn)
k = −2

∫ 2
Nn

(k+1)

2
Nn

k

g(y)dy for k = 0, . . . ,
Nn

2
,

one can show that |c̃(Nn)
k − c

(Nn)
k | ≤ C

N2
n
. Thus, if we define

μ
(Nn)
tn =b

(Nn)
0

(
1 + cos

[
2πtn
Nn

])
+

Nn
2 −1∑
k=0

c̃
(Nn)
k cos

[
2πktn
Nn

]
+

Nn
2∑

k=1

c̃
(Nn)
k cos

[
2πktn
Nn

]
,

we observe that |μ(Nn)
tn − λ̄

(Nn)
tn | ≤ C

Nn
; hence by Lemma 6.2

λ
(Nn)
tn ≥ λ̄

(Nn)
tn − C

Nn
≥ μ

(Nn)
tn − C

Nn
.

A simple calculation yields

Nn
2 −1∑
k=0

c̃
(Nn)
k cos

[
2πktn
Nn

]
= − 2

∫ 1

0

g(y)ϕn(y)dy,

Nn
2∑

k=1

c̃
(Nn)
k cos

[
2πktn
Nn

]
= − 2

∫ 1+ 2
Nn

2
Nn

g(y)ϕn(y)dy = −2

∫ 1

0

g(y)ϕn(y)dy + O

(
1

Nn

)
,
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so that

λ
(Nn)
tn ≥ μ

(Nn)
tn − C

Nn
=

∫ 2

0

g(y)dy

(
1 + cos

[
2πtn
Nn

])
− 4

∫ 1

0

g(y)ϕn(y)dy − C

Nn
,

and due to (6.16), taking the limit for n → ∞ yields

0 ≥ λ ≥
∫ 2

0

g(y)dy · lim sup
n→∞

(
1 + cos

[
2πtn
Nn

])

≥
∫ 2

0

g(y)dy · lim inf
n→∞

(
1 + cos

[
2πtn
Nn

])
≥ 0,

which implies λ = 0. Furthermore, since
∫ 1

−1
g(y)dy > 0, we deduce that

lim
n→∞

(
1 + cos

[
2πtn
Nn

])
= 0,

which due to 2πtn
Nn

∈ [0, π] implies that limn→∞
tn
Nn

= 1
2 , and thus the proof is

complete.
From Theorem 6.1 we easily conclude the following property.

Corollary 6.5. For every even number N ∈ N, let λ
(N)
t , t = 0, . . . , N

2 , be the
eigenvalues of AN as given in (5.1). Then for every δ > 0, we find ν0 > 0 and N0 ∈ N

such that for every even number N ≥ N0, the following holds true:

λ
(N)
t ≥ ν0 for every t ∈

{
1, . . . ,

N

2
− 1

}
satisfying

t

N
≤ 1

2
− δ.(6.17)

7. Estimation of the eigenvalues. In order to show the positivity of the eigen-

values λ
(N)
t for t = 1, . . . , N

2 − 1 and N large, due to Corollary 6.5 we only have to
consider the indices t with t

N ≥ 1
2 − δ, where δ is sufficiently small. We can do so by

introducing the parameter

δ = δt,N = 1 − 2t

N
(7.1)

and then estimating λ
(N)
t in terms of 1

N and δ. Recall the eigenvalues of AN given
by (5.1) with coefficients as given in Theorem 4.3. While in the proof of the “index

property” (Theorem 6.1) we could omit the d
(N)
i -terms (which was done by replacing

AN with ĀN ), since they disappear in the limit N → ∞ when t
N is not close to

1
2 , they play an essential role in the case considered in this section. Unfortunately,
since the calculations are extremely long and very technical, we can only mention the
results here and have to refer the reader to [24] for details. First, a calculation yields

λ
(N)
t =

∫ 1

−1

g(y)dy

(
1 + cos

[
2πt

N

])
+

(
c
(N)
0 + (−1)tc

(N)
N
2

+ 2

N
2 −1∑
k=1

c
(N)
k cos

[
2πkt

N

])

+ 2N

N
2 −1∑
k=0

(−1)k
∫ 1

N

0

x

[
g

(
2k + 1

N
− x

)
− g

(
2k + 1

N
+ x

)]
dx

(
1 − cos

[
2πt

N

])
.(7.2)
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The middle part can be written in the form

c
(N)
0 + (−1)tc

(N)
N
2

+ 2

N
2 −1∑
k=1

c
(N)
k cos

[
2πkt

N

]
= T

(1)
t,N + T

(2)
t,N ,

where

T
(1)
t,N =

N
2 −1∑
k=0

c
(N)
k

(
cos

[
2πkt

N

]
+ cos

[
2π(k + 1)t

N

])
,(7.3)

T
(2)
t,N =

N
2 −1∑
k=0

(c
(N)
k+1 − c

(N)
k ) cos

[
2π(k + 1)t

N

]
.(7.4)

Then (cf. [24, Lemma 10.2 and remarks at the end of Chapter 10]) we have the
following.

Lemma 7.1. Let N ∈ N be an even number, t ∈ {1, . . . , N
2 − 1}, δ as given by

(7.1). Then

|T (1)
t,N | ≤ C

(
δ3 +

δ2

N
+

δ

N2

)
.

Idea of the proof. The first step is to observe that

cos

[
2πkt

N

]
+ cos

[
2π(k + 1)t

N

]
= (−1)k+1(cos((k + 1)πδ) − cos(kπδ))

= (−1)kπδ sin(kπδ) +
1

2
(−1)kπ2δ2 cos(ξk,N )

and to show that

T
(1)
t,N ≈ πδ

N
2 −1∑
k=0

(−1)kc
(N)
k sin(kπδ) = πδ

N
2 −1∑
k=0

k even

(c
(N)
k sin(kπδ) − c

(N)
k+1 sin((k + 1)πδ))

= πδ

N
2 −1∑
k=0

k even

(c
(N)
k − c

(N)
k+1) sin(kπδ) + πδ

N
2 −1∑
k=0

k even

c
(N)
k+1(sin(kπδ) − sin((k + 1)πδ)).

As for the left-hand term, we have

c
(N)
k − c

(N)
k+1 = N

∫ 2
N

0

∫ 2
N (k+1)

2
N k

[
g

(
x− y +

2

N

)
− g(x− y)

]
dxdy

≈ 2

∫ 2
N

0

∫ 2
N (k+1)

2
N k

g′(x− y)dxdy(7.5)

= 2

∫ 2
N

0

[
g

(
2

N
(k + 1) − y

)
− g

(
2

N
k − y

)]
dy

≈ 4

N

∫ 2
N

0

g′
(

2

N
k − y

)
dy,
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from which one can conclude that

πδ

N
2 −2∑
k=2

k even

(c
(N)
k − c

(N)
k+1) sin(kπδ) ≈ 4π

δ

N

N
2 −2∑
k=2

k even

sin(kπδ)

∫ 2
N k

2
N (k−1)

g′(y)dy,

≈ 4π
δ

N

N
2 −2∑
k=2

k even

∫ 2
N k

2
N (k−1)

g′(y) sin

(
N

2
πδy

)
dy ≈ 2π

δ

N

∫ 1

0

g′(y) sin

(
N

2
πδy

)
dy.

With similar techniques, the right-hand term in (7.5) can be approximated by a
Fourier integral for g as

πδ

N
2 −1∑
k=0

k even

c
(N)
k+1(sin(kπδ) − sin((k + 1)πδ)) ≈ π2δ2

∫ 1

0

g(x) cos

(
N

2
πδx

)
dx,

and by partial integration both integrals sum up to zero.

Although the estimation of T
(2)
t,N is done similarly, one has to be even more careful.

So far, one could “delete” terms where a Taylor representation is not possible due to
nondifferentiability of g in 0. In the above sketch, this was done by leaving out the
index k = 0 in the sum over even indices. This is not possible here, and one obtains
border terms.

Lemma 7.2. Let N ∈ N be even, δ as given by (7.1). Then

T
(2)
t,N =

4

3N2
g′(0) + O

(
δ2

N

)
+ O

(
δ

N2

)
+ O

(
1

N3

)
.

As for the rear part of (7.2), one can show the following.
Lemma 7.3. Let N ∈ N be a multiple of 4 (i.e., N

2 is even), t ∈ {1, . . . , N
2 − 1},

δ as given by (7.1). Then

2N

N
2 −1∑
k=0

(−1)k
∫ 1

N

0

x

[
g

(
2k + 1

N
− x

)
−g

(
2k + 1

N
+ x

)]
dx

(
1 − cos(

2πt

N
)

)

= − 4

3N2
g′(0) + O

(
δ

N2

)
+ O

(
1

N3

)
.

Thus, (7.2) yields

λ
(N)
t =

∫ 1

−1

g(y)dy

(
1 + cos

[
2πt

N

])
+ O

(
δ3
)

+ O

(
δ2

N

)
+ O

(
δ

N2

)
+ O

(
1

N3

)
,

and using δ ≥ 2
N (cf. (7.1)), one obtains∫ 1

−1

g(y)dy

(
1 + cos

[
2πt

N

])
≥ Cδ2 ≥ C

(
δ2 +

1

N2

)
,

so that the first term is the dominant one, which implies λ
(N)
t > 0 for t = 1, . . . , N

2 −1
if N is large and δ is small, the latter being equivalent to t

N ≥ 1
2 − δ. Thus, if δ

is small enough, application of Corollary 6.5 yields positivity of all eigenvalues λ
(N)
t ,

t = 1, . . . , N
2 − 1, if N is large.
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A BLOW-UP CRITERION FOR THE NONHOMOGENEOUS
INCOMPRESSIBLE NAVIER–STOKES EQUATIONS∗

HYUNSEOK KIM†

Abstract. Let (ρ, u) be a strong or smooth solution of the nonhomogeneous incompressible
Navier–Stokes equations in (0, T ∗)×Ω, where T ∗ is a finite positive time and Ω is a bounded domain
in R3 with smooth boundary or the whole space R3. We show that if (ρ, u) blows up at T ∗, then∫ T∗

0
|u(t)|s

Lr
w(Ω)

dt = ∞ for any (r, s) with 2
s

+ 3
r

= 1 and 3 < r ≤ ∞. As immediate applications,

we obtain a regularity theorem and a global existence theorem for strong solutions.

Key words. blow-up criterion, nonhomogeneous incompressible Navier–Stokes equations

AMS subject classifications. 35Q30, 76D05

DOI. 10.1137/S0036141004442197

1. Introduction. The motion of a nonhomogeneous incompressible viscous fluid
in a domain Ω of R3 is governed by the Navier–Stokes equations

(ρu)t + div(ρu⊗ u)−Δu + ∇p = ρf,(1.1)

ρt + div(ρu) = 0 in (0,∞) × Ω,(1.2)

divu= 0(1.3)

and the initial and boundary conditions

(ρ, ρu)|t=0 = (ρ0, ρ0u0) in Ω, u = 0 on (0, T ) × ∂Ω,
(1.4)

ρ(t, x) → 0, u(t, x) → 0 as |x| → ∞, (t, x) ∈ (0, T ) × Ω.

Here we denote by ρ, u, and p the unknown density, velocity, and pressure fields of
the fluid, respectively. f is a given external force driving the motion. Ω is either a
bounded domain in R3 with smooth boundary or the whole space R3. Throughout
this paper, we adopt the following simplified notation for standard homogeneous and
inhomogeneous Sobolev spaces:

Lr = Lr(Ω), Dk, r = {v ∈ L1
loc(Ω) : |v|Dk, r < ∞};

Hk, r = Lr ∩Dk, r, Dk = Dk, 2, Hk = Hk, 2;

D1
0 = {v ∈ L6 : |v|D1

0
< ∞ and v = 0 on ∂Ω};

H1
0 = L2 ∩D1

0,, D1
0,σ = {v ∈ D1

0 : div v = 0 in Ω};
|v|Dk, r = |∇kv|Lr and |v|D1

0
= |v|D1

0,σ
= |∇v|L2 .

Note that the space D1
0 is the completion of C∞

c (Ω) in D1, and thus there holds the
following Sobolev inequality:

|v|L6 ≤ 2√
3
|v|D1

0
for all v ∈ D1

0.(1.5)
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For a proof of (1.5), see sections II.5 and II.6 in the book by Galdi [11].
The global existence of weak solutions has been established by Antontsev and

Kazhikov [1], Fernandez-Cara and Guillen [10], Kazhikov [13], Lions [21], and Simon
[26, 27]. From these results (see [21] in particular), it follows that for any data
(ρ0, u0, f) with the regularity

0 ≤ ρ0 ∈ L
3
2 ∩ L∞, u0 ∈ L6, and f ∈ L2(0,∞;L2),

there exists at least one weak solution (ρ, u) to the initial boundary value problem
(1.1)–(1.4) satisfying the regularity

ρ ∈ L∞(0,∞;L
3
2 ∩ L∞),

√
ρu ∈ L∞(0,∞;L2), and u ∈ L2(0,∞;D1

0,σ)(1.6)

as well as the natural energy inequality. Then an associated pressure p is determined
as a distribution in (0,∞) × Ω.

But the global existence of strong or smooth solutions is still an open problem and
only local existence results have been obtained for sufficiently regular data satisfying
some compatibility conditions. For details, we refer to the papers by Choe and the
author [6], Kim [15], Ladyzhenskaya and Solonnikov [19], Okamoto [22], Padula [23],
and Salvi [24]. In particular, it is shown in [6] (see also [7]) that if the data ρ0, u0,
and f satisfy

0 ≤ ρ0 ∈ L
3
2 ∩H2, u0 ∈ D1

0,σ ∩D2, −Δu0 + ∇p0 = ρ
1
2
0 g,

(1.7)
f ∈ L2(0,∞;H1), and ft ∈ L2(0,∞;L2)

for some (p0, g) ∈ D1 × L2, then there exist a positive time T and a unique strong
solution (ρ, u) to the problem (1.1)–(1.4) such that

ρ ∈ C([0, T ];L
3
2 ∩H2), u ∈ C([0, T ];D1

0,σ ∩D2) ∩ L2(0, T ;D3),
(1.8)

ut ∈ L2(0, T ;D1
0,σ), and

√
ρut ∈ L∞(0, T ;L2).

Moreover, the existence of a pressure p in C([0, T ];D1)∩L2(0, T ;D2) can be deduced
from (1.1)–(1.3). See [5] for a detailed argument.

Let (ρ, u) be a global weak solution to the problem (1.1)–(1.4) with the data
(ρ0, u0, f) satisfying condition (1.7). Then from the above local existence result and
weak-strong uniqueness results in [6] and [21], we conclude that the solution (ρ, u)
satisfies the regularity (1.8) for some positive time T . One fundamental problem in
mathematical fluid mechanics is to determine whether or not (ρ, u) satisfies (1.8) for
all time T . As an equivalent formulation, we may ask the following.

Fundamental question 1.1. Does the solution (ρ, u) blow up at some finite
time T ∗? Such a time T ∗, if it exists, is called the finite blow-up time of the solution
(ρ, u) in the class H2.

In spite of great efforts since the pioneering works by Leray [20] in 1930s, there
have been no definite answers to the fundamental question even for the case of the
homogenous Navier–Stokes equations with only some blow-up criteria available. The
first criterion is due to Leray [20] who proved, among other things, that if T ∗ is the
finite blow-up time of a strong solution u to the Cauchy problem for the homogeneous
Navier–Stokes equations, then for each r with 3 < r ≤ ∞, there exists a constant
C = C(r) > 0 such that

|u(t)|Lr ≥ C(T ∗ − t)−
1
2 (1− 3

r ) for all near t < T ∗.(1.9)
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This estimate near the blow-up time was extended by Giga [12] to the case of bounded
domains. An immediate consequence of (1.9) is the following well-known blow-up
criterion in terms of the so-called Serrin class (see [9, 25, 29]):∫ T∗

0

|u(t)|sLr dt = ∞ for any (r, s) with
2

s
+

3

r
= 1, 3 < r ≤ ∞.(1.10)

By virtue of Sobolev inequality (1.5), we deduce from (1.10) that∫ T∗

0

|∇u(t)|4L2 dt = ∞.(1.11)

Further generalizations of (1.10) and (1.11) have been obtained by Beirao da Veiga
[2], Berselli [3], Chae and Choe [4], and Kozono and Taniuchi [17].

The major purpose of this paper is to prove the blow-up criterion (1.10) for strong
solutions of the nonhomogeneous Navier–Stokes equations (1.1)–(1.3). In fact, we
establish a more general result. To state our main result precisely, we first introduce
the notion of the blow-up time of solutions in the class H2m with m ≥ 1. Let (ρ, u) be
a strong solution to the initial boundary value problem (1.1)–(1.4) with the regularity

ρ ∈ C([0, T ];L
3
2 ∩H2m), u ∈ C([0, T ];D1

0,σ ∩D2m) ∩ L2(0, T ;D2m+1),

∂j
t u ∈ C([0, T ];D1

0,σ ∩D2m−2j) ∩ L2(0, T ;D2m−2j+1) for 1 ≤ j < m,(1.12)

∂m
t u ∈ L2(0, T ;D1

0,σ), and
√
ρ ∂m

t u ∈ L∞(0, T ;L2)

for any T < T ∗, where T ∗ is a finite positive time. Then we can define

Φm(T ) =1 + sup
0≤t≤T

(
|∇ρ(t)|H2m−1 + |u(t)|D1

0∩D2m

)
+

∫ T

0

|u(t)|2D2m+1 dt

+ sup
1≤j<m

(
sup

0≤t≤T
|∂j

t u(t)|D1
0∩D2m−2j +

∫ T

0

|∂j
t u(t)|2D2m−2j+1 dt

)
(1.13)

+ ess sup
0≤t≤T

|√ρ ∂m
t u(t)|L2 +

∫ T

0

|∂m
t u(t)|2D1

0
dt

for any T < T ∗. Hereafter we use the obvious notation

| · |X∩Y = | · |X + | · |Y for (semi-)normed spaces X, Y.

Definition 1.2. A finite positive number T ∗ is called the finite blow-up time of
the solution (ρ, u) in the class H2m, provided that

Φm(T ) < ∞ for 0 < T < T ∗ and lim
T→T∗

Φm(T ) = ∞.

We are now ready to state the main result of this paper.
Theorem 1.3. For a given integer m ≥ 1, we assume that

∂m
t f ∈ L2(0,∞;L2) and ∂j

t f ∈ L2(0,∞;H2m−2j−1) for 0 ≤ j < m.

Let (ρ, u) be a strong solution of the nonhomogeneous Navier–Stokes equations (1.1)–
(1.3) satisfying the regularity (1.12) for any T < T ∗. If T ∗ is the finite blow-up time
of (ρ, u) in the class H2m, then we have∫ T∗

0

|u(t)|sLr
w
dt = ∞ for any (r, s) with

2

s
+

3

r
= 1, 3 < r ≤ ∞.(1.14)
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Here Lr
w denotes the weak Lr-space, that is, the space consisting of all vector fields

v ∈ L1
loc(Ω) such that |v|Lr

w
= supα>0 α |{x ∈ Ω : |v(x)| > α}|

1
r < ∞ for 3 < r < ∞

and |v|L∞
w

= |v|L∞ < ∞. In the case when 3 < r < ∞, Lr is a proper subspace of

Lr
w ( |x|−3/r ∈ Lr

w(R3) for instance) and so Theorem 1.3 is in fact a generalization
of the blow-up criterion (1.10) due to Leray and Giga even for the homogeneous
Navier–Stokes equations.

Theorem 1.3 is proved in the next two sections. In section 2, we provide a proof
of the theorem for the very special case m = 1. Our method of the proof is quite well
known in the case of the homogeneous Navier–Stokes equations and was also applied
in an earlier paper [6] by Choe and the author to the nonhomogeneous case: combining
classical regularity results on the Stokes equations with Hölder and Sobolev inequal-

ities, we show that Φ1(T ) is bounded in a double exponential way by
∫ T

0
|u(t)|sLr

w
dt

for any T less than the blow-up time T ∗. But the use of weak Lebesgue spaces in
space variables makes it more difficult to estimate the nonlinear convection term. To
overcome this technical difficulty, we utilize some basic theory of the Lorenz spaces
developed in [18] and [30]. See the derivations of (2.6) and (2.7) for details. Concern-
ing the proof for the general case m ≥ 2, the basic idea is also to show that Φm(T ) is

bounded in some specific way by
∫ T

0
|u(t)|sLr

w
dt for any T < T ∗. Such an approach is

more or less standard in the case of the homogeneous Navier–Stokes equations, but
its extension to the nonhomogeneous case is not straightforward and indeed much
complicated due to the evolution of the density. A detailed argument is provided in
section 3.

Some corollaries of Theorem 1.3 can be deduced from a local existence result
on strong solutions in the class H2m. For instance, as an immediate consequence of
Theorem 1.3, the local existence result in the class H2, and the weak-strong uniqueness
result, we obtain the following regularity result whose obvious proof may be omitted.

Corollary 1.4. Let (ρ, u) be a global weak solution to the initial boundary value
problem (1.1)–(1.4) with the data satisfying condition (1.7). If there exists a finite
positive time T∗ such that

u ∈ Ls(0, T∗;L
r
w) for some (r, s) with

2

s
+

3

r
= 1, 3 < r ≤ ∞,(1.15)

then the solution (ρ, u) satisfies regularity (1.8) for some T > T∗.
A similar result was obtained by Choe and the author [6] assuming, however, a

stronger condition on u, that is, u ∈ L4(0, T∗;D
1
0). By virtue of Corollary 1.4, we may

conclude that the class (which we call a weak Serrin class) in (1.15) is a regularity
class for weak solutions of the nonhomogeneous Navier–Stokes equations, which was
already proved by Sohr [28] for the homogeneous case. See also a local version of
Sohr’s result in [14]. Moreover, thanks to a recent result by Dubois [8], the weak
Serrin class is a uniqueness class for the homogeneous Navier–Stokes equations. It is
also noticed that the same results can be easily derived from regularity and uniqueness
results due to Kozono by adapting the arguments in the remarks of Theorem 3 in [16].

Theorem 1.3 and its proof can be used to obtain a global existence result on
solutions in the class H2 under some smallness condition on u0 and f (but not on ρ0).

Theorem 1.5. For each K > 1, there exists a small constant ε > 0, depending
only on K and the domain Ω, with the following property: if the data ρ0, u0, and f
satisfy

|ρ0|
L

3
2 ∩L∞ ≤ K, |u0|D1

0
≤ ε, and

∫ ∞

0

|f(t)|2L2 dt ≤ ε2(1.16)
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in addition to condition (1.7), then there exists a unique global strong solution (ρ, u)
to problem (1.1)–(1.4) satisfying regularity (1.8) for any T < ∞.

A rather simple proof of Theorem 1.5 is provided in section 4. Finally, we recall
that in the case when ρ0 is bounded away from zero and Ω is a bounded domain in
R3 with smooth boundary, Salvi [24] proved the local existence of strong solutions
in the class H2m for every m ≥ 1. Hence adapting the proofs of Corollary 1.4 and
Theorem 1.5, we can also prove analogous regularity and global existence results on
strong solutions in every class H2m provided that Ω ⊂⊂ R3 and ρ0 > 0 on Ω.

2. Proof of Theorem 1.3 with m = 1. In this section, we prove Theorem 1.3
for the special case m = 1. Let t0 be a fixed time with 0 < t0 < T ∗ and let us denote

Φ0(T ) =

∫ T

0

|u(t)|sLr
w
dt for t0 ≤ T < T ∗,

where (r, s) is any pair satisfying condition (1.14). To prove Theorem 1.3, we have
only to show that

Φ1(T ) ≤ C exp (C exp (CΦ0(T ))) for t0 ≤ T < T ∗.(2.1)

Throughout this paper, we denote by C a generic positive constant depending only
on r, m, Φm(t0), T

∗, Ω, |ρ(0)|
L

3
2 ∩L∞ , |u(0)|L6 , and the norm of f , but independent

of T in particular. To begin with, we recall from (1.6) that

sup
0≤t≤T

(
|ρ(t)|

L
3
2 ∩L∞ + |√ρu(t)|L2

)
+

∫ T

0

|u(t)|2D1
0
dt ≤ C(2.2)

for t0 ≤ T < T ∗.

2.1. Estimates for
∫ T

0
|√ρut(t)|2L2 dt and sup0≤t≤T |u(t)|D1

0
. Next, we will

show that∫ T

0

(
|√ρut(t)|2L2 + |u(t)|2D1

0∩D2

)
dt + sup

0≤t≤T
|u(t)|2D1

0
≤ C exp (CΦ0(T ))(2.3)

for t0 ≤ T < T ∗. To show this, we multiply the momentum equation (1.1) by ut and
integrate over Ω. Then using (1.2) and (1.3), we easily derive∫

ρ|ut|2 dx +
1

2

d

dt

∫
|∇u|2 dx =

∫
ρ (f − u · ∇u) · ut dx

and ∫
ρ|ut|2 dx +

d

dt

∫
|∇u|2 dx ≤ 2

∫
ρ|f |2 dx + 2

∫
ρ|u · ∇u|2 dx.(2.4)

On the other hand, since (u, p) is a solution of the stationary Stokes equations

−Δu + ∇p = F and divu = 0 in Ω,

where F = ρ(f − u · ∇u− ut), it follows from the classical regularity theory that

|∇u|H1≤ C (|F |L2 + |∇u|L2)
(2.5)

≤ C (|f |L2 + |√ρut|L2 + |u · ∇u|L2 + |∇u|L2) .
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To estimate the right-hand sides of (2.4) and (2.5), we first observe that

|u · ∇u|L2 = |u · ∇u|L2,2 ≤ C|u|Lr
w
|∇u|

L
2r

r−2
,2 ,(2.6)

which follows from Hölder inequality in the Lorenz spaces. See Proposition 2.1 in [18].
Next, we will show that

|∇u|
L

2r
r−2

,2 ≤ C|∇u|1−
3
r

L2 |∇u|
3
r

H1 .(2.7)

If r = ∞, then (2.7) is obvious. Assuming that 3 < r < ∞, we choose r1 and r2 such
that 3 < r1 < r < r2 < ∞ and 2

r = 1
r1

+ 1
r2

. Then in view of Hölder and Sobolev
inequalities, we have

|∇u|
L

2ri
ri−2

≤ |∇u|
1− 3

ri

L2 |∇u|
3
ri

L6 ≤ |∇u|
1− 3

ri

L2 (C|∇u|H1)
3
ri

for each i = 1, 2. Since L
2r

r−2 ,2 is a real interpolation space of L
2r2

r2−2 and L
2r1

r1−2 , more

precisely, L
2r

r−2 ,2 = (L
2r2

r2−2 , L
2r1

r1−2 ) 1
2 ,2

, it thus follows that

|∇u|
L

2r
r−2

,2≤ C|∇u|
1
2

L
2r2

r2−2

|∇u|
1
2

L
2r1

r1−2

≤ C

(
|∇u|

1− 3
r2

L2 (C|∇u|H1)
3
r2

) 1
2
(
|∇u|

1− 3
r1

L2 (C|∇u|H1)
3
r1

) 1
2

,

which proves (2.7). For some facts on the real interpolation theory and Lorenz spaces
used above, we refer to sections 1.3.3 and 1.18.6 in Triebel’s book [30].

The estimates (2.6) and (2.7) yield

|u · ∇u|L2 ≤ C|u|Lr
w
|∇u|

2
s

L2 |∇u|
3
r

H1 ≤ η−
3s
2rC|u|

s
2

Lr
w
|∇u|L2 + η|∇u|H1

for any small number η ∈ (0, 1). Substituting this into (2.5), we obtain

|∇u|H1 ≤ C
(
|f |L2 + |√ρut|L2 + |u|

s
2

Lr
w
|∇u|L2 + |∇u|L2

)
,(2.8)

and thus

|u · ∇u|L2 ≤ η−
3s
2r C

(
|u|

s
2

Lr
w

+ 1
)
|∇u|L2 + C|f |L2 + η|√ρut|L2 .

Therefore, substituting this estimate into (2.4) and choosing a sufficiently small η > 0,
we conclude that

1

2
|√ρut(t)|2L2 +

d

dt
|∇u(t)|2L2 ≤ C|f(t)|2L2 + C

(
|u(t)|sLr

w
+ 1

)
|∇u(t)|2L2(2.9)

for t0 ≤ t < T ∗. In view of Gronwall’s inequality, we have∫ T

0

|√ρut(t)|2L2 dt + sup
0≤t≤T

|∇u(t)|2L2 ≤ C exp (CΦ0(T ))

for any T with t0 ≤ T < T ∗. Combining this and (2.8), we obtain the desired estimate
(2.3).
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2.2. Estimates for ess sup0≤t≤T |√ρut(t)|2L2 and
∫ T

0
|ut(t)|2

D1
0

dt. To de-

rive these estimates, we differentiate the momentum equation (1.1) with respect to
time t and obtain

ρutt + ρu · ∇ut − Δut + ∇pt = ρt(f − ut − u · ∇u) + ρ(ft − ut · ∇u).

Then multiplying this by ut, integrating over Ω, and using (1.2) and (1.3), we have

1

2

d

dt

∫
ρ|ut|2 dx +

∫
|∇ut|2 dx

(2.10)

=

∫
(ρt(f − ut − u · ∇u) + ρ(ft − ut · ∇u)) · ut dx.

Note that since ρ ∈ C([0, T ];L
3
2 ∩ L∞), ρt ∈ C([0, T ];L

3
2 ), and ut ∈ L2(0, T ;D1

0) for
any T < T ∗, the right-hand side of (2.10) is well defined for almost all t ∈ (0, T ∗).
Hence using finite differences in time, we can easily show that the identity (2.10) holds
for almost all t ∈ (0, T ∗).

In view of the continuity equation (1.2) again, we deduce from (2.10) that

1

2

d

dt

∫
ρ|ut|2 dx +

∫
|∇ut|2 dx

≤
∫

2ρ|u||ut||∇ut| + ρ|u||ut||∇u|2 + ρ|u|2|ut||∇2u|
(2.11)

+ρ|u|2|∇u||∇ut| + ρ|ut|2|∇u| + ρ|u||ut||∇f |

+ρ|u||f ||∇ut| + ρ|ft||ut| dx ≡
8∑

j=1

Ij .

Following the arguments in [6], we can estimate each term Ij :

I1, I5≤ C|ρ|
1
2

L∞ |∇u|L2 |√ρut|L3 |∇ut|L2 ≤ C|ρ|
3
4

L∞ |∇u|L2 |√ρut|
1
2

L2 |∇ut|
3
2

L2

≤ C|∇u|4L2 |
√
ρut|2L2 +

1

16
|∇ut|2L2 ,

I2, I3, I4 ≤ C|ρ|L∞ |∇u|2L2 |∇ut|L2 |∇u|H1 ≤ C|∇u|4L2 |∇u|2H1 +
1

16
|∇ut|2L2 ,

I6, I7 ≤ C|ρ|L6 |∇u|L2 |f |H1 |∇ut|L2 ≤ C|∇u|2L2 |f |2H1 +
1

16
|∇ut|2L2 ,

and finally

I8 ≤ C|ρ|L3 |ft|L2 |∇ut|L2 ≤ C|ft|2L2 +
1

16
|∇ut|2L2 .

Substitution of these estimates into (2.11) yields

d

dt
|√ρut|2L2 + |∇ut|2L2

≤ C|∇u|4L2

(
|√ρut|2L2 + |∇u|2H1 + |f |2H1

)
+ C

(
|f |2H1 + |ft|2L2

)
.
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Therefore, by virtue of estimate (2.3), we conclude that

ess sup
0≤t≤T

|√ρut(t)|2L2 +

∫ T

0

|∇ut(t)|2L2 dt ≤ C exp (CΦ0(T ))(2.12)

for t0 ≤ T < T ∗. On the other hand, using the regularity theory of the Stokes
equations again, we have

|∇u|H1≤ C (|f |L2 + |√ρut|L2 + |u · ∇u|L2 + |∇u|L2)

≤ C
(
|f |L2 + |√ρut|L2 + |∇u|

3
2

L2 |∇u|
1
2

H1 + |∇u|L2

)
and

|∇u|H1,6≤ C (|ut|L6 + |u · ∇u|L6 + |f |L6 + |∇u|L6)

≤ C
(
|∇ut|L2 + |∇u|2H1 + |f |H1 + |∇u|H1

)
.

Hence it follows immediately from (2.3) and (2.12) that

sup
0≤t≤T

|u(t)|2D1
0∩D2 +

∫ T

0

|∇u(t)|2H1,6 dt ≤ C exp (CΦ0(T ))(2.13)

for t0 ≤ T < T ∗.

2.3. Estimates for sup0≤t≤T |∇ρ(t)|H1 and
∫ T

0
|u(t)|2D3 dt. To derive these,

we first observe that each ρxj
(j = 1, 2, 3) satisfies(

ρxj

)
t
+ u · ∇ρxj

= −uxj
· ∇ρ.

Then multiplying this by ρxj , integrating over Ω, and summing up, we obtain

d

dt

∫
|∇ρ|2 dx ≤ C

∫
|∇u||∇ρ|2 dx ≤ C|∇u|L∞ |∇ρ|2L2 .

A similar argument shows that

d

dt

∫
|∇2ρ|2 dx≤ C

∫ (
|∇u||∇2ρ|2 + |∇2u||∇ρ||∇2ρ|

)
dx

≤ C|∇u|L∞ |∇2ρ|2L2 + |∇2u|L6 |∇ρ|L3 |∇2ρ|L2 .

Hence using Sobolev embedding results and then Gronwall’s inequality, we derive the
well-known estimate

|∇ρ(t)|H1≤ C exp

(
C

∫ t

0

|∇u(τ)|H1,6 dτ

)

≤ C exp

(∫ t

0

(
C|∇u(τ)|2H1,6 + 1

)
dτ

)
.

Therefore by virtue of (2.13), we conclude that

sup
0≤t≤T

|∇ρ(t)|H1 ≤ C exp (C exp (CΦ0(T )))(2.14)
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for t0 ≤ T < T ∗. Finally, observing from the regularity theory on the Stokes equations
that

|u|D3≤ C (|ρut|H1 + |ρu · ∇u|H1 + |ρf |H1)

≤ C (|∇ρ|L3 + 1)
(
|∇ut|L2 + |∇u|2H1 + |f |H1

)
,

we easily deduce from (2.3), (2.12), (2.13), and (2.14) that∫ T

0

|u(t)|2D3 dt ≤ C exp (C exp (CΦ0(T )))(2.15)

for t0 ≤ T < T ∗. This completes the proof of (2.1) and thus the proof of Theorem 1.3
with m = 1.

3. Proof of Theorem 1.3 with m ≥ 2. Assume that m ≥ 2. Then to
prove Theorem 1.3, it suffices to show that the following estimate holds for each k,
0 ≤ k < m:

Φk+1(T ) ≤ C exp
(
C exp

(
CΦk(T )10m

))
for t0 ≤ T < T ∗.(3.1)

The case k = 0 was already proved in section 2 and so it remains to prove (3.1) for
the case 1 ≤ k < m.

Let k be a fixed integer with 1 ≤ k < m. From (1.13), we recall that

Φk(T ) = 1 + sup
0≤j<k

(
sup

0≤t≤T
|∂j

t u(t)|D1
0∩D2k−2j +

∫ T

0

|∂j
t u(t)|2D2k−2j+1 dt

)
(3.2)

+ sup
0≤t≤T

|∇ρ(t)|H2k−1 + ess sup
0≤t≤T

|√ρ ∂k
t u(t)|L2 +

∫ T

0

|∂k
t u(t)|2D1

0
dt

for any T < T ∗.

3.1. Estimates for ∂j
t (u · ∇u), ∂j+1

t ρ, and ∂j
t (ρu) with 0 ≤ j ≤ k. To

estimate nonlinear terms, we will make repeated use of the following simple lemma
whose proof is omitted.

Lemma 3.1. If g ∈ D1
0 ∩Dj, h ∈ Hi, 0 ≤ i ≤ j, and j ≥ 2, then

gh ∈ Hi and |gh|Hi ≤ C|g|D1
0∩Dj |h|Hi

for some constant C > 0 depending only on j and Ω.
Using this lemma together with the fact that

∂j
t (u · ∇u) =

j∑
i=0

j!

i!(j − i)!
∂i
tu · ∇∂j−i

t u,

we can estimate ∂j
t (u · ∇u) as follows: for 0 ≤ j < k,

|∂j
t (u · ∇u)|H2k−2j−1≤ C

j∑
i=0

|∂i
tu · ∇∂j−i

t u|H2k−2j−1

≤ C

j∑
i=0

|∂i
tu|D1

0∩D2k−2j |∇∂j−i
t u|H2k−2j−1

≤ C

j∑
i=0

|∂i
tu|D1

0∩D2k−2i |∂j−i
t u|D1

0∩D2k−2(j−i)
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and

|∂k
t (u · ∇u)|L2≤ C

k−1∑
i=0

|∂i
tu · ∇∂k−i

t u|L2 + |∂k
t u · ∇u|L2

≤ C

k−1∑
i=0

|∂i
tu|D1

0∩D2 |∇∂k−i
t u|L2 + |∂k

t u|D1
0
|∇u|H1

≤ C

k−1∑
i=0

|∂i
tu|D1

0∩D2k−2i |∂k−i
t u|D1

0
+ |∂k

t u|D1
0
|u|D1

0∩D2 .

Hence it follows from (3.2) that

sup
0≤j<k

sup
0≤t≤T

|∂j
t (u · ∇u)(t)|H2k−2j−1 +

∫ T

0

|∂k
t (u · ∇u)(t)|2L2 dt ≤ CΦk(T )4(3.3)

for t0 ≤ T < T ∗. Applying Lemma 3.1 to the continuity equation

ρt = −div(ρu) = −u · ∇ρ,(3.4)

we also deduce that

sup
0≤t≤T

|ρt(t)|H2k−1 ≤ CΦk(T )2 for t0 ≤ T < T ∗.(3.5)

Using (3.4) and (3.5), we can show that

sup
1≤j<k

sup
0≤t≤T

|∂j+1
t ρ(t)|H2k−2j +

∫ T

0

|∂k+1
t ρ(t)|2L2 dt ≤ CΦk(T )2k+4(3.6)

for t0 ≤ T < T ∗. A simple inductive proof of (3.6) may be based on the observation
that for 1 ≤ j < k,

|∂j+1
t ρ|H2k−2j= | − ∂j

t (u · ∇ρ)|H2k−2j

≤ C

j∑
i=0

|∂j−i
t u · ∇∂i

tρ|H2k−2j

≤ C

j∑
i=0

|∂j−i
t u|D1

0∩D2k−2j |∇∂i
tρ|H2k−2j

≤ C

j∑
i=0

|∂j−i
t u|D1

0∩D2k−2(j−i) |∂i
tρ|H2k−2(i−1)

and

|∂k+1
t ρ|L2 ≤ C

k∑
i=0

|∂k−i
t u · ∇∂i

tρ|L2 ≤ C

k∑
i=0

|∂k−i
t u|D1

0
|∂i

tρ|H2 .

Moreover, it follows easily from (3.6) that

sup
0≤j<k

sup
0≤t≤T

|∂j
t (ρu)(t)|H2k−2j +

∫ T

0

|∂k
t (ρu)(t)|2H1 dt ≤ CΦk(T )4k+10(3.7)
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for t0 ≤ T < T ∗. Finally, recalling that

∂k+1
t f ∈ L2(0,∞;L2) and ∂j

t f ∈ L2(0,∞;H2k−2j+1) for 0 ≤ j ≤ k,

we deduce from standard embedding results that

∂j
t f ∈ C([0,∞);H2k−2j) for 0 ≤ j ≤ k.

3.2. Estimates for
∫ T

0
|√ρ∂k+1

t u(t)|2L2 dt and sup0≤t≤T |∂k
t u(t)|D1

0
. From

the momentum equation (1.1), we derive

ρ
(
∂k
t u

)
t
− Δ∂k

t u + ∇∂k
t p = ∂k

t (ρf − ρu · ∇u) +
(
ρ∂k

t ut − ∂k
t (ρut)

)
.

Hence multiplying this by ∂k+1
t u and integrating over Ω, we have∫

ρ|∂k+1
t u|2 dx +

1

2

d

dt

∫
|∇∂k

t u|2 dx

=

∫ (
∂k
t (ρf − ρu · ∇u) +

(
ρ∂k

t ut − ∂k
t (ρut)

))
· ∂k+1

t u dx(3.8)

= I0,1 +

k∑
j=1

k!

j!(k − j)!
(Ij,1 + Ij,2) ,

where

Ij,1 =

∫
∂j
t ρ ∂

k−j
t (f − u · ∇u) · ∂k+1

t u dx, Ij,2 = −
∫

∂j
t ρ ∂

k−j
t ut · ∂k+1

t u dx.

We easily estimate I0,1 as follows:

I0,1 ≤ |ρ|
1
2

L∞

(
|∂k

t f |L2 + |∂k
t (u · ∇u)|L2

)
|√ρ∂k+1

t u|L2

≤ C
(
|∂k

t f |2L2 + |∂k
t (u · ∇u)|2L2

)
+

1

2
|√ρ∂k+1

t u|2L2 .

To estimate Ij,1 for 1 ≤ j ≤ k, we rewrite it as

Ij,1=
d

dt

∫
∂j
t ρ ∂

k−j
t (f − u · ∇u) · ∂k

t u dx−
∫

∂j+1
t ρ ∂k−j

t (f − u · ∇u) · ∂k
t u dx

−
∫

∂j
t ρ ∂

k−j+1
t (f − u · ∇u) · ∂k

t u dx

and observe that

−
∫

∂j+1
t ρ ∂k−j

t (f − u · ∇u) · ∂k
t u dx

≤ C
(
|∂k−j

t f |2H1 + |∂k−j
t (u · ∇u)|2H1

)
|∂j+1

t ρ|2L2 + |∇∂k
t u|2L2

and

−
∫

∂j
t ρ ∂

k−j+1
t (f − u · ∇u) · ∂k

t u dx

≤ C|∂j
t ρ|2H1

(
|∂k−j+1

t f |2L2 + |∂k−j+1
t (u · ∇u)|2L2

)
+ |∇∂k

t u|2L2 .
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Using the continuity equation (1.2), we can also estimate Ij,2 as follows:

I1,2= −
∫

ρt

(
1

2
|∂k

t u|2
)

t

dx = − d

dt

∫
ρt

1

2
|∂k

t u|2 dx +

∫
∂2
t ρ

1

2
|∂k

t u|2 dx

= − d

dt

∫
ρu · ∇

(
1

2
|∂k

t u|2
)

dx +

∫
∂t(ρu) · ∇

(
1

2
|∂k

t u|2
)

dx

≤ − d

dt

∫
(ρu · ∇∂k

t u) · ∂k
t u dx + C|∂t(ρu)|H1 |∇∂k

t u|2L2

and similarly

Ij,2= − d

dt

∫
∂j
t ρ ∂

k−j
t ut · ∂k

t u dx +

∫ (
∂j+1
t ρ ∂k−j

t ut + ∂j
t ρ ∂

k−j+1
t ut

)
· ∂k

t u dx

≤ − d

dt

∫
∂j−1
t (ρu) · ∇

(
∂k−j+1
t u · ∂k

t u
)
dx

+C
(
|∂j

t (ρu)|H1 |∇∂k−j+1
t u|L2 + |∂j−1

t (ρu)|H1 |∇∂k−j+2
t u|L2

)
|∇∂k

t u|L2

for 2 ≤ j ≤ k. Substituting all the estimates into (3.8), we have

1

2

∫
ρ|∂k+1

t u|2 dx +
1

2

d

dt

∫
|∇∂k

t u|2 dx

≤ d

dt

∫ ⎛
⎝ k∑

j=1

k!

j!(k − j)!
∂j
t ρ∂

k−j
t (f − u · ∇u) · ∂k

t u− (ρu · ∇∂k
t u) · ∂k

t u

⎞
⎠ dx

− d

dt

∫ k∑
j=2

k!

j!(k − j)!
∂j−1
t (ρu) · ∇

(
∂k−j+1
t u · ∂k

t u
)
dx

+C

k−1∑
j=1

(
|∂j

t (ρu)|2H1 + |∂j+1
t ρ|2H1

)(
|∂k−j

t f |2H1 + |∂k−j
t (u · ∇u)|2H1 + |∂k−j+1

t u|2D1
0

)

+C|∂k+1
t ρ|2L2

(
|f |2H1 + |u|2D1

0∩D2

)
+ C

(
1 + |∂tρ|2H1

) (
|∂k

t f |2L2 + |∂k
t (u · ∇u)|2L2

)
+C|∂k

t (ρu)|2H1 + C
(
1 + |∂t(ρu)|2H1 + |∇∂tu|2L2

)
|∇∂k

t u|2L2 .

Hence, integrating this in time over (t0, T ) and using (3.3), (3.5), (3.6), and (3.7)
together with the estimates∫

|∂j
t ρ||∂

k−j
t (f − u · ∇u)||∂k

t u| dx

≤ η−1|∂j
t ρ|2H1 |∂k−j

t (f − u · ∇u)|2L2 + η|∇∂k
t u|L2 ,

∫
ρ|u||∇∂k

t u||∂k
t u| dx ≤ η−3C|ρ|3L∞ |∇u|4L2 |

√
ρ∂k

t u|2L2 + η|∇∂k
t u|2L2

and ∫
|∂j−1

t (ρu)|
(
|∇∂k−j+1

t u||∂k
t u| + |∂k−j+1

t u||∇∂k
t u|

)
dx

≤ η−1C|∂j−1
t (ρu)|2H1 |∇∂k−j+1

t u|2L2 + η|∇∂k
t u|L2 ,
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where η is any small positive number, we deduce that∫ T

t0

|√ρ∂k+1
t u(t)|2L2 dt + |∇∂k

t u(T )|2L2

≤ CΦk(T )20m + C

∫ T

t0

(
1 + |∂t(ρu)(t)|2H1 + |ut(t)|2D1

0

)
|∇∂k

t u(t)|2L2 dt

for t0 ≤ T < T ∗. Note that∫ T

t0

(
1 + |∂t(ρu)(t)|2H1 + |ut(t)|2D1

0

)
dt ≤ CΦk(T )10m.

Therefore, in view of Gronwall’s inequality, we conclude that∫ T

0

|√ρ∂k+1
t u(t)|2L2 dt + sup

0≤t≤T
|∂k

t u(t)|2D1
0
≤ C exp

(
CΦk(T )10m

)
(3.9)

for any T with t0 ≤ T < T ∗.

3.3. Estimates for ess sup0≤t≤T |√ρ∂k+1
t u(t)|L2 and

∫ T

0
|∂k+1

t u(t)|2
D1

0
dt.

From the momentum equation (1.1), it follows that

ρ
(
∂k+1
t u

)
t
+ ρu · ∇∂k+1

t u− Δ∂k+1
t u + ∇∂k+1

t p

= ∂k+1
t (ρf) +

(
ρ∂k+1

t ut − ∂k+1
t (ρut)

)
+
(
ρu · ∇∂k+1

t u− ∂k+1
t (ρu · ∇u)

)
.

Multiplying this by ∂k+1
t u and integrating over Ω, we have

1

2

d

dt

∫
ρ|∂k+1

t u|2 dx +

∫
|∇∂k+1

t u|2 dx

=

∫
∂k+1
t (ρf) · ∂k+1

t u dx +

∫ (
ρ∂k+1

t ut − ∂k+1
t (ρut)

)
· ∂k+1

t u dx(3.10)

+

∫ (
ρu · ∇∂k+1

t u− ∂k+1
t (ρu · ∇u)

)
· ∂k+1

t u dx.

This identity can be derived rigorously by using a standard finite difference method
because if 0 < T < T ∗, then ∂m

t ρ ∈ L2(0, T ;L
3
2 ∩ L2) and ∂j

t ρ ∈ C([0, T ];L
3
2 ∩ L∞)

for 0 ≤ j < m. The first term of the right-hand side in (3.10) is bounded by

C
k∑

j=0

∫
|∂j

t ρ||∂
k−j+1
t f ||∂k+1

t u| dx +

∫
|∂k+1

t ρ||f ||∂k+1
t u| dx

≤ C

k∑
j=0

|∂j
t ρ|2H1 |∂k−j+1

t f |2L2 + C|∂k+1
t ρ|2L2 |f |2H1 +

1

6
|∇∂k+1

t u|2L2 .

In view of the continuity equation (1.2), we can rewrite the second term as

−
k+1∑
j=1

(k + 1)!

j!(k − j + 1)!

∫
∂j
t ρ ∂

k−j+1
t ut · ∂k+1

t u dx

= −
k+1∑
j=1

(k + 1)!

j!(k − j + 1)!

∫
∂j−1
t (ρu) · ∇

(
∂k−j+2
t u · ∂k+1

t u
)
dx,
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which is bounded by

C|ρ|L∞ |u|2D1
0∩D2 |

√
ρ∂k+1

t u|2L2 + C

k∑
j=1

|∂j
t (ρu)|2H1 |∂k−j+1

t u|2D1
0

+
1

6
|∇∂k+1

t u|2L2 .

Finally, the last term is bounded by

C
k∑

j=1

∫
|∂j

t (ρu)||∇∂k−j+1
t u||∂k+1

t u| dx +

∫
|∂k+1

t (ρu)||∇u||∂k+1
t u| dx

≤ C

k∑
j=1

(
|∂j

t (ρu)|2H1 + |∂j
t ρ|2H1 |u|2D1

0∩D2

)
|∂k−j+1

t u|2D1
0

+ C|∂k+1
t ρ|2L2 |u|4D1

0∩D2

+C|ρ|L∞ |u|2D1
0∩D2 |

√
ρ∂k+1

t u|2L2 +
1

6
|∇∂k+1

t u|2L2 .

Hence substituting these estimates into (3.10), we have

d

dt

∫
ρ|∂k+1

t u|2 dx +

∫
|∇∂k+1

t u|2 dx

≤ C
(
1 + |u|2D1

0∩D2

)
|√ρ∂k+1

t u|2L2 + C

k∑
j=0

|∂j
t ρ|2H1 |∂k−j+1

t f |2L2 + C|∂k+1
t ρ|2L2 |f |2H1

+C

k∑
j=1

(
|∂j

t (ρu)|2H1 + |∂j
t ρ|2H1 |u|2D1

0∩D2

)
|∂k−j+1

t u|2D1
0

+ C|∂k+1
t ρ|2L2 |u|4D1

0∩D2 .

Therefore, by virtue of (3.5), (3.6), (3.7), and (3.9), we conclude that

ess sup
0≤t≤T

|√ρ ∂k+1
t u(t)|L2 +

∫ T

0

|∂k+1
t u(t)|2D1

0
dt ≤ C exp

(
CΦk(T )10m

)
(3.11)

for any T with t0 ≤ T < T ∗.

3.4. Estimates for sup0≤t≤T |∂j
t u(t)|D1

0∩D2k−2j+2 with 0 ≤ j ≤ k. To
derive these estimates, we observe that

∂j
t u ∈ C([0, T ∗);D1

0,σ) and − Δ∂j
t u + ∇∂j

t p = ∂j
t (ρf − ρu · ∇u− ρut)(3.12)

for each j ≤ k. From (3.5), (3.6), (3.9), and (3.11), it follows easily that

ess sup
0≤t≤T

(
|∂k

t (ρu · ∇u)(t)|L2 + |∂k
t (ρut)(t)|L2

)
≤ C exp

(
CΦk(T )10m

)
for t0 ≤ T < T ∗. Hence applying the regularity theory of the Stokes equations to
(3.12) with j = k, we obtain

sup
0≤t≤T

|∂k
t u(t)|D1

0∩D2 ≤ C exp
(
CΦk(T )10m

)
for t0 ≤ T < T ∗.

It also follows from the Stokes regularity theory that for 0 ≤ j < k,

|∂j
t u|D1

0∩D2k−2j+2 ≤ C|∂j
t (ρf − ρu · ∇u− ρut)|H2k−2j + C|∂j

t u|D1
0
.(3.13)
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Using the estimates in section 3.1, we can estimate the first term of the right-hand
side in (3.13) as follows:

C|∂j
t (ρf − ρu · ∇u− ρut)(t) + ρ∂j

t (u · ∇u + ut)(t)|H2k−2j

≤ C|ρ∂j
t f(t)|H2k−2j + C

j∑
i=1

|∂i
tρ∂

j−i
t (f − u · ∇u− ut)(t)|H2k−2j

≤ C exp
(
CΦk(T )10m

)
,

C|ρ∂j
t (u · ∇u)(t)|H2k−2j

≤ C

j∑
i=1

|ρ∂i
tu · ∇∂j−i

t u(t)|H2k−2j + C|ρu · ∇∂j
t u(t)|H2k−2j

≤ C exp
(
CΦk(T )10m

)
+ C|ρ(t)|H2k |u(t)|D1

0∩D2k |∂j
t u(t)|D1

0∩D2k−2j+1

≤ C exp
(
CΦk(T )10m

)
+

1

2
|∂j

t u(t)|D1
0∩D2k−2j+2

and

C|ρ∂j
t ut(t)|H2k−2j ≤ C|ρ(t)|H2k |∂j+1

t u(t)|D1
0∩D2k−2j .

Substituting these into (3.13), we deduce that

|∂j
t u(t)|D1

0∩D2k−2j+2 ≤ C exp
(
CΦk(T )10m

) (
1 + |∂j+1

t u(t)|D1
0∩D2k−2j

)
.

Therefore, by a backward induction on j, we conclude that

sup
0≤j<k+1

sup
0≤t≤T

|∂j
t u(t)|D1

0∩D2k−2j+2 ≤ C exp
(
CΦk(T )10m

)
.(3.14)

3.5. Estimates for sup0≤t≤T |∇ρ(t)|H2k+1 and
∫ T

0
|∂j

t u(t)|2
D2k−2j+3 dt with

j ≤ k. Let α be a multi-index with 1 ≤ |α| ≤ 2k + 2. Then taking the differential
operator Dα to the continuity equation (1.2), we have

(Dαρ)t + u · ∇(Dαρ) = u · ∇(Dαρ) −Dα(u · ∇ρ).

Multiplying this by Dαρ and integrating over Ω, we obtain

d

dt

∫
|Dαρ|2 dx ≤ C

∫
|u · ∇(Dαρ) −Dα(u · ∇ρ)||Dαρ| dx.(3.15)

But since

|u · ∇(Dαρ) −Dα(u · ∇ρ)| ≤ C

|α|∑
l=1

∣∣∣∇|α|+1−lu
∣∣∣ ∣∣∇lρ

∣∣ ,
Hölder and Sobolev inequalities yield

|u · ∇(Dαρ) −Dα(u · ∇ρ)|L2≤ C ( |∇u|H2k+1 |∇ρ|H2k+1 + |∇u|L∞ |∇ρ|H2k+1 )

≤ C|∇u|H2k+1 |∇ρ|H2k+1 .
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Hence from (3.15), we derive the standard estimate

d

dt
|∇ρ|2H2k+1 ≤ C|u|D1

0∩D2k+2 |∇ρ|2H2k+1 ,

which implies then that

sup
0≤t≤T

|∇ρ(t)|H2k+1 ≤ |∇ρ0|H2k+1 exp

(
C

∫ T

0

|u(t)|D1
0∩D2k+2 dt

)
.

Therefore, by virtue of (3.14), we conclude that

sup
0≤t≤T

|∇ρ(t)|H2k+1 ≤ C exp
(
C exp

(
CΦk(T )10m

))
for any T with t0 ≤ T < T ∗. Finally, applying the Stokes regularity theory to (3.12)
for each j and arguing by induction on k − j, we easily show that

sup
0≤j<k+1

∫ T

0

|∂j
t u(t)|2D2k−2j+3 dt ≤ C exp

(
C exp

(
CΦk(T )10m

))
for any T with t0 ≤ T < T ∗. This completes the proof of (3.1) and so we have
completed the proof of Theorem 1.3.

4. Proof of Theorem 1.5. Let (ρ, u) be a strong solution satisfying the regu-
larity (1.8) for some T > 0. Assume that |ρ0|

L
3
2 ∩L∞ ≤ K for some constant K > 1.

Then it follows easily from (1.2) and (1.3) that

|ρ(t)|
L

3
2 ∩L∞ = |ρ0|

L
3
2 ∩L∞ ≤ K for 0 ≤ t ≤ T.

Moreover, from the energy equality

1

2

d

dt

∫
ρ|u|2 dx +

∫
|∇u|2 dx =

∫
ρf · u dx,

we derive

|√ρu(t)|2L2 +

∫ t

0

|∇u(τ)|2L2 dτ ≤ |√ρ0u0|2L2 + C

∫ t

0

|ρ(τ)|2L3 |f(τ)|2L2 dτ,

and thus ∫ T

0

|∇u(τ)|2 dτ ≤ CK

(
|∇u0|2L2 +

∫ ∞

0

|f(τ)|2L2 dτ

)
.(4.1)

Throughout the proof, we denote by CK > 1 a generic constant dependent only on K
and Ω but independent of time T . On the other hand, from the estimate (2.9) with
(r, s) = (6, 4), it follows that

|∇u(t)|2L2 ≤ |∇u0|2L2 + CK

∫ t

0

|f(τ)|2L2 dτ + CK

∫ t

0

(
|u(τ)|4L6

w
+ 1

)
|∇u(τ)|2L2 dτ

for 0 ≤ t ≤ T . Hence by virtue of the estimate (4.1) and Sobolev inequality (1.5), we
have

|∇u(t)|2L2 ≤ CK

(
sup

0<τ<t
|∇u(τ)|4L2 + 1

)(
|∇u0|2L2 +

∫ ∞

0

|f(τ)|2L2 dτ

)
(4.2)
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for 0 < t ≤ T . Let us choose a positive constant ε such that

0 < ε < 1 and 6CKε2 < 1.

We now prove the global existence of a strong solution under the assumption that
|∇u0|L2 ≤ ε and

∫∞
0

|f(τ)|2L2 dτ ≤ ε2. The local existence of a unique solution (ρ, u)
was already proved in [6] (see also [7]). To prove the global existence, we argue by
contradiction. Assume that (ρ, u) blows up at some finite time T ∗, 0 < T ∗ < ∞.
Then since (ρ, u) satisfies the regularity (1.8) for any T < T ∗, it follows from (4.2)
that

|∇u(t)|2L2 ≤ 1

3

(
sup

0<τ<t
|∇u(τ)|4L2 + 1

)
for 0 < t < T ∗.(4.3)

Note that |∇u0|2L2 < 1 and u ∈ C([0, T ∗);D1
0). Hence from (4.3), we easily deduce

that |∇u(t)|2L2 < 1 for any 0 ≤ t < T ∗. Therefore, in view of Sobolev embedding
again, we conclude that

∫ T∗

0

|u(t)|4L6
w
dt ≤ C

∫ T∗

0

|∇u(t)|4L2 dt < ∞,

which contradicts Theorem 1.3. This completes the proof of Theorem 1.5.
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Introduction. The homogenization of periodic structures was carried out in the
last 30 years for various kinds of problems involving differential equations and sys-
tems, as well as integral energies. Starting from the basic works [DGS], [BLP], [MT],
several methods and techniques were developed to approach the analytic study of the
asymptotic behavior of such structures, thus generating a great range of results in dif-
ferent settings and a wide bibliography; cf., for example, the volumes [At], [BP], [BD],
[CDA], [CD], [DM], [JKO], [SP]. In particular, various kinds of problems concerning
both scalar-valued and vector-valued configurations were considered also for convex
and nonconvex energies. Among the various tools, we recall the two-scale method
introduced in [N] (and used in [A]) and the “dilation” operation introduced in [ADH]
(to study the homogenization of periodic media with double porosity).

The periodic unfolding method, proposed for the study of the homogenization
of multiscale periodic problems in [CDG] combines the dilation technique with ideas
from finite elements approximations. This approach reduces two-scale convergence to
a mere weak convergence in an appropriate space.

The present paper is part of a series of ongoing work concerning the applications
of the periodic unfolding method to homogenization. The first part in the series,
[CDDA], considers the periodic homogenization of nonlinear integrals with convex
densities and polynomial growth. It recovers the well-known homogenization results
already established in [M1] and [CS], and various types of limit formulas, via weak
convergence in a space of type Lp.
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Here, we study the homogenization problem in the general case of quasiconvex
integral energies defined on vector-valued configurations. For such energies, the ho-
mogenization result was originally obtained, under p-growth assumptions, by sophis-
ticated Γ-convergence arguments (see [B] and [Mu]). Since then, many attempts at
simplifying the proofs (for example, by using two-scale convergence) seem not to have
borne fruit. Using the unfolding method, we propose a direct approach which, again,
reduces to weak convergence in Lp spaces.

Homogenization processes for integral functionals defined on vector-valued config-
urations are particularly interesting in applications, since they describe various physi-
cal situations in nonlinear elasticity. For example, the study of the overall behavior of
cellular elastic materials with very fine structure can be developed in the framework
of the homogenization of the corresponding stored energy functionals, defined on the
set of the admissible deformations and whose densities are quasiconvex. Indeed, as
the structure of the material becomes finer and finer, it behaves more and more like a
limit material, whose energy is just the one produced by the homogenization process.

Let m and n be positive integers. We denote by Y the unit reference cell ]0, 1[n

and by A0 the class of all bounded open subsets of R
n with Lipschitz boundary.

Let f be a Carathéodory energy density, i.e., a function satisfying⎧⎨
⎩

f : (y, z) ∈ R
n × R

nm �→ f(y, z) ∈ [0,+∞[,
f(·, z) Lebesgue measurable and Y -periodic for every z ∈ R

nm,
f(y, ·) continuous for a.e. x ∈ R

n.
(0.1)

Assume furthermore that

f(y, ·) is quasiconvex for a.e. y ∈ R
n(0.2)

(cf. section 1.2 below for the definition of quasiconvexity).
For p ∈ [1,+∞[, M > 0, and a Y -periodic a ∈ L1(Y ), we consider the following

growth conditions:

f(y, z) ≤ a(y) + M |z|p for a.e. y ∈ R
n and every z ∈ R

nm,(0.3)

|z|p ≤ f(y, z) for a.e. y ∈ R
n and every z ∈ R

nm,(0.4)

the first of which is slightly more general that the corresponding ones in [B] and [Mu].
Our purpose, for each Ω ∈ A0 and every {εh} ⊆ ]0,+∞[ converging to 0, is to

find the limit, as h goes to infinity, of the sequence of functionals

u ∈ W 1,p(Ω; Rm) �→
∫

Ω

f
( x

εh
,∇u

)
dx.

We start in section 1 by recalling the result of Castaing on the existence of mea-
surable selections of measurable multivalued functions (Theorem 1.1), together with
some basic facts concerning the periodic unfolding method (Theorem 1.7), as well as
an essential approximation result (Lemma 1.8) due to De Giorgi.

The convergence results are established in section 2. As in [B] and [Mu], we first
prove that the limit below exists for every z ∈ R

nm, thus defining the homogenized
energy density fhom,

fhom: z ∈ R
nm �→ lim

t→+∞

1

tn
inf

{∫
tY

f(y, z + ∇v) dy : v ∈ W 1,p
0 (tY ; Rm)

}
.(0.5)
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Then, in Theorem 2.5 we show that for every Ω ∈ A0 and u ∈ W 1,p(Ω; Rm),

inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

=

∫
Ω

fhom(∇u) dx.

Finally, Lemma 1.8 allows to complete the proof of Theorem 2.5, in the sense that for
every Ω in A0 and u in W 1,p(Ω; Rm),

inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {uh} ⊆ u + W 1,p

0 (Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ u + W 1,p
0 (Ω; Rm), uh → u in Lp(Ω; Rm)

}

=

∫
Ω

fhom(∇u) dx.

In the convex case, i.e., when the condition

f(x, ·) is convex for a.e. x ∈ R
n(0.6)

replaces hypothesis (0.2), the proof becomes even simpler. The result is stated in
Theorem 3.1.

1. Preliminary results. For every Ω ∈ A0, we denote by L(Ω) the σ-algebra
of the Lebesgue measurable subsets of Ω, and, for every S ∈ L(Ω), by |S| the n-
dimensional Lebesgue measure of S.

By L(Ω) × L(Y ) we denote the product σ-algebra of L(Ω) and L(Y ). We recall
that (cf., for example, Theorems III.11.17 and III.2.22 in [DS]), if Ω ∈ A0 and U ∈
L1(Ω;L1(Y )), then there exists an L(Ω) × L(Y )-measurable function Ũ : Ω × Y →
R, uniquely determined up to a subset in L(Ω) × L(Y ) of zero measure, such that

Ũ(x, ·) = U(x) for a.e. x ∈ Ω. Moreover, if p ∈ [1,+∞[ and U ∈ Lp(Ω;Lp(Y )),

then Ũ ∈ Lp(Ω × Y ), and ‖Ũ‖Lp(Ω×Y ) = ‖U‖Lp(Ω;Lp(Y )). Consequently, we will not

distinguish between U and Ũ but rather denote them by U . With this convention
in mind, C∞

0 (Ω × Y ) turns out to be dense in Lp(Ω;Lp(Y )), Lp(Ω × Y ), and in
Lp(Y ;Lp(Ω)) with the respective norms.

In what follows, C will be used to denote various constants depending only upon
n, m, p, and M .

1.1. Castaing’s theorem on measurable selections. Let Ω, X be sets, and
let Γ be a multifunction from Ω to X. A function σ: Ω → X is said to be a selection
of Γ if σ(x) ∈ Γ(x) for every x ∈ Ω. The measurable selection result below is proved
in Theorem III.6 and Proposition III.11 in [CV].
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Theorem 1.1. Let X be a separable metric space, (Ω,M) a measurable space,
and Γ a multifunction from Ω to X. Assume that for every x ∈ Ω, Γ(x) is nonempty
and complete in X. Assume, moreover, that for every closed subset F of X, {x ∈ Ω :
Γ(x) ∩ F �= ∅} belongs to M. Then Γ admits an M-measurable selection.

1.2. Quasiconvexity.
Definition 1.2. A continuous function g: Rnm → [0,+∞[ is said to be quasi-

convex whenever

g(z) ≤ 1

|A|

∫
A

g(z + ∇ϕ(x)) dx

for every A ∈ A0 and every (z, ϕ) ∈ R
nm × C1

0 (A; Rm).
Jensen’s inequality implies that a convex function is also quasiconvex. It is also

well known that if n = 1 or m = 1, quasiconvexity reduces to convexity. Moreover, it
is easy to verify that g is quasiconvex if the above inequality holds for some A ∈ A0

and for all (z, ϕ) ∈ R
nm × C1

0 (A; Rm).
The following lower semicontinuity result for convex Carathéodory functions is

well known (a direct consequence of Fatou’s lemma).
Proposition 1.3. Let f satisfy (0.1) and (0.6). Let p ∈ [1,+∞[ and Ω ∈ A0.

Then, the functional

w ∈ Lp(Ω; Rnm) �→
∫

Ω

f(x,w(x)) dx

is sequentially weakly Lp(Ω; Rnm)-lower semicontinuous.
In the quasiconvex case, it turns out that a similar result holds (cf., for example,

[Mo], [Ba], [D], [Bu], [AF], [M2]).
Proposition 1.4. Assume that f satisfies (0.1), (0.2), and (0.3) for some p ∈

[1,+∞[. Then, for every Ω ∈ A0 the functional

w ∈ W 1,p(Ω; Rm) �→
∫

Ω

f(x,∇w(x)) dx

is sequentially weakly W 1,p(Ω; Rm)-lower semicontinuous.
Let f be as in (0.1). Consider the following local Lipschitz condition for p ∈

[1,+∞[, C ≥ 0 and a Y -periodic a ∈ L1(Y ):

|f(x, z1) − f(x, z2)| ≤ C(a(x)1−
1
p + |z1|p−1 + |z2|p−1)|z1 − z2|

for a.e. x ∈ R
n and every z1, z2 ∈ R

nm.
(1.1)

The result below is well known (cf., for example, [Mo], [F]).
Proposition 1.5. Assume that f satisfies (0.1), (0.2), and (0.3) for some p ∈

[1,+∞[ and a ∈ L1(Y ). Then, (1.1) holds for some constant C ≥ 0.

1.3. The unfolding operator and its main properties. For every z in R
n we

denote by [z] the vector whose coordinates are the integer parts of the corresponding
coordinates of z.

Definition 1.6. Let Ω ∈ A0. For ε > 0, the unfolding operator Tε:L1(Ω) →
L1(Rn × Y ) is defined as follows:

Tε(v)(x, y) = ṽ
(
ε
[x
ε

]
+ εy

)
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for every v ∈ L1(Ω) and a.e. (x, y) ∈ R
n × Y , where ṽ is the extension of v by zero

outside Ω.
Let Ω ∈ A0. For every ε > 0 we set

Ωε
.
=

⋃{
ε(ξ + Y ) : ξ ∈ Z

n, ε(ξ + Y ) ∩ Ω �= ∅
}
.

Then one has (cf. [CDG])∫
Ωε×Y

Tε(v)(x, y) dxdy =

∫
Ω

v(x) dx for every ε > 0 and for every v in L1(Ω).(1.2)

Furthermore

Tε(v) → ṽ in Lp(Rn × Y ) as ε → 0 for every p ∈ [1,+∞[ and v ∈ Lp(Ω).(1.3)

If d is a positive integer, w = (w1, . . . , wd) belongs to L1(Ω; Rd), and ε > 0, we
set

Tε(w) = (Tε(w1), . . . , Tε(wd)).

Concerning the unfolding operator, the main result is the following (cf. Theorem 1
in [CDG]).

Theorem 1.7. Let Ω ∈ A0, p ∈ ]1,+∞[, and let {εh} be a sequence of positive
numbers converging to 0. Let {vh} be a sequence converging weakly in W 1,p(Ω) to
some v. Then, there exist a subsequence {hk} and V ∈ Lp(Ω;W 1,p

per(Y )) such that, as
k → +∞,

Tεhk
(∇vhk

) → ∇v + ∇yV weakly in Lp(Ω × Y ; Rn).

1.4. A result of De Giorgi. We recall De Giorgi’s argument allowing us to fix
boundary values when computing Γ-limits (see [DG] for the scalar case and [F] for an
extension to the vector-valued case).

Lemma 1.8. Assume that f satisfies (0.1), (0.3), and (0.4) for some p ∈ [1,+∞[.
Let {νh} ⊆ ]0,+∞[ be increasing and diverging. Then, for every Ω ∈ A0, and every
u ∈ W 1,p(Ω; Rm),

inf

{
lim inf
h→+∞

∫
Ω

f(νhx,∇uh) dx : {uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim inf
h→+∞

∫
Ω

f(νhx,∇uh) dx :

{uh} ⊆ u + W 1,p
0 (Ω; Rm), uh → u in Lp(Ω; Rm)

}
.

2. The homogenization result. Let f satisfy hypothesis (0.1), and let p be in
[1,+∞[. For every t > 0, set

ft: z ∈ R
nm �→ 1

tn
inf

{∫
tY

f(y, z + ∇v) dy : v ∈ W 1,p
0 (tY ; Rm)

}

= inf

{∫
Y

f(ty, z + ∇v) dy : v ∈ W 1,p
0 (Y ; Rm)

}
.

(2.1)

For every t > 0, the function ft is upper semicontinuous as the infimum of a family
of continuous functions. If, in addition, hypothesis (0.3) holds, then clearly

ft(z) ≤
∫
Y

a(ty) dy + M |z|p for every t > 0 and every z ∈ R
nm.(2.2)
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Lemma 2.1. Assume that f satisfies (0.1) and that f(·, z) ∈ L1(Y ) for every
z ∈ R

nm. For every t > 0, let ft be defined by (2.1). Then, for every z in R
nm, the

limit limt→+∞ ft(z) exists and

lim
t→+∞

ft(z) = inf
h∈N

fh(z).

Proof. Fix z in R
nm. By the periodicity of f(·, z), one has

fkν(z) ≤ fν(z) for every ν, k ∈ N.(2.3)

Let s, t ∈ ]0,+∞[ with s < t. The periodicity of f(·, z) implies that

fs(z) ≥
tn

sn

(
ft(z) −

1

tn

∫
tY \sY

f(y, z) dy

)

≥ ft(z) −
1

tn

∫
([t]+1)Y \[s]Y

f(y, z) dy

= ft(z) −
([t] + 1)n − [s]n

tn

∫
Y

f(y, z) dy.

(2.4)

Combining (2.4) and (2.3), we get

ft(z) ≤ f[ t
[s]

][s](z) +
([t] + 1)n − [ t

[s] ]
n[s]n

tn

∫
Y

f(y, z) dy

≤ f[s](z) +
([t] + 1)n − [ t

[s] ]
n[s]n

tn

∫
Y

f(y, z) dy.

(2.5)

Hence, applying again (2.4),

(2.6)

ft(z) ≤ fs−1(z) +

(
([s] + 1)n − [s− 1]n

[s]n
+

([t] + 1)n − [ t
[s] ]

n[s]n

tn

)∫
Y

f(y, z) dy.

By the summability assumption on f(·, z), letting first t and then s go to infinity
in (2.6), we conclude that lim supt→+∞ ft(z) ≤ lim infs→+∞ fs(z), namely, that the
limit limt→+∞ ft(z) exists.

Now choose h ∈ N and t ∈ ]h,+∞[. Then (2.5), together with (2.3), implies

ft(z) ≤ f[ t
h ]h(z) +

([t] + 1)n − [ th ]nhn

tn

∫
Y

f(y, z) dy

≤ fh(z) +
([t] + 1)n − [ th ]nhn

tn

∫
Y

f(y, z) dy.

Letting t go to infinity, we obtain

lim sup
t→+∞

ft(z) ≤ fh(z)

for every h ∈ N. This inequality completes the proof of the lemma.
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Lemma 2.2. Assume that f satisfies (0.1), (0.2), (0.3), and (0.4) for some p ∈
]1,+∞[. For every t > 0, let ft be defined in (2.1). Then, for every Ω in A0, t > 0,
and every u in W 1,p(Ω; Rm), the following inequality holds:∫

Ω

ft(∇u) dx

=
1

tn
inf

{∫
Ω×tY

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (tY ; Rm))

}
.

Proof. Let Ω, t, u be as above. Fix V in W 1,p
0 (tY ; Rm). Obviously, for a.e. x ∈ Ω,

1

tn

∫
tY

f(y,∇u(x) + ∇yV (x, y)) dy

≥ 1

tn
inf

{∫
tY

f(y,∇u(x) + ∇v(y)) dy : v ∈ W 1,p
0 (tY ; Rm)

}
= ft(∇u(x)),

from which follows

1

tn
inf

{∫
Ω×tY

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (tY ; Rm))

}

≥
∫

Ω

ft(∇u(x)) dx.

The reverse inequality is obvious if
∫
Ω
ft(∇u(x)) dx = +∞. If

∫
Ω
ft(∇u(x)) dx

is finite, we make use of Castaing’s selection theorem applied to the metric space
X = W 1,p

0 (tY ; Rm).
Let Γ be the multifunction defined by

Γ: z ∈ R
nm �→

{
v ∈ W 1,p

0 (tY ; Rm) :
1

tn

∫
tY

f(y, z + ∇v(y)) dy = ft(z)

}
.

By (0.4) and Proposition 1.4 applied to tY , the infimum defining ft(z) is achieved
for every z ∈ R

nm. So, Γ(z) is nonempty and weakly closed, and hence strongly
closed. We claim that Γ has a B(Rnm)-measurable selection (where B(Rnm) denotes
the σ-algebra of the Borel subsets of R

nm). By Theorem 1.1, it is enough to show
that for every strongly closed subset F of W 1,p

0 (tY ; Rm), one has

Γ−(F )
.
= {ζ ∈ R

nm : Γ(ζ) ∩ F �= ∅} ∈ B(Rnm).

We first assume that F is a closed ball in W 1,p
0 (tY ; Rm) and prove that Γ−(F ) is

closed. Let {zh} ⊆ Γ−(F ), z ∈ R
nm, with zh → z. For every h ∈ N, let vh ∈ Γ(zh)∩F .

Then, {vh} turns out to be bounded in W 1,p
0 (tY ; Rm). In fact, (0.4), the upper

semicontinuity of ft, (0.3), and (2.2) imply that

lim sup
h→+∞

1

tn

∫
tY

|zh + ∇vh(y)|p dy ≤ lim sup
h→+∞

1

tn

∫
tY

f(y, zh + ∇vh(y)) dy

= lim sup
h→+∞

ft(zh) ≤ ft(z) < +∞.

Therefore, there is a subsequence {vhk
} of {vh}, and some v∞ in F such that vhk

⇀ v∞
in W 1,p

0 (tY ; Rm). Then, Proposition 1.4 (applied to tY ) and the upper semicontinuity



1442 D. CIORANESCU, A. DAMLAMIAN, AND R. DE ARCANGELIS

of ft imply

ft(z) ≤
1

tn

∫
tY

f(y, z + ∇v∞(y)) dy ≤ lim inf
k→+∞

1

tn

∫
tY

f(y, zhk
+ ∇vhk

(y)) dy

≤ lim sup
k→+∞

ft(zhk
) ≤ ft(z)

so that v∞ ∈ Γ(z) ∩ F and z ∈ Γ−(F ).
By using the separability of W 1,p

0 (tY ; Rm), every strongly closed subset F of
W 1,p

0 (tY ; Rm) can be written as a countable intersection of countable unions of balls.
Consequently, Γ−(F ) is itself a countable intersection of countable unions of closed
sets, and hence Γ−(F ) ∈ B(Rnm). By Theorem 1.1, Γ admits a B(Rnm)-measurable
selection σ.

For a.e. x ∈ Ω, set U(x) = σ(∇u(x)). Then, U is L(Ω)-measurable with values in
W 1,p

0 (tY ; Rm). Moreover, for a.e. x ∈ Ω,

ft(∇u(x)) =
1

tn

∫
tY

f(y,∇u(x) + ∇yU(x)(y)) dy.

Since ft(∇u) is summable, the previous equality, together with (0.4), implies that
∇yU ∈ Lp(Ω×tY ; Rnm). Thus, by the Poincaré inequality, U is in Lp(Ω;W 1,p

0 (tY ; Rm)).
Consequently,∫

Ω

ft(∇u(x)) dx

=
1

tn

∫
Ω×tY

f(y,∇u(x) + ∇yU(x)(y)) dxdy

≥ 1

tn
inf

{∫
Ω×tY

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (tY ; Rm))

}
,

and this completes the proof of the lemma.
Proposition 2.3. Assume that f satisfies (0.1), (0.2), (0.3), and (0.4) for

some p ∈ ]1,+∞[. Let fhom be defined by (0.5). Then, for every Ω ∈ A0 and
u ∈ W 1,p(Ω; Rm), the limit below exists, and

lim
t→+∞

1

tn
inf

{∫
Ω×tY

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (tY ; Rm))

}

=

∫
Ω

fhom(∇u(x)) dx.

Proof. The conclusion follows from Lemma 2.2, Lemma 2.1, (2.2), and the
Lebesgue dominated convergence theorem.

Remark 2.4. Under the assumptions of Proposition 2.3, note the various formu-
lations for the limit energy, the latter deriving from Lemma 2.1:∫

Ω

fhom(∇u) dx

= lim
t→+∞

1

tn
inf

{∫
Ω×tY

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (tY ; Rm))

}

= lim
t→+∞

inf

{∫
Ω×Y

f(ty,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}

= inf
h∈N

inf

{∫
Ω×Y

f(hy,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}
.



PERIODIC UNFOLDING FOR QUASICONVEX INTEGRALS 1443

We now state the main homogenization result for nonlinear energy integral func-
tionals.

Theorem 2.5. Let f satisfy (0.1) and (0.2). Let p ∈ ]1,+∞[, and assume that
(0.3) and (0.4) hold. Let fhom be defined by (0.5). Then, for every {εh} ⊆ ]0,+∞[
converging to 0, Ω in A0, and u in W 1,p(Ω; Rm),∫

Ω

fhom(∇u) dx

= inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ u + W 1,p
0 (Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ u + W 1,p
0 (Ω; Rm), uh → u in Lp(Ω; Rm)

}
.

The proof uses the following lemmas and will be given at the end of this section.
Lemma 2.6. Assume that f satisfies (0.1) and (0.3) for some p ∈ ]1,+∞[. Let

{εh} ⊆ ]0,+∞[ converge to 0, Ω in A0, and u in W 1,p(Ω; Rm). Then

inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

≤ inf
k∈N

1

kn
inf

{∫
Ω×kY

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
per(kY ; Rm))

}
.

Proof. Let k ∈ N, and let U ∈ C1(Rn × R
n; Rm) with U(x, ·) kY -periodic for

every x ∈ Ω. For every h ∈ N and x ∈ Ω, set uh(x) = u(x) + εhU(x, x
εh

). Clearly,

∇uh(x) = ∇u(x) + εh∇xU(x, x
εh

) + ∇yU(x, x
εh

) for every h ∈ N and x ∈ Ω.

Using the unfolding operator, (1.2), and the periodicity properties of f and U ,
one has∫

Ω

f
( x

εh
,∇uh

)
dx =

∫
Ωkεh

×Y

Tkεh
(
f
( ·
εh

,∇uh(·)
))

(x, y) dxdy

=

∫
Ωkεh

×Y

f
( 1

εh

(
kεh

[ x

kεh

]
+ kεhy

)
, Tkεh(∇uh)(x, y)

)
dxdy

=

∫
Ωkεh

×Y

f
(
ky, Tkεh(∇u)(x, y) + εh∇xU

(
kεh

[ x

kεh

]
+ kεhy, k

[ x

kεh

]
+ ky

)

+ ∇yU
(
kεh

[ x

kεh

]
+ kεhy, k

[ x

kεh

]
+ ky

))
dxdy

=

∫
Ωkεh

×Y

f
(
ky, Tkεh(∇u)(x, y) + εh∇xU

(
kεh

[ x

kεh

]
+ kεhy, ky

)

+ ∇yU
(
kεh

[ x

kεh

]
+ kεhy, ky

))
dxdy.
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Since {uh} converges uniformly to u in Ω, we have

inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {vh} ⊆ W 1,p(Ω; Rm), vh → u in Lp(Ω; Rm)

}

≤ lim sup
h→+∞

∫
Ωkεh

×Y

f
(
ky, Tkεh(∇u)(x, y) + εh∇xU

(
kεh

[ x

kεh

]
+ kεhy, ky

)

+ ∇yU
(
kεh

[ x

kεh

]
+ kεhy, ky

))
dxdy.

On the other hand, by the continuity properties ∇xU and ∇yU , one has

εh∇xU
(
kεh

[ ·
kεh

]
+ kεh·, ·

)
→ 0, ∇yU

(
kεh

[ ·
kεh

]
+ kεh·, ·

)
→ ∇yU uniformly in Ω.

By (1.3), Tkεh(∇u) → ∇̃u in Lp(Rn × Y ; Rnm). Then, since |∂Ω| = 0, using (0.3) we
conclude that

lim
h→+∞

∫
Ωkεh

×Y

f
(
ky, Tkεh(∇u)(x, y) + εh∇xU

(
kεh

[ x

kεh

]
+ kεhy, ky

)

+ ∇yU
(
kεh

[ x

kεh

]
+ kεhy, ky

))
dxdy

=

∫
Ω×Y

f(ky,∇u(x) + ∇yU(x, ky)) dxdy

=
1

kn

∫
Ω×kY

f(y,∇u(x) + ∇yU(x, y)) dxdy.

By the above inequalities we get

inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{vh} ⊆ W 1,p(Ω; Rm), vh → u in Lp(Ω; Rm)

}

≤ 1

kn

∫
Ω×kY

f(y,∇u(x) + ∇yU(x, y)) dxdy

(2.7)

for every U ∈ C1(Rn × R
n; Rm) with U(x, ·) kY -periodic for every x ∈ Ω.

By virtue of (0.1) and (0.3), we observe that the right-hand side of (2.7) is
continuous with respect to U ∈ Lp(Ω;W 1,p

per(kY ; Rm)) and that the set of func-
tions U in C1(Rn × R

n; Rm) with U(x, ·) kY -periodic for every x ∈ Ω is dense in
Lp(Ω;W 1,p

per(kY ; Rm)). Consequently, (2.7) holds for every U ∈ Lp(Ω;W 1,p
per(kY ; Rm))

as well. Taking first the infimum as U varies in Lp(Ω;W 1,p
per(kY ; Rm)), and then the

infimum on k, completes the proof.
Remark 2.7. Since, for every integer k, the space W 1,p

0 (kY ; Rm) is a subspace of
W 1,p

per(kY ; Rm), Lemma 2.6 holds with the V in Lp(Ω;W 1,p
0 (kY ; Rm)).
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Lemma 2.8. Assume that f satisfies (0.1), (0.3), (0.4), and (1.1) for some p ∈
[1,+∞[. Let {εh} ⊆ ]0,+∞[ converge to 0, Ω in A0, and u in W 1,p(Ω; Rm). Then

inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇u + ∇uh

)
dx : {uh} ⊆ W 1,p

0 (Ω; Rm), uh → 0 in Lp(Ω; Rm)

}

≥ sup
ν∈N

inf

{
lim inf
h→+∞

∫
Ω

f(νhx,∇u + ∇vh) dx :

{vh} ⊆ W 1,p
0 (Ω; Rm), vh → 0 in Lp(Ω; Rm)

}
.

Proof. Let {uh} ⊆ W 1,p
0 (Ω; Rm) be such that uh → 0 in Lp(Ω; Rm). Clearly, we

can assume

lim inf
h→+∞

∫
Ω

f
( x

εh
,∇u + ∇uh

)
dx < +∞.

Let Ω′ in A0 satisfy Ω ⊆ Ω′. For every h ∈ N, we still denote uh the zero extension
of uh from Ω to Ω′. We also select an extension of u to Ω′ in W 1,p(Ω′; Rm) which, for
simplicity, is denoted u. Then, clearly∫

Ω′
f
( x

εh
,∇u + ∇uh

)
dx

≤
∫

Ω

f
( x

εh
,∇u + ∇uh

)
dx +

∫
Ω′\Ω

(
a
( x

εh

)
+ M |∇u(x)|p

)
dx

for every h ∈ N.

(2.8)

Let {hj} ⊆ N be such that {[ 1
νεhj

]} is strictly increasing, and

lim
j→+∞

∫
Ω

f
( x

εhj

,∇u + ∇uhj

)
dx = lim inf

h→+∞

∫
Ω

f
( x

εh
,∇u + ∇uh

)
dx.(2.9)

Then (0.4) provides that supj∈N

∫
Ω
|∇uhj |p dx < +∞.

Now, let ν be a positive integer. For every j ∈ N, set θj = νεhj
[ 1
νεhj

], and observe

that θj → 1− as j goes to +∞. For every j ∈ N, define vj
.
= 1

θj
uhj

(θj ·). Clearly, vj has

support in 1
θj

Ω, which is included in Ω′ for large values of j, so it is in W 1,p
0 (Ω′; Rm)

for the same values of j. From its definition, it is straightforward that {vj} goes to
zero in Lp(Ω; Rm) because {uh} does. Moreover,

sup
j∈N

∫
Ω′

|∇vj |p dx < +∞.(2.10)

By performing the change of variable x = θjx
′, for j large enough, we get succes-

sively∫
Ω′

f
( x

εhj

,∇u + ∇uhj

)
dx = θnj

∫
θ−1
j

Ω′
f
(θjx′

εhj

, (∇xu + ∇xuhj
)(θjx

′)
)

dx′

= θnj

∫
θ−1
j

Ω′
f
(θjx′

εhj

,∇xu(θjx
′) + ∇x′vj(x

′)
)

dx′

≥ θnj

∫
Ω

f
(θjx′

εhj

,∇xu(θjx
′) + ∇x′vj(x

′)
)

dx′.
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Consequently, using (1.1) and Hölder’s inequality,∫
Ω′
f
( x

εhj

,∇u + ∇uhj

)
dx

≥ θnj

∫
Ω

f
(θjx′

εhj

,∇xu(x′) + ∇x′vj(x
′)
)

dx′

− θnj C

{(∫
Ω

a
(θjx′

εhj

)
dx′

)1− 1
p

+

(∫
Ω

|∇xu(θjx
′)|p dx′

)1− 1
p

+

(∫
Ω

|∇xu(x′)|p dx′
)1− 1

p

+

(∫
Ω

|∇x′vj(x
′)|p dx′

)1− 1
p
}

×
(∫

Ω

|∇xu(θjx
′) −∇xu(x′)|p dx′

) 1
p

for j large enough.

(2.11)

Now, for every j ∈ N, set nj = [ 1
νεhj

]. Since
θj
εhj

= ν[ 1
νεhj

] = νnj , going to the

limit in (2.11), exploiting the periodicity of a and (2.10), gives

lim inf
j→+∞

∫
Ω

f(νnjx,∇u + ∇vj) dx = lim inf
j→+∞

θnj

∫
Ω

f
(θjx
εhj

,∇u + ∇vj

)
dx

≤ lim
j→+∞

∫
Ω′

f
( x

εhj

,∇u + ∇uhj

)
dx,

(2.12)

where we used the fact that
∫
Ω
|∇xu(θjx

′) − ∇xu(x′)|p dx′ converges to 0 by the
continuity as θj → 1 of the scaling operator in Lp.

Combining (2.12), (2.8), and (2.9), and using the periodicity of the function a,
yields

lim inf
j→+∞

∫
Ω

f(νnjx,∇u + ∇vj) dx

≤ lim inf
h→+∞

∫
Ω

f
( x

εh
,∇u + ∇uh

)
dx

+ |Ω′ \ Ω|
∫
Y

a(y) dy + M

∫
Ω′\Ω

|∇u(x)|p dx.

(2.13)

Recall that {nj} is strictly increasing. Thus, for every h ∈ N we define {wh} as

wh =
{
vj if h = nj for some j ∈ N,
0 otherwise.

Observe that {wh} ⊆ W 1,p(Ω; Rm), and that wh → 0 in Lp(Ω; Rm). Then, since
|∂Ω| = 0 and {nj} ⊆ N, once Ω′ shrinks to Ω, by (2.13) we conclude that

inf

{
lim inf
h→+∞

∫
Ω

f(νhx,∇u + ∇vh) dx : {vh} ⊆ W 1,p(Ω; Rm), vh → 0 in Lp(Ω; Rm)

}

≤ lim inf
h→+∞

∫
Ω

f(νhx,∇u + ∇wh) dx ≤ lim inf
j→+∞

∫
Ω

f(νnjx,∇u + ∇vj) dx

≤ lim inf
h→+∞

∫
Ω

f
( x

εh
,∇u + ∇uh

)
dx.
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The desired conclusion follows by using Lemma 1.8 and taking the supremum for ν
in N .

Lemma 2.9. Assume that f satisfies (0.1), (0.3), (0.4), and (1.1) for some p ∈
[1,+∞[. Let {εh} ⊆ ]0,+∞[ converge to 0, Ω in A0, and u in W 1,p(Ω; Rm). Then

inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇u + ∇uh

)
dx : {uh} ⊆ W 1,p

0 (Ω; Rm), uh → 0 in Lp(Ω; Rm)

}

≥ lim inf
h→+∞

inf

{∫
Ω×Y

f(hy,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}
.

Proof. Since Ω has Lipschitz boundary, u can be extended as an element of
W 1,p(Rn; Rm) without changing notation.

To prove the lemma, we estimate from below the right-hand side of the inequality
in Lemma 2.8.

Let ν ∈ N, and let {vh} ⊆ W 1,p
0 (Ω; Rm) be such that vh → 0 in Lp(Ω; Rm). As

before, each vh can be considered as extended by zero outside of Ω. For every j ∈ Z
n,

set Yν,j = 1
ν (j + Y ) and let Jν = {j ∈ Z

n : Yν,j ∩ Ω �= ∅}. Then

∑
j∈Jν

lim inf
h→+∞

∫
Yν,j

f(νhx,∇u + ∇vh) dx

(2.14)
≤ lim inf

h→+∞

∫
Ω

f(νhx,∇u + ∇vh) dx + |Ω1/ν \ Ω|
∫
Y

ady + M

∫
Ω1/ν\Ω

|∇u|p dx.

For every j ∈ Jν , we apply Lemma 1.8 to Yν,j , and get {wν,j,h} ⊆ W 1,p
0 (Yν,j ; R

m)
such that wν,j,h → 0 in Lp(Yν,j ; R

m), and

lim inf
h→+∞

∫
Yν,j

f(νhx,∇u + ∇wν,j,h) dx ≤ lim inf
h→+∞

∫
Yν,j

f(νhx,∇u + ∇vh) dx.(2.15)

For every j ∈ Jν and h ∈ N, using the unfolding operator T1/ν on Yν,j , together
with the same arguments as in Lemma 2.6, gives∫

Yν,j

f(νhx,∇u + ∇wν,j,h) dx

≥
∫
Yν,j×Y

f(hy, T1/ν(∇u)(x, y) + T1/ν(∇wν,j,h)(x, y)) dxdy.

Observe now that for every h ∈ N and j ∈ Jν ,

T1/ν(∇wν,j,h) = ν∇yT1/ν(wν,j,h).

When x varies almost everywhere in some Yν,j , the function T1/ν(wν,j,h)(x, ·) belongs

to W 1,p
0 (Y ; Rm), which implies T1/ν(wν,j,h) ∈ Lp(Yν,j ;W

1,p
0 (Y ; Rm)). Consequently,∫

Yν,j

f(νhx,∇u + ∇wν,j,h) dx

≥ inf

{∫
Yν,j×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Yν,j ;W
1,p
0 (Y ; Rm))

}
.
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Since the sets {Yν,j}j∈Jν
are pairwise disjoint and Ω ⊆ Ω1/ν = ∪j∈Jν

Yν,j up to a
null set, it is easy to verify that for every h ∈ N

∑
j∈Jν

inf

{∫
Yν,j×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Yν,j ;W
1,p
0 (Y ; Rm))

}

= inf

{∫
Ω1/ν×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}

≥ inf

{∫
Ω×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}
.

Then (2.15), (2.15), and Proposition 2.3 provide

lim inf
h→+∞

∫
Ω

f(νhx,∇u + ∇vh) dx + |Ω1/ν \ Ω|
∫
Y

ady + M

∫
Ω1/ν\Ω

|∇u|p dx

≥
∑
j∈Jν

lim inf
h→+∞

inf

{∫
Yν,j×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Yν,j ;W
1,p
0 (Y ; Rm))

}

= lim
h→+∞

∑
j∈Jν

inf

{∫
Yν,j×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Yν,j ;W
1,p
0 (Y ; Rm))

}

≥ lim
h→+∞

inf

{∫
Ω×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}
.

As ν goes to +∞, |Ω1/ν \Ω| → 0. Therefore, to complete the proof, we just need
to verify that

lim inf
ν→+∞

lim
h→+∞

inf

{∫
Ω×Y

f(hy, T1/ν(∇u(x)) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}

≥ lim inf
h→+∞

inf

{∫
Ω×Y

f(hy,∇u(x) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}
.

(2.16)
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To do this, we first recall that, by (1.3), {T1/ν(∇u)} converges to ∇u in Lp(Ω×Y ; Rmn)
as ν goes to +∞. For ν and h in N, using (0.3), (0.4), and the boundedness of
{
∫
Y
a(hy) dy}, it is straightforward to find a K(u) ∈ ]0,+∞[, not depending on ν and

h, such that

inf

{∫
Ω×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}

= inf

{∫
Ω×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm)), ‖T1/ν(∇u) + ∇yV ‖Lp(Ω×Y ;Rm) ≤ K(u)

}
.

(2.17)

If V ∈ Lp(Ω;W 1,p
0 (Y ; Rm)) satisfies ‖T1/ν(∇u) + ∇yV ‖Lp(Ω×Y ;Rm) ≤ K(u), using

(1.1) and Hölder’s inequality, we have∫
Ω×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dx

≥
∫

Ω×Y

f(hy,∇u(x) + ∇yV (x, y)) dxdy

− C

{(
|Ω|

∫
Y

a(hy) dy

)1− 1
p

+ ‖T1/ν(∇u) + ∇yV ‖p−1
Lp(Ω×Y ;Rm)

+ ‖∇u + ∇yV ‖p−1
Lp(Ω×Y ;Rm)

}
‖T1/ν(∇u) −∇u‖Lp(Ω×Y ;Rm)

≥
∫

Ω×Y

f(hy,∇u(x) + ∇yV (x, y)) dxdy − C

{(
|Ω|

∫
Y

a(hy) dy

)1− 1
p

+ K(u)p−1

+ (‖∇u− T1/ν(∇u)‖Lp(Ω×Y ;Rm) + K(u))p−1

}
‖T1/ν(∇u) −∇u‖Lp(Ω×Y ;Rm).

This, together with (2.17), implies for every ν, h in N that

inf

{∫
Ω×Y

f(hy, T1/ν(∇u)(x, y) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}

≥ inf

{∫
Ω×Y

f(hy,∇u(x) + ∇yV (x, y)) dxdy :

V ∈ Lp(Ω;W 1,p
0 (Y ; Rm))

}

− C

{(
|Ω|

∫
Y

a(hy) dy

)1− 1
p

+ K(u)p−1

+ ‖∇u− T1/ν(∇u)‖p−1
Lp(Ω×Y ;Rm)

}
‖T1/ν(∇u) −∇u‖Lp(Ω×Y ;Rm).

(2.18)
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From the boundedness of {
∫
Y
a(hy) dy}, and the convergence of {T1/ν(∇u)} to ∇u in

Lp(Ω × Y ; Rmn), (2.18) implies equality (2.16) by letting h and ν successively go to
+∞.

Proof of Theorem 2.5. First, (1.1) follows by Proposition 1.5. Then the theorem
is a direct consequence of Lemma 2.6, Remark 2.7, Lemma 2.9, Lemma 1.8, and
Proposition 2.3.

3. The convex case. Let W 1,p
per(Y ; Rm) denote the Banach space of Y -periodic

functions in W 1,p
loc (Rn; Rm) endowed with the W 1,p(Y ; Rm)-norm.

Consider the case where hypothesis (0.2) is replaced by (0.6). We show below
how the proof of the homogenization result in simplified by the periodic unfolding
method.

In the convex case, the homogenized density is classically defined as

f#: z ∈ R
nm �→ inf

{∫
Y

f(y, z + ∇v) dy : v ∈ W 1,p
per(Y ; Rm)

}
.(3.1)

Theorem 3.1. Let f satisfy (0.1) and (0.6). Let p ∈ ]1,+∞[, and assume that
(0.3) and (0.4) hold. Let f# be defined by (3.1). Then, for every {εh} ⊆ ]0,+∞[
converging to 0, Ω in A0, and u in W 1,p(Ω; Rm),∫

Ω

f#(∇u) dx

= inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx : {uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ u + W 1,p
0 (Ω; Rm), uh → u in Lp(Ω; Rm)

}

= inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ u + W 1,p
0 (Ω; Rm), uh → u in Lp(Ω; Rm)

}
.

Proof. First of all, we recall that (0.6) trivially implies (0.2) so that, by Proposi-
tion 1.5, (1.1) holds.

Let {εh}, Ω, and u be as above. We claim that

inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ W 1,p(Ω; Rm), uh ⇀ u in W 1,p(Ω; Rm)

}

≥ inf

{∫
Ω×Y

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
per(Y ; Rm))

}
.

(3.2)

Indeed, let {uh} ⊆ W 1,p(Ω; Rm) weakly converge to u in W 1,p(Ω; Rm), and assume
for simplicity that limh→+∞

∫
Ω
f( x

εh
,∇uh) dx exists and is finite. Then, Theorem 1.7
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implies that there exist a strictly increasing sequence of integers {hk} and some U in
Lp(Ω;W 1,p

per(Y ; Rm)) with

Tεhk
(∇uhk

) ⇀ ∇u + ∇yU in Lp(Ω × Y ; Rnm).(3.3)

By (1.2) and the periodicity properties of f , for every h in N, we have∫
Ω

f
( x

εh
,∇uh

)
dx ≥

∫
Ω×Y

f
( 1

εh

(
εh

[ x

εh

]
+ εhy

)
, Tεh(∇uh)(x, y)

)
dxdy

=

∫
Ω×Y

f(y, Tεh(∇uh)(x, y)) dxdy.

Hence, using (3.3), (0.6), and Proposition 1.3 applied to Ω × Y , we conclude that

lim
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx = lim

k→+∞

∫
Ω

f
( x

εhk

,∇uhk

)
dx

≥
∫

Ω×Y

f(y,∇u(x) + ∇yU(x, y)) dxdy

≥ inf

{∫
Ω×Y

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
per(Y ; Rm))

}
,

from which (3.2) follows.
By (3.2), (0.4), and Rellich’s theorem, it then follows that

inf

{
lim inf
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

≥ inf

{∫
Ω×Y

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
per(Y ; Rm))

}
.

(3.4)

On the other hand, Lemma 2.6 yields

inf

{
lim sup
h→+∞

∫
Ω

f
( x

εh
,∇uh

)
dx :

{uh} ⊆ W 1,p(Ω; Rm), uh → u in Lp(Ω; Rm)

}

≤ inf

{∫
Ω×Y

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
per(Y ; Rm))

}
.

(3.5)

Eventually, we observe that the very same proof of Lemma 2.2 for t = 1, with
W 1,p

0 (Y ; Rm) replaced by W 1,p
per(Y ; Rm), and f1 by f#, provides

inf

{∫
Ω×Y

f(y,∇u(x) + ∇yV (x, y)) dxdy : V ∈ Lp(Ω;W 1,p
per(Y ; Rm))

}

=

∫
Ω

f#(∇u) dx.

(3.6)

Consequently, (3.4), (3.5), (3.6), and Lemma 1.8 prove the theorem.
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YOUNG MEASURES ASSOCIATED WITH HOMOGENIZATION∗

PABLO PEDREGAL†

Abstract. We address the issue of determining the Young measure associated with the sequence
of gradients of the solutions to a highly oscillatory boundary value problem as in a homogenization
setting. After proving a general result, we focus on the standard periodic case providing explicit
formulae for the situation of a first-order laminate.
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1. Introduction. In [10], a treatment was given by which Γ-convergence [4] can
be understood and examined, in some situations, by means of Young measures. See
also [6], [7]. Here we would like to provide some hint not only about Γ-limits of func-
tionals in typical cases and their minimizers, but also about the full Young measure
associated with minimizers of a sequence of functionals. From this perspective, this
work can be considered as a second part of [10].

To be more precise we will focus on a typical situation in homogenization. Suppose
that the sequence {uj} is the sequence of solutions for

div [Aj(x)∇uj(x)] = 0 in Ω, uj = u0 on ∂Ω,(1.1)

where u0 ∈ H1(Ω), Ω is a regular bounded domain, and we have the uniform bounds

0 < a ≤ Aj(x) ≤ b.

We have considered the homogeneous case for simplicity. Any source right-hand-side
term can similarly be examined. Suppose that for a given relevant quantity φ we
know that {φ(∇uj)} weakly converges in L1(Ω). How can we determine the limit

lim
j→∞

∫
Ω

φ (∇uj(x)) dx,

or, more generally,

lim
j→∞

∫
Ω

ξ(x)φ (∇uj(x)) dx,(1.2)

for an arbitrary, measurable, uniformly bounded function ξ(x) and continuous φ?
This is the issue of the identification of arbitrary macroscopic quantities (see [5]).

We know too well that when the density φ is linear the answer is given by the
solution of the corresponding homogenized equation. What can be said for a general
nonlinear quantity if the sequence of gradients {∇uj} does not converge strongly in

∗Received by the editors September 7, 2004; accepted for publication (in revised form) June
7, 2005; published electronically January 10, 2006. This work is supported by research project
MTM2004-07114 (Spain).
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†ETSI Industriales, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain (pablo.

pedregal@uclm.es).
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H1(Ω), which is the case of interest? This issue is nothing more than determining the
Young measure corresponding to the sequence of gradients {∇uj} [3], [8], [11], [12].
Whenever ψ(x, λ) is a Carathéodory integrand (measurable in x and continuous in
λ), the Young measure associated with {∇uj} furnishes a representation of all limits
of {ψ(x,∇uj)} whenever this sequence is weakly convergent in L1(Ω), namely,

lim
j→∞

∫
Ω

ψ(x,∇uj(x)) dx =

∫
Ω

∫
RN

ψ(x, λ) dνx(λ) dx

if ν = {νx}x∈Ω is the Young measure generated by {∇uj}.
In the one-dimensional situation, for some simple examples the functions uj can

even be computed explicitly (see [9]) so that, in particular, we can determine the
associated Young measure. Having a sequence of functions is much more than having
its underlying Young measure. The whole point is to determine and understand the
limits (1.2) without calculating explicitly the solutions. Obviously, this is always the
case in higher dimensions. Specifically, we will see the role played by the homogenized
equation in determining such families of probability measures.

Since we will describe our results from the horizon of Γ-convergence and conver-
gence of functionals, an additional comparison with variational problems may be of
help. When we face a nonconvex variational problem such as

minimize in u :

∫
Ω

W (∇u(x)) dx

subject to u ∈ W 1,p(Ω), u − u0 ∈ W 1,p
0 (Ω), we need to examine relaxation at two

different levels. At first we examine the convexified problem

minimize in u :

∫
Ω

CW (∇u(x)) dx,

where CW designates the (quasi-)convexification of W under appropriate technical
assumptions. This new problem admits minimizers which are the weak limits of
minimizing sequences of the initial nonconvex problem. At the second relaxation
level we explore the generalized variational problem in terms of Young measures,

minimize in ν = {νx}x∈Ω :

∫
Ω

∫
M

W (X) dνx(X) dx,

where the admissible families of probability measures ν need to verify some main
structural assumptions [8], [11] so that this new variational problem is truly a differ-
ent way of looking at the same underlying variational principle. The optimal solutions
of this generalized problem are the Young measures associated with the gradients of
minimizing sequences of the initial problem, and their first moments are the mini-
mizers of the first level of relaxation. Indeed, the identification of an optimal Young
measure starts by determining its first moment (mean field) as the solution of this first
level of relaxation or of the corresponding homogenized equation. Once we have this
mean field, by looking at the second level of relaxation and, based on the knowledge
of the first moment, we try to identify the optimal underlying Young measure, the
“fluctuations” around the mean field.

We would like to follow this same strategy in the context of homogenization,
where solutions of homogenized equations provide first moments of associated Young
measures. As indicated, this would be like a first level of relaxation. The second step
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would require the full Young measure which somehow needs to be recovered from its
first moment. In fact, the identification of the Young measure is somehow encoded
in the process of computing the integrand for the convexified functional or for the
Γ-limit, so that it typically involves a careful re-examination of how this integrand
was computed or defined.

Despite our strategy described above, a more general and abstract treatment
may be possible in which relevant Young measures are sought directly without any
reference to its first moment or knowledge of it. See [2]. Our ideas are obviously
very closely connected and motivated by homogenization techniques. In particular,
we would like to refer to [1] and [6].

In the context of Γ-convergence, and without being precise at this stage, if Ij
Γ-converges to I and u is a given field, we say that ν = {νx}x∈Ω is an optimal Young
measure associated with u if there is a sequence {uj} generating ν such that Ij(uj) →
I(u). When u is a minimizer for I, ν will be the Young measure corresponding to a
sequence of minimizers for Ij and, hence, it provides macroscopic quantities.

Although more general results are possible, our main contribution here focuses
on the standard periodic homogenization setting

Aj(x) = A(jx), 0 < a ≤ A(y) ≤ b, y ∈ Q, A is Q-periodic,

where Q is the unit cube in R2. We restrict our attention to the two-dimensional
situation. Here Q replaces the domain Ω above as we concentrate on a periodic
situation. For a given, Q-periodic u0 ∈ H1(Q), let uj ∈ H1(Q) be the unique, Q-
periodic, weak solution of (1.1). Let

ξ : R2 × R2 → R, ξ(λ, ρ),

Q-periodic in the λ-variable, be the unique, Q-periodic, weak solution in H1(Q) of
the cell problem for fixed ρ,

div λ [A(λ) (ρ + ∇λξ(λ, ρ))] = 0.(1.3)

Theorem 1.1. Let ν = {νx}x∈Ω be the Young measure associated with {∇uj}.
Then for any continuous φ we have

〈φ, νx〉 =

∫
Q

φ (∇u(x) + ∇λξ(λ,∇u(x))) dλ,

where u is the solution of the homogenized equation

div

[
∂ψ

∂ρ
(∇u(x))

]
= 0 in Q, u = u0 on ∂Q,

ψ(ρ) =

∫
Q

A(λ)

2
|ρ + ∇λξ(λ, ρ)|2 dλ.

Notice that because of (1.3) and the periodicity of ξ(λ, ρ), we also have

∂ψ

∂ρ
(ρ) =

∫
Q

A(λ)(ρ + ∇λξ(λ, ρ)) dλ.

When {ψ(x,∇uj(x))} converges weakly in L1(Ω), Theorem 1.1 implies

lim
j→∞

∫
Q

ψ(x,∇uj(x)) dx =

∫
Q

∫
Q

ψ (x,∇u(x) + ∇λξ(λ,∇u(x))) dλ dx.
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Theorem 1.1 is a direct consequence of results proved in sections 2 and 3, namely,
the main result, Theorem 2.2, and Corollary 3.2.

More explicit formulae can be given for more specific examples. For a typical
first-order laminate, where we take

A(y) = χ(y · n)a + (1 − χ(y · n))b, 0 < a < b, |n| = 1,

χ being the characteristic function of (0, t) in (0, 1) extended by periodicity and n the
unit normal to the layers, we have

ψ(ρ) = (ta + (1 − t)b) |ρ|2 − (b− a)2t(1 − t)

(1 − t)a + tb
(ρ · n)

2

and

lim
j→∞

∫
Q

φ(∇uj(x)) dx =

∫
Q

[tφ (F (∇u(x))) + (1 − t)φ (G(∇u(x)))] dx,

where u is the solution of the homogenized equation

div

[
∂ψ

∂ρ
(∇u(x))

]
= 0 in Q, u = u0 on ∂Q,

and F (ρ), G(ρ) are the linear mappings with matrices

1 +
(1 − t)(b− a)

(1 − t)a + tb
n⊗ n, 1 − t(b− a)

(1 − t)a + tb
n⊗ n,

respectively, where 1 is the identity matrix.
Corollary 1.2. For any Carathéodory integrand ψ(x, λ) such that {ψ(x,∇uj(x))}

weakly converges in L1(Q), we have

lim
j→∞

∫
Q

ψ(x,∇uj(x)) dx

=

∫
Ω

tψ

(
x,

(
1 +

(1 − t)(b− a)

(1 − t)a + tb
n⊗ n

)
∇u(x)

)

+ (1 − t)ψ

(
x,

(
1 − t(b− a)

(1 − t)a + tb
n⊗ n

)
∇u(x)

)
dx.

As an even more specific example, if {|∇uj |2} weakly converges in L1(Q), we
should have

lim
j→∞

∫
Q

|∇uj(x)|2 dx =

∫
Q

(
|∇u(x)|2 +

t(1 − t)(b− a)2

((1 − t)a + tb)2
(∇u(x) · n)

2

)
dx,

where u is the solution of the corresponding homogenized equation. Similar formulae
are valid for higher moments.

In section 2, as a preliminary step we treat the nongradient case, while in section
3 we concentrate on the gradient case. An equivalent analysis for situations more
general than the typical periodic case investigated here is possible, for instance for the
almost periodic case. This, however, would depend on a preliminary study analogous
to the one in [10] for more general situations.
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2. Case without derivatives. Let us first consider the case without derivatives
as a preliminary step. It can serve as a training ground for the main ideas we will
have to implement later for the case with gradients,

Ij(v) =

∫
Ω

W (Aj(x), v(x)) dx,

where the assumptions on

W (λ, ρ) : Rm × Rd → R

and the sequence {Aj} are as follows:
1. {Aj} is a weakly convergent sequence in Lq(Ω) for some q > 1;
2. W is uniformly coercive in ρ for all j with an exponent p > 1 and is uniformly

bounded from above by the same power so that

c (|ρ|p − 1) ≤ W (Aj(x), ρ) ≤ C (|ρ|p + 1)

for some C ≥ c > 0, all j, and a.e. x ∈ Ω. Under this hypothesis, every
sequence {uj} such that {Ij(uj)} is bounded from above will be bounded in
Lp(Ω) and thus, possibly for a subsequence, it will converge weakly to some
u ∈ Lp(Ω).

3. W is uniformly continuous in λ as indicated earlier,

|W (λ1, ρ) −W (λ2, ρ)| ≤ w(|λ1 − λ2|) |ρ|p ,

where w is continuous and w(0) = 0.
4. W is strictly convex in ρ for every fixed λ. This assumption can be dispensed

with as we will see in the proof of the theorem below, but we will retain it
for simplicity.

Let u ∈ Lp(Ω) be given, and let σ = {σx}x∈Ω be the Young measure generated
by the sequence {Aj}.

Definition 2.1. A family of probability measures ν = {νx}x∈Ω is an optimal
Young measure associated with u ∈ Lp(Ω) if it is the Young measure associated with
a sequence of functions {uj} such that the limit

lim
j→∞

∫
Ω

W (Aj(x), uj(x)) dx

is precisely the value of the Γ-limit at u taken with respect to the weak topology in
Lp(Ω).

Our main task consists of determining an optimal Young measure associated with
any given u ∈ Lp(Ω).

Theorem 2.2. There exists a map

ϕ0 : Ω × Rm × Rd → Rd

such that the family of measures supported in Rd and determined by

〈φ, νx〉 =

∫
Rm

φ (ϕ0(x, λ, u(x))) dσx(λ)

for any continuous φ is an optimal Young measure associated with u.
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Proof. The proof is nothing more than a careful analysis of how the Γ-limit of
{Ij} was obtained in [10] through Young measures. We recall here some of those main
ideas for the convenience of the readers.

In the nongradient case, the integrand ψ for the Γ-limit is given by

ψ(x, ρ) = min
ϕ

{∫
Rm

CW (λ, ϕ(λ)) dσx(λ) : ρ =

∫
Rm

ϕ(λ) dσx(λ)

}
.

CW stands for the convexification with respect to λ of W . Let us pretend we do
not have the hypothesis of convexity on W . Since, under our assumptions, there are
optimal solutions for this optimization problem, let us put ϕ0(x, λ, ρ) for one such
optimal solution so that

ρ =

∫
Rm

ϕ0(x, λ, ρ) dσx(λ),

ψ(x, ρ) =

∫
Rm

CW (λ, ϕ0(x, λ, ρ)) dσx(λ).

(2.1)

Further, by convexity arguments, find a family of probability measures μ(0) = {μ(0)
λ,x}

such that

ϕ0(x, λ, u(x)) =

∫
Rd

ρ dμ
(0)
λ,x(ρ),

CW (λ, ϕ0(x, λ, u(x))) =

∫
Rd

W (λ, ρ) dμ
(0)
λ,x(ρ).

(2.2)

Write

Λ = {Λx}x∈Ω , Λx = μ
(0)
λ,x(ρ) ⊗ σx(λ).

Then [10] Λ is the joint Young measure generated by {(Aj , uj)} for some sequence
{uj} so that

lim
j→∞

∫
Ω

W (Aj(x), uj(x)) dx =

∫
Ω

ψ(x, u(x)) dx.

The main idea now consists of projecting Λx onto the ρ-variable to obtain the Young
measure ν = {νx}x∈Ω corresponding to {uj},

Λx = πρ,x(λ) ⊗ νx(ρ),

for a certain family of probability measures πρ,x. Notice how Λx, for a.e. x ∈ Ω,
is a probability measure in the product space Rm × Rd that has been obtained and
defined through the optimality property written in (2.1) and (2.2). Its projection onto
Rm is σ = {σx}x∈Ω which is the Young measure associated with {Aj}. Then, we are

decomposing such probability measure Λx projecting onto the other component Rd

to obtain a family ν = {νx}x∈Ω, which, due to that optimality property coming from

μ
(0)
λ,x (see [10]), turns out to be an optimal Young measure associated with u. As

indicated, this is the main idea of this paper and it completes the analysis in [10].
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Indeed, by (2.1) and (2.2), we have

ψ(x, u(x)) =

∫
Rm

CW (x, ϕ0(x, λ, u(x))) dσx(λ)

=

∫
Rm

∫
Rd

W (λ, ρ) dμ
(0)
λ,x(ρ) dσx(λ)

=

∫
Rd

∫
Rm

W (λ, ρ) dπρ,x(λ) dνx(ρ).

Consequently,∫
Ω

ψ(x, u(x)) dx =

∫
Ω

∫
Rd×Rm

W (λ, ρ) dΛx(λ, ρ) dx = lim
j→∞

∫
Ω

W (Aj(x), uj(x)) dx.

For any continuous φ

〈φ, νx〉 =

∫
Rd×Rm

φ(ρ) dμ
(0)
λ,x(ρ) dσx(λ).

But notice that the strict convexity of W with respect to ρ implies that in fact

μ
(0)
λ,x(ρ) = δϕ0(x,λ,u(x))

and therefore

〈φ, νx〉 =

∫
Rm

φ (ϕ0(x, λ, u(x))) dσx(λ).

This is the statement of the theorem.
What is interesting is that this map ϕ0 can be explicitly computed in some stan-

dard cases.
Take first for 0 < a < b, p > 1, and 0 < t < 1

σx = tδa + (1 − t)δb, W (λ, ρ) = λ |ρ|p .

As it was shown in [10], the integrand for the Γ-limit is obtained from the mathemat-
ical programming problem

ψ(ρ) = min
ϕ

{tW (a, ϕ(a)) + (1 − t)W (b, ϕ(b)) : ρ = tϕ(a) + (1 − t)ϕ(b)} ,

where if we set F = ϕ(a), G = ϕ(b), and we put F (ρ) and G(ρ) for the optimal choices
for F and G so that

ψ(ρ) = tW (a, F (ρ)) + (1 − t)W (b,G(ρ)), ρ = tF (ρ) + (1 − t)G(ρ),

then the optimal Young measure associated with a given u ∈ Lp(Ω) comes from the
projection of

tδF (u(x)) ⊗ δa + (1 − t)δG(u(x)) ⊗ δb

onto the first variable, i.e.,

tδF (u(x)) + (1 − t)δG(u(x)).
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Explicit expressions for F (ρ) and G(ρ) are found in an elementary way.
Consider as a second example a sequence {Aj} whose Young measure is

dλ|[1,2]

independent of x ∈ Ω. Then the integrand ψ(ρ) is found through the minimum

ψ(ρ) = min
ϕ

{∫ 2

1

W (λ, ϕ(λ)) dλ : ρ =

∫ 2

1

ϕ(λ) dλ

}
.

The optimal solution of this zero-order variational problem should be a solution of

∂W

∂ρ
(λ, ϕ(λ)) = γ

if W is strictly convex with respect to ρ, where γ is a multiplier determined so that
the integral constraint is fulfilled. As an explicit example take

W (λ, ρ) =
1

2(λ− 1)(2 − λ)
|ρ|2 .

Then it is elementary to check that the optimal mapping ϕ0 is given by

ϕ0(λ, ρ) = ρ 6(λ− 1)(2 − λ),

and then the optimal Young measure associated with u ∈ L2(Ω) is given by

ν = {νx}x∈Ω , 〈φ, νx〉 =

∫ 2

1

φ (6(λ− 1)(2 − λ)u(x)) dλ.

We see that this time the projection is not one-to-one since ϕ0 itself is not one-to-
one. There is some overlapping effect on the oscillations from the viewpoint of the u
variable.

3. Gradient case. We now consider the sequence of functionals

Ij(v) =

∫
Ω

W (Aj(x),∇v(x)) dx,

where W and the sequence {Aj} are as in section 2. The difficulties attached to the
same analysis have been emphasized in [10]. To be able to provide a complete analysis
of the gradient situation, we need to add an important structural assumption on the
sequence {Aj}. This is the AGP (average gradient property) which, in plain words,
amounts to the fact that “averages of gradients over level sets of aj are gradients
themselves.” See [10] for a much more precise formulation. Here we would like to
show a general result similar to Theorem 2.2 for the gradient case based on this main
assumption, and then apply it to the typical situation of periodic homogenization.
The abstract theorem is formally the same as in the nongradient case. The difference
is hidden in the much stronger AGP condition. In the case of periodic homogenization,
under our technical assumptions, the AGP requirement has been seen to be fulfilled in
[10] so that we do not need to bother here about it. To avoid unnecessary repetition,
we refer our readers to this work for a complete discussion.

Theorem 3.1. Under the general assumptions on {Aj} and W indicated in the
preceding section and the AGP condition on the sequence {Aj}, there exists a map

ϕ0 : Ω × Rm × Rd → Rd
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such that the family of measures supported in Rd and determined by

〈φ, νx〉 =

∫
Rm

φ (ϕ0(x, λ,∇u(x))) dσx(λ),

for any continuous φ, is an optimal Young measure associated with u.
The proof of this result is exactly the same as the proof of Theorem 2.2. The

precise place where the gradient constraint enters is the definition of the integrand
for the Γ-limit which again is

ψ(x, ρ) = min
ϕ

{∫
Rm

CW (λ, ϕ(λ)) dσx(λ) : ρ =

∫
Rm

ϕ(λ) dσx(λ)

}
.

In the gradient case, this is so because of the AGP condition assumed on the sequence
{aj} (Lemma 9 in [10]). In the nongradient case, there is no need for this structural
assumption, as there is “no gradient constraint.”

We next focus on the periodic homogenization situation, where

Aj(x) = A(jx)

and A is Q-periodic. Recall that Q is the unit cube in R2. A direct corollary for this
situation follows.

Corollary 3.2. There exists a mapping

ξ : R2 × R2 → R, ξ(λ, ρ)

Q-periodic in the first variable λ such that an optimal Young measure associated with
any given u ∈ W 1,p(Ω) is given by

ν = {νx}x∈Ω , 〈φ, νx〉 =

∫
Q

φ (∇u(x) + ∇λξ(λ,∇u(x))) dλ

for any continuous φ.
This mapping ξ is given as the solution of the typical cell problem in homoge-

nization ∫
Q

W (λ, ρ + ∇λξ(λ, ρ)) dλ = min
ζ

∫
Q

W (λ, ρ + ∇λζ(λ, ρ)) dλ.

In the typical quadratic case, where we put

W (λ, ρ) =
A(λ)

2
|ρ|2 ,

the integrand for the Γ-limit is given by

ψ(ρ) =

∫
Q

A(λ)

2
|ρ + ∇λξ(λ, ρ)|2 dλ.

In this way, if uj ∈ H1(Q) is the solution of

div [A(jx)∇uj(x)] = 0 in Q, u = u0 on ∂Q,

then for any continuous φ for which {φ(∇uj)} weakly converges in L1(Q), we have

lim
j→∞

∫
Q

φ(∇uj(x)) dx =

∫
Q

∫
Q

φ (∇u(x) + ∇λξ(λ,∇u(x))) dλ dx,



YOUNG MEASURES ASSOCIATED WITH HOMOGENIZATION 1463

where u is the solution of the homogenized equation

div

[
∂ψ

∂ρ
(∇u(x))

]
= 0 in Q, u = u0 on ∂Q.

In the case of a single, first-order laminate, more explicit calculations can be
performed. Indeed if we put

A(x) = χ(x · n)a + (1 − χ(x · n)) b, 0 < a < b, |n| = 1,

where χ is the characteristic function of the interval (0, t) over (0, 1) extended by
periodicity and the unit vector n indicates the normal direction to the layers, then
the optimal mapping ∇λξ(λ, ρ) can be computed explicitly. This calculation can be
found in [10], namely,

ψ(ρ) = min
F,G∈R2

{
t
a

2
|F |2 + (1 − t)

b

2
|G|2 : ρ = tF + (1 − t)G, (F −G) · Tn = 0

}
.

T is the counterclockwise, π/2 rotation in the plane. Then

ψ(ρ) = (ta + (1 − t)b) |ρ|2 − (b− a)2t(1 − t)

(1 − t)a + tb
(ρ · n)

2

and the optimal pair F (ρ) and G(ρ) furnishing this value can also be written explicitly
(see the introduction). Then if

div [A(jx)∇uj(x)] = 0 in Q, uj = u0 on ∂Q,

and if for any given continuous φ we have that {φ(∇uj)} converges in L1(Q), we have

lim
j→∞

∫
Q

φ(∇uj(x)) dx =

∫
Q

[tφ (F (∇u(x))) + (1 − t)φ (G(∇u(x)))] dx,

where u is the solution of the homogenized equation

div

[
∂ψ

∂ρ
(∇u(x))

]
= 0 in Q, u = u0 on ∂Q.

More general examples can also be treated.
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9517, CEREMADE, Université Paris IX, Paris, 1995.
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EXISTENCE OF EIGENVALUES OF A LINEAR OPERATOR
PENCIL IN A CURVED WAVEGUIDE—LOCALIZED SHELF WAVES
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Abstract. The question of the existence of nonpropagating, trapped continental shelf waves
(CSWs) along curved coasts reduces mathematically to a spectral problem for a self-adjoint operator
pencil in a curved strip. Using methods developed for the waveguide trapped mode problem, we
show that such CSWs exist for a wide class of coast curvature and depth profiles.
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1. Introduction. Measurements of velocity fields along the coasts of oceans
throughout the world show that much of the fluid energy is contained in motions
with periods of a few days or longer. The comparison of measurements at different
places along the same coast shows that in general these low-frequency disturbances
propagate along coasts with shallow water to the right in the northern hemisphere
and to the left in the southern hemisphere. These waves have come to be known as
continental shelf waves (CSWs). The purpose of the present paper is to demonstrate,
using the most straightforward model possible, the possibility of nonpropagating,
trapped CSWs along curved coasts. The existence of such nonpropagating modes
would be significant as they would tend to be forced by atmospheric weather systems,
which have similar periods of a few days, similar horizontal extent, and a reasonably
broad spectrum in space and time. Areas where such modes were trapped would thus
appear to be likely to show higher than normal energy in the low-frequency horizontal
velocity field.

The simplest models for CSWs take the coastal oceans to be inviscid and of con-
stant density. Both these assumptions might be expected to fail in various regions
such as when strong currents pass sharp capes or when the coastal flow is strongly
stratified. However, for small-amplitude CSWs in quiescent flow along smooth coasts,
viscous separation is negligible. Similarly most disturbance energy is concentrated in
the modes with the least vertical structure, which are well described by the constant
density model [LBMy]. The governing equations are then simply the rotating incom-
pressible Euler equations. Further, coastal flows are shallow in the sense that the ratio
of depth to typical horizontal scale is small. Expanding the rotating incompressible
Euler equations in powers of this ratio and retaining only the leading order terms

∗Received by the editors September 29, 2004; accepted for publication (in revised form) June 7,
2005; published electronically January 12, 2006.

http://www.siam.org/journals/sima/37-5/61593.html
†Department of Mathematics, University College London, Gower Street, London WC1E 6BT,

UK (e.johnson@ucl.ac.uk, leonid@math.ucl.ac.uk). The research of the third author was partially
supported by the EPSRC Spectral Theory Network.

‡Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt Univer-
sity, Riccarton, Edinburgh EH14 4AS, UK (m.levitin@ma.hw.ac.uk). The research of this author
was partially supported by the EPSRC Spectral Theory Network.

1465



1466 E. R. JOHNSON, M. LEVITIN, AND L. PARNOVSKI

gives the rotating shallow water equations [Pe]:

∂u

∂t
+ u · gradu − 2Ωk × u = −g grad H̃,(1.1)

∂H̃

∂t
+ div[(H̃ + H)u] = 0.(1.2)

Here div and grad are taken with respect to horizontal coordinates (x, y) in a frame
fixed to the rotating Earth, k is a vertical unit vector, u(x, y, t) is the horizontal
velocity (with components u = (u, v)), Ω is the (locally constant) vertical component

of the Earth’s rotation, g is the gravitational acceleration, H̃(x, y, t) is the vertical
displacement of the free surface, and H(x, y) is the local undisturbed fluid depth.

System (1.1), (1.2) admits waves of two types, denoted Class 1 and Class 2 by
[La]. Class 1 waves are fast high-frequency waves, the rotation-modified form of the
usual free surface water waves, although here present only as long, nondispersive
waves with speeds of order

√
gH. Class 2 waves are slower, low-frequency waves that

vanish in the absence of depth change or in the absence of rotation. It is the Class 2
waves that give CSWs. They have little signature in the vertical height field H̃(x, y, t)
and are observed through their associated horizontal velocity fields [Ha]. The Class 1
waves can be removed from (1.1), (1.2) by considering the “rigid-lid” limit, where
the external Rossby radius

√
gH/2Ω (which gives the relaxation distance of the free

surface) is large compared to the horizontal scale of the motion. This is perhaps the
most accurate of the approximations noted here, causing the time-dependent term to
vanish from (1.2) and the right side of (1.1) to become a simple pressure gradient.

For small amplitude waves the nonlinear terms in (1.1), (1.2) are negligible, and
cross-differentiating gives

∂ζ

∂t
+ 2Ωdivu = 0,(1.3)

div(Hu) = 0,(1.4)

where ζ = ∂v
∂x − ∂u

∂y is the vertical component of relative vorticity. Equation (1.4) is
satisfied by introducing the volume flux streamfunction defined through

Hu = −∂ψ

∂y
, Hv =

∂ψ

∂x
,(1.5)

allowing (1.3) to be written as the single equation

div

(
1

H
grad

∂ψ

∂t

)
+ 2Ωk · gradψ × grad

(
1

H

)
= 0.(1.6)

Equation (1.6) is generally described as the topographic Rossby wave equation or
the equation for barotropic CSWs. Many solutions have been presented for straight
coasts, where the coast lies along y = 0 (say) and the depth H is a function of
y alone (described as rectilinear topography here) [LBMy]. These have shown ex-
cellent agreement with observations of CSWs, as in [Ha]. There has been far less
discussion of nonrectilinear geometries, where either the coast or the depth profile or
both are not functions of a single coordinate. Yet interesting results appear. The
papers [StHu1], [StHu2] present extensive numerical integrations of a low-order spec-
tral model of a rectangular lake with idealized topography. For their chosen depth
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profiles normal modes can be divided into two types: basin-wide modes which extend
throughout the lake and localized bay modes. These bay modes correspond to the
high-frequency modes found in a finite-element model of Lake Lugarno by [Tr] and
observed by [StHuSaTrZa]. The papers [Jo2], [StJo1], [StJo2] give a variational for-
mulation and describe simplified quasi-analytical models that admit localized trapped
bay modes. However the geometry changes in these models are large, with the sloping
lower boundary terminating abruptly where it strikes a coastal wall. Further [Jo1]
notes that (1.6) is invariant under conformal mappings and so any geometry that can
be mapped conformally to a rectilinear shelf cannot support trapped modes. The
question thus arises as to whether it is only for the most extreme topographic changes
that shelf waves can be trapped or whether trapping can occur on smoothly varying
shelves. The purpose of this paper is to provide the answer: trapped modes can exist
on smoothly curving coasts.

The geometry considered here is that of a shelf of finite width lying along an
impermeable coast. Thus sufficiently far from the coast the undisturbed fluid depth
becomes the constant depth of the open ocean. It is shown in [Jo3] that at the shelf-
ocean boundary of finite-width rectilinear shelves the tangential velocity component u
vanishes for waves sufficiently long compared to the shelf width. The wavelength of
long propagating disturbances is proportional to their frequency which is in turn pro-
portional to the slope of the shelf. Thus it appears that for sufficiently weakly sloping
shelves the tangential velocity component, i.e., the normal derivative of the stream-
function, at the shelf-ocean boundary can be made arbitrarily small. Here this will be
taken as also giving a close approximation to the boundary condition at the shelf-ocean
boundary when this boundary is no longer straight. The unapproximated boundary
condition is that the streamfunction and its normal derivative are continuous across
the boundary where they match to the decaying solution of Laplace’s equation (to
which (1.6) reduces in regions of constant depth). This gives a linear integral condi-
tion along the boundary. The unapproximated problem will not be pursued further
here. The boundary condition at the coast is simply one of impermeability and thus
on both rectilinear and curving coasts is simply that the streamfunction vanishes.
Now consider flows of the form

ψ(x, y, t) = Re{Φ(x, y) exp(−2iωΩt)},(1.7)

so Φ(x, y) gives the spatial structure of the flow and ω its nondimensional frequency.
Then Φ satisfies

1

H
Δ Φ + grad

(
1

H

)
· gradΦ +

i

ω
k ·

(
gradΦ × grad

(
1

H

))
= 0,(1.8)

Φ = 0 at the coast,(1.9)

n̂ · gradΦ = 0 at the shelf-ocean boundary,(1.10)

where vector n̂ is normal to the shelf-ocean boundary.
Mathematically, we are going to study the existence of trapped modes (i.e., the

eigenvalues either embedded into the essential spectrum or lying in the gap of the
essential spectrum) for the problem (1.8)–(1.10) in a curved strip. Similar problems
for the Laplace operator have been extensively studied in the literature—either in
a curved strip, in a straight strip with an obstacle, or in a strip with compactly
perturbed boundary. In the case of Laplacians with Dirichlet boundary conditions
these problems are usually called “quantum waveguides”; the Neumann case is usu-
ally referred to as “acoustic waveguides.” The important result concerning quantum
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waveguides was established in [ExSe], [DuEx]: in the curved waveguides there always
exists a trapped mode. Later this result was extended to more general settings; in
particular, in [DiKr] (see also [KrKr]) it was shown that in the case of mixed boundary
conditions (i.e., Dirichlet conditions on one side of the strip and Neumann conditions
on the other side) trapped modes exist if the strip is curved “in the direction of the
Dirichlet boundary.”

The case of acoustic waveguides is more complicated because any eventual eigen-
values are embedded into the essential spectrum and are, therefore, highly unstable.
Therefore, it is believed that in general the existence of trapped modes in this case is
due to some sort of the symmetry of the problem (see [EvLeVa], [DaPa], [AsPaVa]).

In the present paper we use an approach similar to the one used in [DuEx] and
[EvLeVa]; however, we have to modify this approach substantially due to the fact
that we are working with a spectral problem for an operator pencil rather than that
for an ordinary operator.

The rest of the paper is organized in the following way. In section 2, we discuss the
rigorous mathematical statement of the problem; in section 3, we study the essential
spectrum; and in section 4, we state and prove the main result on the existence
of a discrete spectrum (Theorem 4.1). In particular we show that a trapped mode
always exists if all of the following conditions are satisfied: (a) the depth profile H
does not depend upon the longitudinal coordinate and is monotone increasing and
logarithmically concave in the direction perpendicular to the coast; (b) the channel
is curved in the direction of the Dirichlet boundary; (c) the curvature is sufficiently
small.

Similar results can be obtained in a straight strip if the depth profile H depends
nontrivially upon the longitudinal coordinate; we however do not discuss this problem
here.

2. Mathematical statement of the problem.

2.1. Geometry. The original geometry is a straight planar strip of width δ:

G0 = {(x, y) : x ∈ R, y ∈ (0, δ)}.

Deformed geometry G is assumed to be a curved planar strip of constant width δ.
To describe it precisely, we introduce the curve Γ = {(x = X(ξ), y = Y (ξ))}, ξ ∈ R,
where ξ is a natural arc-length parameter, i.e., X ′(ξ)2 + Y ′(ξ)2 ≡ 1. By

γ(ξ) = X ′′(ξ)Y ′(ξ) −X ′(ξ)Y ′′(ξ)(2.1)

we denote a (signed) curvature of Γ (see Figure 1 and Remark 2.2). Note that |γ(ξ)|2 =
X ′′(ξ)2 + Y ′′(ξ)2.

We additionally assume

supp γ � [−R,R] for some R > 0,(2.2)

and set

κ+ = sup
ξ∈[−R,R]

γ(ξ), κ− = − inf
ξ∈[−R,R]

γ(ξ).(2.3)

We shall assume throughout the paper the smoothness condition

γ ∈ C∞(R),(2.4)

which can be obviously softened.
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ξ

ηγ(s)>0

γ(s)<0

∂
1
G

∂
2
G

G

δ

Fig. 1. Domain G and curvilinear coordinates ξ, η. The solid line denotes the boundary
∂1G with the Dirichlet boundary condition, and the dotted line denotes the boundary ∂2G with the
Neumann boundary condition.

Now we can introduce, in a neighborhood of Γ, the curvilinear coordinates (ξ, η)
as

x = X(ξ) − ηY ′(ξ), y = Y (ξ) + ηX ′(ξ),(2.5)

(where η is a distance from a point (x, y) to Γ) and describe the deformed strip G in
these coordinates as

G = Gγ = {(ξ, η) : ξ ∈ R, η ∈ (0, δ)}.(2.6)

Remark 2.1. As sets of points, Gγ ≡ G0 for any γ, but the metrics are different,
see below. We shall often omit the index γ if the metric is obvious from the context.

Remark 2.2. Often one chooses the opposite sign in the definition of the signed
curvature γ in (2.1). Our choice, though not canonical, is made to match the one in
[ExSe].

To avoid local self-intersections, we must restrict the width of the strip by natural
conditions

κ± ≤ Aδ−1, A = const ∈ [0, 1).(2.7)

We shall also assume throughout, without stating it explicitly, that G does not self-
intersect globally, i.e., the mapping (ξ, η) �→ (x, y) given by (2.5) is an injection on G.

Finally, it is an easy computation to show that the Euclidean metric in the curvi-
linear coordinates has a form dx2 + dy2 = gdξ2 + dη2, where

g(ξ, η) = (1 + ηγ(ξ))2.

Later on, we shall widely use the notation

p(ξ, η) = (g(ξ, η))1/2 = 1 + ηγ(ξ).(2.8)

Note that in all the volume integrals,

dGγ = p(ξ, η) dξ dη = (1 + ηγ(ξ)) dξ dη = p(ξ, η) dG0.
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2.2. Governing equations. For a given positive continuously differentiable
function H(ξ, η) (describing a depth profile), we are looking for a function Φ(ξ, η)
satisfying (1.8) with spectral parameter ω.

By substituting

β(ξ, η) := lnH(ξ, η),(2.9)

and using explicit expressions for differential operators in curvilinear coordinates, we
can rewrite (1.8) as

ω

(
− 1

p2

∂2Φ

∂ξ2
− ∂2Φ

∂η2
+

(
1

p3

∂p

∂ξ
+

1

p2

∂β

∂ξ

)
∂Φ

∂ξ
+

(
∂β

∂η
− 1

p

∂p

∂η

)
∂Φ

∂η

)

=
i

p

(
∂β

∂ξ

∂Φ

∂η
− ∂β

∂η

∂Φ

∂ξ

)
.

(2.10)

Remark 2.3. When deducing (2.10), we have cancelled, on both sides, a common
positive factor h(ξ, η) := 1

H(ξ,η) = e−β(ξ,η). However, we have to use this factor when

considering corresponding variational equations, in order to keep the resulting forms
symmetric. This leads to a special choice of weighted Hilbert spaces below.

Further on, we consider only the case of a longitudinally uniform monotone depth
profile,

β(ξ, η) ≡ β(η), β′(η) > 0,(2.11)

in which case (2.10) simplifies to

ω

(
− 1

p2

∂2Φ

∂ξ2
− ∂2Φ

∂η2
+

1

p3

∂p

∂ξ

∂Φ

∂ξ
+

(
β′ − 1

p

∂p

∂η

)
∂Φ

∂η

)

= − i

p
β′ ∂Φ

∂ξ
,

(2.12)

with β′ = dβ
dη .

2.3. Boundary conditions. Let ∂1G = {(ξ, 0) : ξ ∈ R} and ∂2G = {(ξ, δ) :
ξ ∈ R} denote the lower and the upper boundary of the strip G, respectively. Bound-
ary conditions (1.9), (1.10) then become

Φ|∂1G =
∂Φ

∂η

∣∣∣∣
∂2G

= 0.(2.13)

Remark 2.4. If the flow is confined to a channel, then the Dirichlet boundary
condition (1.9) applies on both channel walls. This leads to a mathematically different
problem which we do not consider in this paper.

2.4. Function spaces and rigorous operator statement. We want to dis-
cuss the function spaces in which everything acts. Let us denote by L2(G;h) the
Hilbert space of functions φ : G → C which are square-integrable on G with the
weight h(η) ≡ 1

H = exp(−β(η)):

‖φ‖2
L2(G;h) =

∫
G

|φ(ξ, η)|2 h(η) dG =

∫
R

∫ δ

0

|φ(ξ, η)|2 h(η)p(ξ, η) dη dξ < ∞.
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The corresponding inner product will be denoted 〈·, ·〉L2(G;h). Similarly we can define
the space L2(F ;h) for an arbitrary open subset F of G.

Let us formally introduce the operators

Lγ : Φ �→ − 1

p2

∂2Φ

∂ξ2
− ∂2Φ

∂η2
+

1

p3

∂p

∂ξ

∂Φ

∂ξ
+

(
β′ − 1

p

∂p

∂η

)
∂Φ

∂η

and

Mγ : Φ �→ − i

p
β′ ∂Φ

∂ξ
.

(The dependence on γ is of course via p; see (2.8).) Then (2.12) can be formally
rewritten as

ωLγΦ = MγΦ,(2.14)

or via an operator pencil

Aγ ≡ Aγ(ω) = ωLγ −Mγ(2.15)

as

Aγ(ω)Φ = 0.(2.16)

The domain of the pencil Aγ in the L2-sense is naturally defined as

Dom(Aγ) = {Φ ∈ H2(G), Φ satisfies (2.13)},(2.17)

where H2 denotes a standard Sobolev space.
On the domain (2.17), Mγ is symmetric, and Lγ is symmetric and positive in the

sense of the scalar product 〈·, ·〉L2(G;h), with

〈LγΦ,Φ〉L2(G;h) =

∫
R

∫ δ

0

(
1

p

∣∣∣∣∂Φ

∂ξ

∣∣∣∣
2

+ p

∣∣∣∣∂Φ

∂η

∣∣∣∣
2
)

e−β dη dξ.

Later on, we shall use a weak (or variational) form of (2.16), and shall require
some other function spaces described below. Let F ⊆ G, and suppose its boundary is
decomposed into two disjoint parts: ∂F = ∂1F  ∂2F . We introduce the space

C̃∞
0 (F ; ∂1F ) = {φ ∈ C∞(F ) : suppφ ∩ ∂1F = ∅,

and there exists r > 0 such that φ(ξ, η) = 0 for (ξ, η) ∈ F, |ξ| ≥ r}

consisting of smooth functions with compact support vanishing near ∂1F .

By H̃1
0 (F ; ∂1F ;h) we denote the closure of C̃∞

0 (F ; ∂1F ) with respect to the scalar
product

〈φ, ψ〉
H̃1

0 (F,∂1F ;h)
= 〈φ, ψ〉L2(F ;h) + 〈gradφ,gradψ〉L2(F ;h).

In what follows we shall study the operators Lγ , Mγ and the pencil Aγ from a
variational point of view. The details are given in the next section; here we note only
that from now we understand the expression 〈LγΨ,Ψ〉L2(Gγ ,h) as the quadratic form

for the operator Lγ , with the quadratic form domain H̃1
0 (G; ∂1G;h).
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The main purpose of this paper is to study the spectral properties of the operator
pencil Aγ . We recall the following definitions.

A number ω ∈ C is said to belong to the spectrum of Aγ (denoted spec(Aγ)) if
Aγ(ω) is not invertible.

It is easily seen that in our case the spectrum of Aγ is real.
We say that ω ∈ R belongs to the essential spectrum of the operator pencil Aγ

(denoted ω ∈ specess(Aγ)) if for this ω the operator Aγ(ω) is non-Fredholm.
We say that ω ∈ C belongs to the point spectrum of the operator pencil Aγ

(denoted ω ∈ specpt(Aγ)), or, in other words, say that ω is an eigenvalue, if for this ω
there exists a nontrivial solution Ψ ∈ Dom(Aγ) of the problem Aγ(ω)Ψ = 0.

It is known that the essential spectrum is a closed subset of R, and that any
point of the spectrum outside the essential spectrum is an isolated eigenvalue of finite
multiplicity. The set of all such points is called the discrete spectrum, and will be
denoted specdis(Aγ). There may, however, exist the points of the spectrum which
belong to both the essential spectrum and the point spectrum.

Our main result (Theorem 4.1 below) establishes some conditions on the curva-
ture γ of the waveguide which guarantee the existence of eigenvalues of Aγ .

It is more convenient to deal with problems of this type variationally, and we start
the next section with an abstract variational scheme suitable for self-adjoint pencils
with nonempty essential spectrum.

3. Essential spectrum.

3.1. Variational principle for the essential spectrum.
Definition 3.1. We set, for j ∈ N,

μγ,j = sup
U⊂H̃1

0 (G;∂1G;h)
dimU=j

inf
Ψ∈U,Ψ �=0

〈MγΨ,Ψ〉L2(Gγ ,h)

〈LγΨ,Ψ〉L2(Gγ ,h)
.(3.1)

As 〈LγΨ,Ψ〉L2(Gγ ,h) is positive, the right-hand side of (3.1) is well defined, though
the numbers μγ,j may a priori be finite or infinite.

Obviously, for any fixed curvature profile γ the numbers μγ,j form a nonincreasing
sequence:

μγ,1 ≥ μγ,2 ≥ · · · ≥ μγ,j ≥ μγ,j+1 ≥ · · · .
Definition 3.2. Denote

μγ = lim
j→∞

μγ,j .(3.2)

For general self-adjoint operator pencils the analogue of (3.2) may be finite or
equal to ±∞; as we shall see below, in our case μγ is finite.

The following result is a modification, to the case of an abstract self-adjoint linear
pencil, of the general variational principle for a self-adjoint operator with an essential
spectrum; see [Da, Prop. 4.5.2].

Proposition 3.3. Either
(i) μγ > −∞, and then sup specess(Aγ) = μγ ,

or
(ii) μγ = −∞, and then specess(Aγ) = ∅.

Moreover, if μγ,j > μγ , then μγ,j ∈ specdis(Aγ).
Proposition 3.3 ensures that we can use the variational principle (3.1) in order to

find the eigenvalues of the pencil Aγ lying above the supremum μγ of the essential
spectrum.
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3.2. Essential spectrum for the straight strip. The spectral analysis in the
case of a straight strip (γ ≡ 0) is rather straightforward as the problem admits in this
case the separation of variables.

Let us seek the solutions of (2.12), (2.13) in the case of a straight strip (γ ≡ 0,
and so p ≡ 1) in the form

Φ(ξ, η) = φ(η) exp(iαξ);(3.3)

it is sufficient to consider only real values of α.
After separation of variables, (2.12), (2.13) are written, for each α, as a one-

dimensional transversal spectral problem

ω(−φ′′ + β′φ′ + α2φ) = αβ′φ, φ(0) = φ′(δ) = 0.(3.4)

Alternatively, introduce operators

lα : φ �→ −φ′′ + β′φ′ + α2φ, mα : φ �→ αβ′φ,

and a pencil

aα(ω) = ωlα − mα,

(again understood in an L2((0, δ);h) sense with the domain defined similarly to
(2.17)), and consider a one-dimensional operator pencil spectral problem aα(ω)φ = 0.

For a fixed value of α, the one-dimensional linear operator pencil (3.4) has the
essential spectrum {0} and a discrete spectrum spec(aα); note that

spec(a−α) = − spec(aα).(3.5)

Denote, for α > 0, the top of the spectrum of this transversal problem by ωα =
sup spec(aα).

Lemma 3.4. Let α > 0. Then, under condition (2.11),
(i) spec(aα) ⊂ [0,+∞);
(ii) 0 < ωα < +∞;
(iii) ωα → +0 as α → ∞.
Proof. By the variational principle analogous to Proposition 3.3(i),

ωα = sup
φ∈H̃1

0 ((0,δ),0,h)
φ�=0

Jα(φ),

where we set

Jα(φ) =
〈mαφ, φ〉L2((0,δ),h)

〈lαφ, φ〉L2((0,δ),h)
=

∫ δ

0

αβ′(η)φ(η)2h(η) dη∫ δ

0

(−φ′′(η) + β′(η)φ′(η) + α2φ(η))φ(η)h(η) dη

.(3.6)

After integrating by parts using h(η) = e−β(η) and inverting the quotient, we get

Jα(φ) =

(
αJ (1)(φ) +

1

α
J (2)(φ)

)−1

,(3.7)



1474 E. R. JOHNSON, M. LEVITIN, AND L. PARNOVSKI

where we denote

J (1)(φ) =

∫ δ

0

e−β(η)|φ(η)|2 dη∫ δ

0

β′(η)e−β(η)|φ(η)|2 dη

and

J (2)(φ) =

∫ δ

0

e−β(η)|φ′(η)|2 dη∫ δ

0

β′(η)e−β(η)|φ(η)|2 dη

.

The statements (ii) and (iii) of the lemma now follow immediately from the estimates

J (1)(φ) ≥
inf

η∈(0,δ)
e−β(η)

sup
η∈(0,δ)

(β′(η)e−β(η))

and

J (2)(φ) ≥ π2

4δ2

inf
η∈(0,δ)

e−β(η)

sup
η∈(0,δ)

(β′(η)e−β(η))
,

where the latter inequality uses the variational principle and the fact that the principal

eigenvalue of the mixed Dirichlet–Neumann spectral problem for the operator − d2

dη2

on the interval (0, δ) is equal to π2

4δ2 . The statement (i) follows from the positivity of
the right-hand side of (3.7).

We are now able to find the essential spectrum of the problem in a straight strip.
Lemma 3.5. Assume that conditions (2.11) hold. Then

specess(A0) = [−Ω∗,Ω∗],(3.8)

where

Ω∗ = sup
φ∈H̃1

0 ((0,δ),0,h)

1

2

∫ δ

0

β′(η)e−β(η)|φ(η)|2 dη√∫ δ

0

e−β(η)|φ′(η)|2 dη ·
∫ δ

0

e−β(η)|φ(η)|2 dη

> 0.(3.9)

Proof. It is standard that

specess(A0) =
⋃
α∈R

spec(aα).

Thus, by Lemma 3.4, and with account of the antisymmetry of the spectrum of aα

with respect to α and its positivity for α > 0, we have

sup specess(A0) = sup
α>0

ωα = sup
α>0

sup
φ∈H̃1

0 ((0,δ),0,h)

Jα(φ).
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By maximizing first with respect to α, we obtain, from (3.7),

Jα(φ) ≤ Jα∗(φ)(φ)

with the maximizer

α∗(φ) =

√
J (2)(φ)

J (1)(φ)
.

Maximizing now with respect to φ gives sup specess(A0) = Ω∗, with Ω∗ given by
(3.9). Finally, we note that ωα depends continuously on α > 0. Since ωα → +0 as
α → +∞ by Lemma 3.4(iii), ωα thus takes all the values in (0,Ω∗]. Therefore, the
closed interval [0,Ω∗] lies in specess(A0). By symmetry (3.5), we also have [−Ω∗, 0] ⊂
specess(A0), which finishes the proof.

3.3. Essential spectrum for a curved strip. It is now a standard procedure
to show that under our conditions the essential spectrum of the problem in a curved
strip coincides with the essential spectrum of the problem in a straight strip given by
Lemma 3.5. Namely, we have the following.

Lemma 3.6. Let us assume conditions (2.2), (2.4), and (2.11) hold. Then

specess(Aγ) = specess(A0) = [−Ω∗,Ω∗]

with Ω∗ given by (3.9).
The proof is based on the fact that any solution of the problem (2.12), (2.13) with

γ �≡ 0 (and thus p �≡ 1) should coincide in

G ∩ {|ξ| > R > max(|inf supp γ|, |sup supp γ|)}

with a solution of the same problem for γ ≡ 0. An analogous result has been proved in
a number of similar situations elsewhere (see, e.g., [ExSe], [EvLeVa], [DaPa], [KrTA]),
so we omit the details of the proof. We briefly note that the inclusion specess(Aγ) ⊆
specess(A0) is proved using the separation of variables as above and a construction
of appropriate Weyl’s sequences, and in order to prove the inclusion specess(Aγ) ⊇
specess(A0) one can use the Dirichlet–Neumann bracketing and the discreteness of the
spectrum of the problem (2.12), (2.13) considered in G ∩ {|ξ| < R} with additional
Dirichlet or Neumann boundary conditions imposed on the “cuts” {ξ = ±R}.

4. Main result. Our main result consists in stating some sufficient conditions
on the depth profile β(η) and the curvature profile γ(ξ) which guarantee the existence
of an eigenvalue of the pencil Aγ lying outside the essential spectrum.

Theorem 4.1. Assume, as before, that condition (2.11) holds. Assume addition-
ally that

β′′(η) < 0 for η ∈ (0, δ).(4.1)

Then there exists a constant Cβ > 0, which depends only on the depth profile β, such
that specdis(Aγ) �= ∅ whenever γ satisfies conditions (2.2), (2.4), and∫

γ(ξ) dξ > Cβ

∫
γ(ξ)2 dξ.(4.2)

We give an explicit expression for Cβ below; see (4.15).
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An integral sufficient condition (4.2) may be replaced by a pointwise, although
more restrictive, condition.

Corollary 4.2. Assume that conditions (2.11) and (4.1) hold. Then there exists

a constant cβ,R =
Cβ

2R which depends only on the depth profile β and a given R > 0
such that specdis(Aγ) �= ∅ whenever γ �≡ 0 satisfies conditions (2.2), (2.4), and

0 ≤ γ(ξ) < cβ,R for |ξ| ≤ R.(4.3)

We prove Theorem 4.1 using a number of simple lemmas, the central of which is
the following.

Lemma 4.3. Suppose there exists a function Ψ̃ ∈ H̃1
0 (Gγ , h) such that

〈MγΨ̃, Ψ̃〉L2(Gγ ,h)

〈LγΨ̃, Ψ̃〉L2(Gγ ,h)

> Ω∗.(4.4)

Then there exists ω > Ω∗ which belongs to specdis(Aγ).

Lemma 4.3 is just a restatement of the variational principle of Proposition 3.3.
The main difficulty in its application is of course the choice of an appropriate test func-
tion Ψ̃. However such choice becomes much easier if we use the following modification
of this lemma which allows us to consider test functions which are not necessarily
square-integrable on Gγ .

Denote, for brevity, Gr
γ = Gγ ∩ {|ξ| < r}.

Lemma 4.4. Suppose there exist a function Ψ and a constant D such that, for
any r > R, we have Ψ ∈ H̃1

0 (Gr
γ , h) and

〈MγΨ,Ψ〉L2(Gr
γ ,h) − Ω∗〈LγΨ,Ψ〉L2(Gr

γ ,h) ≥ D > 0.(4.5)

Then there exists ω > Ω∗ which belongs to specdis(Aγ).

The proof of Lemma 4.4 uses the construction of an appropriate cutoff function
χ(ξ) such that Ψ̃ = χΨ satisfies the conditions of Lemma 4.3; cf. [DaPa, Prop. 1].

We now proceed as follows.

Let φ∗(η) be a maximizer in (3.9), and set

Ψ(ξ, η) = φ∗(η)e
iα•ξ,

where

α• = α∗(φ∗) =

√
J (2)(φ∗)

J (1)(φ∗)
.(4.6)

It is important to note that Ψ is in fact an “eigenfunction” of the essential spec-
trum of Aγ corresponding to its highest positive point Ω∗ and that φ∗ is an eigen-
function of (3.4) with α = α• (i.e., of the pencil aα•) again corresponding to the
eigenvalue Ω∗, and so

φ′′
∗ = β′φ′

∗ + (α2
• − Λ∗α•β

′)φ∗, φ∗(0) = φ′
∗(δ) = 0(4.7)

with Λ∗ := 1
Ω∗

(cf. (3.4)).
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For future use, we summarize the relations obtained so far:

L0Ψ = (−φ′′
∗(η) + β′(η)φ′

∗(η) + α•φ∗(η)) eiα•ξ = (lα•φ∗) eiα•ξ,

M0Ψ = α•β
′(η)φ∗(η) eiα•ξ = (mα•φ∗) eiα•ξ,

LγΨ =

(
−φ′′

∗(η) +

(
β′(η) − 1

p(ξ, η)

∂p(ξ, η)

∂η

)
φ′
∗(η)

+

(
iα•

p(ξ, η)3
∂p(ξ, η)

∂ξ
+

α2
•

p(ξ, η)2

)
φ∗(η)

)
eiα•ξ,

MγΨ =
α•

p(ξ, η)
β′(η)φ∗(η) eiα•ξ,

p(ξ, η) = 1 + γ(ξ)η

(with ′ denoting differentiation with respect to η).
It is important to note that for any r > 0,

〈M0Ψ,Ψ〉L2(Gr
0,h)

〈L0Ψ,Ψ〉L2(Gr
0,h)

=
〈mα•φ∗, φ∗〉L2((0,δ),h)

〈lα•φ∗, φ∗〉L2((0,δ),h)
= Ω∗ > 0

and, as explicit formulae above show,

〈MγΨ,Ψ〉L2(Gr
γ ,h) = 〈M0Ψ,Ψ〉L2(Gr

0,h) = α•

∫ r

−r

∫ δ

0

β′(η)e−β(η)|φ∗(η)|2 dη dξ

= 2rα•

∫ δ

0

β′(η)e−β(η)|φ∗(η)|2 dη > 0.

(4.8)

We want to show that under conditions of Theorem 4.1 and with the choice of Ψ
as above, inequality (4.5) holds for any r > R.

In view of (4.8), it is enough to show that

Dγ := 〈LγΨ,Ψ〉L2(Gr
γ ,h) − 〈L0Ψ,Ψ〉L2(Gr

0,h)

is negative for r > R.
Explicit substitution gives, after taking into account the formula∫

1

p(ξ, η)2
∂p(ξ, η)

∂ξ
dξ = 0

(due to (2.2), with account of (2.8)), the following expression:

Dγ =

∫ r

−r

∫ δ

0

γ(ξ)ηe−β(η)|φ′
∗(η)|2 dη dξ −

∫ r

−r

∫ δ

0

α2
•

ηγ(ξ)

1 + ηγ(ξ)
e−β(η)|φ∗(η)|2 dη dξ.

This, in turn, can be rewritten, using the obvious identity

ηγ(ξ)

1 + ηγ(ξ)
= ηγ(ξ) − η2γ(ξ)2

1 + ηγ(ξ)
,

as

Dγ =

∫ r

−r

γ(ξ)

∫ δ

0

ηe−β(η)
(
|φ′

∗(η)|2 − α2
•|φ∗(η)|2

)
dη dξ

+ α2
•

∫ r

−r

∫ δ

0

η2γ(ξ)2

1 + ηγ(ξ)
e−β(η)|φ∗(η)|2 dη dξ.

(4.9)
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We shall deal with the two terms in (4.9) separately.
The first one is more difficult. As (4.6) yields explicitly

α2
• =

∫ δ

0

e−β(η)|φ′
∗(η)|2 dη∫ δ

0

e−β(η)|φ∗(η)|2 dη

,

we get

I1 :=

∫ δ

0

ηe−β(η)
(
|φ′

∗(η)|2 − α2
•|φ∗(η)|2

)
dη

=
1∫ δ

0

e−β(η)|φ∗(η)|2 dη

×
(∫ δ

0

ηe−β(η)|φ′
∗(η)|2 dη ·

∫ δ

0

e−β(η)|φ∗(η)|2 dη

−
∫ δ

0

e−β(η)|φ′
∗(η)|2 dη ·

∫ δ

0

ηe−β(η)|φ∗(η)|2 dη

)
.

(4.10)

We want to show that the term in brackets is negative under some reasonable
assumptions.

Lemma 4.5. Assume that the conditions of Theorem 4.1 hold. Then I1 < 0.
The proof of Lemma 4.5 uses the following simple fact.1

Lemma 4.6. Let (a, b) ⊂ (0,+∞) be a finite interval, and let a function g :
(a, b) → R be nonincreasing. Then(∫ b

a

xg(x)f(x) dx

)
·
(∫ b

a

f(x) dx

)
−
(∫ b

a

g(x)f(x) dx

)
·
(∫ b

a

xf(x) dx

)
≤ 0

for any nonnegative function f : (a, b) → R.
Proof of Lemma 4.6. We have(∫ b

a

xg(x)f(x) dx

)
·
(∫ b

a

f(x) dx

)
−
(∫ b

a

g(x)f(x) dx

)
·
(∫ b

a

xf(x) dx

)

=

∫ b

a

∫ b

a

xg(x)f(x)f(y) dxdy −
∫ b

a

∫ b

a

g(x)f(x)yf(y) dxdy

=

∫ b

a

∫ y

a

(x− y)f(x)f(y)g(x) dxdy +

∫ b

a

∫ b

y

(x− y)f(x)f(y)g(x) dxdy.

Interchanging the variables x and y in the last integral, we obtain that the whole
expression is equal to

∫ b

a

∫ y

a

(x− y)︸ ︷︷ ︸
nonpositive

f(x)f(y)(g(x) − g(y))︸ ︷︷ ︸
nonnegative

dxdy

and is therefore nonpositive.

1We are grateful to Daniel Elton for a useful suggestion that helped to prove this lemma.
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We can now proceed with evaluating I1.
Proof of Lemma 4.5. We act by doing a lot of integrations by parts. We shall

also use (4.7).
We have (all integrals are over [0, δ] and with respect to η)∫

ηe−β |φ′
∗|2 = −

∫
φ∗ · (ηe−βφ′

∗)
′

= −
∫

φ∗ · (e−βφ′
∗ − β′ηe−βφ′

∗ + ηe−βφ′′
∗)

= −
∫

φ∗ · (e−βφ′
∗ + (α2

• − Λ∗α•β
′)e−βηφ∗).

Further,

−
∫

(φ∗e
−β)φ′

∗ =

(∫ (
φ′
∗e

−β − β′φ∗e
−β

)
φ∗

)
− e−β(δ)φ2

∗(δ),

thus producing ∫
ηe−β |φ′

∗|2 = −1

2

∫
β′φ2

∗e
−β −1

2
e−β(δ)φ2

∗(δ)︸ ︷︷ ︸
negative constant

− α2
•

∫
ηe−β |φ∗|2 + Λ∗α•

∫
ηβ′e−β |φ∗|2.

(4.11)

Also, ∫
e−β |φ′

∗|2 = −
∫

e−βφ∗(−β′φ′
∗ + φ′′

∗)

= −
∫

e−βφ∗
(
−β′φ′

∗ + β′φ′
∗ + α2

•φ∗ − Λ∗α•β
′φ∗

)
= −

∫
e−βφ2

∗ (α2
• − Λ∗α•β

′).

(4.12)

Substituting (4.11) and (4.12) into (4.10), and simplifying, we get

I1 ·
∫

e−β(η)|φ∗(η)|2︸ ︷︷ ︸
positive integral

=

∫
ηe−β |φ′

∗|2 ·
∫

e−β |φ∗|2 −
∫

e−β |φ′
∗|2 ·

∫
ηe−β |φ∗|2

=

⎛
⎜⎜⎜⎝
(
−1

2

∫
β′e−β |φ∗|2

)
︸ ︷︷ ︸

negative as β′>0

+

(
−1

2
e−β(δ)φ2

∗(δ)

)
︸ ︷︷ ︸

negative constant

⎞
⎟⎟⎟⎠

∫
e−β |φ∗|2

+ (Λ∗α•)︸ ︷︷ ︸
+ve constant

×
(∫

ηβ′e−β |φ∗|2 ·
∫

e−β |φ∗|2 −
∫

β′e−β |φ∗|2 ·
∫

ηe−β |φ∗|2
)

︸ ︷︷ ︸
nonpositive by Lemma 4.6 with g=β′, f=e−β |φ∗|2 as g′=β′′≤0

.

(4.13)

Thus I1 < 0.
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Let us now return to (4.9) and deal with the second term in the right-hand side.
We have, with account of (2.3) and (2.7),

η2γ(ξ)2

1 + ηγ(ξ)
≤

⎧⎨
⎩

η2γ(ξ)2 if γ(ξ) ≥ 0,

1

1 −A
η2γ(ξ)2 if γ(ξ) < 0

≤ max

{
1,

1

1 −A

}
η2γ(ξ)2,

and so

α2
•

∫ r

−r

∫ δ

0

η2γ(ξ)2

1 + ηγ(ξ)
e−β(η)|φ∗(η)|2 dη dξ ≤ I2

∫ r

−r

γ(ξ)2 dξ,

where

I2 := max

{
1,

1

1 −A

}
α2
•

∫ δ

0

η2e−β(η)|φ∗(η)|2 dη ≥ 0.(4.14)

Thus, as γ(ξ) vanishes for |ξ| > R, we have

Dγ = I1

∫
γ(ξ) dξ + I2

∫
γ(ξ)2 dξ = (−I1)

(
Cβ

∫
γ(ξ)2 dξ −

∫
γ(ξ) dξ

)
,

where

Cβ =
I2
−I1

=

max

{
1,

1

1 −A

}
α2
•

∫ δ

0

η2e−β(η)|φ∗(η)|2 dη∫ δ

0

ηe−β(η)
(
|φ′

∗(η)|2 − α2
•|φ∗(η)|2

)
dη

(4.15)

is a positive constant.
As soon as (4.2) holds, Dγ is negative, and so (4.5) holds. This proves Theo-

rem 4.1.
Finally, it is sufficient to note that (4.3) implies

∫
γ(ξ)2 dξ < 2Rcβ,R

∫
γ(ξ) dξ,

which proves Corollary 4.2.

5. Conclusions. It has been shown that a trapped mode is possible in the model
presented here. To increase confidence that such modes exist on real coasts further
work is clearly required to demonstrate that this mode is not an artifact of the mod-
elling assumptions. However these assumptions are the usual ones for the simple
theory of CSWs and extensions to include stratification and more realistic boundary
conditions have not in general contradicted them [LBMy]. The result here suggests
that it would be of interest to compare low-frequency velocity records in the neigh-
borhood of capes with those on nearby straight coasts to determine whether there is
indeed enhanced energy at the cape. Both the above endeavors are being pursued.
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GLOBAL BIFURCATION THEORY
OF DEEP-WATER WAVES WITH VORTICITY∗
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Abstract. The classical deep-water wave problem is to find a periodic traveling wave with a free
surface of infinite depth. The main result is the construction of a global connected set of rotational
solutions for a general class of vorticities. Each nontrivial solution on the continuum has a wave
profile symmetric around the crests and monotone between crest and trough.

The problem is formulated as a nonlinear elliptic boundary value problem in an unbounded
domain with a parameter. The analysis is based on generalized degree theory and the global theory
of bifurcation. The unboundedness of the domain renders consideration of approximate problems
with stronger compactness properties.

Key words. water waves, vorticity, nonlinear elliptic, Leray–Schauder degree, bifurcation
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1. Introduction. The classical deep-water wave problem is to find a periodic
traveling wave with a free surface of infinite depth. A two-dimensional incompressible
inviscid fluid, at rest at great depths, occupies the domain bounded by a free surface,
where the pressure balances out with the constant atmospheric pressure. The main
result is to construct a global connected set of nontrivial solutions to the full Eu-
ler equations for positive monotone vorticities. The methods involved are the global
theory of bifurcation which has its foundation in topological degree theory, maxi-
mum principles and the Schauder theory for nonlinear second-order elliptic partial
differential equations.

Irrotational solutions to the deep-water wave problem are referred to as Stokes
waves, for which existence theory has been studied in a number of works. The first
rigorous mathematical treatment is the construction, following Levi-Civita [26] and
Nekrasov [30], of small-amplitude waves by a series expansion method. The global
theory of existence began with Krasovskii [24] who used a degree-theoretic argument
to obtain finite-amplitude waves. Subsequently, with the invention by Rabinowitz [33]
of abstract global bifurcation theory, Keady and Norbury [22] inferred that these
solutions form a global connected set. Amick [3], Amick, Fraenkel, and Toland [4],
and McLeod [29] refined this result further to prove that this continuum contains in
its closure Stokes waves of extreme form with stagnation at their crests. A survey on
the existence theory for Stokes waves is to be found in [39].

The existence theory for rotational waves is, on the other hand, much less com-
plete. Gerstner [14, 6] found an explicit formula for a family of trochoidal deep-water
waves for a particular nonzero vorticity early in 1802. However, an extensive existence
theory for a general class of vorticities appeared much later in the work of Dubreil-
Jacotin [12], who constructed small-amplitude waves by a series expansion method.
This result was later improved by Goyon [16] and Zeidler [42]. Recently, Constantin
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and Strauss [9, 10] employed generalized degree theory [18, 23] as adapted for non-
linear elliptic boundary value problems and global bifurcation theory [33] to obtain a
global connected set of rotational waves of finite depth. The purpose of the present
work is to obtain an analogous result for the case of infinite depth. An important
difference from [10] lies in the lack of compact embedding properties of Ascoli type
due to the unboundedness of the physical domain. Under the additional restriction
that the vorticity distribution is positive and monotone, the set of nontrivial solutions
acquires the desired compactness with the exploitation of maximum principles.

At the beginning of section 3.1, the unknown fluid region is conveniently mapped
onto a fixed semi-infinite strip in the plane by exchanging the roles of the stream
function and the vertical coordinate. The depth below the free surface is regarded as
a solution to a quasi-linear elliptic partial differential equation with a nonlinear oblique
boundary condition. The problem is successively formulated as an operator equation
of the form F (λ,w) = 0; λ is a real parameter and the “nontrivial perturbation”
w from the trivial shear current belongs to the Banach space, denoted by X, of
C3+α Hölder continuous functions which vanish asymptotically at the infinite bottom.
The equation is singular in the sense that the operator is not Fredholm, and thus
topological degree theory/global bifurcation theory may not be applied directly. This
difficulty is overcome by studying a sequence of approximate problems F ε(λ,w) = 0
for ε > 0, where F ε is a nonlinear Fredholm operator.

Section 4 gives a detailed global bifurcation analysis for the approximate prob-
lems. The first step is to linearize F ε around the trivial solution and to find a sequence
of bifurcation points through each of which a local curve of nontrivial solutions em-
anates. This is an application of the local bifurcation theorem due to Crandall and
Rabinowitz [11]. Next, several properties of F ε including the properness and the
Fredholm property of the linearized operator are established. The generalized degree
theory developed in [18, 23] and the global bifurcation theorem [33] apply at once,
and after further detailed analysis based on the maximum principle and its sharp form
at corner points [35], a global continuum of nontrivial solutions is obtained to each
approximate problem.

The central part of this work is section 5.1 on the existence theory for the singular
problem. We employ the development by Rabinowitz of the global theory of bifurca-
tion to conclude that the continuum of the nontrivial solutions to F (λ,w) = 0 either
is unbounded in R × X or intersects the boundary of the admissible set where the
boundary value problem becomes degenerate. An important observation here is that
the positiveness and monotonicity of the vorticity enable us to obtain the uniform
decay of solutions at infinity and hence the compactness of the solution set. In the
following subsection, with the use of the regularity estimates for quasi-linear elliptic
partial differential equations, the alternative that the size of w increases unboundedly
in the C3+α norm along the continuum reduces to the unboundedness of either w or
its first-order derivatives in the maximum norm.

Finally, section 5.3 is the examination of the remaining alternatives to prove
that our global continuum contains a sequence of nontrivial solutions to the deep-
water wave problem such that along a sequence on the continuum either the relative
flow speed at the wave troughs becomes arbitrarily large or the relative flow speed
somewhere on the free surface becomes arbitrarily close to zero (stagnation). In
the case of irrotational flows, the existence of a limiting wave with stagnation at its
crests, where the wave profile has sharp cusps with the containing angle of 2π/3, was
conjectured by Stokes [37] and proved by Amick, Fraenkel, and Toland [4].
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2. Formulation and the main result.

2.1. The deep-water wave problem in physical variables. The gravity
water wave problem concerns the motion of an incompressible inviscid fluid with a
free surface acted on only by gravity. Consider a two-dimensional flow which at time
t occupies the region in the (x, y)-plane bounded by a free surface y = η(t;x). In
the fluid region {(x, y) : y < η(t;x)}, the velocity field (u(t;x, y), v(t;x, y)) and the
pressure P (t;x, y) satisfy the following Euler equations:

ut + uux + vuy = −Px,

vt + uvx + vvy = −Py − g,

ux + vy = 0.

Here g denotes the gravitational constant of acceleration. The flow is supposed to be
rotational and characterized by the vorticity ω = vx − uy.

The dynamic and kinematic boundary conditions hold on the free surface y =
η(t;x):

P = P0 and v = ηt + uηx,

where P0 is the constant atmospheric pressure. The boundary condition at the infinite
bottom

(u, v) → (0, 0) as y → −∞ uniformly for x ∈ R

expresses the fact [19] that the fluid at great depths is practically at rest. Our bottom
boundary condition precludes wave trains on water of infinite depth, numerically
calculated in [36, 40], which exhibit a nonphysical asymptotic behavior at the infinite
bottom.

The steady water wave problem is then to find solutions for which the wave profile,
the velocity, and the pressure have space-time dependence (x− ct, y), where c > 0 is
the speed of wave propagation. In the frame of reference moving with speed c, the
velocity field (u(x, y), v(x, y)) and the pressure P (x, y) of the steady flow satisfy

(u− c)ux + vuy = −Px,(2.1)

(u− c)vx + vvy = −Py − g,(2.2)

ux + vy = 0(2.3)

in the stationary region {(x, y) : y < η(x)}. The boundary conditions are

P = P0 and v = (u− c)ηx on y = η(x),(2.4)

(u, v) → (−c, 0) as y → −∞ uniformly for x ∈ R.(2.5)

Equations (2.1)–(2.5) are supplemented with the following periodicity and sym-
metry conditions:

η(−x) = η(x) = η(x + L),

u(−x, y) = u(x, y) = u(x + L, y),(2.6)

−v(−x, y) = v(x, y) = v(x + L, y),

where L > 0 is the wavelength.
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Our objective here is to find nontrivial solutions to (2.1)–(2.6) for a general class
of vorticities. If the flow is irrotational, i.e., ω ≡ 0, the solutions are referred to as
Stokes waves, for which existence theory has been studied in a number of works. A
survey on the existence theory for Stokes waves is to be found in [39].

In this setting, L and c are considered as parameters whose values form part of
the solution. The wavelength L of the deep-water wave problem is independent of
other physical parameters, and hence is taken to be 2π for simplicity in what follows.

Two distinct features of problem (2.1)–(2.6) are that the free surface is not known
a priori and that the physical domain is unbounded.

2.2. The vorticity-stream formulation. We define the (relative) stream func-
tion ψ(x, y) by

ψx = −v, ψy = u− c.(2.7)

This reduces (2.1)–(2.6) to a stationary elliptic boundary value problem.
The Poisson equation

−Δψ = vx − uy = ω

follows from (2.7). Note that ψ is 2π periodic in the x-variable. Indeed,
∫ 2π

0
v(s, y)ds

is independent of y and therefore is zero by (2.5). The kinematic boundary condition
allows us to normalize ψ so that ψ = 0 on the free surface. The boundary condition
at the infinite bottom becomes ∇ψ(x, y) = (ψx, ψy) → (0,−c) as y → −∞ uniformly
for x.

The vorticity equation (u − c)ωx + vωy = 0, compared to (2.7), states that ω is
a function of ψ at least locally away from a stagnation point, a point where u = c
and v = 0. Under the restriction that the vorticity is nonnegative and nonincreasing
with the depth, i.e., ω(x, y) ≥ 0 and ωy(x, y) ≥ 0, one can show that u − c < 0
everywhere in the fluid; see Lemma 2.1. Experimental evidence [28] indicates that
for wave patterns which are not near the spilling or breaking state, the speed of wave
propagation is in general considerably larger than the horizontal velocity of any water
particle.

We shall show later in section 3.1 that u− c < 0 guarantees that

−Δψ = γ(ψ)

for some function γ throughout the fluid. The vorticity function γ measures the
strength of the vorticity.

Assumptions on γ. For some α ∈ (0, 1) a constant, γ ∈ C1+α([0,∞)) is nonin-
creasing along with depth, γ′(s) ≤ 0 for s ∈ [0,∞), and γ(s) ∈ O(s−2−2l) as s → ∞
for some l > 0.

Our assumptions imply that the vorticity is nonnegative, γ(s) ≥ 0 for s ∈ [0,∞),
and that ω vanishes in the limit as y → −∞.

Let us define

Γ(p) =

∫ 0

p

γ(−s)ds(2.8)

and

Γ∞ =

∫ 0

−∞
γ(−s)ds.
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From the equations of motion follows Bernoulli’s law, which states that the quan-
tity

E = 1
2 (ψ2

x + ψ2
y) + gy + P + Γ(−ψ)

is constant throughout the fluid. The sum of the first four terms in the expression of
E is the total mechanical energy of the flow; 1

2 (ψ2
x + ψ2

y) is the kinetic energy, gy is
the gravitational potential energy, and P is the energy of fluid pressures. In view of
Bernoulli’s law, the dynamic boundary condition takes the form that

Q = ψ2
x(x, η(x)) + ψ2

y(x, η(x)) + 2gη(x)

is independent of x. The quantity 1
2Q, i.e., E evaluated at the free surface, is called

the hydraulic head. We remark that E and Q may vary along continua of solutions.
In summary, there results the following formulation of the deep-water wave prob-

lem, equivalent to (2.1)–(2.6). Let

Dη = {(x, y) : x ∈ R, y < η(x)} and Sη = {(x, η(x)) : x ∈ R}.

For a parameter c > 0, there exist η(x) and ψ(x, y) such that η is even and 2π periodic,
ψ is even and 2π periodic in the x-variable, and

−Δψ = γ(ψ) in Dη,(2.9a)

ψ = 0 on Sη, ψ > 0 in Dη,(2.9b)

|∇ψ(x, η(x))|2 + 2gη(x) = Q for x ∈ R,(2.9c)

∇ψ(x, y) → (0,−c) as y → −∞ uniformly for x ∈ R.(2.9d)

We locate the origin of Cartesian coordinates at one of the wave crests (where
η attains its maximum over one period), i.e., η(0) = 0. With this convention, Q =
(c− u(0, 0))2 > 0 is the square of the relative flow speed at the crest.

Under the assumptions on the vorticity, the exponential decay estimates of solu-
tions follow as applications of the maximum principle.

Lemma 2.1. Assume that ω(x, y) ≥ 0 and ωy(x, y) ≥ 0. Let η(x) and ψ(x, y) be
a solution pair of (2.9) corresponding to the solution triple (u− c, v, η) of (2.1)–(2.6)
via the definition (2.7).

(a) ψy = u − c < 0 on Dη. Therefore, ω = γ(ψ) throughout the fluid region for
some function γ. Note that γ satisfies the assumptions described above.

(b) Assume further that ψx(x, η(x)) > 0 for x ∈ (−π, 0). Then ψx(x, y) > 0
on {(x, y) ∈ Dη : x ∈ (−π, 0)}, and ψx(x, y) and ψxx(0, y) decay exponentially as
y → −∞ uniformly for x. More precisely,

|ψx(x, y)| < Aey on (−π, π) × (−∞, η(±π)),(2.10)

|ψxx(0, y)| < Bey for y ∈ (−∞, η(±π)),(2.11)

where A,B > 0 depend only on η(±π).
Remark 2.2. Assertion (a) justifies the existence of the vorticity function γ and

supports a detailed global bifurcation analysis; see sections 3 and 4, respectively.
Assertion (b) is important for compactness reasons later in Lemmas 4.6 and 5.1.

An easy consequence of the monotonicity of ψx and ψy is that the wave profile
decreases monotonically from crest to trough. Constantin and Escher [7] proved that
the symmetry of the wave profile is not a hypothesis but rather a conclusion when
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the wave profile is monotone between crest and trough and the vorticity is positive
and decreases with depth.

Proof. (a) Since ψ = 0 on Sη and ψ → ∞ as y → −∞, the subharmonic function
ψ is positive in Dη. It therefore attains its minimum on Sη, and by the Hopf boundary
point lemma ψy < 0 on Sη.

Note that

Δψy + ωy(x, y) = 0

and that ψy tends to −c < 0 as y → −∞. The maximum principle then implies that
ψy < 0 on Dη.

(b) Note that

Δψx + γ′(ψ)ψx = 0

and that ψx → 0 as y → −∞ uniformly for x. Since ψx(x, η(x)) > 0 for x ∈ (−π, 0),
by the maximum principle, ψx(x, y) > 0 for (x, y) ∈ Dη and x ∈ (−π, 0).

For the second assertion, let

D = (−π, π) × (−∞, η(±π)) and D− = {(x, y) ∈ D : x ∈ (−π, 0)}.

For A > 0 we define a C2-function on D− by

W (x, y) = ψx(x, y) −Aey sinx.

Choose A sufficiently large so that W (x, y) < 0 on (0, π) × {η(±π)}. Such an A
depends only on η(±π); see [7]. A simple calculation yields

ΔW + γ′(ψ)W = −Aγ′(ψ)ey sinx ≥ 0 in D−.

By oddness and periodicity of ψx, we infer that W (−π, y) = 0 = W (0, y) for y ≤
η(−π). Since W (x, y) → 0 as y → −∞ uniformly for x, the maximum principle
ensures W (x, y) < 0 in D−. A similar consideration leads to an analogous inequality
on D ∩ {x ∈ (0, π)}, and (2.10) follows at once.

Finally, from the classical gradient estimate [15, page 37] for Poisson’s equation,
it follows that

|ψxx(0, y)| ≤ 2

π
sup
D

|ψx(x, y)| + π

2
sup
D

|γ′(ψ)||ψx(x, y)|

≤ Bey

for y < η(±π) − π, where B > 0 depends only on η(±π). This proves (2.11).

2.3. The main result. For a positive integer k and a constant α ∈ (0, 1), a
domain D ⊂ R

2 is called a Ck+α domain if each point on its boundary ∂D has a
neighborhood in which ∂D is the graph of a Ck+α function. Given a Ck+α domain
D ⊂ R

2 (not necessarily bounded), we define

Ck+α
per (D) = {w ∈ Ck+α(D) : w is even and 2π periodic in the x-variable },(2.12)

where Ck+α(D) is a Hölder space with the norm as in [2, Chapter II]:

‖w‖Ck+α(D) =

k∑
|β|=0

max
D

|∂βw(x, y)| + sup
|β|=k

sup
(x,y) �=(x̃,ỹ)

D

|∂βw(x, y) − ∂βw(x̃, ỹ)|√
(x− x̃)2 + (y − ỹ)2

α .
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This notation is extended in an obvious way to the case when α = 0 and to functions
of a single variable.

Our main result is the following theorem on the existence of nontrivial deep-water
waves with vorticity.

Theorem 2.3 (main theorem). Suppose that the vorticity function γ ∈ C1+α([0,∞))
for some α ∈ (0, 1) satisfies γ′(s) ≤ 0 for s ∈ [0,∞) and γ ∈ O(s−2−2l) as s → ∞ for
some l > 0. Suppose furthermore that

Γ∞ =

∫ 0

−∞
γ(−s)ds <

1

2
min

((g
2

)2/3

,
(g

2

)2
)
.(2.13)

Consider the deep-water wave problem (2.1)–(2.6). There exists a connected set
C of solution triples (u− c, v, η) in the space C2+α

per (Dη)×C2+α
per (Dη)×C3+α

per (R) such
that

(i) the continuum C contains a trivial shear flow with v ≡ 0 (under the flat
surface η ≡ 0); and

(ii) there is a sequence of solution triples {(uj − cj , vj , ηj)} ⊂ C, for which

either lim
j→∞

(cj − uj(±π, ηj(±π))) = ∞ or lim
j→∞

min
Sηj

(cj − uj) = 0.

Each nontrivial solution triple (u− c, v, η) ∈ C enjoys the following properties:

(iii) η has a single maximum (crest) and a single minimum (trough) per wave-
length; we say the crest occurs at x = 0;

(iv) the wave profile decreases monotonically from crest to trough, i.e., η′(x) < 0
for x ∈ (0, π);

(v) the relative horizontal velocity is negative, u − c < 0, throughout the fluid;
and

(vi) a water particle located at (x, y) with x ∈ (0, π) has positive vertical velocity
v > 0.

In addition, if γ(0) is sufficiently small, (ii) can be replaced by

(ii′) there is a sequence of solution triples {(uj − cj , vj , ηj)} ⊂ C, for which

either lim
j→∞

(cj − uj(±π, ηj(±π))) = ∞ or lim
j→∞

(cj − uj(0, 0)) = 0.

The smallness condition (2.13) guarantees the local bifurcation of approximate
problems; see Lemma 4.1.

Theorem 2.3 presents two alternatives in (ii). When the first alternative holds,
either the speed of wave propagation or the wave amplitude becomes unboundedly
large; see Remark 5.9. The second alternative means that the continuum contains
waves with horizontal particle velocity somewhere on the free surface arbitrarily close
to the speed of wave propagation. In other words, there is a region of almost stagnant
fluid on the free surface, a region which is carried along by the traveling wave.

If γ(0) is small enough so that the relative flow speed c−u is nondecreasing from
crest to trough (and it hence attains its minimum on the surface at the crest), then
the crest is the point of almost stagnation. A precise condition is given in (5.23).

Our conclusion, in the case of zero vorticity, partly recovers the well-known result
for Stokes waves [39] that the connected continuum contains a limiting wave with
stagnation at the wave crests.
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3. Reformulation: Reduction to an operator equation. We now turn to
establishing the existence of solutions to (2.1)–(2.6). On account of the unknown
surface, we use the coordinate transformation devised by Dubreil-Jacotin [12] to re-
formulate the problem as a boundary value problem in a fixed domain.

3.1. Change of independent variables. We begin by the observation that ψ
is constant on the free surface and decreases along with y as a function of y; i.e., the
y-coordinate is a single-valued function of ψ for each fixed x. This suggests the
introduction of new independent variables

q = x and p = −ψ(x, y),

which map the fluid region of one period {(x, y) ∈ Dη : x ∈ (−π, π)} to a fixed
semi-infinite strip (−π, π) × (−∞, 0) in the (q, p)-plane, the free surface {(x, η(x)) :
x ∈ (−π, π)} to (−π, π) × {0}. Let

R = {(q, p) : −π < q < π, p < 0} and T = {(q, 0) : −π < q < π}.

The depth function h(q, p) = y −Q/2g replaces the dependent variables. An explicit
calculation shows that

hq =
v

u− c
, hp =

1

c− u
.(3.1)

From u− c < 0 throughout the fluid it follows that ω is a single-valued function of p.
Indeed,

∂qω =

(
∂x +

hq

hp
∂p

)
ω =

(
∂x − v

c− u
∂y

)
ω = 0.

We say ω = γ(−p).
The vorticity-stream formulation (2.9) is accordingly reformulated as an elliptic

boundary value problem in a fixed domain:

(1 + h2
q)hpp − 2hphqhpq+h2

phqq = −γ(−p)h3
p in R,(3.2a)

1 + 2ghh2
p+h2

q = 0 on T ,(3.2b)

∇h = (hq, hp) →(0, 1
c ) as p → −∞ uniformly for q,(3.2c)

with h even and 2π periodic in the q-variable.
The above formulation is equivalent to (2.1)–(2.6), as is presented in the next

lemma.
Lemma 3.1. Suppose that h ∈ C3+α

per (R) is a solution of (3.2). There corresponds

to h a solution triple (u− c, v, η) of (2.1)–(2.6) in the space C2+α
per (Dη)×C2+α

per (Dη)×
C3+α

per (R).
The subscript “per” for a domain in the (q, p)-plane refers to evenness and peri-

odicity in the q-variable.
Proof. The proof is similar to that of [10, Lemma 2.1], and therefore we will

not carry out every detail. First, it is observed from the partial differential equation
(3.2a) that γ ∈ C1+α([0,∞)).

Suppose for the moment that h ∈ C2
per(R) is a solution of (3.2). We define

C1
per(R) functions

F (q, p) =
1

hp(q, p)
, G(q, p) = −hq(q, p)

hp(q, p)
.(3.3)
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The wave profile is given by η(x) = h(x, 0) +Q/2g for x ∈ [−π, π] and is extended to
the entire real line as an even and 2π periodic function. Clearly, η ∈ C2

per(R).
In order to recover the relative stream function ψ, we consider the ordinary dif-

ferential equation {
d
dyψ(x, y) = −F (x,−ψ(x, y)),

ψ(x, η(x)) = 0,
(3.4)

where x ∈ [−π, π] is fixed. Since F is of C1, from the standard theory of ordinary
differential equations it follows that there exists a unique local solution ψ(x, y) to
(3.4). Furthermore, the solution exists for all (−∞, η(x)]. Indeed, F ≥ δ > 0 for
some δ over R, and thus F (q, p) defines a nondegenerate complete vector field on
p ∈ (−∞, 0). Clearly, ψ ∈ C2

per(Dη).
It is straightforward to show that η(x) and ψ(x, y) constructed above are solutions

to (2.9), completely analogous to the finite-depth case. One can repeat the calculation
in [10, Lemma 2.1] to show that ψx(x, y) = −G(x,−ψ(x, y)). The boundary condition
at infinity

∇ψ(x, y) → (0,−c) as y → −∞ uniformly for x ∈ R

is fulfilled by (3.2c) and (3.3).
The relative velocity components are successively defined by

u(x, y) − c = −F (x,−ψ(x, y)), v(x, y) = G(x,−ψ(x, y)),

which are in C2
per(Dη) and solve (2.1)–(2.6). Finally, if h is C3+α

per (R) for α ∈
(0, 1), then, by construction, (u − c, v, η) belongs to the function space C2+α

per (Dη) ×
C2+α

per (Dη) × C3+α
per (R).

As in section 2, let

Γ(p) =

∫ 0

p

γ(−s)ds, Γ∞ =

∫ 0

−∞
γ(−s)ds.

Lemma 3.2 (trivial flows). For each λ ∈ (2Γ∞,∞) the system (3.2) has a solution

H(p) = H(p;λ) =

∫ p

0

ds√
λ− 2Γ(s)

− λ

2g
,(3.5)

which corresponds to a parallel shear flow in the horizontal direction under the flat
surface η ≡ 0.

Proof. These solutions do not depend on q, and thus (3.2a) reduces to H ′′ =
−γ(−p)(H ′)3. Here and elsewhere the prime denotes differentiation with respect to
p. Solutions to this ordinary differential equation are

H ′(p) = (λ− 2Γ(p))−1/2,

which are defined for λ > 2Γ∞. The formula (3.5) then follows from the boundary
condition on top, 1 + 2gH(0)(H ′(0))2 = 0.

The boundary condition at infinity, H ′(p) → 1
c as p → −∞, relates the bifurcation

parameter λ with the wave speed c:

λ = c2 + 2Γ∞.
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Note 3.3. Let us denote

a(λ) = a(p;λ) =
√

λ− 2Γ(p).

The derivatives of H can be expressed in terms of a:

H ′(p) = a−1(p;λ), H ′′(p) = −γ(−p)a−3(p;λ).

Note that a(λ) is bounded for each λ > 2Γ∞.
In order to establish the existence of nontrivial solutions to (3.2) via bifurcation

theory, we need to formulate the problem as an abstract operator equation F (λ,w) =
0, where w belongs to a Banach space. However, a set of functions with the condition
(3.2c) at infinity does not form a linear space. For this reason, we introduce the
“nontrivial perturbation” w(q, p) of the depth function h(q, p) from that of a trivial
flow H(p) defined as

h(q, p) = H(p) + w(q, p).(3.6)

Problem (2.1)–(2.6) is ultimately formulated as follows:

(1 + w2
q)wpp − 2(a−1(λ) + wp)wqwpq + (a−1(λ) + wp)

2wqq

+ γ(−p)(a−1(λ) + wp)
3 − γ(−p)a−3(λ)(1 + w2

q) = 0 in R,
(3.7a)

1 + (2gw − λ)(λ−1/2 + wp)
2 + w2

q = 0 on T .(3.7b)

Here w is required to be even and 2π periodic in the q-variable. The principal point
is that ∇w vanishes asymptotically:

∇w = (wq, wp) → 0 as p → −∞ uniformly for q.(3.7c)

3.2. The operator equation and its approximation. We introduce the func-
tion spaces. Let

X = {w ∈ C3+α
per (R) : ∂βw ∈ o(1) as p → −∞, |β| ≤ 3 uniformly for q },

Y1 = {w ∈ C1+α
per (R) : ∂βw ∈ o(1) as p → −∞, |β| ≤ 1 uniformly for q },

and Y2 = C2+α
per (T ). Let Y = Y1 × Y2 with the product topology. We equip X and Y

with the Hölder norms (thus rendering them Banach spaces):

‖ · ‖X := ‖ · ‖C3+α(R) ,

‖ · ‖Y := ‖ · ‖Y1 + ‖ · ‖Y2 ,

where ‖ · ‖Y1 = ‖ · ‖C1+α(R) and ‖ · ‖Y2 = ‖ · ‖C2+α(T ). Here the Hölder norms of

functions on the unbounded domain R take supremum values over the entire domain
(see [2, Chapter II]):

‖w‖Ck+α(R) =

k∑
|β|=0

max
R

|∂βw(q, p)| + sup
|β|=k

sup
(q,p) �=(q̃,p̃)

R

|∂βw(q, p) − ∂βw(q̃, p̃)|√
(q − q̃)2 + (p− p̃)2

α .

Let Z = C0
per(R) have the usual maximum norm ‖ · ‖Z = ‖ · ‖C0(R).
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A nonlinear differential operator

F (λ,w) = (F1(λ,w), F2(λ,w)) : R ×X → Y

is defined by

F1(λ,w) = (1 + w2
q)wpp − 2(a−1(λ) + wp)wqwpq + (a−1(λ) + wp)

2wqq

+ γ(−p)(a−1(λ) + wp)
3 − γ(−p)a−3(λ)(1 + w2

q),
(3.8)

F2(λ,w) = 1 + (2gw − λ)(λ−1/2 + wp)
2 + w2

q

∣∣
T
.(3.9)

The operator form of the deep-water wave problem is then to find a nontrivial
solution (λ,w) ∈ R ×X to

F (λ,w) = 0.(3.10)

The existence theory “in the large” for the finite-depth case [9, 10] follows as an
application to F of generalized degree theory [18, 23] and abstract global bifurcation
theory [33]. For the infinite-depth case, however, the presence of the continuous
spectrum due to the unboundedness of the physical domain renders this application
much less than routine.

Denoted by Fw(λ,w) is the Fréchet derivative of F in its second argument at
(λ,w) ∈ R ×X. A straightforward calculation yields

Fw(λ,w) = (A(λ,w), B(λ,w)),

where

A(λ,w)[φ] = (1 + w2
q)φpp − 2(a−1(λ) + wp)wqφpq + (a−1(λ) + wp)

2φqq

+
(
−2wqwpq + 2(a−1(λ) + wp)wqq + 3γ(−p)(a−1(λ) + wp)

2
)
φp

+
(
2wqwpp − 2(a−1(λ) + wp)wpq − 2γ(−p)a−3(λ)wq

)
φq,

B(λ,w)[φ] = 2(2gw − λ)(λ−1/2 + wp)φp + 2wqφq + 2g(λ−1/2 + wp)
2φ

∣∣
T

for φ ∈ X.
The linear operator (A(λ,w), B(λ,w)) defines the “limiting” operator{

A∞(λ)[φ] = φpp + (λ− 2Γ∞)−1φqq,

B∞(λ)[φ] = −2λ1/2φp + 2gλ−1φ
∣∣
T

for φ ∈ X, which is obtained by substituting each coefficient function by its limit as
p → −∞. Unfortunately, this operator is not semi-Fredholm as its spectrum consists
of only the continuous spectrum (−∞, 0]. In particular, Fw(λ,w) : X → Y is not
a Fredholm operator of index zero, and thus topological degree theory may not be
directly applied.

This difficulty can be overcome by studying a sequence of approximate problems:

F ε(λ,w) :=
(
F1(λ,w) − ε(a−1(λ) + wp)

3w,F2(λ,w)
)

= 0,(3.11)

where ε > 0. The properness of F ε and the Fredholm property of its linearization will
follow from the fact that the limiting problem(

A∞(λ) − ε(λ− 2Γ∞)−3/2I,B∞(λ)
)

[φ] = 0

admits only the zero solution; see Lemmas 4.4 and 4.6.
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Remark 3.4. Construction of a topological degree for general nonlinear elliptic
operators has been studied in a number of works (see [18, 23, 41] and the references
therein) under the condition that the nonlinear elliptic operator is proper and the
linearization is a Fredholm operator of index zero. The Fredholm property of a linear
elliptic operator in an unbounded domain is related to the uniform decay of the
solutions at infinity. Indeed, a linear elliptic operator in an unbounded domain is
semi-Fredholm if and only if the limiting problem does not have nonzero solutions
(see [41, Theorem 2.15]).

A simple calculation yields that

F ε
w(λ,w) = (Aε(λ,w), B(λ,w)),

where

A(λ,w)[φ] = (1 + w2
q)φpp − 2(a−1(λ) + wp)wqφpq + (a−1(λ) + wp)

2φqq

+
(
−2wqwpq + 2(a−1(λ) + wp)wqq

+ 3γ(−p)(a−1(λ) + wp)
2 + 3ε(a−1(λ) + wp)

2w
)
φp

+
(
2wqwpp − 2(a−1(λ) + wp)wpq − 2γ(−p)a−3(λ)wq

)
φq

− ε(a−1(λ) + wp)
3φ,

(3.12)

B(λ,w)[φ] = 2(2gw − λ)(λ−1/2 + wp)φp + 2wqφq + 2g(λ−1/2 + wp)
2φ

∣∣
T

(3.13)

for φ ∈ X. Similarly,

F ε
λ(λ,w) = (F1λ(λ,w), F2λ(λ,w)),

where

F1λ(λ,w)[μ] = μa−3(λ)
(
wqwpq − (a−1(λ) + wp)wqq

− 3
2γ(−p)(a−1(λ) + wp)

+ 3
2γ(−p)a−2(λ)(1 + w2

q) − 3ε(a−1(λ) + wp)
2w

)
,

F2λ(λ,w)[μ] = −μ(λ−1/2 + wp)
(
λ−1/2 + wp + (2gw − λ)λ3/2

)∣∣
T
.

Since F ε
w and F ε

λ are both continuous, F ε : R×X → Y is continuously differentiable.
Indeed, the smoothness of γ ensures that F ε is at least twice continuously Fréchet
differentiable.

4. Existence theory for approximate problems. Our goal in this section
is to construct for each ε a global connected set of nontrivial solutions to (3.11) via
generalized degree theory and abstract global bifurcation theory.

4.1. The linearized approximate problem. The linearization of F ε about
the trivial solution (λ, 0) is F ε

w(λ, 0) = (Aε(λ, 0), B(λ, 0)), where

Aε(λ, 0)[φ] = φpp + a−2(λ)φqq + 3γ(−p)a−2(λ)φp − εa−3(λ)φ

= a−3(λ)(a3(λ)φp)p + a−2(λ)φqq − εa−3(λ)φ,

B(λ, 0)[φ] = −2λ1/2φp + 2gλ−1φ
∣∣
T

for φ ∈ X. A necessary condition for bifurcation at a trivial solution (λ, 0) is that

F ε
w(λ, 0) : X → Y is not injective;
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equivalently, the following problem of self-adjoint form

(a3(λ)φp)p + (a(λ)φq)q − εφ = 0 in R,(4.1a)

λ3/2φp = gφ on T(4.1b)

admits a nontrivial solution in X.

Lemma 4.1. Suppose that γ ∈ C1+α([0,∞)) for α ∈ (0, 1) satisfies the smallness
condition (2.13).

(a) For each 0 ≤ ε < ε0 and 0 < ε0 ≤ g fixed, there exist λε ∈ (2Γ∞, g + 2Γ∞]
and a nontrivial solution φε ∈ X to (4.1).

(b) For a sequence εj → 0 as j → ∞, {λεj} converges to λ0 ∈ (2Γ∞, g + 2Γ∞] as
j → ∞.

Proof. (a) For each 0 ≤ ε < ε0 we will look for a solution of the form φε(q, p) =
Φε(p) cos kq with k ≥ 0 an integer; Φε will solve the ordinary differential equation
−(a3(λ)Φ′)′ + εΦ = −k2a(λ)Φ.

Let us define for λ ∈ (2Γ∞,∞) an ordinary differential operator Lεv = −(a3(λ)v′)′+
εv. We consider the (singular) Sturm–Liouville problem

⎧⎪⎨
⎪⎩
Lεv = μ(λ)a(λ)v for p ∈ (−∞, 0),

λ3/2v′(0) = gv(0),

v, v′ → 0 as p → −∞.

(4.2)

It is known that Lε with the boundary conditions above has the essential spectrum
[ε(λ− 2Γ∞)3,∞). We define for 0 ≤ ε < ε0

Rε(λ) = Rε(v;λ)

=
−gv2(0) +

∫ 0

−∞ a3(λ)(v′)2dp + ε
∫ 0

−∞ v2dp∫ 0

−∞ a(λ)v2dp

(4.3)

and

Λε(λ) = inf{Rε(v;λ) : v ∈ H1((−∞, 0)) and v �≡ 0 }.(4.4)

A straightforward calculation shows that Rε(λ) is bounded from below for each λ.
More precisely, Rε(λ) > −g2(λ − 2Γ∞)−2. The Rayleigh principle then asserts that
the complementary interval (−∞, ε) contains a generalized eigenvalue μ (such that
Lεv = μa(λ)v for some v �≡ 0) if and only if Λε(λ) < 0. Furthermore, such Λε(λ) is a
simple eigenvalue.

Our aim is to find a λε such that Λε(λε) = −k2. There may be multiple solutions,
for instance, corresponding to different values of k. Rather, here we restrict ourselves
to finding one for k = 1. Note that Λε is a C1-function of λ.

First, for λ ∈ [g + 2Γ∞,∞) the inequality

∫ 0

−∞

(
a(λ)v2 + a3(λ)(v′)2 + εv2

)
dp ≥ √

g

∫ 0

−∞

(
v2 + g(v′)2

)
dp

≥ 2g

∫ 0

−∞
vv′dp = gv2(0)
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holds for every v ∈ H1((−∞, 0)). This in turn implies Rε(λ) ≥ −1, and therefore
Λε(λ) ≥ −1. Next, provided that (2.13) holds, one can show that

Λε(2Γ∞) ≤ Rε(ep; 2Γ∞)

=
−g +

∫ 0

−∞ a3(2Γ∞)e2p dp + ε
∫ 0

−∞ e2p dp∫ 0

−∞ a(2Γ∞)e2p dp

<
−g + 1

2

∫ 0

−∞
√

2Γ∞ − 2Γ(p) dp + ε
2∫ 0

−∞ e2p
√

2Γ∞ − 2Γ(p) dp
< −1.

By continuity, there exists λε ∈ (2Γ∞, g + 2Γ∞] such that Λε(λε) = −1.
Now we consider an eigenfunction Φε ∈ H1((−∞, 0)) to (4.2) with λ = λε (and

k = 1). It follows from standard regularity theory that Φε is indeed smooth. Note
that

√
λε − 2Γ∞ ≤ a(λε) ≤

√
λε. The comparison theorem for second-order ordinary

differential equations [8, Chapter 8] then asserts that Φε > 0 and decays exponentially:

|Φε(p)| ≤ A exp
(
p(λ− 2Γ∞)−1/2

)
for some constant A > 0. Therefore, φε = Φε(p) cos q is in X.

(b) Since {λε} forms a bounded sequence in R, there are a sequence εj → 0 as
j → ∞ and a subsequence {λεj} which converges to λ0 in R as j → ∞. By continuity,
Λ0(λ0) = −1.

Since R0(λ) ≥ −1 for λ ∈ [g + 2Γ∞,∞), it must hold that λ0 ≤ g + 2Γ∞. On the
other hand, λ0 > 2Γ∞ since

Λ0(2Γ∞) ≤ R0(ep; 2Γ∞) < Rε(ep; 2Γ∞) < −1.

Therefore, λ0 ∈ (2Γ∞, g + 2Γ∞]. This completes the proof.
It follows as an application of local bifurcation theorem from a simple eigenvalue

due to Crandall and Rabinowitz [11] that for each 0 < ε < ε0 there emanates from
(λε, 0) a local curve in R ×X of solutions to (3.11). The detailed analysis is carried
out in Appendix A.

Proposition 4.2 (local bifurcation for approximate problems). For each 0 <
ε < ε0, there exist s0 > 0 and a C1-curve Cε

loc in R×X of the form (λ(s), w(s)) such
that each (λ(s), w(s)) for |s| < s0 is a solution to (3.11) with (λ(0), w(0)) = (λε, 0).

Recorded in the next lemma is the Fredholm property of F ε
w(λε, 0), which is a

special case of Lemma 4.4.
Lemma 4.3 (Fredholm property at the bifurcation point). For each 0 < ε < ε0,

the linear operator F ε
w(λε, 0) = (Aε(λε, 0), B(λε, 0)) : X → Y is a Fredholm operator

of index zero.
Proof. Let us denote the limiting operator of (Aε(λε, 0), B(λε, 0)) of constant

coefficients by

A0[φ] = φpp + (λε − 2Γ∞)−1φqq − ε(λε − 2Γ∞)−3/2φ,

B0[φ] = B(λε, 0) = −2(λε)1/2φp + 2g(λε)−1φ
∣∣
T

for φ ∈ X. Consider the one-parameter family of linear operators

(At, Bt) : X → Y for t ∈ [0, 1],
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where

At = (1 − t)A0 + tAε(λε, 0),

Bt = B(λε, 0).

Below we prove that (At, Bt) is semi-Fredholm for all t ∈ [0, 1]; i.e., (At, Bt) has a
closed range and finite-dimensional kernel. On the other hand, (A0, B0) : X → Y is
bijective (see [25, Chapter 3], for instance). In particular, it is a Fredholm operator of
index zero. Therefore, by the homotopy invariance of Fredholm index [21, Chapter 4,
Theorems 2.23 and 5.17], (A1, B1) = (Aε(λε, 0), B(λε, 0)) is also a Fredholm operator
of index zero.

Note that (At, Bt) satisfies the complementing condition on the interval [0, 1].
Indeed, At is uniformly elliptic for each t ∈ [0, 1], whose coefficients are bounded in
C2+α(R); B(λε, 0) is uniformly oblique. Therefore, for each t ∈ [0, 1] the following
Schauder estimate [2, Theorem 7.3] holds:

‖φ‖X ≤ C(‖At[φ]‖Y1 + ‖Bt[φ]‖Y2 + ‖φ‖Z)(4.5)

for all φ ∈ X, where C > 0 is independent of φ. We remark that the Schauder esti-
mate (4.5) is valid even in an unbounded domain. However, the compact embedding
property of Ascoli type is not available. In particular, Z is not compactly embed-
ded in X. (The semi-Fredholm property of an elliptic operator in a bounded domain
is a direct consequence of the Schauder estimate (4.5) and the compact embedding
properties of Hölder spaces; see [32], for instance.)

In order to obtain the semi-Fredholm property of (At, Bt), we need to show that
(At, Bt) is proper. In general, for linear operators these two concepts are equivalent;
see [34, 41]. For t ∈ [0, 1] fixed, consider the equation

(At, Bt)[wj ] = fj ,

where {wj} is a bounded sequence in X and {fj} converges to f , say, in Y . There
exists a function w ∈ X such that wj → w in C3

per(R
′) and (At, Bt)[w] = f for any

compact subset R′ of R.
We claim that wj → w in C0

per(R). Suppose this convergence does not take place.

Accordingly, we may choose a sequence {(qj , pj)} ⊂ R with pj → −∞ such that

|wj(qj , pj) − w(qj , pj)| ≥ c > 0,

where c > 0 is fixed. Consider the functions vj(q, p) = wj(q, p+pj)−w(q, p+pj), the
operators (At, Bt) with the coefficient function a(p;λε) shifted by pj , and the shifted
domains {(q, p) ∈ R : p + pj < 0}. Passing to the limit we find a nontrivial limiting
function v0 ∈ C0(R) which is a solution to the limiting problem

(A0, B0)[v0] = 0.

This contradicts the unique solvability of (A0, B0) and proves the claim.
From the convergence of wj → w in C0

per(R), the Schauder estimate (4.5), and
the convergence fj → f in Y , it follows that {wj} is a Cauchy sequence in X. That
is, (At, Bt) is proper. Subsequently, (At, Bt) is semi-Fredholm for each t ∈ [0, 1]. This
completes the proof.



DEEP-WATER WAVES WITH VORTICITY 1497

4.2. Preliminary results for degree theory. In order to define a topological
degree for F ε we need some properties to establish including the properness and the
Fredholm property of the linearized operator.

In the following discussion, we define for δ > 0 the open set

Oδ =

{
(λ,w) ∈ R ×X which satisfies

λ > 2Γ∞ + δ, a−1(λ) + wp > δ in R, w <
2λ− δ

4g
on T

}
.

(4.6)

Throughout this subsection ε and δ are fixed positive constants.
Let us recall that F ε : Oδ → Y is of class C2 and that its Fréchet derivative in

its second argument is of the form

F ε
w(λ,w) = (Aε(λ,w), B(λ,w)) ∈ Y1 × Y2,

where

Aε(λ,w)[φ] = (1 + w2
q)φpp − 2(a−1(λ) + wp)wqφpq + (a−1(λ) + wp)

2φqq

+
(
−2wqwpq + 2(a−1(λ) + wp)wqq

+ 3γ(−p)(a−1(λ) + wp)
2 + 3ε(a−1(λ) + wp)

2w
)
φp

+
(
2wqwpp − 2(a−1(λ) + wp)wpq − 2γ(−p)a−3(λ)wq

)
φq

− ε(a−1(λ) + wp)
3φ,

(4.7)

B(λ,w)[φ] = 2(2gw − λ)(λ−1/2 + wp)φp + 2wqφq + 2g(λ−1/2 + wp)
2φ

∣∣
T

(4.8)

for φ ∈ X. The principal parts of operators Aε(λ,w) and B(λ,w) are denoted by

Ã(λ,w)[φ] = (1 + w2
q)φpp − 2(a−1(λ) + wp)wqφpq + (a−1(λ) + wp)

2φqq,(4.9)

B̃(λ,w)[φ] = 2(2gw − λ)(λ−1/2 + wp)φp + 2wqφq

∣∣
T
,(4.10)

respectively. Note that for each (λ,w) ∈ Oδ the differential operator Aε(λ,w) is uni-
formly elliptic with coefficients bounded in C2+α(R); the coefficients of the principal
part satisfy

(1 + w2
q)ξ

2
1 − 2(a−1(λ) + wp)wqξ1ξ2 + (a−1(λ) + wp)

2ξ2
2 ≥ 4δ2(ξ2

1 + ξ2
2)

for all (ξ1, ξ2) ∈ R
2. Also note that for each (λ,w) ∈ Oδ the boundary operator

B(λ,w) is uniformly oblique in the sense that it is bounded away from being tangen-
tial; the coefficient of φp is nonzero and

|2(2gw − λ)(λ−1/2 + wp)| > δ2 > 0 on T .

Therefore, F ε
w(λ,w) satisfies the complementing condition for each (λ,w) ∈ Oδ and

the following Schauder estimate [2] holds:

‖φ‖X ≤ C(‖Aε(λ,w)[φ]‖Y1 + ‖B(λ,w)[φ]‖Y2 + ‖φ‖Z)(4.11)

for all φ ∈ X, where C > 0 is independent of φ.
An important observation is that the limiting problem(

A∞(λ) − ε(λ− 2Γ∞)−3/2I,B∞(λ)
)
[φ] = 0

admits only the zero solution.
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Our first preliminary result is the Fredholm property of F ε
w(λ,w).

Lemma 4.4 (Fredholm property). For each (λ,w) ∈ Oδ the linear operator
F ε
w(λ,w) = (Aε(λ,w), B(λ,w)) : X → Y is a Fredholm operator of index zero.

Proof. The argument in the proof of Lemma 4.3 shows that F ε
w(λ,w) is semi-

Fredholm. This involves the Schauder estimate (4.11) and the fact that the limiting
problem (

A∞(λ) − ε(λ− 2Γ∞)−3/2I,B∞(λ)
)
[φ] = 0

has only the zero solution.
On the other hand, the result of Lemma 4.3 is that F ε

w(λε, 0) is a Fredholm
operator of index zero. Since Oδ is connected, the assertion then follows from the
continuity of the Fredholm index [21, Chapter 4, Theorem 5.17].

For our next preliminary result, we need several notations to define. The domain
of the operator Aε(λ,w) is defined by

D(Aε(λ,w)) = {w ∈ X : B(λ,w) = 0 }.(4.12)

Note that Aε(λ,w) restricted to D(Aε(λ,w)) is closed in Y1. The spectrum of Aε(λ,w)
is defined by

σ(λ,w) = {μ ∈ C such that

(Aε − μI) : D(Aε(λ,w)) → Y1 is not an isomorphism }.
(4.13)

Here Aε, D(Aε(λ,w)), and Y1 are complexified in the natural way.
Lemma 4.5 (spectral properties). For M > 0 and (λ,w) ∈ Oδ with |λ|+‖w‖X ≤

M , there exist positive constants s, C1, C2 such that

C1‖φ‖X ≤ |μ|α/2‖(Aε(λ,w) − μI)[φ]‖Y1 + |μ|(α+1)/2‖B(λ,w)[φ]‖Y2(4.14)

for all φ ∈ X and for all μ ∈ C satisfying |arg(μ)| ≤ π/2 + s and |μ| ≥ C2.
In addition,
(a) σ(λ,w) possesses only finitely many eigenvalues in the sector |arg(μ)| ≤ π/2+

s, each of which has a finite multiplicity; and
(b) the boundary operator B(λ,w) : X → Y2 is surjective.
Proof. The proof uses the method due to Agmon [1]. See [18, Proposition 4.4] for

one in a Hölder-space setting.

We introduce the differential operator Aε(λ,w) + eiθ ∂2

∂t2 on the cylinder Ω :=
R× (−∞,∞), where θ = arg(μ). Note that the operator is elliptic if |θ| ≤ π/2+ s for
small s > 0. The boundary condition on ∂Ω = ∂R×(−∞,∞) is given by B(λ,w) = 0.

It is known that
(
Aε(λ,w) + eiθ ∂2

∂t2 , B(λ,w)
)

satisfies the complementing condi-
tion. Accordingly, one may write down the Schauder estimate: there are s, C1 > 0
such that

C1‖e(t)φ‖C3+α(Ω1)
≤ ‖ζ(t)e(t)(Aε − μI)[φ]‖C1+α(Ω2)

+ ‖ζ(t)e(t)B[φ]‖C2+α(∂Ω1)

+ |μ|1/2‖ζ1(t)e(t)φ‖C0(Ω2)

(4.15)

for all φ ∈ X and for all μ ∈ C with |arg(μ)| ≤ π/2 + s. Here Ωr = R × [−r, r],
∂Ωr = ∂Ω× [−r, r] for some r > 0, and e(t) = exp(i|μ|1/2t); ζ, ζ1 are smooth functions
with support on the interval [−2, 2] and ζ, ζ1 ≡ 1 on [−1, 1].
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An explicit calculation shows that

‖ζ1(t)e(t)φ‖C0(Ω2) ≤ C3|μ|α/2‖φ‖Y1

for |μ| > C2, where C2, C3 > 0 are independent of φ. Analogous estimates are valid
for other terms on the right side of (4.15); see [18, Proposition 4.4] for the details.
These estimates together with (4.15) yield the spectral estimate (4.14).

Our task now is to verify (a) and (b). The argument in the proof of Lemma 4.4
indicates that (Aε − μI,B) is a Fredholm operator of index zero for all μ ∈ C with
|arg(μ)| ≤ π/2+s. On the other hand, the estimate (4.14) dictates that for any |μ| >
C2 the operator Aε−μI restricted to D(Aε(λ,w)) has trivial kernel. Assertion (a) then
follows from known properties of Fredholm operators [20]. In particular, (Aε−μI,B) :
X → Y1 × Y2 is bijective for μ > C2, which proves (b).

Our last preliminary result is the properness of F ε.
Lemma 4.6 (properness). The nonlinear elliptic operator F ε is (locally) proper

on Oδ; i.e, (F ε)−1(K) ∩D is compact for each bounded set D ⊂ Oδ and compact set
K ⊂ Y .

Proof. Let {(λj , wj)} ⊂ D ⊂ Oδ be a bounded sequence and let {(y1j , y2j)} ⊂
K ⊂ Y converge to (y1, y2) in Y1 × Y2 satisfying

F ε(λj , wj) = (y1j , y2j) for j = 1, 2, . . . .

Our goal is to find a subsequence of {(λj , wj)} which converges in R × X. For the
sake of simplicity, we may assume that λj → λ in R for some λ ∈ R and that
wj → w in C3

per(R
′) for some w ∈ X for any compact subset R′ of R. By continuity,

F ε(λ,w) = (y1, y2).
It is convenient to decompose F ε as

F ε
1 (λ,w) = Ã(λ,w)[w] + f1(λ,w) − εa−3(λ)w,

F2(λ,w) = B̃(λ,w)[w] + f2(λ,w).
(4.16)

Here Ã(λ,w) and B̃(λ,w) are defined in (4.9) and (4.10); f1(λ,w) is a quartic poly-
nomial expression of w, wq and wp, and f2(λ,w) = λ−1/2(2gw − λ)(λ−1/2 + wp).

We claim that wj → w in C0
per(R). Otherwise, there would be a sequence

{(qj , pj)} ⊂ R with pj → −∞ such that

|wj(qj , pj) − w(qj , pj)| ≥ c > 0.

As is done in Lemma 4.3, consider the shifted domains {(q, p) ∈ R : p < pj},
the operator (Ã(λj , w̃j , ã) − εã−3(λj)I, B̃(λj , w̃j , ã)) with coefficients shifted by pj ,
i.e., w̃j(q, p) = wj(q, p + pj) and ã(p;λ) = a(p + pj ;λ), and the functions vj(q, p) =
wj(q, p + pj) − w(q, p + pj). Passing to subsequences we conclude that there exist a
limiting domain R∞ = R, a limiting operator (A∞ − ε(λ − 2Γ∞)−3/2I,B∞), and a
nonzero limiting function v∞ ∈ C0(R) such that(

A∞ − ε(λ− 2Γ∞)−3/2I,B∞
)
[v∞] = 0.

However, the limiting problem has only the zero solution. This proves by contradiction
the uniform convergence of {wj} to w.

Since {wj} is uniformly bounded in X, an interpolation inequality (see [15, Lemma

6.32] and [25, Theorem 3.2.1]) asserts that wj → w in Ck′+α′
(R) for k′ + α′ < 3 + α.

Indeed, for any s > 0 there exists a constant C = C(s) > 0 such that

‖wj − wk‖Ck′+α′ (R) ≤ s‖wj − wk‖C3+α(R) + C‖wj − wk‖C0(R).(4.17)
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Next, in order to obtain the convergence in C3+α(R), Schauder theory is em-
ployed. Since {(λj , wj)} ⊂ Oδ is bounded, the uniform Schauder estimates [2] yield

‖φ‖X ≤ C(‖Ã(λj , wj)[φ]‖Y1
+ ‖B̃(λj , wj)[φ]‖Y2

+ ‖φ‖Z)

for all φ ∈ X, where C > 0 is independent of φ and the index j. In particular,

‖wj − wk‖X ≤ C(‖Ã(λj , wj)[wj − wk]‖Y1 + ‖B̃(λj , wj)[wj − wk]‖Y2 + ‖wj − wk‖Z).

(4.18)

Already shown is that the last term on the right side of the inequality approaches
zero as j, k → ∞. By virtue of the decomposition (4.16), the first two terms on the
right side of (4.18) may be written as

Ã(λj , wj)[wj − wk] = y1j − y1k −
(
Ã(λj , wj) − Ã(λk, wk)

)
wk

−
(
f1(λj , wj) − f1(λk, wk)

)
+ εa−3

(λj)(wj − wk) + ε
(
a−3

(λj) − a−3
(λk)

)
wk,

B̃(λj , wj)[wj − wk] = y2j − y2k −
(
B̃(λj , wj) − B̃(λk, wk)

)
wk

−
(
f2(λj , wj) − f2(λk, wk)

)
.

Since {wj} ⊂ X is bounded, by the interpolation inequality (4.17) it follows that

the coefficients of the quasi-linear operator Ã(λj , wj) are equicontinuous in j, and
thus

‖(Ã(λj , wj)[wk] − Ã(λk, wk))[wk]‖Y1
→ 0 as j, k → ∞.

The convergence

‖f1(λj , wj) − f1(λk, wk)‖Y1
→ 0 as j, k → ∞

uses the fact that f is a quartic polynomial expression for w and wp, wq. These
together with the convergence of {y1j} in Y1 yield that

‖Ã(λj , wj)[wj − wk]‖Y1 → 0 as j, k → ∞.

On the other hand, the standard Schauder estimates and the embedding proper-
ties for Hölder spaces in a bounded domain confirm

‖B̃(λj , wj)[wj − wk]‖Y2 → 0 as j, k → ∞.

Therefore, wj → w in C3+α(R). The assertion then follows since X is a closed
subspace of C3+α(R).

We are now in a position to define a degree for F ε(λ,w). Summarized in Appen-
dix B is the general development in [18, 23], which takes into account the nonlinear
boundary operator.

4.3. Global theory of bifurcation for approximate problems. Now the
presentation is the existence in the large of nontrivial solutions to (3.11) via global
results of abstract bifurcation theory, which uses the generalized degree theory devel-
oped in the previous subsection and Appendix B.

For each δ > 0 and 0 < ε < ε0, let Sε
δ be the closure in R × X of the set of all

nontrivial solution pairs (λ,w) ∈ Oδ to (3.11), where Oδ is defined in (4.6), and let
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Cε
δ ⊂ R ×X be the connected component of Sε

δ which contains the bifurcation point
(λε, 0) determined in Lemma 4.1. The local curve of solutions Cε

loc constructed in
Proposition 4.2 is contained in Cε

δ for the parameter s0 > 0 of the curve sufficiently
small.

The following global bifurcation result is immediate.

Theorem 4.7. For any δ > 0 and 0 < ε < ε0, at least one of the following holds:

(i) Cε
δ is unbounded in R ×X;

(ii) Cε
δ contains another trivial solution pair (λ, 0) with λ �= λε;

(iii) Cε
δ meets ∂Oδ.

Proof. The proof is almost identical to that of [33, Theorem 1.3] except that we
now use the generalized degree defined in [18, 23] (see Appendix B) in place of the
Leray–Schauder degree. We assume on the contrary that Cε

δ is not characterized by
any of (i), (ii), or (iii), and we argue by contradiction.

The remainder of this subsection is devoted to extending and refining the result
of Theorem 4.7.

First, the exploitation of symmetry rules out the second alternative from Theo-
rem 4.7. In order to state our result more precisely, we define the nodal sets

R+ = (0, π) × (−∞, 0), T+ = (0, π) × {0},
∂R+

l = {(0, p) : p ∈ (−∞, 0)}, ∂R+
r = {(π, p) : p ∈ (−∞, 0)}.

It follows as an application of the maximum principle and its sharp form at the corner
points [35] that any nontrivial solution w ∈ Cε

δ to (3.11) possesses the following nodal
pattern:

wq < 0 in R+ ∪ T+,(4.19)

wqq < 0 on ∂R+
l , wqq > 0 on ∂R+

r ,(4.20)

either wqq(0, 0) < 0 or wqqp(0, 0) > 0,(4.21)

either wqq(π, 0) > 0 or wqqp(π, 0) < 0.(4.22)

In other words, inequalities (4.19)–(4.22) hold along the entire continuum Cε
δ \ (λε, 0).

The proof is given in Appendix C. Let us define the open set

N = {w ∈ X : w satisfies (4.19)–(4.22)}.(4.23)

By evenness and periodicity of w ∈ X, we infer that wq = 0 on ∂R+
l ∪ ∂R+

r .

Lemma 4.8. If a trivial solution (λ, 0) belongs to the continuum Cε
δ, then λ = λε.

Proof. Suppose there is a sequence of nontrivial solution pairs {(λj , wj)} ⊂ Cε
δ

to (3.11) which converges to (λ, 0) in R × X. We consider a sequence of functions
vj = ∂qwj/‖∂qwj‖C2+α(R), each of which solves

(Aε(λj , wj), B(λj , wj))[vj ] = 0.

The difference vj − vk with j, k ≥ 1 in turn solves the following linear boundary value
problem:

Aε(λj , wj)[vj − vk] =
(
Aε(λk, wk)−Aε(λj , wj)

)
[vk] in R,

B(λj , wj)[vj − vk] =
(
B(λk, wk) −B(λj , wj)

)
[vk] on T.
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The Schauder estimates [2] yield

‖vj − vk‖C2+α(R) ≤ C
(
‖Aε(λj , wj)[vj − vk]‖Cα(R)

+ ‖B(λj , wj)[vj − vk]‖C1+α(T ) + ‖vj − vk‖C0(R)

)
,

(4.24)

where C > 0 is independent of index j, k. As is done in Lemma 4.6, we show that

‖
(
Aε(λk, wk) −Aε(λj , wj)

)
[vk]‖Cα(R) → 0,

‖
(
B(λk, wk) −B(λj , wj)

)
[vk]‖C1+α(T )→ 0,

as j, k → ∞. This utilizes the facts that {(λj , wj)} converges in R × X and that
{vj} is bounded in C2+α(R). The last term on the right side of (4.24) approaches
zero as j, k → ∞ since the limiting problem of (Aε(λj , wj), B(λj , wj)) does not have
nontrivial solutions, completely analogous to the argument in the proof of Lemma 4.3
or Lemma 4.6. Therefore, {vj} converges to v, say, in C2+α(R).

Note that ∂βv ∈ o(1) as p → −∞ uniformly for q for all multi-indices |β| ≤ 2 and
‖v‖C2+α(R) = 1. Since each vj is 2π periodic in the q-variable and of mean zero over
one period, v = ∂qφ for some function φ which is 2π periodic in the q-variable. By
continuity,

F ε
w(λ, 0)[∂qφ] = 0,(4.25)

∂qφ ≤ 0 on R+, and ∂qφ = 0 on ∂R+
l ∪ ∂R+

r . Furthermore, since ∂qφ satisfies (4.25)
and ∂qφ �≡ 0 in R+, the maximum principle ensures that ∂qφ < 0 in R+.

We now write ∂qφ as a sine series

∂qφ(q, p) =

∞∑
k=0

φk(p) sin kq,

whence (4.25) is written as

∞∑
k=0

(
(a3(λ)φ′

k)
′ − εφk − k2a(λ)φk

)
sin kq = 0 in R+,

∞∑
k=0

(
−2

√
λφ′

k(0) + 2g/λφk(0)
)
sin kq = 0.

Here ∂qφ is subject to the vanishing condition ∂qφk → 0 as p → −∞. In particular,
φ1 solves the boundary value problem

(a3(λ)φ′
1)

′ − εφ1 = a(λ)φ1 for p ∈ (−∞, 0),

λ3/2φ′
1(0) = gφ1(0),

φ1(p) → 0 as p → −∞.

In view of the definitions (4.3) and (4.4) it follows that Λε(λ) ≤ Rε(φ1;λ) = −1.
Suppose Λε(λ) < −1; the minimizer Φ would be an eigenfunction corresponding to
the simple eigenvalue Λε(λ) (such that Rε(Φ;λ) = Λε(λ) = inf Rε(λ)), and hence Φ
does not vanish on p ∈ (−∞, 0). On the other hand,

φ1(p) =
2

π

∫ π

0

φq(q, p) sin q dq < 0 for all p ∈ (−∞, 0).(4.26)
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This contradicts the orthogonality∫ 0

−∞
a(λ)Φε(p)φ1(p)dp = 0.

Therefore, Λε(λ) = −1, and λ = λε follows from the monotonicity of Λ (see [10,
Lemma 3.4]).

We summarize our results from Theorem 4.7 and Lemma 4.8.
Theorem 4.9. For δ > 0 and 0 < ε < ε0, the global continuum Cε

δ either is
unbounded in R ×X or intersects ∂Oδ. Each nontrivial solution lying on Cε

δ has the
nodal configuration (4.19)–(4.22), i.e., Cε

δ \ (λε, 0) ⊂ R ×N .
The following theorem describes global bifurcation in terms of open sets in Oδ,

which was first developed in [33] and stated explicitly in [5].
Theorem 4.10 (see [5, Theorem A6]). Suppose S ⊂ Oδ is a closed set with

(λ, 0) ∈ S such that every bounded subset of S is relatively compact in R × X. Let
C be the maximal connected subset of S which contains (λ, 0). Then C either is
unbounded in R ×X or meets ∂Oδ if and only if ∂U ∩ S �= ∅ for every bounded open
set U with (λ, 0) ∈ U and U ⊂ Oδ.

Proof. The proof is almost identical to that of [5, Theorem A6]. We choose an
open set U as described above. If C is unbounded, then (λ, 0) ∈ U ∩ C �= ∅ and
(Oδ \U)∩C �= ∅. Since C is connected, ∂U ∩C �= ∅, and thus ∂U ∩S �= ∅. Similarly,
if C intersects ∂Oδ, then (λ, 0) ∈ U ∩ C �= ∅ and (Oδ \ U) ∩ C �= ∅. Therefore,
∂U ∩ S �= ∅.

Conversely, we assume that C is bounded and does not intersect ∂Oδ, yet ∂U∩S �=
∅ for every bounded open set U with (λ, 0) ∈ U and U ⊂ Oδ. We choose R > 0 large
enough that C ⊂ B(R), where B(R) = {(λ,w) : |λ|+‖w‖X < R}. Let us denote by M
a compact metric space B(R)∩S; E = C and F = {(λ,w) ∈ S : |λ|+‖w‖X = 2R} are
nonempty disjoint compact subsets of M . Then Whyburn’s lemma [33, Lemma 1.2]
applies, and there exist disjoint compact subsets M1 and M2 such that M1∪M2 = M ,
E ⊂ M1, and F ⊂ M2. Let

U = {(λ,w) : |λ− λ′| + ‖w − w′‖X < δ/2 for (λ′, w′) ∈ M1},

where δ = min (dist(M1,M2),dist(M1, ∂B(2R))). By assumption, we can find a
(λ,w) ∈ ∂U∩S. However, this contradicts that dist((λ,w),M1) ≤ δ/2 and dist(M1,M2)
≥ δ. This completes the proof.

Corollary 4.11. Let U be a bounded open set in Oδ such that (λ0, 0) ∈ U and
U ⊂ Oδ. Then for ε sufficiently small,

∂U ∩ Cε
δ �= ∅.

Proof. This result is an immediate application of Theorems 4.9 and 4.10. The
result of Lemma 4.6 says that any bounded subset of Sε

δ is relatively compact in R×X.
By Lemma 4.1(b), (λε, 0) ∈ U for sufficiently small ε.

5. Existence theory for deep-water waves.

5.1. Global theory of existence for the singular problem. In this subsec-
tion, we demonstrate the existence of a global connected set in R × X of nontrivial
solutions to the original singular problem (3.10).

Let Sδ be the closure in R ×X of the set

{ (λ,w) ∈ Oδ : F (λ,w) = 0, w �≡ 0, w ∈ N } ∪ {(λ0, 0)},

the set of nontrivial solutions to (3.10) with the nodal properties (4.19)–(4.22).
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Lemma 5.1. A bounded subset of Sδ is relatively compact in R ×X.
Proof. Let {(λj , wj)} ⊂ Sδ be a bounded sequence in R × X. Then {λj} has a

convergent subsequence in R; we say λj → λ in R. Our goal is to show that {wj} has
a convergent subsequence in X.

As is indicated in the proof of Lemma 4.6, an important step is to obtain the
convergence in the C0

per(R)-norm. To accomplish this, it is convenient to express wj

as

wj(q, p) =

∫ q

0

∂qwj(s, p)ds + wj(0, p).(5.1)

Note that {∂qwj(q, p)} and {wj(0, p)} are bounded sequences in C2+α
per (R) and

C3+α
per ((−∞, 0]), respectively.

Our task is to prove that ∂qwj decays exponentially as p → −∞ uniformly for
q and the index j. The transformations in section 2.2 and section 3.1 assign to each
(λj , wj) a solution pair of ηj(x) and ψj(x, y) of the vorticity-stream formulation (2.9).
With this prescription, wj ∈ N means that ∂xψj is odd and 2π periodic in the x-
variable, and that ∂xψj(x, y) > 0 for x ∈ (−π, 0). Lemma 2.1 applies, and ∂xψj(x, y)
acquires the exponential decay property (2.10). A straightforward change of variables
back into (q, p)-variables via definitions (2.7) and (3.6) and the change of variables
(3.1) yields the corresponding pointwise exponential decay of ∂qwj :

|∂qwj(q, p)| ≤ δA exp(p/
√

λj) in {(q, p) ∈ R, p < p0},(5.2)

where A > 0 and p0 < 0 are independent of j. Indeed,

y = H(p) + w(q, p) =

∫ p

0

ds√
λ− 2Γ(s)

− λ

2g
+ w(q, p)

≤ p√
λ

+ |w(q, p)|.
(5.3)

We remark that the choice of A indeed depends only on supj |wj(±π, 0)|, which is
bounded a priori once a bounded sequence {wj} is chosen.

We proceed similarly on the estimate (2.11) to obtain an analogous exponential
decay property of wj(0, p):

|∂2
qwj(0, p)| ≤ B exp(p/

√
λj) on p ∈ (−∞, p0),(5.4)

where B > 0 is independent of the index j. When restricted on q = 0, oddness of wj

reduces (3.7a) to

∂2
pwj + (a−1(λ) + ∂pwj)∂

2
qwj

+ γ(−p)(a−1(λ) + ∂pwj)
3 − γ(−p)a−3(λ) = 0.

(5.5)

Since γ ∈ O(s−2−2l) as s → ∞ for l > 0, it follows from the exponential decay (5.4)
and from (5.5) that wj(0, p) decays as p → −∞ uniformly for j.

Having now established the uniform decay of ∂qwj(q, p) and wj(0, p), we employ
an argument of Ascoli type to conclude that both {∂qwj(q, p)} and {wj(0, p)} have
subsequences which converge uniformly in the C0-norm. These uniform convergences
together with the expression (5.1) ensure that {wj} has a convergent subsequence in
the C0-norm; we say wj → w in C0

per(R) for some w ∈ X.
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The remainder of the proof is nearly identical to that of Lemma 4.6, and we only
outline the various stages of the proof.

Since {wj} is bounded in X, an interpolation inequality (see (4.17) in Lemma 4.6
and [25, Theorem 3.2.1]) asserts that wj → w in C3

per(R).
As is done in (4.16) in the proof of Lemma 4.6, we decompose F as

F1(λ,w) = Ã(λ,w)[w] + f1(λ,w),

F2(λ,w) = B̃(λ,w)[w] + f2(λ,w).

Here Ã(λ,w), B̃(λ,w), and f2 are same as in the proof of Lemma 4.6; f1 is a cubic
polynomial expression of wp and wq. An estimate of Schauder type [2]

‖wj − wk‖X ≤ C(‖Ã(λj , wj)[wj − wk]‖Y1 + ‖B̃(λj , wj)[wj − wk]‖Y2 + ‖wj − wk‖Z)

holds, where C > 0 is independent of wj . From the interpolation inequality (4.17)
and the above decomposition follows

‖Ã(λj , wj)[wj − wk]‖Y1
→ 0,

‖B̃(λj , wj)[wj − wk]‖Y2 → 0

as j, k → ∞. The Schauder estimate then asserts wj → w in X. This completes the
proof.

The global result of the existence of the deep-water waves is now immediate and
is described in the next theorem.

Theorem 5.2. Let C′
δ denote the maximal connected subset of Sδ which contains

(λ0, 0).
(i) The continuum C′

δ either is unbounded in R ×X or intersects ∂Oδ.
(ii) Each nontrivial solution lying on C′

δ has precisely the nodal properties (4.19)–
(4.22).

Proof. (i) By virtue of Theorem 4.10, it suffices to show that if U is a bounded
open set with (λ0, 0) ∈ U and U ⊂ Oδ, then ∂U ∩ Sδ �= ∅. Let U be such an open
set. The result of Corollary 4.11 is that there are sequences εj → 0 as j → ∞ and
{(λj , wj)} ⊂ Oδ such that

(λj , wj) ∈ ∂U ∩ Cεj
δ .

In other words, {(λj , wj)} ⊂ Oδ is a bounded sequence in R ×X and

F (λj , wj) = εj(a
−1(λj) + ∂pwj)

3wj .(5.6)

It will follow by the methods in the proof of Lemma 5.1 that {(λj , wj)} has a subse-
quence which converges in R×X to an element in ∂U ∩ Sδ. For the rest of the proof
it is assumed that λj → λ in R as j → ∞.

As in done in the previous lemma, to each solution (λj , wj) of (5.6) we associate
a pair of functions ηj(x) and ψj(x, y) via the definitions (2.9) and (3.6) and the
change of variables (3.1). It immediately follows that ηj(x) and ψj(x, y) are even and
2π periodic in the x-variable. From the nodal property ∂qwj(q, p) < 0 for q ∈ (−π, 0),
we infer that ∂xψj(x, y) < 0 for (x, y) ∈ and x ∈ (−π, 0).

It is straightforward to see that ∂xψj satisfies the following Poisson equation in
Dηj :

−Δ∂xψj + εH ′(−ψj)∂xψj = γ′(ψj)∂xψj .
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Note that H ′(−ψj) > 0 and γ′(ψj) ≤ 0. One exercises the argument of the maximum
principle type employed in the proof of Lemma 2.1 to conclude that ∂xψj(x, y) decays
exponentially uniformly for x:

|∂xψj(x, y)| < Aey on (−π, π) × (−∞, ηj(±π)),

where A > 0 depends only on supj |ηj(±π)|. In particular, A is independent of
ε. An exponential decay property of ∂2

xψj(0, y), analogous to (2.11), is valid on
(−∞, ηj(±π)).

Henceforth, the exponential decay estimates for ∂qwj(q, p) and ∂2
qwj(0, p) follow

with the prescribed change of variables back into (q, p)-variables:

|∂qwj(q, p)| ≤A1 exp(p/
√

λj) in {(q, p) ∈ R, p < p0},
|∂2

qwj(0, p)| ≤B1 exp(p/
√

λj) on p ∈ (−∞, p0),

where p0 depends only on supj |wj(±π, 0)|. In particular, p0 is independent of ε and
the index j. As is done in the previous lemma, one can show that wj(0, p) decays as
p → −∞ uniformly for the index j. Since {∂qwj(q, p)} and {wj(0, p)} are bounded
in the Hölder norms, an argument of Ascoli type yields that both {∂qwj(q, p)} and
{wj(0, p)} have subsequences which converge in the C0-norm. We will denote the
convergent subsequence by {wj}. From the expression (5.1) follows wj → w in C0

per(R)
for some w ∈ X.

The remainder of the proof is nearly identical to those of Lemmas 4.6 and 5.1.
Since {wj} is bounded in X, an interpolation inequality (4.17) (see [25, Theorem
3.2.1], for instance) asserts that wj → w in C3

per(R).
We employ Schauder theory [2] to obtain the inequality

‖wj − wk‖X ≤ C(‖Ã(λj , wj)[wj − wk]‖Y1

+ ‖B̃(λj , wj)[wj − wk]‖Y2 + ‖wj − wk‖Z),

where C > 0 is independent of the index j and k. With the decomposition (4.16),

Ã(λj , wj)[wj − wk] = εja
−3(λj)(wj − wk) + wk(εja

−3(λj) − εka
−3(λk))

−
(
Ã(λj , wj) − Ã(λk, wk)

)
wk −

(
f1(λj , wj) − f1(λk, wk)

)
,

B̃(λj , wj)[wj − wk] = −
(
B̃(λj , wj) − B̃(λk, wk)

)
wk

−
(
f2(λj , wj) − f2(λk, wk)

)
.

An interpolation inequality (4.17) and the above observation imply

‖Ã(λj , wj)[wj − wk]‖Y1 → 0 as j, k → ∞,

completely analogous to that in the proof of Lemma 4.6. Evidently,

‖εja−3(λj)(wj − wk) + wk(εja
−3(λj) − εka

−3(λk))‖Y1 → 0 as j, k → ∞.

The above Schauder estimate together with the elliptic estimate on the bounded
domain T yields

‖B̃(λj , wj)[wj − wk]‖Y2 → 0 as j, k → ∞,

whence it follows that wj → w in X.
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(ii) The proof is nearly identical to that of Lemma C.3 in Appendix C. Sup-
pose the contrary. Since C′

δ ⊂ Sδ is connected, there must be a nontrivial solution
(λ,w) ∈ C′

δ with wq �≡ 0 such that at least one of the nodal properties (4.19)–(4.22)
would fail with (λ,w). We argue by contradiction using the maximum principle, the
Hopf boundary lemma, and its sharp form at corner points due to Serrin [35] (see
Lemma C.2).

Remark 5.3. In case C′
δ is unbounded in R ×X, there is a sequence of solution

pairs {(λj , wj)} ⊂ C′
δ such that either

(1) limj→∞ λj = ∞ or
(2) limj→∞ ‖wj‖X = ∞.

If the other alternative that C′
δ intersects ∂Oδ holds, there is a solution pair (λ,w) ∈ C′

δ

such that one of the following holds:
(3) λ = 2Γ∞ + δ,
(4) a−1(λ) + wp = δ somewhere in R,
(5) w = 2λ−δ

4g somewhere on T .

5.2. Uniform regularity. The purpose of this subsection is to obtain bounds
for the higher derivatives of w in terms of w and wp uniformly along the continuum C′

δ.
Theorem 5.4. For each δ > 0, supw∈C′

δ
supR(|w| + |wp|) < ∞ implies

sup
w∈C′

δ

sup
R

‖w‖X < ∞.

Proof. First, to demonstrate a uniform bound for wq we consider the following
linear elliptic boundary value problem:

A(λ,w)[wq] = Ã(λ,w)[wq]

+
(
−2wqwpq + 3γ(−p)(a−1(λ) + wp)

2
)
wqp

+
(
2wqwpp − 2γ(−p)a−3(λ)wq

)
wqq = 0,

(5.7)

B(λ,w)[wq] = B̃(λ,w)[wq] + 2g(λ−1/2 + wp)
2wq

∣∣
T

= 0.(5.8)

Here the principal parts Ã(λ,w) and B̃(λ,w) are defined in (4.9). We assume the
solutions take the form w(q, p) = k(q, p)−sqep, where s > 0 is a constant. Substituting
this into (5.7) results in the equation

Ã(λ, k − sqep)[kq]

− 2kqk
2
pq + 3γ(−p)(a−1(λ) + kp)

2kqp + 2kqkppkqq − 2γ(−p)a−3(λ)kqkqq

− sep
(
(1 + kq)

2 − 4kqkpq − 2k2
pq + 2kppkqq − 2qkqkqq − 2γ(−p)kqq

+ 3γ(−p)(a−1(λ) + kp)
2 + 6qγ(−p)(a−1(λ) + kp)kqp

)
+ O(s2) = 0.

(5.9)

Suppose kq had an interior maximum in R. At such a point the following would hold:

{
kqp = kqq = 0,

kqpp, kqqq ≤ 0 and kqppkqqq ≥ k2
qpq,

whence (5.9) would become

Ã(λ, k − sqep)[kp] − sep
(
(1 + k2

q) + 3γ(−p)(a−1(λ) + kp)
2
)

+ O(s2) = 0.
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Since (1 + k2
q) + 3γ(−p)(a−1(λ) + kp)

2 > 1, (5.9) is further reduced to the elliptic

inequality Ã(λ, k − sqep)[kq] > 0 for s > 0 sufficiently small. Then, by the maximum
principle, kq = wq + sep cannot have an interior maximum along C′

δ.
Note that kq → 0 as p → −∞. On the other hand, the nonlinear boundary

condition (3.2b),

1 + (2gw − λ)(1/
√
λ + w2

p) + (kq − s)2 = 0,

dictates that kq on T is bounded by w and wp.
Since w and wp are uniformly bounded along C′

δ, the maximum of kq and also the
maximum of wq are uniformly bounded along C′

δ. One repeats the same consideration
with w(q, p) = k(q, p)+sqep to conclude that the minimum of wq along C′

δ is bounded
by w and wp. Therefore, supw∈C′

δ
supR |wq| is finite.

Next, in order to obtain bounds for the second derivatives, we proceed with the
a priori estimates of Schauder type due to Lieberman and Trudinger [27] for nonlinear
elliptic partial differential equations with a nonlinear oblique boundary condition.

We consider a quasi-linear boundary value problem of the form⎧⎪⎨
⎪⎩
F1(∇w)[w] =

2∑
i,j=1

aij(∇w)∂ijw + f1(∇w) = 0 in R,

F2(w,∇w) = 0 on T.

(5.10)

Here aij , f1 ∈ C2(R2), F2 ∈ C2(R × R
2); ∇w = (wq, wp) denotes the gradient of w.

Theorem 5.5. Let w ∈ C2
per(R) be a solution to (5.10) such that ∂βw ∈ o(1) as

p → −∞ for all multi-indices |β| ≤ 2. Suppose that |w| + |∇w| ≤ K in R for some
constant K > 0 and that there exist δ,M > 0 such that the following conditions hold
for all (z, r) ∈ R × R

2 with |z| + |r| ≤ K:

2∑
i,j=1

aijξiξj ≥ δ(ξ2
1 + ξ2

2) for all (ξ1, ξ2) ∈ R
2,(5.11)

|aij |, |aijr |, |fr| ≤ δM,(5.12)

χ := F2r · (0,−1) > 0 on T × R,(5.13)

|F2|, |F2z|, |F2r|, |F2zz|, |F2zr|, |F2rr| ≤ χM.(5.14)

Then for α′ ∈ (0, 1) and C = C(K,M) > 0 constants, w ∈ C2+α′
(R) and

‖w‖C2+α′ (R) ≤ C.

The assertion for any compact subset of R follows as a direct consequence of [27,
Theorem 1.1]. Then we employ the treatment in [2, Theorem 6.3] and an interpolation
theorem to obtain estimates valid on the entire domain R.

In order to adapt Theorem 5.5 to the present setting, we take

2∑
i,j=1

aij(r)∂ij = (1 + r2
1)∂

2
p − 2(a−1(λ) + r2)r1∂p∂q + (a−1(λ) + r2

2)∂
2
q ,

f1(r) = γ(−p)(a−1 + r2)
3 − γ(−p)a−3(λ)(1 + r2

1),

F2(z, r) = 1 + (2gz − λ)(λ−1/2 + r2)
2 + r2

1,
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where z ∈ R and r = (r1, r2) ∈ R
2. Conditions (5.11) and (5.13) are fulfilled evidently;

F1 is uniformly elliptic and F2 is uniformly oblique. In particular, there exists s > 0
such that

χ = F2r · (0,−1) = 2(λ− 2gz)(λ−1/2 + r2)
∣∣
T
≥ s > 0,

since by (3.7b) we have

(λ− 2gw)(λ−1/2 + wp) =
1 + w2

q

λ−1/2 + |wp|
≥ 1

(2Γ∞ + δ)−1/2 + supR |wp|
and the right side of the inequality is bounded along C′

δ. It is straightforward to verify
the structure conditions (5.12) and (5.14). By virtue of Theorem 5.5 we then conclude
that ‖w‖C2+α′ (R) for some α′ ∈ (0, 1) is uniformly bounded by supC′

δ
supR(|w|+ |wp|)

along the entire continuum C′
δ.

Our final task is to gain bounds for the higher derivatives. To do so, it is conve-
nient to write (5.7) and (5.8) in the form{

Ã(λ,w)[wq] = f1(wp, wq, wpp, wpq, wqq) in R,

B̃(λ,w)[wq] = −2g(λ−1/2 + wp)
2wq on T.

Note that Ã(λ,w) is a uniformly elliptic differential operator whose coefficients are
bounded in C1+α(R) and that B̃(λ,w) is a uniformly oblique boundary operator with
bounded coefficients in C1+α(T ). Note as well that f1 ∈ Cα′

(R), where α′ is as in
the previous step. Accordingly, the (standard) Schauder estimate [2]

‖wq‖C2+α′ (R) ≤ C
(
‖f1‖Cα′ (R) + ‖2g(λ−1/2 + wp)

2wq‖C1+α′ (T ) + ‖wq‖C0(R)

)
≤ C̃(‖w‖C2+α′ (R))

holds, where C̃ depends on ‖w‖C2+α′ (R). That is to say, wq earns a uniform C2+α′
(R)

bound along C′
δ.

It remains to prove a uniform C2+α′
(R) estimate for wp along C′

δ. We use the
differential equation (3.7a) to express wpp in terms of other derivatives of w of order

less than or equal to 2, each of which is bounded along C′
δ in the C2+α′

(R)-norm.
Thus, ‖w‖C3+α′ (R) remains uniformly bounded along C′

δ. In particular, ‖w‖C2+α(R) is

bounded along C′
δ. The assertion of Theorem 5.4 then follows by repeating the same

argument as in the previous step with α′ = α.

5.3. Proof of the main result (Theorem 2.3). Throughout this subsection,
(u − c, v, η) represents the solution triple of the deep-water problem (2.1)–(2.6) cor-
responding to the solution pair (λ,w) of (3.10) via the transform in section 3.1.

The following observations are useful.
Lemma 5.6 (speed at crest). The relative flow speed at the crest of any nontrivial

flow is bounded:

(c− u(0, 0))2 = Q < λ.(5.15)

Proof. Any nontrivial solution w belongs to N , and thus it enjoys the nodal
properties, wq = 0 and wqq < 0 on q = 0. Subsequently, hq = 0 and hqq < 0 on q = 0.
Under the circumstances, (3.2a) reduces to the inequality hpp > −γ(−p)h3

p. Further,

−
(

1

h2
p(0, p)

)
p

> −2γ(−p) for p ∈ (−∞, 0).
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Integration over p ∈ (−∞, 0) then yields c2 − (c − u(0, 0))2 > −2Γ∞, from which
(5.15) follows.

The same calculation carried out on q = ±π leads to an analogous bound for the
relative flow speed at the trough:

(c− u(±π, η(±π)))2 > λ.(5.16)

The following properties of nontrivial solutions are direct consequences of (5.15) and
(5.16):

w(0, 0) = h(0, 0) − H(0) =
λ−Q

2g
> 0,(5.17)

w(±π, 0) = h(±π, 0)− H(0) =
λ− (c− u(π, η(π)))2

2g
< 0.(5.18)

Lemma 5.7 (pressure estimate). The pressure satisfies the inequality

P + gy − Γ(−ψ) ≥ P0 + gη(±π).(5.19)

Proof. Let s > 0 and define a function on Dη by

Ms(x, y) = 1
2 (ψ2

x + ψ2
y) + sy − E + P0 = (s− g)y − P − Γ(−ψ) + P0.(5.20)

Note that

ΔMs + 2γ′(ψ)Ms = ψ2
xx + 2ψ2

xy + ψ2
yy + 2(sy − E + P0)γ

′(ψ) ≥ 0.

The inequality utilizes the fact that γ′(ψ) ≤ 0 and that E −P0 = 1
2 (c− u(0, 0))2 > 0.

The weak maximum principle asserts that Ms in Dη attains its maximum on the free
surface or at the infinite bottom. On the other hand,

Ms
y = ψxψxy + ψyψyy + s

= ψxψxy − ψyψxx − ψyγ(ψ) + s > 0

as y → −∞, since ψx, ψxx → 0 and γ(ψ) → 0 as y → −∞ uniformly for x while ψy is
bounded. Therefore, Ms attains its maximum on the surface, and

(s− g)y − P − Γ(−ψ) + P0 ≤ (s− g)η(±π)

for each s > 0. Inequality (5.19) then follows as the limit s → 0.
By the same token, the function

M(x, y) := 1
2 (ψ2

x + ψ2
y) + gy − E + P0 = −P − Γ(−ψ) + P0

attains its maximum on the free surface. By the Hopf boundary point lemma,

e(x) := (−ηx, 1) · (Mx,My)
∣∣
Sη

> 0 for x ∈ [0, π].(5.21)

On the other hand, since M is constantly zero on the surface,

(1, ηx) · (Mx,My)
∣∣
Sη

= 0 for x ∈ [0, π],(5.22)



DEEP-WATER WAVES WITH VORTICITY 1511

and hence

Mx

∣∣
Sη

= − e(x)

1 + η2
x

ηx ≥ 0 for x ∈ [0, π].

Therefore, for x ∈ [0, π]

d

dx

(
ψ2
y(x, η(x))

)
= 2ψyψxy + 2ψyψyyηx = 2ψyψxy − 2ψxψyy

= 2ψyψxy + 2ψx(ψxx + γ(0))

= −2ηx

(
e(x)

1 + η2
x

− γ(0)(c− u)
∣∣
Sη

)
≥ 0,

provided that

γ(0) ≤ min
x∈[0,π]

(
e(x)

1 + η2
x(x)

· 1

c− u(x, η(x))

)
.(5.23)

Since ψy(x, η(x)) < 0, this says that ψy(x, y) is nondecreasing for x ∈ [0, π].
This is summarized in the following lemma.
Lemma 5.8. If γ(0) satisfies (5.23), then the relative flow speed c− u(x, η(x)) is

nondecreasing from crest to trough:

c− u(x, η(x)) ≥ c− u(0, 0) > 0 for x ∈ [0, π].(5.24)

Proof of Theorem 2.3. For any δ > 0, due to Theorem 5.2, Remark 5.3, and
Theorem 5.4, at least one of the following holds:

(1) there exists a sequence {(λj , wj)} ⊂ C′
δ such that limj→∞ λj = ∞;

(2) there exists a sequence {(λj , wj)} ⊂ C′
δ such that supR |wj | → ∞;

(3) there exists a sequence {(λj , wj)} ⊂ C′
δ such that supR |∂pwj | → ∞;

(4) there exists a solution pair (λ,w) ∈ C′
δ such that λ = 2Γ∞ + δ;

(5) there exists a solution pair (λ,w) ∈ C′
δ such that a−1(λ) + wp = δ at some

point in R;
(6) there exists a solution pair (λ,w) ∈ C′

δ such that w = 2λ−δ
4g at some point

on T .
Our task is to give an interpretation of each alternative (1) through (6) in terms

of the relative flow speed c− u to prove assertion (ii) in Theorem 2.3. We note that

a−1(λ) + wp = hp =
1

c− u
.(5.25)

Alternative (1). From (5.16) it follows that limj→∞(cj − uj(±π, ηj(±π))) = ∞.
Alternative (2). The nodal configuration says that ∂qwj < 0 on R+ whereas

oddness of ∂qwj requires that wq > 0 on R with q ∈ (−π, 0). That is, w is increasing
where q ∈ (−π, 0) and decreasing where q ∈ (0, π), and thus w attains its maximum
on q = 0 and its minimum on q = ±π. Therefore, in the case of Alternative (2) either
supp wj(0, p) ↑ ∞ or infp wj(±π, p) ↓ −∞ must hold.

Suppose supp wj(0, p) ↑ ∞. The nodal properties, ∂qwj = 0 and ∂2
qwj < 0 on

q = 0, reduce (3.7a) to the inequality

∂2
pwj + γ(−p)

(
(∂pwj + 3

2a
−1(λj))

2 + 3
4a

−2(λj)
)
∂pwj > 0 on q = 0.
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Since wj(0, 0) > 0 and wj(0, p) tends to zero as p → −∞, the maximum principle
implies that supp wj(0, p) = wj(0, 0). From (5.17) it follows λj ↑ ∞, and in turn it
follows limj→∞(cj − uj(±π, ηj(±π))) = ∞, as is done previously for Alternative (1).

A similar consideration on q = ±π implies that w(±π, p) on p ∈ (−∞, 0) attains
a negative minimum at p = 0. Therefore, in case infp wj(±π, p) ↓ −∞, (5.18) implies
that limj→∞(cj − uj(±π, ηj(±π))) = ∞.

Alternative (3). Since δ < a−1(λ) + wp < δ−1/2 + wp for (λ,w) ∈ Oδ, i.e., wp is
bounded from below by δ−δ−1/2, it must hold supR ∂pwj ↑ ∞ under the circumstance.
Then, by (5.25), supR ∂phj ↑ ∞ holds, and consequently infDηj

(cj − uj) ↓ 0.

Alternative (4). To each δj ↓ 0 we associate (λj , wj) ∈ C′
δj

such that λj = 2Γ∞+δj .

We may assume that supR ∂pwj is bounded; otherwise, infDηj
(cj − uj) ↓ 0 must hold

by the previous treatment for Alternative (3).
For a sequence pj → −∞ with 2Γ∞ − 2Γ(pj) = δj , we have

∂phj(0, p) = a−1(λj) + ∂pwj(0, p) > (2δj)
−1/2 − sup

R
∂pwj(0, p) ↑ ∞.

Therefore, by (5.25) infDηj
(cj − uj) ↓ 0.

Alternative (5). Choose sequences δj ↓ 0 and (λj , wj) ∈ C′
δj

such that a−1(λj) +

∂pwj = δj . By (5.25) it follows that supDηj
(cj − uj) ↑ ∞.

Alternative (6). For a sequence δj ↓ 0 there exists a sequence (λj , wj) ∈ C′
δj

such

that λj − 2gwj = 1
2δj somewhere on T . The nonlinear boundary condition on top

(3.2b) then yields

1

∂ph2
j

≤
1 + ∂qh

2
j

∂ph2
j

=
δj
2

↓ 0,

whence infDηj
(cj − uj) ↓ 0.

Let C′ = ∪δ>0C′
δ. By construction, C′

δ ⊂ C′
δ′ if δ > δ′. At this stage, the conclusion

is that there is a sequence of solution triples {(uj − cj , vj , ηj)} ⊂ C in the space
C2+α(Dη) × C2+α(Dη) × C3+α(R) such that

either sup
Dηj

(cj − uj) ↑ ∞ or inf
Dηj

(cj − uj) ↓ 0.

The remainder of the proof consists of studying the above two alternatives further.
First, let the first alternative supDηj

(cj − uj) ↑ ∞ hold. We recall that

E = 1
2

(
(c− u)2 + v2

)
+ gy + P + Γ(−ψ).

Evaluated at the trough (±π, η(±π)), it reduces to

E = 1
2 (c− u(±π, η(±π)))

2
+ gη(±π) + P0.

Subtracting the above two expressions for E, we arrive at

1
2 (c− u)2 ≤ 1

2 (c− u(±π, η(±π)))
2

+ gη(π) + P0 − P − gy + Γ(−ψ)

≤ 1
2 (c− u(±π, η(±π)))

2
.

The last inequality uses Lemma 5.7. Therefore, if the first alternative supDηj
(cj−uj) ↑

∞ holds, limj→∞ (cj − uj(±π, ηj(±π))) = ∞ must hold.
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Next, we assume the second alternative infDηj
(cj −uj) ↓ 0 holds. We may choose

a sequence {sj} and a sequence of solution triples {(uj − cj , vj , ηj)} ⊂ C such that
sj ↓ 0 and cj − uj(xj , yj) = sj at some point (xj , yj) in Dηj ; {yj} is assumed to be
bounded from below as uj(x, y) → 0 as y → −∞ uniformly for x.

Differentiating the Poisson equation −Δψ = γ(ψ) leads to Δ(u−c)+γ′(ψ)(u−c) =
0 in Dη. Recall that ψy = u− c. Let us introduce a sequence of functions,

Wj(x, y) = uj(x, y) − cj + sje
β(y−yj) for (x, y) ∈ Dηj

,(5.26)

where β > 0 is a constant such that β2 + γ′(s) ≥ 0 for all s ∈ [0,∞). Note that

ΔWj + γ′(ψ)Wj = sj(β
2 + γ′(ψ))eβ(y−yj) ≥ 0 in Dηj

and that Wj(xj , yj) = 0.
Since γ′(ψ) ≤ 0, the weak maximum principle ensures that Wj in Dηj attains its

maximum either on the surface or at the infinite bottom. On the other hand,

Wj → −cj < 0 as y → −∞.

Therefore, Wj in Dηj
attains its maximum on the free surface y = ηj(x). In particular,

there is a sequence of points {(ξj , ηj(ξj)) : ξj ∈ [0, π]} such that

uj(ξj , ηj(ξj)) − cj + sje
β(ηj(ξj)−yj) ≥ 0,

whence

0 ≤ cj − uj(ξj , ηj(ξj)) ≤ sje
β(ηj(ξj)−yj).

Since ηj(ξj) ≤ ηj(0) = 0 and {yj} is bounded from below, we conclude that

lim
j→∞

(cj − uj(ξj , ηj(ξj))) = 0.

This proves (ii) of Theorem 2.3.
Furthermore, if γ(0) satisfies (5.23), then, by Lemma 5.8, Wj in Dηj attains its

maximum at the crest (0, 0), and therefore

lim
j→∞

(cj − uj(0, 0)) = 0.

This completes the proof.
Remark 5.9. When the first alternative limj→∞ (cj − uj(±π, ηj(±π))) = ∞ holds,

either the speed of wave propagation or the wave amplitude becomes unboundedly
large. Indeed, as is done previously in the proof,

E = 1
2 (c− u(0, 0))

2
= 1

2 (c− u(±π, η(±π)))
2

+ gη(±π) + P0,

from which it follows that

(c− u(±π, ηj(±π)))
2

= (c− u(0, 0))2 + 2g|η(±π)|
< λ + 2g|η(±π)|.

Therefore, when the left side approaches infinity as j → ∞,

either lim
j→∞

cj = ∞ or lim
j→∞

|ηj(±π)| = ∞

holds.
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Appendix A. Proof of Proposition 4.2 (local bifurcation). This section
is devoted to the detailed analysis of local bifurcation for the regular approximate
problem (3.11). We begin by invoking the theorem of local bifurcation from a simple
eigenvalue due to Crandall and Rabinowitz.

Theorem A.1 (see [11, Theorem 1] and [10, Theorem 3.6]). Suppose that X and
Y are Banach spaces and I ⊂ R is an open interval of λ∗. Also suppose that F :
I ×X → Y is of class C2 and satisfies

(i) F (λ, 0) = 0 for all λ ∈ I;
(ii) Fw(λ∗, 0) is a Fredholm operator of index zero;
(iii) kerFw(λ∗, 0) is one-dimensional and generated by φ∗; and
(iv) Fwλ(λ∗, 0)[φ∗] /∈ rangeFw(λ∗, 0).

Then (λ∗, 0) is a local bifurcation point. More precisely, there exists s0 > 0 and a
local curve of solutions

{ (λ,w) = (λ(s), w(s)), |s| < s0 : F (λ(s), w(s)) = 0 }

in R ×X such that (λ(0), w(0)) = (λ∗, 0). Furthermore, any solution near (λ∗, 0) is
of the form

w(s) = sφ∗ + o(s) for |s| < s0.

The curve of solutions is unique in the sense that there is an open neighborhood
U ⊂ I ×X of (λ∗, 0) such that

{ (λ,w) ∈ U : F (λ,w) = 0, w �≡ 0 } = { (λ(s), w(s)) : 0 < |s| < s0 }.

Our task is to verify conditions (i) through (iv) for the setting in section 4.1.
From the definition of F ε in (3.11) follows that F ε(λ, 0) = 0 for λ ∈ (2Γ∞,∞). The
Fredholm property of F ε

w(λε, 0) is proved in Lemma 4.3.
Lemma A.2 (null space). The null space of F ε

w(λε, 0) is one-dimensional and
generated by φε. Here φε is an eigenfunction of (4.1) with λ = λε.

Proof. As is established in Lemma 4.1, φε(q, p) = Φε(p) cos q belongs to kerF ε
w(λε, 0).

Conversely, let φ ∈ X be in kerF ε
w(λε, 0). Such a function φ is even and 2π periodic

in the q-variable, and hence it can be written as

φ(q, p) =

∞∑
k=0

φk(p) cos kq.

Each φk solves the ordinary differential equation

(a3(λε)φ′
k)

′ − εφk = k2a(λε)φk for p ∈ (−∞, 0),

with the boundary conditions

(λε)3/2φ′
k(0) = gφk(0),

φk, φ
′
k → 0 as p → −∞.

In case k = 1, it follows from Lemma 4.1 that φ1 is a constant multiple of Φε.
For k ≥ 2, any nontrivial solution φk would satisfy

R(φk;λ
ε) =

−gφ2
k(0) +

∫ 0

−∞ a3(λε)(φ′
k)

2 + ε
∫ 0

−∞ φ2
k dp∫ 0

−∞ a(λε)φ2
k dp

= −k2 < −1.
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This contradicts (4.4), the characterization of λε. Therefore, φk ≡ 0 for k ≥ 2.
Consider a solution φ0 of k = 0. From the comparison theorem for ordinary differential
equations follows that any nontrivial solution φ0 vanishes nowhere. This, however,
contradicts the orthogonality,∫ 0

−∞
a(λε)Φε(p)φ0(p)dp = 0,

which proves the assertion.
Proof of Proposition 4.2. It remains to verify (iv) of Theorem A.1. We first claim

that if (f1, f2) ∈ Y belongs to the range of F ε
w(λε, 0), then the orthogonality condition∫

R

f1 · a3(λε)φεdqdp +
1

2

∫
T

f2 · λεφεdq = 0(A.1)

holds. We remark that for any f1 ∈ Y1 the first integral converges since φε decays
exponentially as p → −∞ uniformly for q and a(λε) is bounded.

To prove the claim, let f1 = A(λε, 0)v and f2 = B(λε, 0)v for some v ∈ X, i.e.,

f1 = a−3(λε)(a3(λε)vp)p + (a(λε)vq)q − εa−3(λε)v,

f2 = (2g/λε)v − 2
√
λεvp

∣∣
T
.

An integration by parts shows that∫∫
R

f1 · a3(λε)φε dqdp =

∫∫
R

[(a3(λε)vp)p + (a(λε)vq)q − εv]φε dqdp

=

∫∫
R

[(a3(λε)φε
p)p + (a(λε)φε

q)q − εφε]v dqdp

+

∫
T

(a3(λε)vpφ
ε − a3(λε)vφε

p) dq

= − 1

2

∫
T

f2 · λεφε dp.

The last equality uses that φε solves (4.1) with λ = λε. This proves the claim.
An explicit calculation yields

F ε
wλ(λε, 0)[φε] =

(
−a−4(λε)φε

qq − 3γ(−p)a−4(λε)φε
p +

3

2
εa−5(λε)φε,

−2g(λε)−2φε − (λε)−1/2φε
p

∣∣
T

)
.

We shall show that (A.1) fails with (f1, f2) = F ε
wλ(λε, 0)[φε]:∫∫

R

(
−a−4(λε)φε

qq − 3γ(−p)a−4(λε)φε
p +

3

2
εa−5(λε)φε

)
· a3(λε)φε dqdp

+
1

2

∫
T

(
2g(λε)−2φε − (λε)−1/2φε

p

)
· λεφε dq

= −
∫∫

R

a−1(λε)φεφε
qq dqdp− 3

∫∫
R

γ(−p)a−1(λε)φεφε
p dqdp

− 3

2
ε

∫∫
R

a−2(λε)(φε)2 dqdp

+
1

2

∫
T

(
−2g(λε)−1(φε)2 −

√
λεφεφε

p

)
dq
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=

∫∫
R

a−1(λε)(φε)2 dqdp− 3

∫∫
R

γ(−p)a−1(λε)φεφε
p dqdp

− 3

2
ε

∫∫
R

a−2(λε)(φε)2 dqdp− 3

2

∫
T

g(λε)−1(φε)2 dq

= − 1

2

∫∫
R

a−1(λε)(φε)2 dqdp− 3

2

∫∫
R

a(λε)(φε
p)

2 dqdp < 0.

The last equality uses (4.1) with λ = λε and a′(p;λε) = γ(−p)a−1(p;λε):∫∫
R

γ(−p)a−1(λε)φεφε
p dqdp

=
1

2

∫∫
R

a−1(λε)(φε)2 dqdp +
1

2

∫∫
R

a(λε)(φε
p)

2 dqdp

+
1

2
ε

∫∫
R

a−2(λε)(ep)2 dqdp− 1

2

∫
T

g(λε)−1(φε)2 dq.

Therefore, F ε
wλ(λε, 0)[φε] /∈ rangeF ε

w(λε, 0).
We deduce from Theorem A.1 the existence of a local bifurcation curve (λ(s), w(s)) ∈

Cε
loc in R ×X such that (λ(0), w(0)) = (λε, 0) and F ε(λ(s), w(s)) = 0.

Appendix B. Generalized degree theory. This section is the summary of
the general development in [18, 23] to define a generalized degree for a large class
of mappings which includes F ε(λ, ·) defined in (3.11). Let X,Y1, and Y2 be real
Banach spaces, with X continuously embedded in Y1. The Banach space Y = Y1 ×Y2

is equipped with the product topology. Let W be a bounded open set of X and
F : W → Y be of C2(W, Y ) ∩ C0(W, Y ). The mapping F is supposed to be proper,
i.e., F−1(K) ∩W is compact in X for any K ⊂ Y compact. The linearized operator
Fw(w) = (A(w), B(w)) is admissible in the following sense:

(L1) Fw is a Fredholm operator of index zero;
(L2) B : X → Y2 is surjective;
(L3) for each w ∈ W there exist C1, C2 > 0 such that

C1‖φ‖X ≤ μα/2‖(A(w) − μI)φ‖Y1
+ μ(α+1)/2‖B(w)φ‖Y2

for all φ ∈ X and for all μ ≥ C2; and
(L4) there exists an open neighborhood N of the ray {μ ∈ R, μ ≥ 0} in the complex

plane such that σ(A) ∩N consists of finitely many eigenvalues, each of finite
algebraic multiplicity; the spectrum σ(A) is defined in (4.13).

Consider the equation

F (w) = y for y /∈ F (∂W).

We assume for now that y is a regular value, i.e., Fw(w) = (A(w), B(w)) is surjective
for all w ∈ F−1(y) ∩W. It is in turn bijective by the Fredholm property. Then (L3)
and (L4) ensure that A(w) has only finitely many positive real eigenvalues, ν(w) say,
counted by algebraic multiplicity. By properness, the inverse image F−1(y) ∩ W is
compact and thereby a finite set. Accordingly, we define the degree of F with respect
to y by

deg(F,W, y) =
∑

w∈F−1(y)∩W
(−1)ν(w).(B.1)

Set deg(F,W, y) = 0 if F−1(y) ∩W = ∅.



DEEP-WATER WAVES WITH VORTICITY 1517

Suppose that y /∈ F (∂W) is not a regular value. For this we employ the Sard–
Smale–Quinn theorem which asserts that the set of regular values of F is dense in Y .
We may choose a nearby regular value ỹ of F with ‖ỹ − y‖Y ≤ inf ŷ∈F (∂W) ‖ŷ − y‖Y
and define

deg(F,W, y) = deg(F,W, ỹ),(B.2)

where the right side is well defined.
An important property of degree is the following generalized homotopy invariance

valid on noncylindrical domains. Let U ⊂ [0, 1] ×W be open and

Ut = {w ∈ W : (t, w) ∈ U}, ∂Ut = {w ∈ W : (t, w) ∈ ∂U}.

By an admissible homotopy we mean a proper map H : U → Y of class C2 such that
H(t, ·) : Ut → Y is admissible in the sense of (L1)–(L4) above for each t ∈ [0, 1].

Proposition B.1 (generalized homotopy invariance). The degree defined by
(B.1) and (B.2) is invariant under admissible homotopies, i.e.,

deg(H(0, ·),U0, y) = deg(H(1, ·),U1, y)

provided y /∈ H(t, ∂Ut) for all t ∈ [0, 1].
The proof is standard. See [18, Appendix] for one in the present setting.

Appendix C. Preservation of nodal structure. Here we demonstrate that
the continuum obtained in Theorem 4.7 globally preserves the nodal configuration
which it inherits from the eigenfunction of the linearized problem at the local bifur-
cation point. Accordingly, the second alternative in Theorem 4.7 is eliminated.

As is done in section 4.2, let

R+ = (0, π) × (−∞, 0), T+ = (0, π) × {0},
∂R+

l = {(0, p) : p ∈ (−∞, 0)}, ∂R+
r = {(π, p) : p ∈ (−∞, 0)}.

Our goal is to show that any nontrivial solution to (3.11) in Cε
δ possesses the following

nodal pattern:

wq < 0 in R+ ∪ T+,(C.1)

wqq < 0 on ∂R+
l , wqq > 0 on ∂R+

r ,(C.2)

either wqq(0, 0) < 0 or wqqp(0, 0) > 0,(C.3)

either wqq(π, 0) > 0 or wqqp(π, 0) < 0.(C.4)

Inequalities (C.1)–(C.4) define the open set N ; see (4.23). By evenness and periodicity
of w ∈ X, we infer that wq = 0 on ∂R+

l ∪ ∂R+
r .

Lemma C.1. Cε
loc ∩ (R × N ) �= ∅; i.e., (C.1)–(C.4) hold along the local curve

Cε
loc \ (λε, 0) of bifurcation in a small neighborhood of (λε, 0) in R ×X.

Proof. We begin with the observation that an eigenfunction φε(q, p) = Φε(p) cos q
of (4.1) at (λε, 0) belongs to N . This uses the fact that

Φε(p) > 0 for p ∈ (−∞, 0] and (Φε)′(0) > 0.(C.5)

The alternatives (C.3) and (C.4) hold since φε
qqp(0, 0) < 0 and φε

qq(π, 0) > 0.
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By virtue of Proposition 4.2, any solution of (3.11) contained in R×X near (λε, 0)
is of the form

w(q, p) = sΦε(p) cos q + o(s) in C3+α(R)

for s > 0 sufficiently small. By restricting it to R
+

and differentiating, we arrive at

wq(q, p) = −sΦε(p) sin q + o(s) in C2+α(R+ ∪ T+),

wqq(0, p) = −sΦε(p) + o(s) in C1+α(∂R+
l ),

wqq(π, p) = sΦε(p) + o(s) in C1+α(∂R+
r ),

wqqp(q, p) = −s(Φε)′(p) cos q + o(s) in Cα(R
+
).

(C.6)

Choose s1 > 0 small enough, and (C.1), (C.2) follow for w(s) with 0 < |s| < s1.
Next, at the left corner point (0, 0), oddness of wq leads to

wq(0, 0) = wqp(0, 0) = wqqq(0, 0) = wqpp(0, 0) = 0.

Accordingly, we may write down Taylor expansions in the neighborhood R
+∩B1/k((0, 0))

of wq and wqq as

wq(q, p) = wqq(0, 0)q + wqqp(0, 0)qp + O(k−3),

wqq(q, p) = wqq(0, 0) + wqqp(0, 0)p + O(k−2),(C.7)

respectively. Here Br(Q) denotes the open ball in the (q, p)-plane of radius r centered
at Q. Analogous expansions are valid at the right corner point (π, 0),

wq(q, p) = wqq(π, 0)(q − π) + wqqp(π, 0)(q − π)p + O(k−3),

wqq(q, p) = wqq(π, 0) + wqqp(π, 0)p + O(k−2),

in R
+ ∩B1/k((π, 0)). From (C.5) and (C.6) it follows that

wqq(0, 0) ≤ − s
2Φε(0) < 0, wqqp(0, 0) ≤ − s

2 (Φε)′(0) < 0,

wqq(π, 0) ≥ s
2Φε(0) > 0, wqqp(π, 0) ≥ s

2 (Φε)′(0) > 0
(C.8)

for s > 0 sufficiently small.
In view of (C.7) and (C.8), we deduce that for large k2 > 0 an integer and

0 < s2 < s1 sufficiently small, (C.1)–(C.3) hold for w(s) with 0 < s < s2, w restricted
to B1/k2

((0, 0)). We proceed similarly at the right corner point (π, 0) to conclude that
(C.1), (C.2), and (C.4) hold for w(s) restricted to B1/k3

((π, 0)), with 0 < s3 < s1, for
a large integer k3 ≥ 0 and 0 < s3 < s1 small enough. Finally, the assertion follows if

we take s = min(s2, s3) and consider R
+

= R+ ∪ T+ ∪ ∂R+
l ∪ ∂R+

r ∪ B1/k2
((0, 0)) ∪

B1/k3
((π, 0)).

For our next result, we appeal to the following sharp form of the maximum prin-
ciple.

Lemma C.2. Let R+ be the open semi-infinite strip (0, π) × (−∞, 0) and let w
be a C2-subsolution of the uniformly elliptic differential operator

L = a11(q, p)∂
2
q + 2a12(q, p)∂p∂q + a22(q, p)∂

2
p + b1(q, p)∂q + b2(q, p)∂p
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in R+. We assume that the coefficients aij , bi (i, j = 1, 2) are continuous and uni-

formly bounded on R
+
. Suppose w ≥ 0 in R

+
and w → 0 as p → −∞ uniformly

for q.
(a) w > 0 in R+ unless u ≡ 0.
(b) We further assume that there is a constant k > 0 such that

|a12(q, p)| ≤ kmin(q, π − q)(C.9)

for all (q, p) ∈ R
+
. If w = 0 at some corner point Q of R

+
, then

either
∂w

∂�s
(Q) > 0 or

∂2w

∂�s2
(Q) > 0(C.10)

unless w ≡ 0. Here �s is any direction vector at Q which enters R+ nontangentially.
Assertion (a) follows from the Phragmén-Lindelöf theorem [14] and the weak max-

imum principle. Assertion (b) is the edge point lemma due to Serrin [35, Lemma 2].
Lemma C.3. The nodal properties (C.1)–(C.4) hold along the entire continuum

Cε
δ \ (λε, 0) unless (λ, 0) ∈ Cε

δ with λ �= λε.
Proof. Assume the contrary. Then by the previous lemma and the connectedness

of Cε
δ, there must be a nontrivial solution (λ̂, ŵ) ∈ Cε

δ which belongs to the boundary

of R×N . That is, ŵq �≡ 0, ŵq ≤ 0 on R
+
, and at least one of the following conditions

holds:
(1) ŵq = 0 at some point (q̂, 0) ∈ T+;

(2) ŵq = 0 and ŵqq = 0 at some point (q̂, p̂) ∈ R
+ \ ((0, 0) ∪ (π, 0));

(3) ŵqq = 0 and ŵqqp = 0 at some corner point.
Observe that ŵq solves the linear partial differential equation in R+

A(λ̂, ŵ)[ŵq] = Ã(λ̂, ŵ)[ŵq]

+ [−2ŵqŵpq + 3γ(−p)(a−1
(λ̂) + ŵp)

2]ŵqp

+ [2ŵqŵpp − 2γ(−p)a−3
(λ̂)ŵq]ŵqq = 0

(C.11)

with the boundary condition

B(λ̂, ŵ)[ŵq] = 2(2gŵ − λ̂)(λ̂−1/2 + ŵp)ŵqp

+ 2ŵqŵqq + 2g(λ̂−1/2 + ŵp)
2ŵq

∣∣
T

= 0.
(C.12)

Since (λ̂, ŵ) ∈ Cε
δ ⊂ Oδ, A(λ̂, ŵ) is uniformly elliptic and its coefficients are bounded

and continuous in R
+
. By continuity, ŵq ≤ 0 in R

+
. The bluntness condition (C.9)

is fulfilled since wq = 0 on ∂R+
l ∪ ∂R+

r .
We first suppose ŵq(q̂, 0) = 0 for some (q̂, 0) ∈ T+. At such a point the boundary

condition becomes

2(2gŵ − λ̂)(λ̂−1/2 + ŵp)ŵqp = 0.

The Hopf boundary lemma requires ŵqp(q̂, 0) > 0. Since λ̂−1/2 + ŵp ≥ δ > 0 for

(λ̂, ŵ) ∈ Oδ, it must hold 2gŵ − λ̂ = 0. This contradicts the boundary condition on
top (3.2b) since

1 ≤ 1 + ŵ2
q = 1 + ŵ2

q + (2gŵ − λ̂)(λ̂−1/2 + ŵp)
2 = 0 at (q̂, 0).

Therefore, (C.1) holds for ŵq.
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Next, provided that ŵq ≤ 0 in R
+
, we employ Lemma C.2(a) and the Hopf

boundary lemma to conclude that condition (2) implies that ŵq ≡ 0.
Finally, suppose that condition (3) holds at (0, 0). By oddness of wq, we infer

that

wq(0, 0) = wpq(0, 0) = wqqq(0, 0) = wqpp(0, 0) = 0.

Hence,

∂wq

∂�s
(0, 0) = 0 and

∂2wq

∂�s2
(0, 0) = 0

for any direction �s which enters R+ nontangentially. This contradicts Lemma C.2(b).
The same consideration at (π, 0) excludes possibility (3). This completes the
proof.

At this stage, we have shown that (C.1)–(C.4) hold along the entire continuum
Cε
δ except in the case (λ, 0) ∈ Cε

δ with λ �= λε. Lemma 4.8 rules out this possibility
and proves the preservation of the nodal configuration globally along the continuum.
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ASYMPTOTIC STABILITY IN A NEUTRAL DELAY
DIFFERENTIAL SYSTEM WITH VARIABLE DELAYS∗
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Abstract. By applying M-matrix theory and some new analysis techniques, we have succeeded
in establishing the asymptotic stability of the zero solution of the “pure-delay type” neutral system
with variable delays. The criteria obtained in this paper extend and improve the existing ones.
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1. Introduction. In this paper, we will be concerned with establishing new re-
sults for asymptotic stability of the trivial solution of the perturbed nonlinear neutral
systems of the form

d

dt
(xi(t) − pi(t)xi(t− qi)) = −bi(t)xi(t− τi(t))

+fi (t, x1(t− τi1(t)), . . . , xn(t− τin(t))) ,
i = 1, 2, . . . , n,

(1.1)

where qi > 0 is a constant, pi(t), bi(t) ≥ 0, τi(t) ≥ 0, and τij(t) ≥ 0 are continuous
on R+ = [0,+∞), i, j = 1, 2, . . . , n, and |pi(t)| ≤ pi, τi(t) ≤ τi, τij(t) ≤ τij . For each
i ∈ {1, 2, . . . , n}, we assume that fi : R+ × Rn → R is a continuous function and
there exists a nonnegative matrix D = (dij)n×n such that

|fi (t, x1, x2, . . . , xn)| ≤ bi(t)

n∑
j=1

dij |xj |, i = 1, 2, . . . , n.(1.2)

When pi(t) = 0, τi(t) = 0, and bi(t) ≡ bi, i = 1, 2, . . . , n, (1.1) reduces to

ẋi(t) = −bixi(t) + fi (t, x1(t− τi1(t)), . . . , xn(t− τin(t))) , i = 1, 2, . . . , n.(1.3)

Equation (1.1) is usually used to model the delayed neural networks and has many
important applications. The interested reader can refer to [1] and [2] and the references
therein. A typical result for asymptotic stability of system (1.1) is that if

|fi (t, x1, x2, . . . , xn)| ≤
n∑

j=1

|aij ||xj |, i = 1, 2, . . . , n,(1.4)
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and diag{b1, b2, . . . , bn}−|A| is a nonsingular M -matrix, where |A| = (|aij |)n×n, then
the trivial solution of system (1.4) is globally asymptotically stable; see, for example,
[17] .

When τi(t) �= 0, i = 1, . . . , n, system (1.1) is referred to as a “pure-delay type”
system [3], [4], [5] which has many important applications, such as in congestion
control for the internet [15] and in delay feedback control for chaotic systems [16].
For pure-delay type systems, the stability problem becomes much harder since there
is no linear nondelayed term that dominates the others. In [14], Györi considered the
stability problem for a special case of system (1.1):

ẋi(t) = −bixi(t− τi) + fi (t, x1(t− τi1), . . . , xn(t− τin)) , i = 1, 2, . . . , n.(1.5)

He established the following result.
Theorem 1.1. If condition (1.4) is satisfied, biτi < 1/e, i = 1, 2, . . . , n, and

diag{b1, b2, . . . , bn} − |A|(1.6)

is a nonsingular M-matrix, then the trivial solution of system (1.5) is globally asymp-
totically stable for all constant delays τij.

The main techniques used in [14] are based on the asymptotic representation of
the solutions of linear differential equations with constant coefficients and constant
delays, so the method in [14] seems to be useless for system (1.1) with variable delays
and variable coefficient.

When n = 1, (1.1) reduces to the scalar neutral delay differential equation

d

dt
(x(t) − p(t)x(t− q)) = −b(t)x(t− τ(t)) + a(t)x(t− r(t)),(1.7)

where p(t), b(t), a(t), τ(t), r(t) are continuous on [0,+∞), and b(t) ≥ 0, 0 ≤ τ(t) ≤ τ ,
0 ≤ r(t) ≤ r, q is a positive constant.

It is shown in Yu [10] that if

∫ t+τ

t

b(s)ds <
3

2
− 2p(2 − p),

∫ +∞

0

b(s)ds = +∞,

then the zero solution of (1.7) with a(t) = 0 is asymptotically stable. This is the
first 3/2 stability result in the literature for neutral differential equations. In [19],
Bartha investigated the stability properties of neutral differential equations with state-
dependent delay. Recently, Wang and Liao [13] studied the global attractivity of the
zero solution of (1.7) under the assumptions of τ(t) = τ and r(t) = r. By making the
change of variable

z(t) = x(t) − p(t)x(t− q) −
∫ t

t+r−τ

a(s)ds,(1.8)

Wang and Liao transformed (1.7) with τ(t) = τ and r(t) = r into the following neutral
differential equation with distributed delay:

ż(t) = −b̄(t)x(t− τ),

where b̄(t) = b(t) − a(t + r − τ). Then applying the modified techniques used in [10],
they derived the following theorem.



1524 W.-H. CHEN, X. LU, Z.-H. GUAN, AND W.-X. ZHENG

Theorem 1.2. Consider (1.7) with τ(t) = τ and r(t) = r. Set η =

supt≥0

∫ t+τ

t
b(s)ds. Assume that there exists a constant p ≥ 0 such that

|p(t)| +
∫ t

t−(τ−r)

sign(τ − r)|a(s)|ds ≤ p,(1.9)

and

p <
1

4
, η <

3

2
− 2p ,(1.10)

or

1

4
≤ p <

1

2
, η <

√
2(1 − 2p) .(1.11)

If

b̄(t) ≥ 0,

∫ +∞

0

b̄(t)dt = +∞,

then every solution of (1.7) tends to zero as t → +∞.
The techniques in [13] are based on the variable change (1.8), so the method

in [13] is not applicable to (1.7) with variable delays. Moreover, the result in [13]
depends on the delay of the perturbation (see condition (1.9)) and cannot guarantee
the zero solution of (1.7) to be asymptotically stable.

Recently, So, Tang, and Zou [11] studied the global attractivity for the following
linear differential system with constant delays:

ẋi(t) = −bix(t− τi) +

n∑
j=1

aijxj(t− τij), i = 1, 2, . . . , n.(1.12)

By using M -matrix theory and some inequality techniques, So, Tang, and Zou [11]
proved the following theorem.

Theorem 1.3. Let Â = (âij) be defined by

âij =
1 + 1/9biτi(3 + 2biτi)

1 − 1/9biτi(3 + 2biτi)
|aij |, i, j = 1, . . . , n.

If biτi < 3/2, i = 1, . . . , n, and

diag{b1, . . . , bn} − Â(1.13)

is a nonsingular M-matrix, then every solution of (1.12) tends to zero as t → ∞.
The techniques in [11] may be applicable to studying the global attractivity for

system (1.1); however, they cannot be used to investigate the asymptotic stability
for nonlinear system (1.1) with variable delays. Therefore, the stability problem for
system (1.1) has not been fully investigated. In this paper, we will consider the
following question: When all subsystems of (1.1),

d

dt
(xi(t) − pi(t)xi(t− qi)) = −bi(t)xi(t− τi(t)), i = 1, 2, . . . , n,

are asymptotically stable, what conditions should be given on the perturbation terms
fi(t, x1(t − τi1(t)), . . . , xn(t − τin(t))), i = 1, 2, . . . , n, such that the trivial solution
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of perturbed system (1.1) is globally asymptotically stable for all bounded variable
delays τij(t)?

Before moving on, we need to introduce some notation and definitions.
For vector x = (x1, x2, . . . , xn)T ∈ Rn, |x| denotes a vector norm defined by

|x| = max1≤i≤n{|xi|}. Let h = max1≤i,j≤n{qi, τi, τij}. C = C([−h, 0], Rn) denotes
the space of bounded, continuous functions φ : [−h, 0] → Rn with norm ‖φ‖ =
sups∈[−h, 0] |φ(s)|. If y ∈ C([−h, α), Rn) with α > 0 and t ∈ [0, α), then yt ∈ C
is defined by yt(s) = y(t + s), s ∈ [−h, 0]. For t0 ≥ 0, φ ∈ C, vector function
x ∈ C([−h, α), Rn) with α > 0 is called a solution of system (1.1) on [0, α) through
(t0, φ), denoted by x(t, t0, φ) if xt0 = φ and x satisfies (1.1) on [0, α).

Definition 1.1. The zero solution of system (1.1) is said to be stable if for any
ε > 0 there exists δ(t0, ε) > 0 such that t ≥ t0 ≥ 0 and φ ∈ C with ‖φ‖ < δ implies
|x(t, t0, φ)| < ε. It is uniformly stable if the above δ is independent of t0.

Definition 1.2. The zero solution of system (1.1) is said to be globally asymp-
totically stable if it is stable and for any t0 ≥ 0 and for any φ ∈ C, |x(t, t0, φ)| → 0
as t → ∞.

Set ηi = supt≥0

∫ t+τi
t

bi(s)ds. Associated with matrix D = (dij)n×n, we define

the new matrix D̃ = (d̃ij)n×n by d̃ij = dij/ci for i, j = 1, 2, . . . , n, where

ci =

⎧⎪⎪⎨
⎪⎪⎩

2 − η2
i − 4pi

2 + η2
i

if ηi < 1 ,

3/2 − 2pi − ηi
1/2 + ηi

if ηi ≥ 1 .

Lemma 1.1. If

pi <
1

4
, ηi <

3

2
− 2pi, i = 1, 2, . . . , n,(1.14)

or

1

4
≤ pi <

1

2
, ηi <

√
2(1 − 2pi), i = 1, 2, . . . , n,(1.15)

then 0 < ci < 1 − 2pi for i = 1, 2, . . . , n.
Proof. For each i ∈ {1, 2, . . . , n}, we have 3/2−2pi ≥

√
2(1 − 2pi). So if condition

(1.15) holds, then we have ci > 0. Now we consider the case that condition (1.14)
holds. If ηi ≥ 1, it is obvious that ci > 0. If ηi < 1, since pi <

1
4 , so 2 − η2

i − 4pi >
1 − η2

i > 0. Thus, ci > 0. The proof for ci < 1 − 2pi is direct; we omit it.
Now we can state our main result.
Theorem 1.4. Assume that (1.2) is satisfied, and (1.14) or (1.15) holds. If I−D̃

is a nonsingular M -matrix, I is an n× n identity matrix, and∫ +∞

0

bi(t)dt = +∞, i = 1, 2, . . . , n,(1.16)

then the zero solution of (1.1) is globally asymptotically stable.
Applying Theorem 1.3 to system (1.12) yields the following result.
Corollary 1.1. Consider system (1.12). Let Ā = (āij) be defined by āij =

μi|aij |, i, j = 1, 2, . . . , n, where

μi =

⎧⎪⎪⎨
⎪⎪⎩

2 + (biτi)
2

2 − (biτi)
2 if biτi < 1,

1 + 2biτi
3 − 2biτi

if biτi ≥ 1.
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If biτi < 3/2, i = 1, . . . , n, and

diag{b1, b2, . . . , bn} − Ā(1.17)

is a nonsingular M-matrix, then the trivial solution of system (1.12) is globally asymp-
totically stable.

Remark 1.1. It is easy to check that âij ≥ āij for i, j = 1, 2, . . . , n. So the
condition (1.13) in Theorem 1.3 is improved by the condition (1.17) in Corollary 1.1.
Moreover, the conditions in Corollary 1.1 can guarantee the trivial solution of (1.5)
to be globally asymptotically stable, which cannot be achieved by using the method
proposed by So, Tang, and Zou in [11]. Therefore, the results obtained in this paper
extend and improve the ones in [11].

Remark 1.2. Corollary 1.1 is not an extension of Theorem 1.1, since the condition
(1.17) in Corollary 1.1 is stronger than the condition (1.6) in Theorem 1.1. This
suggests that there is room for improving condition (1.17).

Applying Theorem 1.4 to (1.7), we get the following corollary.
Corollary 1.2. Assume that there exists a constant p ≥ 0 such that

|p(t)| ≤ p.(1.18)

Set

η = sup
t≥0

∫ t+τ

t

b(s)ds, c =

⎧⎪⎪⎨
⎪⎪⎩

2 − η2 − 4p

2 + η2
if η < 1 ,

3/2 − 2p− η

1/2 + η
if η ≥ 1 .

If condition (1.10) or (1.11) is satisfied,
∫ +∞
0

b(t)dt = +∞, and there exists a constant
δ, 0 ≤ δ < c, such that |a(t)| ≤ δb(t), then the zero solution of (1.7) is globally
asymptotically stable.

Remark 1.3. Comparing Corollary 1.2 with Theorem 1.2 obtained in [13], condi-
tion (1.9) in Theorem 1.2 is improved by (1.18). Moreover, our result is independent
of the delay r. When δ = 0, we will get the 3/2 asymptotic stability result for neu-
tral differential delay equations. Therefore, Corollary 1.2 extends the 3/2 asymptotic
stability results obtained in [6], [7], [8], [9], [10] to the perturbed equations. However,
as pointed out in Corollary 1.1, the upper bound c of δ in Corollary 1.2 may not be
the best possible. A special example is given in section 3 which shows that the best
possible upper bound of δ may be 1.

2. Proof of Theorem 1.4. First we introduce some notation. Since I − D̃ is a
nonsingular M -matrix, there exist positive constants r1, r2, . . . , rn, such that

−ri +

n∑
j=1

rj d̃ij < 0.

By the definition of d̃ij , we get

−ri + 1/ci

n∑
j=1

rjdij < 0.(2.1)

In what follows, we set d̄ = max1≤i≤n{1 +
∑n

j=1 dijrj/ri}, q = min1≤i≤n{qi},
r̄ = max1≤i≤n{ri}, r = min1≤i≤n{ri}.
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Lemma 2.1. Consider (1.1) and assume that condition (1.2) is satisfied for ηi <
+∞ for i ∈ {1, 2, . . . , n}. Set η =

∑n
j=1 ηj. For φ ∈ C, let x(t) = x(t, t0, φ), and

v(t) = max1≤i≤n {‖xit‖/ri} for t ≥ t0. Then

v(t) ≤
[

max
1≤i≤n

{1 + 2pi}
]m

exp
(
md̄η

)
v(t0), t ∈ [t0+(m−1)q, t0+mq], m = 1, 2, . . . .

Proof. For t ∈ [t0, t0 + q], integrating (1.1) on [t0, t], we get

xi(t) = xi(t, t0, φ) = xi(t0) + pi(t)xi(t− qi) − pi(t0)xi(t0 − qi)

+

∫ t

t0

(−bi(s)xi(s− τi(s)) + fi(s, xi1(s− τi1(s)), . . . , xin(s− τin(s)))) ds

for i = 1, . . . , n. So, by (1.2), for i = 1, . . . , n, t ∈ [t0, t0 + q],

|xi(t)| ≤ (1 + 2pi)‖xit0‖ +

∫ t

t0

bi(s)

⎡
⎣‖xis‖ +

n∑
j=1

dij‖xjs‖

⎤
⎦ ds

= (1 + 2pi)ri‖xit0‖/ri +

∫ t

t0

bi(s)

⎡
⎣ri (‖xis‖/ri) +

n∑
j=1

dijrj (‖xjs‖/rj)

⎤
⎦ ds

≤ (1 + 2pi)riv(t0) +

∫ t

t0

bi(s)

⎡
⎣ri +

n∑
j=1

dijrj

⎤
⎦ v(s)ds.

It follows that for i = 1, . . . , n, t ∈ [t0, t0 + q],

‖xit‖/ri ≤ (1 + 2pi)v(t0) +

∫ t

t0

bi(s)

⎡
⎣1 +

n∑
j=1

dijrj/ri

⎤
⎦ v(s)ds.

Hence, for t ∈ [t0, t0 + q],

v(t) ≤ max
1≤i≤n

{1 + 2pi} v(t0) +

∫ t

t0

n∑
j=1

bj(s)d̄v(s)ds.

By Gronwall’s inequality, for t ∈ [t0, t0 + q],

v(t) ≤ max
1≤i≤n

{1 + 2pi} exp

⎛
⎝d̄

n∑
j=1

∫ t

t0

bj(s)ds

⎞
⎠ v(t0) ≤ max

1≤i≤n
{1 + 2pi} exp

(
d̄η

)
v(t0).

Then, using the induction method, for any m ≥ 1, we get

v(t) ≤
[

max
1≤i≤n

{1 + 2pi}
]m

exp
(
md̄η

)
v(t0), t ∈ [t0 + (m− 1)q, t0 + mq].

Lemma 2.2. Under the conditions of Theorem 1.4, the zero solution of (1.1) is
uniformly stable.
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Proof. Let yi(t) = xi(t) − pi(t)xi(t − qi), z(t) = max1≤i≤n {|xi(t)|/ri}. Choose
positive integer l such that lq ≥ 2h. For given ε > 0, let

δ =
r

r̄

1 − p̄

1 + p̄

[
max

1≤i≤n
{1 + 2pi}

]−l

exp
(
−d̄lη

)
ε.

From Lemma 2.1, for ‖φ‖ < δ,

z(t) ≤ v(t) ≤
[

max
1≤i≤n

{1 + 2pi}
]l

exp
(
d̄lη

)
v(t0)

≤
[

max
1≤i≤n

{1 + 2pi}
]l

exp
(
d̄lη

)
‖φ‖/r

<
1 − p̄

1 + p̄
ε̄, t ∈ [t0, t0 + lq],

(2.2)

where ε̄ = ε/r̄.
Now we use the techniques in [12] and [13] to prove that

|z(t)| < ε̄ for t > t0 + lq.(2.3)

If this is true, then by (2.2), we get

|x(t)| ≤ r̄z(t) < ε for t > t0,

which implies that the zero solution of (1.1) is uniformly stable. Suppose that (2.3)
is not true; then there exists t∗ > t0 + lq such that

z(t) < ε̄ for t ∈ [t0, t∗] and z(t∗) = ε̄.

Then there exists some k ∈ {1, 2, . . . , n} such that z(t∗) = |xk(t
∗)|/rk. Without loss

of generality, we may assume that xk(t
∗) > 0; then xk(t

∗) = rk ε̄, and

|xi(t)| ≤ riz(t) < riε̄ for t ∈ [t0, t∗], i = 1, 2, . . . , n.(2.4)

It follows that

yk(t
∗) = xk(t

∗) − pk(t
∗)xk(t

∗ − qk) > (1 − pk)rk ε̄.(2.5)

On the other hand, by (2.2) and (2.4), for t ∈ [t0, t0 + lq],

|yk(t)| = |xk(t) − pk(t)xk(t− qk)|
< (1 + pk)rk ε̄(1 − p̄)/(1 + p̄) ≤ (1 − pk)rk ε̄.

(2.6)

Combining (2.5) and (2.6) yields that there exists ξ ∈ (t0 + lq, t∗] such that

ẏk(ξ) ≥ 0, and yk(ξ) = max
s∈[t0, t∗]

yk(s) > (1 − pk)rk ε̄.(2.7)

Set u(t) = yk(t) − pkrk ε̄; then for t ∈ [t0, t
∗],

rk ε̄ ≥ xk(t) = yk(t) + pk(t)xk(t− qk) ≥ yk(t) − pkrk ε̄ = u(t).(2.8)

So,

u̇(t) = ẏk(t) < bk(t)(−xk(t− τk(t)) + ckrk ε̄)
≤ bk(t)(−u(t− τk(t)) + ckrk ε̄).

(2.9)
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In particular,

u̇(ξ) < bk(ξ)(−u(ξ − τk(ξ)) + ckrk ε̄).(2.10)

If we can prove that

u(t) > ckrk ε̄ for t ∈ [ξ − τk, ξ],(2.11)

then by (2.10), we will get u̇(ξ) < 0, which contradicts u̇(ξ) = ẏk(ξ) ≥ 0, so the proof
will be complete. In what follows, we will prove (2.11). Suppose the contrary. Since
u(ξ) = yk(ξ) − pkrk ε̄ > (1 − 2pk)rk ε̄ > ckrk ε̄ by Lemma 1.1 and (2.7), there exists
t1 ∈ [ξ − τk, ξ) such that

u(t1) = ckrk ε̄ and u(t) > ckrk ε̄ for t ∈ (t1, ξ].(2.12)

We assert that

u̇(t) < (1 + ck)bk(t)

∫ t1

t−τk

bk(s)dsrk ε̄, t ∈ [t1 − τk, ξ].(2.13)

In fact, if t − τk(t) > t1 for some t ∈ [t1 − τk, ξ], then u̇(t) < 0 by (2.9) and (2.12),
which yields (2.13). On the other hand, by (2.8) and (2.9), we have

u̇(t) < (1 + ck)bk(t)rk ε̄, t ∈ [t1 − τk, ξ].(2.14)

If t−τk(t) < t1 for some t ∈ [t1−τk, ξ], integrating the above inequality from t−τk(t)
to t1, we have

ckrk ε̄−u(t−τk(t)) = u(t1)−u(t−τk(t)) =

∫ t1

t−τk(t)

u̇(s)ds < (1+ck)

∫ t1

t−τk

bk(s)dsrk ε̄.

Substituting the above inequality into (2.9), we get (2.13).
Combining (2.13) and (2.14), we have

u̇(t) < (1 + ck)bk(t) min

{
1,

∫ t1

t−τk

bk(s)ds

}
rk ε̄

= (1 + ck)bk(t) min

{
1,

∫ t

t−τk

bk(s)ds−
∫ t

t1

bk(s)ds

}
rk ε̄

≤ (1 + ck)bk(t) min

{
1, ηk −

∫ t

t1

bk(s)ds

}
rk ε̄.

For t ∈ [t1, ξ], integrating the above inequality on the two side from t1 to ξ, we get

(1 − 2pk − ck)rk ε̄ < u(ξ) − u(t1) < (1 + ck)Ikrk ε̄.(2.15)

Let Ik =
∫ ξ

t1
bk(t) min{1, ηk −

∫ t

t1
bk(s)ds}dt. Now we give an estimation of Ik. There

are two possible cases.

Case 1.
∫ ξ

t1
bk(t)dt ≥ 1. In this case, choose t2 ∈ (t1, ξ) such that

∫ ξ

t2
bk(t)dt = 1.

Ik ≤
∫ t2

t1

bk(t)dt +

∫ ξ

t2

bk(t)

[
ηk −

∫ t

t1

bk(s)ds

]
dt

≤
∫ t2

t1

bk(t)dt + ηk

∫ ξ

t2

bk(t)dt−
1

2

∫ ξ

t2

bk(t)dt

[∫ ξ

t2

bk(t)dt

+2

∫ t2

t1

bk(t)dt

]

= ηk − 1

2
.

(2.16)
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Case 2.
∫ ξ

t1
bk(t)dt < 1.

Ik ≤ ηk

∫ ξ

t1

bk(t)dt−
∫ ξ

t1

bk(t)

∫ t

t1

bk(s)dsdt

= ηk

∫ ξ

t1

bk(t)dt−
1

2

[∫ ξ

t1

bk(t)dt

]2

.

Note that
∫ ξ

t1
bk(t)dt ≤ ηk and the function −1/2x2 + ηkx is increasing on x ∈ [0, ηk].

Therefore, if ηk ≥ 1, then Ik ≤ ηk − 1
2 . If ηk < 1, then Ik ≤ 1

2ηk
2.

Since 1
2ηk

2 ≥ ηk − 1
2 , combining Cases 1 and 2 yields

Ik ≤
{

1
2η

2
k if ηk < 1 ,

ηk − 1
2 if ηk ≥ 1 .

Substituting the above inequality into (2.15), we get

ck >

⎧⎪⎪⎨
⎪⎪⎩

2 − 4pk − η2
k

2 + η2
k

if ηk < 1,

3/2 − 2pk − ηk
ηk + 1/2

if ηk ≥ 1,

which contradicts the definition of ci, i = 1, 2, . . . , n. The proof is complete.
Proof of Theorem 1.4. In view of Lemma 2.2, the zero solution is uniformly stable.

Moreover, from the proof of Lemma 2.2, every solution x(t) of (1.1) is bounded. Now
we prove that

lim
t→∞

x(t) = 0.(2.17)

Set γ = max1≤i≤n t{
∑n

j=1 dijrj/(ciri)}. Then by (2.1), 0 < γ < 1. Set βi =
lim supt→∞|xi(t)|, then 0 ≤ βi < ∞. We assume that βk/rk = max1≤i≤n {βi/ri}
for some k ∈ {1, 2, . . . , n}. If βk = 0, then (2.17) holds. If βk > 0, choose

σ̄k =

⎧⎨
⎩ (1 − γ)

1−2pk− 1
2η

2
k

1+γ(1−2pk− 1
2η

2
k)r̄/r+

1
2η

2
k
r̄/r

βk if ηk < 1,

(1 − γ) 3/2−2pk−ηk

1+γ(3/2−2pk−ηk)r̄/r+(ηk−1/2)r̄/rβk if ηk ≥ 1.

It is easy to see that 0 < σ̄k < βk. Moreover, for any 0 < σk < min{σ̄k, (1 − 2pk −
γck)βk/ (1 + γckr̄/r)}, there exists T > t0 + 2h, such that

|xi(t)| < βi + σk for t ≥ T, i = 1, . . . , n.

Let yk(t) = xk(t) − pk(t)xk(t− qk). We distinguish the two cases.
Case A. ẏk(t) is eventually sign-definite. By the boundedness of yk(t), the limit

μk = limt→+∞yk(t) exists. We may assume that lim supt→+∞xk(t) = βk. Then,

βk = lim sup
t→+∞

xk(t) ≤ lim sup
t→+∞

yk(t) + pk lim sup
t→+∞

|xk(t− qk)| = μk + pkβk.

So μk ≥ (1 − pk)βk. Set αk = lim inft→+∞xk(t). Then

αk = lim inf
t→+∞

xk(t) ≥ lim inf
t→+∞

yk(t) − pk lim sup
t→+∞

|xk(t− qk)| = μk − pkβk ≥ (1 − 2pk)βk.
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Thus, there exists T1 ≥ T such that

(1 − 2pk)βk − σk < xk(t) < βk + σk, t ≥ T1 + h.

By (1.1) and (2.1), for t ≥ T1 + h,

ẏk(t) ≤ −bk(t)xk(t− τk(t)) + bk(t)

n∑
j=1

dkj |xj(t− τkj(t))|

< −bk(t) ((1 − 2pk)βk − σk) + bk(t)

n∑
j=1

dkj (βj + σk)

= −bk(t) ((1 − 2pk)βk − σk) + bk(t)

n∑
j=1

dkjrj (βj/rj + σk/rj)

≤ −bk(t) ((1 − 2pk)βk − σk) + bk(t)

n∑
j=1

dkjrj (βk/rk + σk/r)

≤ −bk(t) ((1 − 2pk)βk − σk) + γbk(t)ckrk (βk/rk + σk/r)

= −bk(t) {(1 − 2pk − γck)βk − σk [1 + γckr̄/r]} .

By using (1.16) and the definition of σk, the above inequality implies that yk(t) →
−∞. This is a contradiction. So, βk = 0.

Case B. ẏk(t) is oscillatory. Noticing that

lim sup
t→∞

|yk(t)| ≥ lim sup
t→∞

|xk(t)| − pk lim sup
t→∞

|xk(t− qk)| ≥ (1 − pk)βk,

there exists an increasing sequence {tkm} such that tkm → ∞ as m → ∞, ẏk(tkm) ≥ 0,
and

|yk(tkm)| > (1 − pk)(βk − σk).

Without loss of generality, we assume tkm > T + h and yk(tkm) > 0. Set u(t) =
yk(t) − pk(βk + σk); then u̇(tkm) = ẏk(tkm) ≥ 0 and

βk + σk ≥ xk(t) = yk(t) + pk(t)xk(t− qk)
> yk(t) − pk(βk + σk) = u(t), t ≥ T + h.

(2.18)

Moreover, By (1.1), (2.1), and the above inequality,

u̇(t) = ẏk(t) < −bk(t)xk(t− τk(t)) + γbk(t)ck (βk + σkr̄/r)
< −bk(t)u(t− τk(t)) + γbk(t)ck (βk + σkr̄/r) .

(2.19)

In particular,

0 ≤ u̇(tkm) = ẏk(tkm) < −bk(tkm)u(tkm − τk(tkm))
+γbk(tkm)ck (βk + σkr̄/r) .

(2.20)

If we can prove that

u(t) > γck(βk + σkr̄/r) for t ∈ [tkm − τk, tkm],(2.21)
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then by (2.20), we will obtain a contradiction, so we can deduce βk = 0 and the proof
is complete. Now under the assumption of βk > 0, we prove that (2.21) holds. Note
that by the definition of σk,

u(tkm) = yk(tkm) + pk(tkm)xk(tkm − qk) > (1 − 2pk)βk − σk > γck(βk + σkr̄/r).

So, if (2.21) is not true, then there exists t1km ∈ [tkm − τk, tkm), such that

u
(
t1km

)
= γck(βk + σkr̄/r) and u(t) > γck (βk + σkr̄/r)(2.22)

for t ∈
(
t1km, tkm

]
. We assert that

u̇(t) < (1 + γck)bk(t)

∫ t1km

t−τk

bk(s)ds(βk + σkr̄/r), t ∈ [t1km − τk, tkm].(2.23)

In fact, by (2.18) and (2.19), we have

u̇(t) < bk(t)(1 + γck)(βk + σkr̄/r), t ∈ [t1km − τk, tkm].(2.24)

If t−τk(t) ≤ t1km for some t ∈ [t1km, tkm], integrating the above inequality from t−τk(t)
to t1km, we get

γck(βk + σkr̄/r) − u(t− τk(t)) = u(t1km) − u(t− τk(t))

< (1 + γck)

∫ t1km

t−τk

bk(s)ds(βk + σkr̄/r).

Substituting the above inequality into the second inequality in (2.19), we get (2.23).
If t− τk(t) > t1km for some t ∈ [t1km, tkm], then by (2.23) and the second inequality of
(2.19), we get (2.23).

Combining (2.23) and (2.24) yields

u̇(t) < (1 + γck)bk(t) min

{
1,

∫ t1km

t−τk

bk(s)ds

}
(βk + σkr̄/r) .

Integrating this inequality from t1km to tkm, we get

(1 − γck − 2pk)βk − σk (1 + γck) r̄/r < u(tkm) − u
(
t1km

)
< (1 + γck)Ikm (βk + σkr̄/r) ,

(2.25)

where Ikm =
∫ tkm

t1
km

bk(t) min{1,
∫ t1km

t−τk
bk(s)ds}dt.

Using the same technique as in the proof of Lemma 2.2, we have

Ikm ≤
{

1/2η2
k if ηk < 1 ,

ηk − 1/2 if ηk ≥ 1 .

Therefore, by (2.25), we have

σk > σ̄k ,

which is impossible since σk < σ̄k. Therefore, βk = 0; that is, (2.17) holds, and so the
proof is complete.



STABILITY IN DELAY DIFFERENTIAL EQUATIONS 1533

3. A special example.
Example 3.1. Consider the delay differential equation

ẋ(t) = −b(t)(x(t− 1) − δx(t− 1/2)),(3.1)

where δ > 0 and b(t) is defined by

b(t) =

⎧⎪⎪⎨
⎪⎪⎩

48(t− 3i)(3i + 1/2 − t) for 3i ≤ t ≤ 3i + 1/2,
β(t− 3i− 1/2)(3i + 1 − t) for 3i + 1/2 ≤ t ≤ 3i + 1,
48(t− 3i− 1)(3i + 3/2 − t) for 3i + 1 ≤ t ≤ 3i + 3/2,
0 for 3i + 3/2 ≤ t ≤ 3(i + 1),

where β > 0 is a constant.
The example is a perturbed version of Example 3.1 in [18]. It is easy to see that

η = supt≥0

∫ t+1

t
b(s)ds = 1 + β/48. By Corollary 1.2, if β < 24 and δ < c, then the

zero solution of (3.1) is asymptotically stable.
But by elementary calculations, we have, for i = 1, 2, . . .,

x(t) = x (3i− 3/2)

{
1 − 48(1 − δ)

[
1

4
(t− 3i)2 − 1

3
(t− 3i)3

]}
for t ∈ [3i, 3i + 1/2],

x(t) = x (3i− 3/2)

{
δ − β

4
(1 − δ)

(
t− 3i− 1

2

)2

+
β

3
(1 − δ)

(
t− 3i− 1

2

)3

−3

2
βδ(1 − δ)

(
t− 3i− 1

2

)4

+ 4βδ(1 − δ)

(
t− 3i− 1

2

)5

−8

3
βδ(1 − δ)

(
t− 3i− 1

2

)6
}

for t ∈ [3i + 1/2, 3i + 1],

x(t) = x (3i− 3/2)

{
δ − β

96
(δ + 2)(1 − δ) − (1 − δ)(t− 3i− 1)2[12 − 16(t− 3i− 1)]

+(1 − δ)(48 − βδ)(t− 3i− 1)4
[
3

2
− 4(t− 3i− 1) +

8

3
(t− 3i− 1)2

]

−48βδ2(1 − δ)(t− 3i− 1)6
[
1

8
− 1

2
(t− 3i− 1) +

8

3
(t− 3i− 1)2

]}
for t ∈ [3i + 1, 3i + 3/2],

x(t) = x (3i− 3/2) g(δ) for t ∈ [3i + 3/2, 3i + 3],

where g(δ) = −1 + 2δ − β
96 (δ + 2)(1 − δ) + 1

96 (1 − δ)(48 − βδ) − β
288δ

2(1 − δ). By
induction, we have x(3i− 3/2) = x(3/2)gi−1(δ) for i ≥ 1. So there exists a constant
M0 > 0 such that |x(t)| ≤ M0|x(3/2)||g(δ)|i−1 for t ∈ [3i, 3i + 3] and i ≥ 1. Note
that ġ(λ) = β

96δ
2 + 5β

144δ + 3
2 > 0 for δ ∈ [0, 1), so − β

48 − 1
2 ≤ g(δ) < 1 for δ ∈ [0, 1).

Therefore, the necessary and sufficient conditions for asymptotic stability of the zero
solution of (3.1) are β < 24 and δ < 1. This means that condition δ < c in Corollary
1.2 is a sufficient condition (not a necessary condition) for the zero solution of (1.7)
to be asymptotically stable.

Remark 3.1. When δ = 0, this example (see [18]) also shows that the upper
bound 3/2 for the stability result in [7] is the best possible when the coefficient is a
continuous function (the case when the coefficient is a piecewise continuous function
was proved in [7]). However, how to find the sharp condition for the stability of the
perturbed system remains an open question.
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[15] L. Massoulié, Stability of distributed congestion control with heterogeneous feedback delays,

IEEE Trans. Automat. Control, 47 (2002), pp. 895–902.
[16] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170 (1992),

pp. 421–428.
[17] W.-H. Chen, Z.-H. Guan, and X. Lu, Delay-dependent exponential stability of neural networks

with variable delays, Phys. Lett. A, 326 (2004), pp. 355–363.
[18] J. S. Yu, Sharp conditions for the uniform stability of nonautonomous Hutchinson’s equation,

Ann. Differential Equations, 20 (2004), pp. 194–207.
[19] M. Bartha, On stability properties for neutral differential equations with state-dependent de-

lay, Differential Equations Dynam. Systems, 7 (1999), pp. 197–220.



SIAM J. MATH. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. 1535–1559

GLOBAL BRANCHES OF TRAVELLING-WAVES TO A
GROSS–PITAEVSKII–SCHRÖDINGER SYSTEM IN ONE

DIMENSION∗

MIHAI MARIŞ†

Abstract. We are interested in the existence of travelling-wave solutions to a system which
modelizes the motion of an uncharged impurity in a Bose condensate. We prove that in space
dimension one, there exist travelling-waves moving with velocity c if and only if c is less than the
sound velocity at infinity. In this case we investigate the structure of the set of travelling-waves and
we show that it contains global subcontinua in appropriate Sobolev spaces.
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1. Introduction. This paper is devoted to the study of a special kind of solu-
tions of a system describing the motion of an uncharged impurity in a Bose condensate.
In dimensionless variables, the system reads⎧⎪⎪⎪⎨

⎪⎪⎪⎩
2i
∂ψ

∂t
= −Δψ + 1

ε2 (|ψ|2 + 1
ε2 |ϕ|2 − 1)ψ,

2iδ
∂ϕ

∂t
= −Δϕ + 1

ε2 (q2|ψ|2 − ε2k2)ϕ.

(1.1)

Here ψ and ϕ are the wavefunctions for bosons, respectively for the impurity, δ = μ
M ,

where μ is the mass of impurity, M is the boson mass (δ is supposed to be small),
q2 = l

2d , l is the boson-impurity scattering length and d the boson diameter, k is a
dimensionless measure for the single-particle impurity energy, and ε is a dimensionless
constant (ε = ( aμ

lM )
1
5 , where a is the “healing length”; in applications, ε ∼= 0.2).

Assuming that we are in a frame in which the condensate is at rest at infinity, the
solutions must satisfy the “boundary conditions”

|ψ| −→ 1, ϕ −→ 0 as |x| −→ ∞.(1.2)

This system (originally introduced by Clark and Gross) was studied by Grant
and Roberts [5]. Using formal asymptotic expansions and numerical experiments,
they computed the effective radius and the induced mass of the uncharged impurity.

We consider here the system (1.1) in a one dimensional space and we look for
solitary waves, that is, for solutions of the form

ψ(x, t) = ψ̃(x− ct), ϕ(x, t) = ϕ̃(x− ct).(1.3)

This kind of solution corresponds to the case where the only disturbance present in
the condensate is that caused by the uniform motion of the impurity with velocity c.
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In view of the boundary conditions, we seek solutions of the form

ψ̃(x) = (1 + r̃(x))eiψ0(x), ϕ̃(x) = ũ(x)eiϕ0(x),(1.4)

with r̃(x) −→ 0, ũ(x) −→ 0 as |x| −→ ∞. By an easy computation we find that the
real functions ψ0, ϕ0, r̃, ũ must satisfy

ψ′
0 = c

(
1 − 1

(1 + r̃)2

)
,(1.5)

ϕ′
0 = cδ,(1.6)

r̃′′ = c2
(

1

(1 + r̃)3
− (1 + r̃)

)
+

1

ε2

(
(1 + r̃)3 − (1 + r̃) +

1

ε2
(1 + r̃)ũ2

)
,(1.7)

ũ′′ =

(
q2

ε2
(1 + r̃)2 − c2δ2 − k2

)
ũ.(1.8)

From (1.6) we see that necessarily ϕ0(x) = cδx+C. Note that the system is invariant
under the transform (ψ,ϕ) �−→ (eiαψ, eiβϕ), so the integration constants in (1.5) and
(1.6) are not important. Thus all we have to do is to solve the system (1.7)–(1.8).
Thereafter it will be easy to find the corresponding phases from (1.5)–(1.6), and (1.4)
will give a solitary-wave solution of (1.1).

After the scale change ũ(x) = 1
εu(xε ), r̃(x) = r(xε ), we find that the functions r

and u satisfy

r′′ = (1 + r)3 − (1 + r) − c2ε2

(
1 + r − 1

(1 + r)3

)
+ (1 + r)u2,(1.9)

u′′ = (q2(1 + r)2 − λ)u,(1.10)

where

λ = ε2(c2δ2 + k2).(1.11)

The equation r′′ = (1 + r)3 − (1 + r) − v2

4 (1 + r − 1
(1+r)3 ) + (1 + r)U , where U

is a positive Borel measure, was studied in [7]. In the case U ≡ 0, it has been shown
that this equation has only the trivial solution r ≡ 0 if |v| ≥

√
2; for 0 < |v| <

√
2, it

also admits the solution

rv(x) = −1 +

√√√√v2

2
+

(
1 − v2

2

)
tanh2

(√
2 − v2

2
x

)
.(1.12)

Moreover, any other nontrivial solution is of the form rv(· − x0) for some x0 ∈ R.
Equation (1.10) is linear in u; more precisely, u must be an eigenvector of the linear

operator − d2

dx2 + q2(1 + r)2 corresponding to the eigenvalue λ = ε2(c2δ2 + k2).
It is now clear that except for translations, the only solutions of (1.9)–(1.10) of

the form (r, 0) are (0, 0) and (r2cε, 0) (the latter exists only for |cε| < 1√
2
). We call

these solutions the trivial solutions of (1.9)–(1.10). We will prove that there exist
nontrivial solutions of (1.9)–(1.10) in a neighborhood of (r2cε, 0) (for suitable values



TRAVELLING-WAVES TO A GROSS–PITAEVSKII SYSTEM 1537

of the parameter λ) and we will study the global structure of the set of nontrivial
solutions.

It has been shown (see, e.g., [7] and references therein) that by using the Madelung
transform ψ =

√
ρeiψ0 , the first equation in (1.1) can be put into a hydrodynamical

form (i.e., it is equivalent to a system of Euler equations for a compressible inviscid
fluid of density ρ and velocity ∇ψ0). In this context, 1

ε
√

2
represents the sound velocity

at infinity. It will be proved at the beginning of section 3 that (1.1) does not possess
nonconstant travelling-waves moving with velocity |c| ≥ 1

ε
√

2
. Hence we will assume

throughout that |c| < 1
ε
√

2
.

Observe that the system (1.9)–(1.10) has a good variational formulation: its so-
lutions are critical points of the “energy” functional. Indeed, since 1 + r̃ = |ψ̃| ≥ 0,
it is clear that we must have r̃ ≥ −1. Therefore we will look for solutions r of
(1.9) with r > −1. Let V = {r ∈ H1(R) | infx∈R r(x) > −1}. It is obvious that
V is open in H1(R) because H1(R) ⊂ C0

b (R) by the Sobolev embedding. A pair
(r, u) ∈ V × H1(R) satisfy (1.9)–(1.10) if and only if (r, u) is a critical point of the
C∞ functional E : V ×H1(R) −→ R,

E(r, u) =

∫
R

|r′|2dx +
1

2

∫
R

(
(1 + r)2 − 1

)2
(

1 − 2c2ε2

(1 + r)2

)
dx

+

∫
R

u2(1 + r)2dx +
1

q2

∫
R

|u′|2dx− λ

q2

∫
R

u2dx.

(1.13)

However, E(r, ·) is quadratic in u for any fixed r and it would be very difficult to find
critical points of E by using a classical topological argument.

In this paper we use bifurcation theory to show the existence of nontrivial solitary
waves for the system (1.1). Note that this system (or, equivalently, (1.9)–(1.10)) is
invariant by translations. To avoid the degeneracy of the linearized system due to
this invariance, we work on symmetric function spaces. Consequently, the travelling-
waves that we obtain will also present a symmetry. To be more precise, we will use
the spaces

H = H2
rad(R) = {u ∈ H2(R) | u(x) = u(−x) ∀x ∈ R} and

L = L2
rad(R) = {u ∈ L2(R) | u(x) = u(−x) a.e. x ∈ R}.

Clearly H∩V is an open set of H. We define S : (H∩V )×H −→ L, T : R×H×H −→
L,

S(r, u) = −r′′ + (1 + r)3 − (1 + r) − c2ε2

(
1 + r − 1

(1 + r)3

)
+ (1 + r)u2,(1.14)

T (λ, r, u) = −u′′ + (q2(1 + r)2 − λ)u.(1.15)

It is obvious that S and T are well defined and of class C∞ (recall that H ⊂ C1
b (R)

and H is an algebra). Clearly r and u satisfy the system (1.9)–(1.10) if and only if
S(r, u) = 0 and T (λ, r, u) = 0.

In the next section, we will study the structure of the set of nontrivial so-
lutions in a neighborhood of the trivial ones. It follows easily from the implicit
function theorem that there are no nontrivial solutions of (1.9)–(1.10) in a neigh-
borhood of (λ, 0, 0) for λ < q2 (see the proof of Theorem 3.8). It is well known
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that we may have nontrivial solutions arbitrarily close to (λ, r2cε, 0) if and only if
the differential d(r,u)(S, T )(λ, r2cε, 0) is not invertible. For λ < q2, we will see that
d(r,u)(S, T )(λ, r2cε, 0) is not invertible if and only if λ is an eigenvalue of the particu-
lar Schrödinger operator given by (1.10). In this case we show that all the nontrivial
solutions in a neighborhood of (λ, r2cε, 0) form a smooth curve in R × H × H.

It is natural to ask how long such a branch of solutions exists. Recently, there
were obtained general global bifurcation results for C1 Fredholm mappings of index 0
which apply to a broad class of elliptic equations in RN (see, e.g., [9], [10]). Using the
ideas and techniques developed in [11] it can be proved that for any fixed λ < q2, the
mapping (S, T (λ, ·, ·)) : (H ∩ V ) ×H −→ L× L is Fredholm of index 0. By a general
global bifurcation theorem (a variant of Theorem 6.1 in [9]), one can prove that either
the branch of nontrivial solutions of (1.9)–(1.10) starting from a bifurcation point
(λ, r2cε, 0) is noncompact in R×H×H or it meets [q2,∞)×H×H (note that [q2,∞)
is the essential spectrum of the linear Schrödinger operator appearing in (1.10)).

To obtain further information (such as unboundedness) about the branches of
nontrivial solutions, a key ingredient would be the properness of the operator (S, T ),
at least on closed bounded sets. Unfortunately, it is easy to see that the opera-
tor (S, T ) is not proper on closed bounded sets. Indeed, it suffices to take rn =
r2cε(· −n) + r2cε(·+n) and to observe that (S, T )(λ, rn, 0) −→ (0, 0) as n −→ ∞; the
sequence (rn) is bounded in H but has no convergent subsequence.

In order to obtain a more precise description of the branches of nontrivial so-
lutions and to avoid troubles due to the lack of properness, we choose a different
approach: we reformulate the problem and we work on a weighted Sobolev space
(which is a subspace of H). In section 3, we use a variant of the global bifurcation
theorem of Rabinowitz [12] to obtain global branches of solutions of (1.9)–(1.10) in
that space. Note that the use of a slowly increasing weight (for example, (1+x2)s for
s > 0) is sufficient to eliminate the lack of properness and to obtain global branches
of travelling-waves. It is worth noting that for λ < q2, any nontrivial travelling-wave
which is in H also belongs to the weighted space which is used (i.e., there is no loss
of solutions). We show that there exists exactly one branch of nontrivial solutions
bifurcating from the curve (λ, r2cε, 0) if q ≤ 1√

2 ln 2
. The number of these branches is

increasing with q and tends to infinity as q −→ ∞. We will prove that any of these
branches is either unbounded (in the weighted space) or λ tends to q2 along it. On the
other hand, we prove that there are no nontrivial solutions of (1.9)–(1.10) for λ > q2.

2. Local curves of solutions. In order to prove a local existence result of
nontrivial solitary waves for the system (1.1), we have to study the properties of the

linear operator A = − d2

dx2 + q2(1 + r2cε)
2, which can be written as A = − d2

dx2 +
q2r2cε(2+r2cε)+q2. Since −1 < r2cε(x) < 0 for any x ∈ R, the function r2cε(2+r2cε)
is everywhere negative (and even). Actually, in a slightly more general framework, we

will study the operator L = − d2

dx2 + V (x) for a negative potential V , the properties
of A being then deduced from those of L by a shift. For any λ ≤ 0, we also consider
the Cauchy problem {

−u′′(x) + V (x)u(x) = λu(x),
u(0) = 1, u′(0) = 0.

(2.1)

If V is continuous and even (i.e., V (x) = V (−x)), it is clear that problem (2.1) has a
unique global solution which is also even. We denote by uλ this solution and by n(λ)
the number of zeroes of uλ in (0,∞).
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Proposition 2.1. Let V ∈ L2 ∩ L∞(RN ), V �≡ 0 be continuous, less than or

equal to zero, even, and satisfy limx−→±∞ V (x) = 0. The operator L = − d2

dx2 +V (x) :
H −→ L is self-adjoint and has the following properties:

(i) σess(L) = [0,∞).
(ii) L has at least one negative eigenvalue.
(iii) Any eigenvalue of L is simple.
(iv) For any λ < 0 and ε > 0, there exists C > 0 such that

|u(m)
λ (x)| ≤ Ce

√
−λ+ε|x|, m = 0, 1, 2.(2.2)

If λ < 0 is an eigenvalue and 0 < ε < −λ, there exist C1, C2,M > 0 such that

C1e
−
√
−λ+ε|x| ≤ |u(m)

λ (x)| ≤ C2e
−
√
−λ−ε|x| on [M,∞), m = 0, 1, 2.(2.3)

(v) For any λ ≤ 0, the number of eigenvalues of L in (−∞, λ) is exactly n(λ),
the number of zeroes of uλ in (0,∞).

(vi) If
∫∞
0

x|V (x)|dx < ∞, then L has at most 1 +
∫∞
0

x|V (x)|dx negative eigen-
values.

Proof. (i) The operator − d2

dx2 + V (x) on L2(R) (with domain H2(R)) is self-
adjoint, so it is easy to see that L is self-adjoint. Multiplication by V is a relatively
compact perturbation of −Δ and it follows from a classical theorem of Weyl that
σess(L) = σess(−Δ) = [0,∞).

(ii) It suffices to show that there exists u ∈ H such that 〈Lu, u〉L < 0 and it
will follow from the min-max principle (see [13, Theorem XIII.1, p. 76]) that L has
negative eigenvalues. Consider an even function u ∈ C∞

0 such that u ≡ 1 on [−1, 1]
and u is nonincreasing on [0,∞). Let un(x) = u( x

n ). Then

〈Lun, un〉L =
1

n

∫
R

|u′(x)|2dx +

∫
R

∣∣∣u(x
n

)∣∣∣2 V (x)dx −→
∫
R

V (x)dx < 0

as n −→ ∞, and thus 〈Lun, un〉L < 0 for n sufficiently large.
(iii) Clearly, λ is an eigenvalue of L if and only if uλ ∈ H. If this is the case, it is

obvious that Ker(L − λ) = Span{uλ}. Since L is self-adjoint, we have Ker(L − λ) ∩
Im(L−λ) = {0}, so for any n ∈ N∗ we have Ker(L−λ)n = Ker(L−λ) = Span{uλ};
that is, λ is a simple eigenvalue.

(iv) By (2.1), uλ and u′
λ cannot vanish simultaneously, so uλ must change sign

any time it vanishes and uλ has only isolated zeroes. There exists d > 0 such that
V (x) − λ > −λ

2 > 0 on [d,∞) because V (x) −→ 0 as x −→ ∞. Two situations may
occur:

1. There exists x0 > d such that uλ(x0) and u′
λ(x0) have the same sign, say, are

positive. Then u′′
λ = (V (x) − λ)uλ, and thus u′′

λ will remain positive after x0 as long
as uλ > 0, which implies that u′

λ is increasing, hence it remains positive as long as
uλ > 0. Consequently, uλ is increasing after x0 as long as it remains positive, which
implies that uλ is positive and increasing on [x0,∞). Since u′

λ(x) ≥ u′
λ(x0) > 0

for any x > x0, we have necessarily limx→∞ uλ(x) = ∞. By (2.1) we find that
limx→∞ u′′

λ(x) = ∞, so we have also limx→∞ u′
λ(x) = ∞. Let f(x) = (u′

λ(x))2 and
g(x) = u2

λ(x). Clearly, f(x) −→ ∞, g(x) −→ ∞ as x −→ ∞ and

f ′(x)

g′(x)
=

u′′
λ(x)

uλ(x)
= V (x) − λ −→ −λ as x −→ ∞.
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L’Hôpital’s rule implies that limx→∞
f(x)
g(x) = −λ, which gives limx→∞

u′
λ(x)

uλ(x) =
√
−λ.

Thus, for any ε > 0 there exists xε > 0 such that

√
−λ− ε <

u′
λ(x)

uλ(x)
<

√
−λ + ε on [xε,∞).(2.4)

Integrating (2.4) from xε to x we get, for any x > xε,
√
−λ− ε(x− xε) < lnuλ(x) − lnuλ(xε) <

√
−λ + ε(x− xε),

that is,

uλ(xε)e
√
−λ−ε(x−xε) < uλ(x) < uλ(xε)e

√
−λ+ε(x−xε) for any x > xε.(2.5)

Note that the above situation always occurs if uλ has a zero in (d,∞). Indeed, if
uλ(x0) = 0, then necessarily uλ(x) and u′

λ(x) have opposite signs for x < x0 and x
close to x0 (because if uλ and u′

λ have the same sign at some x1 ∈ (d, x0), we have
just seen that uλ cannot vanish after x1). But uλ changes sign at x0 and u′

λ(x0) �= 0,
hence uλ and u′

λ have the same sign just after x0.
2. The functions uλ and u′

λ have opposite signs in (d,∞). Replacing uλ by −uλ if
necessary, we may suppose that uλ > 0 and u′

λ < 0 in (d,∞) (observe that u′
λ cannot

vanish because it also changes sign at any zero and we would be in case 1). So uλ is
decreasing and positive on (d,∞). Let l = limx→∞ uλ(x). Clearly, l ≥ 0. If l > 0,
then u′′

λ(x) −→ −λl > 0 as x −→ ∞ by (2.1), which implies u′
λ(x) −→ ∞ as x −→ ∞,

a contradiction. Thus necessarily l = 0. Also, u′
λ is increasing on (d,∞) (because

u′′
λ(x) = (V (x)−λ)uλ(x) > 0) and negative, so it also has a limit at infinity. Since uλ

converges (to zero) at infinity, we must have limx→∞ u′
λ(x) = 0. Now we may apply

l’Hôpital’s rule to get

lim
x→∞

(u′
λ(x))2

u2
λ(x)

= lim
x→∞

u′′
λ(x)

uλ(x)
= lim

x→∞
(V (x) − λ) = −λ.

Thus
u′
λ(x)

uλ(x) −→ −
√
−λ as x −→ ∞ because uλ and u′

λ have opposite signs at infinity.

Given ε > 0, there exists M > d such that

−
√
−λ + ε <

u′
λ(x)

uλ(x)
< −

√
−λ− ε on [M,∞).(2.6)

Integrating (2.6) on [M,x] we obtain, as in case 1,

uλ(M)e−
√
−λ+ε(x−M) < uλ(x) < uλ(M)e−

√
−λ−ε(x−M) for any x > M.(2.7)

Finally, (2.2) and (2.3) follow from (2.5), respectively (2.7), and the fact that

limx→∞
u′′
λ(x)

uλ(x) = −λ, limx→∞
u′
λ(x)

uλ(x) = ±
√
−λ. It is obvious that λ is an eigenvalue of

L if and only if uλ ∈ H, i.e., if and only if we are in case 2. Therefore assertion (iv)
is proved.

Note also that uλ has only a finite number of zeroes. Indeed, it follows from the
above arguments that uλ has at most one zero in (d,∞) and we know that any zero
is isolated, and thus there are only finitely many zeroes in [0, d].

The proofs of (v) and (vi) are rather classical and are similar to the proofs of The-
orems XIII.8 and XIII.9, pp. 90–94 in [13]. The bound on the number of eigenvalues
given by (vi) is due to Bargmann (see [13] and references therein).
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Corollary 2.2. The linear operator A = − d2

dx2 + q2(1 + r2cε)
2 (considered on

L with domain D(A) = H) is self-adjoint and has the following properties:
(i) A ≥ 2c2ε2q2 and σess(A) = [q2,∞).
(ii) A has at least one eigenvalue in [2c2ε2q2, q2).
(iii) Any eigenvalue of A is simple. If μ < q2 is an eigenvalue and uμ is a

corresponding eigenvector, then for any ε > 0, there exist C1, C2,M > 0 such that

C1e
−
√

q2−μ+ε|x| ≤ |u(m)
μ (x)| ≤ C2e

−
√

q2−μ−ε|x| if |x| ≥ M, m = 0, 1, 2.(2.8)

(iv) Let Nq be the number of eigenvalues of A in [2c2ε2q2, q2). We have Nq <
1 + (2 ln 2)q2. In particular, if q ≤ 1√

2 ln 2
, then A has exactly one eigenvalue less

than q2.
(v) We have Nq −→ ∞ as q −→ ∞.
It can be proved that there exist c1, c2, q0 > 0 such that c1q ≤ Nq ≤ c2q for any

q ≥ q0, but we will not make use of this result in what follows.

Proof. Recall that r2cε is given by (1.12). We have A = − d2

dx2 +q2V (x)+q2, where

the function V given by V (x) = (1+r2cε(x))2−1 = (1−2c2ε2)(−1+tanh2(
√

1−2c2ε2

2 x))

is even, negative, tends exponentially to zero as x −→ ±∞, and infx∈R V (x) =
2c2ε2 − 1. Obviously, μ is an eigenvalue of A if and only if μ− q2 is an eigenvalue of

− d2

dx2 + q2V (x), so (i), (ii), and (iii) follow at once from Proposition 2.1.
An easy computation gives

∫ ∞

0

x|V (x)|dx = (1 − 2c2ε2)

∫ ∞

0

x

(
1 − tanh2

(√
1 − 2c2ε2

2
x

))
dx

= 2

∫ ∞

0

y(1 − tanh2 y)dy = 2

∫ ∞

0

y(tanh y − 1)′dy = 2 ln 2.

Now (iv) is a direct consequence of Proposition 2.1(vi).
(v) Fix n ∈ N, n ≥ 1 and take n symmetric functions ϕ1, . . . , ϕn ∈ C∞

0 (R),
ϕi �≡ 0 such that supp(ϕi) ∩ supp(ϕj) = ∅ if i �= j. Clearly,

〈Aϕi, ϕi〉L − q2〈ϕi, ϕi〉L =

∫
R

|∇ϕi|2dx + q2

∫
R

V (x)|ϕi(x)|2dx −→ −∞ as q −→ ∞.

Hence, there exists q0 > 0 such that for any q ≥ q0 and any i = 1, . . . , n we have
〈Aϕi, ϕi〉L − q2〈ϕi, ϕi〉L < 0. Since the ϕi’s have disjoint supports, we get

〈
A

(
n∑

i=1

αiϕi

)
,

n∑
i=1

αiϕi

〉
L

− q2

∥∥∥∥∥
n∑

i=1

αiϕi

∥∥∥∥∥
2

L

=

n∑
i=1

|αi|2
(∫

R

|∇ϕi|2dx + q2

∫
R

V (x)|ϕi(x)|2dx
)

< 0.

Therefore we have found an n-dimensional subspace of H, Vn = Span{ϕ1, . . . , ϕn},
such that 〈Au, u〉L − q2||u||L < 0 for any u ∈ Vn and any q ≥ q0. By the min-max
principle (see, e.g., [13, Theorem XIII.1, p. 76]) it follows that for q ≥ q0, A has at
least n eigenvalues less than q2; that is, Nq ≥ n if q ≥ q0. This proves (v).

We have the following result concerning the existence of nontrivial solitary waves.
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Theorem 2.3. Let λ∗ < q2 be an eigenvalue of A and let u∗ be a corresponding
eigenvector. There exists η > 0 and C∞ functions

s �−→ (λ(s), r(s), u(s)) ∈ R × H × (u⊥
∗ ∩ H)

defined on (−η, η) such that λ(0) = λ∗, r(0) = 0, u(0) = 0, and

S(r2cε + sr(s), s(u∗ + u(s))) = 0, T (λ(s), r2cε + sr(s), s(u∗ + u(s))) = 0.

Moreover, there exists a neighborhood U of (λ∗, r2cε, 0) in R × H × H such that
any solution of S(r, u) = 0, T (λ, r, u) = 0 in U is either of the form (λ(s), r2cε +
sr(s), s(u∗ + u(s))) or of the form (λ, r2cε, 0).

That is, r = r2cε + sr(s), u = s(u∗ + u(s)) are nontrivial solutions of (1.9)–(1.10)
for λ = λ(s).

Let g2cε : (−1,∞) −→ R, g2cε(x) = (1 + x)3 − (1 + x) − c2ε2(1 + x − 1
(1+x)3 ).

Then S(r, u) can be written as S(r, u) = −r′′ + g2cε(r) + (1 + r)u2. It is easily seen

that drS(r2cε, 0) = − d2

dx2 + g′2cε(r2cε).
For the proof of Theorem 2.3, we need the following lemmas.

Lemma 2.4. The linear operator J := − d2

dx2 + g′2cε(r2cε) : H −→ L has the
following properties:

(i) J is self-adjoint, invertible, and has the essential spectrum σess(J) = [2 −
4c2ε2,∞).

(ii) J has exactly one negative eigenvalue and any eigenvalue of J is simple.

Proof. (i) The linear operator B = − d2

dx2 +g′2cε(r2cε) with domain D(B) = H2(R)

is self-adjoint in L2(R). We claim that Ker(B) = Span{ d
dxr2cε}. Indeed, we have

d2

dx2
r2cε = g2cε(r2cε).(2.9)

Thus r′′2cε ∈ C1(R). Differentiating (2.9) with respect to x we get d
dxr2cε ∈ Ker(B).

Conversely, let h ∈ Ker(B). Then h′′ = g′2cε(r2cε)h, so that

(h′r′2cε)
′ = h′′r′2cε + h′r′′2cε = hg′2cε(r2cε)r

′
2cε + h′g2cε(r2cε) = (hg2cε(r2cε))

′.

Hence h′r′2cε = hg2cε(r2cε) + C on R. Taking the limits as |x| −→ ∞, we get C = 0,
so h′r′2cε = hg2cε(r2cε) = hr′′2cε. Since r′2cε �= 0 on (−∞, 0) and on (0,∞), on each

of these intervals we have ( h
r′2cε

)′ =
h′r′2cε−hr′′2cε

(r′2cε)
2 = 0. Thus there exist constants

C1, C2 such that h(x) = C1r
′
2cε(x) on (−∞, 0) and h(x) = C2r

′
2cε(x) on (0,∞).

Consequently, h′(x) = C1r
′′
2cε(x) = C1g(r2cε(x)) on (−∞, 0) and h′(x) = C2r

′′
2cε(x) =

C2g2cε(r2cε(x)) on (0,∞). But h′ is continuous because h ∈ H2(R) and therefore
C1 = C2, which proves our claim.

Since r′2cε /∈ H, it is clear that the restriction of B to H is one-to-one from H
into L. It remains to prove that BH = L. It is well known that Im(B) = Ker(B)⊥ =
(r′2cε)

⊥ since B is self-adjoint. We have L ⊂ Im(B) because r′2cε is an odd function.
Let f ∈ L. Clearly there exists r ∈ H2(R) such that Br = f . Let r̃(x) = r(−x).
It is easy to see that Br̃ = f , hence there exists C such that r − r̃ = Cr′2cε. Then
r − 1

2Cr′2cε = 1
2 (r + r̃) ∈ H and B(r − 1

2Cr′2cε) = f .
Now it is clear that J , which is the restriction of B to H, is self-adjoint in L

and invertible. The function g′2cε(r2cε) tends (exponentially) to g′2cε(0) = 2 − 4c2ε2

as x −→ ∞. It follows from Weyl’s theorem that σess(J) = σess(B) = [2− 4c2ε2,∞).
This completes the proof of (i).
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(ii) It follows from Proposition 2.1(iii) and (v) that any eigenvalue of J is simple
and the number of negative eigenvalues of J is exactly the number of zeroes of u in
(0,∞), where u is the solution of the Cauchy problem

{
−u′′ + g′2cε(r2cε)u = 0 in [0,∞),
u(0) = 1, u′(0) = 0.

(2.10)

We use the following simplified version of the well-known Sturm oscillation lemma
(this is also a particular case of Lemma 5 in [8]).

Sturm oscillation lemma. Let Y and Z be nontrivial solutions of the differ-
ential equation

−ϕ′′ + h(x)ϕ = 0

on some interval (μ, ν), where h is continuous on (μ, ν). If Y and Z are linearly
independent and Y (μ) = Y (ν) = 0, then Z has at least one zero in (μ, ν).

From this lemma it follows at once that J has at most one negative eigenvalue.
Indeed, suppose that J has at least two negative eigenvalues. Then the solution u of
(2.10) has at least two zeroes in (0,∞), say x1 < x2. But the function r′2cε also satisfies
the differential equation in (2.10), and obviously u and r′2cε are linearly independent
(because r′2cε(0) = 0). Using Sturm’s oscillation lemma, we infer that r′2cε must have
a zero on (x1, x2), which is absurd because r′2cε(x) > 0 on (0,∞).

Now let us prove that J has (at least) one negative eigenvalue. We argue again by
contradiction and we suppose that J has no negative eigenvalues. Then the solution
u of (2.10) has no zeroes in [0,∞), consequently u(x) > 0 for any x ∈ [0,∞). Since
g′2cε(r2cε(x)) −→ 2− 4c2ε2 > 0 as x −→ ∞, repeating the argument used in the proof
of Proposition 2.1(iv) we infer that either u(x) −→ ∞ or u(x) −→ 0 as x −→ ∞. In
the latter case we have also

|u(m)(x)| ≤ Ce−
√

2−4c2ε2−δ|x|, m = 0, 1, 2,

for some constant C > 0, δ ∈ (0, 2 − 4c2ε2), and x sufficiently large. Consequently,
u ∈ H and 0 is an eigenvalue of J . But this is excluded by (i). Therefore we must
have u(x) −→ ∞ as x −→ ∞.

Since u(0) = 1, we have u > 0 in a neighborhood of 0. Note that g′2cε(r2cε(0)) =
(5 + 3

2c2ε2 )(c2ε2 − 1
2 ) < 0, hence g′2cε(r2cε) < 0 near 0. From (2.10) we get u′′(x) < 0

for x > 0 and x close to 0. We have u′(0) = 0, so there exists δ > 0 such that
u′(x) < 0 on (0, δ]. We may choose δ so small that u(δ) > 0 and r′′2cε(δ) > 0

(note that r′′2cε(0) = g2cε(r2cε(0)) = (1−2c2ε2)2

2
√

2cε
> 0). Let β = u(δ)

r′2cε(δ)
> 0 and let

h(x) = βr′2cε(x) − u(x). Clearly, h is a solution of the differential equation in (2.10)
and h(δ) = 0, h′(δ) = βr′′2cε(δ) − u′(δ) > 0. Hence h(x) > 0 for x > δ and x close
to δ. On the other hand, we have limx−→∞ h(x) = −∞, so there exists η > δ such
that h(η) = 0. Since both r′2cε and h satisfy the differential equation in (2.10), by the
Sturm oscillation lemma we infer that r′2cε must have a zero in (δ, η), which is absurd.
This finishes the proof of Lemma 2.4.

Lemma 2.5. We have the following:

(i) Ker(T (λ∗, r2cε, ·)) = Span(u∗).

(ii) Im(T (λ∗, r2cε, ·)) = u⊥
∗ ∩ L.

The proof is obvious.
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Proof of Theorem 2.3. Let Ṽ = {r ∈ H | supx∈R |r(x)| < 1} and I = (−
√

2cε,√
2cε). Clearly Ṽ is open in H. We define F : I × R × Ṽ × (H ∩ u⊥

∗ ) −→ L × L by

F (s, λ, r, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

1

s
S(r2cε + sr, s(u∗ + u))

1

s
T (λ, r2cε + sr, s(u∗ + u))

⎞
⎟⎟⎠ if s �= 0,

(
drS(r2cε, 0).r

T (λ, r2cε, u∗ + u)

)
if s = 0.

It is easily seen that F is C∞ because

F1(s, λ, r, u) = 1
s (S(r2cε + sr, s(u∗ + u)) − S(r2cε, 0))

= 1
s

∫ 1

0

d

dt
S(r2cε + tsr, ts(u∗ + u))dt

= 1
s

∫ 1

0

drS(r2cε + tsr, ts(u∗ + u)).sr + duS(r2cε + tsr, ts(u∗ + u)).s(u∗ + u)dt

=

∫ 1

0

drS(r2cε + tsr, ts(u∗ + u)).r + duS(r2cε + tsr, ts(u∗ + u)).(u∗ + u)dt

and F2(s, λ, r, u) = T (λ, r2cε + sr, u∗ + u).
It is also clear that F (0, λ∗, 0, 0) =

(
0
0

)
and

d(λ,r,u)F (0, λ∗, 0, 0)(λ̃, r̃, ũ) =

(
0

−λ̃u∗

)
+

(
drS(r2cε, 0).r̃

0

)
+

(
0

T (λ∗, r2cε, ũ)

)
.

In view of Lemmas 2.4 and 2.5, d(λ,r,u)F (0, λ∗, 0, 0) is invertible. By the implicit
function theorem, there exist η > 0 and C∞ functions defined on (−η, η),

s �−→ (λ(s), r(s), u(s)) ∈ R × H × (H ∩ u⊥
∗ ),

such that λ(0) = λ∗, r(0) = 0, u(0) = 0, and F (s, λ(s), u(s), r(s)) = (0, 0). It is
obvious that for s �= 0, (λ(s), (r2cε + sr(s), s(u0 + u(s)))) satisfy the system (1.9)–
(1.10). Finally, the uniqueness part in Theorem 2.3 is proved exactly in the same way
as in the bifurcation from a simple eigenvalue theorem (see [4]).

Remark 2.6. Let λ(s), r(s), u(s) be given by Theorem 2.3. We have λ̇(0) = 0,
u̇(0) = 0, and

λ̈(0) = − 4q2

||u∗||2L
〈(1 + r2cε)u

2
∗, J

−1((1 + r2cε)u
2
∗)〉L,(2.11)

where the dots denote derivatives with respect to s and J is the operator in Lemma 2.4.
To see this, we differentiate with respect to s the equation T (λ(s), r2cε+sr(s), u∗+

u(s)) = 0 and then take s = 0 to obtain

− d2

dx2
u̇(0) + [q2(1 + r2cε)

2 − λ∗]u̇(0) − λ̇(0)u∗ = 0,(2.12)
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that is, (A − λ∗)u̇(0) − λ̇(0)u∗ = 0. But Im(A − λ∗) and Ker(A − λ∗) = Span{u∗}
are orthogonal (because A is self-adjoint), and thus (2.12) implies that λ̇(0) = 0 and
u̇(0) = 0.

We differentiate twice with respect to s the equation T (λ(s), r2cε + sr(s), u∗ +
u(s)) = 0, then we take s = 0 to get

(A− λ∗)ü(0) + 4q2(1 + r2cε)ṙ(0)u∗ − λ̈(0)u∗ = 0.(2.13)

Substracting the equation −r′′2cε+g2cε(r2cε) = 0 from the equation S(r2cε+sr(s), s(u∗+
u(s))) = 0 and then dividing by s we get

− d2

dx2
r(s) +

∫ 1

0

g′2cε(r2cε + tsr(s)) dt · r(s) + s(1 + r2cε + sr(s))(u∗ + u(s))2 = 0.

(2.14)

We differentiate (2.14) with respect to s, then we take s = 0 to obtain

− d2

dx2
ṙ(0) + g′2cε(r2cε)ṙ(0) + (1 + r2cε)u

2
∗ = 0;

that is, Jṙ(0) + (1 + r2cε)u
2
∗ = 0, which can still be written as

ṙ(0) = −J−1((1 + r2cε)u
2
∗).(2.15)

Taking the scalar product of (2.13) with u∗ we find λ̈(0)||u∗||2L = 4q2〈(1+r2cε)u
2
∗, ṙ(0)〉L.

We replace ṙ(0) from (2.15) in the last equality to obtain (2.11).

3. Global branches of solutions. Our purpose is to obtain information about
the global structure of the set of nontrivial solutions of (1.9)–(1.10). We give a nonex-
istence result first.

Proposition 3.1. (i) The system (1.9)–(1.10) does not admit solutions (λ, r, u) ∈
R × V ×H1(R) with (r, u) �= (0, 0) if c ≥ 1

ε
√

2
.

(ii) Suppose that c < 1
ε
√

2
and let (λ, r, u) ∈ R×V ×H1(R) be a nontrivial solution

of the system (1.9)–(1.10). Then 2c2ε2q2 < λ ≤ q2 and −1 +
√

2cε < r(x) ≤ 0 for
any x ∈ R.

Proof. Let (λ, r, u) ∈ R×V ×H1(R) be a solution of (1.9)–(1.10). Since H1(R) ⊂
Cb(R), (1.9)–(1.10) imply that r′′ and u′′ are continuous; hence r, u ∈ C2(R).

If u ≡ 0 and c ≥ 1
ε
√

2
, the only solution of (1.9) which tends to zero at ±∞ is

r ≡ 0 (this was proved in [7], but can be easily deduced from the arguments below).
From now on we suppose that u �≡ 0. Multiplying (1.10) by u and integrating we find∫

R

|u′|2dx + q2

∫
R

(1 + r)2|u|2dx = λ

∫
R

|u|2dx.(3.1)

Since u �≡ 0, we have necessarily λ > 0. Let G2cε(s) =
∫ s

0
g2cε(τ)dτ = 1

4 ((1 + s)2 −
1)2(1 − 2c2ε2

(1+s)2 ). Multiplying (1.9) by r′ gives

−1

2
[(r′)2]′ + [G2cε(r)]

′ +
1

2
[(1 + r)2]′u2 = 0,(3.2)

and multiplying (1.10) by u′ leads to

−1

2
[(u′)2]′ +

1

2
q2(1 + r)2(u2)′ − λ

2
(u2)′ = 0.(3.3)
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From (3.2) and (3.3) we get

−1

2
[(r′)2]′ − 1

2q2
[(u′)2]′ + [G2cε(r)]

′ +
1

2
[(1 + r)2u2]′ − λ

2q2
(u2)′ = 0.(3.4)

Integrating (3.4) from −∞ to x and taking into account that r(x) −→ 0, r′(x) −→ 0,
u(x) −→ 0, and u′(x) −→ 0 as x −→ ±∞, we obtain

|r′|2(x) +
1

q2
|u′|2(x) +

(
λ

q2
− (1 + r(x))2

)
u2(x) = 2G2cε(r(x)) for any x ∈ R.

(3.5)

Suppose that there exists x0 ∈ R such that r(x0) < min(−1 +
√
λ
q ,−1 +

√
2cε).

Then λ
q2 − (1 + r(x0))

2 > 0 and the left-hand side of (3.5) is positive at x0 (be-

cause u(x0) = u′(x0) = 0 and (1.10) would imply u ≡ 0) while G2cε(r(x0)) < 0, a

contradiction. Thus r(x) ≥ min(−1 +
√
λ
q ,−1 +

√
2cε) for any x ∈ R.

Suppose that λ ≤ 2c2ε2q2 (that is,
√
λ
q ≤

√
2cε). Then we have (1 + r(x))2 ≥ λ

q2

for any x ∈ R and (3.1) gives∫
R

|u′|2dx + q2

∫
R

(
(1 + r)2 − λ

q2

)
u2dx = 0,

which implies u ≡ 0, again a contradiction. Therefore we have λ > 2c2ε2q2 and
r(x) ≥ −1 +

√
2cε for any x ∈ R. This is impossible if

√
2cε > 1 because r(x) −→ 0

as x −→ ±∞.
Hence we cannot have solutions other than (λ, 0, 0) if

√
2cε > 1. From now on we

suppose that
√

2cε ≤ 1. In this case we have r ≤ 0 on R by the maximum principle.
Indeed, the function g2cε is strictly increasing and positive on (0,∞). Suppose that r
achieves a positive maximum at x0. Then r′′(x0) ≤ 0. On the other hand, from (1.9)
we infer that r′′(x0) = g2cε(r(x0)) + (1 + r(x0))u

2(x0) > 0, which is absurd.
If

√
2cε = 1 we have seen that 0 ≥ r(x) ≥ −1 +

√
2cε = 0; hence r ≡ 0. Then

(1.10) becomes u′′ = (q2 − λ)u; together with the boundary condition u(x) −→ 0 as
x −→ ±∞, this gives u ≡ 0. Thus (i) is proved.

From now on we suppose throughout that 2c2ε2 < 1. Clearly, if r(x0) = −1+
√

2cε
for some x0 ∈ R, then (3.5) would imply u(x0) = u′(x0) = 0 (because λ > 2c2ε2q2),
hence u ≡ 0 by (1.10), which is impossible. Hence 0 ≥ r(x) > −1 +

√
2cε for any

x ∈ R.
It remains only to show that we cannot have nontrivial solutions with λ > q2.

Suppose that (λ, r, u) is such a solution. First, observe that r cannot vanish because
(3.5) would give a contradiction. We prove that r decays sufficiently fast at infinity.
Take 0 < ε < λ

q2 − 1. There exists Mε > 0 such that (1 + r(x))2 ≤ 1 + ε on [Mε,∞)

(because r(x) −→ 0 as x −→ ∞). Using (3.5), we have on [Mε,∞)

0 ≤
(

λ

q2
− 1 − ε

)
u2(x) ≤ 2G2cε(r(x)),

hence 0 ≤ ( λ
q2 − 1− ε)u

2(x)
|r(x)| ≤ 2 |G2cε(r(x))|

|r(x)| . Passing to the limit as x −→ ∞ we obtain

limx→∞
u2(x)
r(x) = 0. Dividing (1.9) by r we get

r′′(x)

r(x)
=

g2cε(r(x))

r(x)
+ (1 + r(x))

u2(x)

r(x)
−→ g′2cε(0) > 0 as x −→ ∞.(3.6)
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Since r′′ must have at least one zero between two zeroes of r′, (3.6) shows that r′ has
no zeroes in some neighborhood of infinity. In that neighborhood we have

(|r′(x)|2)′
(r2(x))′

=
r′′(x)

r(x)
−→ g′2cε(0) > 0 as x −→ ∞.

Since r(x) −→ 0 and r′(x) −→ 0 at infinity, we may apply l’Hôpital’s rule to get

limx→∞( r
′(x)
r(x) )2 = g′2cε(0). We know that r and r′ have constant signs in a neigh-

borhood of infinity and that they cannot have the same sign because r tends to 0 at

infinity, so necessarily limx→∞
r′(x)
r(x) = −

√
g′2cε(0). The argument, already used in the

proof of Proposition 2.1, shows that for any ε > 0, there exists Cε > 0 such that

|r(x)| ≤ Cεe
−
√

g′
2cε(0)−ε x for any x ∈ [0,∞).

Of course a similar estimate is valid on (−∞, 0]. In particular, r2 +2r is a continuous,
bounded function on R and limx→±∞ |x|(r2(x)+2r(x)) = 0. Moreover, multiplication
by r2 + 2r is a bounded operator on L2(R); hence it is also bounded with respect to

− d2

dx2 with relative bound zero. Consequently, by the Kato–Agmon–Simon theorem

(see, e.g., [13, Theorem XIII.58, p. 226]), the operator − d2

dx2 + q2(r2 + 2r) (with
domain H2(R) and range L2(R)) cannot have eigenvalues embedded in the continuous

spectrum (0,∞). This means exactly that the operator − d2

dx2 + q2(1 + r)2 has no
eigenvalues in (q2,∞) and contradicts the existence of a nontrivial solution (λ, r, u)
with λ > q2.

We will use the following variant of the global bifurcation theorem of Rabinowitz.
Proposition 3.2. Let E be a real Banach space and Ω ⊂ R × E an open set.

Suppose that G : Ω −→ E is compact on closed, bounded subsets ω ⊂ Ω such that
dist(ω, ∂Ω) > 0 and is of the form G(a, u) = L(a, u)+H(a, u), where L and H satisfy
the following assumptions:

(a) L(a, ·) is linear, compact for any fixed a and (a, u) �−→ L(a, u) is continuous
and compact on closed, bounded subsets ω ⊂ Ω such that dist(ω, ∂Ω) > 0.

(b) For any closed, bounded subset ω ⊂ Ω such that dist(ω, ∂Ω) > 0, there exists
a function hω such that hω(s) −→ 0 as s −→ 0 and

||H(a, u)|| ≤ ||u||hω(||u||) for any (a, u) ∈ ω.

(c) There exists a0 and ε > 0 such that
• (a0, 0) ∈ Ω,
• for any a ∈ [a0 − ε, a0 + ε] \ {a0} we have Ker(Id− L(a, ·)) = {0},
• if a1 ∈ [a0 − ε, a0) and a2 ∈ (a0, a0 + ε], then

ind(Id− L(a1, ·), 0) �= ind(Id− L(a2, ·), 0).
Let

S = {(a, u) ∈ Ω | u �= 0 and u = G(a, u)}

be the set of nontrivial solutions of the equation u = G(a, u). Then S ∪ {(a0, 0)}
possesses a maximal subcontinuum (i.e., a maximal closed connected subset) Ca0

which
contains (a0, 0) and has at least one of the following properties:

(i) Ca0 is unbounded.
(ii) dist(Ca0 , ∂Ω) = 0.
(iii) Ca0

meets (a1, 0), where a1 �= a0 and Ker(Id− L(a1, ·)) �= {0}.
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From the first assertion in (c) it follows that the index ind(Id − L(a, ·), 0) =
deg(Id − L(a, ·), B(0, ρ), 0) is well defined for any a ∈ [a0 − ε, a0 + ε] \ {a0}. By
(a) and the homotopy invariance of the Leray–Schauder degree, it is a continuous
function of a. Thus we have necessarily Ker(Id − L(a0, ·)) �= {0} (since otherwise
ind(Id − L(a0, ·), 0) would be defined and ind(Id − L(a, ·) 0) would be constant for
a ∈ [a0 − ε, a0 + ε], contradicting the last assertion in (c)).

The proof of Proposition 3.2 is similar to that of Theorem 1.3, p. 490 in [12] (see
also Corollary 1.12 in [12]).

Next, we give a reformulation of problem (1.9)–(1.10) suitable for the use of
Proposition 3.2.

Equation (1.9) can be written as −r′′ + g2cε(r) + (1 + r)u2 = 0, where g2cε(x) =
(1 + x)3 − (1 + x) − c2ε2(1 + x − 1

(1+x)3 ). We will seek solutions of the form r(x) =

r2cε(x) + w(x). Taking into account that r2cε satisfies −r′′2cε + g2cε(r2cε) = 0, (1.9)
becomes

−w′′ + g2cε(r2cε + w) − g2cε(r2cε) + (1 + r2cε + w)u2 = 0.(3.7)

Note that g′2cε(0) = 2 − 4c2ε2 > 0, thus the linear operator − d2

dx2 + g′2cε(0) (with
domain H and range L) is invertible, and thus (3.7) is equivalent to

w = −
(
− d2

dx2 + g′2cε(0)
)−1

[g2cε(r2cε + w) − g2cε(r2cε) − g′2cε(r2cε)w + (1 + r2cε + w)u2]

−
(
− d2

dx2 + g′2cε(0)
)−1

[(g′2cε(r2cε) − g′2cε(0))w].

(3.8)

In the same way, (1.10) can be written as

−u′′ + (q2 − λ)u = q2(1 − (1 + r2cε + w)2)u.

For λ < q2, the linear operator − d2

dx2 + q2 − λ is invertible and (1.10) becomes

u = −q2

(
− d2

dx2
+ q2 − λ

)−1

[(r2
2cε + 2r2cε)u]

− q2

(
− d2

dx2
+ q2 − λ

)−1

[(w2 + 2wr2cε + 2w)u].

(3.9)

We denote

H1(w, u) =

(
− d2

dx2
+ g′2cε(0)

)−1

[g2cε(r2cε + w) − g2cε(r2cε) − g′2cε(r2cε)w

+ (1 + r2cε + w)u2],

H2(λ,w, u) = q2

(
− d2

dx2
+ q2 − λ

)−1

[(w2 + 2wr2cε + 2w)u],

Aλ(u) = A(λ, u) = q2

(
− d2

dx2
+ q2 − λ

)−1

[(r2
2cε + 2r2cε)u],

B(w) =

(
− d2

dx2
+ g′2cε(0)

)−1

[(g′2cε(r2cε) − g′2cε(0))w].
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It is easy to see that Aλ, B : L −→ H are linear and continuous. Denote V2cε =
{r ∈ H | r + r2cε ∈ V }. It is obvious that V2cε is open in H. Since H ⊂ C1

b (R)
and H is an algebra, H1 and H2 are well defined and continuous from V2cε × H and
(−∞, q2) × H × H, respectively, to H.

If λ < q2, then (λ, r, u) satisfies the system (1.9)–(1.10) if and only if (λ,w, u)
(where w = r − r2cε) satisfies the system (3.8)–(3.9), which is equivalent to(

w
u

)
= −

(
B 0
0 Aλ

)(
w
u

)
−

(
H1(w, u)

H2(λ,w, u)

)
.(3.10)

We have already shown in the introduction that we cannot expect to have properness
for problem (1.9)–(1.10). The counterexample that we have seen is essentially due to
the invariance by translations of the system and to the fact that we have localized
solutions. Of course passing from (1.9)–(1.10) to (3.10) should not prevent the same
problems from appearing. To overcome this difficulty, we shall work on some weighted
Sobolev space. As a “weight,” we take a function W : R −→ R which satisfies the
following properties:

(W1) W is continuous and even, i.e., W (x) = W (−x);

(W2) W ≥ 1 and lim
x→∞

W (x) = ∞;

(W3) There exists CW > 0 such that W (a + b) ≤ CW (W (a) + W (b)).

It follows easily from (W1) and (W3) that there exist K, s > 0 such that W (x) ≤ K|x|s
for |x| ≥ 1. Indeed, from (W3) we infer that for all a ∈ R, W (2na) ≤ (2CW )nW (a).
If x ∈ [2n−1, 2n] and M = maxx∈[0,1] W (x), then

W (x) ≤ (2CW )nW
( x

2n

)
≤ 2CWM(2CW )n−1

= 2CWM2(n−1)(1+log2 CW ) ≤ 2CWMx1+log2 CW .

In particular, we get

(W4) e−a|·|W (·) ∈ L1 ∩ L∞(R) ∀a > 0.

For a function W satisfying (W1)–(W3) we consider the spaces

LW = {ϕ ∈ L | Wϕ ∈ L},

HW = {ϕ ∈ H | Wϕ,Wϕ′,Wϕ′′ ∈ L},

endowed with the norms ||ϕ||LW
= ||Wϕ||L2 , respectively ||ϕ||2HW

= ||Wϕ||2L2 +
||Wϕ′||2L2 + ||Wϕ′′||2L2 . Equipped with these norms, LW and HW are Hilbert spaces.
It is clear that ||ϕ||L2 ≤ ||ϕ||LW

, ||ϕ||H2 ≤ ||ϕ||HW
, and LW (respectively, HW ) is a

dense subspace of L (respectively, of H).
Lemma 3.3. The embedding HW ⊂ C1

b (R) is compact.
Proof. It is clear that the embeddings HW ⊂ H2(R) ⊂ C1

b (R) are continuous. To
prove compactness, consider an arbitrary sequence un ⇀ 0 in HW and let us show that
un −→ 0 in C1

b (R). Fix ε > 0. Let K = supn ||un||HW
. There exists M > 0 such that

W (x) ≥ K
ε if |x| ≥ M . It follows that ||un||H2((−∞,M)∪(M,∞)) ≤ ε. By the Sobolev
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embedding theorem, we have ||un||L∞((−∞,M ]∪[M,∞)) + ||u′
n||L∞((−∞,M ]∪[M,∞)) ≤

CSε. On the other hand un|[−M,M ] ⇀ 0 in H2(−M,M). Since the embedding
H2(−M,M) ⊂ C1([−M,M ]) is compact, it follows that un −→ 0 in C1([−M,M ]),
so ||un||L∞([−M,M ]) + ||u′

n||L∞([−M,M ]) ≤ ε if n is sufficiently big. Thus ||un||L∞(R) +
||u′

n||L∞(R) ≤ (CS + 1)ε for n sufficiently big. As ε was arbitrary, we infer that
un −→ 0 in C1

b (R) and the lemma is proved.

Lemma 3.4. Let W satisfy (W1)–(W3). For any a > 0, the operator − d2

dx2 +

a : HW −→ LW is bounded and invertible. Moreover, the norm of (− d2

dx2 + a)−1

is uniformly bounded in L(LW ,HW ) when the parameter a remains in a compact
subinterval of (0,∞).

Proof. It is clear that∥∥∥∥
(
− d2

dx2
+ a

)
v

∥∥∥∥
LW

= || − v′′ + av||LW
≤ C||v||HW

,

and thus the operator is bounded. Since − d2

dx2 +a : H −→ L is bounded and invertible,

it is clear that the restriction of − d2

dx2 +a to HW is one-to-one and for any f ∈ LW ⊂ L

there exists a unique v ∈ H such that (− d2

dx2 + a)v = f . It remains only to prove that

v ∈ HW and ||v||HW
≤ ||f ||LW

. Using the Fourier transform we get (ξ2+a)v̂(ξ) = f̂(ξ)

or, equivalently, v̂(ξ) = 1
ξ2+a f̂(ξ). Since F(e−

√
a|·|)(ξ) = 2

√
a

ξ2+a , we infer that

v =
1

2
√
a
(e−

√
a|·|) ∗ f.(3.11)

From (3.11) we get

|v(x)W (x)| =
1

2
√
a
W (x)

∣∣∣∣
∫
R

e−
√
a|x−y|f(y)dy

∣∣∣∣
≤ CW

2
√
a

∫
R

W (x− y)e−
√
a|x−y||f(y)| + e−

√
a|x−y|W (y)|f(y)|dy

≤ C1(a)[((We−
√
a|·|) ∗ |f |)(x) + (e−

√
a|·|) ∗ (|f |W )(x)],

that is, |vW | ≤ C1(a)[(We−
√
a|·|) ∗ |f | + e−

√
a|·| ∗ (|f |W )]. But

||(We−
√
a|·|) ∗ |f | ||L2 ≤ ||We−

√
a|·|||L1 ||f ||L2 ≤ ||We−

√
a|·|||L1 ||f ||LW

and

||e−
√
a|·| ∗ (|f |W )||L2 ≤ ||e−

√
a|·|||L1 ||Wf ||L2 ,

and thus we obtain from (3.11) that

||v||LW
≤ C2(a)||f ||LW

,(3.12)

where C2(a) remains bounded if a ∈ [d, e], 0 < d < e < ∞.

In the same way, we have v̂′(ξ) = iξv̂(ξ) = iξ
ξ2+a f̂(ξ); hence v′(x) = − 1

2ζa ∗ f(x),

where ζa(x) = sgn(x)e−
√
a|x|. Repeating the above argument we find

||v′W ||L2 ≤ C3(a)||f ||LW
,(3.13)
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where C3(a) remains bounded if a is in a compact interval of (0,∞).
Finally, using the equation satisfied by v we get v′′ = −f + av; hence

||v′′W ||L2 ≤ ||f ||LW
+ a||v||LW

≤ (1 + aC2(a))||f ||LW
.(3.14)

Lemma 3.4 follows from (3.12), (3.13), and (3.14).

Note that the operator − d2

dx2 + a : HW −→ LW is not invertible if the weight
W increases too fast at infinity. Indeed, if f ∈ C∞

0 (R) and f ≥ 0, it is easily
seen (e.g., from (3.11)) that the solution v of −v′′ + av = f behaves like e−

√
a|·| at

±∞. If we take W (x) = eb|x| and a < b2, then v does not belong to HW , and thus

− d2

dx2 + a : HW −→ LW is not surjective.
The next lemma shows that we do not lose solutions if we work in HW instead

of H.
Lemma 3.5. Let (λ, r, u) be a solution of (1.9)–(1.10) with r ∈ H, u ∈ H, and

λ < q2. Then r and u belong to HW .
Proof. We have already seen in Proposition 3.1 that −1+

√
2cε < r ≤ 0. Applying

Proposition 2.1(iv) (see also Corollary 2.2(iii)) for V (x) = q2(r2(x) + 2r(x)), we infer

that for any ε > 0, u, u′, and u′′ decay at ±∞ faster than e−
√

q2−λ−ε|x|; hence
u ∈ HW .

Since g′2cε(0) > 0 and r(x) −→ 0 as |x| −→ ∞, there exists M > 0 such that
r(x)g2cε(r(x)) ≥ 1

2g
′
2cε(0)r2(x) if |x| > M .

Consider a symmetric function χ ∈ C∞
0 (R) such that χ ≡ 1 on [−1, 1], χ is

nonincreasing on [0,∞), and supp(χ) ⊂ [−2, 2]. We multiply (1.9) by xr(x)χ( x
n ) and

integrate on [0,∞). Integrating by parts, we get

∫ ∞

0

|r′|2(x)xχ
(x
n

)
dx− 1

2
r2(0) − 1

2

∫ ∞

0

r2(x)

(
2

n
χ′

(x
n

)
+

x

n2
χ′′

(x
n

))
dx

+

∫ M

0

g2cε(r(x))r(x)xχ
(x
n

)
dx +

∫ ∞

M

g2cε(r(x))r(x)xχ
(x
n

)
dx

+

∫ ∞

0

(1 + r(x))u2(x)r(x)xχ
(x
n

)
dx = 0.

(3.15)

By the monotone convergence theorem, the first integral in (3.15) tends to
∫∞
0

|r′(x)|2xdx
as n −→ ∞, while the fourth integral tends to

∫∞
M

g2cε(r(x))r(x)xdx. The other three
integrals converge as n −→ ∞ by Lebesgue’s theorem on dominated convergence.
Letting n −→ ∞ in (3.15) we obtain∫ ∞

0

|r′|2(x)xdx− 1

2
r2(0) +

∫ M

0

g2cε(r(x))r(x)xdx

+

∫ ∞

M

g2cε(r(x))r(x)xdx +

∫ ∞

0

r(x)(1 + r(x))xu2(x)dx = 0.

(3.16)

Since the second and the last integral in (3.16) are finite (because u decays exponen-
tially at ±∞), we infer that

∫∞
0

|r′|2(x)xdx < ∞ and
∫∞
M

g2cε(r(x))r(x)xdx < ∞.

Consequently, |x| 12 r′(x) and |x| 12 r(x) belong to L2(R).
We have g2cε(s) = g′2cε(0)s + h(s)s2, where h is continuous on (−1,∞); hence

h(r(x)) is bounded. Equation (1.9) can be written as

−r′′ + g′2cε(0)r = −(1 + r)u2 − h(r)r2,(3.17)
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which gives, as in the proof of Lemma 3.4,

r = − 1

2
√
g′2cε(0)

e−
√

g′
2cε(0)|·| ∗ ((1 + r)u2 + h(r)r2).(3.18)

Suppose that |x|αr(x) ∈ L2(R) for some α > 0. Since |x|βu(x) ∈ Lp(R) for any β > 0
and 1 ≤ p ≤ ∞ we have

|x|2α|r(x)| ≤ C[(| · |2αe−
√

g′
2cε(0)|·|) ∗ ((1 + r)u2 + h(r)r2)(x)

+ e−
√

g′
2cε(0)|·| ∗ ((1 + r)u2| · |2α + h(r)(| · |αr)2)](x),

(3.19)

and we infer that | · |2αr ∈ Lp(R) for 1 ≤ p ≤ ∞.

We have already proved that |x| 12 r(x) ∈ L2(R), so it follows easily by induction
that |x|σr(x) ∈ Lp(R) for any σ > 0 and 1 ≤ p ≤ ∞. Since W (x) ≤ K|x|s for some
K, s > 0, we infer that (1 + r)u2 + h(r)r2 ∈ LW . Now it follows from (3.17) and
Lemma 3.4 that r ∈ HW , and Lemma 3.5 is proved.

Now we turn our attention to the operators A, B, H1, and H2 appearing in (3.10).
Lemma 3.6. We have the following:
(i) For any λ ∈ (−∞, q2), Aλ : HW −→ HW is linear, compact and the mapping

(λ, u) �−→ Aλ(u) is continuous from (−∞, q2) × HW to HW and compact on closed
bounded subsets of [d, e] × HW for −∞ < d < e < q2.

(ii) The linear operator B : HW −→ HW is compact.
(iii) H1 : ((V − r2cε) ∩ HW ) × HW −→ HW is continuous, compact on closed

bounded subsets ω1 of ((V −r2cε)∩HW )×HW such that dist(ω1, (HW \ (V −r2cε))×
HW ) > 0 and

||H1(w, u)||HW
≤ Cω1(||w||2HW

+ ||u||2HW
).(3.20)

(iv) H2 : (−∞, q2)×HW×HW −→ HW is continuous, compact on closed bounded
subsets of [d, e] × HW × HW for −∞ < d < e < q2 and

||H2(λ,w, u)||HW
≤ Cd,e(||w||2HW

+ ||w||4HW
+ ||u||2HW

) for any λ ∈ [d, e].

(3.21)

Proof. It is easy to see that un ⇀ u∗ in HW and vn ⇀ v∗ in HW imply that
unvn −→ u∗v∗ in LW . Indeed, (un) and (vn) are bounded in HW , and by Lemma 3.3
we have

||unvn − u∗v∗||LW
≤ ||vn − v∗||L∞ ||un||LW

+ ||un − u∗||L∞ ||v∗||LW
−→ 0 as n −→ ∞.

(3.22)

(i) It is now clear that u �−→ (r2
2cε + 2r2

2cε)u is a linear compact mapping from
HW to LW , and we get (i) by using Lemma 3.4 and the resolvent formula

(
− d2

dx2
+ q2 − λ1

)−1

−
(
− d2

dx2
+ q2 − λ2

)−1

= (λ1 − λ2)
(
− d2

dx2
+ q2 − λ1

)−1(
− d2

dx2
+ q2 − λ2

)−1

.

(ii) This is obvious.
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(iii) Let ω1 be as in Lemma 3.6. We claim that there exists η > 0 such that for any
(w, u) ∈ ω1 we have infx∈R(w(x)+ r2cε(x)) ≥ −1+ η. We argue by contradiction and
suppose that there exists a sequence (wn, un) ∈ ω1 such that an := infx∈R(wn(x) +
r2cε(x)) = (wn + r2cε)(xn) tends to −1. The sequence (wn) is bounded in HW ;
hence we may assume (passing to a subsequence if necessary) that wn ⇀ w∗ in HW .
By Lemma 3.3, wn + r2cε −→ w∗ + r2cε in C1

b (R). Since w∗(x) + r2cε(x) −→ 0 as
x −→ ∞, the sequence (xn) is bounded, say, xn ∈ [−M,M ]. Take χ ∈ C∞

0 (R) such
that supp(χ) ⊂ [−M−1,M+1] and χ ≡ 1 on [−M,M ]. Then infx∈R(wn(x)+r2cε(x)−
(an+1)χ(x)) = wn(xn)+r2cε(xn)−(an+1)χ(xn) = −1, so that wn+r2cε−(an+1)χ �∈
V and

dist(wn,HW \ (V − r2cε)) ≤ dist(wn, wn − (an + 1)χ) = |1 + an| ||χ||HW
−→ 0

as n −→ ∞, contradicting the fact that (wn, un) ∈ ω1. This proves the claim.
For a given w ∈ V − r2cε, we have

(g2cε(r2cε + w) − g2cε(r2cε) − g′2cε(r2cε)w)(x)

=

∫ 1

0

g′2cε(r2cε + tw)w(x)dt− g′2cε(r2cε)w(x)

= w2(x)

∫ 1

0

∫ 1

0

g′′2cε(r2cε + tsw)(x)ds t dt = w2(x)h1(w)(x),

where h1(w)(x) =
∫ 1

0

∫ 1

0
g′′2cε(r2cε + tsw)(x)ds t dt.

To prove (iii) it suffices to show that for any sequence (wn, un) ∈ ω1 such that
wn ⇀ w∗ and un ⇀ u∗ in HW , we have H1(wn, un) −→ H1(w∗, u∗) in HW . In view
of Lemma 3.4, it suffices to show that

h1(wn)w2
n + (1 + r2cε + wn)u2

n −→ h1(w∗)w
2
∗ + (1 + r2cε + w∗)u

2
∗ in LW .

(3.23)

The sequence (wn) being bounded in HW , there exists K > 0 such that −1 +
min(η,

√
2cε) ≤ r2cε(x) + stwn(x) ≤ K for any x ∈ R, n ∈ N, and s, t ∈ [0, 1].

Since g′′2cε is uniformly continuous on [−1 + min(η,
√

2cε),K], it is standard to prove
that h1(wn) −→ h1(w∗) in L∞(R), and then (3.23) follows from (3.22). Finally, using
Lemma 3.4 we have for any (w, u) ∈ ω1

||H1(w, u)||HW
≤ C||h1(w)w2 + (1 + r2cε + w)u2||LW

≤ Cω1
(||w||2HW

+ ||u||2HW
).

(iv) From the preceding arguments it is easy to see that the mapping (w, u) �−→
(w2 + 2wr2cε + 2w)u is continuous from HW × HW to LW and the image of any
bounded set in HW ×HW is precompact in LW , so (iv) follows from Lemma 3.4 and
the resolvent formula above. The estimate (3.21) is straightforward.

Lemma 3.7. For any λ < q2 we have the following:
(i) Ker(IdHW

+ Aλ) �= {0} if and only if λ is an eigenvalue of the operator

A = − d2

dx2 + q2(1 + r2cε)
2. In this case we have Ker(IdHW

+ Aλ)n = Span{uλ} for
any n ∈ N∗.

(ii) If λ is not an eigenvalue of A, then ind(IdHW
+ Aλ, 0) = (−1)n(λ) (where

n(λ) is the number of eigenvalues of A less than λ).
Proof. (i) It is easy to see that u ∈ L and u+Aλu = 0 is equivalent to u ∈ H and

Au = λu. Recall that if λ < q2 is an eigenvalue of A in L, then the corresponding
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eigenvector uλ is in HW by Corollary 2.2(iii). Consequently, we have Ker(IdHW
+

Aλ) = Ker(IdL + Aλ) = Ker(λIdH −A) = Span{uλ}.
To prove (i), it suffices to show that uλ �∈ Im(IdL+Aλ). Suppose by contradiction

that there exists v ∈ L such that v + Aλv = uλ. This is equivalent to v ∈ H and
Av−λv = −u′′

λ+(q2−λ)uλ, that is, −u′′
λ+(q2−λ)uλ ∈ Im(A−λ). Since A−λ is self-

adjoint on L, −u′′
λ +(q2−λ)uλ must be orthogonal (in L) to Ker(A−λ) = Span{uλ},

which gives
∫
R
|u′

λ|2dx + (q2 − λ)
∫
R
|uλ|2dx = 0, a contradiction.

(ii) A well-known result of Leray and Schauder asserts that if K is a compact
operator on a real Banach space X and 1 is not an eigenvalue of K, then

ind(Id−K, 0) = (−1)β ,

where β is the sum of all the (algebraic) multiplicities of eigenvalues of K greater
than 1 (see, e.g., [6, Theorem 4.6, p. 133]).

Thus, for a given λ which is not an eigenvalue of A, we are interested in the
eigenvalues μ > 1 of −Aλ. Clearly, −Aλu = μu is equivalent to

q2

(
− d2

dx2
+ q2 − λ

)−1

((r2
2cε + 2r2cε)u) + μu = 0,

that is,

−u′′ + q2(1 + r2cε)
2u + q2

(
1 − 1

μ

)
[1 − (1 + r2cε)

2]u = λu.

In other words, μ > 1 is an eigenvalue of −Aλ if and only if λ is an eigenvalue of the
operator

Mμ = − d2

dx2
+ q2(1 + r2cε)

2 + q2

(
1 − 1

μ

)
[1 − (1 + r2cε)

2]

= A + q2

(
1 − 1

μ

)
[1 − (1 + r2cε)

2].

Note that Mμ ≥ A for any μ ≥ 1 and σess(Mμ) = [q2,∞) by Weyl’s theorem. By
Proposition 2.1(iv), λ ∈ (−∞, q2) is an eigenvalue of Mμ considered as an operator
on LW if and only if λ is an eigenvalue of Mμ considered as an operator on L. We
will work on L because on this space Mμ is self-adjoint.

If λ < q2 is not an eigenvalue of A, we will prove that there are exactly n(λ)
values μ ∈ (1,∞) such that λ is an eigenvalue of Mμ.

For μ ∈ [1,∞), we define

αn(μ) = sup
ϕ1,...,ϕn−1∈H

inf
ψ∈{ϕ1,...,ϕn−1}⊥

〈Mμψ,ψ〉L
||ψ||2L

.(3.24)

By the min-max principle ([13, Theorem XIII.1, p. 76]), either αn(μ) is the nth
eigenvalue of Mμ (counted with multiplicity) or αn(μ) = q2. By Proposition 2.1(iii),
the eigenvalues of Mμ are simple, thus we have αp(μ) < αn(μ) if p < n and αp(μ) < q2.

It is obvious that the functions μ �−→ αn(μ) are increasing on [1,∞) because
Mμ1 ≤ Mμ2 if 1 ≤ μ1 < μ2. In fact, αn is strictly increasing on {μ ∈ [1,∞) | αn(μ) <
q2}. To see this, consider μ1 < μ2 such that αn(μ2) < q2. Then α1(μ2), . . . , αn(μ2) are
eigenvalues of Mμ2 . Let u1, . . . , un ∈ H be corresponding eigenvectors with ||ui||L = 1.
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Clearly, u1, . . . , un are mutually orthogonal in L and it is easily seen from the definition
of Mμ that 〈Mμ1ui, ui〉L < 〈Mμ2ui, ui〉L = αi(μ2), i = 1, . . . , n. Note that the

quantity N(u) = (
∫
R

[1− (1+ r2cε)
2]|u|2dx)

1
2 is a norm on L. Since Span{u1, . . . , un}

is finite dimensional, there exists N1 > 0 such that N(u) ≥ N1||u||L for any u ∈
Span{u1, . . . , un}. Therefore

〈
Mμ1

(
n∑

i=1

aiui

)
,

(
n∑

i=1

aiui

)〉
L

=

〈
Mμ2

(
n∑

i=1

aiui

)
,

(
n∑

i=1

aiui

)〉
L

−
〈

(Mμ2 −Mμ1)

(
n∑

i=1

aiui

)
,

(
n∑

i=1

aiui

)〉
L

=

n∑
i=1

αi(μ2)|ai|2 − q2

(
1

μ1
− 1

μ2

)∫
R

[1 − (1 + r2cε)
2]

∣∣∣∣
n∑

i=1

aiui

∣∣∣∣
2

dx

≤ αn(μ2)

∥∥∥∥∥
n∑

i=1

aiui

∥∥∥∥∥
2

L

− q2

(
1

μ1
− 1

μ2

)
N2

1

∥∥∥∥∥
n∑

i=1

aiui

∥∥∥∥∥
2

L

.

(3.25)

Thus for any u in the n-dimensional subspace Span{u1, . . . , un} we have

〈Mμ1u, u〉L ≤
(
αn(μ2) − q2

(
1

μ1
− 1

μ2

)
N2

1

)
||u||2L.

By the min-max principle it follows that αn(μ1) ≤ αn(μ2) − q2( 1
μ1

− 1
μ2

)N2
1 .

A standard argument shows that each αn is continuous. Indeed, suppose by
contradiction that μ∗ ∈ (1,∞) is a discontinuity point. Then necessarily l1 :=
supμ<μ∗ αn(μ) < infμ>μ∗ αn(μ) := l2. Take 0 < ε < l2−l1

4 and μ1 < μ∗, μ2 > μ∗
such that q2( 1

μ1
− 1

μ2
) < ε. Since αn(μ2) > l2 − ε, there exist ϕ1, . . . , ϕn−1 ∈ H such

that 〈Mμ2
ψ,ψ〉L > l2 − ε for any ψ ∈ {ϕ1, . . . , ϕn−1}⊥ with ||ψ||L = 1. We have

〈Mμ2ψ,ψ〉L − 〈Mμ1ψ,ψ〉L

= q2

(
1

μ1
− 1

μ2

)∫
R

[1 − (1 + r2cε)
2]|ψ|2dx ≤ q2

(
1

μ1
− 1

μ2

)
||ψ||2L < ε;

thus 〈Mμ1ψ,ψ〉L > l2 − 2ε for any ψ ∈ {ϕ1, . . . , ϕn−1}⊥ with ||ψ||L = 1. Therefore
αn(μ1) > l2 − 2ε, which is a contradiction.

We also have for any u ∈ H

〈Mμu, u〉L = ||u′||2L2 + q2||u||2L − q2

μ

∫
R

[1 − (1 + r2cε)
2]|u|2dx ≥ q2||u||2L − C

μ
||u||2L;

hence α1(μ) ≥ q2 − C
μ −→ q2 as μ −→ ∞. Consequently, αn(μ) −→ q2 as μ −→ ∞

for any n ≥ 1.
Note that λ < q2 is an eigenvalue of Mμ if and only if λ = αn(μ) for some

n ∈ N∗. We know that there are exactly n(λ) eigenvalues of A less than λ, say,
λ1 < λ2 < · · · < λn(λ) < λ. We have αi(1) = λi because M1 = A, and the functions αi

are strictly increasing (until they reach the value q2, if this happens) and continuous,
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and they tend to q2 at infinity. We infer that for each i ∈ {1, . . . , n(λ)}, there exists
exactly one value μi such that αi(μi) = λ. Moreover, μ1 > μ2 > · · · > μn(λ) > 1.
For any n > n(λ), we have αn(1) > λ, hence αn(μ) > λ for μ ∈ (0,∞) because αn is
increasing.

Thus we have shown that the operator −Aλ has exactly n(λ) eigenvalues greater
than 1, μ1 > μ2 > · · · > μn(λ). Moreover, Ker(μi + Aλ) = Ker(Mμi − λ). We
know by Proposition 2.1(iii) that Ker(Mμi

− λ) is one dimensional. If this kernel is
spanned by a function vi, then vi �∈ Im(μi +Aλ). Indeed, μiu+Aλu = vi would imply
(Mμi −λ)u = 1

μi
(−v′′i +(q2−λ)vi). Since M is self-adjoint, −v′′i +(q2−λ)vi would be

orthogonal to Ker(Mμi
− λ) = Span{vi}, which gives a contradiction. Consequently,

we have Ker(μi +Aλ)n = Span{vi} for any n ∈ N∗; that is, μi is a simple eigenvalue
of −Aλ.

As a consequence, we have ind(IdHW
+ Aλ, 0) = (−1)n(λ) and Lemma 3.7 is

proved.
We are now in position to state the main result of this paper.
Theorem 3.8. Let S be the set of nontrivial solutions of the system (1.9)–(1.10)

in R × (H ∩ V ) × H. For any eigenvalue λm < q2 of A = − d2

dx2 + (1 + r2cε)
2, the

set S ∪ {(λm, r2cε, 0)} contains a maximal closed connected subset Cm in (−∞, q2) ×
HW × HW such that Cm ∩ Cp = ∅ if m �= p and Cm satisfies at least one of the two
following properties:

(i) Cm is unbounded in R × HW × HW .
(ii) There exists a sequence (λn, rn, un) ∈ Cm such that λn −→ q2 as n −→ ∞.
Proof. We have already seen that (λ, r, u) ∈ (−∞, q2)×(H∩V )×H is a nontrivial

solution of (1.9)–(1.10) if and only if (λ, r−r2cε, u) belongs to (−∞, q2)× (HW ∩ (V −
r2cε)) × HW and satisfies the system (3.8)–(3.9) (or, equivalently, (3.10)).

Let E = HW ×HW , Ω = (−∞, q2)× (HW ∩ (V − r2cε))×HW , Lλ =
(−B 0

0 −Aλ

)
,

and H(λ,w, u) =
( −H1(w,u)
−H2(λ,w,u)

)
. Let G(λ,w, u) = Lλ(w, u) + H(λ,w, u). It is obvious

that on Ω, (3.10) is equivalent to the equation (w, u) = G(λ,w, u). It follows easily
from Lemma 3.6 that L and H satisfy assumptions (a) and (b) in Proposition 3.2.

We claim that IdHW
+ B : HW −→ HW is invertible. Indeed, (IdHW

+ B)u = v

is equivalent to −u′′ + g′2cε(r2cε)u = (− d2

dx2 + g′2cε(0))v. By Lemma 2.4, there exists a
unique u ∈ H satisfying this equation. We have

−u′′ + g′2cε(0)u =

(
− d2

dx2
+ g′2cε(0)

)
v + (g′2cε(0) − g′2cε(r2cε))u ∈ LW

(recall that v ∈ HW and g′2cε(0) − g′2cε(r2cε) decays exponentially at infinity). Using
Lemma 3.4, we infer that u ∈ HW .

For λ < q2, it is clear that IdHW×HW
−Lλ is not invertible if and only if IdHW

+Aλ

is not invertible, i.e., if and only if λ is an eigenvalue of A. Let λ1 < λ2 < · · · <
λNq < q2 be the eigenvalues of A below q2. If λ is not an eigenvalue of A, we
infer using Lemma 3.7 that i(λ) := ind(IdHW×HW

− Lλ, 0) = ind(IdHW
+ Aλ, 0) ·

ind(IdHW
+ B, 0) = (−1)n(λ)ind(IdHW

+ B, 0) is constant on each of the intervals
(−∞, λ1), (λi, λi+1), (λNq , q

2) and changes sign at each λi. Consequently, Lλ also

satisfies assumption (c) in Proposition 3.2 at any point (λi, 0, 0). Let S̃0 = {(λ,w, u) ∈
Ω | (w, u) �= (0, 0) and (λ,w, u) satisfies (3.10)} and let S̃ = S̃0 \ {(λ,−r2cε, 0) | λ ∈
(−∞, q2)}. Note that the solutions (λ,−r2cε, 0) of (3.10) correspond to the solutions
(λ, 0, 0) of (1.9)–(1.10) and S ∩ ((−∞, q2) × (V ∩ HW ) × HW ) = S̃ + (0, r2cε, 0). We
may apply Proposition 3.2 to infer that for any 1 ≤ m ≤ Nq, there exists a maximal
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closed connected subset Dm (in Ω) of S̃0 ∪ {(λm, 0, 0)} which contains (λm, 0, 0) and
satisfies at least one of the following properties:

1. Dm is unbounded.

2. There exists a sequence (λn, wn, un) ∈ Dm such that λn −→ q2 as n −→ ∞.

3. There exists a sequence (λn, wn, un) ∈ Dm such that dist(wn, ∂((V − r2cε) ∩
HW )) −→ 0, that is, infx∈R(wn(x) + r2cε(x)) −→ −1 as n −→ ∞.

4. The closure in Ω of Dm contains a point (λi, 0, 0) with i �= m.

Let us show first that Dm cannot meet {(λ,−r2cε, 0) | λ ∈ (−∞, q2)}. A straight-
forward computation gives d(w,u)(IdE −G)(λ,−r2cε, 0) = IdE for any λ < q2. By the
implicit function theorem, there exists a neighborhood Nλ of (λ,−r2cε, 0) in R × E
such that the only solutions of the equation (w, u) = G(λ,w, u) in Nλ are (μ,−r2cε, 0).
Hence ∪λNλ is a neighborhood of {(λ,−r2cε, 0) | λ < q2} in Ω which contains no other
solutions of (3.10). Consequently, we have Dm ⊂ S̃.

By Proposition 3.1, for any (λ,w, u) ∈ S̃0 we have infx∈R(w(x) + r2cε(x)) >
−1 +

√
2cε; hence Dm cannot satisfy property 3.

We will also eliminate the alternative 4. Observe that if (λ, r, u) ∈ (−∞, q2) ×
H×H is a nontrivial solution of (1.9)–(1.10), then, in particular, u is an eigenvector

of the linear operator − d2

dx2 + q2(1 + r)2 corresponding to the eigenvalue λ. It is

easily checked that this operator is a compact perturbation of − d2

dx2 + q2, so it has

the essential spectrum [q2,∞). Since λ < q2, the operator − d2

dx2 + q2(1 + r)2 has
only a finite number of eigenvalues less than λ, say p. We define z(λ, r, u) = p. By
Proposition 2.1(v), we know that u has exactly p zeroes in (0,∞). We also define
z(λi, r2cε, 0) = i− 1. We have the following lemma.

Lemma 3.9. The function z is continuous on (S∪{(λi, r2cε, 0) | i = 1, . . . , Nq})∩
((−∞, q2) × H × H).

Assume for the moment that Lemma 3.9 holds. Obviously, the function z is also
continuous for the R×E topology. Since z takes values in N, it must be constant on
each connected component of (S∪{(λi, r2cε, 0) | i = 1, . . . , Nq})∩((−∞, q2)×H×H) =

(S̃ + (0, r2cε, 0)) ∪ {(λi, r2cε, 0) | i = 1, . . . , Nq}. In particular, it is constant on
Dm + (0, r2cε, 0) and we find z(Dm + (0, r2cε, 0)) = z(λm, r2cε, 0) = m − 1. We have
also z(Di + (0, r2cε, 0)) = i− 1; hence Dm and Di are disjoint if i �= m (in fact, we see
that the closures of Dm and Di in (−∞, q2)×H×H are disjoint if i �= m). Thus Dm

cannot satisfy alternative 4 above; hence it necessarily satisfies one of alternatives
1 or 2. Let Cm = Dm + (0, r2cε, 0). It is now clear that Cm satisfies (i) or (ii) in
Theorem 3.8.

Proof of Lemma 3.9. Let (λ, r, u), (νn, rn, un) ∈ (S∪{(λi, r2cε, 0) | i = 1, . . . , Nq})∩
((−∞, q2) × H × H) be such that z(λ, r, u) = p and (νn, rn, un) −→ (λ, r, u) as
n −→ ∞. Let μ1 < μ2 < · · · < μp+1 = λ be the eigenvalues of the operator

B = − d2

dx2 + q2(1 + r)2 in L and let u∗
1, . . . , u

∗
p+1 = u be corresponding eigenvectors.

Denote Bn = − d2

dx2 + q2(1 + rn)2.

We prove that z(νn, rn, un) ≥ p if n is sufficiently big. There is nothing to do if
p = 0. Suppose that p ≥ 1. Take 0 < ε <

μp+1−μp

4 and let n0 be sufficiently big, so
that ||(rn−r)(2+rn +r)||L∞ < ε

q2 and λ− ε < νn < λ+ ε for any n ≥ n0. For n ≥ n0

and v ∈ Span{u∗
1, . . . u

∗
p} we have

〈Bnv, v〉L = 〈Bv, v〉L + 〈(Bn −B)v, v〉L

≤ μp||v||2L + q2

∫
R

(rn − r)(2 + rn + r)|v|2dx ≤ (μp + ε)||v||2L < (νn − ε)||v||2L.
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By the min-max principle, Bn has at least p eigenvalues less than or equal to νn − ε,
and thus z(νn, rn, un) ≥ p.

Let μp+2 = supϕ1,...,ϕp+1∈H infψ∈{ϕ1,...,ϕp+1}⊥
〈Bψ,ψ〉L
||ψ||2L

. Since λ = μp+1 < q2

and λ is a simple eigenvalue of B by Proposition 2.1(iii), we know by the min-
max principle that either μp+2 = q2 or μp+2 is an eigenvalue of B and μp+2 >

μp+1. Let ε ∈ (0,
μp+2−μp+1

4 ). Take n0 as above and ϕ1, . . . , ϕp+1 ∈ H such that

infψ∈{ϕ1,...,ϕp+1}⊥
〈Bψ,ψ〉L
||ψ||2L

≥ μp+2 − ε. For any ψ ∈ {ϕ1, . . . , ϕp+1}⊥, ψ �= 0 we have

〈Bnψ,ψ〉L = 〈Bψ,ψ〉L + 〈(Bn −B)ψ,ψ〉L ≥ (μp+2 − ε)||ψ||2L − ε||ψ||2L ≥ (νn + ε)||ψ||2L.

It follows from the min-max principle that for n ≥ n0, either Bn has at most p + 1
eigenvalues or the (p+2)th eigenvalue is greater than νn+ε. Since νn is an eigenvalue
of Bn, there are at most p eigenvalues of Bn less than νn, hence z(νn, rn, un) ≤ p for
any n ≥ n0. This finishes the proof of Lemma 3.9 and that of Theorem 3.8.

We were not able to eliminate either of the alternatives in Theorem 3.8.
Up to now, we have proved the existence of branches of nontrivial symmetric solu-

tions (λ, r, u) to the system (1.9)–(1.10). For any such solution, (ψ̃, ϕ̃) is a travelling-
wave of (1.1) for ε2(c2δ2 + k2) = λ and satisfies the boundary condition (1.2), where
ϕ̃(x) = 1

εu(xε )eicδx and ψ̃(x) = (1+r(xε ))eiψ0(x) (with ψ0(x) = c
∫ x

0
[1− 1

(1+r( s
ε ))2 ]ds =

cε
∫ x

ε

0
2r(τ)+r2(τ)
(1+r(τ))2 dτ). Note also that ψ̃(−x) = ψ̃(x), ϕ̃(−x) = ϕ̃(x), |ψ̃| >

√
2cε

by Proposition 2.1, and the phase ψ0 of ψ̃ remains bounded because r decays at
infinity faster than |x|β for any β > 0 (see the end of the proof of Lemma 3.5).
Since 2c2ε2q2 < λ ≤ q2, we have bounds on the single-particle impurity energy:

c2(2q2 − δ2) < k2 ≤ q2

ε2 − c2δ2.
Remark 3.10. It follows from Corollary 2.2(iv)–(v) that there is exactly one

branch of travelling-waves bifurcating from the trivial solutions if q ≤ 1√
2 ln 2

. The

number of these branches is the same as the number of eigenvalues of A, so it tends
to infinity as q −→ ∞.

It is natural to ask how the branches Cm given by Theorem 3.8 behave in R ×
H×H. The topology of HW being stronger than that of H, any of the sets Cm is also
connected in R×H×H. Roughly speaking, either Cm approaches {q2}×(H∩V )×H,
or Cm is unbounded in R × H × H, or it remains bounded in R × H × H but the
norm in R × HW × HW tends to infinity along Cm, i.e., “there is some mass moving
to infinity.”

Remark 3.11. The importance of Theorem 2.3 is that it gives a precise description
of Cm in a neighborhood of (λm, r2cε, 0) in R×H×H. Let C+

m (respectively C−
m) be the

maximal subcontinuum in R×HW×HW of Cm\{(λ(s), r2cε+sr(s), s(um+u(s))) | s ∈
(−η, 0)}, (respectively of Cm \ {(λ(s), r2cε + sr(s), s(um + u(s))) | s ∈ (0, η)}), where
the curve s �−→ (λ(s), r(s), u(s)) is given by Theorem 2.3. It can be proved by using
a variant of a classical result of Rabinowitz (Theorem 1.40, p. 500 in [12]) that each
of C+

m and C−
m satisfies (i) or (ii) in Theorem 3.8.

Remark 3.12. It is not hard to prove that in dimension N = 1, 2, or 3 the
Cauchy problem for the system (1.1) is globally well posed in (1+H1(RN ))×H1(RN ).
However, the dynamics associated to (1.1) and the asymptotic behavior of solutions
are not yet understood.

Remark 3.13. The existence of solitary waves for (1.1) in dimension greater than 1
is an open problem. Even the existence of “trivial” solitary waves (i.e., solutions of
the form (ψ(x1 − ct, x2, . . . , xN ), 0) is a difficult problem. Note that if ϕ ≡ 0, the
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system (1.1) reduces to the Gross–Pitaevskii equation

2i
∂ψ

∂t
= −Δψ + (|ψ|2 − 1)ψ, |ψ| −→ 1 as |x| −→ ∞.

The existence of travelling-waves moving with small speed for this equation was
proved, for instance, in [2] (in dimension N = 2) and in [1], [3] (in dimension N ≥ 3).
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[7] M. Mariş, Stationary solutions to a nonlinear Schrödinger equation with potential in one
dimension, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), pp. 409–437.

[8] K. McLeod, Uniqueness of positive radial solutions of Δu+f(u) = 0 in RN , II, Trans. Amer.
Math. Soc., 339 (1993), pp. 495–505.

[9] J. Pejsachowicz and P. J. Rabier, Degree theory for C1 Fredholm mappings of index 0, J.
Anal. Math., 76 (1998), pp. 289–319.

[10] P. J. Rabier and C. A. Stuart, Global bifurcation for quasilinear elliptic equations on RN ,
Math. Z., 237 (2001), pp. 85–124.

[11] P. J. Rabier and C. A. Stuart, Fredholm and properness properties of quasilinear elliptic
operators on RN , Math. Nachr., 231 (2001), pp. 129–168.

[12] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7
(1971), pp. 487–513.

[13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press,
New York, London, 1978.



SIAM J. MATH. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. 1560–1588

N-DIMENSIONAL ELLIPTIC INVARIANT TORI FOR THE
PLANAR (N + 1)-BODY PROBLEM∗

LUCA BIASCO† , LUIGI CHIERCHIA† , AND ENRICO VALDINOCI‡

Abstract. For any N ≥ 2 we prove the existence of quasi-periodic orbits lying on N -dimensional
invariant elliptic tori for the planetary planar (N + 1)-body problem. For small planetary masses,
such orbits are close to the limiting solutions given by the N planets revolving around the sun on
planar circles. The eigenvalues of the linearized secular dynamics are also computed asymptotically.
The proof is based on an appropriate averaging and KAM theory which overcomes the difficulties
caused by the intrinsic degeneracies of the model. For concreteness, we focus on a caricature of the
outer solar system.

Key words. N -body problem, nearly integrable Hamiltonian systems, lower-dimensional elliptic
tori

AMS subject classifications. 70F10, 34C27, 37J40, 70K43

DOI. 10.1137/S0036141004443646

1. Introduction and results.

1.1. Quasi-periodic motions in the many-body problem. The existence of
stable trajectories of the many-body problem viewed as a model for the solar system
has been the subject of researches of many distinguished scientists both in the past
and in recent years; see, for example, the theoretical work of Poincaré [Poi1905],
Arnold [A63], Herman [H95], and the numerical investigations of Laskar [L96]. Only
recently, a complete proof, based on [H95], of the existence of quasi-periodic motions
(corresponding to maximal invariant tori of dimension 3N − 1) for the (N + 1)-
body problem for arbitrary N has been produced in [F04]. We recall that the main
difficulties that one encounters in the application of general tools (such as averaging
and KAM theory) to particular cases of interest in celestial mechanics, are related to
the strong degeneracies of the analytical models.

The scope of this paper is to show the existence of quasi-periodic orbits lying
on N -dimensional invariant elliptic tori for the planar (N + 1)-body problem. The
main difference from [H95] and [F04], besides the dimension of the constructed tori,
relies on the explicit evaluations of the eigenvalues of the linearized secular dynamics
(which allow us to apply more standard KAM methods).

Though the method exposed here is quite general, for concreteness we will focus
our attention on a caricature of the outer solar system. More precisely, our model
will be given by a Sun and N planets with relatively small masses (say, of order
ε). All these (N + 1) bodies are considered as point masses in mutual gravitational
interaction. Two planets (such as Jupiter and Saturn in the real world) will be
assumed to have mass considerably bigger than the other planets. The bodies lie in
a given plane and we assume that the initial configuration is far from collisions. We
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also assume, mimicking the case of the outer solar system, that the two big planets
have an orbit which is internal with respect to the orbits of the small planets. We
will establish, for a large set of semiaxes, the existence of quasi-periodic orbits with
small eccentricities filling up N -dimensional invariant elliptic tori. Such orbits can
be seen as continuations of “limiting” circular trajectories of the system obtained by
neglecting the mutual interactions among the planets. A more precise statement is
given in Theorem 1.1 below.

The above “outer model,” which roughly mimics some traits of physically relevant
cases, has also the nice feature of providing particularly simple expressions in the
related perturbing functions, as we will see in section 3 below. We stress, however,
that many other situations (such as one large planet plus N−1 small planets; “inner”
or “mixed” models, etc.) may be easily dealt with using the techniques and results
presented in this paper.

The proof of our result is based on techniques developed in [BCV03] and on the
explicit computation of the eigenvalues of the quadratic part of the so-called principal
part of the perturbation for the planar many-body problem.

The first result on quasi-periodic orbits of interest in celestial mechanics goes
back to [A63], where quasi-periodic orbits lying on 4-dimensional tori are shown to
exist for the planar three-body problem (the general case was discussed there, but no
complete proof was given). Related results were given in [JM66], which found linearly
unstable quasi-periodic orbits lying on 2-dimensional tori for the nonplanar three-body
problem. More recently, [LR95] and [R95] and [BCV03] proved the existence of quasi-
periodic orbits for the nonplanar three-body problem, lying on 4-dimensional and
linearly stable 2-dimensional tori, respectively. Two-dimensional invariant tori for the
planar three-body problem have been found in [F02]. Periodic orbits of the nonplanar
three-body problem winding around invariant tori have been constructed in [BBV04].
Finally, the existence of a positive measure set of initial data giving rise to maximal
invariant tori for the planetary (N + 1)-body problem has been established in [F04].

The paper is organized as follows. In section 1.2, we give a more precise statement
of our main result. In section 2 we write down the (N +1)-body problem Hamiltonian
in Delaunay–Poincaré variables. In section 3 (which, in a sense, is the crucial part of
the paper) we discuss degeneracies. In section 4 we give the proof of the main result.
The scheme of proof is similar to the one presented in [BCV03] (see also [BBV04]) in
the three-body case and it is based on a “general” averaging theorem and on KAM
theory for lower-dimensional tori (see [P96], [BCV03], [BBV04]). For completeness,
we include a classical (but not easy to find) description of analytical properties of
the Delaunay–Poincaré variables (see section 2 and Appendix A); in Appendix B we
collect some simple linear algebra lemmata that are used in the arguments given in
section 3.

1.2. Statement of results. We denote the N + 1 massive points (“bodies”)
by P0, . . . , PN and let m0, . . . ,mN be their masses interacting through gravity (with
constant of gravitation 1). Fix m0 > 0 and assume that

mi = εμi, i = 1, . . . , N, 0 < ε < 1.(1.1)

Here, ε is regarded as a small parameter and μi is of order 1 in ε. The point P0

represents the “Sun” and the points Pi, i = 1, . . . , N , the “planets.” We assume
that all the bodies lie on a fixed plane, that will be identified with R2. The phase
space of this dynamical system—the planetary, planar (N + 1)-body system—has
dimension 4N (after reduction by the symmetries of translations).
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We will state the result in terms of orbital elements of the “osculating ellipses” of
the two-body problems associated to (P0, Pj). Let u(0) and u(j) denote the coordinates
of P0 and Pj (at a given time) and let u̇(0) and u̇(j) denote the corresponding velocities.
By definition, the “osculating ellipse” is the ellipse described by the solution of the
two-body problem (P0, Pj) with initial data given by (u(0), u(j), u̇(0), u̇(j)). Of course,
such ellipses describe the motions of the full (N+1)-body problem only approximately;
nevertheless, they provide a nice set of coordinates allowing, for example, to describe
the true motions in terms of the eccentricities ej and the major semiaxes aj of the
osculating ellipses. For further details and pictures of the orbital elements, we refer
the reader to [Ch88] and [BCV03].

In this paper we consider a planetary (planar) model with planets evolving from
phase points corresponding to well-separated nearly circular ellipses (ei � 1); here
“well-separated” means that

0 < ai < θ ai+1, 1 ≤ i ≤ N − 1.(1.2)

for a suitable constant 0 < θ < 1. For concreteness, we shall focus on a caricature of
the outer solar system; i.e., we will assume that, for some m0 < μ̄i < 4m0,

μi = μ̄i for i = 1, 2,

μi = δμ̄i for i = 3, . . . , N, 0 < δ < 1.(1.3)

In this setting, P1 and P2 imitate (in a very rough way, of course) the physical1

features of the giant planets Jupiter and Saturn, while P3 and P4 represent Uranus
and Neptune.2

A rough description of our main result is given in the following theorem; a more
precise and quantitative version is given in Theorem 4.2 below.

Theorem 1.1. Consider a planar, planetary (N + 1)-body system satisfying (if
N ≥ 3) (1.1) and (1.3). Let A ⊂ RN be a compact set of semiaxes where (1.2)
holds for a suitable 0 < θ < 1. Then, there exists δ� > 0 and for any 0 < δ < δ�

there exists ε� > 0 so that the following holds. For any 0 < ε < ε�, the planetary,
planar (N + 1)-body system possesses a family of N -dimensional elliptic invariant
Diophantine quasi-periodic tori; such family is parametrized by the osculating major
semiaxes varying in a subset of A of density3 1 − C1ε

c1 . These motions correspond
to orbits with osculating eccentricities bounded by C2ε

c2 and the variation in time of
the osculating major semiaxes of these orbits is bounded by C3ε

c3 .
We have the following few comments.
• The numbers δ� and θ can be easily computed in the course of the proof and

are not “very small”; in fact θ is a “universal” constant while δ� depends only
on N and A. On the other hand, ε�, which depends on N , A, and δ, is related
to a KAM smallness condition and rough estimates lead, as is well known,
to ridiculously small quantities (for somewhat more serious KAM estimates,
we refer the reader to [CC03]). Finally, the positive constants Ci’s depend
on N , A, and δ, while the ci’s depend only on N (and could also be easily
calculated; see (4.43)).

• The assumptions (1.2) and (1.3) in the theorem are used to check explicitly
suitable “nondegeneracy” conditions. However, giving explicit constants and

1A mathematical motivation for considering two dominant planets is given in Remark 3.2(iii).
2The Jupiter/Saturn mass ratio is approximately 3.34, while the Neptune/Uranus mass ratio is

about 1.18 (to have it all, the Jupiter/Uranus mass ratio is ∼ 21.78).
3Here and in what follows, the “density” is intended with respect to Lebesgue measure.
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estimates, one can show that the thesis of the theorem holds, essentially,
with no hypotheses on the semiaxes aj and the rescaled masses μj (provided
ai �= aj > 0 and μj > 0); a rigorous argument, based on analytic continuation
of the eigenvalues, could be given along the lines discussed in [F04].

• The invariant tori found in Theorem 1.1 are lower-dimensional elliptic tori
meaning that the dimension of the tori is strictly smaller than (in fact, half
of) the dimension of the Lagrangian (maximal) tori, which have dimension
2N . “Elliptic” means that the tori are linearly stable. It is not difficult to
show that such elliptic tori are surrounded by a set of positive measure of
maximal tori.

• The proof given below is based on a well-known elliptic KAM theorem, which
works under “nondegeneracy” (or Melnikov) conditions. To check these condi-
tions one has to study the eigenvalues of the “secular” (or averaged) quadratic
part of the Newtonian many-body interaction, which will be denoted H1,2;
“quadratic” here refers to the symplectic Cartesian variables measuring the
eccentricity and the orientation of the osculating ellipses. The diagonaliza-
tion of H1,2 is trivial (under the only assumption that ai �= aj), while condi-
tions (1.2) and (1.3) will be used to check that the associated eigenvalues are
nonzero, simple, and distinct so that Melnikov conditions are satisfied. The
proof is noninductive on N .

2. Poincaré Hamiltonian setting. The results described in this section are
classical (even if not easy to find) and go back to Delaunay and Poincaré; the reader
not familiar with Delaunay and Poincaré variables will find a self-contained exposition
in Appendix A.

Consider N+1 bodies P0, . . . , PN , in a fixed (ecliptic) plane, of masses m0, . . . ,mN

interacting through gravity (with constant of gravitation 1). We assume that the mass
of P0 (the “star”) is much larger than the mass of the other bodies (the “planets”);
i.e., we assume (1.1). In heliocentric planar (suitably rescaled) variables, the dynamics
of the planar (N + 1)-body problem is governed (as explained in Appendix A) by the
Hamiltonian

H(N)(X,x) := H(N)
0 (X,x) + εH(N)

1 (X,x),(2.1)

where X := (X(1), . . . , X(N)) ∈ R2N and x := (x(1), . . . , x(N)) ∈ R2N are conjugated
Cartesian symplectic variables and

H(N)
0 :=

N∑
i=1

(
1

2mi
|X(i)|2 − miMi

|x(i)|

)
,

H(N)
1 :=

∑
1≤i<j≤N

(
X(i) ·X(j) − μiμj

m2
0

1

|x(i) − x(j)|

)
;(2.2)

here we have introduced the dimensionless masses4

Mi := 1 + ε
μi

m0
, mi :=

μi

m0 + εμi
=

μi

m0

1

Mi
.(2.3)

The Hamiltonian H(N)
0 is simply the sum of N uncoupled planar Kepler problems

(formed by the star and the ith planet). Being interested in phase region where

4Beware not to confuse the dimensionless masses mi with the real masses mi introduced at the
beginning of section 1.2.
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the uncoupled Kepler problem describes nearly circular orbits, we introduce planar
Poincaré variables, the construction of which is based on the classical 4-dimensional
symplectic map (2.8) below. Let

F1(t) :=

(
1 − t

4

) 1
2

, F2(t) :=
1

2

(
1 − t

4

)−1

,

(
|t| < 1

4

)
;(2.4)

let G0(s, t) = t+st+ · · · be the function analytic in a neighborhood of (0, 0) implicitly
defined by

G0(0, 0) = 0, G0 = s sinG0 + t cosG0;(2.5)

define the following four functions of three variables (η̂, ξ̂, λ) real-analytic in a neigh-

borhood of the set {(η̂, ξ̂) = (0, 0)} × T:

G(η̂, ξ̂, λ) := G0

(
(η̂ cosλ− ξ̂ sinλ) F1(t), (ξ̂ cosλ− η̂ sinλ) F1(t)

)
,

Es(η̂, ξ̂, λ) :=
(
ξ̂ cos(λ + G) + η̂ sin(λ + G)

)
F1(t),

C(η̂, ξ̂, λ) := cos(λ + Es) − η̂ F1(t) − ξ̂ Es F1(t)F2(t),

S(η̂, ξ̂, λ) := sin(λ + Es) + ξ̂ F1(t) − η̂ Es F1(t)F2(t),(2.6)

where t is short for t = η̂2 + ξ̂2, G is short for G(η̂, ξ̂, λ), and Es is short for Es(η̂, ξ̂, λ).
Lemma 2.1 (planar Poincaré variables). Fix ε, μ,m0 > 0 and let

M := 1 + ε
μ

m0
, m :=

μ

m0

1

M
, m :=

μ

m0

1√
M

,

σ :=
( μ

m0

)3 1

M
, a = a(Λ;μ, ε) :=

Λ2

m2 .(2.7)

Then, for any Λ+ > Λ− > 0, there exists a ball B around the origin in R2 such that
the 4-dimensional map

ΨP : (Λ, λ, η, ξ) ∈ D := (Λ−,Λ+) × T ×B → (X,x) ∈ R4,

where

x1 = x1(Λ, λ, η, ξ;μ, ε) := a(Λ;μ, ε) C
(

η√
Λ
,

ξ√
Λ
, λ

)
,(2.8)

x2 = x2(Λ, λ, η, ξ;μ, ε) := a(Λ;μ, ε) S
(

η√
Λ
,

ξ√
Λ
, λ

)
,

X = X(Λ, λ, η, ξ;μ, ε) :=
m4

Λ3

∂x

∂λ
(Λ, λ, η, ξ;μ, ε) =

m

a(Λ;μ, ε)3/2
∂x

∂λ
,

is real-analytic in D and symplectic:

dΛ ∧ dλ + dη ∧ dξ = dX1 ∧ dx1 + dX2 ∧ dx2.

Furthermore, if H(1)
0 denotes the two-body Hamiltonian

H(1)
0 (X,x) :=

1

2m
|X|2 − mM

|x| ,
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then, on the phase region of negative energies (H(1)
0 )−1(− σ

2Λ2
−
,− σ

2Λ2
+

), one has

H(1)
0 ◦ ΨP = − σ

2Λ2
;

in the planar coordinates x ∈ R2 the corresponding motion describes an ellipse of
major semiaxis a = a(Λ;μ, ε) and eccentricity

e =

√
η2 + ξ2

Λ
F1

(
η2 + ξ2

Λ

)
=

√
η2 + ξ2

Λ

(
1 − η2 + ξ2

4Λ

)
.(2.9)

The proof of this lemma can be found in Appendix A. Note that

C(0, 0, λ) = cosλ, S(0, 0, λ) = sinλ,(2.10)

so that the (a, λ) → x transformation is, for η = ξ = 0, just polar coordinates. Let,

now, Ψ
(N)
P be the 4N -dimensional map, parametrized by (μ1, . . . , μN , ε), defined by

Ψ
(N)
P :

(
(Λ1, λ1, η1, ξ1), . . . , (ΛN , λN , ηN , ξN )

)
∈
(
(0,∞) × T × R2

)N
→ (X,x)

(2.11)

with

(X,x) =
(
(X(1), . . . , X(N)), (x(1), . . . , x(N))

)
,

(X(i), x(i)) = ΨP(Λi, λi, ηi, ξi;μi, ε).(2.12)

Then, Ψ
(N)
P is symplectic and

H(N)
0 ◦ Ψ

(N)
P = −1

2

N∑
i=1

σi

Λ2
i

=: H0(Λ), σi :=
( μi

m0

)3 1

Mi
.(2.13)

In such Poincaré variables the full planar (N + 1)-body Hamiltonian H(N) becomes

H(Λ, λ, η, ξ) = H0(Λ) + εH1(Λ, λ, η, ξ), H1 := H(N)
1 ◦ Ψ

(N)
P =: Hcompl

1 + Hprinc
1 ,

(2.14)

where the so-called “complementary part” Hcompl
1 and the “principal part” Hprinc

1 of
the perturbation are, respectively, the functions

∑
1≤i<j≤N

X(i) · X(j) and
∑

1≤i<j≤N

μiμj

m2
0

1

|x(i) − x(j)|(2.15)

expressed in Poincaré variables:5

X(i) = X(Λi, λi, ηi, ξi;μi, ε) and x(i) = x(Λi, λi, ηi, ξi;μi, ε).

5X = (X1, X2) and x = (x1, x2) denote here the functions defined in (2.8).
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Notice that, since X(i) = (m4
i /Λ

3
i )∂λi

x(i) the λ-average of Hcompl
1 vanishes. More-

over, as it is well known, the λ-average of H1 is an even function of (η, ξ); see, also,
Appendix A. Hence, we may split the perturbation function as

H1 = H1 + H̃1(2.16)

with

H1(Λ, η, ξ) :=

∫
TN

H1
dλ

(2π)N
,

∫
TN

H̃1 dλ = 0.(2.17)

Furthermore, H1 may be written as

H1(Λ, η, ξ) = H1,0(Λ) + H1,2(Λ, η, ξ) + H1,∗(Λ, η, ξ),(2.18)

where H1,0 := H1(Λ, 0, 0), H1,2 is the (η, ξ)-quadratic part of H1 while H1,∗ is the
“remainder of order four”:

|H1,∗(Λ, η, ξ)| ≤ const |(η, ξ)|4.

3. The averaged quadratic potential H1,2. In this section we analyze the
function H1,2 (i.e., the (η, ξ)-quadratic part of the λ-average of the perturbation)
defined in (2.18), which may be written as

H1,2 =
1

2

∑
1≤i,j≤N

Qij

(
ηj
ξj

)
·
(
ηi
ξi

)
,(3.1)

where Qij are (2 × 2) matrices defined as

Qij :=

(
∂2
ηi,ηj

H1,2 ∂2
ηi,ξj

H1,2

∂2
ξi,ηj

H1,2 ∂2
ξi,ξj

H1,2

)∣∣∣∣∣
(Λ,0,0)

.

The aim of this section is to prove that there exists a symplectic linear change of
variables (p, q) → (η, ξ) putting the quadratic part (3.1) in the normal form

1

2

N∑
i=1

Ω̄i(p
2
i + q2

i );(3.2)

see Remark 3.1(i). A crucial fact, in order to apply KAM theory, consists in proving
that such Ω̄i’s are nondegenerate6 in the sense that they are nonvanishing and distinct.
Such nondegeneracy is proved in Proposition 3.2 in which we manage to compute
explicitly the asymptotics of the Ω̄i’s.

In view of the definition of the Poincaré variables, we look at the rescaled variables
(η̂, ξ̂) rather than (η, ξ). Therefore, we define

f̄ij(Λ, η̂, ξ̂) :=(3.3)

1

(2π)N

∫
TN

dλ

|x(i)(Λi, λi,
√

Λiη̂i,
√

Λiξ̂i;μi, ε) − x(j)(Λj , λj

√
Λj η̂j ,

√
Λj ξ̂j ;μj , ε)|

.

6See the “Melnikov condition” (4.33).
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Thus, letting7

ai := a(Λi;μi, ε), cij :=
1

m0

(
MiMj

aiaj

)1/4

,

Aij :=

(
∂2
η̂iη̂j

f̄ij ∂2
η̂iξ̂j

f̄ij

∂2
ξ̂iη̂j

f̄ij ∂2
ξ̂iξ̂j

f̄ij

)∣∣∣∣∣
η̂=ξ̂=0

, Bij :=

(
∂2
η̂j η̂j

f̄ij ∂2
η̂j ξ̂j

f̄ij

∂2
ξ̂j η̂j

f̄ij ∂2
ξ̂j ξ̂j

f̄ij

)∣∣∣∣∣
η̂=ξ̂=0

,(3.4)

we find

Qij =

⎧⎪⎪⎨
⎪⎪⎩

√
μiμj cij Aij if i �= j,∑

k �=j

√
μkμj ckj Bkj if i = j.

It is a remarkable fact that, for the planar planetary (N+1)-body problem the matrices
Aij and Bij are proportional to the (2×2) identity matrix 12 =

(
1 0
0 1

)
and have simple

integral representation. In fact, define, for a �= b,

J (a, b) :=
1

2π

∫ 2π

0

−17ab cos t + 8(a2 + b2) cos(2t) + ab cos(3t)

(a2 + b2 − 2ab cos t)5/2
dt,

I(a, b) :=
1

2π

∫ 2π

0

−7ab + 4(a2 + b2) cos t− ab cos(2t)

(a2 + b2 − 2ab cos t)5/2
dt,

and denote, for ai �= aj ,

αij :=
aiaj
8

J (ai, aj), βij :=
aiaj
4

I(ai, aj).(3.5)

Then, the following “algebraic” result holds.
Proposition 3.1. Assume ai �= aj for i �= j. Then Aij = αij12 and Bij =

βij12.
Remark 3.1. (i) An immediate corollary of this result is that, in the collisionless

domain {ai �= aj}, H1,2 has the simple form

H1,2 =
1

2

(
Mη · η + Mξ · ξ

)
,(3.6)

M being the real, symmetric (N ×N) matrix with entries

Mij =

⎧⎪⎨
⎪⎩

√
μiμj cij αij if i �= j,∑

k �=j

√
μkμj ckj βkj if i = j.

(3.7)

The Hamiltonian (3.6) can be immediately put in symplectic normal form: if U
is the real orthogonal matrix (UT = U−1) which diagonalizes M (UTMU =
diag (Ω̄1, . . . , Ω̄N )), then the map p = UT η, q = UT ξ is symplectic and, in such
variables, the new Hamiltonian takes the form (3.2).

(ii) The functions J and I (which admit simple representations in terms of Gauss
hypergeometric functions) are symmetric (J (a, b) = J (b, a) and I(a, b) = I(b, a)) and
satisfy

J (a, b) = b−3J (a/b, 1), I(a, b) = b−3I(a/b, 1), a < b.

7Recall (2.7) and (2.3).
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The functions of one real variable s ∈ (−1, 1) → J (s, 1) and s ∈ (−1, 1) → I(s, 1) are,
respectively, even and odd in s, and satisfy, for small s, the following asymptotics:

J (s, 1) = −15

8
s2 − 105

8
s4 + O(s6), I(s, 1) = 3s +

45

8
s3 + O(s5).(3.8)

(iii) Proposition 3.1 is a suitable version of a well-known result which can be found,
e.g., in [Poi1905]; see also [LR95].

(iv) The asymptotics of the αij ’s and βij ’s may be also computed in terms of
the Laplace coefficients (see, e.g., [LR95]); for our purposes it is simpler to derive the
needed asymptotics directly from the integral representations given before (3.5).

Proof of Proposition 3.1. The computations we are going to perform are algebraic
in character and it is therefore enough to consider real variables. Fix i �= j and define

Rij(Λ, λ, η̂, ξ̂) :=
∣∣∣x(i)(Λi, λi,

√
Λiη̂i,

√
Λiξ̂i;μi, ε) − x(j)(Λj , λj

√
Λj η̂j ,

√
Λj ξ̂j ;μj , ε)

∣∣∣2 ,
(3.9)

so that (recall (3.3))

f̄ij(Λ, η̂, ξ̂) =
1

(2π)N

∫
TN

dλ√
Rij

.(3.10)

By (2.8) we find

Rij = a2
iχ

2
i + a2

jχ
2
j − 2aiaj

(
CiCj − SiSj

)
,(3.11)

where Ck, Sk, and χ
k

are short for, respectively,

Ck = C(η̂k, ξ̂k, λk), Sk = S(η̂k, ξ̂k, λk), and χ
k

=
√
C2
k + S2

k .

The proof will consist in computing explicitly λ-averages of quantities of the form

ρ
ζi,ζj

(λi, λj) := ∂2
ζiζj

1√
Rij

∣∣∣∣∣
η̂=ξ̂=0

=
3(∂ζiRij)(∂ζjRij) − 2Rij(∂ζiζjRij)

4R5/2
ij

∣∣∣∣∣
η̂=ξ̂=0

,

(3.12)

where ζk denotes either of the variables η̂k or ξ̂k. Thus, what we need to do is to
compute suitable orders in the variables (η̂k, ξ̂k) of the function Rij . For this purpose
the following lemma will be useful.

Lemma 3.1. Define the following elementary functions:

C+(λ) := 1 + cos2 λ =
3 + cos(2λ)

2
,

C−(λ) := 1 + sin2 λ =
3 − cos(2λ)

2
,

S0(λ) := cosλ sinλ =
1

2
sin(2λ),

χ̄(x, y, λ) := 1 − 2y cosλ + 2x sinλ,

S(x, y, λ) := sinλ + xC+(λ) + yS0(λ),

C(x, y, λ) := cosλ− yC−(λ) − xS0(λ),
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and denote by Op(z1, . . . , zn) a function of the variables (z1, . . . , zn) (depending pos-
sibly on other variables) analytic in a neighborhood of (0, . . . , 0) and starting with a
homogeneous polynomial of degree p in (z1, . . . , zn). Then,

χ2
k

= C(η̂k, ξ̂k, λk)
2 + S(η̂k, ξ̂k, λk)

2 = χ̄(η̂k, ξ̂k, λk) + O2(η̂k, ξ̂k),

Ck = C(η̂k, ξ̂k, λk) = C(ξ̂k, η̂k, λk) + O2(η̂k, ξ̂k),

Sk = S(η̂k, ξ̂k, λk) = S(ξ̂k, η̂k, λk) + O2(η̂k, ξ̂k).(3.13)

The proof of this lemma follows at once from the explicit expressions for C and
S given in Lemma 2.1 and is left to the reader.

We consider first the matrices Aij (which allow to compute Qij for i �= j) and
then we turn to the matrices Bij (which allow to compute Qjj).

Computation of the matrices Aij. First, observe that the two derivatives involved
in the definition of Aij are always mixed in the variables with indexes i and j. Thus,

we can neglect the terms of third order in (η̂i, ξ̂i, η̂j , ξ̂j) and the terms of second order

of the type O2(η̂i, ξ̂i) and O2(η̂j , ξ̂j).
By Lemma 3.1, the function Rij in (3.11) has the form

Rij = a2
i (1 − 2η̂i cosλi + 2ξ̂i sinλi) + a2

j (1 − 2η̂j cosλj + 2ξ̂j sinλj)

− 2aiaj

[
(cosλi − ξ̂iS0(λi) − η̂iC−(λi))(cosλj − ξ̂jS0(λj) − η̂jC−(λj))

+ (sinλi + ξ̂iC+(λi) + η̂iS0(λi))(sinλj + ξ̂jC+(λj) + η̂jS0(λj))
]

+O2(η̂i, ξ̂i) + O2(η̂j , ξ̂j) + O3(η̂i, ξ̂i, η̂j , ξ̂j).(3.14)

Therefore, letting (·)|0 be short for (·)|η̂i=ξ̂i=η̂j=ξ̂j=0, one finds

Rij

∣∣
0

= a2
i + a2

j − 2aiaj cos(λi − λj),

∂η̂i
Rij

∣∣
0

= −2a2
i cosλi − 2aiaj [−C−(λi) cosλj + S0(λi) sinλj ],

∂η̂jRij

∣∣
0

= −2a2
j cosλj − 2aiaj [−C−(λj) cosλi + S0(λj) sinλi],

∂ξ̂iRij

∣∣
0

= 2a2
i sinλi − 2aiaj [C+(λi) sinλj − S0(λi) cosλj ],

∂ξ̂jRij

∣∣
0

= 2a2
j sinλj − 2aiaj [C+(λj) sinλi − S0(λj) cosλi],

∂2
η̂iη̂j

Rij

∣∣
0

= −2aiaj [C−(λi)C−(λj) + S0(λi)S0(λj)],

∂2
ξ̂iξ̂j

Rij

∣∣
0

= −2aiaj [C+(λi)C+(λj) + S0(λi)S0(λj)],

∂2
η̂iξ̂j

Rij

∣∣
0

= −2aiaj [C−(λi)S0(λj) + S0(λi)C+(λj)],

∂2
ξ̂iη̂j

Rij

∣∣
0

= −2aiaj [S0(λi)C−(λj) + C+(λi)S0(λj)].(3.15)

In particular, Rij and ∂η̂iRij are even in (λi, λj) ∈ T2, while ∂ξ̂jRij and ∂2
η̂iξ̂j

Rij are

odd. Thus, recalling the definition of ρ
ζi,ζj

(λi, λj) in (3.12), we find that ρ
η̂i,ξ̂j

(λi, λj)

is odd in (λi, λj) and it has therefore zero average. For the same reasons, also
ρ
ξ̂i,η̂j

(λi, λj) has zero average. Hence, the off-diagonal terms of Aij are zero. We
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now compute the diagonal terms of Aij . We begin with ρ
η̂i,η̂j

(λi, λj). By (3.12) and

the list in (3.15), we find

ρ
η̂i,η̂j

(λi, λj) := ∂2
η̂iη̂j

1√
Rij

∣∣∣∣∣
0

=
ρ1(λi, λj)

ρ2(λi, λj)
(3.16)

with

(3.17)

ρ1(λi, λj) := aiaj ·
[
−24a2

i cos(2λi) − 24a2
j cos(2λj) + 8(a2

i + a2
j ) cos(2(λi − λj))

− 3aiaj cos(λi − 3λj) − 17aiaj cos(λi − λj)

+ aiaj cos(3(λi − λj)) − 3aiaj cos(3λi − λj)

+ 54aiaj cos(λi + λj)
]
,

ρ2(λi, λj) := 8
(
a2
i + a2

j − 2aiaj cos(λi − λj)
)5/2

.

Thus, changing the variable of integration, one finds

1

(2π)2

∫
T2

∂2
η̂iη̂j

1√
Rij

∣∣∣∣∣
0

dλi dλj

=
1

2π

∫
T

aiai ·
−17aiaj cos t + 8(a2

i + a2
j ) cos(2t) + aiaj cos(3t)

8(a2
i + a2

j − 2aiaj cos t)5/2
dt

=
aiaj
8

J (ai, aj) =: αij .

The case ρ
ξ̂i,ξ̂j

(λi, λj) is very similar (and will yield the same result). In place of

(3.16) one finds

ρ
ξ̂i,ξ̂j

(λi, λj) := ∂2
ξ̂iξ̂j

1√
Rij

∣∣∣∣∣
0

=
ρ3(λi, λj)

ρ2(λi, λj)
(3.18)

with

ρ3(λi, λj) := aiaj ·
[
24a2

i cos(2λi) + 24a2
j cos(2λj) + 8(a2

i + a2
j ) cos(2(λi − λj))

+ 3aiaj cos(λi − 3λj) − 17aiaj cos(λi − λj)

+ aiaj cos(3(λi − λj)) + 3aiaj cos(3λi − λj)

− 54aiaj cos(λi + λj)
]
.(3.19)

Integrating, one finds again

1

(2π)2

∫
T2

∂2
ξ̂iξ̂j

1√
Rij

∣∣∣∣∣
0

dλi dλj = αij .

This proves Proposition 3.1 in the case of Qij , with i �= j.
Computation of the matrices Bij. Observe that the derivatives involved in the

definition of Bij are two derivatives with the same index j. We can, therefore, neglect

the third order terms and set η̂i = ξ̂i = 0.
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Recalling (2.10) we see that χi|η̂i=ξ̂i=0 = 1 and

Rij

∣∣∣
η̂i=ξ̂i=0

= a2
i + a2

jχ
2
j − 2aiajχj

(
(cosλi)

Cj
χj

− (sinλi)
Sj

χj

)
.(3.20)

Defining ϕj = ϕj(Λj , λj , η̂j , ξ̂j) through the relations8

cosϕj =
Cj
χj

, sinϕj =
Sj

χj
,(3.21)

we find

Rij

∣∣∣
η̂i=ξ̂i=0

= a2
i + a2

jχ
2
j − 2aiajχj cos(ϕj − λi).(3.22)

Denote by 〈 f 〉θ,τ the average of a function f over the angles θ and τ . Integrating
first with respect to λi and changing variable of integration (t = λi − ϕj), one gets〈

1√
Rij

∣∣∣∣∣
η̂i=ξ̂i=0

〉
λi,λj

=

〈
1√
R̃ij

〉
t,λj

(3.23)

with

R̃ij := a2
i + a2

jχ
2
j − 2aiajχj cos t.(3.24)

At this point, the argument is completely analogous to that used above. First, we
observe that〈

∂2
ζhζk

1√
Rij

∣∣∣∣∣
0

〉
λi,λj

=

〈
3(∂ζhR̃ij)(∂ζkR̃ij) − 2R̃ij(∂

2
ζhζk

R̃ij)

4R̃5/2
ij

∣∣∣∣∣
0

〉
t,λj

,(3.25)

where ζ� denotes here any of the variables η̂j , ξ̂j . From Lemma 3.1 it follows that R̃ij

can be written as

R̃ij = f(t) + g(t)(h1 − h2) + a2
jh

2
1 + O3(η̂j , ξ̂j)

with

f(t) := a2
i + a2

j − 2aiaj cos t, g(t) := −2a2
j + 2aiaj cos t,

h1 := η̂j cosλj − ξ̂j sinλj , h2 := ξ̂2
j cos2 λj + η̂2

j sin2 λj + η̂j ξ̂j sin(2λj).

Thus, since h1 is of order one in (η̂j , ξ̂j) and h2 is of order two in (η̂j , ξ̂j),

R̃ij

∣∣∣
0

= f(t),

∂ηj R̃ij

∣∣∣
0

= g(t) cosλj ,

∂ξ̂j R̃ij

∣∣∣
0

= −g(t) sinλj ,

∂2
η̂j η̂j

R̃ij

∣∣∣
0

= −2g(t) sin2 λj + 2a2
j cos2 λj ,

∂2
η̂j ξ̂j

R̃ij

∣∣∣
0

= −(g(t) + aj)
2 sin(2λj),

∂2
ξ̂j ξ̂j

R̃ij

∣∣∣
0

= −2g(t) cos2 λj + 2a2
j sin2 λj .

8Physically, ϕj coincides with vj + gj where vj and gj are, respectively, the true anomaly and
the argument of the perihelion of the osculating ellipse associated to the star and the jth planet;
compare to Appendix A.
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Therefore, using (3.25), one finds

〈
∂2
η̂j ξ̂j

1√
R̃ij

∣∣∣∣∣∣
0

〉
λi,λj

=

〈
−
(

3
2g

2 + 2(a2
j − g)f

)
sin(2λj)

4f5/2

∣∣∣∣∣
0

〉
t,λj

= 0

(since the integrand is odd in λj), showing that also Bij is a diagonal matrix. To
compute the diagonal elements we calculate

∂2
η̂j η̂j

1√
R̃ij

∣∣∣∣∣∣
0

=
ρ̃1(λj , t)

ρ̃2(λj , t)
and ∂2

ξ̂j ξ̂j

1√
R̃ij

∣∣∣∣∣∣
0

=
ρ̃3(λj , t)

ρ̃2(λj , t)
(3.26)

with

ρ̃1 = −7 a2
i a

2
j + (9 a2

i a
2
j + 8 aj

4) cos(2λj) +
7

2
a2
i a

2
j cos(2λj − 2 t)

− (2 ai
3 aj + 10 ai aj

3) cos(2λj − t) + 4(ai
3 aj + ai aj

3) cos(t)

− a2
i a

2
j cos(2 t) − (2 ai

3 aj + 10 ai aj
3) cos(2λj + t) +

7

2
a2
i a

2
j cos(2λj + 2 t);

ρ̃2 = 4(a2
i + a2

j − 2aiaj cos t)5/2;

ρ̃3 = −7 a2
i a

2
j − (9 a2

i a
2
j + 8 aj

4) cos(2λj) −
7

2
a2
i a

2
j cos(2λj − 2 t)

+ (2 ai
3 aj + 10 ai aj

3) cos(2λj − t) + 4(ai
3 aj + ai aj

3) cos(t)

− a2
i a

2
j cos(2 t) + (2 ai

3 aj + 10 ai aj
3) cos(2λj + t) − 7

2
a2
i a

2
j cos(2λj + 2 t);

taking the λj-average, one finds immediately

〈
∂2
η̂j η̂j

1√
R̃ij

∣∣∣∣∣∣
0

〉
λi,λj

=

〈
∂2
ξ̂j ξ̂j

1√
R̃ij

∣∣∣∣∣∣
0

〉
λi,λj

=
aiaj
4

I(ai, aj) =: βij .

The next result shows that, for δ and ε small, generically the eigenvalues of M in
(3.6)–(3.7) are nonvanishing, simple, and distinct. We formulate the result regarding
the semiaxis aj as independent variables. Recall the definitions of αij and βij in (3.5)
and let (if N ≥ 3)

βj :=
∑
k=1,2

√
μ̄kμ̄j

m0

1
4
√
akaj

βkj , j ≥ 3.(3.27)

Proposition 3.2. Assume that aj and μ̄j verify9

α12 �= 0 and β12 �= ±α12, βi �= 0 and βi �= βj for i �= j.(3.28)

Then, there exist 0 < δ� < 1 and 0 < ε0 < 1 such that for all 0 < δ < δ� and
0 ≤ ε < ε0 the eigenvalues {Ω̄1, . . . , Ω̄N} of the matrix M are nonvanishing, simple,

9Clearly, if N = 2, the statements regarding the βj and the eigenvalues Ω̄j for j ≥ 3 have to be
omitted.
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and distinct. Furthermore the following asymptotics hold:10

Ω̄1 =

√
μ̄1μ̄2

m0

β12 + α12

4
√
a1a2

+ O(
√
δ, ε),

Ω̄2 =

√
μ̄1μ̄2

m0

β12 − α12

4
√
a1a2

+ O(
√
δ, ε),

Ω̄j =
√
δ βj +

√
δ O(

√
δ, ε), 3 ≤ j ≤ N.(3.29)

As mentioned above (see Remark 3.1(iv)) the asymptotic of the αij ’s and βij ’s may
be evaluated in terms of the Laplace coefficients (see, e.g., [L91]). For completeness
we give a detailed proof.

Proof. First of all, from the definition of cij (see (3.4) and (2.3)) it follows that

cij =
1

m0

1
4
√
aiaj

+ O(ε).(3.30)

Thus, by definition of M , by definition of βj and αij , and by the hypothesis on the
masses μi (see (1.3)) we find the following asymptotics:(

M11 M12

M21 M22

)
= M� + O(

√
δ, ε), where M� :=

√
μ̄1μ̄2

m0
4
√
a1a2

(
β12 α12

α12 β12

)
,

Mjj =
√
δβj + O(δ, ε) for j ≥ 3,

Mij = O(
√
δ) for i = 1, 2 and j ≥ 3, or j = 1, 2 and i ≥ 3,

Mij = O(δ) for i, j ≥ 3 with i �= j.

Therefore11

M =

⎛
⎝M� + O(

√
δ, ε) O(

√
δ)

O(
√
δ)

√
δM� + O(δ, ε)

⎞
⎠ ,

where

M� := diag (β3, . . . , βN ) ∈ Mat((N − 2) × (N − 2)).

The eigenvalues of M� are

√
μ̄1μ̄2

m0
4
√
a1a2

(β12 + α12) and

√
μ̄1μ̄2

m0
4
√
a1a2

(β12 − α12),

which, by the first two requirements in (3.28), are nonzero, simple, and distinct. The
matrix M� is diagonal and its eigenvalues βj are also nonzero, simple, and distinct by
(3.28). The claim now follows by elementary linear algebra (compare, e.g., Lemma B.2
in Appendix B).

10We use the standard notation a = O(ε) ⇐⇒ ∃ a constant c > 0 (independent of ε) and
0 < ε0 < 1 s.t. |a| ≤ c|ε| for all |ε| ≤ ε0; O(σ, ε) = O(σ) + O(ε).

11The O(
√
δ) in the upper right part of M is a (2× (N − 2)) matrix while the O(

√
δ) in the lower

left part of M is an ((N − 2) × 2) matrix.
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Remark 3.2. (i) The hypotheses (3.28) of Proposition 3.2 are easily checked, for
example, if aj verifies (1.2) for a suitable θ > 0. In fact the asymptotics for J (s, 1)
and I(s, 1) (see (3.8)) yield immediately

α12 = −15

64

1

a2

(a1

a2

)3 [
1 + O

((a1

a2

)2)]
,

β12 =
3

4

1

a2

(a1

a2

)2 [
1 + O

((a1

a2

)2)]
,

βj =
3

4

√
μ̄jμ̄2

m0

1

a
3/2
j

(a2

aj

)7/4 [
1 + O

((a1

a2

)7/4)
+ O
((a2

aj

)2)]
, j ≥ 3,

β12 ± α12 =
3

4

1

a2

(a1

a2

)2 [
1 ∓ 5

16

a1

a2
+ O
((a1

a2

)2)]
,

βj − βi =
3

4

√
μ̄jμ̄2

m0

1

a
3/2
j

(a2

aj

)7/4

×
[
1 + O

((a1

a2

)7/4)
+ O
((a2

aj

)2)
+ O
(( ai

aj

)13/4)]
, i > j ≥ 3.

Thus, if θ is small enough and if (1.2) holds, one sees that

α12 < 0,

β12 ± α12 > 0,

βj > 0 ∀ j ≥ 3,

βj − βi > 0 ∀ i > j ≥ 3,

and the hypotheses (3.28) are verified as claimed.
(ii) The O(·)’s appearing in (3.29) (and in the proof of Proposition 3.2) depend

on the aj ’s (and on12 m0). Thus, the order in fixing the various parameters is im-
portant. One way of proceeding is as follows. First determine θ as explained in the
previous point (i). Then, let āi, 1 ≤ i ≤ N , be positive numbers such that (1.2) holds,
i.e., āi/āi+1 < θ for any 1 ≤ i ≤ N − 1; (the āi may be physically interpreted as
observed mean major semiaxis). Now, consider a compact order-one neighborhood
A ⊂ {0 < a1 < · · · < aN} of (ā1, . . . , āN ) for which (1.2) continues to be valid (such
neighborhood exists simply by continuity). Finally, fix δ� and ε0 so that Proposi-
tion 3.2 holds: such numbers will depend only on āj ’s and the (order-one) size of the
chosen neighborhood A.

(iii) In the case of only one dominant planet (i.e., μ1 = μ̄1 = O(1), μi = O(δ) for
i ≥ 2), the first two asymptotics in (3.29) do not give any information: in particular
we cannot assure that Ω̄1 and Ω̄2 are different from zero. On the other hand, one could
also consider the case of three or more dominant planets and the choice of focusing
on two dominant planets has been made for simplicity.

4. Existence of N-dimensional elliptic invariant tori. In this section we
prove the existence of N -dimensional elliptic invariant tori for the (N +1)-body prob-
lem Hamiltonian H in (2.14) for any N ≥ 2.

Let m0 < μ̄j < 4m0, let θ, A, δ�, and ε0 be as in Remark 3.2(ii), and fix
0 < δ < δ�, which henceforth will be kept fixed. In the rest of the paper only ε is

12Recall that m0 < μ̄j < 4m0; compare with the line before (1.3).
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regarded as a free parameter: at the moment, ε is assumed not to exceed ε0 but later
will be required to satisfy stronger smallness conditions. The semimajor axis map

�a : Λ = (Λ1, . . . ,ΛN ) �→
(
a(Λ1;μ1, ε), . . . , a(ΛN ;μN , ε)

)
(4.1)

is a real-analytic diffeomorphism and we define

I = �a−1(A),

then the Hamiltonian H is real-analytic (and bounded) on the domain I×TN ×B2N
R

for a suitable R > 0 (here Bn
r denotes the n-ball of radius r and center 0 ∈ Rn).

By Proposition 3.1, the quadratic part H1,2 of the averaged Newtonian interaction
H1 has the simple form (3.6), M being the symmetric matrix defined in (3.7). As
already pointed out in Remark 3.1, the matrix M can be diagonalized with eigenvalues,
which, thanks to our assumptions and to Proposition 3.2, have the form in (3.29) and,
therefore, satisfy

inf
I

|Ω̄j | > c̄, inf
I

∣∣∣Ω̄i − Ω̄j

∣∣∣ > c̄(4.2)

for any i �= j = 1, . . . , N and for a suitable positive constant c̄ independent of ε. If
U := U(Λ) is the symmetric matrix which diagonalizes M , UTMU = diag (Ω̄1, . . . , Ω̄N ),
then the map

Ξ : (I, ϕ, p, q) �→ (Λ, λ, η, ξ), where

⎧⎪⎪⎨
⎪⎪⎩

p = UT η, q = UT ξ,
I = Λ,

ϕ = λ +
∑
h,k,�

(∂ΛUk�)Uh� ηk ξ�,
(4.3)

is symplectic (and real-analytic) and

H1,2 ◦ Ξ =
1

2

N∑
i=1

Ω̄i(I)(p
2
i + q2

i ).(4.4)

Thus, the (N + 1)-body problem Hamiltonian H in (2.14), in the case we are consid-
ering, can be written as

H ◦ Ξ(I, ϕ, p, q; ε) = h(I) + f(I, ϕ, p, q; ε)(4.5)

with

h := H0, f := εf1(I, p, q; ε) + εf2(I, ϕ, p, q; ε),

f1 := f1,0(I) +
1

2

N∑
i=1

Ω̄i(I)(p
2
i + q2

i ) + f̃1(I, p, q; ε),

f1,0 := H1,0, f̃1 := H1,∗ ◦ Ξ, f2 := H̃1 ◦ Ξ.

Here h is uniformly strictly concave,

|f̃1| ≤ const |(p, q)|4, and

∫
TN

f2 dϕ = 0.

The construction of elliptic invariant tori for the Hamiltonian (4.5) is based on four
steps, which we proceed to describe.
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4.1. Averaging. Fix τ > N − 1 ≥ 1 and pick two numbers b1, b2 such that

0 < b1 <
1

2
, 0 < b2 <

(1

2
− b1

) 1

τ + 1
.(4.6)

Since the integrable Hamitlonian h depends only on the action I, the conjugated
variable ϕ is a “fast” angle and, in “first approximation,” the (h + f)-motions are
governed by the averaged Hamiltonian h+εf1, which possesses an elliptic equilibrium
at p = q = 0. As we, now, proceed to describe, one may remove the ϕ-dependence
of the perturbation function f up to high order in ε by using averaging theory; for
detailed information on averaging theory in similar situations, see Proposition A.1 of
[BCV03] or Proposition 7.1 of [BBV04].

Denote by Dn
R the complex n-ball of center zero and radius R > 0 and, for any

V ⊂ RN , denote by VR the complex neighborhood of radius R > 0 of the set V given
by VR := ∪x∈V DR(x). Next, define the set Î as the following “Diophantine subset”
of I:

Î :=

{
I ∈ I : |∂Ih(I) · k| ≥ γ̄

|k|τ ∀k ∈ ZN \ {0}
}

with γ̄ := const εb1 .(4.7)

Notice that (as it is standard to prove)

meas
(
I \ Î

)
≤ const γ̄ = const εb1 .(4.8)

The Hamiltonian h + f in (4.5) is real-analytic on the complex domain

Dr,s,ρ := Îr × TN
s ×D2N

ρ ⊂ C4N ,(4.9)

with

r := const
√
ε, s := const, ρ := const εb2 .(4.10)

The definition of Î is motivated by the necessity to have an estimate on small divisors.
In fact, let I ∈ Îr (and ε small enough) and let I0 ∈ Î be a point at distance less than
r from I. Then, for any k ∈ ZN\{0} such that |k| ≤ K := const ε−b2 , by the second
relation in (4.6), by (4.7), and by Cauchy estimates, one finds

|∂Ih(I) · k| ≥ |∂Ih(I0) · k| − |∂Ih(I0) − ∂Ih(I)| |k|

≥ γ̄

Kτ
− max |∂2

Ih| r K

≥ γ̄

2Kτ
=: α = const εb1+τb2 ,

(
0 < |k| ≤ K := const ε−b2

)
.(4.11)

In order to apply averaging theory (see, e.g., [N77]) so as to remove the ε-dependence
up to order exp(− constK), one has to verify the following “smallness condition”
(compare condition (A.2), p. 110 in [BCV03])

‖f‖r,s,ρ ≤ const
αmin{rs, ρ2}

K
,

where the norm ‖ · ‖r,s,ρ is defined as the standard “sup-Fourier norm”

‖f‖r,s,ρ :=
∑

k∈ZN

(
sup

(I,p,q)∈Îr×D2N
ρ

|fk(I, p, q)|
)
e|k|s,(4.12)
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(fk(I, p, q) denoting Fourier coefficients of the multiperiodic, real-analytic function
ϕ �→ f(I, ϕ, p, q)). Such condition, in view of (4.6), can be achieved by taking ε small
enough since, by (4.11) and (4.10), one has

‖f‖r,s,ρ = O(ε) and
αmin{rs, ρ2}

K
= O(εb1+(τ+1)b2+1/2).

Hence, there exists a close-to-identity (real-analytic) symplectic change of variables
(I ′, ϕ′, p′, q′) �→ (I, ϕ, p, q) verifying (compare formulae (2.16) and (A.7) of [BCV03])

|I ′ − I| ≤ const ε
1
2+b2 and |p′ − p|, |q′ − q| ≤ const

√
ε,(4.13)

and such that the Hamiltonian expressed in the new symplectic variables becomes

h(I ′) + ĝ(I ′, p′, q′) + f̂(I ′, ϕ′, p′, q′), ĝ := εf1(I
′, p′, q′) + εf̂1(I

′, p′, q′)(4.14)

with f̂1 and f̂ real-analytic on the complex domain Dr/2,s/6,ρ/2 and satisfying

‖f̂1‖r/2,s/6,ρ/2 ≤ ε

αr
= const εb2+b3 with b3 :=

1

2
− b1 − (τ + 1)b2 > 0,(4.15)

‖f̂‖r/2,s/6,ρ/2 ≤ const e− constK � const ε3.

4.2. New elliptic equilibrium. Due to the (small) term f̂1 in (4.14), zero is
no longer an elliptic equilibrium for the “averaged” (i.e., ϕ-independent) Hamiltonian
h+ ĝ. Using the implicit function theorem, we can find a new elliptic equilibrium for
h + ĝ, which is εb2+b3 close to zero. Hence we construct a real-analytic symplectic
transformation

(J ′, ψ′, v′, u′) �→ (I ′, ϕ′, p′, q′) with I ′ = J ′ and εb2+b3-close-to-the-identity,

(4.16)

such that in the new symplectic variables (J ′, ψ′, v′, u′) the Hamiltonian takes the
form

h(J ′) + g̃(J ′, v′, u′) + f̃(J ′, ψ′, v′, u′)

with g̃ having v′ = u′ = 0 as elliptic equilibrium; the functions g̃ and f̃ are real-
analytic on a slightly smaller complex domain, say Dr/7,s/7,ρ/7, where they satisfy
bounds similar to those in (4.15). Furthermore, for j = 1, . . . , N , the eigenvalues
Ω̃j(J

′) of the symplectic quadratic part of g̃ are purely imaginary and ε1+b2+b3-close
to εΩ̄j(J

′).

4.3. Symplectic diagonalization of the quadratic term. Using a well-
known result on the symplectic diagonalization of quadratic Hamiltonians, we can
find a real-analytic, symplectic transformation

(J̃ , ψ̃, ṽ, ũ) �→ (J ′, ψ′, v′, u′) with J ′ = J̃ and εb2+b3-close-to-the-identity,

(4.17)

such that the quadratic part of g̃ becomes, simply,
∑N

i=1 Ω̃i(J̃) (ũ2
j + ṽ2

j ). Whence,
the new Hamiltonian becomes (compare formula (2.22) of [BCV03])

H̃ := h0(J̃) +

N∑
i=1

Ω̃i(J̃) (ũ2
i + ṽ2

i ) + g̃0(J̃ , ṽ, ũ) + f̃0(J̃ , ψ̃, ṽ, ũ),(4.18)
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where

h0(J̃) := h(J̃) + εg̃(J̃ , 0, 0),(4.19)

g̃0, f̃0, Ω̃j are real-analytic, and

|g̃0(J̃ , ṽ, ũ)| ≤ const ε |(ṽ, ũ)|3, |Ω̃| ≤ const ε, ‖f̃‖r/8,s/8,ρ/8 ≤ const ε3.

(4.20)

Finally, because of (4.2),

inf |Ω̃i| ≥ const ε > 0, inf |Ω̃2 − Ω̃1| ≥ const ε > 0.(4.21)

4.4. Applying KAM theory. We rewrite now the Hamiltonian H̃ in (4.18) in
a form suitable for applying (elliptic) KAM theory. Introducing translated variables
y := J̃ − p and complex variables z, z̄, we define

H = H̃
(
p + y, ψ,

z + lz̄√
2

,
z − z̄

i
√

2

)
,(4.22)

here p is regarded as a parameter and the symplectic form is
∑N

j=1 dyj ∧ dψj +

i
∑N

j=1 dzj ∧ dz̄j with i :=
√
−1. The Hamiltonian H is then seen to have the form

H = N + P

with

N = e + ω · y +
N∑
j=1

Ωjzj z̄j , e := h0(p), ω := ∂J̃h0(p), Ω := Ω̃(p),(4.23)

and P a perturbation, which can naturally be split into four terms:

P =
∑

1≤k≤4

Pk

with

P1 = h0(p + y) − h0(p) − ∂J̃h0(p) · y ∼ y2,

P2 =

n∑
j=1

(
Ω̃j(p + y) − Ω̃j(p)

)
zj z̄j ∼ y|z||z̄|,

P3 = g̃0

(
p + y,

z + z̄√
2

,
z − z̄

i
√

2

)
∼ ε(|z| + |z̄|)3, (by (4.20)),

P4 = f̃0

(
p + y, ψ,

z + z̄√
2

,
z − z̄

i
√

2

)
= O(ε3).(4.24)

The parameter p runs over the Diophantine set Î defined in (4.7). Notice that the
integrable Hamiltonian N affords, for any given value of the parameter p, the N -
dimensional elliptic torus

{y = 0} × TN × {z = z̄ = 0},(4.25)
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which is invariant for the Hamiltonian flow generated by N , the flow being, simply,
the Diophantine translation x �→ x + ωt, with ω as in (4.23).

Since det ∂2
J̃
h0 �= 0, we can use the frequencies ω as parameters rather than the

actions p. We, therefore, set

O := ∂J̃h0

(
Î
)

=
{
ω = ∂J̃h0(p) : p ∈ Î

}
.(4.26)

Notice that, by (4.7), we have

meas
(
∂J̃h0(I) \ O

)
≤ const εb1 .(4.27)

Now, if we put p = p(ω) := (∂J̃h0)
−1(ω) in (4.22), we can rewrite the (N + 1)-body

Hamiltonian in the form

H(y, ψ, z, z;ω) := N (y, z, z̄;ω) + P (y, ψ, z, z̄;ω),(4.28)

where

N (y, z, z;ω) := e(ω) + ω · y +

N∑
j=1

Ωj(ω)zj z̄j , e(ω) := h0(p(ω)), Ω(ω) := Ω̃(p(ω)),

(4.29)

and the perturbation P (y, ψ, z, z̄;ω) is obtained by replacing p with p(ω) in (4.24).
Recalling (4.10), the Hamiltonian H in (4.28) is real-analytic in

(y, ψ, z, z̄;ω) ∈ Dr2,s,r,d := DN
r2 × TN

s ×D2N
r ×ON

d(4.30)

with

r := const , ε3/4, s := const, d := const
√
ε.(4.31)

We recall, now, a well-known KAM result concerning the persistence of lower-
dimensional elliptic tori for nearly integrable Hamiltonian systems (see [M65], [E88],
[K88]). The version we present here is, essentially, a reformulation of Pöschel’s theo-
rem in [P89] (compare, also, with Theorem 5.1 of [BBV04]).

Theorem 4.1. Let H have the form in (4.28), (4.29) and let it be real-analytic
on a domain Dr2,s,r,d of the form (4.30) for some r, s, and d positive. Assume that

sup
ω∈Od

|∂ωΩ(ω)| ≤ 1

4
(4.32)

and that the nonresonance (or Melnikov) condition

|Ω(ω) · k| ≥ γ0 ∀ 1 ≤ |k| ≤ 2, k ∈ ZN ,∀ ω ∈ O,(4.33)

is satisfied for some γ0 > 0. Then, if d ≥ γ0 and P is sufficiently small, i.e.,

|||P |||
r,s,d := sup

ω∈Od

‖P ( ·;ω)‖r2,s,r ≤ const γ0 r
2,(4.34)

then there exist a normal form N∗ := e∗(ω) + ω · y∗ + Ω∗(ω)z∗z̄∗, a Cantor set
O(γ0) ⊂ O with

meas
(
O \ O(γ0)

)
≤ const γ0,(4.35)
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and a transformation

F : DN
r2/4 × TN

s/2 ×D2N
r/2 ×O(γ0) −→ DN

r2 × TN
s ×D2N

r ×Od

(y∗, ψ∗, z∗, z̄∗;ω) �−→ (y, ψ, z, z̄;ω)

real-analytic and symplectic for each ω and Whitney smooth in ω, such that

H ◦ F = N∗ + R∗ with ∂j
y∗∂

h
z∗∂

k
z̄∗R∗ = 0 if 2|j| + |h + k| ≤ 2.(4.36)

In particular, for each ω ∈ O(γ0), the torus {y∗ = 0} × TN × {z∗ = z̄∗ = 0} is
an N -dimensional, linearly elliptic, invariant torus run by the flow ψ∗ → ψ∗ + ωt.
Finally

|y∗ − y|, r|z∗ − z|, r|z̄∗ − z̄| ≤ const
|||P |||

r,s,d

γ0
.(4.37)

In this section we have shown that the many-body Hamiltonian (2.14) (under the
hypotheses spelled out at the beginning of the section) has indeed the form assumed
in the KAM theorem (Theorem 4.1). Furthermore, by (4.21), the elliptic frequencies
Ωi verify the Melnikov conditions (4.33) with

γ0 = const ε,(4.38)

and, by (4.24) and (4.31), the perturbation P verifies, for small ε, the KAM condition
(4.34), since

|||P |||
r,s,d = O(r4 + εr3 + ε3) = O(ε3) ≤ const γ0 r

2 = O(ε5/2).(4.39)

Thus, the existence of the desired quasi-periodic orbits follows at once from Theo-
rem 4.1. We may summarize the final result as follows.

Theorem 4.2. Let N ≥ 2 and let H be the (N + 1)-body problem Hamiltonian
in Poincaré variables defined in (2.14). Let m0 < μ̄j < 4m0, let θ, A, δ�, and ε0 be
as in Remark 3.2(ii). Fix 0 < δ < δ� and let I = �a−1(A) where �a is the semimajor
axis map defined in (4.1). Let τ > N − 1 and pick b1, b2 as in (4.6). Finally, let
0 < ε� < ε0 be such that (4.39) holds for any ε ≤ ε� and such that all conditions on ε
required for constructing the symplectic transformations introduced in sections 4.1–4.3
are satisfied for ε < ε�. Then, for any ε < ε�, there exist a Cantor set I∗ ⊂ I, with

meas (I \ I∗) ≤ const εb1 ,(4.40)

and a Lipschitz continuous family of tori embedding

φ : (ϑ, p) ∈ TN × I∗ �→
(

Λ(ϑ; p), λ(ϑ; p), η(ϑ; p), ξ(ϑ; p)
)
∈ I × TN ×B2N

ρ∗

with ρ∗ := const εb2 such that, for any p ∈ I∗, φ(TN ; p) is a real-analytic elliptic
H-invariant torus, on which the H-flow is analytically conjugated to the linear flow
ϑ → ϑ+ω∗t, ω∗ being (γ, τ)-diophantine with γ = O(εb1). Furthermore, the following
bounds hold uniformly on TN × I∗:

|Λ(ϑ; p) − p| ≤ const ε
1
2+b2 ,(4.41)

|η(ϑ; p)| + |ξ(ϑ; p)| ≤ const εb2 .(4.42)
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Theorem 1.1 follows, now, by taking (recall the definitions of bk in (4.6))

c1 := b1, c2 := b2, c3 := b2 +
1

2
.(4.43)

In particular the statements on the density of the set of the osculating major semiaxes,
on the bound on the osculating eccentricities and on the variation of the osculating
major semiaxes, follows from (4.40), (2.9), (4.42), (2.7), and (4.41).

Appendix A. Poincaré variables for the planar (N + 1)-body problem.
We briefly recall in this appendix the classical derivation of the Poincaré variables
for the planar N -body problem,13 showing, in particular, the validity of Lemma 2.1,
which is proven in subsections A.1 and A.2; subsections A.3 and A.4 are included for
completeness.

A.1. Canonical variables for the two-body problem. Consider two bodies
P0, P1 of masses m0, m1 and position u(0), u(1) ∈ R2 (with respect to an inertial
frame). We assume that P0 and P1 interact through gravity, with gravitational con-
stant 1. By Newton’s laws, the equations of motion for such two-body problem are

ü(0) = m1
(u(1) − u(0))

|u(1) − u(0)|3 ,

ü(1) = m0
(u(0) − u(1))

|u(0) − u(1)|3 .

Let

M := m0 + m1, m :=
m0m1

M
, x := u(1) − u(0), X := mẋ.(A.1)

Then, the above equations of motion become

ẍ =
Mx

|x|3 ,

and the motion of the two bodies is governed by the Hamiltonian

K(X,x) =
1

2m
|X|2 − mM

|x| ,(A.2)

with (X,x) ∈ R2×R2 conjugate variables; i.e., the equations of motion are ẋ = ∂XK,
Ẋ = −∂xK.

As well known, such system is integrable and for K < 0 the orbits are ellipses.
More precisely, one has the following proposition.

Proposition A.1. Fix Λ− > 0 > K0 and let Λ+ :=
(

m
3
M

2

−2K0

) 1
2

> Λ−. Then,

there exist ρ̂ > 0 and a real-analytic symplectic transformation

ΨDP :
(
(Λ, η), (λ, ξ)

)
∈
(
[Λ−,Λ+] × [−ρ̂, ρ̂]

)
×
(
T × [−ρ̂, ρ̂]

)
�→ (X,x) ∈

{
|x| ≥ ρ̂2

m2M

}
,

casting (A.2) into the integrable Hamiltonian (−m3M2)/(2Λ2).

13For a review of the Poincaré variables in the nonplanar case, see, for instance, [Ch88] and
[BCV03].
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This classical proposition is a planar version of the classical one, due to Poincaré
(see [Poi1905, Chapter III]) and the variables (Λ, η, λ, ξ) are, usually, called (planar)
Poincaré variables. The proof of Proposition A.1 is particularly interesting from the
physical point of view and rests upon the introduction of three different (famous)
changes of variables, which we, now, proceed to describe briefly.

Let � and g denote, respectively, the mean anomaly and the argument of the
perihelion.

Step 1. The system is set in “symplectic” polar variables; namely, we consider
the symplectic map Ψspc : ((R,Φ), (r, ϕ)) �→ (X,x) (where r > 0 and ϕ ∈ T) given by

Ψspc :

{
x1 = r cosϕ,

x2 = r sinϕ,
X =

⎛
⎜⎝cosϕ − sinϕ

r

sinϕ
cosϕ

r

⎞
⎟⎠
(
R
Φ

)
(A.3)

and consider the new Hamiltonian Kspc := K ◦ Ψspc.
Step 2. There is a symplectic map ΨD : ((L,G), (�, g)) �→ ((R,Φ), (r, ϕ)) that

integrates the system: ΨD is obtained via the generating function

S(L,G, r, ϕ) =

∫ √
−m4M2

L2
+

2m2M

r
− G2

r2
dr + Gϕ.(A.4)

The variables ((L,G), (�, g)) are known as (planar) Delaunay variables. In such vari-
ables, the new Hamiltonian becomes

KD := Kspc ◦ ΨD = −m3M2

2L2
.

Also, if C is the angular momentum of the planet and a is the major semiaxis, by
construction, one has that

G = |C| and L = m
√

Ma.

Step 3. We need now to remove singularities, which appear for small eccentricity.
To this aim, we first introduce (planar) Poincaré action-angle variables by means of
the linear symplectic transformation

ΨPaa :
(
(Λ, H), (λ, h)

)
�→
(
(L,G), (�, g)

)
given by

ΨPaa :

{
Λ = L, H = L−G,
λ = � + g, h = −g.

(A.5)

Then, we let ΨP : ((Λ, η), (λ, ξ)) �→ ((Λ, H), (λ, h)) be the symplectic map defined by
√

2H cosh = η,
√

2H sinh = ξ.(A.6)

As Poincaré showed (see [Poi1905], [Ch88], [BCV03]), the symplectic map

ΨDP :
(
(Λ, η), (λ, ξ)

)
�→ (X,x)

with

ΨDP := Ψspc ◦ ΨD ◦ ΨPaa ◦ ΨP(A.7)
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is real-analytic in a (complex) neighborhood of

Λ ∈ [Λ−,Λ+], |η|, |ξ| ≤ const
√

Λ−, λ ∈ T.

Also, the two-body Hamiltonian, in Poincaré variables, is K ◦ Ψ = −m
3
M

2

2Λ2 .
Remark A.1. (i) If we denote (X,x) = ΦDP((Λ, η,p), (λ, ξ, q)), then

X =
m4M2

Λ3

∂x

∂λ
.(A.8)

Indeed, from the Hamilton equations one sees that: λ̇ = ∂Λ(−m
3
M

2

2Λ2 ) = m
3
M

2

Λ3 , and

Λ̇ = ξ̇ = η̇ = ṗ = q̇ = 0. Thus, by the chain rule, X = mẋ = m(∂λx) λ̇ = m
4
M

2

Λ3
∂x
∂λ ,

proving (A.8).
(ii) We collect some useful relations among the above-introduced quantities. Let,

as usual, e denote the eccentricity of the Keplerian ellipse and let a denote the major
semiaxis. Then, by construction, one sees that

Λ = m
√

Ma,
√

ξ2 + η2 =
√

Λ e (1 + O(e2)).(A.9)

Also, if C is the angular momentum of the system, one infers that

|C| = Λ
√

1 − e2 = Λ(1 + O(e2)).(A.10)

(iii) A proof of the analyticity of Poincaré variables will also follow by directly
inspecting the formulae given in Lemma 2.1, which is proved in the coming section.

A.2. Orbital elements. We now sketch a way to explicitly represent some
quantities in terms of Poincaré variables. This will also lead to the proof of Lemma 2.1.
Let u and v denote the eccentric anomaly and the true anomaly, respectively. By
geometric considerations,

u = � + e sinu(A.11)

and14

cos v =
cosu− e

1 − e cosu
,(A.12)

where

� = λ + h.(A.13)

Also, by (A.6),

H =
η2 + ξ2

2
.(A.14)

An explicit expression taking into account H, the eccentricity, and the major semiaxis
is given by

H = Λ (1 −
√

1 − e2) = Λ
e2

2
(1 + O(e2)),(A.15)

e(H,Λ) =

√
H

Λ

(
2 − H

Λ

)
.(A.16)

14Such relations are classical and we refer the reader to [Ch88] and [BCV03] for a geometric
interpretation of these anomalies.
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In light of (A.12),

sin v =

√
1 − e2 sinu

1 − e cosu
.(A.17)

By means of (A.11), we have

u− � = e sin(u− � + �) = e cos � sin(u− �) + e sin � cos(u− �).

Thus, in the notation of Lemma 2.1, if G0 is implicitly defined by

G0(x, y) = x sinG0(x, y) + y cosG0(x, y),

with G0(0, 0) = 0, we have that G0 is real-analytic, G0(x, y) = y + xy +O3(x, y) and

u− � = G0(e cos �, e sin �).(A.18)

Therefore, we deduce from (A.18) and (A.13) that

u = λ + h + G0(e cosh cosλ− e sinh sinλ, e sinh cosλ + e cosh sinλ).(A.19)

Moreover, denoting

η̂ = η/
√

Λ, ξ̂ = ξ/
√

Λ,(A.20)

we deduce from (A.6) and (A.16) that

e sinh =

√
2H

Λ
·
√

1 − H

2Λ
sinh = ξ̂ F1(η̂

2 + ξ̂2),(A.21)

where F1(t) =
√

1 − (t/4) is real-analytic for |t| < 4 (and agrees with the one intro-
duced in Lemma 2.1). Analogously,

e cosh = η̂ F1(η̂
2 + ξ̂2).(A.22)

Therefore, substituting (A.21) and (A.22) in (A.19), we can write G0 as an analytic

expression of (η̂, ξ̂, λ): more formally, there exists a real-analytic (η̂, ξ̂, λ) �→ G(η̂, ξ̂, λ)
(which agrees with the one introduced in (2.6) by (A.21) and (A.22)), so that

G0(e cosh cosλ− e sinh sinλ, e sinh cosλ− e cosh sinλ) = G(η̂, ξ̂, λ).

Hence, from (A.19),

e cosu = e cosh cos(λ + G) − e sinh sin(λ + G),

e sinu = e sinh cos(λ + G) + e cosh sin(λ + G)(A.23)

with G = G(η̂, ξ̂, λ). Notice also that, from the formulae in (A.16) and (A.14),

1 −
√

1 − e2

e2
= F2(η̂

2 + ξ̂2)

for a suitable real-analytic function F2 (actually, F2(t) = 1
2 (1 − t

4 )−1, which agrees
with the notation in Lemma 2.1). Thus, if we set ϕ = λ+ v− � = v−h, recalling also
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(A.12) and (A.17), we have

sinϕ = sin v cosh− cos v sinh

=
1

1 − e cosu
[
√

1 − e2 sinu cosh− cosu sinh + e sinh]

=
1

1 − e cosu
[sin(u− h) + e sinh− F2 · (e sinu) · (e cosh)]

=
1

1 − e cosu
[sin(λ + e sinu) + e sinh− F2 · (e sinu) · (e cosh)](A.24)

for F2 = F2(η̂
2 + ξ̂2) and analogously

cosϕ =
1

1 − e cosu
[cos(λ + e sinu) − e cosh− F2 · (e sinu) · (e sinh)].(A.25)

Hence, from (A.21), (A.22), (A.23), (A.24), and (A.25), it follows that sinϕ and cosϕ

are real-analytic functions in λ, η̂, ξ̂, for λ ∈ T and small ξ̂, η̂. In particular, if C, S,
and Es are as defined in Lemma 2.1, we deduce from (A.23), (A.21), and (A.22) that

e sinu = Es,(A.26)

and then from (A.25) and (A.24) that

(1 − e cosu) cosϕ = C and (1 − e cosu) sinϕ = S.(A.27)

Finally, by geometric considerations, we have

r = a(1 − e cosu),(A.28)

where r is the distance between the planet and the sun. Thus, the formulae in
Lemma 2.1 follow at once by (A.26), (A.27), (A.3), and (A.8).

A.3. Hamiltonian setting for the planar many-body problem. Consider
(N + 1) bodies P0, . . . , PN of masses m0, . . . , mN , all lying in the same plane, inter-
acting through gravity (with constant of gravitation 1). Denote by u(i) the position
of Pi in a given inertial frame of R2, with origin in the center of mass of the system.
By Newton’s laws, we have that

ü(i) =
∑

0≤j �=i≤N

mj(u
(j) − u(i))

|u(j) − u(i)|3 .(A.29)

Thus, if U (i) := miu̇
(i) denotes the momentum of Pi, we see that the equations of

motion (A.29) come from the Hamiltonian

N∑
i=0

1

2mi
|U (i)|2 −

∑
0≤i<j≤N

mimj

|u(i) − u(j)| ,

where U = (U (0), . . . , U (N)) ∈ R2(N+1) and u = (u(0), . . . , u(N)) ∈ R2(N+1) are
conjugate symplectic variables.

We now consider P0 as the “sun” and introduce canonical heliocentric variables
via the linear symplectic transformation

u(0) = r(0), u(i) = r(0) + r(i),

U (0) = R(0) −R(1) − · · · −R(N), U (i) = R(i), for i = 1, . . . , N.(A.30)
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Notice that, by our choice of coordinates, R(0) = 0. Thus, the planar many-body
problem is governed by the (2N)-degree-of-freedom Hamiltonian

N∑
i=1

(
m0 + mi

2m0mi
|R(i)|2 − m0mi

|r(i)|

)
+

N∑
1≤i<j≤N

(
R(i) ·R(j)

m0
− mimj

|r(i) − r(j)|

)
.

If mi = εμi for i = 1, . . . , N , i.e., if the “planets” are very much smaller than the
“sun,” the momenta R(i) are of order ε. Therefore, it is convenient to introduce the
following rescaled symplectic variables:

X(i) =
R(i)

εm
5/3
0

, x(i) =
r(i)

m
2/3
0

, i = 1, . . . , N.(A.31)

In such variables, after a time scale of factor εm
7/3
0 we obtain the Hamiltonian in

(2.1). Notice that, in that setting, the Hamiltonian H(N)
0 corresponds to the sum of

N integrable Hamiltonians of the form (A.2), with m and M replaced by mi and Mi,
respectively.

A.4. A parity property. We recall here the well-known fact that the λ-average
of H1 (as in (2.14)) is even in (η, ξ). The proof of this will be accomplished by a 180-
degree rotation of the perihelia.

Proposition A.2. Let

f1(Λ, η, ξ) :=
1

ε

∫
T2

H1(Λ, η, λ, ξ) dλ.

Then, f1(Λ,−η,−ξ) = f1(Λ, η, ξ).
The rescaling by 1

ε is made so that f1 is a (real-analytic) uniformly bounded (by
an order-one constant) function.

Proof. The eccentricity ei, the semiaxis ai, and the mean anomaly �i of the oscu-
lating ellipse of Pi are invariant under the map (Λi, λi, Hi, hi) �→ (Λi, λi−π,Hi, hi+π),
while the argument of the perihelion gi changes of π. Let us denote �π := (π, . . . , π) ∈
RN . In light of the consideration above we have that the map

(Λ, λ,H, h) �→ (Λ, λ− �π,H, h + �π)(A.32)

leaves |r(i) − r(j)| invariant, for any i, j = 1, . . . , N . The map in (A.32) corresponds
to

(Λ, λ, ξ, η) �→ (Λ, λ− π,−ξ,−η),

usually referred to as “space inversion.”

Appendix B. Simple eigenvalue perturbations.
Lemma B.1. Let M� ∈ Mat(m×m), M� ∈ Mat(k × k), and M � ∈ Mat(m× k).

Then,

det

(
M� M �

0k×m M�

)
= det(M�) det(M�).

Proof. The proof is obvious.
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Lemma B.2. Let M� ∈ Mat(m×m), M� ∈ Mat(k × k), M � ∈ Mat(m× k), and
M� ∈ Mat(k ×m). Let

Mε :=

⎛
⎝ M� + O(ε) εM � + O(ε2)

εM� + O(ε2) εM� + O(ε2)

⎞
⎠ .

Then
• if λ̄ �= 0 is a simple eigenvalue of M�, then there exists λ̄ε = λ̄ + O(ε) which

is an eigenvalue of Mε, provided |ε| is suitably small;
• if λ̃ is a simple eigenvalue of M� and det(M�) �= 0, then there exists λ̃ε =
λ̃ + O(ε) so that ελ̃ε is an eigenvalue of Mε, provided |ε| is suitably small.

Proof. For the first claim, apply the implicit function theorem to

F1(t, ε) := det(Mε − t1(m+k)),

noticing that F1(t, 0) = (−1)ktk det(M� − t1m). For the second claim, apply the
implicit function theorem to

F2(t, ε) := det

(
M� − εt1m M �

εM� M� − t1k

)
,

noticing that εkF2(t, ε) = det(Mε − εt1(m+k)) and that, by Lemma B.1, F2(t, 0) =
det(M�) det(M� − t1k).
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QUASIMINIMAL PARTITIONS WITH PRESCRIBED MEASURE∗

SÉVERINE RIGOT†

Abstract. We prove that, in a fairly general context, quasiminimal partitions with prescribed
measure enjoy quantitative rectifiability properties with universal bounds. Namely, we show that the
set of interfaces of a quasiminimal partition is uniformly rectifiable with bounds that depend only
on the structural data of the problem.

Key words. partitions, Ahlfors-regular sets, uniform rectifiability
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1. Introduction. This paper is devoted to the study of quantitative and uniform
rectifiability properties for quasiminimal partitioning hypersurfaces between regions
in R

n of prescribed n dimensional measure. Usually one says that a partition is
minimal if admissible deformations of it cannot decrease its energy. For quasiminimal
partitions one allows the energy to decrease but only in a controlled way. Energies
we shall consider here will be surface-like energies of interface type.

There is a wide class of variational problems involving a competition between
surface- and volume-like energies where quasiminimality conditions appear naturally.
There are also many situations where such a variational problem turns out to be
related to a partitioning problem. For instance the various regions delimitated by
a quasiminimal partitioning hypersurface seem to provide a model for equilibrium
configurations of a system of immiscible and incompressible fluids subject to external
forces of volume type (for example the gravity). Roughly speaking the term in the
energy corresponding to these external forces is, mostly for homogeneity reasons,
negligible compared to the surface-like energy, which reflects the effects of the surface
tension between the different fluids. Then, when a configuration has minimal total
energy among all other possible configurations, the surface-like energy turns out to
enjoy on its own some suitable quasiminimality condition.

A major work in the study of minimal partitions is due to Almgren [1]. He proved
existence and regularity of partitioning hypersurfaces between regions of given mea-
sure, hypersurfaces which minimize an appropriate surface-like energy with so-called
partitioning regular weights assigned to the various interfaces. This work has been the
main source for the present paper, the goal being to give (nontrivial) improvements
of some of the results in [1] about the regularity theory of minimal partitions (we will
not consider here questions of existence).

First we consider more general energies since it seems that relevant physical situ-
ations do not fit Almgren’s setting (compare in particular (H1), (H2), and (H3) with
the hypotheses in [1, section VI.1], see also [8], [11]). We shall however go back to
Almgren’s setting in section 6. Next we relax the minimality into a quasiminimality
condition which reflects more closely the presence of external forces of volume type.
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†Laboratoire de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France

(Severine.Rigot@math.u-psud.fr).

1589
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This will actually not be a serious issue here and can be handled without too much
pain.

More significantly we prove some uniform and universal versions of properties
that appeared more or less explicitly, and in weaker form, in [1]. The properties we
have in mind, namely Ahlfors-regularity and condition B (see section 3 for precise
definitions), or the weaker forms exploited in [1], constitute some of the main steps in
the proof of the regularity results of C1,α type obtained in [1] (this actually turns out
to be more generally the case in many other geometric variational problems). Another
major motivation for the study of Ahlfors-regularity and condition B comes from the
fact that they imply the uniform rectifiability of the set of interfaces. We use here
the terminology of David and Semmes who have developed an extensive theory of
uniformly rectifiable sets. Uniform rectifiability is a quantitative and uniform version
of the classical notion of rectifiability, but it is much stronger because it comes with
uniform bounds (see [5] and the references therein). Note that due to the generality
adopted here—we assume only some Lipschitz regularity and nondegeneracy of the
defining integrands of the energy—one cannot hope to have much more in the way of
smoothness than uniform rectifiability, just for reasons of bi-Lipschitz invariance.

Finally we stress that, besides these quantitative rectifiability properties, the main
goal of this paper is to prove them with universal bounds. This roughly means that
we want to prove that these properties hold for any quasiminimal partition with
prescribed measure with quantifiers which depend only on the structural data of
the problem (the dimension, the prescribed measure, the way the quasiminimality is
formulated, bounds on the defining integrands of the energy) but not on the particular
partition under study (see section 3 for precise statements). In particular one of
the main steps in our proof is to show that quasiminimal partitions with prescribed
measure actually satisfy an apparently stronger condition where there is no volume
constraint anymore on the various components of admissible deformations, this new
condition being formulated in a way that depends only on the structural data of the
problem (see Theorem 3.6). This is one of the main points which improves what
was proved in [1] where the same kind of condition without volume constraint was
obtained but in a way that depends strongly on the specific geometry of the partition
under study (see especially the comment around typical examples of (F, ε, δ) minimal
sets on page vii in [1]).

The main issue when studying quasiminimal partitions with prescribed measure
is indeed to handle properly the volume constraint and Theorem 3.6 follows actually
from the construction of suitable deformations which modify the measure of each
component of the partition by a prescribed amount given in advance. As just pointed
out an additional difficulty here comes from the fact that we also need to keep a
universal control in these constructions just because of the uniform constants we
are seeking in the formulation of Ahlfors-regularity and condition B. This will be
done through a uniform version of Almgren’s original deformations, see Theorem 4.1
(compare with Theorem 4.2 which comes from [1]).

The same kind of results have been previously proved in [10] in a similar context
and for the simpler case of quasiminimal crystals, that is, for partitions composed by
simply one set and its complement, but with a completely different method.

The paper is organized as follows. In section 2 we recall basic facts about the
theory of sets with finite perimeter and define various classes of partitions and of
energies. We state the main results of this paper in section 3. Theorem 3.6 which
says that any quasiminimal partition with a volume constraint is locally quasiminimal
in a suitable universal way is proved in section 4. In particular the key argument
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of the proof, the above-mentioned construction of suitable deformations, is given
there by Theorem 4.1. We prove the Ahlfors-regularity and condition B for locally
quasiminimal partitions in section 5. In section 6 we restrict the study to energies
with so-called partitioning regular interface coefficients as in [1] and prove refined
properties.

2. Preliminaries. Throughout this paper we work in R
n, n ≥ 2, equipped with

its euclidean structure. For x ∈ R
n and t > 0, we denote by B(x, t) the open ball

with center x and radius t. For any set G ⊂ R
n we denote by 1lG its characteristic

function. If G is measurable, then |G| stands for its Lebesgue measure. Finally we
denote by Hn−1 the (n− 1) dimensional Hausdorff measure.

We first recall some results about the theory of sets with finite perimeter that
will be relevant for our purposes. For more details we refer the reader, for instance,
to [2], [7], or [12]. If G ⊂ R

n is a measurable set and Ω ⊂ R
n is open, the perimeter

of G in Ω, denoted by P (G,Ω), is defined by

P (G,Ω) = sup

{∫
Ω

1lG div φdx; φ ∈ C1
0 (Ω,Rn), ‖φ‖∞ ≤ 1

}
.

We say that a measurable set G has finite perimeter if P (G,Rn) < +∞ and we then
simply write P (G) = P (G,Rn).

If G has finite perimeter, then one knows that the set function Ω �→ P (G,Ω)
defined above is the restriction to the open subsets of R

n of a finite Borel measure,
called the perimeter of G and still denoted by P (G, .). Equivalently it follows from
Riesz’ representation theorem that a measurable set G has finite perimeter if and only
if the distributional gradient of its characteristic function ∇1lG can be represented by
a vector-valued measure. Then it turns out that the total variation | ∇1lG | of this
measure coincides with P (G, .).

The reduced boundary ∂∗G of a set G with finite perimeter is defined as the set
of points x ∈ R

n such that∫
B(x,r)

| ∇1lG | > 0 for all r > 0,

the limit

νG(x) = lim
r→0

(∫
B(x,r)

∇1lG

)
/

∫
B(x,r)

| ∇1lG |

exists, and ‖νG(x)‖ = 1. It follows from the theorem of Besicovitch on differentiation
of measures that νG(x) exists and ‖νG(x)‖ = 1 for | ∇1lG |-a.e. x ∈ R

n. Moreover, it
is well known that the perimeter P (G, .) coincides with Hn−1

|∂∗G
(.).

For any measurable set G and t > 0, we set

G(t) =

{
x ∈ R

n; lim
r→0

|G ∩B(x, r)|
|B(x, r)| = t

}
,

and define the essential boundary ∂∗G of G as the set of points where the volume
density of G is neither 0 nor 1, ∂∗G = R

n \ (G(0) ∪G(1)). It is also well known that
if G has finite perimeter, then

∂∗G ⊂ G(1/2) ⊂ ∂∗G and Hn−1(Rn \ (G(0) ∪G(1) ∪ ∂∗G)) = 0.(2.1)
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Note that it follows in particular that P (G, .) coincides with Hn−1
|∂∗G. Note also that

we always have ∂∗G ⊂ ∂G where ∂G is the topological boundary of G.
We turn now to the definition of a partition we shall work with. We fix once and

for all an integer N ∈ N
∗.

Definition 2.1 (partition). We say that a family A = (A0, . . . , AN ) of measur-
able sets is a partition if

Ai is a set with finite perimeter for all i ∈ {0, . . . , N},
|Ai ∩Aj | = 0 when i = j,

|Rn \ ∪N
i=0Ai| = 0.

We denote by P the set of all partitions.
Definition 2.2 (partition with prescribed measure). Let a = (a1, . . . , aN ), ai >

0, be fixed. We say that a partition A ∈ P has measure a if |Ai| = ai for all
i ∈ {1, . . . , N}. We denote by Pa the set of all partitions with measure a.

We will be mostly interested here in the regularity properties of the set of inter-
faces of some partitions. This set is precisely defined as follows.

Definition 2.3 (set of interfaces). For any A ∈ P, we define the set S of its
interfaces by S = ∪N

i=0∂
∗Ai.

Note that ∂∗Ai = ∪j �=i∂
∗Ai ∩ ∂∗Aj for all i ∈ {0, . . . , N}. Note also that the

interfaces Sij = ∂∗Ai ∩ ∂∗Aj , i = j, are essentially pairwise disjoint in the sense that

Hn−1(Sij ∩ Slk) = 0

whenever i = j, l = k, and at least three of the indexes are distinct.
The symmetric difference A�A′ between two partitions A and A′ ∈ P is defined

by

A�A′ = ∪N
i=0Ai�A′

i,

where Ai�A′
i = (Ai \A′

i)∪ (A′
i \Ai) denotes the usual symmetric difference between

sets. We set

|A�A′| = max
i≥0

|Ai�A′
i|,

and diam(A�A′) = maxi≥0 diam(Ai�A′
i). We say that A and A′ are equivalent if

|A�A′| = 0. Note that two equivalent partitions have the same set of interfaces.
Definition 2.4 (reduced partition). We say that A ∈ P is a reduced partition

if each component Ai of A coincides with the set of its Lebesgue points, that is, Ai =
Ai(1) for all i ∈ {0, . . . , N}.

For any given partition A there exists a unique reduced equivalent partition. It
is obtained from A replacing each one of its components by the set of their Lebesgue
points. Note that if A ∈ P is reduced, then Ai ∩ Aj = ∅ for i = j, Ai ∩ S = ∅ for all
i ∈ {0, . . . , N}, and R

n = (∪N
i=0Ai) ∪ S.

We now define the energy of a partition. We denote by Sn−1 the unit sphere in
R

n. Given a family of Borel functions Fij : R
n×Sn−1 → R

+, i, j ∈ {0, . . . , N}, i = j,
we define the associated energy E as

E(A,U) =
∑
i,j

i �=j

∫
∂∗Ai∩∂∗Aj

1lU (x)Fij(x, νAi(x)) dHn−1
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for any A ∈ P and any measurable set U ⊂ R
n. When U = R

n we simply write E(A).
Note that this definition is consistent because νAi is well defined Hn−1-a.e. on ∂∗Ai

with ‖νAi(x)‖ = 1 for Hn−1-a.e. x ∈ ∂∗Ai. Note also that two equivalent partitions
have the same energy.

Let F > 0 and F > 0 be two fixed positive constants with F ≤ F . Given a map
F : R

n × Sn−1 → R
+ we consider the following conditions:

sup
Rn×Sn−1

F ≤ F ,(H1)

F ≤ inf
Rn×Sn−1

F,(H2)

F is F -Lipschitz on R
n × Sn−1, that is,(H3)

|F (x, u) − F (y, v)| ≤ F max(‖x− y‖, ‖u− v‖) for all x, y ∈ R
n, for all u, v ∈ Sn−1.

Then we denote by E0(F , F ) the class of all those energies that are defined with
respect to some family of integrands (Fij) where each Fij satisfies (H1) and (H2), and
by E(F , F ) the class of all energies for which each associated defining integrand Fij

satisfies (H1), (H2), and (H3). Finally we denote by E(F ) the class of all energies for
which each defining integrand Fij satisfies (H1) and (H3).

When Fij(x, ν) = ‖ν‖ the corresponding energy is simply the sum of the perime-
ters of the different components. With a slight abuse of terminology and notation we
will call it the perimeter of the partition and denote it by P , that is,

P (A,U) =

N∑
i=0

N∑
j=0

j �=i

Hn−1(∂∗Ai ∩ ∂∗Aj ∩ U) =

N∑
i=0

P (Ai, U)

for all A ∈ P and measurable set U ⊂ R
n. Note that Hn−1-a.e. point in S belongs to

exactly one interface ∂∗Ai ∩ ∂∗Aj for some i = j and thus

P (A,U) = 2Hn−1(S ∩ U).(2.2)

Finally note that, whenever E ∈ E0(F , F ), we have

F P (A,U) ≤ E(A,U) ≤ F P (A,U).(2.3)

To conclude these preliminaries we fix some more conventions. In general non-
indexed letters, typically the letter C, will denote positive constants whose precise
value can change at each occurrence (unless otherwise stated). On the other hand,
indexed letters (C0, Cn, η0, . . . ) should denote constants whose value remains the
same throughout a same paragraph (but whose signification and value may change
from one paragraph to another, unless otherwise stated). Finally when specifying
C = C(n,N, . . . ) we mean that the value of C can be chosen depending only on the
fixed data inside the parentheses.

3. Quasiminimality conditions and main results. We fix an energy E as
defined in section 2. We also fix F > 0 and F > 0 with F ≤ F in view of further
assumptions we shall make on the energy. We first define quasiminimal partitions
with prescribed measure.

Definition 3.1. Let g : [0,+∞) → [0,+∞) be such that limt→0 t
(1−n)/ng(t) = 0

and some a = (a1, . . . , aN ), ai > 0, be fixed. We say that a partition A ∈ P is
(g, a)-quasiminimal (with respect to E) if A ∈ Pa and

E(A) ≤ E(A′) + g(|A′�A|)(3.1)

for all A′ ∈ Pa such that A′�A ⊂⊂ R
n.
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Note that in this definition admissible perturbations must preserve the measure
of the partition. Note also that (3.1) gives significant information only when |A′�A|
is small. In that case the way the energy can be decreased is controlled by g(|A′�A|)
and hence negligible compared to |A′�A|(n−1)/n. Roughly speaking this turns out
to be essentially equivalent to requiring the variation of the energy to be negligible
compared to the initial energy.

Before stating the main results of this paper we need some more definitions.

Definition 3.2 (Ahlfors-regularity). We say that a closed subset Σ of R
n is

Ahlfors-regular if there exist some constants c > 0 and C > 0, called Ahlfors-regularity
constants, such that

c rn−1 ≤ Hn−1(Σ ∩B(x, r)) ≤ C rn−1

for all x ∈ Σ and r ≤ 1.

This is a uniform and scale-invariant version of the property of having upper and
lower densities with respect to Hn−1 that are positive and finite.

Definition 3.3 (condition B). We say that a subset Σ of R
n satisfies condi-

tion B if there exists a constant C > 0, called condition B constant, such that, for
each ball B centered on Σ with radius r ≤ 1, one can find two balls contained in
B, with radius C r, and which are contained in two distinct connected components of
R

n \ Σ.

This topological condition is a quantitative, uniform, and scale-invariant way of
saying that Σ separates well the different connected components of its complement.
Sets that are Ahlfors-regular and satisfy condition B have strong rectifiability prop-
erties. Namely, they contain “big pieces of Lipschitz graphs” and thus are uniformly
rectifiable (see [3] for the original proof or [4] and [6] for simpler proofs). The aim
of this paper not being to speak about the theory of uniform rectifiability, we will
not enter the details and refer the reader to [5] and the references therein for more
information.

We can now state the main result of this paper about quasiminimal partitions
with prescribed measure.

Theorem 3.4. Assume that E ∈ E(F , F ). Let g : [0,+∞) → [0,+∞) be non-
decreasing and such that limt→0 t

(1−n)/ng(t) = 0 and let a = (a1, . . . , aN ), ai > 0, be
fixed. Let A be a (g, a)-quasiminimal partition with respect to E and let S denote its
set of interfaces. Then S is a closed Ahlfors-regular set which satisfies condition B.
Moreover, the Ahlfors-regularity and condition B constants can be taken depending
only on n, N , F , F , g, and a.

As already stressed in the introduction, besides the Ahlfors-regularity and con-
dition B on their own, the main point in this result is that one can find universal
Ahlfors-regularity and condition B constants, which do not depend on the specific
quasiminimal partition A.

We now wish to explain the main lines of the proof. Let us first introduce an-
other notion of quasiminimality where admissible perturbations are not required to
be volume preserving anymore, but a little bit localized instead (this constraint will
actually not be a serious issue here).

Definition 3.5 (locally quasiminimal partitions). Let g : [0,+∞) → [0,+∞)
be such that limt→0 t

(1−n)/ng(t) = 0 and let δ > 0 be fixed. We say that a partition
A ∈ P is (g, δ)-quasiminimal (with respect to E) if A satisfies (3.1) for all A′ ∈ P
such that diam(A′�A) < δ.
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In a first step we want to get rid of the volume constraint, proving that quasimin-
imal partitions with prescribed measure are locally quasiminimal in an appropriate
and universal way.

Theorem 3.6. Assume that E ∈ E(F , F ). Let g : [0,+∞) → [0,+∞) be non-
decreasing and such that limt→0 t

(1−n)/ng(t) = 0 and let a = (a1, . . . , aN ), ai > 0,
be fixed. Then there exist g̃ : [0,+∞) → [0,+∞) such that limt→0 t

(1−n)/ng̃(t) = 0
and δ > 0 such that any (g, a)-quasiminimal partition with respect to E is (g̃, δ)-
quasiminimal with respect to E. In particular g̃ and δ can be chosen depending only
on n, N , F , F , g, and a.

We shall prove this theorem in section 4. Let us mention that the assumption on
g to be nondecreasing is here mostly for technical convenience. As already stressed,
Theorem 3.6 is, at least from a technical point of view, the most delicate point here,
essentially because, in view of the last part of Theorem 3.4, we need to find g̃ and δ
universal. The proof of Theorem 3.6 relies on the construction of suitable deformations
of a partition which modify the measure of each component of a prescribed amount
given in advance. This will be done in Theorem 4.1 which is actually the crucial step
in the proof.

Next, with Theorem 3.6 in hand, we only need to worry about locally quasimini-
mal partitions and we shall prove in section 5 the Ahlfors-regularity and condition B
in that context (see Theorem 5.1). Arguments are based on comparison arguments
that one can now easily implement because there is no volume constraint anymore.
Let us also mention that we will actually get more information. First note that if A
and A′ are two equivalent partitions and if A is quasiminimal, then A′ is quasimini-
mal as well and both partitions have the same set of interfaces. In particular one can
always assume with no loss of generality that the quasiminimal partition is reduced
(remember the remarks around Definition 2.4). Then it is possible to prove that each
component is open and that one can replace essential boundaries with topological
boundaries in the definition of the set of interfaces.

Theorem 3.7. Assume that E ∈ E0(F , F ). Let g : [0,+∞) → [0,+∞) be
such that limt→0 t

(1−n)/ng(t) = 0 and let δ > 0 be fixed. Let A be a reduced (g, δ)-
quasiminimal partition with respect to E and let S denote its set of interfaces. Then
each component Ai, i ∈ {0, . . . , N}, of A is open and S = ∪N

i=0∂Ai. Moreover each
component with finite Lebesgue measure is bounded.

Note that we do not say in Theorem 3.7 that each boundary ∂Ai satisfies the
regularity properties, the Ahlfors-regularity and condition B, on its own and neither
that ∂∗Ai and ∂Ai coincide. This is actually not true in general. However it turns out,
as we shall show in section 6, that this is the case when one imposes more conditions
on the defining integrands Fij of the energy. These conditions correspond to those
taken in [1]. We refer the reader to section 6 for more details and precise statements;
see, in particular, Theorem 6.1.

4. Quasiminimal partitions with a volume constraint are locally quasi-
minimal. This section is devoted to the proof of Theorem 3.6. We first construct in
section 4.1 suitable families of deformations of a partition that allow to modify the
measure of each component by some prescribed amount given in advance. The proof
of Theorem 3.6 itself will be done in section 4.2.

4.1. Measure-prescribed deformations. We first define what we mean by
suitable families of deformations. Let F > 0 be fixed. Let A ∈ P be a partition,
Ω ⊂ R

n be open, ε > 0 and C > 0 be fixed. We say that a map ψ : (−ε, ε)N×R
n → R

n
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belongs to DΩ(A, ε, C) if for all v = (v1, . . . , vN ) ∈ (−ε, ε)N we have

ψ(v, .) is a C1 diffeomorphism, ψ(0, .) = Id,(4.1)

O(ψ(v, .)) ⊂⊂ Ω,(4.2)

where O(f) is defined for f : R
n → R

n by O(f) = {x ∈ R
n; f(x) = x},

|ψ(v,Ai)| − |Ai| = vi,(4.3)

|ψ(v,Ai)�Ai| ≤ C P (Ai,Ω) |v|,(4.4)

for all i ∈ {1, . . . , N}, with |v| = max |vi|, and finally

E(ψ(v,A), ψ(v, U)) ≤ E(A,U) + C P (A,U) |v|(4.5)

for all energy E ∈ E(F ) and all measurable set U ⊂ R
n.

In other words one can view an element ψ in DΩ(A, ε, C) as a family ψ(v, .) of
deformations of the partition A. The main point is that for any given v ∈ (−ε, ε)N , one
can use ψ(v, .) to add, or remove, depending on the sign of vi, exactly the prescribed
amount of mass vi to the component Ai (see (4.3)). At the same time (4.4) and (4.5)
give a control of order |v| on the measure of the symmetric difference between ψ(v,A)
and A and on the induced variation of the energy. This will fit exactly our needs for
the estimation of each term in the quasiminimality condition.

For technical reasons we will actually need to use two such families of deforma-
tions, each one acting far away from the other. Let δ > 0 be fixed. We say that
(ψ1, ψ2) belongs to CDΩ(A, ε, δ, C) if ψj ∈ DΩ(A, ε, C) for j = 1, 2 and

dist(O(ψ1(v, .)),O(ψ2(v, .))) ≥ δ

for all v ∈ (−ε, ε)N . When Ω = R
n we just write D(A, ε, C) and CD(A, ε, δ, C).

We are now ready to state the main result about the existence of such families of
deformations. Let a > 0, a > 0, P > 0 be fixed with a ≤ a. We denote by Pa,a,P the
set of all partitions A = (A0, . . . , AN ) ∈ P such that

a ≤ min
i≥1

|Ai| ≤ max
i≥1

|Ai| ≤ a and P (A) ≤ P .

Theorem 4.1. There exist three constants ε0 > 0, δ0 > 0, and C0 > 0, de-
pending only on n, N , F , a, a, and P , such that, for any A ∈ Pa,a,P , we have
CD(A, ε0, δ0, C0) = ∅.

It has been proved in [1] that for a fixed A ∈ P we have CD(A, ε, δ, C) = ∅ for
suitable parameters ε = ε(A), δ = δ(A), and C = C(A) which depend strongly on
the specific geometry of A. As already explained in the introduction this does not
fit our needs. However it also follows from [1] that CD(A′, ε, δ, C) = ∅ with the same
parameters ε, δ, and C as for A, as soon as A′ is close enough to A in measure. This
will be used in the proof of Theorem 4.1. More precisely, one has the following result.

Theorem 4.2 (see [1]). Let A ∈ P and Ω ⊂ R
n be open. Assume that |Ai∩Ω| > 0

for all i ∈ {0, . . . , N}. Then there exist ε > 0, δ > 0, C > 0, and η > 0 such
that, if A′ ∈ P is such that |A�A′| ≤ η, then CDΩ(A′, ε, δ, C) = ∅. Moreover
if Ω = ∪s

l=1Ωl where Ωl is open and Ωl ∩ Ωr = ∅ for l = r, one can construct
(ψ1, ψ2) ∈ CDΩ(A′, ε, δ, C) in such a way that

{x ∈ Ωl ; ψj(v, x) = x} ∪ ψj(v, {x ∈ Ωl ; ψj(v, x) = x}) ⊂⊂ Ωl

for all l ∈ {1, . . . , s}, j ∈ {1, 2}, and v ∈ (−ε, ε)N .
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This theorem is essentially given by Proposition VI.12 in [1]. We add here the
requirement (4.4) about the measure of the symmetric difference between the initial
partition and the deformed one. This condition never appears in [1] because Almgren
deals with minimal partitions and does not need to handle the extra term given by the
function g in the quasiminimality condition. Next we want to control the variation of
the energy for all energies in the class E(F ) (see (4.5)) which is a priori quite larger
than the class of energies considered in [1]. Finally we also add, mainly for technical
reasons, the localization in Ω and each Ωl. It turns actually out that one can easily
check that the deformations constructed in [1] satisfy these properties (or at least only
minor technical modifications of them). We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. We argue by contradiction and assume that one can find
a sequence Aν of partitions in Pa,a,P such that CD(Aν , ν

−1, ν−1, ν) = ∅ for all ν ∈
N

∗. We would like to find some limit, say A, to the sequence Aν and then apply
Theorem 4.2 to get a contradiction. For notational convenience, let us denote in
this proof the different components of the partition Aν by Aν(i), i ∈ {0, . . . , N},
(and similarly for any other partition we shall introduce). In other words we need to
know that each sequence Aν(i) converges to some set A(i) in L1. This is not true in
general because the sets Aν(i) are not a priori uniformly bounded as subsets of R

n

and classical embedding theorems only ensure convergence in L1
loc. For that reason

we first construct from Aν a uniformly bounded sequence A′
ν for which we will have

the required convergence. We must also do the construction in such a way to be
able to go back to the original sequence Aν when applying Theorem 4.2. Some of
the arguments in what follows are similar in spirit to arguments used in [1], but for
different purposes though.

Step 1. One can find C1 = C1(n, a, P ) > 0 and for all ν ∈ N
∗ and i ∈ {1, . . . , N}

a point pν(i) ∈ R
n such that

|Aν(i) ∩B(pν(i), 1)| ≥ C1,

see for instance [9, Lemma 4.1]. This essentially comes from the fact that a set with
positive and finite Lebesgue measure and finite perimeter cannot spread out too much
and must meet in a substantial way (which depends only on a lower bound for its
Lebesgue measure and an upper bound for its perimeter) at least one ball with unit
radius. Next we fix some R = R(n,N, a, a, P ) ≥ 4 large enough so that

|B(0, R/2)| −Na ≥ C1.

Step 2. Up to a subsequence one can always assume that

lim
ν→+∞

‖pν(i) − pν(j)‖

exists in R
+ ∪ {+∞} for all i, j ∈ {1, . . . , N}. Let Λ1, . . . ,Λs be a partitioning of

{1, . . . , N} so that k, l ∈ Λr if and only if there exist k1 = k, . . . , kt = l in {1, . . . , N}
such that

lim
ν→+∞

‖pν(kj) − pν(kj+1)‖ ≤ 2R

for j = 1, . . . , t − 1. We also assume, passing to a subsequence if necessary, that for
all r ∈ {1, . . . , s} and k, l ∈ Λr,

lim
ν→+∞

pν(k) − pν(l)

exists. Finally for each r ∈ {1, . . . , s}, we fix an index kr ∈ Λr.
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Step 3. For each ν ∈ N
∗ and r ∈ {1, . . . , s}, we set

Bν,r = ∪k∈ΛrB(pν(k), R).

Note that if l, r ∈ {1, . . . , s} with l = r we have

lim
ν→+∞

‖pν(i) − pν(j)‖ > 2R

for all i ∈ Λl and j ∈ Λr, hence Bν,l ∩ Bν,r = ∅ if ν is large enough. For each
r ∈ {1, . . . , s} and i ∈ {1, . . . , N}, we set

Aν,r(i) = Aν(i) ∩Bν,r.

Step 4. Let C2 = C2(N) ≥ 2 be a constant chosen large enough so that, for all ν
large enough, we have

‖pν(j) − pν(kr)‖ ≤ C2R/2

for all r ∈ {1, . . . , s} and j ∈ Λr. Then we have

Bν,r ⊂ B(pν(kr), C2R).

For each ν ∈ N
∗, r ∈ {1, . . . , s}, and i ∈ {1, . . . , N}, we set

A′
ν,r(i) = τν,r(Aν,r(i)),

where τν,r is the translation defined by τν,r(x) = x− pν(kr) + (0, . . . , 0, 2C2Rr). We
have for all ν large enough,

A′
ν,r(i) ⊂ τν,r(Bν,r) ⊂ B(r),

where B(r) = B((0, . . . , 0, 2C2Rr), C2R). Note that for l, r ∈ {1, . . . , s}, l = r, we
have B(l) ∩B(r) = ∅. Finally for i ∈ {1, . . . , N}, we set

A′
ν(i) = ∪s

r=1A
′
ν,r(i)

and

A′
ν(0) = R

n\ ∪N
i=1 A

′
ν(i),

A′
ν = (A′

ν(0), . . . , A′
ν(N)).

Step 5. By construction we have, for some constant C3 = C3(n,N, a, a, P ) > 0
and all ν large enough,

A′
ν(i) ⊂ B(0, C3)

for each i ∈ {1, . . . , N}. Moreover, recalling that Aν ∈ A, we have for ν large enough,

P (A′
ν(i)) ≤

s∑
r=1

P (A′
ν,r(i)) =

s∑
r=1

P (Aν,r(i))

≤
s∑

r=1

P (Aν(i), Bν,r) + P (Bν,r)

≤ P (Aν(i)) +

N∑
j=1

P (B(pν(j), R)) ≤ C
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for some suitable C = C(n,N, a, a, P ) > 0. Hence we have uniformly bounded se-
quences of sets with uniformly bounded perimeter and thus, passing to a subsequence,
one can assume that for each i ∈ {1, . . . , N} the set A′

ν(i) converges in L1 to some
set A(i) with finite perimeter (in the sense of convergence of the corresponding char-
acteristic functions, see for instance [7, Theorem 1.19]). Note that it follows that the
sequence A′

ν(0) converges to A(0) in L1 where

A(0) = R
n\ ∪N

i=1 A(i).

Let us set

A = (A(0), . . . , A(N)) ∈ P.

Step 6. For each r ∈ {1, . . . , s} and j ∈ Λr, we set

pj = lim
ν→+∞

τν,r(pν(j)),

(this limit is well defined because of Step 2) and

Ωr = ∪j∈Λr
B(pj , R/2),

Ω = ∪s
r=1Ωr.

By construction we have Ωl ∩ Ωr = ∅ whenever l = r and we also have that the
partitions A′

ν and τν,r(Aν) coincide on the open set Ωr provided ν is large enough,
that is,

A′
ν(i) ∩ Ωr = τν,r(Aν(i)) ∩ Ωr(4.6)

for all r ∈ {1, . . . , s} and all i ∈ {1, . . . , N}. Indeed for each r ∈ {1, . . . , s} and j ∈ Λr

set qν(j) = τ−1
ν,r (pj). We have qν(j)− pν(j) = pj − τν,r(pν(j)) and it follows that, if ν

is large enough,

B(pν(j), R/4) ⊂ B(qν(j), R/2) ⊂ B(pν(j), R).

(The left inclusion will be used later in Step 7.) In particular we get for all ν large
enough and all r ∈ {1, . . . , s},

Ωr = τν,r(∪j∈ΛrB(qν(j), R/2))

⊂ τν,r(∪j∈ΛrB(pν(j), R))

= τν,r(Bν,r) ⊂ B(r).

Since B(l)∩B(r) = ∅ whenever l = r, it follows that the sets Ωr are pairwise disjoint.
Next (4.6) follows automatically from the previous inclusions and the construction of
A′

ν(i) in Step 4 and that of Aν,r(i) in Step 3.
Step 7. We have

|A(i) ∩ Ω| > 0

for all i ∈ {0, . . . , N}. Indeed if i ∈ {1, . . . , N} and r ∈ {1, . . . , s} are such that i ∈ Λr,
then

|A′
ν(i) ∩ Ω| ≥ |A′

ν,r(i) ∩B(pi, R/2)|
= |Aν,r(i) ∩B(qν(i), R/2)|
≥ |Aν(i) ∩B(pν(i), R/4)| ≥ C1 > 0
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for all ν large enough, by choice of C1 in Step 1 and remembering that R ≥ 4.
Passing to the limit when ν goes to infinity, we get the conclusion for i ∈ {1, . . . , N}.
Finally, if ν is large enough, we have by construction |A′

ν(i)∩Ω| ≤ |Aν(i)| ≤ a for all
i ∈ {1, . . . , N} hence |A(i) ∩ Ω| ≤ a if i = 0. Then, for any j ∈ {1, . . . , N}, we get

|A(0) ∩ Ω| ≥ |A(0) ∩B(pj , R/2)|
≥ |B(pj , R/2)| − | ∪N

i=1 A(i)|
≥ |B(pj , R/2)| −Na ≥ C1 > 0

by choice of R in Step 1.
Step 8. It follows from Step 7 that one can apply Theorem 4.2 to the partition

A and the open set Ω and find corresponding ε, δ, C, and η > 0. Then, if ν is large
enough, we have |A′

ν�A| ≤ η so that one can find (ψ1
ν , ψ

2
ν) ∈ CDΩ(A′

ν , ε, δ, C) with

{x ∈ Ωr; ψj
ν(v, x) = x} ∪ ψj

ν(v, {x ∈ Ωr; ψj
ν(v, x) = x}) ⊂⊂ Ωr

for j ∈ {1, 2}, all r ∈ {1, . . . , s}, and v ∈ (−ε, ε)N . We set

ϕj
ν(v, x) = (τ−1

ν,r ◦ ψj
ν(v, .) ◦ τν,r)(x)

if x ∈ τ−1
ν,r (Ωr) and

ϕj
ν(v, x) = x

otherwise. Remember that, if ν is large enough, τ−1
ν,r (Ωr) ⊂ Bν,r and Bν,r ∩ Bν,l = ∅

for l = r (see Step 3). Hence τ−1
ν,r (Ωr) ∩ τ−1

ν,l (Ωl) = ∅ and ϕj
ν(v, .) is well defined.

Next we clearly have, at least if ν is large enough,

{x ∈ τ−1
ν,r (Ωr); ϕj

ν(v, x) = x} ∪ ϕj
ν(v, {x ∈ τ−1

ν,r (Ωr); ϕj
ν(v, x) = x}) ⊂⊂ τ−1

ν,r (Ωr)

and

O(ϕj
ν(v, .)) ⊂⊂ ∪s

r=1τ
−1
ν,r (Ωr).

Since each ψj
ν(v, .) is a C1 diffeomorphism, it follows in particular that ϕj

ν(v, .) is a
C1 diffeomorphism for j ∈ {1, 2} and each v ∈ (−ε, ε)N .

To compute the variation of the measure and of the energy of Aν under ϕj
ν , we

clearly need to worry only about what happens inside the pairwise disjoint open sets
τ−1
ν,r (Ωr). Recalling that the partitions τν,r(Aν) and A′

ν coincide on Ωr (see (4.6)), we
have

|ϕj
ν(v,Aν(i))| − |Aν(i)| =

s∑
r=1

|ϕj
ν(v,Aν(i) ∩ τ−1

ν,r (Ωr))| − |Aν(i) ∩ τ−1
ν,r (Ωr)|

=

s∑
r=1

|ψj
ν(v,A

′
ν(i) ∩ Ωr)| − |A′

ν(i) ∩ Ωr|

= |ψj
ν(v,A

′
ν(i))| − |A′

ν(i)| = vi

for all ν large enough and i ∈ {1, . . . , N} according to the property (4.3) of the map
ψj
ν ∈ DΩ(A′

ν , ε, C). Similarly, using (4.4) for ψj
ν , we have for all ν large enough and

i ∈ {1, . . . , N},

|ϕj
ν(v,Aν(i))�Aν(i)| = |ψj

ν(v,A
′
ν(i))�A′

ν(i)|
≤ CP (A′

ν(i),Ω)|v| ≤ CP (Aν(i))|v|.
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The last inequality follows from the invariance of the perimeter under translations
together with (4.6). Indeed we have for all ν large enough,

P (A′
ν(i),Ω) =

s∑
r=1

P (A′
ν(i),Ωr) =

s∑
r=1

P (τν,r(Aν(i)),Ωr)

=

s∑
r=1

P (Aν(i), τ
−1
ν,r (Ωr)) ≤ P (Aν(i)).

Next we consider an energy E ∈ E(F ) defined with respect to some family (Fij).
Note that

E(τ(Ã), τ(U)) = Eτ (Ã, U)

for any partition Ã ∈ P, any measurable set U ⊂ R
n, and any translation τ : R

n → R
n

where Eτ ∈ E(F ) is defined with respect to the family ((x, y) �→ Fij(τ(x), y)). It
follows that if U is a measurable set, then, for ν large enough,

E(ϕj
ν(v,Aν), ϕ

j
ν(v, U)) − E(Aν , U)

=

s∑
r=1

E(τ−1
ν,r ◦ ψj

ν(v,A
′
ν), τ

−1
ν,r (Ωr) ∩ ϕj

ν(v, U)) − E(τ−1
ν,r (A′

ν), τ
−1
ν,r (Ωr) ∩ U)

=

s∑
r=1

Eτ−1
ν,r

(ψj
ν(v,A

′
ν),Ωr ∩ ψj

ν(v, τν,r(U))) − Eτ−1
ν,r

(A′
ν ,Ωr ∩ τν,r(U)).

Since Eτ−1
ν,r

∈ E(F ) and ψj
ν(v,Ωr∩τν,r(U)) = Ωr∩ψj

ν(v, τν,r(U)) for all ν large enough

and all r ∈ {1, . . . , s}, it follows from the property (4.5) of ψj
ν that

Eτ−1
ν,r

(ψj
ν(v,A

′
ν),Ωr ∩ ψj

ν(v, τν,r(U))) − Eτ−1
ν,r

(A′
ν ,Ωr ∩ τν,r(U))

≤ C P (A′
ν ,Ωr ∩ τν,r(U)) |v| = C P (Aν , τ

−1
ν,r (Ωr) ∩ U) |v|

and thus

E(ϕj
ν(v,Aν), ϕ

j
ν(v, U)) − E(Aν , U) ≤ C P (Aν , U) |v|

for all ν large enough.
Finally by construction it is clear that one can find δ′ > 0, may be smaller than

δ but still strictly positive and not depending on ν, such that

dist(O(ϕ1
ν(v, .)),O(ϕ2

ν(v, .))) ≥ δ′.

Hence taking ν large enough and so that ν ≥ max(ε−1, δ′−1, C) we have just proved
that

(ϕ1
ν , ϕ

2
ν) ∈ CD(Aν , ν

−1, ν−1, ν)

which gives the required contradiction and concludes the proof.
Although we will not need this refinement here one can note that, with essentially

the same proof modulo only minor technical modifications, one can get a localized
version of Theorem 4.1 similar to that given in Theorem 4.2. More precisely, assume
that Ω ⊂ R

n is open and, for simplicity, bounded and that Ω = ∪s
l=1Ωl with the sets
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Ωl open and pairwise disjoint. Let Pa,P ,Ω denote the class of all partitions A ∈ P
such that

a ≤ min
i=0,...,N

|Ai ∩ Ω| and P (A,Ω) ≤ P

for some a > 0 and P > 0. Then one can find ε0 > 0, δ0 > 0, and C0 > 0,
depending only on n, N , F , a, and P , such that for all A ∈ Pa,P ,Ω one can find
(ψ1, ψ2) ∈ CDΩ(A, ε0, δ0, C0) such that

{x ∈ Ωl ; ψj(v, x) = x} ∪ ψj(v, {x ∈ Ωl ; ψj(v, x) = x}) ⊂⊂ Ωl

for all l ∈ {1, . . . , s}, j ∈ {1, 2}, and v ∈ (−ε0, ε0)
N .

4.2. Proof of Theorem 3.6. We now prove Theorem 3.6. We let 0 < F ≤ F <
+∞, E ∈ E(F , F ), g : [0,+∞) → [0,+∞), a = (a1, . . . , aN ) be as in the statement
and A ∈ Pa be a (g, a)-quasiminimal partition with respect to E. Recall that we want
to find some suitable g̃ : [0,+∞) → [0,+∞) such that limt→0 t

(1−n)/ng̃(t) = 0 and
δ > 0 both universal and such that A is a (g̃, δ)-quasiminimal partition with respect to
E. Throughout this subsection, when saying that some object is universal, we mean
more precisely that it can be chosen depending only on n, N , F , F , g, and a.

Set a = mini≥1 ai and a = maxi≥1 ai. Next we claim that one can find P > 0
universal such that P (A) ≤ P . To see this, setting Bt = B(0, t) for all t > 0, we
choose R > 0 large enough so that

P (Ai,R
n \BR) ≤ 1

for all i ∈ {0, . . . , N} and so that one can find N open balls B1, . . . , BN with Bi ⊂⊂
BR, |Bi| = ai and Bi ∩ Bj = ∅ for i = j. By the coarea formula and Tchebytchev’s
inequality, we have

|{t ∈ (R,R + 1); Hn−1(Ai ∩ ∂Bt) > C a}|1 ≤ |Ai ∩ (BR+1 \BR)|
C a

≤ C−1,

where |.|1 denotes the one dimensional Lebesgue measure. Then, choosing C large
enough, depending only on N , and recalling that

P (Ai \Bt) = P (Ai,R
n \Bt) + Hn−1(Ai ∩ ∂Bt)

for a.e. t > 0 (see for instance [7, Remark 2.14]), one can find t ∈ (R,R+1) such that
this last equality holds and

Hn−1(Ai ∩ ∂Bt) ≤ C a

for all i ∈ {1, . . . , N}. We set

A′
i = (Ai \Bt) ∪B′

i

for i ∈ {1, . . . , N}, where B′
i ⊂ Bi is a ball with |B′

i| = |Ai ∩Bt|, and

A′
0 = R

n \ ∪N
i=1A

′
i.

We have A′ = (A′
0, . . . , A

′
N ) ∈ Pa and A′�A ⊂⊂ R

n. Next, for all i ∈ {1, . . . , N}, we
have

P (A′
i) = P (B′

i) + P (Ai \Bt)

≤ C a
n−1
n + P (Ai,R

n \Bt) + Hn−1(Ai ∩ ∂Bt)

≤ C a
n−1
n + P (Ai,R

n \BR) + C a ≤ C
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for some universal constants C > 0. When i = 0, we have

P (A′
0) = P (Rn \ ∪N

i=1A
′
i) ≤

n∑
i=1

P (A′
i).

Then it follows from (2.3) that

E(A′) ≤ F P (A′) ≤ C

for some suitable universal constant C > 0. On the other hand, for i ∈ {1, . . . , N}, we
have |A′

i�Ai| ≤ 2 a and A′
0�A0 ⊂ ∪N

i=1A
′
i�Ai, hence g(|A′�A|) ≤ g(2N a) since g

is nondecreasing. Then it follows from (2.3) together with the (g, a)-quasiminimality
(3.1) of A that

P (A) ≤ F−1 E(A) ≤ F−1 (E(A′) + g(|A′�A|)) ≤ P

for some suitable universal constant P > 0 as claimed.
Thus we have A ∈ Pa,a,P as in section 4.1 and Theorem 4.1 gives some ε0 >

0, δ0 > 0, and C0 > 0 universal such that CD(A, ε0, δ0, C0) = ∅. Let (ψ1, ψ2) ∈
CD(A, ε0, δ0, C0) and let us fix δ > 0 universal and small enough so that

|Bδ| < ε0 and 4δ < δ0.

Now let A′ ∈ P be such that diam(A′�A) < δ (A′ has here nothing to do with the
partition constructed a few lines above). To prove the theorem we need to compare the
energy of A′ with that of A. We first use the suitable deformations given by ψ1 (or ψ2)
to construct from A′ a partition A′′ ∈ Pa. Then we will use the (g, a)-quasiminimality
of A to get a comparison between the energies.

For i ∈ {1, . . . , N} we set vi = |Ai|−|A′
i|. Since diam(A′�A) < δ then A′�A ⊂⊂

B for some ball B with radius δ and thus

|vi| = ||Ai \A′
i| − |A′

i \Ai|| ≤ |A′
i�Ai| ≤ |B|,

that is, v = (v1, . . . , vN ) ∈ (−ε0, ε0)
N by choice of δ. Next let us assume that

2B ∩ O(ψ1(v, .)) = ∅,

where 2B denotes the ball concentric to B with radius 2δ. Otherwise, since

dist(O(ψ1(v, .)),O(ψ2(v, .))) ≥ δ0

and 4δ < δ0, we would have 2B ∩O(ψ2(v, .)) = ∅ and would simply use ψ2 instead of
ψ1 in what follows. Then we set

A′′
i = (A′

i ∩B) ∪ (ψ1(v,Ai) ∩ R
n \B)

and A′′ = (A′′
0 , . . . , A

′′
N ). Since A′

i coincides with Ai on a neighborhood of R
n \ B

and ψ1(v,Ai) with Ai on B (note that since ψ1(v, .) is a C1 diffeomorphism, we
have ψ1(v,O(ψ1(v, .))) = O(ψ1(v, .))) it follows from the property (4.3) of ψ1 ∈
D(A, ε0, C0) that, for all i ∈ {1, . . . , N},

|A′′
i | = |A′

i ∩B| + |ψ1(v,Ai) ∩ R
n \B|

= |A′
i| + |ψ1(v,Ai)| − |Ai|

= |A′
i| + vi = |Ai|
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hence A′′ ∈ Pa. For the same reasons we have

E(A′,Rn \B) = E(A,Rn \B),

E(ψ1(v,A), B) = E(A,B).

Next A′′ coincides with A′ on B and with ψ1(v,A) on a neighborhood of R
n \ B,

hence

E(A′′) = E(A′, B) + E(ψ1(v,A),Rn \B)

= E(A′) + E(ψ1(v,A)) − E(A)

≤ E(A′) + C0 P (A) |v|
≤ E(A′) + C0 P |A′�A|

according to (4.5). Finally we have

A′′�A = (A′�A) ∪ (ψ1(v,A)�A)

and thus, since, thanks to (4.4),

|ψ1(v,Ai)�Ai| ≤ C0 P (Ai) |v| ≤ C0 P (Ai) |A′�A|

for all i ∈ {1, . . . , N} and |ψ1(v,A0)�A0| ≤ | ∪N
i=1 ψ1(v,Ai)�Ai|, we get

|A′′�A| ≤ (2C0 P + 1) |A′�A|.

To conclude we use the (g, a)-quasiminimality of A to compare E(A) and E(A′′),

E(A) ≤ E(A′′) + g(|A′′�A|)
≤ E(A′) + C0 P |A′�A| + g((2C0 P + 1) |A′�A|)

because g is nondecreasing. Then setting g̃(t) = C0 P t + g((2C0 P + 1) t) we have
just proved that A is (g̃, δ)-quasiminimal and this concludes the proof.

5. Ahlfors-regularity and condition B. This section is devoted to the study
of locally quasiminimal partitions. Namely, we fix some 0 < F ≤ F < +∞, E ∈
E0(F , F ), g : [0,+∞) → [0,+∞) such that limt→0 t

(1−n)/ng(t) = 0 and δ > 0 and we
prove the following theorem, Theorem 5.1, together with Theorem 3.7.

Theorem 5.1. Let A be a (g, δ)-quasiminimal partition with respect to E and
let S denote its set of interfaces. Then S is a closed Ahlfors-regular set with Ahlfors-
regularity constants that can be chosen depending only on n, F , F , g, and δ, and S
satisfies condition B with a condition B constant that can be chosen depending only
on n, F , F , g, δ, and N .

We shall actually get slightly refined properties, see especially Lemma 5.7 (see
also section 6 for a particular case). For simplicity, and with no loss of generality, we
assume that δ < 1. We also assume that A is a reduced (g, δ)-quasiminimal partition
(remember that the assumption on A to be reduced is not restrictive, see the comments
before Theorem 3.7). We begin with the upper bound in the Ahlfors-regularity.

Lemma 5.2. There exist a constant C0 = C0(n, F , F ) > 0 and a radius r0 =
r0(n, g, δ) ≤ 1 such that, for all x ∈ R

n and r ≤ r0, we have

Hn−1(S ∩B(x, r)) ≤ C0 r
n−1.
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Proof. The proof is based on a simple comparison argument. We take x ∈ R
n,

r > 0 and set

A′
0 = A0 ∪B(x, r),

A′
i = Ai\B(x, r)

for i ∈ {1, . . . , N}. Then A′ = (A′
0, . . . , A

′
N ) ∈ P and, since A′�A ⊂ B(x, r), we have

diam(A′�A) < δ provided r < δ/2. Moreover |A′�A| ≤ |B(x, r)| hence, if r is small
enough, depending only on n and g, we get from the behavior of g near 0 that

g(|A′�A|) ≤ rn−1.

On the other hand, A′ and A coincide on the open set R
n \ B(x, r) hence they have

the same energy there and it follows from the (g, δ)-quasiminimality of A that

E(A,B(x, r)) ≤ E(A′, B(x, r)) + g(|A′�A|) ≤ E(A′, B(x, r)) + rn−1.

We have

E(A,B(x, r)) ≥
N∑
i=0

N∑
j=0

j �=i

∫
∂∗Ai∩∂∗Aj

1lB(x,r)(y)Fij(y, νAi
(y)) dHn−1

≥ F

N∑
i=0

N∑
j=0

j �=i

Hn−1(∂∗Ai ∩ ∂∗Aj ∩B(x, r))

= 2F Hn−1(S ∩B(x, r)),

where the last equality follows from (2.2). On the other hand, we clearly have
E(A′, B(x, r)) = 0. Next, any point y in ∂B(x, r) is a point of lower density at
least 1/2 for A′

0 because B(x, r) ⊂ A′
0. Then, since ∂∗A

′
i ⊂ A′

i(1/2), such points
y ∈ ∂B(x, r) can only belong to at most a single set ∂∗A

′
i with i = 0. It follows that

Hn−1(∂∗A′
i ∩ ∂∗A′

j ∩ ∂B(x, r)) = 0

whenever i, j ∈ {1, . . . , N}, i = j, and hence

E(A′,∂B(x, r))

=
N∑
i=1

∫
∂∗A′

0∩∂∗A′
i

1l∂B(x,r)(y)(F0i(y, νA′
0
(y)) + Fi0(y, νA′

i
(y))) dHn−1

≤ 2F

N∑
i=1

Hn−1(∂∗A′
0 ∩ ∂∗A′

i ∩ ∂B(x, r))

= 2F Hn−1(∂∗A′
0 ∩ ∂B(x, r)) ≤ C rn−1

(remember the comments after Definition 2.3 for the equality on the last line). Then
we get

Hn−1(S ∩B(x, r)) ≤ (2F )−1 E(A,B(x, r))

≤ (2F )−1 (E(A′, ∂B(x, r)) + rn−1) ≤ C0 r
n−1

for some C0 = C0(n, F , F ) > 0 as wanted.



1606 SÉVERINE RIGOT

Analogues of the next lemma are quite standard in the regularity theory of (quasi-)
minimal sets and is technically one of our main steps. It says that if the proportion
of some component inside a ball is large enough, then this component contains one
half the ball.

Lemma 5.3. There exists η0 = η0(n, F , F , g) > 0 such that, for all i ∈ {0, . . . , N},
x ∈ R

n, and r ≤ δ/2, if |B(x, r)\Ai| ≤ η0 r
n, then B(x, r/2) ⊂ Ai.

Proof. Since A is a reduced partition, and hence Ai = Ai(1), it is sufficient to
show that |B(x, r/2)\Ai| = 0 when i ∈ {0, . . . , N}, x ∈ R

n, and r ≤ δ/2 are fixed as
in the statement. For t > 0, we set m(t) = |B(x, t)\Ai| and assume that m(r) ≤ η0 r

n

for some η0 > 0 to be fixed small later. Arguing by contradiction, we also assume
that m(r/2) > 0. Using a similar comparison argument as in the proof of Lemma 5.2,
we set for t ∈ (r/2, r),

A′
i = Ai ∪B(x, t),

and, for j = i,

A′
j = Aj\B(x, t).

Then A′ = (A′
0, . . . , A

′
N ) ∈ P and, since A′�A ⊂ B(x, t), we have diam(A′�A) < δ.

Since A′ and A coincide on the open set R
n \B(x, t), they have the same energy there

and we get from the (g, δ)-quasiminimality of A that

E(A,B(x, t)) ≤ E(A′, B(x, t)) + g(|A′�A|).

We have

E(A,B(x, t)) ≥
N∑
j=0

j �=i

∫
∂∗Ai∩∂∗Aj

1lB(x,t)(y)Fij(y, νAi(y)) dHn−1

≥ F

N∑
j=0

j �=i

Hn−1(∂∗Ai ∩ ∂∗Aj ∩B(x, t))

= F Hn−1(∂∗Ai ∩B(x, t))

≥ C min(|B(x, t) \Ai|, |Ai ∩B(x, t)|)n−1
n = C m(t)

n−1
n ,

where the equality follows from the comments after Definition 2.3 and the last inequal-
ity from the relative isoperimetric inequality for balls, provided η0 is small enough,
how small depending only on n. On the other hand, E(A′, B(x, t)) = 0 and, arguing
as in Lemma 5.2 (see the estimation of E(A′, ∂B(x, r)) there), we have

E(A′, ∂B(x, t)) ≤ 2F Hn−1(∂∗A′
i ∩ ∂B(x, t)) = 2F P (Ai ∪B(x, t), ∂B(x, t)).

Combining these inequalities we get

Cm(t)
n−1
n ≤ P (Ai ∪B(x, t), ∂B(x, t)) + g(|A′�A|)(5.1)

for some suitable constant C = C(n, F , F ) > 0. We have

|A′�A| = m(t) ≤ η0 r
n ≤ η0
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thus, if η0 is small enough,

g(|A′�A|) ≤ Cm(t)
n−1
n

2
,

where C is the constant that shows up in (5.1). Then, recalling that

P (Ai ∪B(x, t), ∂B(x, t)) = m′(t)

for a.e. t > 0 (this follows for instance from [7, Remark 2.14] and the coarea formula),
it follows that

m(t)
n−1
n ≤ C P (Ai ∪B(x, t), ∂B(x, t)) ≤ Cm′(t)

for a.e. t ∈ (r/2, r) and for some suitable constant C = C(n, F , F ) > 0. Finally, since
by assumption m(t) > 0 for all t ≥ r/2, we can rewrite this inequality in the following
way:

C ≤ m(t)
1−n
n m′(t),

and, integrating over (r/2, r), we get

r ≤ C (m(r)
1
n −m(r/2)

1
n ) ≤ Cm(r)

1
n ≤ C η

1
n
0 r

for some C = C(n, F , F ) > 0. This is impossible if η0 is small enough and gives the
contradiction.

We draw in the following lemma some easy consequences of Lemma 5.3 which
help to clarify the picture and give the first part of Theorem 3.7.

Lemma 5.4. For all i ∈ {0, . . . , N}, Ai is open and S = ∪N
i=0∂Ai.

Proof. Let i ∈ {0, . . . , N} be fixed and x ∈ Ai. Since A is reduced, x is point of
density 1 for Ai hence |B(x, r)\Ai| ≤ η0 r

n for all r small enough where η0 is given
by Lemma 5.3. Then according to that lemma we have B(x, r/2) ⊂ Ai hence Ai is
open. Next we always have S ⊂ ∪N

i=0∂Ai. On the other hand, if x ∈ ∂Ai for some
i ∈ {0, . . . , N}, then x ∈ ∪N

j=0Aj because these sets are open and pairwise disjoint,
and hence x ∈ S as required (remember what follows Definition 2.4).

We now prove the lower bound in the Ahlfors-regularity.
Lemma 5.5. There exists c0 = c0(n, F , F , g) > 0 such that, for all x ∈ S and

r ≤ δ/2, we have

Hn−1(S ∩B(x, r)) ≥ c0 r
n−1.

Proof. Let c0 > 0 be a constant that will be fixed small later, depending only on
n, F , F , and g, and assume by contradiction that one can find x ∈ S and r ≤ δ/2
such that

Hn−1(S ∩B(x, r)) < c0 r
n−1.

First one can find i ∈ {0, . . . , N} such that

|Ai ∩B(x, r)| > |B(x, r)|/2.

Otherwise the relative isoperimetric inequality for balls would give

|Ai ∩B(x, r)|n−1
n = min(|Ai ∩B(x, r)|, |B(x, r) \Ai|)

n−1
n

≤ CHn−1(∂∗Ai ∩B(x, r))
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for all i ∈ {0, . . . , N}. Using (2.2) we would get

N∑
i=0

|Ai ∩B(x, r)|n−1
n ≤ C

N∑
i=0

Hn−1(∂∗Ai ∩B(x, r))

≤ CHn−1(S ∩B(x, r)) ≤ C c0 r
n−1.

On the other hand, since |Ai ∩B(x, r)| ≤ |B(x, r)|/2 for all i ∈ {0, . . . , N}, we have

N∑
i=0

|Ai ∩B(x, r)|n−1
n ≥ 2

1
n |B(x, r)|− 1

n

N∑
i=0

|Ai ∩B(x, r)| = 2
1
n |B(x, r)|n−1

n .

Hence we would have

|B(x, r)|n−1
n ≤ C c0 r

n−1

for some dimensional constant C > 0 but this is impossible if c0 is small enough. Thus
let us fix i ∈ {0, . . . , N} such that |Ai ∩ B(x, r)| > |B(x, r)|/2. Then once again by
the relative isoperimetric inequality for balls we have

|B(x, r)\Ai| ≤ CHn−1(∂∗Ai ∩B(x, r))
n

n−1

≤ CHn−1(S ∩B(x, r))
n

n−1

≤ C c
n

n−1

0 rn,

and Lemma 5.3 implies that B(x, r/2) ⊂ Ai provided c0 = c0(n, F , F , g) is small
enough. In particular x ∈ Ai. But A is a reduced partition and thus S∩Ai = ∅ which
gives the required contradiction.

Corollary 5.6. The set of interfaces S is a closed Ahlfors-regular set with
regularity constants that can be chosen depending only on n, F , F , g, and δ.

Proof. First, according to Lemma 5.4, S is the finite union of the topological
boundaries ∂Ai and hence is closed. Next Lemmas 5.2 and 5.5 give the required
inequalities

c0 r
n−1 ≤ Hn−1(S ∩B(x, r)) ≤ C0 r

n−1

for all x ∈ S and r ≤ r1 = min(δ/2, r0). If r ∈ [r1, 1] we obviously have

(c0 r
n−1
1 ) rn−1 ≤ c0 r

n−1
1 ≤ Hn−1(S ∩B(x, r1)) ≤ Hn−1(S ∩B(x, r)).

Finally the upper inequality in the Ahlfors-regularity for r ∈ [r1, 1] follows from a
standard covering argument that we include here for the sake of completeness. Let
us consider a maximal family A of points in S ∩ B(x, r) at mutual distance greater
than or equal to r1. The balls B(y, r1/2), y ∈ A, are pairwise disjoint and contained
in B(x, 2r), hence,

card A ≤ C
∑
y∈A

|B(y, r1/2)| = C | ∪y∈A B(y, r1/2)|

≤ C |B(x, 2r)| ≤ C rn ≤ C rn−1

for some suitable constants C > 0. Since S ∩B(x, r) ⊂ ∪y∈AB(y, r1), it follows that

Hn−1(S ∩B(x, r)) ≤
∑
y∈A

Hn−1(S ∩B(y, r1))

≤ C (card A) rn−1
1 ≤ C rn−1

for some suitable constant C = C(n, F , F , g, δ) > 0.
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We prove in the next lemma a slightly refined version of condition B.
Lemma 5.7. There exists a constant C1 = C1(n,N, F , F , g, δ) > 0 such that, for

all x ∈ S and r ≤ 1, there exist i, j ∈ {0, . . . , N}, i = j, and two balls Bi and Bj

with radius C1 r such that Bi ⊂ Ai ∩B(x, r) and Bj ⊂ Aj ∩B(x, r).
Proof. Let x ∈ S and r ≤ 1 be fixed. The set S is Ahlfors-regular according to

Corollary 5.6 hence Lemma 5.8, to be proved below, applied with B = B(x, r/2) gives
us a point y ∈ B(x, r/2) such that B(y, γ r)∩S = ∅ for some γ = γ(n, F , F , g, δ) ≤ 1/4.
Recalling that R

n = (∪N
i=0Ai) ∪ S because A is reduced and that S is, according to

Lemma 5.4, the union of the topological boundaries of the open and disjoint sets Ai,
it follows automatically that one can find i ∈ {0, . . . , N} such that B(y, γ r) ⊂ Ai.
Note that B(y, γ r) ⊂ B(x, r).

Next, since x ∈ S and Ai ∩ S = ∅, we have |B(x, r/2) \ Ai| ≥ C rn for some
constant C = C(n, F , F , g, δ) > 0, because otherwise Lemma 5.3 would give x ∈ Ai.
Let us choose j ∈ {0, . . . , N} \ {i} such that

|B(x, r/2) ∩Aj | = max
l∈{0,...,N}\{i}

|B(x, r/2) ∩Al|.

Then we have

|B(x, r/2) ∩Aj | ≥ N−1
N∑
l=0
l �=i

|B(x, r/2) ∩Al|

= N−1 |B(x, r/2)\Ai| ≥ β rn

for some β = β(n,N, F , F , g, δ) > 0. Then, using once again Lemma 5.8 with now
B = B(x, r/2)∩Aj , one can find γ′ = γ′(n,N, F , F , g, δ) ≤ 1/4 and y′ ∈ B(x, r/2)∩Aj

such that B(y′, γ′ r) ⊂ B(x, r) does not meet S. In particular B(y′, γ′ r) does not meet
∂Aj hence B(y′, γ′ r) ⊂ Aj ∩ B(x, r). Finally Bi = B(y, C1 r) and Bj = B(y′, C1 r)
with C1 = min(γ, γ′) give the conclusion.

Lemma 5.8. Let Σ ⊂ R
n be an Ahlfors-regular set, let x ∈ Σ, r ≤ 1 be fixed, and

let B ⊂ B(x, r/2) be such that |B| ≥ β rn for some β > 0. Then there exist γ ≤ 1/4,
depending only on n, β and the Ahlfors-regularity constants for Σ, and y ∈ B such
that B(y, γ r) ∩ Σ = ∅.

Proof. We argue by contradiction and assume that for any y ∈ B one can find
zy ∈ B(y, γ r)∩Σ with γ ≤ 1/4 to be fixed small later. Then let us consider a maximal
family A of points in B at mutual distance greater than or equal to 4 γ r. We have
B ⊂ ∪y∈AB(y, 4 γ r), hence,

β rn ≤ |B| ≤
∑
y∈A

|B(y, 4 γ r)| ≤ C (card A) γn rn,

and thus card A ≥ C γ−n for some constant C = C(n, β) > 0. Since the balls
B(y, 2 γ r), y ∈ A, are pairwise disjoint and B(zy, γ r) ⊂ B(y, 2 γ r) ⊂ B(x, r), we get
from the Ahlfors-regularity of Σ that

C rn−1 ≥ Hn−1(Σ ∩B(x, r))

≥
∑
y∈A

Hn−1(Σ ∩B(y, 2 γ r))

≥
∑
y∈A

Hn−1(Σ ∩B(zy, γ r))

≥ C ′ (card A) γn−1 rn−1 ≥ C ′ γ−1 rn−1



1610 SÉVERINE RIGOT

which is impossible if γ is small enough, depending only on n, β, and the Ahlfors-
regularity constants for Σ.

Let us now conclude. The Ahlfors-regularity of S is given by Corollary 5.6. Next
it is not hard to see that Lemma 5.7 implies condition B stated in Definition 3.3.
Indeed the fact that the balls Bi and Bj given by Lemma 5.7 are contained in two
distinct connected components of R

n\S follows from the fact that Ai and Aj are open
and disjoint and, for instance, that ∂Ai ⊂ S. Note that we do not know in general
whether the components of the partition are connected or not. Hence Lemma 5.7 is
slightly stronger than condition B because it says not only that the two balls Bi and
Bj are contained in two distinct connected components of R

n \ S, but moreover in
two distinct components of the partition.

The first part of Theorem 3.7 is given by Lemma 5.4 and it remains to prove
that any component with finite Lebesgue measure is bounded. This follows from the
Ahlfors-regularity and a covering argument. Let Ai be such that |Ai| < +∞ and let
A be a maximal family of points in ∂Ai at mutual distance greater than or equal
to 1. The balls B(x, 1/2), x ∈ A, are pairwise disjoint and since ∂Ai ⊂ S and S is
Ahlfors-regular, we have

card A ≤ C
∑
x∈A

Hn−1(S ∩B(x, 1/2))

≤ CHn−1(S ∩ ∪x∈AB(x, 1/2)) ≤ CHn−1(S).

According to (2.2) we have 2Hn−1(S) = P (A) < +∞ hence card A < +∞. Since
∂Ai ⊂ ∪x∈AB(x, 1) and Ai has finite Lebesgue measure, it follows that diam(Ai) =
diam(∂Ai) < +∞. Hence Ai is bounded as claimed.

6. Partitioning regular interface coefficients. We consider in this section a
particular class of energies similar to that considered in [1] and prove refined prop-
erties for quasiminimal partitions. Namely, we show that in that case each topo-
logical boundary ∂Ai of some component of a reduced quasiminimal partition A is
Ahlfors-regular and satisfies condition B (and even a slightly stronger condition, see
Lemma 6.5) on its own. This is quite stronger than the general Theorem 5.1 which
concerns only the set of interfaces.

First we need some definitions. Following [1, Chapter VI] we say that the coef-
ficients σij , i, j ∈ {0, . . . , N}, i = j, are partitioning regular if σij > 0 and σij = σji

for all i, j ∈ {0, . . . , N}, i = j, and if, for all i ∈ {0, . . . , N} and b = (b0, . . . , bN ) ∈
(R+)N+1 such that bl > 0 for some l = i, one can find j ∈ {0, . . . , N}, j = i, such
that

bj σij >
∑
k �=i,j

bk (σjk − σik).

Then we set

σ = inf
i

⎛
⎝inf

⎛
⎝ sup

j, j �=i

⎛
⎝bj σij −

∑
k �=i,j

bk (σjk − σik)

⎞
⎠ ; b ∈ (R+)N+1, bi = 0, |b| = 1

⎞
⎠
⎞
⎠ .

We have σ > 0. Next we say that a Borel map F : R
n × Sn−1 → R

+ is admissible if
F is even in its second variable, F (x, ν) = F (x,−ν) for all x ∈ R

n, ν ∈ Sn−1, and if

F− ≤ F (x, ν) ≤ F+
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for all x ∈ R
n, ν ∈ Sn−1, and for some constants F− and F+ with 0 < F− ≤

F+ < +∞. Then we say that E is an energy with partitioning regular interface
coefficients if E is defined with respect to a family (Fij) with Fij = σij F for some
partitioning regular coefficients σij and some admissible function F . Heuristically the
main point here is that the partitioning regularity of the coefficients σij guarantees
that it can always be advantageous in terms of minimizing the energy E(A) to remove
some component Ai and add it to some other component Aj for some judiciously
chosen j (see, e.g., the argument in Lemma 6.2). Note that E ∈ E0(σF

−, σF+)
with σ = mini,j σij and σ = maxi,j σij . Note also that for all A ∈ P and U ⊂ R

n

measurable, we have

E(A,U) =
∑
i,j

i �=j

σijEij(A,U),

where

Eij(A,U) =

∫
∂∗Ai∩∂∗Aj

1lU (x)F (x, νAi
(x)) dHn−1.

Since νAi
(x) = −νAj (x) for Hn−1-a.e. x ∈ ∂∗Ai ∩ ∂∗Aj and all i = j, we also have

Eij(A,U) = Eji(A,U).
The main result reads now as follows.
Theorem 6.1. Let E be an energy with partitioning regular interface coefficients,

let g : [0,+∞) → [0,+∞) be such that limt→0 t
(1−n)/ng(t) = 0, and let δ > 0 be fixed.

Let A be a reduced (g, δ)-quasiminimal partition with respect to E. Then, for all
i ∈ {0, . . . , N}, we have ∂∗Ai = ∂Ai and ∂Ai is an Ahlfors-regular set which satisfies
condition B. Moreover, the Ahlfors-regularity and condition B constants can be chosen
depending only on n, F−, F+, σ, σ, σ, g, δ, and N .

Of course, assuming moreover that F satisfies (H3) and combining Theorem 6.1
with Theorem 3.6, one gets similar results for quasiminimal partitions with prescribed
measure.

We fix for the rest of this section an energy E with partitioning regular interface
coefficients, a function g : [0,+∞) → [0,+∞) such that limt→0 t

(1−n)/ng(t) = 0, some
δ < 1, and a reduced (g, δ)-quasiminimal partition A with respect to E. The main
tool in the proof of Theorem 6.1 is the following analogue of Lemma 5.3 when the
proportion of some component Ai inside a ball is assumed to be small. Then we prove
that one half the ball is entirely contained in the interior of the complement of Ai.

Lemma 6.2. There exists η1 = η1(n, F
−, F+, σ, σ, g,N) > 0 such that for all i ∈

{0, . . . , N}, x ∈ R
n, and r ≤ δ/2, if |B(x, r)∩Ai| ≤ η1 r

n, then B(x, r/2) ⊂ R
n \Ai.

Proof. Since A is a reduced quasiminimal partition, we know from Lemma 5.4
that Ai is open hence it will be sufficient to prove that |B(x, r/2) ∩ Ai| = 0. Thus
let i ∈ {0, . . . , N}, x ∈ R

n, and r ≤ δ/2 be such that |B(x, r) ∩ Ai| ≤ η1 r
n for some

η1 > 0 to be fixed small later and let us set m(t) = |B(x, t)∩Ai| for all t > 0. Arguing
by contradiction we assume that m(r/2) > 0. For t > 0, we set bk = Eik(A,B(x, t))
when k = i and bi = 0, and, using the partitioning regularity of the coefficients, we
choose j ∈ {0, . . . , N}, j = i, such that

bj σij −
∑
k �=i,j

bk (σjk − σik) ≥ σ |b|.

Then we define A′ ∈ P setting A′
i = Ai \ B(x, t), A′

j = Aj ∪ (Ai ∩ B(x, t)), and

A′
k = Ak for k = i, j. The partitions A and A′ coincide on the open set R

n \ B(x, t)
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and hence have the same energy there. Inside B(x, t) we have ∂∗A′
i ∩B(x, t) = ∅. On

the other hand, we have ∂∗A′
j ∩ B(x, t) ⊂ (∂∗Aj ∪ ∂∗Ai) ∩ B(x, t) with νA′

j
= νAj

Hn−1-a.e. on ∂∗A′
j ∩ ∂∗Aj ∩ B(x, t), νA′

j
= νAi Hn−1-a.e. on ∂∗A′

j ∩ ∂∗Ai ∩ B(x, t).

Obviously ∂∗A′
k = ∂∗Ak for all k = i, j. It follows that for k = i, j,

Ejk(A
′, B(x, t)) =

∫
∂∗A′

j∩∂∗Ak

1lB(x,t)(y)F (y, νA′
j
(y)) dHn−1

≤
∫
∂∗Aj∩∂∗Ak

1lB(x,t)(y)F (y, νAj (y)) dHn−1

+

∫
∂∗Ai∩∂∗Ak

1lB(x,t)(y)F (y, νAi(y)) dHn−1

= Ejk(A,B(x, t)) + Eik(A,B(x, t)),

and hence

E(A′, B(x, t)) ≤
∑

k,l �=i,j

k �=l

σkl Ekl(A,B(x, t))

+ 2
∑
k �=i,j

σjk Ejk(A,B(x, t)) + 2
∑
k �=i,j

σjk Eik(A,B(x, t))

≤
∑

k,l �=i,j

k �=l

σkl Ekl(A,B(x, t))

+ 2
∑
k �=i,j

σjk Ejk(A,B(x, t)) + 2
∑
k �=i,j

σik Eik(A,B(x, t))

+ 2σij Eij(A,B(x, t)) + 2
∑
k �=i,j

bk (σjk − σik) − 2 bj σij

≤ E(A,B(x, t)) − 2σ |b|.

Next let us estimate E(A′, ∂B(x, t)). We have ∂∗A′
j ⊂ ∂∗Aj ∪ ∂∗(Ai ∩ B(x, t)) with

νA′
j

= νAj Hn−1-a.e. on ∂∗A′
j ∩ ∂∗Aj , hence,

∑
k �=i,j

σjkEjk(A
′, ∂B(x, t)) ≤

∑
k �=i,j

σjkEjk(A, ∂B(x, t))

+F+ σ
∑
k �=i,j

Hn−1(∂∗Ak∩∂∗(Ai∩B(x, t))∩∂B(x, t)),

and

σijEij(A
′, ∂B(x, t)) ≤ F+ σ (Hn−1(∂∗Aj ∩ ∂∗(Ai \B(x, t)) ∩ ∂B(x, t))

+ Hn−1(∂∗(Ai ∩B(x, t)) ∩ ∂∗(Ai \B(x, t)) ∩ ∂B(x, t))).

Similarly we have

∑
k �=i,j

σikEik(A
′, ∂B(x, t)) ≤ F+ σ

∑
k �=i,j

Hn−1(∂∗Ak ∩ ∂∗(Ai \B(x, t)) ∩ ∂B(x, t))).
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It follows that

E(A′, ∂B(x, t)) ≤
∑

k,l �=i,j

k �=l

σkl Ekl(A, ∂B(x, t)) + 2
∑
k �=i,j

σjk Ejk(A, ∂B(x, t))

+ 2F+ σ
∑
k �=i,j

Hn−1(∂∗Ak ∩ ∂∗(Ai ∩B(x, t)) ∩ ∂B(x, t))

+ 2F+ σ
∑
k �=i

Hn−1(∂∗Ak ∩ ∂∗(Ai \B(x, t)) ∩ ∂B(x, t))

+ 2F+ σHn−1(∂∗(Ai ∩B(x, t)) ∩ ∂∗(Ai \B(x, t)) ∩ ∂B(x, t)).

Since Hn−1-a.e. point belongs to at most two of the sets ∂∗Ak (see what follows
Definition 2.3), we get

E(A′, ∂B(x, t)) ≤ E(A, ∂B(x, t))

+ F+ σ (4P (Ai ∩B(x, t), ∂B(x, t)) + 6P (Ai \B(x, t), ∂B(x, t)))

and thus

E(A′, ∂B(x, t)) ≤ E(A, ∂B(x, t)) + 10F+ σm′(t)

for a.e. t > 0. Then we get from the (g, δ)-quasiminimality of A that

2σ |b| ≤ 10F+ σm′(t) + g(|A′�A|).

On other hand, we have

|b| = max
k

|bk| ≥ N−1
∑
k �=i

Eik(A,B(x, t))

≥ N−1 F−
∑
k �=i

Hn−1(∂∗Ak ∩ ∂∗Ai ∩B(x, t))

= N−1 F− P (Ai, B(x, t)) ≥ Cm(t)
n−1
n

for some constant C = C(n, F−, N) > 0 provided η1 is small enough. We also have
|A′�A| = m(t) ≤ η1 r

n ≤ η1 hence, if η1 is small enough,

g(|A′�A|) ≤ C σm(t)
n−1
n ,

where C is the same constant as above. It follows that

m(t)
n−1
n ≤ Cm′(t)

for a.e. t ∈ (r/2, r) and for some suitable constant C = C(n, F−, F+, σ, σ,N) > 0.
Then, dividing both sides by m(t)(n−1)/n which does not vanish for t ≥ r/2 and
integrating on t ∈ (r/2, r), we get

r ≤ C (m(r)
1
n −m(r/2)

1
n ) ≤ Cm(r)

1
n ≤ C η

1
n
1 r.

This is impossible if η1 is small enough and concludes the proof.



1614 SÉVERINE RIGOT

Let η2 = min(η0, η1) where η0 and η1 are given by Lemmas 5.3 and 6.2, respec-
tively. For all i ∈ {0, . . . , N}, we set

∂i = {x ∈ R
n ; min(|Ai ∩B(x, r)|, |B(x, r) \Ai|) > η2 r

n for all r ≤ δ/2}.(6.1)

The first part of Theorem 6.1 is given by the following lemma.

Lemma 6.3. For all i ∈ {0, . . . , N}, we have ∂i = ∂∗Ai = ∂Ai.

Proof. First since Ai and R
n \ Ai are open (see Lemma 5.4) we have ∂i ∩ (Ai ∪

R
n \Ai) = ∅. Then it follows from Lemmas 5.3 and 6.2 that R

n is the disjoint union
of the three sets Ai, R

n \Ai, and ∂i and we get in particular that ∂i = Ai \Ai = ∂Ai.
On the other hand, we have Ai = Ai(1) by definition of a reduced partition hence,
to prove that ∂i = ∂∗Ai, we only need to check that R

n \ Ai = Ai(0). One always
has R

n \ Ai ⊂ Ai(0). Conversely if x ∈ Ai(0), then min(|Ai ∩ B(x, r)|, |B(x, r) \
Ai|) = |B(x, r) ∩ Ai| ≤ η2 r

n for all r small enough, hence x ∈ R
n \ Ai according to

Lemma 6.2.

Next we prove the Ahlfors-regularity of ∂Ai. As a convention for the rest of this
section, we say that a constant is universal if its value can be chosen depending only
on n, F−, F+, σ, σ, σ, g, δ, and N .

Lemma 6.4. For all i ∈ {0, . . . , N}, ∂Ai is an Ahlfors-regular set with Ahlfors-
regularity constants that can be chosen universal.

Proof. Let x ∈ ∂Ai and r ≤ 1 be fixed. Since ∂Ai ⊂ S by Lemma 5.4 and S is
Ahlfors-regular with universal regularity constants (see Corollary 5.6), we have

Hn−1(∂Ai ∩B(x, r)) ≤ Hn−1(S ∩B(x, r)) ≤ C rn−1

for some universal constant C > 0. On the other hand, the relative isoperimetric
inequality for balls together with Lemma 6.3 and (6.1) gives

η
n−1
n

2 rn−1 < min(|Ai ∩B(x, r)|, |B(x, r) \Ai|)
n−1
n ≤ CHn−1(∂Ai ∩B(x, r))

provided r ≤ δ/2. Finally the lower inequality in the Ahlfors-regularity for all radii
r ≤ 1 follows easily, with a slightly different constant (depending on δ).

Lemma 6.5. There exists a universal constant C2 > 0 such that for all i ∈
{0, . . . , N}, x ∈ ∂Ai, and r ≤ 1, one can find a ball Bi with radius C2 r such that
Bi ⊂ Ai ∩B(x, r).

Proof. Let i ∈ {0, . . . , N}, x ∈ ∂Ai, and r ≤ 1 be fixed and set B = Ai∩B(x, r/2).
It follows from Lemma 6.3 and (6.1) that |B| ≥ β rn for some universal β > 0
and from Lemma 6.4 that ∂Ai is Ahlfors-regular with universal regularity constants.
Hence one can apply Lemma 5.8 to find a universal constant C2 ≤ 1/4 and a point
y ∈ Ai ∩ B(x, r/2) such that B(y, C2 r) ∩ ∂Ai = ∅. This implies automatically that
B(y, C2 r) ⊂ Ai and since B(y, C2 r) ⊂ B(x, r) this gives the required conclusion.

This implies easily that ∂Ai satisfies condition B. Indeed combining Lemma 6.5
with Lemma 5.7 we get the existence of a universal constant C3 > 0 such that for all
i ∈ {0, . . . , N}, x ∈ ∂Ai, and r ≤ 1, one can find two balls B and B′ with radius C3 r
and such that B ⊂ Ai∩B(x, r) and B′ ⊂ Aj∩B(x, r) for some j = i. In particular we
have B′ ⊂ R

n\Ai hence B and B′ are contained in two distinct connected components
of R

n \ ∂Ai. This concludes the proof of Theorem 6.1.
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Abstract. Liquid crystals may exhibit two types of behaviors, in comparison with two types
of superconductors. We wish to explore type-I behavior of liquid crystals by using the Landau–
de Gennes model with small Ginzburg–Landau parameter κ. In this paper, for small κ, we give an
estimate on the critical wave number Qc3 , at which a liquid crystal undergoes a phase transition
from a nematic state to a smectic state. We show that, if κ is small, a smectic phase can nucleate
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state, which resembles the perfect superconducting state of type-I superconductors.

Key words. liquid crystal, phase transition, Landau–de Gennes model, critical wave number
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1. Introduction. As predicted by P. G. de Gennes in [dG], smectic liquid crys-
tals can exhibit either type-I or type-II behavior, in comparison with two types of
superconductivity. Both behavior types have been reported; see [dGP, p. 512]. Type I
superconductivity has been successfully described by the minimizers of the Ginzburg–
Landau functional with small Ginzburg–Landau parameter [GL], and it is natural to
expect that the minimizers of the Landau–de Gennes model of liquid crystals with
small Ginzburg–Landau parameter exhibit type-I behavior. In this paper, continuing
our study in [P1],1 we shall examine this expectation.

According to de Gennes’s theory [dG, dGP], the state of a liquid crystal can be
described (at least for a temperature close to the transition point) by a complex-
valued function Ψ called order parameter, a real vector field of unit length n called
director field, and a real number q called wave number, which depends on the material
and temperature. Ψ = 0 for a nematic phase, and Ψ �= 0 for a smectic phase. (Ψ,n)
is a minimizer of the Landau–de Gennes energy (see [dGP, C, BCLP]):

L[Ψ,n] =

∫
Ω

{
c|∇qnΨ|2 + FA(|Ψ|) + FN (n,∇n)

}
dx,

where Ω is the region occupied by the liquid crystal, c is a real constant, ∇qnΨ =
∇Ψ− iqnΨ with i =

√
−1, FA(|Ψ|) and FN (n,∇n) denote the smectic energy density

and the nematic Oseen–Frank energy density, respectively;

FA(|Ψ|) = r|Ψ|2 +
u

2
|Ψ|4,

∗Received by the editors April 25, 2004; accepted for publication (in revised form) May 16, 2005;
published electronically January 27, 2006. This work was partially supported by the National Natural
Science Foundation of China, the Science Foundation of the Ministry of Education of China, and
NUS grant R-146-000-033-112.
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†Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic

of China (xbpan@math.ecnu.edu.cn).
1Our investigation in [P1] was motivated by Lin [L] and Aviles and Giga [AG] on the phase

transitions of liquid crystals, and by Calderer [C] and Bauman et al. [BCLP] on the Landau–de
Gennes model.
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where u > 0, r < 0, and r ∼ α(T − T0) as temperature T approaches a critical
temperature T0; see [dGP, p. 508]. In the case without external electromagnetic
fields, the Oseen–Frank energy density is given by

FN (n,∇n) = K1|div n|2 + K2|n · curl n + τ |2 + K3|n ∧ curl n|2

+ (K2 + K4)[tr(∇n)2 − (div n)2],

where Kj , j = 1, 2, 3, 4, called elastic coefficients, are material constants, among them
K1, K2, and K3 are positive; τ is a real number referring to the chiral pitch in some
liquid crystal materials. As explained in [P1], we shall drop the last term in the
Oseen–Frank energy density, and assume K3 = K2. After making the rescaling

Ψ =

√
|r|
u
ψ, κ =

√
|r|
c
, Kj =

u

c|r|Kj , j = 1, 2,

and replacing L by u
c|r|L, we are led to the following functional:2

G[ψ,n] =

∫
Ω

{
|∇qnψ|2 +

κ2

2
(1 − |ψ|2)2 + K1|div n|2 + K2|curl n + τn|2

}
dx.(1.1)

As mentioned in [P1], we believe that the simplified energy functional (1.1) catches
the main feature and most difficulties of the Landau–de Gennes model with the full
Oseen–Frank energy. Note that in [dGP] the quantity ξ =

√
c
|r| is called the order

parameter coherence length. Hence

κ =
1

ξ
.

We prefer keeping the notation κ in our model instead of ξ, as κ corresponds to the
Ginzburg–Landau parameter in the Ginzburg–Landau model of superconductivity
(when taking the penetration length as unit of length). For convenience, let us call
κ in (1.1) the Ginzburg–Landau parameter for liquid crystals.3 From the analogy
between liquid crystals and superconductivity, we expect that liquid crystals exhibit
type-I behavior when the Ginzburg–Landau parameter κ is small.

As explained in [P1], the natural space for variational problems of (1.1) is

W 1,2(Ω,C) × V (Ω,S2),

where4

V (Ω,R3) =
{
u ∈ L2(Ω,R3) : div u ∈ L2(Ω), curl u ∈ L2(Ω,R3)

}
,

V (Ω,S2) =
{
n ∈ V (Ω,R3) : |n(x)| = 1 a.e. in Ω

}
.

V (Ω,R3) is a Hilbert space with the inner product and norm defined by

(u,v)V =

∫
Ω

{div u div v + curl u · curl v + u · v}dx,

‖u‖V =
{
‖div u‖2

L2(Ω) + ‖curl u‖2
L2(Ω) + ‖u‖2

L2(Ω)

}1/2

.

2In [P1] we used the functional E[ψ,n] = G[ψ,n] − κ2

2
|Ω|, which is zero on the trivial critical

points.
3In physical literature on liquid crystals, the letter κ has been used also for other ratios. For

instance, Renn and Lubensky [RL] defined the twist Ginzburg parameter κ2 = λ2
ξ

.
4The space V (Ω,R3) was denoted by H(curl, div,Ω) in Dautray and Lions [DL].
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Here and throughout, unless specified otherwise, ‖ · ‖L2(Ω) denotes both the usual L2

norm for scalar functions and the L2 norm for vector fields. Throughout this paper
we assume that

Ω is a bounded, simply connected domain in R
3 with smooth boundary.(1.2)

We concern the global minimizers of G in W 1,2(Ω,C)× V (Ω,S2), without prescribing
boundary data of the director fields. Let

C(K1,K2, κ, τ, q) = inf
(ψ,n)∈W 1,2(Ω,C)×V (Ω,S2)

G[ψ,n].(1.3)

Note that if (ψ,n) is a minimizer of G with wave number q, then (ψ,−n), (−ψ,n),
and (ψ̄,n) are minimizers of G with wave number −q. Therefore in the following we
shall always assume q ≥ 0. The functional G has many trivial minimizers (0,n) with
n ∈ C(τ), where

C(τ) = {n ∈ V (Ω,S2) : div n = 0, curl n + τn = 0 in Ω}.(1.4)

The trivial minimizers correspond to the nematic state. The classification of vector
fields in C(τ) has been proved in [BCLP].

It is useful to find the regime of parameters that the global minimizers are nontriv-
ial. In [P1], motivated by the analogy between liquid crystals and superconductivity
(see [dG, dGP]), we introduced the critical wave number Qc3 , which is a critical num-
ber for q such that if |q| < Qc3 , then there exist nontrivial minimizers:

Qc3(K1,K2, κ, τ) = inf {q > 0 : G has only trivial minimizers}.(1.5)

In [P1] we also gave estimates of Qc3 and investigated the behavior of nontrivial
minimizers for large K1, K2. As we are now concerned with the type-I behavior
of liquid crystals, we shall estimate the value of Qc3 when the Ginzburg–Landau
parameter κ is small, with K1, K2 fixed; and we shall examine the behavior of the
minimizers when the wave number q is less than Qc3 .

To state the main results of this paper, let us define, for a vector field u ∈
V (Ω,R3),5

ω(u) ≡ ω(u,Ω) = inf
φ∈W 1,2(Ω)

∫
−

Ω

|∇φ− u|2dx,(1.6)

where
∫
−

Ω
φdx = 1

|Ω|
∫
Ω
φdx, and |Ω| is the volume of Ω. It is easy to show that ω(u)

is achieved by the unique (real-valued) solution ζu of the equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δζu = div u in Ω,

∂ζu
∂ν

= γνu on ∂Ω,∫
Ω

ζu dx = 0,

(1.7)

5In the case u = Fh, where h is a unit vector, and Fh is a vector field satisfying curl Fh = h
and div Fh = 0 in Ω, the number ω(Fh) was denoted by ω(h) in [P2], and was denoted by λ(h) in
[P1].
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where γνu is the trace of u on ∂Ω, and γνu is the restriction of u · ν to ∂Ω if u is
smooth. Up to an additive constant, the minimizer is unique. We shall call ζu the
minimizer of ω(u). Let

ω∗(τ) = inf
n∈C(τ)

ω(n),

C∗(τ) = {n ∈ C(τ) : ω(n) = ω∗(τ)}.
(1.8)

We can show that 0 < ω∗(τ) < 1 (see (2.2) in section 2). Note that ω(−n) = ω(n).
So if n ∈ C∗(τ), then −n ∈ C∗(τ).

Theorem 1.1. Assume condition (1.2), and fix the positive constants K1, K2,
and τ . For small κ > 0 we have

Qc3(K1,K2, κ, τ) =
κ√
ω∗(τ)

+ o(κ).(1.9)

Let q = aκκ with 0 < aκκ < Qc3(K1,K2, κ, τ) and limκ→0 aκ = a0, where 0 < a0 ≤
1√

ω∗(τ)
. Then

C(K1,K2, κ, τ, aκκ) = a2
0ω∗(τ)

[
1 − 1

2
a2
0ω∗(τ)

]
|Ω|κ2 + o(κ2);(1.10)

and for any sequence κ → 0, there exist a subsequence κj → 0 and n0 ∈ C∗(τ), such
that the minimizers (ψκj

,nκj
) of the functional G have expansions

ψκj = cκj

[
1 + iaκjκj(ζn0 + φκj )

]
,

nκj
= n0 + κjvκj ,

(1.11)

where ζn0
is the minimizer of ω(n0), cκj is a complex number, φκj ∈ W 1,2(Ω,C),

vκj ∈ V (Ω,R3), and as κj → 0,

|cκj
| → [1 − a2

0ω∗(τ)]1/2,

‖φκj‖W 1,2(Ω,C) → 0,

‖divvκj
‖L2(Ω) → 0,

‖curlvκj + τvκj‖L2(Ω) → 0.

(1.12)

Remark. (1) When 0 < a0 < 1√
ω∗(τ) , the expansion (1.11) shows that the mini-

mizers have the approximation

|ψκj | ∼ [1 − a2
0ω∗(τ)]1/2, nκj

∼ n0 as κj → 0.

So we may say that the liquid crystal is in a uniform smectic state when κ is small,
which resembles the perfect superconducting state of type-I superconductors under
an applied magnetic field below the critical field Hc.

(2) From (1.11) we also see that, when the wave number q decreases from Qc3 , a
smectic phase nucleates from a nematic state (0,n0), where n0 ∈ C∗(τ). Let

N (τ) = {(0,n) : n ∈ C(τ)},
N∗(τ) = {(0,n) : n ∈ C∗(τ)}.

Every element in N (τ) represents a nematic state; however, only the nematic states
in N∗(τ) allow a smectic state to nucleate. Note that the structure of N∗(τ) reflects
the geometry of the domain Ω.
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Theorem 1.1 indicates some similarity between smectic liquid crystals with small
Ginzburg–Landau parameter κ and type-I superconductors. In fact, the estimate (1.9)
for Qc3 is similar to the estimate of the critical field Hc for type I superconductors
obtained in [P2, Theorem 1]; and the expansion (1.11) resembles the expansions of
minimizers for type-I superconductivity; see [P2, Theorem 2]. However, there is an
important difference between liquid crystals and superconductors. For liquid crystals
we require the director field to satisfy the pointwise unit length constraint

|n(x)| = 1 on Ω.(1.13)

The constraint (1.13) is one of the sources of complications, especially for analysis of
high order terms in (1.11). Another source of complications is that the functional I
is not coercive in the orthogonal complement of the kernel, where I is defined by the
last two terms in G:

I[v] =

∫
Ω

{K1|div v|2 + K2|curl v + τv|}dx.(1.14)

The kernel X(τ) of I consists of all solutions of the following equations in V (Ω,R3):

div u = 0, curl u + τu = 0 in Ω.(1.15)

Obviously X(τ) is a closed subspace of V (Ω,R3), and C(τ) = X(τ) ∩ V (Ω,S2). With
respect to the inner product (·, ·)V , the space V (Ω,R3) has orthogonal decomposition

V (Ω,R3) = X(τ) ⊕X⊥
V (τ).

Unfortunately, I is not coercive on X⊥
V (τ), and a sequence satisfying I[uj ] → 0 may

exhibit boundary concentrations. Fortunately we are able to classify vector fields
that satisfy (1.15) coupled with a pointwise constraint (Lemma 3.1), and obtain an
orthogonality property (Proposition 3.3). These results will be useful in sections 4
and 5.

The outline of this paper is as follows. Section 2 contains some preliminary results
that will be needed in later sections. In section 3 we classify the solutions of (1.15)
coupled with a pointwise constraint. In section 4 we prove the estimate of Qc3 for
small κ, and provide an energy upper bound that is better than (1.10). In section 5
we investigate the behavior of nontrivial minimizers as κ → 0.

We would like to mention that the mathematical theory of phase transitions of
liquid crystals has been studied extensively by many mathematicians, among others
we mention Hardt, Kinderlehrer, and Lin [HKL], Hardt and Kinderlehrer [HK], Brezis
[B], Lin [L], and Aviles and Giga [AG]. Following the work by P. G. de Gennes [dG],
the investigation on liquid crystals based on the Landau–de Gennes theory has been
successfully conducted by many physicists, and the similarity between superconduc-
tivity and liquid crystals has been explored; see, for instance, Chen and Lubensky
[ChL], Lubensky and Renn [LR], and Renn and Lubensky [RL]. The mathematical
theory of the Landau–de Gennes model has been investigated by Calderer [C] and
Bauman et al. [BCLP].

2. Preliminaries. Given a vector field u ∈ V (Ω,R3), let ω(u) and ω∗(τ) be the
numbers defined in (1.6) and (1.8), respectively, and let ζu be the minimizer of ω(u).

Lemma 2.1. For any τ > 0 and n ∈ C(τ) we have

0 < ω(n) < 1.(2.1)
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In particular,

0 < ω∗(τ) < 1.(2.2)

Proof. Using (1.7) we have, for any smooth function φ,∫
Ω

(∇ζu − u) · ∇φdx = 0.(2.3)

Note that u has canonical decomposition

u = vu + ∇ζu,(2.4)

where vu satisfies {
div vu = 0, curl vu = curl u in Ω,

γνvu = 0 on ∂Ω.

Using (2.3) we find ∫
Ω

|u|2dx =

∫
Ω

|vu|2dx +

∫
Ω

|∇ζu|2dx.

Hence

ω(u) =

∫
−

Ω

|vu|2dx =

∫
−

Ω

(|u|2 − |∇ζu|2)dx.

In particular, for a unit vector field n ∈ V (Ω,S2) we have 0 ≤ ω(n) ≤ 1. If n has
canonical decomposition n = vn + ∇ζn, then∫

−
Ω

|∇ζn|2dx =

∫
−

Ω

(|n|2 − |vn|2)dx = 1 − ω(n).(2.5)

Moreover, ω(n) = 0 if and only if n = ∇ζn; and ω(n) = 1 if and only if ζn = 0.
Now we assume n ∈ C(τ). Since curl n = −τn �= 0, we see that n �≡ ∇ζn. So

ω(n) > 0. It has been proved in [BCLP] that every n ∈ C(τ) has the form

n = QNτ (Q
tx),

where Nτ = (cos(τx3), sin(τx3), 0)�, Q ∈ SO(3).
(2.6)

Here and thereafter, for a row vector w, w� denotes the corresponding column vector.
Note that ζn depends on Q through n. Let ζτ,Q be the solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δζτ,Q = 0 in QtΩ,

∂ζτ,Q
∂ν

= Nτ · ν on ∂(QtΩ),∫
QtΩ

ζτ,Q dx = 0.

Then

ζn(x) = ζτ,Q(Qtx).
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From (2.6) we see that, for any bounded domain Ω with smooth boundary,

Nτ · ν �≡ 0 on ∂(QtΩ).

Hence ζτ,Q �≡ 0. Thus, ω(n) < 1. So (2.1) is true. Note that ω∗(τ) is achieved by
some n0 in C∗(τ). So (2.2) is true.

From the above discussion we see that

ω(n,Ω) =

∫
−

Ω

|∇ζn − n|2dx =

∫
−
QtΩ

|∇ζτ,Q − Nτ |2dx = ω(Nτ , Q
tΩ).

Therefore

ω∗(τ) = inf
Q∈SO(3)

∫
−
QtΩ

|∇ζτ,Q − Nτ |2dx

= inf
Q∈SO(3)

inf
φ∈W 1,2(QtΩ)

∫
−
QtΩ

|∇φ− Nτ |2dx.

Next we consider an eigenvalue problem. Given a vector field u ∈ V (Ω,R3), let
μ(εu) be the lowest eigenvalue of the equation{

−∇2
εuφ = μφ in Ω,

(∇εuφ) · ν = 0 on ∂Ω.
(2.7)

Lemma 2.2. For any n ∈ V (Ω,S2) we have, as ε → 0,

ε2ω(n) + O(ε3) ≤ μ(εn) ≤ ω(n)ε2 +
1 − ω(n)

|Ω| ‖ζn‖2
L2(Ω)ε

4 + O(ε6).(2.8)

Proof. The lower bound can be proved as in [P2, Lemma 2.1]. To prove the upper
bound, let φ = 1 + iεζn. Then∫

Ω

|∇εnφ|2dx = ε2

∫
Ω

{|∇ζn − n|2 + ε2|ζnn|2}dx = ε2|Ω|ω(n) + ε4‖ζn‖2
L2(Ω).

Here we have used the fact |n(x)| ≡ 1. Then we use the inequality

μ(εn) ≤
∫
Ω
|∇εnφ|2dx∫
Ω
|φ|2dx

to get the upper bound in (2.8).
It has been proved in [P1] (see the proof of Lemma 3.2 there) that, for a simply

connected domain, a sequence bounded in V (Ω,R3) is bounded in W 1,2
loc (Ω,R3). The

proof given in [P1] is based on the canonical decomposition of vector fields. This
conclusion is true for general bounded domains, and we include it here for our conve-
nience.

Lemma 2.3. Let Ω be a bounded and smooth domain in R
3. For any subdomain

D1 � D2 ⊆ Ω, there exists a constant C(D1, D2) such that for any u ∈ V (Ω,R3) we
have

‖u‖W 1,2(D1,R3) ≤ C(D1, D2)
{
‖divu‖L2(D2) + ‖curlu‖L2(D2) + ‖u‖L2(D2)

}
.

In particular, every bounded sequence in V (Ω,R3) is bounded in W 1,2
loc (Ω,R3).

The proof of Lemma 2.3 will be given in Appendix A.
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3. Solutions of the equation curl u + τu = 0 under a pointwise con-
straint. Assume condition (1.2) and let τ > 0. For a given n0 ∈ C(τ), we shall
classify all the solutions in V (Ω,R3) to (1.15) coupled with a pointwise orthogonality
constraint n0 · u = 0, that is,

u ∈ V (Ω,R3), div u = 0, curl u + τu = 0, n0 · u = 0 in Ω.(3.1)

Lemma 3.1. Let n0 = QNτ (Q
tx) with Q ∈ SO(3). The solutions of (3.1) are

given by

u(x) = aU1 + bU2 + cU3,

where a, b, c are arbitrary real numbers,

Uj(x) = QVj(Q
tx),(3.2)

and

V1 =
(
τy1 sin(τy3),−τy1 cos(τy3), cos(τy3)

)�
,

V2 =
(
τy2 sin(τy3),−τy2 cos(τy3), sin(τy3)

)�
,

V3 =
(
τ sin(τy3),−τ cos(τy3), 0

)�
.

(3.3)

Proof. We prove only the conclusion in the case where τ = 1 and

n0 = N1 = (cosx3, sinx3, 0)�.

The conclusion for the general case is obtained by rotation and rescaling. From (3.1)
we see that u is a solution of

Δu + u = 0,(3.4)

and hence u is smooth in the interior of Ω. Let us take a small cube located in the
interior of Ω and restrict ourselves to the cube. From the pointwise orthogonality
constraint u · N1 = 0 we have

u1 cosx3 + u2 sinx3 = 0.(3.5)

Hence u2 = −u1 cotx3 and

∂x3u2 = − cotx3∂x3u1 +
u1

sin2 x3

.(3.6)

Applying the Laplacian operator to (3.5) and using (3.4) we find

0 = Δ(u1 cosx3 + u2 sinx3)

= cosx3Δu1 + sinx3Δu2 − 2 sinx3∂x3u1 + 2 cosx3∂x3u2 − u1 cosx3 − u2 sinx3

= −2 sinx3∂x3u1 + 2 cosx3∂x3u2.

So

∂x3u2 = tanx3∂x3u1.
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Combining this with (3.6) we find

∂x3u1

u1
= cotx3.

So there exists a function f(x1, x2) such that

u1 = f(x1, x2) sinx3, u2 = −f(x1, x2) cosx3.

Now we use the condition div u = 0 to find

∂x1f(x1, x2) sinx3 − ∂x2
f(x1, x2) cosx3 + ∂x3

u3 = 0.

Hence we can write

u3 = ∂x1
f(x1, x2) cosx3 + ∂x2f(x1, x2) sinx3 + g(x1, x2).

In order to determine f and g, we check each component of the equation curl u+u = 0
to find

fx1x2(x1, x2) cosx3 + fx2x2
(x1, x2) sinx3 + gx2(x1, x2) = 0,

fx1x1(x1, x2) cosx3 + fx1x2
(x1, x2) sinx3 + gx1(x1, x2) = 0,

g(x1, x2) = 0.

So ∇f is a constant vector, and f(x1, x2) = ax1 + bx2 + c. Hence on the cube we have

u1 = (ax1 + bx2 + c) sinx3,

u2 = −(ax1 + bx2 + c) cosx3,

u3 = a cosx3 + b sinx3.

(3.7)

Since Ω is connected, (3.7) must be true everywhere on Ω.
On the other hand, computation shows that for any constants a, b, c, the vector

field u defined by (3.7) satisfies the conditions

div u = 0, curl u + u = 0, u · N1 = 0.

Notation. For n0 ∈ C(τ) and τ > 0, U(τ,n0) denotes the set of all solutions of
(3.1).

It follows from Lemma 3.1 that U(τ,n0) is a linear space of dimension 3. Note
that U(τ,n0) = U(τ,−n0).

In addition to (3.7), if we further request that u satisfies the unit length condition
|u(x)| = 1 on Ω, then

u = ±(sinx3,− cosx3, 0)�.

Thus we get the following corollary.
Corollary 3.2. Given n0 ∈ C(τ), the set U(τ,n0) ∩ V (Ω,S2) contains exactly

two elements.
The following result is useful in sections 4 and 5.
Proposition 3.3. Let n0 ∈ C∗(τ) and u0 ∈ U(τ,n0). We have∫

Ω

u0 · ∇ζn0dx = 0,(3.8)
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where ζn0
is the solution of (1.7) associated with n0.

Proof. We give the proof for τ = 1.
Step 1. Let us introduce some notation. For a 3×3 nonsingular matrix Q = (qij)

we assign a vector q = (q11, q12, . . . , q33)
� ∈ R

9. Let

A =
{
q = (q11, q12, . . . , q33)

� ∈ R
9 : det(qij) > 0

}
,

Q =
{
q = (q11, q12, . . . , q33)

� ∈ R
9 : (qij) ∈ SO(3)

}
.

Then A is an open set in R
9. Let

n(x,q) = QN1(Q
tx), ζ(x,q) = ζn(x,q).

Thus

n(x,q)k = qk1 cos y3 + qk2 sin y3,where yj =

3∑
i=1

qijxi, j = 1, 2, 3;

and ζ(x,q) is the unique solution of the equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δζ = 0 in Ω,

∂ζ

∂ν
= QN1(Q

tx) · ν on ∂Ω,∫
Ω

ζ dx = 0.

If Ω is a bounded domain with C3+α boundary, then the solution of the equation is
C3+α in x; see [GT, Theorem 6.3] (also see [ADN, LM]). We can show that ζ is C2

in the parameter qij for q = (q11, . . . , q33)
� ∈ A, and ∂2ζ

∂qij∂qlm
is C2 in x. Of course

if q ∈ Q, then n ≡ n(x,q) ∈ C(τ) and ζ(x,q) = ζn. Let us define a function on A by

F (q) =
1

2

∫
Ω

|∇ζ(x,q) − n(x,q)|2dx.

Then F (q) is a C2 function in A.
Step 2. Assume n0 = (n0

1, n
0
2, n

0
3)

� ∈ C∗(1), and n0 = Q0N1(Q
t
0x), where Q0 =

(q0
ij). Then q0 = (q0

11, . . . , q
0
33) is a minimizer of the following problem:

Minimize F (q) subjected to the conditions gk(q) = 0, k = 1, . . . , 6,

where

g1(q) =

3∑
j=1

q2
j1 − 1, g2(q) =

3∑
j=1

q2
j2 − 1,

g3(q) =

3∑
j=1

q2
j3 − 1, g4(q) =

3∑
j=1

qj1qj2,

g5(q) =

3∑
j=1

qj1qj3, g6(q) =

3∑
j=1

qj2qj3.
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Thus q0 is a solution of the Euler–Lagrange equations

∂F

∂qij
(q0) =

6∑
k=1

λk
∂gk
∂qij

(q0), i, j = 1, 2, 3,

where λk’s are constants that may depend on q0. We compute

∂F

∂qij
(q0) =

∫
Ω

(∇ζn0
− n0) ·

(
∇ ∂ζ

∂qij
(x,q0) −

∂n

∂qij
(x,q0)

)
dx.

Applying (2.3) for

u = n0, φ =
∂ζ

∂qij
(x,q0),

we find

∂F

∂qij
(q0) = −

∫
Ω

(∇ζn0 − n0) ·
∂n

∂qij
(x,q0)dx.

We compute

∂nk

∂qi1
(x,q0) = δik cos y3,

∂nk

∂qi2
(x,q0) = δik sin y3,

∂nk

∂qi3
(x,q0) = −xi(q

0
k1 sin y3 − q0

k2 cos y3),

where y3 = q0
13x1 + q0

23x2 + q0
33x3. Thus the Euler–Lagrange equations can be written

as

−
∫

Ω

(
∂ζn0

∂xi
− n0

i

)
cos y3dx = 2λ1q

0
i1 + λ4q

0
i2 + λ5q

0
i3,

−
∫

Ω

(
∂ζn0

∂xi
− n0

i

)
sin y3dx = 2λ2q

0
i2 + λ4q

0
i1 + λ6q

0
i3,

3∑
k=1

∫
Ω

(
∂ζn0

∂xk
− n0

k

)(
q0
k1 sin y3 − q0

k2 cos y3

)
xidx = 2λ3q

0
i3 + λ5q

0
i1 + λ6q

0
i2.

(3.9)

If we multiply the first equation of (3.9) by q0
i3 and take sum over i, we get

−
3∑

i=1

q0
i3

∫
Ω

(
∂ζn0

∂xi
− n0

i

)
cos y3dx = λ5.

The left side of the above equality is equal to

−
∫

Ω

(∇ζn0 − n0)∇ sin y3dx,

which is zero by (2.3) (letting u = n0). Thus λ5 = 0. Similarly, we multiply the
second equality in (3.9) by q0

i3 and take sum over i to get

λ6 = −
3∑

i=1

q0
i3

∫
Ω

(
∂ζn0

∂xi
− n0

i

)
sin y3dx =

∫
Ω

(∇ζn0 − n0)∇ cos y3dx = 0.
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So we can write (3.9) as

−
∫

Ω

(
∂ζn0

∂xi
− n0

i

)
cos y3dx = 2λ1q

0
i1 + λ4q

0
i2,

−
∫

Ω

(
∂ζn0

∂xi
− n0

i

)
sin y3dx = 2λ2q

0
i2 + λ4q

0
i1,

3∑
k=1

∫
Ω

(
∂ζn0

∂xk
− n0

k

)
(q0

k1 sin y3 − q0
k2 cos y3)xidx = 2λ3q

0
i3.

(3.10)

Step 3. Let u0 ∈ U(1,n0). From Lemma 3.1,

u0 =

3∑
j=1

cjUj ,

where

Uj = (Uj1, Uj2, Uj3)
�,

U1k = y1(q
0
k1 sin y3 − q0

k2 cos y3) + q0
k3 cos y3,

U2k = y2(q
0
k1 sin y3 − q0

k2 cos y3) + q0
k3 sin y3,

U3k = q0
k1 sin y3 − q0

k2 cos y3.

Recall that yj =
∑3

i=1 q
0
ijxi and Uj · n0 = 0. We use (3.10) to compute

−
∫

Ω

∇ζn0 · U1dx = −
∫

Ω

(∇ζn0 − n0) · U1dx

= −
3∑

k=1

∫
Ω

(
∂ζn0

∂xk
− n0

k

)
[y1(q

0
k1 sin y3 − q0

k2 cos y3) + q0
k3 cos y3]dx

= −
3∑

i,k=1

∫
Ω

(
∂ζn0

∂xi
− n0

i

)
q0
i1xi(q

0
k1 sin y3 − q0

k2 cos y3)dx

−
3∑

k=1

q0
k3

∫
Ω

(
∂ζn0

∂xk
− n0

k

)
cos y3dx

= −
3∑

i=1

2q0
i1λ3q

0
i3 +

3∑
k=1

q0
k3(2λ1q

0
k1 + λ4q

0
k2)

= 0;

−
∫

Ω

∇ζn0 · U2dx = −
∫

Ω

(∇ζn0 − n0) · U2dx

= −
3∑

k=1

∫
Ω

(
∂ζn0

∂xk
− n0

k

)
[y2(q

0
k1 sin y3 − q0

k2 cos y3) + q0
k3 sin y3]dx

= −
3∑

i,k=1

∫
Ω

(
∂ζn0

∂xi
− n0

i

)
q0
i2xi(q

0
k1 sin y3 − q0

k2 cos y3)dx

−
3∑

k=1

q0
k3

∫
Ω

(
∂ζn0

∂xk
− n0

k

)
sin y3dx
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= −
3∑

i=1

2q0
i2λ3q

0
i3 +

3∑
k=1

q0
k3(2λ2q

0
k2 + λ4q

0
k1)

= 0;

−
∫

Ω

∇ζn0
· U3dx = −

∫
Ω

(∇ζn0
− n0) · U3dx

= −
3∑

i=1

∫
Ω

(
∂ζn0

∂xi
− n0

i

)
(q0

i1 sin y3 − q0
i2 cos y3)dx

= −
2∑

i=1

q0
i1

∫
Ω

(
∂ζn0

∂xi
− n0

i

)
sin y3dx

+

2∑
i=1

q0
i2

∫
Ω

(
∂ζn0

∂xi
− n0

i

)
cos y3dx

=

3∑
i=1

q0
i1(2λ2q

0
i2 + λ4q

0
i1) −

3∑
i=1

q0
i2(2λ1q

0
i1 + λ4q

0
i2)

= λ4 − λ4 = 0.

Thus, (3.8) is true.

4. Estimates of Qc3 and energy upper bound for small κ. In this section
we shall give an estimate of Qc3 for small κ and establish an energy upper bound.
For simplicity of notation, we write κ = ε. Throughout this section we assume that

K1, K2, and τ are fixed positive constants, and κ = ε > 0 is small.(4.1)

We write the functional G as

Gε[ψ,n] =

∫
Ω

{
|∇qnψ|2 +

ε2

2
(1 − |ψ|2)2 + K1|div n|2 + K2|curl n + τn|2

}
dx.

Then

C(K1,K2, ε, τ, q) = inf
(ψ,n)∈W 1,2(Ω,C)×V (Ω,S2)

Gε[ψ,n].

The existence of minimizers has been proved in [P1].
Theorem 4.1. Assume that conditions (1.2) and (4.1) hold. We have, as ε → 0,

ε√
ω∗(τ)

− Lε3 ≤ Qc3(K1,K2, ε, τ) =
ε√
ω∗(τ)

+ o(ε),(4.2)

where ω∗(τ) was defined in (1.8), and L > 0 depends only on Ω and τ .
Proof. Step 1. Choose n0 ∈ C∗(τ) such that

‖ζn0
‖L2(Ω) = min

n∈C∗(τ)
‖ζn‖L2(Ω).

Let

L∗ =
1 − ω∗(τ)

2ω∗(τ)5/2|Ω| ‖ζn0‖2
L2(Ω).
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Then L∗ depends only on Ω and τ . Fix any positive number L > L∗. We show that
there exists ε0 > 0 depending only on Ω, τ , and L such that

Qc3(K1,K2, ε, τ) ≥ ε√
ω∗(τ)

− Lε3 for all 0 < ε ≤ ε0.(4.3)

Let us choose a number aε satisfying

0 < aε <
1√
ω∗(τ)

− Lε2.(4.4)

For the vector field n0 chosen above, we have ω(n0) = ω∗(τ), and from Lemma 2.2,

μ(aεεn0) ≤ ω∗(τ)a2
εε

2 +
1 − ω∗(τ)

|Ω| ‖ζn0‖2
L2(Ω)a

4
εε

4 + O(ε6)

≤ ε2 −
[
2L
√
ω∗(τ) − 1 − ω∗(τ)

ω∗(τ)2|Ω| ‖ζn0‖2
L2(Ω)

]
ε4 + O(ε6)

= ε2 − 2(L− L∗)
√
ω∗(τ)ε4 + O(ε6).

So

ε2 − μ(aεεn0) ≥ 2(L− L∗)
√
ω∗(τ)ε4 + O(ε6) for all small ε.

Let φ0 be the eigenfunction of (2.7) for u = n0 associated with the lowest eigen-
value μ(aεn0). For q = aεε we take ψ = tφ0 and n = n0 as test functions for Gε and
find that, for sufficiently small t > 0,

Gε[tφ0,n0] =
ε2|Ω|

2
− t2

∫
Ω

{
(ε2 − μ(aεεn0))|φ0|2 −

t2

2
|φ0|4

}
dx

<
ε2|Ω|

2
.

Thus the minimizers are nontrivial, and hence Qc3(K1,K2, ε, τ) ≥ aεε for all small ε.
So (4.3) is true.

Step 2. Now we prove an upper bound

lim sup
ε→0

1

ε
Qc3(K1,K2, ε, τ) ≤ 1√

ω∗(τ)
.

Let us choose aε such that

0 < aε <
1

ε
Qc3(K1,K2, ε, τ).

We may assume aε → a0 > 0 as ε → 0. Then Gε has a nontrivial minimizer (ψε,nε)
for q = aεε. Recall that (0,Nτ ) is a trivial critical point of Gε, and

Gε[0,Nτ ] =
ε2|Ω|

2
.

Thus ∫
Ω

{
|∇aεεnεψε|2 +

ε2

2
(1 − |ψε|2)2 + K1|div nε|2 + K2|curl nε + τnε|2

}
dx(4.5)

<
ε2|Ω|

2
.
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Since |nε| = 1, from (4.5) we see that {nε} is bounded in V (Ω,R3). Using Lemma 2.3,
we find that there exist a subsequence, still denoted by nε, and a vector field n0 ∈
V (Ω,R3) such that, as ε → 0,

nε → n0 weakly in Lp(Ω,R3) for all 1 ≤ p < ∞, weakly in W 1,2
loc (Ω,R3),

and strongly in L4
loc(Ω,R3).

Then |n0(x)| = 1 a.e. in Ω. Since |nε| = |n0| = 1, we see that

nε → n0 strongly in Lp(Ω,R3) for all 1 ≤ p < ∞.

Using (4.5) again we see that div n0 = 0 and curl n0 + τn0 = 0 a.e. in Ω. Thus
n0 ∈ C(τ).

Let wε = nε − n0. Then

wε → 0 strongly in Lp(Ω,R3) as ε → 0, for all 1 ≤ p < ∞.

Using (4.5) we have

Gε[ψε,nε] =

∫
Ω

{
|∇aεε(n0+wε)ψε|2 +

ε2

2
(|ψε|2 − 1)2

+ K1|div wε|2 + K2|curl wε + τwε|2
}
dx

<
ε2|Ω|

2
.

In particular,

∫
Ω

{
|∇aεε(n0+wε)ψε|2 − ε2|ψε|2

}
dx < 0.

So the lowest eigenvalue of −∇2
aεε(n0+wε)

(see (2.7)) is less than ε2:

μ
(
aεε(n0 + wε)

)
< ε2.

Let φε be the associated eigenfunction such that ‖φε‖L2(Ω) = 1. Then

‖∇aεε(n0+wε)φ
ε‖2

L2(Ω) = μ
(
aεε(n0 + wε)

)
‖φε‖2

L2(Ω) < ε2‖φε‖2
L2(Ω).

Using the Sobolev imbedding theorem and Kato’s inequality, we have

‖φε‖L4(Ω) ≤ C(Ω)
{
‖∇|φε|‖L2(Ω) + ‖φε‖L2(Ω)

}
≤ C(Ω)

{
‖∇aεε(n0+wε)φ

ε‖L2(Ω) + ‖φε‖L2(Ω)

}
< C(Ω)(1 + ε)‖φε‖L2(Ω).

(4.6)
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So

ε2

∫
Ω

|φε|2dx > μ
(
aεε(n0 + wε)

) ∫
Ω

|φε|2dx

=

∫
Ω

|∇aεε(n0+wε)φε|2dx

=

∫
Ω

{
|∇aεεn0

φε|2 − 2aεεwε�[φ̄ε∇aεε(n0+wε)φ
ε] − a2

εε
2|wεφ

ε|2
}
dx

≥
∫

Ω

|∇aεεn0φ
ε|2dx− 2aεε‖wε‖L4(Ω)‖φε‖L4(Ω)‖∇aεε(n0+wε)φ

ε‖L2(Ω)

− a2
εε

2‖wε‖2
L4(Ω)‖φε‖2

L4(Ω)

≥
∫

Ω

|∇aεεn0
φε|2dx− Caεε

2‖wε‖L4(Ω)‖φε‖2
L2(Ω) − Ca2

εε
2‖wε‖2

L4(Ω)‖φε‖2
L2(Ω),

where we have used (4.6). As ε → 0, aε → a0, and wε → 0 in L4(Ω,R3), so

ω(n0)a
2
0ε

2 + o(ε2) ≤ μ(aεεn0) ≤
∫
Ω
|∇aεεn0

φε|2dx
‖φε‖2

L2(Ω)

≤ ε2 + Caεε
2‖wε‖L4(Ω) + Ca2

εε
2‖wε‖2

L4(Ω)

= ε2(1 + o(1)).

So ω(n0)a
2
0 ≤ 1; that is,

0 < a0 ≤ 1√
ω(n0)

≤ 1√
ω∗(τ)

.

Thus, the upper bound is true.
Next we look for an energy upper bound of the minimizers. For a vector field

n0 ∈ C∗(τ) and a > 0, we define a function of t by

fa,n0(t) = a2ω(n0)t
2 +

1

2
(1 − t2)2.(4.7)

Obviously,

min
t≥0

fa,n0(t) =

⎧⎨
⎩

1
2 if a ≥ 1√

ω(n0)
,

a2ω(n0)[1 − 1
2a

2ω(n0)] if 0 < a < 1√
ω(n0)

,

and the minimum is attained at

t =
√

[1 − a2ω(n0)]+;

here we use the notation a+ = max{a, 0}. Let

d0(ε) = a2
εω∗(τ)

[
1 − 1

2
a2
εω∗(τ)

]
|Ω|.(4.8)

Theorem 4.2. Assume the conditions (1.2) and (4.1). For small κ = ε > 0 and
q = aεε, where aε satisfies (4.4), we have

C(K1,K2, ε, τ, aεε) ≤ d0(ε)ε
2 − d(ε)ε4 + o(ε4),(4.9)
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where d0(ε) is given in (4.8), and there exists a constant c > 0 independent of ε such
that −c ≤ d(ε) < +∞.

The proof of (4.9) is lengthy and will be divided into several steps. Note that
(4.9) is a rough estimate, and better upper bounds can be obtained; see the discussions
below.

Step 1. A general computation. To begin with, we consider test functions in the
form

ψε = cε[1 + iεaε(ζ + ερϕε)], nε = n0 + ερuε,(4.10)

where n0 ∈ C(τ), uε ∈ V (Ω,R3), such that

|n0(x) + ερuε(x)| = 1 for a.e. x ∈ Ω,(4.11)

cε is a real number, and ρ is a positive number. ζ and ϕε are complex-valued functions
such that

∫
Ω

ζdx = 0,

∫
Ω

ϕεdx = 0.(4.12)

ρ and ζ may depend on ε. Let us define a set V (n0, b) by

V (n0, b) =

{
u ∈ V (Ω,R3) : u(x) · n0(x) = − b

2
|u(x)|2 a.e. in Ω

}
.

From (4.11), uε ∈ V (n0, ερ). We compute

|∇aεεnεψε|2 = ε2a2
ε|cε|2|∇ζ − n0 + ερ(∇ϕε − uε) − iεaε(ζ + ερϕε)nε|2

= ε2a2
ε|cε|2

{
|∇ζ − n0|2 + 2ερ�[(∇ζ − n0) · (∇ϕ̄ε − uε)] + ε2ρ2|∇ϕε − uε|2

− 2εaε�[ζ̄n0 · (∇ζ − n0)]

− 2ε2ρaε�[ζ̄n0 · (∇ϕε − uε) + (∇ζ − n0) · (ζ̄uε + ϕ̄εn0)]

− 2ε3ρ2aε�[(∇ϕε − uε) · (ζ̄uε + ϕ̄εnε) + ϕ̄εuε · (∇ζ − n0)]

+ ε2a2
ε|ζ + ερϕε|2

}
,

(1 − |ψε|2)2 =
[
1 − |cε|2 + 2εaε|cε|2�(ζ + ερϕε) − ε2a2

ε|cε|2|ζ + ερϕε|2
]2

= (1 − |cε|2)2 + 4εaε|cε|2(1 − |cε|2)�(ζ + ερϕε)

− 2ε2a2
ε|cε|2(1 − |cε|2)|ζ + ερϕε|2

+ ε2a2
ε|cε|4

[
2�(ζ + ερϕε) − εaε|ζ + ερϕε|2

]2
.

Since I[n0] = 0, we have

I[n0 + ερuε] = ε2ρ2I[uε].
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So

ε−2Gε[ψ
ε,nε]

=

∫
Ω

{
a2
ε|cε|2|∇ζ − n0|2 +

1

2
(1 − |cε|2)2

}
dx

+ ρ2I[uε]

+ 2ερa2
ε|cε|2�

∫
Ω

(∇ζ − n0) · (∇ϕ̄ε − uε)dx

+ 2εaε|cε|2�
∫

Ω

{
(1 − |cε|2)ζ − a2

ε ζ̄n0 · (∇ζ − n0)
}
dx

+ ε2ρ2a2
ε|cε|2

∫
Ω

|∇ϕε − uε|2dx

+ 2ε2ρaε|cε|2�
∫

Ω

{
(1 − |cε|2)ϕε − a2

ε[ζ̄n0 · (∇ϕε − uε) + (∇ζ − n0) · (ζ̄uε + ϕ̄εn0)]
}
dx

+ ε2a2
ε|cε|2(a2

ε − 1 + |cε|2)
∫

Ω

|ζ + ερϕε|2dx

− 2ε3ρ2a3
ε|cε|2�

∫
Ω

{(∇ϕε − uε) · (ζ̄uε + ϕ̄εnε) + ϕ̄εuε · (∇ζ − n0)}dx

+
1

2
ε2a2

ε|cε|4
∫

Ω

[
2�(ζ + ερϕε) − εaε|ζ + ερϕε|2

]2
dx.

(4.13)

Checking the first line in the right-hand side of (4.13), we choose

n0 ∈ C∗(τ), ζ = ζn0
, cε =

√
1 − a2

εω∗(τ),(4.14)

where ζn0 is determined by (1.7) for n0. Then the first line in the right-hand side of
(4.13) becomes

a2
ε(1 − a2

εω∗(τ))ω∗(τ)|Ω| + 1

2
(a2

εω∗(τ))2|Ω| = d0(ε).

Applying (2.3) for u = n0 we have∫
Ω

(∇ζn0
− n0) · ∇ϕ̄εdx = 0.

So the third line in the right-hand side of (4.13) becomes

−2ερa2
ε|cε|2

∫
Ω

(∇ζn0 − n0) · uε dx.

Since ζn0
is real-valued, the fourth line in the right-hand side of (4.13) vanishes. From

(4.12), the sixth line in the right-hand side of (4.13) becomes

−2ε2ρa3
ε|cε|2�

∫
Ω

n0 · (ζn0∇ϕε + ϕ̄ε∇ζn0)dx.

Let us define a functional Tε,ρ by

Tε,ρ[u] = ρ2I[u] − 2ερa2
ε|cε|2

∫
Ω

(∇ζn0 − n0) · u dx.(4.15)
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Then we can rewrite (4.13) as follows:

ε−2Gε[ψ
ε,nε] − d0(ε) − Tε,ρ[u

ε]

= ε2ρ2a2
ε|cε|2

∫
Ω

|∇ϕε − uε|2dx

− 2ε2ρa3
ε|cε|2�

∫
Ω

n0 · (ζn0∇ϕε + ϕ̄ε∇ζn0)dx

+ ε2a2
ε|cε|2(a2

ε − 1 + |cε|2)
∫

Ω

|ζn0 + ερϕε|2dx

− 2ε3ρ2a3
ε|cε|2�

∫
Ω

{
ζn0u

ε · ∇ϕε + ϕ̄ε
[
uε · (∇ζn0 − n0) + nε · (∇ϕε − uε)

]}
dx

+
1

2
ε4a2

ε|cε|4
∫

Ω

[
2ρ�(ϕε) − aε|ζn0

+ ερϕε|2
]2
dx.

(4.16)

Step 2. A variational problem in W (n0). Equation (4.16) suggests that uε and ρ
should be chosen to minimize Tε,ρ asymptotically; namely,

Tε,ρ[u
ε] = Tv(ε) + o(1) as ε → 0,

where

Tv(ε) = inf
0<ρ<+∞

inf
u∈V (n0,ερ)

Tε,ρ[u].(4.17)

In order to get an upper bound estimate of Tv(ε), one may first look at the following
variational problem, which can be derived as a formal limit of (4.17):

tv(ε, ρ) = inf
u∈V (n0)

Tε,ρ[u],

tv(ε) = inf
0<ρ<+∞

tv(ε, ρ),
(4.18)

where

V (n0) = {u ∈ V (Ω,R3) : u(x) · n0(x) = 0 a.e. in Ω}.

We may try to use the minimizing sequence of (4.18) to construct test functions
for Tv(ε). However, to avoid technical complexity, instead of working on V (n0), we
consider the variational problem in a subset of the Sobolev space W 1,2(Ω,R3):

W (n0) = {u ∈ W 1,2(Ω,R3) : u(x) · n0(x) = 0 a.e. in Ω}.

Define

tw(ε, ρ) = inf
u∈W (n0)

Tε,ρ[u],

tw(ε) = inf
0<ρ<+∞

tw(ε, ρ).
(4.19)

On W (n0) we can write

Tε,ρ[u] = ρ2I[u] − 2ερa2
ε|cε|2

∫
Ω

∇ζn0
· udx.
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As a subspace of W 1,2(Ω,R3), the set W (n0) has a decomposition

W (n0) = U(τ,n0) ⊕ U⊥
w (τ,n0),

where U⊥
w (τ,n0) is the orthogonal complement of U(τ,n0) in W (n0). Since n0 ∈ C∗(τ),

using Proposition 3.3 we see that

Tε,ρ[u] = 0 for all u ∈ U(τ,n0).

Thus

tw(ε, ρ) = inf
u∈U⊥

w (τ,n0)
Tε,ρ[u].

It is interesting that the variational problem (4.19) is linked to the following
number:

μw(n0) = sup
v∈W (n0), I[v]>0

∫
Ω
∇ζn0

· vdx√
I[v]

.(4.20)

The advantage of choosing W (n0) as the admissible set is that we know C1(Ω̄,R3) is
dense in W (n0). Since I[v] �= 0 for nonzero elements v ∈ U⊥

w (τ,n0), and using the
homogeneity of the ratio, we have

μw(n0) = sup

{∫
Ω
∇ζn0 · vdx√

I[v]
: v ∈ U⊥

w (τ,n0) ∩ C1(Ω̄,R3)

}

= sup

{∫
Ω
∇ζn0 · vdx√

I[v]
: v ∈ U⊥

w (τ,n0) ∩ C1(Ω̄,R3), ‖v‖C1(Ω̄,R3) = 1

}
.

Note that, if {vj} ⊂ W (n0) is a maximizing sequence of μw(n0), then for any uj ∈
U(τ,n0), {uj + vj} is also a maximizing sequence of μw(n0) in W (n0).

Lemma 4.3. Let τ > 0 and n0 ∈ C∗(τ).
(1) 0 < μw(n0) ≤ +∞.
(2) Assume μw(n0) < +∞. If μw(n0) is achieved, we can choose ρε > 0, ρε =

O(ε) as ε → 0, such that

tw(ε) = tw(ε, ρε) = −ε2a4
ε|cε|4μw(n0)

2.(4.21)

If μw(n0) is not achieved, we can choose ρε > 0, ρε � ε| log ε| as ε → 0, such
that

−ε2a4
ε|cε|4μw(n0)

2 ≤ tw(ε) ≤ tw(ε, ρε) = −ε2a4
ε|cε|4μw(n0)

2 + o(ε2).(4.22)

(3) Assume μw(n0) = +∞. Then tw(ε) = −∞ for any ε > 0.
Proof of (1). Suppose μw(n0) = 0. Then we use Proposition 3.3 to conclude that∫

Ω

∇ζn0 · udx = 0 for all u ∈ W (n0).(4.23)

Let us choose

v0 = ∇ζn0
− (n0 · ∇ζn0

)n0.
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Then v0 ∈ W (n0), and∫
Ω

∇ζn0 · v0dx =

∫
Ω

{|∇ζn0 |2 − (n0 · ∇ζn0)
2}dx.

From (4.23), the right side of the above equality is zero. From this and the fact
|n0 · ∇ζn0

| ≤ |∇ζn0 |, we must have

∇ζn0 = gn0 on Ω,

where g = n0 · ∇ζn0 . Applying the operator curl to the above equality we get

0 = curl (∇ζn0) = curl (gn0) = gcurl n0 + ∇g × n0 = −τgn0 + ∇g × n0.

So τgn0 = ∇g × n0, and hence g = 1
τ n0 · (∇g × n0) = 0. Thus ∇ζn0 = gn0 = 0,

which is a contradiction.
Proof of (2). Assume μw(n0) < +∞. For any ρ > 0, if u ∈ U(τ,n0), then

Tε,ρ[u] = 0. Now if u ∈ W (n0) \ U(τ,n0), then

Tε,ρ[u] = ρ2I[u] − 2a2
ε|cε|2ερ

∫
Ω

∇ζn0
· udx

=

[
ρ
√
I[u] − a2

ε|cε|2ε
∫
Ω
∇ζn0

· udx√
I[u]

]2

− ε2a4
ε|cε|4

[∫
Ω
∇ζn0

· udx√
I[u]

]2

≥ −ε2a4
ε|cε|4μw(n0)

2.

Hence

tw(ε) ≥ −ε2a4
ε|cε|4μw(n0)

2.

Case 1. μw(n0) is achieved. We fix a maximizer v0 of μw(n0) with ‖v0‖C1(Ω̄,R3) =
1, and let

ρε =
εa2

ε|cε|2μw(n0)

I[v0]
.

We have

Tε,ρε [v0] = −a4
ε|cε|4μw(n0)

2.

From the choice of aε and cε, we have ρε = O(ε) as ε → 0.
Case 2. μw(n0) is not achieved. We can show that, if μw(n0) is not achieved,

then the following conclusions are true:
(i) if {vj} ⊂ W (n0) is a maximizing sequence of μw(n0) and if it is bounded in

W 1,2(Ω,R3), then

I[vj ] → 0 as j → ∞;

(ii) if in addition {vj} ⊂ U⊥
w (τ,n0), then

vj → 0 weakly in W 1,2(Ω,R3) as j → ∞.

To prove (i) and (ii), let {vj} ⊂ W (n0) be a maximizing sequence of μw(n0) that is
bounded in W 1,2(Ω,R3). We pass to a subsequence and assume that vj → v0 weakly
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in W 1,2(Ω,R3). Since μw(n0) is not achieved, we have I[v0] = 0, because otherwise
v0 achieves μw(n0). Hence I[vj ] → 0. Now if {vj} ⊂ U⊥

w (τ,n0), then v0 ∈ U⊥
w (τ,n0).

Since I[v0] = 0, we have v0 ∈ U(τ,n0). So v0 ∈ U(τ,n0) ∩ U⊥
w (τ,n0) = {0}, and

vj → 0 weakly in W 1,2(Ω,R3) as j → ∞.

To finish the proof of (2) of Lemma 4.3 in Case 2, note that we may choose a
maximizing sequence in U⊥

w (τ,n0) that approaches 0 weakly as slowly as possible. So
let us choose a maximizing sequence {vε} ⊂ U⊥

w (τ,n0) such that ‖vε‖C1(Ω̄,R3) = 1,
and

I[vε] � 1

| log ε| as ε → 0.

Let

ρε =
εa2

ε|cε|2μw(n0)

I[vε]
.

Then ρε � ε| log ε| as ε → 0, and

Tε,ρε [vε] = −ε2a4
ε|cε|4

[∫
Ω
∇ζn0 · vεdx√

I[vε]

]2

= −ε2a4
ε|cε|4μw(n0)

2 + o(ε2).

Hence (2) of Lemma 4.3 is true.

Proof of (3). Assume μw(n0) = +∞. Choose vj ∈ U⊥
w (τ,n0) such that ‖vj‖C1(Ω̄,R3)

= 1 and ∫
Ω
∇ζn0

· vjdx√
I[vj ]

≡ Mj → +∞ as j → ∞.

Fix ε > 0 and let

ρj =
εa2

ε|cε|2Mj

I[vj ]
.

Then

tv(ε) ≤ tv(ε, ρj) ≤ Tε,ρj [vj ] = −ε2a4
ε|cε|4M2

j → −∞ as j → ∞.

Note that, when μw(n0) < +∞, the estimate on ρε given in Lemma 4.3 (conclu-
sion (2)) is not optimal. In fact, we do not exclude the existence of a sequence ρ̃ε

such that tw(ε) = tw(ε, ρ̃ε) holds but ρ̃ε �→ 0 as ε → 0.

Step 3. Upper bound of Tv(ε). Now we can prove an upper bound estimate of
Tv(ε) using Lemma 4.3. Let us write

W (n0, b) =

{
u ∈ W 1,2(Ω,R3) : u(x) · n0(x) = − b

2
|u(x)|2 a.e. in Ω

}
,

W1(n0,v
ε, b) =

{
w ∈ W 1,2(Ω,R3) : w(x) · n0(x) = −1

2
|vε(x) + bw(x)|2 on Ω

}
.

Note that vε + ερεw ∈ W (n0, ερ
ε) if and only if w ∈ W1(n0,v

ε, ερε).
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Lemma 4.4. Let τ > 0 and n0 ∈ C∗(τ). Assume μw(n0) < +∞. There exist
ρε > 0, vε ∈ W (n0) ∩ C1(Ω̄,R3), and wε ∈ W 1,2(Ω,R3) such that

vε + ερεwε ∈ W (n0, ερ
ε),

ρε � ε| log ε|,
‖vε‖C1(Ω̄,R3) = 1,

‖wε‖W 1,2(Ω,R3) ≤ C;

(4.24)

and as ε → 0,

Tv(ε) ≤ Tε,ρε [vε + ερεwε] = −ε2a4
ε|cε|4μw(n0)

2 + o(ε2).(4.25)

Moreover, if μw(n0) is achieved, then we can choose ρε such that ρε = O(ε) as ε → 0.
Proof. From the proof of Lemma 4.3 (conclusion (2)) we see that for any ε > 0

there exist ρε > 0 and vε ∈ W (n0) ∩ C1(Ω̄,R3) such that, as ε → 0,

‖vε‖C1(Ω̄,R3) = 1,

0 < ρε � ε| log ε|,

I[vε] � 1

| log ε| ,

Tε,ρε [vε] = tw(ε) + o(ε2) = −ε2a4
ε|cε|4μw(n0)

2 + o(ε2).

(4.26)

Moreover, if μw(n0) is achieved, then ρε can be chosen such that ρε = O(ε). We have

Tv(ε) ≤ inf
u∈V (n0,ερε)

Tε,ρε [u] ≤ inf
u∈W (n0,ερε)

Tε,ρε [u]

≤ inf
w∈W1(n0,vε,ερε)

Tε,ρε [vε + ερεw].

Let

wε(x) = −fε(x)n0(x),

where fε(x) =
|vε(x)|2

1 +
√

1 − (ερε)2|vε(x)|2
.

(4.27)

It is direct to verify that wε ∈ W1(n0,v
ε, ερε). Moreover, since ‖vε‖C1(Ω̄,R3) = 1, we

can show that there exists a constant C such that for all small ε,

‖wε‖W 1,2(Ω,R3) ≤ C.(4.28)

Now we choose vε +ερεwε as a test function for Tv(ε). We use (4.28) to compute

Tv(ε) ≤ Tε,ρε [vε + ερεwε]

= Tε,ρε [vε] + ε(ρε)3
∫

Ω

{K1div vεdiv wε + K2(curl vε + τvε) · (curl wε + τwε)}dx

+ ε2(ρε)4I[wε] − 2ε2(ρε)2a2
ε|cε|2

∫
Ω

(∇ζn0
− n0) · wεdx

= Tε,ρε [vε] + O
(
ε(ρε)3‖vε‖W 1,2(Ω,R3)‖wε‖W 1,2(Ω,R3)

)
+ O

(
ε2(ρε)4‖wε‖2

W 1,2(Ω,R3)

)
+ O

(
ε2(ρε)2‖wε‖W 1,2(Ω,R3)

)
= Tε,ρε [vε] + O

(
ε(ρε)3

)
+ O

(
ε2(ρε)4

)
+ O

(
ε2(ρε)2

)
= Tε,ρε [vε] + O

(
ε4| log ε|3

)
= Tε,ρε [vε] + o(ε3).
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Inequality (4.25) follows from this and the last line in (4.26).
Lemma 4.5. Let τ > 0 and n0 ∈ C∗(τ). Assume that μw(n0) = +∞. Let δε

satisfy for any ε

ε2 � δε ≤ δ0,

where 0 < δ0 < 1 is independent of ε. There exist ρε > 0, vε ∈ W (n0) ∩ C1(Ω̄,R3),
and wε ∈ W 1,2(Ω,R3) such that

vε + ερεwε ∈ W (n0, ερ
ε),

ρε ≤
δε
ε
,

‖vε‖C1(Ω̄,R3) = 1,

‖wε‖W 1,2(Ω,R3) ≤ C;

(4.29)

and as ε → 0,

Tv(ε) ≤ Tε,ρε [vε + ερεwε] = −ε2a4
ε|cε|4Lε + O

(
δ3
ε

ε2

)
,(4.30)

where Lε → +∞.
Proof. Let

Wε(n0) =

{
v ∈ U⊥

w (τ,n0) ∩ C1(Ω̄,R3) :

∫
Ω
∇ζn0 · vdx
I[v]3/2

≤ δε
a2
ε|cε|2ε2

}
,

and define

με(n0) = sup
v∈Wε(n0)

∫
Ω
∇ζn0

· vdx√
I[v]

.(4.31)

We have

με(n0) = sup

{∫
Ω
∇ζn0 · vdx√

I[v]
: v ∈ Wε(n0), ‖v‖C1(Ω̄,R3) = 1

}
.

We claim that, if μw(n0) = +∞, then

lim
ε→0

με(n0) = +∞.(4.32)

To prove (4.32), let vj and Mj be given in the proof of Lemma 4.3 (conclusion (3)).
Note that, as ε → 0, aε and |cε| remain bounded, and δε/ε

2 → +∞. Let us choose
j(ε) such that j(ε2) ≥ j(ε1) if 0 < ε2 < ε1, and

Mj(ε)

I[vj(ε)]
≤ δε

a2
ε|cε|2ε2

.

Then vj(ε) ∈ Wε(n0). Hence

με(n0) ≥
∫
Ω
∇ζn0 · vj(ε)dx√

I[vj(ε)]
= Mj(ε) → +∞ as ε → 0.
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So (4.32) is true.
Now we choose vε ∈ Wε(n0) ∩ C1(Ω̄,R3) such that ‖vε‖C1(Ω̄,R3) = 1 and

∫
Ω
∇ζn0

· vεdx√
I[vε]

= με(n0) + o

(
ε2

με(n0)

)
.

Let

ρε =
εa2

ε|cε|2με(n0)

I[vε]
.

Then ερε ≤ δε, and

Tε,ρε [v
ε] = −ε2a4

ε|cε|4με(n0)
2 + o(ε4).

For these vε and ρε we define wε by (4.27). Then wε ∈ W1(n0,v
ε, ερε) and

satisfies (4.28). By computation as in the proof of Lemma 4.4 we have

Tv(ε) ≤ Tε,ρε [vε + ερεwε] = Tε,ρε [vε] + O(ε(ρε)3) + O(ε2(ρε)4) + O(ε2(ρε)2).

Since ρε ≤ δε/ε and δε � ε2, the error terms in the above inequality can be controlled
by

O(δ2
ε) + O

(
δ3
ε

ε2

)
= O

(
δ3
ε

ε2

)
.

Estimate (4.30) follows from this and the last line in (4.29) if we set Lε =
με(n0)

2.
Note that, in Lemma 4.5 we do not have control on the growth rate of Lε, but

we have control on ρε by ρε � δε/ε, which is needed in order to get (4.28). In order
to make (4.30) useful, we choose δε such that

ε2 � δε � ε2| log ε|.

Hence ρε � ε| log ε|.
Now we return to the construction of the test functions for Gε. Let

μ∗(τ) = sup
n0∈C∗(τ)

μw(n0).(4.33)

Step 4. Constructing test functions for Gε when μ∗(τ) < +∞. When μw(n0) <
+∞, from Lemma 4.4, we can choose vε, wε, and ρε satisfying (4.24) such that (4.25)
holds. In particular, ρε � ε| log ε|. Moreover, ρε = O(ε) if μw(n0) is achieved. We
set

uε = vε + ερεwε, ρ = ρε, ϕε = ϕε
1 +

iaε
ρε

fε,(4.34)

where ϕε
1 and fε are real-valued functions bounded in W 1,2(Ω) as ε → 0, and∫

Ω

ϕε
1dx = 0,

∫
Ω

fεdx = 0.
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From (4.16) we have

ε−2Gε[ψ
ε,nε] − d0(ε) − Tε,ρε [uε]

= ε2a4
ε|cε|2

∫
Ω

{|∇fε|2 − 2n0 · (ζn0
∇fε − fε∇ζn0

)}dx

+ ε2a2
ε|cε|2(a2

ε − 1 + |cε|2)
∫

Ω

{|ζn0 + ερεϕε
1|2 + ε2a2

ε|fε|2}dx

+ (ερε)2a2
ε|cε|2

∫
Ω

|∇ϕε
1 − uε|2dx

− 2ε3ρεa4
ε|cε|2

∫
Ω

{∇fε · (ζn0u
ε + ϕε

1n
ε) − fε[uε(∇ζn0 − n0) + nε(∇ϕε

1 − uε)]}dx

+
1

2
ε4a4

ε|cε|4
∫

Ω

[2fε − |ζn0 + ερεϕε
1|2 − ε2a2

ε|fε|2]2dx

= −ε2a2
ε|cε|2(1 − |cε|2)

∫
Ω

|ζn0 |2dx

+ ε2a4
ε|cε|2

∫
Ω

{|∇fε − ζn0
n0|2 + 2(n0 · ∇ζn0

)fε}dx

+ (ερε)2a2
ε|cε|2

∫
Ω

|∇ϕε
1 − uε|2dx

+ O(ε3ρε) + O(ε4),

(4.35)

where we have used the fact that vε and wε are bounded in W 1,2(Ω,R3), ϕε
1 and fε

are bounded in W 1,2(Ω), and ρε � ε| log ε|. Write

Fn0 [f ] =

∫
Ω

{|∇f − ζn0n0|2 + 2(n0 · ∇ζn0)f}dx.

Checking the right side of (4.35), we choose fε to be the minimizer of the variational
problem

min

{
Fn0 [f ] : f ∈ W 1,2(Ω),

∫
Ω

fdx = 0

}
.(4.36)

It is easy to verify that (4.36) has a unique minimizer, which is denoted by fn0 ; and
for any g ∈ W 1,2(Ω) satisfying

∫
Ω
gdx = 0 we have∫

Ω

{(∇fn0
− ζn0

n0) · ∇g + (n0 · ∇ζn0
)g}dx = 0.(4.37)

Thus fn0 is the solution of the following equation:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δfn0 = 2n0 · ∇ζn0 − l(n0) in Ω,

∂fn0

∂ν
= ζn0n0 · ν on ∂Ω,∫

Ω

fn0dx = 0,

(4.38)

where

l(n0) =

∫
−

Ω

|∇ζn0
|2dx =

∫
−

Ω

n0 · ∇ζn0
dx.
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Using (4.37) with g = fn0
we find

Fn0
[fn0

] =

∫
Ω

{|∇fn0
− ζn0

n0|2 − 2(∇fn0
− ζn0

n0) · ∇fn0
}dx

=

∫
Ω

(|ζn0
|2 − |∇fn0

|2)dx.
(4.39)

From the above discussion and (4.10), (4.14), and (4.34), the test functions for Gε are
chosen to be

ψε = cε{1 + iεaεζn0
− ε2a2

εfn0
+ iε2ρεaεϕ

ε
1},

nε = n0 + ερεuε,

where n0 ∈ C∗(τ), uε = vε + ερεwε, ϕε
1 = ζuε ,

(4.40)

where ζuε is the solution of (1.7) for u = uε. Now we explain how ϕε
1 is chosen.

Case 1. ρε satisfies

ε � ρε � ε| log ε| as ε → 0.(4.41)

Checking the term of order O((ερε)2) in the right-hand side of (4.35), we naturally
choose ϕε

1 = ζuε . Then from (4.35) and (4.39) we find

ε−2Gε[ψ
ε,nε] − d0(ε) − Tε,ρε [uε]

= −ε2a2
ε|cε|2(1 − |cε|2)

∫
Ω

|ζn0 |2dx + ε2a4
ε|cε|2

∫
Ω

(|ζn0 |2 − |∇fn0 |2)dx

+ (ερε)2a2
ε|cε|2ω(uε)|Ω| + O(ε3ρε)

= ε2a2
ε|cε|2

{
(a2

ε − 1 + |cε|2)‖ζn0‖2
L2(Ω) − a2

ε‖∇fn0‖2
L2(Ω)

}
+ (ερε)2a2

ε|cε|2ω(uε)|Ω| + O(ε3ρε) + O(ε4).

From (4.14), (4.25), and (4.40) we have, under the condition (4.41),

ε−2Gε[ψ
ε,nε]

= d0(ε) + Tε,ρε [uε] + ε2a2
ε|cε|2

{
(a2

ε − 1 + |cε|2)‖ζn0‖2
L2(Ω) − a2

ε‖∇fn0‖2
L2(Ω)

}
+ (ερε)2a2

ε|cε|2ω(uε)|Ω| + O(ε3ρε)

= d0(ε) − ε2[a4
ε(1 − a2

εω∗(τ))2μw(n0)
2 + d1(ε,n0)] + o(ε2),

where

d1(ε,n0) = a4
ε(1 − a2

εω∗(τ))
{
‖∇fn0

‖2
L2(Ω) − (1 − ω∗(τ))‖ζn0

‖2
L2(Ω)

}
.(4.42)

Thus, under the condition (4.41) we have

Gε[ψ
ε,nε] = d0(ε)ε

2 − d1(ε)ε
4 + o(ε4).(4.43)

Case 2. ρε = O(ε). In this case, (4.43) remains valid if we also choose ϕε
1 = ζuε .

However, we mention that, if we wish to get a better estimate in the higher order
terms, we may compute all the terms of order O(ε4) in the right-hand side of (4.35)
to determine a better choice of ϕε

1.
Summarizing the above discussions we have the following proposition.
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Proposition 4.6. Assume μ∗(τ) < +∞. We have the energy upper bound
estimate

C(K1,K2, ε, τ, aεε) ≤ d0(ε)ε
2 − ε4[a4

ε(1 − a2
εω∗(τ))2μ∗(τ)2 + d1(ε)] + o(ε4),(4.44)

where

d1(ε) = inf
n0∈C∗(τ)

d1(ε,n0).(4.45)

Step 5. Constructing test functions for Gε when μ∗(τ) = +∞. When μw(n0) =
+∞, we use Lemma 4.5 for δε = ε2| log ε| to find vε, wε, and ρε satisfying (4.29) such
that (4.30) holds, that is,

Tε,ρε [vε + ερεwε] = −ε2a4
ε|cε|4Lε + O(ε4| log ε|3),

where Lε → +∞. Then we define the test functions ψε and nε by (4.40) with ϕε
1 = ζuε .

Similar to the computations in Step 5, we have

ε−2Gε[ψ
ε,nε]

= d0(ε) + Tε,ρε [uε] + ε2a2
ε|cε|2

{
(a2

ε − 1 + |cε|2)‖ζn0
‖2
L2(Ω) − a2

ε‖∇fn0
‖2
L2(Ω)

}
+ (ερε)2a2

ε|cε|2ω(uε)|Ω| + O(ε3ρε)

≤ d0(ε) − ε2Lεa4
ε(1 − a2

εω∗(τ))2 − ε2d1(ε,n0) + o(ε2).

So we have the following proposition.
Proposition 4.7. Assume μ∗(τ) = +∞. Then we have the energy upper bound

estimate

C(K1,K2, ε, τ, aεε) ≤ d0(ε)ε
2 − ε4Lεa4

ε(1 − a2
εω∗(τ))2 − ε4d1,∞(ε) + o(ε4),(4.46)

where

d1,∞(ε) = inf
n0∈C∗(τ), μw(n0)=+∞

d1(ε,n0).(4.47)

Proof of Theorem 4.2. The proof follows from Propositions 4.6 and 4.7.

5. Asymptotics of minimizers for small κ. In this section we investigate the
behavior of the minimizers for small κ. We always assume the condition (1.2), and
let ε denote κ. In the following we write the minimizers of G by (ψε,nε). Note that
they depend also on the wave number q.

Theorem 5.1. Assume (1.2) and (4.1) hold. For small ε > 0, let q = aεε, where

0 < aε <
1

ε
Qc3(K1,K2, ε, τ),

lim
ε→0+

aε = a0 ≤ 1√
ω∗(τ)

.
(5.1)

We have the following:
(1) C(K1,K2, ε, τ, aεε) = m(a0)ε

2 + o(ε2), where

m(a0) =

⎧⎨
⎩

1
2 |Ω| if a0 = 1√

ω∗(τ)
,

a2
0ω∗(τ)[1 − 1

2a
2
0ω∗(τ)]|Ω| if 0 < a0 < 1√

ω∗(τ)
.
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(2) Let (ψε,nε) be the minimizers of G for q = aεε. Then there exist a subsequence
and n0 ∈ C∗(τ) such that

nε → n0 weakly in W 1,2
loc (Ω,R3) and strongly in Lp(Ω,R3) for all 1 ≤ p < ∞.(5.2)

Moreover, the following expansions hold:

ψε = cε[1 + iaεε(ζn0 + ερεϕε)],

nε = n0 + ερεuε,
(5.3)

where, as ε → 0,
(i) ρε ≥ 0 and ερε → 0;
(ii) ‖uε‖L2(Ω) = 1 and ρ2

εI[uε] → 0;
(iii)

∫
Ω
ϕεdx = 0 and ερεϕε → 0 strongly in W 1,2(Ω,C);

(iv) cε is a complex number and

|cε| →
√

[1 − a2
0ω∗(τ)]+.(5.4)

Proof. The upper bound of energy follows from Theorem 4.2. Now we prove the
lower bound. Let q = aεε, where aε satisfies (5.1). From (4.9) we find∫

Ω

{
|∇aεεnεψε|2 +

ε2

2
(1 − |ψε|2)2 + K1|div nε|2 + K2|curl nε + τnε|2

}
dx

≤ d0(ε)ε
2 + O(ε4).

(5.5)

As in the proof of Theorem 4.1 (Step 2) we can show that there exists a subsequence,
still denoted by (ψε,nε), such that (5.2) holds, where n0 ∈ C(τ). From (5.5),∫

Ω

|∇aεεnεψε|2dx = O(ε2).

Since |ψε(x)| ≤ 1, we have

‖∇ψε‖L2(Ω) ≤ ‖∇aεεnε
ψε‖L2(Ω) + aεε‖nεψε‖L2(Ω) = O(ε)

and

ψε → c0 strongly in W 1,2(Ω,C) as ε → 0,

where c0 is a constant. Let

cε =

∫
−

Ω

ψεdx.

Then cε → c0 as ε → 0.
Claim 1. cε �= 0 for all small ε.
Suppose Claim 1 were not true. Passing to a subsequence if necessary, we have

cε = 0 for all small ε. Then ψε → 0 in W 1,2(Ω,C) as ε → 0. We write

ψε = εbεφε,

where
∫
Ω
φεdx = 0, and ‖φε‖L2(Ω) = 1, bε > 0, and εbε → 0. Thus

‖∇φε‖2
L2(Ω) ≥ μ1‖φε‖2

L2(Ω) = μ1,
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where

μ1 = inf

{
‖∇φ‖2

L2(Ω) : φ ∈ W 1,2(Ω), ‖φ‖L2(Ω) = 1,

∫
Ω

φdx = 0

}
.

We have

ε−2Gε[ψε,nε] ≥
1

ε2

∫
Ω

{
|∇aεεnε

ψε|2 +
1

2
(1 − ε2b2ε|φε|2)2

}
dx

=
|Ω|
2

+ b2ε

∫
Ω

|∇aεεnε
φε|2dx + O(ε2b2ε)

=
|Ω|
2

+ b2ε

{∫
Ω

|∇φε|2dx + O(ε)

}

≥ |Ω|
2

+ b2ε(μ1 + O(ε))

>
|Ω|
2

,

which contradicts the obvious upper bound Gε[ψε,nε] <
|Ω|
2 . Thus Claim 1 is true.

Now we write

ψε = cε(1 + iaεεφε), nε = n0 + ερεuε,

where
∫
Ω
φεdx = 0 and ‖uε‖L2(Ω) = 1. Since cε → c0, εφε → 0 in W 1,2(Ω,C), and

nε → n0 in L4(Ω,R3) as ε → 0, we find

ε−2Gε[ψε,nε] =

∫
Ω

{
a2
ε|cε|2|∇φε − nε − iaεεφεnε|2 +

1

2
(1 − |cε|2|1 + iaεεφε|2)2

+ ρ2
εK1|div uε|2 + ρ2

εK2|curl uε + τuε|2
}
dx

=

∫
Ω

{
a2
0|cε|2|∇φε − n0|2 +

1

2
(1 − |cε|2)2

}
dx + ρ2

εI[uε] + o(1).

(5.6)

Let fa0,n0(t) be the function defined in (4.7). From (2.1), (5.5), and (5.6), we have

d0(ε) − ρ2
εI[uε] + O(ε2) ≥

∫
Ω

{
a2
0|cε|2|∇φε − n0|2 +

1

2
(1 − |cε|2)2

}
dx + o(1)

≥
{
a2
0|cε|2ω(n0) +

1

2
(1 − |cε|2)2

}
|Ω| + o(1)

=

{
a2
0|c0|2ω(n0) +

1

2
(1 − |c0|2)2

}
|Ω| + o(1)

= fa0,n0(|c0|)|Ω| + o(1)

≥ |Ω| min
n∈C(τ)

min
c≥0

fa0,n(c) + o(1)

= m(a0) + o(1).
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Note that d0(ε) = m0(a0) + o(1). Thus

fa0,n0(|c0|) =
m(a0)

|Ω| = min
c≥0

fa0,n0(c) = fa0,n0

(√
[1 − a2

0ω(n0)]+

)
,

ω(n0) = ω∗(τ),

lim
ε→0

|cε| = |c0| =
√

[1 − a2
0ω(n0)]+,∫

−
Ω

|∇φε − n0|2dx = ω(n0) + o(1);

(5.7)

and

Gε[ψε,nε] = m(a0)ε
2 + o(ε2),

ρ2
εI[uε] = o(1).

From the last equality in (5.7) we find that, as ε → 0,

∇φε = ∇ζn0 + o(1) in L2(Ω).

Since
∫
Ω
φεdx = 0, we have

φε = ζn0 + o(1) in W 1,2(Ω).

Summarizing the above discussions, we get the conclusions of Theorem 5.1.
Proof of Theorem 1.1. The proof follows from Theorems 4.1 and 5.1.

Appendix A. Proof of Lemma 2.3. We follow the idea of Evans in the proof
of the div-curl lemma; see [E, p. 54]. Without loss of generality we assume D2 = Ω
and u ∈ V (Ω,R3) ∩ C2(Ω̄,R3). Let D denote D1. Let w be the solution of

Δw = u in Ω, w = 0 on ∂Ω.(A.1)

There exists a constant C1(Ω) such that

‖w‖W 2,2(Ω,R3) ≤ C1(Ω)‖u‖L2(Ω).

Let ξ = div w and v = u −∇ξ = Δw −∇div w = −curl 2w. Then

u = v + ∇ξ.

From (A.1), we have

Δ(curl w) = curl u in Ω.

Applying the interior elliptic estimate we have

‖curl w‖W 2,2(D,R3) ≤ C2(D,Ω){‖curl w‖W 1,2(Ω,R3) + ‖curl u‖L2(Ω)}
≤ C2(D,Ω){‖w‖W 2,2(Ω,R3) + ‖curl u‖L2(Ω)}
≤ C3(D,Ω){‖u‖L2(Ω) + ‖curl u‖L2(Ω)}.

Thus

‖v‖W 1,2(D,R3) = ‖curl2w‖W 1,2(D,R3) ≤ C4‖curl w‖W 2,2(D,R3)

≤ C5(D,Ω){‖u‖L2(Ω) + ‖curl u‖L2(Ω)}.
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Using (A.1) again, we have

Δ(div w) = div u in Ω.

Applying the interior elliptic estimate again, we have

‖div w‖W 2,2(D) ≤ C6(D,Ω){‖div w‖W 1,2(Ω) + ‖div u‖L2(Ω)}
≤ C7(D,Ω){‖w‖W 2,2(Ω,R3) + ‖div u‖L2(Ω)}
≤ C8(D,Ω){‖u‖L2(Ω) + ‖curl u‖L2(Ω)}.

Hence

‖∇ξ‖W 1,2(D) = ‖∇(div w)‖W 1,2(D) ≤ ‖div w‖W 2,2(D)

≤ C8(D,Ω){‖u‖L2(Ω) + ‖curl u‖L2(Ω)}.

Now we have

‖u‖W 1,2(D,R3) ≤ ‖v‖W 1,2(D,R3) + ‖∇ξ‖W 1,2(D)

≤ C9(D,Ω){‖u‖L2(Ω) + ‖div u‖L2(Ω) + ‖curl u‖L2(Ω)}.
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ON THE REGULARITY CONDITIONS FOR THE DISSIPATIVE
QUASI-GEOSTROPHIC EQUATIONS∗

DONGHO CHAE†

Abstract. We obtain regularity conditions for solutions of the dissipative quasi-geostrophic
equation. The first one imposes on the integrability of the magnitude of the temperature gradient,
and corresponds to the Serrin type of condition in the theory of Navier–Stokes equations. The other
one incorporates the direction of normals to the level curves and the magnitude of the temperature
gradient simultaneously. For the proof of the second result, in particular, we use geometric properties
of the nonlinear term as well as the estimates using the Triebel–Lizorkin type of norms.

Key words. quasi-geostrophic equations, regularity conditions, Triebel–Lizorkin spaces
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1. Introduction. We are concerned with the regularity of the quasi-geostrophic
equation with a dissipation term:

∂θ

∂t
+ (v · ∇)θ = −κΛαθ,(1.1)

v(x, t) = −∇⊥(−Δ)−
1
2 θ = −

∫
R2

∇⊥θ(x + y, t)

|y| dy,(1.2)

θ(x, 0) = θ0(x),(1.3)

where θ(x, t) is a scalar function representing temperature, v(x, t) is the velocity field
of the fluid, κ ≥ 0 is the diffusion constant, Λα = (−Δ)

α
2 , and ∇⊥ = (−∂x2 , ∂x1).

See, e.g., [5, 3, 10] for the instructive discussions and the physical and mathematical
motivations of the study of (1.1)–(1.3), in particular of the inviscid case (κ = 0). For
α > 1 the global regularity of the solution of (1.1)–(1.3) is well known (see [6]). On
the other hand, for 0 ≤ α ≤ 1, the question of global regularity/finite time singularity
is still a challenging open problem (see, e.g., [2, 4, 7, 8, 9, 15, 16, 17] for related
studies). In particular, the critical dissipation case (α = 1) has similar features to
the three-dimensional (3D) Navier–Stokes equations, and could be considered as its
model problem. In order to see the similarities to the 3D Navier–Stokes equations
(with fractional powers of Laplacian) more apparently we apply the operation ∇⊥ to
(1.1) to obtain

∂∇⊥θ

∂t
+ (v · ∇)∇⊥θ = (∇⊥θ · ∇)v − κΛα∇⊥θ.(1.4)
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Then, we observe that ∇⊥θ has the role of vorticity, and (1.2) corresponds to the Biot–
Savart law for the 3D Navier–Stokes equations. In this note we are concerned with
the sufficient conditions to guarantee regularity of solutions of the quasi-geostrophic
equations, which have been studied by many authors for the case of the 3D Navier–
Stokes equations since Prodi [11] and Serrin [12]. To the author’s knowledge the
only regularity condition available in the literature for (1.1)–(1.3) is the following one
obtained by Constantin, Majda, and Tabak [5] (except its refinement in [1]):

lim sup
t↗T

‖θ(t)‖Hm < ∞ if and only if

∫ T

0

‖∇⊥θ(t)‖L∞dt < ∞,(1.5)

where m > 2, which holds for solutions of both viscous and inviscid (κ = 0) equations.
Our first theorem generalizes this as follows.

Theorem 1.1. Let θ(x, t) be a solution of the quasi-geostrophic equation (1.1)–
(1.3) with α ∈ (0, 1], κ > 0, and its derivative ∇⊥θ satisfies

∇⊥θ ∈ Lr(0, T ;Lp(R2)) for some p, r with
2

p
+

α

r
≤ α,

2

α
< p < ∞;(1.6)

then there is no singularity up to T .
Remark 1.1. We observe that p = ∞, r = 1 corresponds to (1.5) for any α ∈

(0, 1].
Remark 1.2. We note that the system (1.1)–(1.2) has symmetry under the scaling

transform

θ(x, t) → θλ(x, t) = λα−1θ(λx, λαt).

Under this scaling transform we have the invariance of the norms,

‖∇⊥θ‖Lr(0,T ;Lp(R2)) = ‖∇⊥θλ‖Lr(0,λαT ;Lp(R2)) if
2

p
+

α

r
= α.

In this sense the condition (1.6) is optimal.
For the statement of our next theorem we introduce a function space. Given

0 < α < 1, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, the function space Ḟs
p,q is defined by the

seminorm

‖f‖Ḟs
p,q

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∥∥∥∥∥
(∫

Rn

|f(x + y) − f(x)|q
|y|n+sq

dy

) 1
q

∥∥∥∥∥
Lp(Rn,dx)

if 1 ≤ p ≤ ∞, 1 ≤ q < ∞,

∥∥∥∥∥ess sup
|y|�=0

|f(x + y) − f(x)|
|y|s

∥∥∥∥∥
Lp(Rn,dx)

if 1 ≤ p ≤ ∞, q = ∞.

Observe that, in particular, Ḟs
∞,∞

∼= Cs, the usual Hölder seminormed space. In
order to compare this space with other more classical function spaces let us introduce
the Banach space Fs

p,q by defining its norm,

‖f‖Fs
p,q

= ‖f‖Lp + ‖f‖Ḟs
p,q

.

We note that for 0 < s < 1, 2 ≤ p < ∞, and q = 2, Fs
p,2

∼= Lp
s(R

n) = (1−Δ)−
s
2Lp(Rn),

the fractional order Sobolev space (or the Bessel potential space); see [13, p. 163]. On
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the other hand, if n
min{p,q} < s < 1, n < p < ∞, and n < q ≤ ∞, then Fs

p,q coincides

with the usual Triebel–Lizorkin space F s
p,q (see [14, p. 101]). The following is our

second main theorem.
Theorem 1.2. Let θ(x, t) be a solution of the dissipative quasi-geostrophic equa-

tion (1.1)–(1.3) with κ > 0. Let ξ(x, t) be its direction field, ξ(x, t) = ∇⊥θ(x)/
|∇⊥θ(x)| defined for ∇⊥θ(x, t) 
= 0. Suppose there exist s ∈ (0, 1), q ∈ ( 2

2−s ,∞],

p1 ∈ (1,∞], p2 ∈ (1, 2
s ) satisfying s

2 < 1
p1

+ 1
p2

< s+α
2 , and r1, r2 ∈ [1,∞] such that

the following hold:

ξ(x, t) ∈ Lr1(0, T ; Ḟs
p1,q) and ∇⊥θ(x, t) ∈ Lr2(0, T ;Lp2(R2))

with
2

p1
+

2

p2
+

α

r1
+

α

r2
≤ α + s.(1.7)

Then, the solution θ(x, t) is regular up to T .
Remark 1.3. The condition (1.7) describes quantitatively that by assuming regu-

larity of the direction field ξ(x, t) we can have regularity of solution with assumption
of lower integrability of |∇⊥θ(x, t)| than required by Theorem 1.1.

2. Proof of the main theorems.
Proof of Theorem 1.1. We plan to show that our integrability condition for ∇⊥θ

in Theorem 1.1 implies ∫ T

0

‖∇⊥θ(t)‖L∞dt < ∞,(2.1)

thus guaranteeing the desired regularity until T by (1.5). We take L2(R2) inner
product of (1.4) with Δ∇⊥θ and integrate it by parts to obtain

1

2

d

dt
‖Λ2θ(t)‖2

L2 + κ‖Λ2+α
2 θ‖2

L2 =

∫
R2

(v · ∇)∇⊥θ · Δ∇⊥θdx

−
∫

R2

(∇⊥θ · ∇)v · Δ∇⊥θdx = I + J.(2.2)

Integrating by parts, we have

I = −
∫

R2

∇[(v · ∇)∇⊥θ] · ∇∇⊥θdx

= −
∫

R2

(∇v)(∇∇⊥θ) · ∇∇⊥θdx−
∫

R2

(v · ∇)∇∇⊥θ · ∇∇⊥θdx

= I1 + I2.

Integrating by parts again, and using the fact that div v = 0, we derive

I2 = −1

2

∫
R2

(v · ∇)|∇∇⊥θ|2dx =
1

2

∫
R2

(div v)|∇∇⊥θ|2dx = 0.(2.3)

In the case 4
α ≤ p < ∞ we estimate

I1 ≤
∫

R2

|∇v||∇∇⊥θ|2dx

≤ ‖∇∇⊥θ‖L2‖∇v‖Lp‖∇∇⊥θ‖
L

2p
p−2

(Hölder’s inequality)
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≤ C‖∇∇⊥θ‖L2‖∇v‖Lp‖∇∇⊥θ‖1− 4
αp

L2

× ‖Λα
2 ∇∇⊥θ‖

4
αp

L2 (Gagliardo–Nirenberg’s inequality)

≤ C‖Λ2θ‖2− 4
α

L2 ‖∇⊥θ‖Lp‖Λ2+α
2 θ‖

4
α

L2 (Calderon–Zygmund’s inequality)

≤ κ

4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

αp
αp−2

Lp ‖Λ2θ‖2
L2 (Young’s inequality),(2.4)

while in the case 2
α < p < 4

α , we estimate

I1 ≤ ‖∇∇⊥θ‖
L

4
2−α

‖∇v‖Lp‖∇∇⊥θ‖
L

4p
2p−4+αp

(Hölder’s inequality)

≤ C‖Λα
2 ∇∇⊥θ‖L2‖∇v‖Lp‖∇∇⊥θ‖2− 4

αp

L2 ‖Λα
2 ∇∇⊥θ‖

4
αp−1

L2

(Sobolev’s and Gagliardo–Nirenberg’s inequalities)

≤ C‖Λ2θ‖2− 4
α

L2 ‖∇⊥θ‖Lp‖Λ2+α
2 θ‖

4
α

L2 (Calderon–Zygmund’s inequality)

≤ κ

4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

αp
αp−2

Lp ‖Λ2θ‖2
L2 (Young’s inequality).(2.5)

In order to estimate J we first integrate by parts:

J =

∫
R2

∇[(∇⊥θ · ∇)v] · ∇∇⊥θdx

=

∫
R2

∇∇⊥θ · ∇v · ∇∇⊥θdx +

∫
R2

(∇⊥θ · ∇)∇v · ∇∇⊥θdx.

Since ‖∇∇v‖Lq ≤ C‖∇∇⊥θ‖Lq , 1 < q < ∞, due to the Calderon–Zygmund inequal-
ity, we observe that the estimate of J is the same as the estimate of I1, and we
have

J ≤ κ

4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

αp
αp−2

Lp ‖Λ2θ‖2
L2 .(2.6)

Combining the estimates (2.3)–(2.6) and absorbing the diffusion term into the left-
hand side, we obtain

d

dt
‖Λ2θ‖2

L2 + κ‖Λ2+α
2 θ‖2

L2 ≤ C‖∇⊥θ‖
αp

αp−2

Lp ‖Λ2θ‖2
L2 .(2.7)

By Gronwall’s lemma,

‖Λ2θ(t)‖L2 ≤ ‖Λ2θ0‖L2 exp

[
C

∫ T

0

‖∇⊥θ(t)‖
αp

αp−2

Lp dt

]
∀t ∈ [0, T ].

Hence, ‖Λ2θ(t)‖L2 ∈ L∞(0, T ). Integrating (2.7) over [0, T ], we have

‖Λ2θ(t)‖2
L2 + κ

∫ T

0

‖Λ2+α
2 θ(t)‖2

L2dt

≤ C

∫ T

0

‖∇⊥θ(t)‖
αp

αp−2

Lp dt sup
0≤t≤T

‖Λ2θ(t)‖2
L2 + ‖Λ2θ0‖2

L2 ,

which implies
∫ T

0
‖Λ2+α

2 θ(t)‖2
L2dt < ∞. Applying the Gagliardo–Nirenberg inequal-

ity,

‖∇f‖L∞ ≤ C‖f‖
α

4+α

L2 ‖Λ2+α
2 f‖

4
4+α

L2 ,
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in R
2, we have ∫ T

0

‖∇θ(t)‖L∞dt ≤ C

∫ T

0

‖θ(t)‖
α

4+α

L2 ‖Λ2+α
2 θ(t)‖

4
4+α

L2 dt

≤ C‖θ0‖
α

4+α

L2 T
2+α
4+α

(∫ T

0

‖Λ2+α
2 θ‖2

L2dt

) 2
4+α

< ∞.

Hence, (2.1) is proved.
Proof of Theorem 1.2. Let p be an integer of the form p = 2m, where m is a

positive integer, and satisfy

2

α
≤ p < ∞.(2.8)

Taking L2(R2) inner product of (1.4) with ∇⊥θ(x, t)|∇⊥θ(x, t)|p−2 and substituting
v from (1.2) into it, we have after integration by parts

1

p

d

dt
‖∇⊥θ(t)‖pLp + κ

∫
R2

(Λα∇⊥θ) · ∇⊥θ|∇⊥θ|p−2dx

=

∫
R2

(∇⊥θ · ∇)v · ∇⊥θ|∇⊥θ|p−2dx

=

∫
R2

∫
R2

[∇θ(x, t) · ŷ][∇⊥θ(x + y, t) · ∇θ(x, t)]
dy

|y|2 |∇
⊥θ(x, t)|p−2dx

:= I,(2.9)

where the integral with respect to y in the right-hand side is in the sense of principal
value. We start estimating the dissipation term

κ

∫
R2

(∇⊥θ · ∇)v · ∇⊥θ|∇⊥θ|p−2dx ≥ κ

p

∫
R2

∣∣∣Λα
2 |∇⊥θ|

p
2

∣∣∣2 dx
≥ κCα

p

(∫
R2

|∇⊥θ|
2p

2−α dx

) 2−a
2

=
κCα

p
‖∇⊥θ‖p

L
2p

2−α

,(2.10)

where we used Lemma 2.4 of [8] for the estimate of the fractional derivative in the

first inequality, and the Sobolev imbedding, L2
α
2
(R2) ↪→ L

4
2−α (R2), in the second

inequality. Next, we estimate I as follows:

I =

∫
R2

∫
R2

(ξ⊥(x, t) · ŷ)[ξ(x + y, t) · ξ⊥(x, t)]|∇⊥θ(x + y, t)| dy|y|2 |∇
⊥θ(x, t)|pdx

=

∫
R2

∫
R2

(ξ⊥(x, t) · ŷ)[ξ(x + y, t) − ξ(x, t)] · ξ⊥(x, t)|∇⊥θ(x + y, t)| dy|y|2 |∇
⊥θ(x, t)|pdx

≤
∫

R2

∫
R2

|ξ(x + y, t) − ξ(x, t)||∇⊥θ(x + y, t)| dy|y|2 |∇
⊥θ(x, t)|pdx

≤
∫

R2

(∫
R2

|ξ(x + y, t) − ξ(x, t)|q
|y|2+sq

dy

) 1
q

(∫
R2

|∇⊥θ(x + y, t)|q′

|y|2−sq′
dy

) 1
q′

|∇⊥θ|pdx

≤ ‖ξ‖Ḟs
p1,q

∥∥∥{Iαq′(|∇⊥θ|q′)}
1
q′
∥∥∥
Lp̃2

‖∇⊥θ‖pLp3 ,

(2.11)
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where we used the fact that ξ(x, t) · ξ⊥(x, t) = 0 in the second equality, and Hölder’s
inequality in the second and the third inequalities with the exponents satisfying

1

p1
+

1

p̃2
+

p

p3
= 1,

1

q
+

1

q′
= 1,(2.12)

and Iσ(·), 0 < σ < 2, is the operator defined by the Riesz potential as follows:

Iσ(f)(x) = γ(σ)

∫
R2

f(x + y)

|y|2−σ
dy, γ(σ) = 2σπ

Γ(σ2 )

Γ( 2−σ
2 )

.

From the well-defined property of the Riesz operator we have the restriction 0 <
sq′ < 2, which gives us q ∈ ( 2

2−s ,∞] due to the second equation of (2.12). Using the
Hardy–Littlewood–Sobolev inequality [13], we estimate∥∥∥{Isq′(|∇⊥θ|q′)}

1
q′
∥∥∥
Lp2

= ‖Isq′(|∇⊥θ|q′)‖
1
q′

L
p̃2
q′

≤ C‖|∇⊥θ|q′‖
1
q′
Lr = C‖∇⊥θ‖Lrq′ = C‖∇⊥θ‖

L
2p̃2

2+sp̃2

,(2.13)

where we used the relation 1
r = q′

p̃2
+ sq′

2 , and hence rq′ = 2p̃2

2+sp̃2
. On the other hand,

using the Lp interpolation inequality, we estimate

‖∇⊥θ‖pLp3 ≤ ‖∇⊥θ‖
p(1+ 2p

αp3
− 2

α )

Lp ‖∇⊥θ‖
p( 2

α− 2p
αp3

)

L
2p

2−α

= ‖∇⊥θ‖
p− 2p

αp1
− 2p

αp̃2

Lp ‖∇⊥θ‖
2p

αp1
+ 2p

αp̃2

L
2p

2−α

.(2.14)

Note that use of the interpolation inequality in (2.14) requires that p < p3 < 2p
2−α ,

which, in turn, gives us the condition

0 <
1

p1
+

1

p̃2
<

α

2
(2.15)

due to the first equation of (2.12). Combining (2.11) with (2.13) and (2.14), we derive

I ≤ C‖ξ‖Ḟs
p1,q

‖∇⊥θ‖
L

p̃2
2+sp̃2

‖∇⊥θ‖
p− 2p

αp1
− 2p

αp̃2

Lp ‖∇⊥θ‖
2p

αp1
+ 2p

αp̃2

L
2p

2−α

≤ C

(
‖ξ‖Ḟs

p1,q
‖∇⊥θ‖

L
2p̃2

2+sp̃2

) αp1p̃2
αp1p̃2−2p1−2p̃2

‖∇⊥θ‖pLp +
κCα

2
‖∇⊥θ‖p

L
2p

2−α

,(2.16)

where we used Young’s inequality, ab ≤ au

u + bu
′

u′ , with

a = ‖ξ‖Ḟs
p1,q

‖∇⊥θ‖
L

2p̃2
2+sp̃2

‖∇⊥θ‖
p− 2p

αp1
− 2p

αp̃2

Lp , b = ‖∇⊥θ‖
2p

αp1
+ 2p

αp̃2

L
2p

2−α

,

and

u =
αp1p̃2

2(p1 + p̃2)
, u′ =

αp1p̃2

αp1p̃2 − 2(p1 + p̃2)
.

Setting 2p̃2

2+sp̃2
= p2, we have p̃2 = 2p2

2−sp2
. We observe here that there is the restriction

p2 < 2
s due to positiveness of p̃2. Substituting this value of p̃ into (2.16), we obtain

I ≤ C‖ξ‖QḞs
p1,q

‖∇⊥θ‖QLp2‖∇⊥θ‖pLp +
κCα

2
‖∇⊥θ‖p

L
2p

2−α

,(2.17)



REGULARITY CONDITIONS OF QG EQUATIONS 1655

where we set

Q =
αp1p2

(α + s)p1p2 − 2p1 − 2p2
.

We note that the restriction (2.15) becomes

s

2
<

1

p1
+

1

p2
<

s

2
+

α

2
(2.18)

in terms of p1, p2. We substitute the estimate (2.17) into (2.9), and combine this with
(2.10). Then, after absorbing κCα

2 ‖∇⊥θ‖p
L

2p
2−α

to the left-hand side, we obtain

d

dt
‖∇⊥θ(t)‖pLp +

κCα

2
‖∇⊥θ(t)‖p

L
2p

2−α

≤ C‖ξ(t)‖QḞs
p1,q

‖∇⊥θ(t)‖QLp2‖∇⊥θ(t)‖pLp .(2.19)

Now the inequality condition (1.7) becomes

1

r1
+

1

r2
≤ 1

Q

in terms of Q. Thanks to the Gronwall lemma and Hölder’s inequality we estimate

‖∇⊥θ(t)‖Lp ≤ ‖∇⊥θ0‖Lp exp

[
C

∫ T

0

‖ξ(t)‖QḞs
p1,q

‖∇⊥θ(t)‖QLp2dt

]

≤ ‖∇⊥θ0‖Lp exp

⎡
⎣C

(∫ T

0

‖ξ(t)‖r1Ḟs
p1,q

dt

) Q
r1

(∫ T

0

‖∇⊥θ(t)‖r2Lppdt

) Q
r2

T

(
1− Q

r1
− Q

r2

)⎤⎦
(2.20)

for all t ∈ [0, T ]. Hence, ∇⊥θ ∈ L∞(0, T ;Lp(R2)). Integrating (2.19) over [0, T ] we
have

‖∇⊥θ(t)‖pLp +
κCα

2
‖∇⊥θ‖p

L
2p

2−α

≤ C

∫ T

0

‖ξ(t)‖QḞs
p1,q

‖∇⊥θ(t)‖QLp2dt sup
0≤t≤T

‖∇⊥θ(t)‖pLp + ‖∇⊥θ0‖pLp < ∞

for all t ∈ [0, T ], and

∫ T

0

‖∇⊥θ‖p
L

2p
2−α

dt < ∞.

Since ∇⊥θ ∈ Lp(0, T ;L
2p

2−α (R2)), and our choice of p in (2.8) implies

2 · (2 − α)

2p
+

α

p
≤ α,

the solution θ(x, t) is regular on [0, T ] by applying Theorem 1.1.
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GLOBAL SOLUTIONS TO THE GRADIENT FLOW EQUATION OF
A NONCONVEX FUNCTIONAL∗

G. BELLETTINI† , M. NOVAGA‡ , AND E. PAOLINI§

Abstract. We study the L2-gradient flow of the nonconvex functional Fφ(u) := 1
2

∫
(0,1) φ(ux) dx,

where φ(ξ) := min(ξ2, 1). We show the existence of a global in time possibly discontinuous solution u
starting from a mixed-type initial datum u0, i.e., when u0 is a piecewise smooth function having
derivative taking values both in the region where φ′′ > 0 and where φ′′ = 0. We show that, in gen-
eral, the region where the derivative of u takes values where φ′′ = 0 progressively disappears while
the region where φ′′ is positive grows. We show this behavior with some numerical experiments.

Key words. nonconvex functionals, forward-backward parabolic equations, finite element
method

AMS subject classifications. 35K55, 35B05

DOI. 10.1137/050625333

1. Introduction. Let φ : R → [0,+∞) be the nonconvex continuous function
defined as

φ(ξ) :=

{
ξ2 if |ξ| ≤ 1,

1 otherwise.
(1.1)

In this paper we study the L2-gradient flow of the nonconvex functional

Fφ(u) :=
1

2

∫
(0,1)

φ(ux) dx, u ∈ BV (0, 1),(1.2)

where ux stands for the absolutely continuous part of the distributional derivative
of u. Note that φ∗∗ ≡ 0, where φ∗∗ is the convex envelope of φ; hence the L2-lower
semicontinuous envelope of Fφ is identically zero. Note also that if the initial datum u0

is smooth and such that u0x([0, 1]) ⊂ (−1, 1), it is reasonable to look for a solution of
the gradient flow of Fφ which coincides with the usual solution of the heat equation
starting from u0. In particular, such a solution cannot coincide with the standing
solution u(x, t) ≡ u0(x) obtained as the gradient flow of the lower semicontinuous
envelope of Fφ.

The solution u(x, t) of the formal gradient flow of Fφ should satisfy the following
evolution equation: ⎧⎪⎨

⎪⎩
ut = uxx, where |ux| < 1,

ut = 0, where |ux| > 1,

u(0) = u0,

(1.3)

but the behavior of the interface {|ux| = 1} is not apparent.
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While existence and regularity theories for solutions of gradient flow equations
originated by convex energies is well established (see, for instance, [12], [31], [4], [2]),
very little is known for nonconvex evolution problems. The main difficulty is due to
the fact that nonconvexity of the energy density leads in general to ill-posed (i.e.,
backward-parabolic) problems and, as a consequence, to instabilities in the evolution.
The lack of forward parabolicity of the equation shows that even the local in time
existence of a solution (in some reasonable class of functions) is not straightforward,
as well as uniqueness and regularity. We refer the reader to [30] and to the papers
[26], [27], [32], [29], [23], [24], [5], [6] for some results in this direction and for pos-
sible regularization techniques. We point out that variational models involving (1.2)
have been used in [11] in the context of image segmentation; see also [14]. See also
the papers [28], [20], where other backward-forward parabolic equations, such as the
Perona–Malik equation corresponding to the choice φPM (ξ) := log(1+ ξ2), have been
used to reconstruct a digital image; see [34], [33], [13], [17], [18], [7], [8], [9].

Among nonconvex energy densities, the function φ in (1.1) is maybe the simplest
one (despite the fact that it is not of class C1, there are no points in R \ {±1} where
φ′′ is negative), and this motivates our choice of studying the gradient flow of the
associated functional Fφ.

The aim of the present paper is to prove the existence of a reasonable notion of
(discontinuous) global solution u to the gradient flow of Fφ starting from u0; we stress
that u0 will be allowed to be of mixed type, i.e., to have points where u0x belongs
to the locally convex region (−1, 1) of φ and points where u0x belongs to the region
R \ [−1, 1]. We show that, in general, the interface {|ux| = 1} has a velocity, and that
the region where ux takes values in (−1, 1) has the tendency to grow at the expenses
of the remaining region, with a well determined speed. Thus we are in the presence
of a free boundary problem and, in general,

(a) our solution does not coincide with the standing solution u(x, t) ≡ u0(x);
(b) our solution does not coincide with the solution of (1.3) obtained by keeping

the interface {|ux| = 1} fixed and by imposing the condition

lim
y→x, y∈{|ux(·,t)|<1}

ux(y, t) = 0 for x ∈ {|ux(·, t)| = 1},(1.4)

i.e., zero Neumann boundary conditions from the side of {|ux| < 1};
(c) these behaviors appear in numerical experiments; see section 7.
Observe that the lack of forward parabolicity precludes, as far as we know, a

direct way to construct global solutions based on the comparison principle, such as
viscosity solutions [15] or minimal barriers [10]. Moreover, global solutions obtained
by using the usual minimization methods (such as the implicit Euler scheme; see
[16]) coincide with the solution u(x, t) ≡ u0(x); this is due to the fact that, in the
minimization procedure, the functional Fφ can be equivalently replaced with its lower
semicontinuous envelope.

In the present paper we restrict the analysis to periodic boundary conditions,
even if the same technique can be adapted to different situations such as Neumann or
Dirichlet boundary conditions. We base our approach on the study of the system of
ODEs obtained as the gradient flow of the restriction Fφ|VN

of Fφ to VN , the space

of continuous piecewise affine functions on a uniformly distributed grid of [0, 1] of
size 1/N . The function Fφ|VN

turns out to be Lipschitz continuous; nevertheless, it

is possible to give a precise notion to the equation u̇ = −∇(Fφ|VN
)(u). After solving

the resulting system of ODEs, we pass to the limit as the discretization step goes to
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zero (N → +∞), and we identify the limit problem. This sort of regularization is
particularly handleable (as a consequence of the special features of φ in (1.1)) since
the interior of the region {|ux| > 1} has zero velocity, so that we can focus the
attention only at the free boundary {|ux| = 1}. This is a remarkable simplification,
for instance in comparison with the Perona–Malik equation where the quick formation
of microstructures in the region where |ux| > 1 seems to be present.

The plan of the paper is the following. In section 2 we state the main result
(Theorem 2.4). We look for a solution in the class of φ-admissible functions in the
sense of Definition 2.1. Several comments clarify both the definition and the theorem
(see, in particular, Remark 2.3 concerning condition (4) of Definition 2.1). In section 3
we motivate from a variational point of view the evolution law. In section 4 we
discretize the problem and introduce the discretized operator Au; see Definition 4.4.
The rigorous analysis of the discretized scheme is performed in section 5; in particular,
in Theorem 5.4 we prove the basic estimates and comparisons necessary to pass to the
limit as N → +∞. In section 6 we prove Theorem 2.4. In Remark 6.16 we discuss in
which sense our solution could provide a solution to the gradient flow of the Mumford–
Shah functional in one dimension. In section 7 we implement our scheme and show
that the numerical experiments are in agreement with Theorem 2.4. In particular, we
show that the free boundary {|ux(·)| = 1} has, in general, nonzero speed.

We conclude this introduction by observing that the analysis of the gradient flow
of (1.2) could be considered as a first step toward the understanding of the behavior
of the Perona–Malik equation.

2. Statement of the main results. We now state the main results of the paper
(Theorem 2.4). To this purpose we need some preparation. BV (0, 1) stands for the
space of functions with bounded variation in (0, 1). If u ∈ BV (0, 1) and x ∈ (0, 1),
u(x−) (resp., u(x+)) is the left (resp., right) limit of u at x. We always identify the
function u with its representative defined pointwise everywhere as the mean value of u;
i.e., u(x) = (u(x+)+u(x−))/2 for any x ∈ (0, 1). We set u(0) := u(0+) u(1) := u(1−).
We denote by Ju the jump set of u.

We recall that the distributional derivative of u ∈ BV (0, 1) is represented by a
measure Du, with finite total variation in (0, 1) (which we denote by ‖Du‖), and
that it splits into the sum of an absolutely continuous part (which we denote by ux

or by u′) and a singular part. We refer the reader to [3] for the main properties of
BV functions. If u : [0, T ) → R, we indicate by d

dt+u the right derivative of u; i.e.,
d

dt+u(t) := limh→0+
u(t+h)−u(t)

h for any t ∈ [0, T ), provided the limit is finite.
If u depends on (x, t) ∈ (0, 1) × (0, T ), we write u(t)(·) = u(·, t) = u(t).
Given B ⊆ R we denote by B (resp., int(B), ∂B, #(B), |B|) the closure (resp.,

the interior part, the topological boundary, the number of elements, the Lebesgue
measure) of B. We denote by dH(·, ·) the Hausdorff distance between sets.

Our analysis is restricted to a subset of BV (0, 1) given by the φ-admissible func-
tions, according to the following definition.

Definition 2.1. Let u ∈ BV (0, 1) with u(0) = u(1). We say that u is φ-
admissible, and we write u ∈ Aφ(0, 1), if there exist a natural number m ≥ 0 and real
numbers 0 < a1 ≤ b1 < · · · < am ≤ bm < 1 such that, setting

σφ
B(u) :=

m⋃
j=1

[aj , bj ] ⊂ (0, 1), σφ
G(u) := [0, 1] \ σφ

B(u),(2.1)

we have
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u u

a2a1 b1 a2 b2 a1 b1 b2

Fig. 2.1. The gray rectangles correspond to the closed intervals of σφ
B(u). The function on the

left is φ-admissible. The function on the right is not φ-admissible, because it is not monotone on
the closed interval [a1, b1].

(1) |u(x) − u(y)| ≤ |x− y| whenever [x, y] ⊂ σφ
G(u);

(2) if aj = bj for some j ∈ {1, . . . ,m}, then aj ∈ Ju;
(3) if j ∈ {1, . . . ,m} and aj < bj, then |u(x) − u(y)| > |x − y| whenever x, y ∈

[aj , bj ], x �= y;
(4) if j ∈ {1, . . . ,m} and aj < bj, then u is monotone on [aj , bj ].
Remark 2.2. Let us clarify Definition 2.1.
(a) Note that σφ

G(u) �= ∅ for any u ∈ Aφ(0, 1). We adopt the convention that

there are no points ai, bj if m = 0; in this case, σφ
B(u) = ∅, σφ

G(u) = (0, 1)
and u is one-Lipschitz in the whole of (0, 1). The assumptions a1 > 0 and
bm < 1 are not restrictive, since we can always assume (up to a translation)
that a one-periodic function u ∈ C1(R) is such that |ux(0)| < 1. Due to
our periodicity assumption, the point {0} is identified with {1} and can be

considered as belonging to the interior of σφ
G(u).

(b) In each interval I of σφ
G(u) we have that u is one-Lipschitz; hence, at almost

every x ∈ I we have that ux(x) belongs (unless |ux(x)| = 1) to the set where
φ is twice differentiable and φ′′ > 0, i.e., ux(x) ∈ (−1, 1).

(c) In each interval I of σφ
B(u) we have that

Du(A) ≥ |A| ∀ A ⊆ I or Du(A) ≤ −|A| ∀ A ⊆ I,

with the strict inequalities when |A| > 0, where A is any Borel subset of I.
(d) The class Aφ(0, 1) is L2-dense in BV (0, 1).
The following remark shows some analogy with the entropy condition in hyper-

bolic conservation laws.
Remark 2.3. Condition (4) in Definition 2.1 is required on the closed intervals

[aj , bj ]. Hence, since u(x) = (u(x+)+u(x−))/2 for any x ∈ (0, 1), if u is discontinuous
at some aj and u is nondecreasing on [aj , bj ] (resp., u is nonincreasing on [aj , bj ]), then
u(aj) ≤ u(aj+) (resp., u(aj) ≥ u(aj+)). Similarly, it happens if u is discontinuous at
some bj ; see Figure 2.1. Condition (4) is fulfilled at each time by the solution that
we are going to construct in Theorem 2.4 and arises naturally as a consequence of
the approximation procedure through spatial discretizations. Ultimately, it can be
considered as a consequence of the fact that, once a region in σφ

G(uN (t)) appears for
the discretized solutions uN (t) considered in Theorem 5.4 below, it must persist (and
possibly increase) with time.

Let us denote by AC2([0,+∞);L2(0, 1)) the space of absolutely continuous func-
tions u from [0,+∞) to L2(0, 1) such that ut ∈ L2((0,+∞)× (0, 1)); see, for instance,
[2]. Let VN ⊂ H1(0, 1) be the N -dimensional vector space of one-periodic continuous
functions on R which are affine on every interval of the form [i/N, (i + 1)/N ] with
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i = 0, . . . , N − 1. It is clear that VN ⊂ Aφ(0, 1) and that each function in VN is
N -Lipschitz.

Let us denote by Au the differential of Fφ|VN
at u ∈ VN ; the linear operator Au is a

discrete Laplace operator with zero blocks corresponding to the region σφ
B(u) and zero

Neumann boundary conditions on the boundaries; see Remark 4.3 and Definition 4.4
below.

Theorem 2.4. Let u0 ∈ Aφ(0, 1), and write

σφ
B(u0) =

m⋃
j=1

[a0
j , b

0
j ].

Then there exist a sequence of initial data (uN
0 ) ⊂ VN , a sequence (uN ) of functions

taking [0,+∞) in VN , and a function u : (0, 1) × [0,+∞) → R with the following
properties:

(i) There exist numbers 0 < a0N
1 ≤ b0N1 < · · · < a0N

m ≤ b0Nm < 1 such that

σφ
B(uN

0 ) =

m⋃
j=1

[a0N
j , b0Nj ],(2.2)

and

lim
N→+∞

‖uN
0 − u0‖L2 = 0,

lim
N→+∞

(
‖uN

0 ‖BV (0,1) − ‖u0‖BV (0,1)

)
= 0,

lim
N→+∞

(
dH(σφ

G(uN
0 ), σφ

G(u0)) + dH(σφ
B(uN

0 ), σφ
B(u0))

)
= 0,

lim
N→+∞

Fφ(uN
0 ) = Fφ(u0).

(2.3)

(ii) uN : [0,+∞) → VN is continuous and right-differentiable, and satisfies

⎧⎨
⎩

d

dt+
uN (t) = AuN (t)u

N (t), t ∈ [0,+∞),

uN (0) = uN
0 .

(2.4)

(iii) uN , u ∈ L∞((0,+∞);BV (0, 1))∩AC2([0,+∞);L2(0, 1)), and uN ⇀ u weakly
in H1

loc((0,+∞);L2(0, 1)) and weakly∗ in L∞((0,+∞);BV (0, 1)) as N →
+∞.

(iv) u(t) ∈ Aφ(0, 1) for any t ∈ [0,+∞).
(v) For any j ∈ {1, . . . ,m} there exist Tj ∈ (0,+∞] and functions aj , bj :

[0, Tj) → (0, 1) such that
(v1) aj(0) = a0

j , aj is continuous and nondecreasing;

(v2) bj(0) = b0j , bj is continuous and nonincreasing;
(v3) aj ≤ bj on [0, Tj), and limt→Tj−

aj(t) = limt→Tj−
bj(t);

(v4)
⋃m

j=1(aj(t), bj(t)) ⊆ σφ
B(u(t)) ⊆

⋃m
j=1[aj(t), bj(t)] for any t ∈ [0,+∞),

where we have set (aj(t), bj(t)) = [aj(t), bj(t)] := ∅ if t ≥ Tj.

(vi) uxx ∈ L2(Γu), where Γu :=
⋃

t∈(0,+∞)(σ
φ
G(u(t))×{t}), and u is a solution of
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w

a1 10 b1

u0
u0

Fig. 2.2. Remark 2.6(b). We construct a function w starting from u0, such that w ≡ u0

in (a1, b1) and that evolves according to the heat equation in (0, a1) ∪ (b1, 1) with zero Neumann
boundary conditions in a1, b1 (dashed curve). Recall that we have periodic boundary conditions. Note
that Jw(t) = {a1, b1} for t > 0, and that w(t) /∈ Aφ(0, 1) for any t > 0, since (4) of Definition 2.1
is violated at a1, b1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx, x ∈ σφ
G(u(t)), t ∈ (0,+∞),

ut = 0, x ∈ int(σφ
B(u(t))), t ∈ (0,+∞),

lim
y→x, y∈σφ

G(u(t))
ux(y, t) = 0, x ∈ ∂σφ

G(u(t)) \ {0, 1}, t ∈ (0,+∞),

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t ∈ (0,+∞).

(2.5)

(vii) For any t ∈ (0,+∞) we have
supσφ

G(u(t)) |ux(·, t)| < 1;

sup[0,1] u(·, t) ≤ sup[0,1] u0;
inf [0,1] u(·, t) ≥ inf [0,1] u0;
‖Du(·, t)‖ ≤ ‖Du0‖.

The proof of Theorem 2.4 is achieved in sections 5 and 6. In particular, (i) is
given by Lemma 6.1, (ii) is given by Theorem 5.4, (iii) is the content of Remark 6.5,
(iv) is given by Lemma 6.12, (v) is given by Lemma 6.8, Remark 6.6, and Lemma 6.12,
and (vi) is the content of Theorem 6.14. Finally, the first inequality in (vii) follows
from (vi) and the maximum principle applied to ux, while the last three inequalities
in (vii) are consequences of (c) and (d) of Theorem 5.4.

Remark 2.5.

(a) In general a function u and intervals (aj , bj) satisfying (v) and (vi) of Theo-
rem 2.4 are not unique: it is easy to construct a solution w of (2.5) satisfying
also the requirement

σφ
B(w(t)) = σφ

B(u0) ∀ t ∈ (0,+∞),(2.6)

and the function w in general cannot coincide with u. Indeed, w(t) = u(t)
for all times t for which w(t) ∈ Aφ(0, 1), but the property w(t) ∈ Aφ(0, 1) for
all t ∈ (0,+∞) is in general violated; see Figure 2.2. In fact, condition (4) in
Definition 2.1 cannot be satisfied for all times by w (cf. Remark 2.3), unless

σφ
G(w(·)) is allowed to expand, in contrast with (2.6).

(b) If we do not require the functions aj , bj to be monotone (nondecreasing and
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a1 =b1 a1 =b1 a1 =b1

u0

t > t∗t = t∗t = 0

Fig. 2.3. The “bouncing” solution discussed in Example 1.

nonincreasing, respectively), several different solutions could be constructed;
see Figure 2.4(b).

One can ask whether a function u and intervals (aj , bj) satisfying (iv), (v), and (vi)
of Theorem 2.4 are unique. This is not the case, as shown by the following example re-
lated, in spirit, to the so-called fattening phenomenon in mean curvature flow (see [22]
for similar behaviors concerning the evolution of the Mumford–Shah functional in one
dimension).

Example 1. Let us construct an initial datum u0 ∈ Aφ(0, 1) as follows:

u0 has only one jump point a1 = b1 = 1/2;
u0 = 0 in (0, 1/2);
u0 is a smooth function in (1/2, 1) with the following property: |u0x| < 1
and, if we flow u0|(1/2,1) by the heat equation with zero Neumann boundary
conditions in {1/2, 1}, then there is a first time t∗ > 0 for which the solution,
evaluated at the point 1/2, touches the horizontal axis with zero vertical
velocity and then, for t immediately after t∗, becomes positive at 1/2; see
Figure 2.3.

Then we can exhibit two functions u1, u2, which coincide for t ∈ [0, t∗] but differ
for t ∈ (t∗,+∞), and both satisfy (iv), (v), and (vi) of Theorem 2.4. The function u1

is defined as follows: u1 = 0 in (0, 1/2) × [0,+∞); u1 equals, in (1/2, 1) × [0, t∗), the
solution of the heat equation with zero Neumann boundary conditions in {1/2, 1};
u1 equals, in (0, 1) × [t∗,+∞), the solution of the heat equation with zero Neumann
boundary conditions in {0, 1} starting from u1(t∗−). Namely, immediately after the
time t∗ when the two graphs of the solution on the left and on the right of 1/2 join,
the evolution continues with one graph only, and the jump disappears.

The function u2 is defined as follows: u2 = 0 in (0, 1/2) × [0,+∞); u2 equals, in
(1/2, 1) × [0,+∞), the solution of the heat equation with zero Neumann boundary
conditions in {1/2, 1}. That is, the function u2 “bounces” at 1/2 at time t∗, the
evolutions in (0, 1/2) and in (1/2, 1) do not “see” each other, and 1/2 becomes again
a jump point of u2(t) for t immediately larger than t∗.

Remark 2.6.

(a) As a consequence of (v) of Theorem 2.4, the set-valued map t ∈ [0,+∞) →
σφ
G(u(t)) ⊆ (0, 1) is nondecreasing up to a finite number of points (at most m),

and the number of connected components with nonempty interior of σφ
B(u(·))

is nonincreasing. Itmay happen that at some time t̄j ∈ (0, Tj) the interval
[aj(t̄j), bj(t̄j)] is reduced to a point not belonging to Ju(t̄j) (recall conclu-
sion (iv) of Theorem 2.4 and Definition 2.1(2)) but belonging to Ju(t) for
some t ∈ (t̄j , Tj) (as it happens for the function u2 in Example 1). At time Tj

at least one of the intervals in σφ
B(u(·)) disappears (provided Tj < +∞).
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a1

u0
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u0 u0

1a2

(a)

u0

ã2(t)0

u0 u0

1

slope > 1

(b)

Fig. 2.4. Remark 2.5(b). For the function u0 we have a0
1 = b01 and a0

2 = b02. In (a) is displayed
the solution u of Theorem 2.4 starting from u0 for which a1(t) = b1(t) ≡ a0

1, a2(t) = b2(t) ≡ a0
2,

u evolves according to the heat equation in [a1(t), a2(t)] with zero Neumann boundary conditions
(dashed curve), and u(t) ≡ u0 in [0, 1] \ [a1(t), a2(t)]. In (b) we construct a function w with
w(t) ∈ Aφ(0, 1), such that w evolves according to the heat equation in [a0

1, ã2(t)] with zero Neu-
mann boundary conditions, and ã2(t) is decreasing in time, in such a way that the corresponding
point w(ã2(t), t) slides on a line with slope greater than one; hence the function w does not satisfy
condition (v1) of Theorem 2.4.

(b) A weak formulation of (2.5) is given by∫
(0,1)×(0,+∞)

uψt dx dt−
∫

int(Γu)

uxψx dx dt = 0(2.7)

for any ψ ∈ C1
c([0, 1] × [0,+∞)).

(c) Solutions verifying conditions (iv), (v), and (vi) of Theorem 2.4 do not satisfy
the comparison principle, in the sense that it is easy to find solutions u1, u2

such that u1(·, 0) ≤ u2(·, 0) on (0, 1), but u1(x̄, t̄) > u2(x̄, t̄) for some (x̄, t̄) ∈
(0, 1) × (0,+∞); see Figure 2.5.

Remark 2.7.

(a) Under sufficient regularity on u we can predict the speed of the free boundary

∂σφ
G(u(·)). For instance, assume that aj is of class C1 in a neighborhood U

of t̄ ∈ (0, Tj) and that a′j(t̄) �= 0. Assume in addition that u(·, ·) is twice

differentiable in
⋃

t∈U σφ
G(u(t)) × {t} up to the boundary. Then from the

equality

u(aj(t), t) = u0(aj(t))
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u0

v0

v(t̄)
u0

u0

0 1

Fig. 2.5. Remark 2.6(c). In general the solution u of Theorem 2.4 cannot satisfy the comparison
principle. Indeed, let u0 and v0 be as in the figure, u0 ≤ v0, where we assume that the function v0

is one-Lipschitz, so that σφ
G(v0) = (0, 1). Moreover, u(t) ≡ u0 for any t ∈ (0,+∞). On the other

hand, the solution v starting from v0 given by Theorem 2.4 is the usual solution of the heat equation
in (0, 1) with zero Neumann boundary conditions. Hence, at some time t > 0 and at some x ∈ (0, 1)
it happens that v(x, t) < u(x, t).

valid in the neighborhood of t̄ it follows, using the third equality in (2.5), that

ut(aj(t)−, t) =
d

dt
u(aj(t), t) = u0x(aj(t)+)a′j(t).(2.8)

Hence, using the first equation in (2.5), we get

a′j(t̄) =
uxx(aj(t̄)−, t̄)

u0x(aj(t̄)+)
.(2.9)

Similarly, under the corresponding regularity assumptions and provided
b′j(t̄) �= 0, we get

b′j(t̄) =
uxx(bj(t̄)+, t̄)

u0x(bj(t̄)−)
.(2.10)

(b) We expect that if u0 ∈ C1,1(σφ
G(u0)) and limy→x, y∈σφ

G(u0)
u0x(y) = 0 for any

x ∈ ∂σφ
G(u0), then

‖uxx‖L∞(σφ
G(u(t))) ≤ ‖u0xx‖L∞(σφ

G(u0))
, t ≥ 0.(2.11)

Indeed, assuming we can differentiate aj , bj in (0, Tj) and u(·, t) in σφ
G(u(t))

up to the boundary, arguing as in (a) we get

uxx(aj(t)−, t)a
′
j(t)

u0x(aj(t)+)
≥ 0,

uxx(bk(t)+, t)b
′
k(t)

u0x(bk(t)−)
≥ 0(2.12)

for any t ≥ 0. Differentiating the equalities ux(aj(t)−, t) = ux(bk(t)+, t) = 0
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with respect to t and using (2.12), we then get

uxxx(aj(t)−, t)

u0x(aj(t)+)
= −

uxx(aj(t)−, t)a
′
j(t)

u0x(aj(t)+)
≤ 0,

uxxx(aj(t)−, t) = 0 if
uxx(aj(t)−, t)

u0x(aj(t)+)
< 0,(2.13)

uxxx(bk(t)+, t)

u0x(bk(t)−)
= −uxx(bk(t)+, t)b

′
k(t)

u0x(bk(t)−)
≤ 0,

uxxx(bk(t)+, t) = 0 if
uxx(bk(t)+, t)

u0x(bk(t)−)
> 0.

Letting v := uxx and differentiating (2.5) twice with respect to x, we obtain

⎧⎪⎨
⎪⎩

vt = vxx, x ∈ σφ
G(u(t)), t ∈ (0,+∞),

vt = 0, x ∈ int(σφ
B(u(t))), t ∈ (0,+∞),

v(x, 0) = u0xx(x), x ∈ (0, 1),

(2.14)

with the boundary conditions on ∂σφ
G(u(t)) given by (2.13). Note that, from

the third equality in (2.5), for any t ≥ 0 it follows that

∫
σφ
G(u(t))

v(x, t) dx = 0 =⇒ max
σφ
G(u(t))

v(·, t) ≥ 0, min
σφ
G(u(t))

v(·, t) ≤ 0.

The boundary conditions (2.13) then imply that v(·, t) assumes its maximum

and minimum in the interior of σφ
G(u(t)); hence (2.11) follows from (2.14) by

the maximum principle.
Let us observe that from (2.8) and (2.11) it follows that

‖a′j‖L∞(0,Tj) ≤ ‖u0xx‖L∞(σφ
G(u0))

, ‖b′j‖L∞(0,Tj) ≤ ‖u0xx‖L∞(σφ
G(u0))

.

In particular, we also expect that the functions aj and bj are Lipschitz con-
tinuous on [0, Tj).

Remark 2.8. It is clear that Theorem 2.4 holds also for the function

φ(ξ) := min(1, φPM (ξ)) = min(1, log(1 + ξ2)).

In the present paper, solutions u to the gradient flow of Fφ are intended as those

functions satisfying (iv), (v), and (vi) (with ut = uxx replaced by ut = (φ
′
(ux))x) of

Theorem 2.4. These solutions could be compared with some notion of weak solutions of
the gradient flow of FφPM

; see [29]. We can observe that u is not a BV -distributional
solution of the Perona–Malik equation in the sense of [29, Definition 1]; see (2.7).
However, u turns out to be a Young-varifold solution of the Perona–Malik equation;
see [19], [21]. We also observe that if a = b ∈ (0, 1) is a jump point of u(t) and if u is
sufficiently smooth in a neighborhood of a (see Remark 2.7), then as a consequence
of (2.9), (2.10), we have that a′(t) = 0. This is consistent with [29, formula (3)], in
connection with the notion of generalized solution. Finally, observe that a′(t) = 0 is
also a consequence of the AC2([0,+∞);L2(0, 1)) regularity of u.
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3. First variation. In this section we want to identify the L2-gradient of the
functional Fφ in (1.2) on a suitable dense subspace X of L2(0, 1); see Definition 3.3.
We begin by computing the first variation of Fφ along functions ψ ∈ Lip(0, 1).

Proposition 3.1. Let u ∈ Aφ(0, 1) be such that σφ
B(u) =

⋃m
j=1[aj , bj ], aj < bj

for any j = 1, . . . ,m,

u ∈ H2(σφ
G(u)) and sup

σφ
G(u)

|ux| < 1.

Then for any ψ ∈ Lip(0, 1) with ψ(0) = ψ(1) we have

d

dλ
Fφ(u + λψ)|λ=0 =

∫
σφ
G(u)

uxψx dx

= −
∫
σφ
G(u)

uxxψ dx

+

m∑
j=1

(
ux(aj−)ψ(aj) − ux(bj+)ψ(bj)

)
.

(3.1)

Proof. Since supσφ
G(u) |ux| < 1 and ψ ∈ Lip(0, 1), we have σφ

G(u + λψ) = σφ
G(u)

for |λ| small enough. In addition, σφ
B(u + λψ) = σφ

B(u) for |λ| small enough. For
such λ we have

Fφ(u + λψ) =
1

2

∫
σφ
B(u+λψ)

1 dx +
1

2

∫
σφ
G(u+λψ)

(ux + λψx)2 dx

=
|σφ

B(u)|
2

+
1

2

∫
σφ
G(u)

(ux + λψx)2 dx

=
|σφ

B(u)|
2

+
1

2

∫
σφ
G(u)

(ux)2 dx + λ

∫
σφ
G(u)

uxψx dx + O(λ2).

Then (3.1) follows with an integration by parts, using the assumptions u ∈ H2(σφ
G(u))

and ψ(0) = ψ(1).
Remark 3.2. Observe that the variations u → u + λψ, as in Proposition 3.1,

cannot increase the number of singular points of u ∈ Aφ(0, 1).
If u is as in Proposition 3.1 it follows that

inf
ψ∈Lip(0,1), ψ(0)=ψ(1)

‖ψ‖L2≤1

d

dλ
Fφ(u + λψ)|λ=0

=

{
−‖uxx‖L2(σφ

G(u)) if ux(aj−) = ux(bj+) = 0, 1 ≤ j ≤ m,

−∞ otherwise.

(3.2)

Definition 3.3. We denote by X the dense subset of L2(0, 1) consisting of the
functions u as in Proposition 3.1 and satisfying ux(aj−) = ux(bj+) = 0 for any
1 ≤ j ≤ m.

Once we fix u ∈ X, the right-hand side of (3.1), if considered as a function of ψ,
is a linear functional defined on the Lipschitz functions ψ in (0, 1) with ψ(0) = ψ(1)
(which form a dense subset of L2(0, 1)), which is continuous with respect to the
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−1

(a)

1 ξ

φ

−2 −1

(b)

1 2 ξ

φ1

Fig. 3.1. (a) the function φ considered in the present paper; (b) the function φ1 of Remark 3.6.

L2(0, 1)-norm. Therefore it can be extended on the whole of L2(0, 1), thus providing
a well-defined unique left-hand side of (3.1) for any ψ ∈ L2(0, 1), and

inf
ψ∈Lip(0,1), ψ(0)=ψ(1)

‖ψ‖L2≤1

d

dλ
Fφ(u + λψ)|λ=0 = inf

ψ∈L2(0,1)
‖ψ‖L2≤1

d

dλ
Fφ(u + λψ)|λ=0.(3.3)

The infimum in (3.3) is attained at ψ̃ ∈ L2(0, 1), where

ψ̃ =

⎧⎨
⎩

0 on σφ
B(u),

‖uxx‖−1

L2(σφ
G(u))

uxx on σφ
G(u).

It follows that the L2-gradient flow of Fφ starting from u0 ∈ X is given by the free
boundary problem (2.5).

As already observed in the introduction, in general, solutions to problem (2.5)

are not unique, since the motion of the free boundary ∂σφ
G(u) is not prescribed.

However, among all φ-admissible solutions we can look for those which most decrease
the energy Fφ. This is expressed by the following proposition, which follows by a

direct computation and recalling that φ ≡ 1/2 on σφ
B(u).

Proposition 3.4. Let u be a solution of (2.5) satisfying (iv) of Theorem 2.4.
Then for almost every t ∈ (0,+∞) we have

d

dt
Fφ(u(t)) = −1

2

d

dt
|σφ

G(u(t))| −
∫
σφ
G(u(t))

|uxx(x, t)|2 dx.(3.4)

Remark 3.5. Proposition 3.4 implies that in order to most decrease the energy Fφ,

the region σφ
G(u) should expand as fast as possible, compatibly with the φ-admissibility

of u.
Remark 3.6. Our results can be extended to other integrands. Let us consider,

for example, the potential in Figure 3.1(b), i.e.,

φ1(ξ) :=

⎧⎪⎨
⎪⎩

|ξ − 2|2 if ξ ≥ 1,

|ξ + 2|2 if ξ ≤ −1,

1 otherwise,

(3.5)

which is related to the ones considered in [26], [1], [36], [35]. Then Definition 2.1 still

makes sense, provided that we define σφ1

B (u) as the finite union of closed intervals

where |u(x) − u(y)| < |x − y|, and σφ1

G (u) = [0, 1] \ σφ1

B (u) as the finite union of
intervals where either u(x)−u(y) ≥ x−y or u(x)−u(y) ≤ −(x−y). Let us denote by
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σφ1

G,+(u) (resp., σφ1

G,−(u)) the subset of σφ1

G (u) where u is increasing (resp., decreasing).
The first variation of Fφ1 can be computed as in Proposition 3.1, and the evolution
equation corresponding to (2.5) reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx, x ∈ σφ1

G (u(t)), t ∈ (0,+∞),

ut = 0, x ∈ int(σφ1

B (u(t))), t ∈ (0,+∞),

lim
y→x, y∈σ

φ1
G,±(u(t))

ux(y, t) = ±2, x ∈ ∂σφ1

G,±(u(t)) \ {0, 1}, t ∈ (0,+∞),

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t ∈ (0,+∞).

(3.6)

Since equality (3.4) still holds, also in this case the region σφ1

G (u(·)) expands as fast as
possible, compatibly with (3.6). We finally observe that the analogue of Theorem 2.4
is not expected to hold in this case; cf. Remark 7.1.

Remark 3.7. Let us consider a continuous function φ2 : R → [0,+∞) of the form
φ2(ξ) = ξ2 for |ξ| ∈ [0, 1], and φ2(ξ) = αξ + β for |ξ| ∈ [1,+∞), where α + β = 1 and
α ≥ 0. The computations leading to (3.2) can be repeated for the functional Fφ2 and
give the following result:

inf
ψ∈Lip(0,1), ψ(0)=ψ(1)

‖ψ‖L2≤1

d

dλ
Fφ2(u + λψ)|λ=0

=

{
−‖uxx‖L2(σ

φ2
G (u))

if |ux(aj−)| = |ux(bj+)| = α/2, 1 ≤ j ≤ m,

−∞ otherwise,

(3.7)

where the interior Neumann boundary condition, for example in aj , is equal to α/2
(resp., −α/2) if u0 is increasing (resp., decreasing) in [aj , bj ].

In particular, the resulting PDE arising from (3.7) is different from (2.5) (since
the conditions on the free boundary are different) unless α = 0, i.e., φ2 = φ.

4. Discretization. In this section we define the spatial discretization used to ap-
proximate problem (2.5). In particular, in Definition 4.4 we introduce the discretized
operator Av.

Let N ∈ N and i ∈ {1, . . . , N}. To simplify notation, we set i + 1 = 1 and
[i, i + 1] = [0, 1] when i = N , and i− 1 = N and [i− 1, i] = [0, 1] when i = 1.

For any i = 1, . . . , N we define the hat function hi ∈ H1(0, 1) as

hi(x) :=

⎧⎪⎨
⎪⎩

Nx− (i− 1) if Nx ∈ [i− 1, i],

i + 1 −Nx if Nx ∈ [i, i + 1],

0 otherwise.

We denote by VN the N -dimensional vector subspace of H1(0, 1) generated by
h1, . . . , hN . Each function v ∈ VN is Lipschitz and is the restriction to [0, 1] of an
affine continuous periodic function defined on R.

For any i = 1, . . . , N we define the flat function ki ∈ L2(0, 1) as

ki(x) :=

{
1 if Nx ∈ (i− 1, i],

0 otherwise.
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We denote by WN the N -dimensional vector subspace of L2(0, 1) generated by
k1, . . . , kN . WN is the space of all piecewise constant functions on the grid.

The spaces
⋃

N VN and
⋃

N WN are dense in BV (0, 1) with respect to the weak∗-
topology.

Given v ∈ VN (resp., w ∈ WN ) we denote with v1, . . . , vN the coordinates of v
with respect to the basis {h1, . . . , hN} (resp., {k1, . . . , kN}), i.e.,

v =
N∑
i=1

vih
i, vi = v(i/N),

w =

N∑
i=1

wik
i, wi = w

(
i− 1

2

N

)
.

We recall that ∫
(0,1)

u dx =
1

N

N∑
i=1

ui, u ∈ VN ∪WN .

We define the scalar product 〈·, ·〉 on VN and on WN as

〈v, v〉 =
1

N

N∑
i=1

vivi, 〈w,w〉 =
1

N

N∑
i=1

wiwi, v, v ∈ VN , w, w ∈ WN .

Recall that

〈w,w〉 =

∫
(0,1)

ww dx =
1

N

N∑
i=1

wiwi, w, w ∈ WN .

Given v ∈ VN we define

‖v‖L∞ := max{|vi| : i = 1, . . . , N},
‖v‖L2 := 〈v, v〉 1

2 ,

‖∇v‖L1 :=

N∑
i=1

|vi+1 − vi| =

∫
(0,1)

|vx| dx.

Definition 4.1. We define the linear map D+ : VN → WN as the restriction of
the weak derivative taking H1(0, 1) in L2(0, 1). In coordinates,

(D+v)i = N(vi+1 − vi), i ∈ {1, . . . , N}.

We let D− : WN → VN be the adjoint operator of −D+.
The operator D− satisfies 〈D−w, v〉 = −〈w,D+v〉 for all v ∈ VN and w ∈ WN .

In coordinates,

(D−w)i = N(wi − wi−1), i ∈ {1, . . . , N}.

Definition 4.2. Given v ∈ VN we define Ψv ∈ WN in coordinates by

(Ψv)i =

{
1 if |(D+v)i| ≤ 1,

0 otherwise,
i ∈ {1, . . . , N}.
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If v is φ-admissible, the function Ψv : (0, 1) → R is the characteristic function of

the set σφ
G(v).

Note that the restriction of Fφ to VN reads as follows: given v ∈ VN ,

Fφ(v) =
1

2N

N∑
i=1

min
(
((D+v)i)

2, 1
)

=
1

2
〈ΨvD

+v,D+v〉 +
1

2

∫
(0,1)

(1 − Ψv) dx,

(4.1)

where

〈ΨvD
+v,D+v〉 =

N∑
i=1

(Ψv)i(D
+v)i(D

+v)i.

Remark 4.3. The function Fφ|VN
is Lipschitz in VN and is of class C∞ out of

the polyhedral hypersurface H :=
⋃N

i=1 Hi, where Hi := {v ∈ VN : |(D+v)i| = 1}.
Assume that v ∈ VN \H. Then, for any v ∈ VN , we have

lim
λ→0

Ψv+λv − Ψv

λ
= 0 ∈ VN .

Therefore, using also (4.1), we get

lim
λ→0

Fφ(v + λv) − Fφ(v)

λ
=

1

2
〈ΨvD

+v,D+v〉 +
1

2
〈ΨvD

+v,D+v〉

= −
〈
D−(ΨvD

+v
)
, v
〉
.

(4.2)

More generally, for v ∈ VN there exists the limit

lim
λ→0+

Fφ(v + λv) − Fφ(v)

λ

=
∑

i: |(D+v)i|<1

(D+v)i(D
+v)i +

∑
i: |(D+v)i|=1

min
((

(D+v)i(D
+v)i

)
, 0
)

= −
〈
D−(ΨvD

+v
)
, v
〉
−

∑
i: |(D+v)i|=1

max
((

(D+v)i(D
+v)i

)
, 0
)

(4.3)

≤ −
〈
D−(ΨvD

+v
)
, v
〉
.

Note that both the limits in (4.2) and (4.3) attain their minimum on {v ∈ VN :
‖v‖L2 = 1} at

v =
D−(ΨvD

+v
)∥∥D−

(
ΨvD+v

)∥∥
L2

.

We are now in a position to define the discretized operator.
Definition 4.4. Given any v ∈ VN we define the linear operator Av : VN → VN

as follows: for any v ∈ VN we let

Avv := D−(ΨvD
+v
)
.
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In coordinates, we have

(Avv)i =
(Ψv)i[vi+1 − vi] − (Ψv)i−1[vi − vi−1]

1/N2
.

Remark 4.5. By Remark 4.3, if v ∈ VN \H, then Av = −∇(Fφ|VN
)(v), where ∇

indicates the gradient of the function Fφ|VN
defined in the finite-dimensional space VN .

Note also that the equality holds in the last line of (4.3) if we take v ∈ VN and
v = Avv.

Remark 4.6. If v, v ∈ VN are such that Ψv = Ψv, then Av = Av.

5. Discretized evolution. Maximum principles. The aim of this section is
to prove Theorem 5.4, which is a key step in the proof of Theorem 2.4. We begin with
some elementary lemmata.

Lemma 5.1. Let u1, . . . , un be real continuous right-differentiable functions in
an interval [0, t1). Define M(t) := maxi=1,...,n u(t)i. Then M(t) is continuous and
right-differentiable in [0, t1) and

d

dt+
M(t) = max

i=1,...,n

{
d

dt+
u(t)i : u(t)i = M(t)

}
, t ∈ [0, t1).

Proof. It is enough to prove the lemma when n = 2. Set f := u1, g := u2, and
let t ∈ [0, t1). If f(t) �= g(t), the claim is trivial since M(t) equals one of the two
functions in a neighborhood of t. Suppose f(t) = g(t) = M(t). If d

dt+ f(t) > d
dt+ g(t),

then for all h > 0 sufficiently small M(t+h) = f(t+h); hence d
dt+M(t) = d

dt+ f(t). If
d

dt+ f(t) = d
dt+ g(t), then M(t + h) −M(t) belongs to [f(t + h) − f(t), g(t + h) − g(t)]

if f(t + h) ≤ g(t + h) or to [g(t + h) − g(t), f(t + h) − f(t)] if f(t + h) ≥ g(t + h).
Hence d

dt+M(t) = d
dt+ f(t) = d

dt+ g(t).

Lemma 5.2. Let u be a real continuous right-differentiable function in an interval
[0, t1). If d

dt+u ≤ 0 on [0, t1), then u is nonincreasing.

Proof. See, for instance, [25, p. 298].

Lemma 5.3. Let u be a real continuous right-differentiable function in an interval
[0, t1), and let g = |u|. Then g is right-differentiable on [0, t1) and

d

dt+
g(t) =

{
(signu(t)) d

dt+u(t) if u(t) �= 0,

| d
dt+u(t)| if u(t) = 0,

t ∈ [0, t1).

Proof. If u(t) �= 0, the assertion is trivial, since g is right-differentiable at t.

Suppose u(t) = 0. Given h > 0 we have g(t+h)−g(t)
h = |u(t+h)

h |. Being u right-

differentiable at t we find that d
dt+ g(t) = | d

dt+u(t)|.
Theorem 5.4. Let N ∈ N and u0 ∈ VN . Then there exists a unique function uN

such that

(a) uN : [0,+∞) → VN is continuous and right-differentiable, and satisfies

⎧⎨
⎩

d

dt+
uN (t) = AuN (t)uN (t), t ∈ [0,+∞),

uN (0) = u0.
(5.1)

In addition, uN satisfies the following properties:
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(b) The set-valued map t ∈ [0,+∞) → {ΨuN (t) = 1} ⊆ (0, 1) is nondecreasing,
and the set-valued map t ∈ [0,+∞) → #∂{ΨuN (t) = 1} is nonincreasing.
Moreover, for any t ≥ 0 there exists ε > 0 such that ΨuN (τ) is constant for

any τ ∈ [t, t + ε]. In particular, d
dt+ ΨuN (t) = 0 for any t ≥ 0.

(c) The function t ∈ [0,+∞) �→ supx∈(0,1) uN (x, t) is nonincreasing, and the
function t ∈ [0,+∞) �→ infx∈(0,1) uN (x, t) is nondecreasing.

(d) The function t ∈ [0,+∞) �→ ‖∇uN (t)‖L1 is nonincreasing.
(e) The function t ∈ [0,+∞) �→ Fφ(uN (t)) is continuous and right-differentiable,

and

d

dt+
Fφ(uN (t)) = −

∥∥∥∥ d

dt+
uN (t)

∥∥∥∥
2

L2

≤ 0.(5.2)

(f) There exist M ∈ N, M ≤ N , and positive times t1, . . . , tM such that uN is
analytic on each interval of (0,+∞)\{t1, . . . , tM}, and {t1, . . . , tM} coincides
with the jump set of the function t ∈ [0,+∞) → ΨuN (t).

Proof. Let t0 := 0, and consider the function u : [t0,+∞) → VN ,

u(t) = u0 exp((t− t0)Au0
), t ≥ t0,(5.3)

i.e., the solution of

{
d

dt+u(t) = Au0 u(t), t ∈ (t0,+∞),

u(t0) = u0,

where we view the operator Au0 as an (N ×N)-matrix.

For any t ≥ t0 let

M̃(t) := max

(
0, max

i=1,...,N
{(D+u(t))i : (Ψu0)i = 1}

)
,

m̃(t) := min

(
0, min

i=1,...,N
{(D+u(t))i : (Ψu0)i = 1}

)
.

Observe that

−1 ≤ m̃(t0) ≤ M̃(t0) ≤ 1.(5.4)

In addition, the maps t ∈ [t0,+∞) → (D+u(t))i are continuously differentiable for

any i ∈ {1, . . . , N}; hence, by Lemma 5.1, M̃(t) and m̃(t) are right-differentiable for
any t ≥ t0.

Claim 1. For any t ≥ t0 we have

d

dt+
M̃(t) ≤ 0,

d

dt+
m̃(t) ≥ 0.(5.5)

Since D+ is a linear operator, for all t ≥ t0 we have

d

dt+
D+u(t) = D+ d

dt+
u(t) = D+Au0u(t) = D+D− (Ψu0D

+u(t)
)
.
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Therefore, if i ∈ {1, . . . , N} is such that (D+u(t))i = M̃(t), we have

d

dt+
(D+u)i = N

[
(D−(Ψu0

D+u))i+1 − (D−(Ψu0
D+u))i

]
= N2

[
(Ψu0

)i+1(D
+u)i+1 − (Ψu0

)i(D
+u)i

]
−N2

[
(Ψu0)i(D

+u)i − (Ψu0)i−1(D
+u)i−1

]
(5.6)

= N2
[
(Ψu0)i+1(D

+u)i+1 − M̃(t)

+ (Ψu0)i−1(D
+u)i−1 − M̃(t)

]
,

where both sides are evaluated at t ≥ t0. Since (Ψu0D
+u)j ≤ M̃(t) for all j ∈

{1, . . . , N}, from the previous equation we obtain d
dt+ (D+u(t))i ≤ 0 for all i ∈

{1, . . . , N} such that (Ψu0)i = 1 and (D+u(t))i = M̃(t). As a consequence we get

0 ≥ max
i=1,...,N

{
d

dt+
(
D+u(t)

)
i
: (Ψu0)i = 1, (D+u(t))i = M̃(t)

}
=

d

dt+
M̃(t),

where the last equality follows from Lemma 5.1. In a similar way we can prove
that if i ∈ {1, . . . , N} is such that (Ψu0)i = 1 and (D+u(t))i = m̃(t), we have
d

dt+ (D+u(t))i ≥ 0; hence d
dt+ m̃(t) ≥ 0. This concludes the proof of Claim 1.

Claim 1 and Lemma 5.2 imply that t → M̃(t) is nonincreasing and that t → m̃(t)

is nondecreasing. Recalling (5.4) we conclude that −1 ≤ m̃(t) ≤ M̃(t) ≤ 1 for any
t ≥ t0. Hence

Ψu(t) = 1 at those nodes where Ψu0 = 1.

It follows that the set-valued map t ∈ [t0,+∞) → {|D+u(t)| ≤ 1} = σφ
G(u(t)) ⊆ (0, 1)

is nondecreasing.
Let us define

t1 := sup{t ≥ t0 : Au(s) = Au0 ∀ s ∈ [t0, t)}.(5.7)

We want to show that t1 > t0.
For all i ∈ {1, . . . , N} such that |(D+u0)i| ≤ 1 we have |(D+u(t))i| ≤ 1 for all

t ≥ t0. In addition, t → D+u(t) being a continuous function, if |(D+u0)i| > 1, then
there exists ε > 0 independent of i such that |(D+u(t))i| > 1 for any t ∈ [t0, t0 + ε).
Hence Ψu(t) = Ψu0 for any t ∈ [t0, t0+ε]. From Remark 4.6 it follows that Au(t) = Au0

for any t ∈ [t0, t0 + ε), which gives t1 ≥ t0 + ε > t0.
We have proven that the function u(t) in (5.3) satisfies (5.1) for t ∈ [t0, t1). We

have also proven that either t1 = +∞ or Ψu(t1) ≥ Ψu(t0) and (Ψu(t1))i > Ψu(t0) for
some i ∈ {1, . . . , N}.

If t1 < +∞, repeating the previous construction with t1 in place of t0 and u(t1)
in place of u0, we find a time t2 > t1 and a solution u of (5.1) defined in [t1, t2) which
satisfies (5.1). Repeating this argument, we can construct an increasing sequence (tk)
of times. Since at step k the number of nodes where Ψu(t) = 1 is nondecreasing, we
can only have a finite number M ≤ N of steps, and in the last step we find that
tM = +∞. Gluing together the solutions defined in the intervals [tk, tk+1) we find a
function uN defined for all t ≥ 0 such that (a), (b), and (f) hold.

Let us prove (c), (d), and (e). Write for notational simplicity u in place of uN .
Let t ∈ [0,+∞). We say that i ∈ {1, . . . , N} is a relative maximum (resp., minimum)
for u(t) if

u(t)i ≥ max{u(t)i−1, u(t)i+1} (resp., u(t)i ≤ min{u(t)i−1, u(t)i+1}).
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Claim 2. Let t ∈ [0,+∞). If i is a relative maximum (resp., minimum) for u(t),
then d

dt+u(t)i ≤ 0 (resp., ≥ 0).
By (5.1),

d

dt+
u(t)i = N

[
(Ψu(t))i(D

+u(t))i − (Ψu(t))i−1(D
+u(t))i−1

]
= N2

[
(Ψu(t))i(u(t)i+1 − u(t)i) − (Ψu(t))i−1(u(t)i − u(t)i−1)

]
.

(5.8)

Hence, if i is a relative maximum, we have d
dt+u(t)i ≤ 0 since u(t)i+1 − u(t)i ≤ 0

and u(t)i − u(t)i−1 ≥ 0. Similarly, we can reason when i is a relative minimum, and
Claim 2 follows.

Assertion (c) then follows from Claim 2.
Consider now the function

Si(t) :=

{
sign(u(t)i+1 − u(t)i) if u(t)i+1 �= u(t)i,

| d
dt+ (u(t)i+1 − u(t)i| if u(t)i+1 = u(t)i.

By Lemma 5.3 we have

d

dt+
‖∇u(t)‖L1 =

N∑
i=1

d

dt+
|u(t)i+1 − u(t)i| =

N∑
i=1

Si(t)

(
d

dt+
u(t)i+1 −

d

dt+
u(t)i

)

=

N∑
i=1

(Si−1(t) − Si(t))
d

dt+
u(t)i.

In order to prove that d
dt+ ‖∇u(t)‖L1 ≤ 0, it is enough to show that

(Si−1(t) − Si(t))
d

dt+
u(t)i ≤ 0 ∀ i ∈ {1, . . . , N}.(5.9)

We divide the proof into four cases. We write for simplicity u in place of u(t) and
S in place of S(t).

Case 1: the point i is simultaneously a relative maximum and a relative minimum,
i.e., ui−1 = ui = ui+1. From (5.8) we deduce that d

dt+ui = 0, and (5.9) is satisfied.
Case 2: the point i is a relative maximum but not a relative minimum. Then

either ui > ui−1 or ui > ui+1. So either Si−1 = 1 or Si = −1, and in both cases
Si−1−Si ≥ 0. With (D+u)i ≤ 0 and (D+u)i−1 ≥ 0, from (5.8) we find that d

dt+u ≤ 0,
and (5.9) follows.

Case 3: the point i is a relative minimum but not a relative maximum. Then
either Si−1 = −1 or Si = 1, while d

dt+u ≥ 0.
Case 4: the point i is neither a relative maximum nor a relative minimum. Then

either ui−1 < ui < ui+1 or ui−1 > ui > ui+1. In both cases we have Si−1 = Si, and
hence (5.9) holds.

Then (d) follows from Claim 1 and Lemma 5.2.
Let us now prove (e). Recalling that d

dt+ Ψu = 0 and using the expression of Fφ(u)
as

Fφ(u) =
1

2

∫
(0,1)

[Ψu(D+u)2 + (1 − Ψu)] dx,(5.10)
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we have

d

dt+
Fφ(u) =

1

2

∫
(0,1)

Ψu
d

dt+
(D+u)2 dx =

∫
(0,1)

ΨuD
+u

d

dt+
D+u dx

=

〈
D+ d

dt+
u,ΨuD

+u

〉
= −

〈
d

dt+
u,D− (ΨuD

+u
)〉

= −
〈

d

dt+
u,Auu

〉
= −

∫
(0,1)

(
d

dt+
u

)2

dx = −
∥∥∥∥ d

dt+
u

∥∥∥∥
2

L2

≤ 0,

which proves (5.2).
For all t ≥ 0 for which Ψu(·) is continuous at t, the continuity of Fφ(u(·)) at t is

a consequence of (5.10). On the other hand, if (Ψu(·))i has a discontinuity at t̄ ≥ 0,
we know that there exists σ > 0 such that (Ψu)i = 0 in (t̄ − σ, t̄) and (Ψu)i = 1 in
[t̄, t̄ + σ). This implies that |(D+u)i| > 1 in (t̄ − σ, t̄) and |(D+u)i| ≤ 1 in [t̄, t̄ + σ).
Since (D+u(·))i is continuous, we deduce that (D+u(t̄))2i = 1. As a result,

lim
t→t̄±

Ψu(t)(D
+u(t))2 + (1 − Ψu(t)) = 1.

This implies the continuity of the map t �→ Fφ(u(t)) at t.
To conclude the proof of the theorem, we need to show that the function uN is

unique. The proof is divided into two steps.
Step 1. Let uN : [0,+∞) → VN be a continuous right-differentiable function

satisfying (5.1). Assume, in addition, that for any t ≥ 0 there exists ε > 0 such that
ΨuN (τ) is constant for any τ ∈ [t, t + ε]. Then uN = uN .

Let ε > 0 be such that ΨuN
is constant on [0, ε]. It follows that uN = uN in

[0, ε], since the solution of (5.1), in [0, ε], is uniquely given by (5.3). Without loss of
generality, we can assume that

ε < t1,(5.11)

where t1 is defined in (5.7) and is the first time for which ΨuN
is discontinuous. Recall

that, by definition, {ΨuN (ε) = 0} = {|D+uN (ε)| > 1}.
We claim that

{ΨuN (ε) = 1} = {|D+uN (ε)| < 1}.(5.12)

Indeed, denote by Ij = (j/N, (j + 1)/N) the generic interval of the grid and by σj(t)
the slope of uN (t) in Ij . A closer look at the last term in (5.6) reveals that for any
t ∈ [0, t1), if

M̃(t) = (D+u(t))i = 1, and either σi−1(t) �= 1 or σi+1(t) �= 1,(5.13)

then

d

dt+
(D+u(t))i < 0,(5.14)

where we recall that u stands for uN . Similarly, if

m̃(t) = (D+u(t))i = −1, and either σi−1(t) �= −1 or σi+1(t) �= −1,(5.15)
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then

d

dt+
(D+u(t))i > 0.(5.16)

Observe that from (5.13), (5.14), (5.15), and (5.16), we already deduce that if |σi(t)| =
1 and if either |σi−1(t)| �= 1 or |σi+1(t)| �= 1, then |σi(t + τ)| < 1 for any τ > 0
small enough. What remains is the most delicate case; namely, we have to consider
those intervals Ii of the grid where |σi(t)| = 1 and also |σi−1(t)| = |σi+1(t)| = 1.
The following observation again follows from the expression on the right-hand side of
(5.6). For any t ∈ [0, t1), if

M̃(t) = (D+u(t))i = 1, and σi−1(t) = 1 = σi+1(t),(5.17)

then

d

dt+
(D+u(t))i = 0.(5.18)

Similarly, if

m̃(t) = (D+u(t))i = −1, and σi−1(t) = −1 = σi+1(t),(5.19)

then

d

dt+
(D+u(t))i = 0.(5.20)

Hence (5.18) and (5.20) do not allow us to conclude that if |σi(t)| = 1 and if |σi−1(t)| =
1 = |σi+1(t)|, then |σi(t + τ)| < 1 for any τ > 0 small enough. However, such an
inequality is valid and can be proved as follows. Let us denote by C the connected
component of {Ψu(t) = 1} containing Ii and by Ii− (resp., Ii+) the extremal left (resp.,
right) interval of the grid belonging to C (note that thanks to the boundary conditions,
0 is not a boundary point of Ii− and 1 is not a boundary point of Ii+). By (5.14) and
(5.16) it follows that |σIi−

(t + τ)| < 1 and |σIi+
(t + τ)| < 1 for any τ > 0. Using the

previous arguments, we deduce that |σIi−+1
(t+τ)| < 1 and |σIi+−1

(t+τ)| < 1 for any

τ > 0 small enough. After a finite number of iterations, we deduce that |σi(t+τ)| < 1
for any τ > 0 small enough. This concludes the proof of the claim.

We can now repeat the reasoning taking ε as initial time, and we conclude that
uN = uN in [0, t1]. Iterating the argument for any i = 1, . . . ,M we obtain that
uN = uN in [0,+∞).

Step 2. Let uN : [0,+∞) → VN be a continuous right-differentiable function
satisfying (5.1). Then for any t ≥ 0 there exists ε > 0 such that ΨuN (τ) is constant
for any τ ∈ [t, t + ε].

Let us consider an interval Ii where the slope σi(t) of uN (t) satisfies |σi(t)| = 1.
Arguing as in Step 1, independently of the values of |σi−1(t)| and |σi+1(t)|, we deduce
that |σi(t + τ)| < 1 for any τ > 0 sufficiently small. This implies that ΨuN (t) is right
continuous and proves Step 2.

Steps 1 and 2 conclude the proof of uniqueness, and hence the proof of the theo-
rem.

Remark 5.5. We have already observed in the introduction that the right-hand
side of the ODE’s system u̇ = −∇(Fφ|VN

) (see (5.1)) is only a bounded function, since

Fφ|VN
is Lipschitz. Nevertheless, due to the special form of Fφ the solution in the
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sense of Theorem 5.4 is unique. This is not the case if we change the notion of solution
to (5.1), for instance if we consider solutions to the system (5.1) only for almost all
times. This is shown in the following example, which is related to the nonuniqueness
example (Example 1 of section 2) and also shows another interesting phenomenon:
the solution considered in Theorem 5.4 does not depend continuously on the initial
datum.

Example 2. Assume that the initial datum u0 = u0N ∈ VN (with N even, in such
a way that 1/2 is a point of the mesh) is as follows:

u0 = 0 in (0, 1/2);
u0 is increasing in (1/2, 1/2 + 1/N) with slope exactly 1;
u0 is piecewise linear, with slopes (in modulus) strictly less than 1 in (1/2 +
1/N, 1).

Note that such an initial datum can be obtained from the discretization of so-
lutions considered in the nonuniqueness example (Example 1 of section 2) at a time
slightly smaller than t∗ (and converging to t∗ as N → +∞). The (unique) solution uN

of Theorem 5.4 is such that the linear part in the interval (1/2, 1/2 + 1/N) for small
positive times decreases its slope to a value less than 1. This solution, in the limit
N → +∞, produces the solution u1(· + t∗) of Example 1 of section 2.

Given ε ∈ (0, 1) let us consider the functions uε
0
± = uε

0
±
N ∈ VN defined as follows:

uε
0
± := u0 in (0, 1/2), uε

0
± := u0 ± ε

N in (1/2 + 1/N, 1), and uε
0
± is increasing in

(1/2, 1/2 + 1/N) with slope 1± ε. Then, if uε
N

± denotes the solution of Theorem 5.4
having uε

0
± as initial datum, we have

lim
ε→0+

uε
N

− = uN ,

while

lim
ε→0+

uε
N

+ = ũN ,

where ũN ∈ VN satisfies (a) of Theorem 5.4 for any t > 0 but not for t = 0, and

lim
N→+∞

ũN (·) = u2(· + t∗),

where u2 is as in Example 1 of section 2. Hence the solution uN of Theorem 5.4 is
not continuous with respect to initial data. We can summarize the above discussion,
coupled with the remarks of section 2, with the following conclusion: solutions to (iv),
(v), and (vi) of Theorem 2.4 are not unique thanks to Example 1 of section 2 (which,
however, we believe to be nongeneric). On the other hand, solutions of Theorem 5.4
are unique; however, they do not depend in a continuous way on the initial data. It
is such an instability at the discrete level (i.e., for fixed N) which seems to produce
nonuniqueness in the limit N → +∞.

6. Convergence of the approximating schemes. In this section we prove
Theorem 2.4. We begin with the following elementary lemma.

Lemma 6.1. Let u0 ∈ Aφ(0, 1). Then there exists a sequence (uN
0 ) ⊂ VN of

functions satisfying assertion (i) of Theorem 2.4.
Proof. Define uN

0 ∈ VN as (uN
0 )i := u0(i/N). Then ‖uN

0 ‖BV (0,1) ≤ ‖u0‖BV (0,1)

for any N ∈ N, (uN
0 ) converges to u0 weakly∗ in BV (0, 1) and strongly in L2(0, 1),

and limN→+∞ ‖uN
0 ‖BV (0,1) = ‖u0‖BV (0,1). Note that for any x ∈ [0, 1] such that

dist(x, σφ
B(u0)) > 1/N (resp., dist(x, σφ

G(u0)) > 1/N), then x ∈ σφ
G(uN

0 ) (resp., x ∈
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σφ
B(uN

0 )). It follows that limN→+∞ dH(σφ
G(uN

0 ), σφ
G(u0)) = 0. Since any isolated point

in σφ
B(u) belongs to σφ

B(uN
0 ) for N large enough, we also have dH(σφ

B(uN
0 ), σφ

B(u0)) →
0 as N → +∞.

Now let K ⊂ σφ
G(u0) be an interval with K ⊂ (0, 1). Then ‖uN

0 ‖L2(K) ≤
‖u0‖L2(KN ), where KN := {x ∈ R : dist(x,K) < 1/N} and N is large enough in

such a way that KN ⊂ (0, 1). Hence ‖uN
0 ‖L2(K) ≤ ‖u0‖L2(K) + 2

N , (uN
0 ) weakly

converges to u0 in H1(K), and ‖uN
0 x‖L2(K) converges to ‖u0x‖L2(K). Therefore

limN→+∞ Fφ(uN
0 ) = Fφ(u0), and this concludes the proof.

By construction, uN
0 ∈ VN ⊂ Aφ(0, 1); moreover, we can assume that if N is large

enough, the number of connected components of σφ
B(uN

0 ) equals m, the number of

connected components of σφ
B(u0), and we can uniquely write σφ

B(uN
0 ) as in (2.2).

Definition 6.2. Let u0 ∈ Aφ(0, 1), and let (uN
0 ) be as in Lemma 6.1. We denote

by uN : [0,+∞) → VN the solution of⎧⎨
⎩

d

dt+
u(t) = Au(t)u(t), t ∈ (0,+∞),

uN (0) = uN
0

(6.1)

given by Theorem 5.4 (with u0 in (5.1) replaced by uN
0 ).

Note that all assertions in Theorem 2.4(ii) are satisfied.
Remark 6.3.

(a) For any j ∈ {1, . . . ,m} we define

TN
j := sup

{
t ≥ 0: σφ

B(uN (t)) ∩ [aNj (0), bNj (0)] �= ∅
}
> 0,

[aNj (t), bNj (t)] := σφ
B(uN (t)) ∩ [aNj (0), bNj (0)], t ∈ [0, TN

j ).

Then aNj (0) = a0
j , b

N
j (0) = b0j , and

σφ
B(uN (t)) =

m⋃
j=1

[aNj (t), bNj (t)], t ∈ [0,+∞),

where we have set

[aNj (t), bNj (t)] := ∅ if t ≥ TN
j .

(b) The map t ∈ [0, TN
j ) �→ aNj (t) is continuous and nondecreasing, and the map

t ∈ [0, TN
j ) �→ bNj (t) is continuous and nonincreasing.

(c) Since uN (·, t) = uN
0 (·) on σφ

B(uN (t)), for any j ∈ {1, . . . ,m} we have that
either uN

0 x(x, t) > 1 for a.e. x ∈ [aNj (t), bNj (t)] or uN
0 x(x, t) < −1 for a.e.

x ∈ [aNj (t), bNj (t)].
Lemma 6.4. There exists a constant C > 0 depending only on u0 such that

sup
t>0

sup
N∈N

Fφ(uN (t)) ≤ C,

sup
N∈N

∥∥∥∥ d

dt+
uN

∥∥∥∥
L2((0,+∞);L2(0,1))

≤ C,

sup
N∈N

‖uN‖L∞((0,+∞);BV (0,1)) ≤ C.
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Proof. The first two inequalities follow from (2.3) and (5.2). The last one follows
from Theorem 5.4 (c) and (d) and (2.3).

Remark 6.5. Thanks to Lemma 6.4 (and extracting if necessary a not rela-
belled subsequence) the sequence (uN ) converges weakly in H1

loc((0,+∞);L2(0, 1))
and weakly∗ in L∞((0,+∞);BV (0, 1)) to a function u as N → +∞, and this gives
assertion (iii) of Theorem 2.4. In particular, for almost every x ∈ (0, 1) the func-
tion t ∈ [0,+∞) → u(x, t) is continuous, and uN (x, ·) → u(x, ·) uniformly on
[0,+∞). As a consequence the function u(·, t) is well defined for all t ∈ [0,+∞)
and ‖Du(·, t)‖ ≤ ‖Du0‖. It also follows that uN (t) → u(t) weakly∗ in BV (0, 1) for
almost every t ≥ 0.

Remark 6.6. Possibly extracting a further subsequence, we can assume that for
any j ∈ {1, . . . ,m}, TN

j → Tj as N → +∞ for some Tj ∈ [0,+∞]. If Tj > 0,

since the functions aNj (·) (resp., bNj (·)) are nondecreasing (resp., nonincreasing), there
exist nondecreasing functions aj : [0, Tj) → [0, 1] (resp., nonincreasing functions bj :
[0, Tj) → [0, 1]) such that aNj → aj (resp., bNj → bj) weakly∗ in BV (0, Tj − ε) as

N → +∞ for all ε > 0 small enough. Since aNj (t) < bNj (t) for all t ∈ [0, TN
j ), passing

to the limit we obtain that aj(t) ≤ bj(t) for all t ∈ [0, Tj). Recall that aj(0) = a0
j and

bj(0) = b0j for any j ∈ {1, . . . ,m}.
In the following, set J(0) := {1, . . . ,m}.
Definition 6.7. For any t ∈ [0,+∞) we define

J(t) := {j ∈ {1, . . . ,m} : t < Tj},

B(t) :=
⋃

j∈J(t)

[aj(t), bj(t)],

G(t) := [0, 1] \B(t),

B̃(t) :=
⋃

j∈J(t): aj(t)<bj(t)

[aj(t), bj(t)] ∪
⋃

j∈J(t): aj(t)=bj(t)∈Ju(t)

{aj(t)},

G̃(t) := [0, 1] \ B̃(t).

Note that

int(B(t)) ⊆ B̃(t) ⊆ B(t).(6.2)

Lemma 6.8. For any j ∈ {1, . . . ,m} we have Tj > 0, and the functions aj and bj
are continuous on [0, Tj).

Proof. Assume by contradiction that there exists j ∈ {1, . . . ,m} such that Tj = 0.

Then [a0
j , b

0
j ] ∈ σφ

G(u(s)) for any s > 0. Hence u(s) is one-Lipschitz in [a0
j , b

0
j ] for any

s > 0.
Case 1. Assume that a0

j < b0j . Using the triangular property and u(0) = u0, for

any x, x′ ∈ [a0
j , b

0
j ], x �= x′, we have

|u(x, s) − u(x, 0)| + |u(x′, s) − u(x′, 0)| ≥ |u0(x) − u0(x
′)| − |u(x, s) − u(x′, s)|

≥ |u0(x) − u0(x
′)| − |x− x′| > 0.

This means that s �→ u(x, s) has a discontinuity at s = 0 for a.e. x ∈ [a0
j , b

0
j ], and this

is in contradiction with u ∈ AC2([0,+∞);L2(0, 1)).
Case 2. Assume that a0

j = b0j . Let L := u0(a
0
j+

) and l := u0(a
0
j−). We can

assume l < L. Let δ := min( (L−l)
4 , a0

1, (1 − b0m),minj=1,...,m−1(a
0
j+1 − b0j )) > 0, and
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define x± := a0
j ± δ. Note that u(s) is one-Lipschitz in (x−, x+) for any s > 0. For

any x, x′ ∈ (x−, x+), x �= x′, we have

|u(x, s) − u(x, 0)| + |u(x′, s) − u(x′, 0)| ≥ |u0(x) − u0(x
′)| − |x− x′|

≥ |u0(a
0
j−) − u0(a

0
j+

)| − |u0(x) − u0(a
0
j−)|

− |u0(x
′) − u0(a

0
j+

)| − |x− x′|
≥ L− l − 4δ > 0.

As above, this is in contradiction with u ∈ AC2([0,+∞);L2(0, 1)).
Let us now prove that aj and bj are continuous. Assume by contradiction that

aj has a discontinuity at t = t̄ ∈ [0, Tj). Since aj is nondecreasing, t̄ is a jump
point of aj . If t̄ = 0, we can argue in analogy to Case 1. Assume t̄ > 0, and let
x− := limt→t̄− aj(t) < x+ := limt→t̄+ aj(t). Since uN (·, t) coincides with uN

0 (·) in

σφ
B(uN (t)), it follows that u(·, t) coincides with u0(·) in each connected component

of int(B(t)). In particular, the function u(t) coincides with u0 in (x−, x+) for all
t ∈ [0, t̄). We then obtain

|u(x, t) − u(x′, t)| = |u0(x) − u0(x
′)| > |x− x′| ∀ x, x′ ∈ (x−, x+).

On the other hand, u(s) is one-Lipschitz in (x−, x+) for any s > t̄. It follows that,
for any x, x′ ∈ (x−, x+),

|u(x, t) − u(x, s)| + |u(x′, t) − u(x′, s)| ≥ |u0(x) − u0(x
′)| − |x− x′| > 0,

which contradicts u ∈ AC2([0,+∞);L2(0, 1)). This proves the continuity of aj . The
continuity of bj follows using a similar argument.

Remark 6.9. Whenever Tj < +∞, arguing as in Lemma 6.8 with t̄ = Tj , we get
limt→T−

j
aj(t) = limt→T−

j
bj(t).

Remark 6.10.

(a) Since uN (·, t) is one-Lipschitz in each connected component of σφ
G(uN (t)), it

follows that u(·, t) is one-Lipschitz in each connected component of G̃(t).
(b) The function u(·, t) coincides with u0(·) in each connected component of

int(B(t)).
Remark 6.11. As a consequence of Lemma 6.8 the sequence (aNj ) (resp., (bNj ))

converges to aj (resp., to bj) uniformly in [0, Tj − ε) as N → +∞ for any ε > 0 small
enough. In particular, for any connected component I of B(t) there exists a connected

component IN of σφ
B(uN (t)) such that

lim
N→+∞

dH(IN , I) = 0.

Lemma 6.12. The function u(t) is φ-admissible for any t ≥ 0 and

int(B(t)) ⊆ σφ
B(u(t)) ⊆ B(t) ∀ t ∈ [0,+∞).(6.3)

Proof. Recalling Remark 6.5, let us fix t ≥ 0 such that uN (t) → u(t) weakly∗ in
BV (0, 1). From Remark 6.10(a) it follows that u(t) is one-Lipschitz in each connected

component of G̃(t); hence

G̃(t) ⊆ σφ
G(u(t)).
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Moreover, from Remarks 6.3(c) and 6.11 it follows that the assertion in Remark 2.2(c)

holds with u replaced by u(t) for any connected component I of B̃(t) and any Borel
set A ⊆ I. Indeed, if A is compactly contained in I, then DuN (A) = DuN

0 (A)
for N ∈ N large enough, and by construction (see Lemma 6.1) in the first case
|A| < limN→+∞ DuN

0 (A) = Du(A) or in the second case −|A| > limN→+∞ DuN
0 (A) =

Du(A). If A is a boundary point of I, then (using Remarks 6.11 and 6.10(a)) in the
first case 0 ≤ limN→+∞ DuN (A) = Du(A) or in the second case 0 ≤ limN→+∞
DuN (A) = Du(A). To obtain the desired inequalities when A is a generic Borel set
in I, it is enough to write A = (A ∩ int(I)) ∪ (A ∩ ∂I), to approximate A ∩ int(I)
with a sequence of subsets of A compactly contained in I, and to use the previous
arguments. It follows that

B̃(t) ⊆ σφ
B(u(t)).

In particular, for almost every t ≥ 0, u(t) is φ-admissible, σφ
B(u(t)) = B̃(t), and (6.3)

follows from (6.2).

Assume now that t ≥ 0 is generic, and pick a sequence (tn) ⊂ (0,+∞) converging
to t as n → +∞ such that u(tn) ∈ Aφ(0, 1) and for which (6.3) holds with tn in place
of t. Since u ∈ AC2([0,+∞);L2(0, 1)) and u(t) ∈ BV (0, 1), we have u(tn) → u(t)
weakly∗ in BV (0, 1) as n → +∞. It is then enough to repeat the previous arguments,
and the assertion follows.

Remark 6.13.

(a) We have limN→+∞ dH(ΓuN ,Γu) = 0, where ΓuN :=
⋃

t∈(0,+∞)(σ
φ
G(uN (t)) ×

{t}). In particular, by Lemma 6.8, for all t ∈ [0,+∞) we have

lim
N→+∞

dH

(
σφ
G(uN (t)), σφ

G(u(t))
)

= 0,

lim
N→+∞

dH

(
int(σφ

B(uN (t))), int(σφ
B(u(t)))

)
= 0.

(6.4)

(b) Since uN ⇀ u weakly∗ in L∞([0,+∞);BV (0, 1)) and uN ≡ uN
0 in [0, 1] ×

[0,+∞) \ ΓuN by Remark 6.3(c), we have u ≡ u0 in [0, 1] × [0,+∞) \ Γu.

Theorem 6.14. The function u satisfies uxx ∈ L2(Γu) and is a solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx, x ∈ σφ
G(u(t)), t ∈ (0,+∞),

ut = 0, x ∈ int(σφ
B(u(t))), t ∈ (0,+∞),

lim
y→x, y∈σφ

G(u(t))
ux(y, t) = 0, x ∈ ∂σφ

G(u(t)) \ {0, 1}, t ∈ (0,+∞),

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t ∈ (0,+∞).

(6.5)

Proof. Let ψ ∈ C1
c([0,+∞) × [0, 1]), and let ψN : [0,+∞) → VN , ψN ∈

Lipc([0,+∞) × [0, 1]), be such that ψN (t) → ψ(t) in H1(0, 1) for any t ≥ 0. We
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have

IN (t) :=

∫
σφ
G(uN (t))

uN
x (t)ψN

x (t) dx =
∑

i: (ΨuN (t))i=1

D+uN
i (t)D+ψN

i (t)

N

= −
∫

(0,1)

D−(ΨuN (t)D
+uN (t))ψN (t) dx

= −
∫

(0,1)

AuN (t)u
N (t)ψN (t) dx

= −
∫

(0,1)

d

dt+
uN (t)ψN (t) dx =: IIN (t).

(6.6)

From (6.4) (which is valid for any t ≥ 0 thanks to Lemma 6.8) and from the weak
H1

loc(int(Γu))-convergence of (uN ) to u, using (6.3) it follows that

lim
N→+∞

IN (t) =

∫
σφ
G(u(t))

ux(t)ψx(t) dx for a.e. t ≥ 0.(6.7)

On the other hand, d
dt+u

N ⇀ d
dt+u in L2((0, 1) × (0,+∞)) as N → +∞; hence

lim
N→+∞

IIN (t) =

∫
(0,1)

d

dt+
u(t)ψ(t) dx for a.e. t ≥ 0.(6.8)

Recalling also Remark 6.13(b), equalities (6.7), (6.8) coupled with (6.6) imply that u
solves the problem ⎧⎪⎨

⎪⎩
ut = uxx in int(Γu),

ut = 0 in [0, 1] × [0,+∞) \ Γu,

u(0) = u0 in [0, 1] × {0}.
(6.9)

In particular, we have u ∈ C∞(int(Γu)). Moreover, since ut ∈ L2((0, 1) × (0,+∞)),
we also get uxx ∈ L2(Γu). It then follows that there exists the limit

lim
x→x̄, x∈σφ

G(u(t))
ux(x, t) = 0 for a.e. t ≥ 0, x̄ ∈ ∂σφ

G(u(t));(6.10)

i.e., u|int(Γu) satisfies zero Neumann boundary conditions on ∂Γu. Problem (6.9),
together with the boundary condition (6.10), is equivalent to problem (6.5).

The periodic boundary conditions are a consequence of u being φ-admissible.
Remark 6.15. The same results of Theorem 2.4 hold if we replace in the definition

(1.1) of φ the function ξ2 with a function f ∈ C∞(R) which satisfies f(0) = 0, f(1) = 1,
f(ξ) = f(−ξ), and f ′′(ξ) > 0 for all ξ ∈ (−1, 1). It is clear that the equation ut = uxx

in (2.5) is replaced by ut = 1
2f

′′(ux)uxx.
Remark 6.16. Let N ∈ N, and set φN (ξ) := min(ξ2, N) for any ξ ∈ R. Define

the functional FφN ,N : L1(0, 1) → [0,+∞] as

FφN ,N (v) :=
1

2N

N∑
i=1

min
(
((D+v)i)

2, N
)
, v ∈ VN

(and extended to +∞ elsewhere). In [14] it is proved that the sequence (FφN ,N )
Γ-converges, as N → +∞, to the Mumford–Shah functional. Let u ∈ BV (0, 1), with
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u(0) = u(1), having a finite set x1, . . . , xn of jump points in (0, 1), and of class C1(I),
for any interval I ⊂ (0, 1)\{x1, . . . , xn}. Then u is φN -admissible for N large enough;
i.e., u satisfies Definition 2.1, where (1) is replaced by |u(x) − u(y)| ≤

√
N |x − y|

whenever [x, y] ⊂ σφN

G (u), and where the inequality involving u in (3) is replaced by

|u(x)− u(y)| >
√
N |x− y|. Let us consider the solutions ωN to the rescaled gradient

flow system of ODEs {
ωN
t = −N∇(FφN ,N |VN

)(ωN ),

ωN (0) = uN ,
(6.11)

uN as in Lemma 6.1. Reasoning as in Theorem 2.4 we get that, as N → +∞,
the sequence (ωN ) converges, up to a subsequence, to a function ω which satisfies
the heat equation with zero Neumann interior conditions on each interval of (0, 1) \
{x1, . . . , xn} (except in {0, 1}), has periodic conditions in {0, 1}, and keeps the points
x1, . . . , xn fixed in time (xj may disappear at time tj < +∞ if limx→xj−

ω(x, tj) =

limx→xj+
ω(x, tj)). Therefore ω can be considered as a reasonable global solution to

the gradient flow of the Mumford–Shah functional in one dimension starting from u
(compare [22], [20]).

7. Numerical simulations. In this section we show a numerical simulation
which confirms the behaviors predicted by Theorem 2.4. Let u0 ∈ Aφ(0, 1) be the
upper graph in Figure 7.2; see also Figure 7.1. We have

σφ
B(u0) = [a0

1, b
0
1] ∪ [a0

2, b
0
2] ∪ [a0

3, b
0
3],

where a0
1 = 0.05, b01 = 0.2, a0

2 = b02 = 0.6, a0
3 = 0.9, and b03 = 0.99. Note that

Ju0 = {a0
2, a

0
3}.

The sequence of graphs displayed in Figures 7.1 and 7.2 presents the solution u
starting from u0 at subsequent times. The computation solves the discrete evolution
presented in section 5 with space discretization Δx = 1/N with N = 500. The
algorithm used is a forward Euler scheme with time step Δt = (Δx)2/10. Let us list
the main features of the computed evolution u, all of which are in accordance with
Theorem 2.4.

(1) We have a1(t) ≡ a0
1 for all t > 0, and on the interval (0, a1(t)) the solu-

tion u evolves according to the heat equation with zero Neumann boundary
condition at a1(t). In addition,

a1(t) ∈ Ju(t) ∀ t > 0.

Since a0
1 /∈ Ju0 , a1(t) “instantly” becomes a discontinuity point of the solution;

see also Figure 7.1.
(2) The function t → b1(t) is decreasing for positive times. The interval

[a1(t), b1(t)] is gradually eroded, from the right, by the interval [b1(t), a2(t)],
where the solution evolves according to the heat equation, with zero Neumann
boundary conditions.

(3) There exists T2 > 0 such that a2(t) ≡ a0
2 and a0

2 ∈ Ju(t) for t ∈ [0, T2), and
then a0

2 becomes a continuity point of u(t) for t ≥ T2. In the region [b02, a3(t)],
for all times t ∈ (0, T2), the solution evolves according to the heat equation
with zero Neumann boundary conditions at b02 and a3(t). Note that

σφ
B(u(t)) = [a1(t), b1(t)] ∪ [a3(t), b3(t)], t ≥ T2,
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b01 a0
3 b03a0

1

a0
2 = b02

t = 0.200
t = 0.017
t = 0.011
t = 0.004
t = 0.001
t = 0.000

Fig. 7.1. A simulation of the discretized evolution. The function is plotted in black for some
relevant time values. The initial datum u0 is plotted thick. The gray regions represent the intervals
[aj(t), bj(t)].

0.01

t = 0

0.02

0.03

0.04

0.05

0.06

0.05 0.2 0.6 0.9x = 0

τ1

τ2

T2

0.99

Fig. 7.2. A vertical translation has been added to the evolution to distinguish the functions.
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and u evolves accordingly to the heat equation in the interval (b1(t), a3(t))
with zero Neumann boundary conditions.

(4) There exist two positive times 0 < τ1 < τ2 such that a3(t) ≡ a0
3 ∈ Ju(t) for

t ∈ [0, τ1), the point a3(t) becomes a continuity point of u for t ∈ [τ1, τ2], and
the function t → a3(t) is strictly increasing in that interval, a3(t) ≡ a3(τ2) ∈
Ju(t) for all t > τ2. The function t → b3(t) is strictly decreasing.

(5) On the interval (b3(t), 1) the solution u evolves according to the heat equation
with zero Neumann boundary conditions for all t > 0.

Remark 7.1. We conclude the paper by observing that, for energy densities
different from (1.1), in particular for the function φ1 considered in Figure 3.1 (the
nonconvex region of which is bounded), the discrete approximation scheme discussed
in sections 5 and 6, which keeps fixed in time the nodes of the mesh in (0, 1), could
converge to functions ũ which are not solutions to (3.6). In particular, the functions ũ

might not satisfy the condition ũt = 0 in int(σφ1

B (ũ(t))); see also the comments in [21,
p. 590]. This behavior of ũ, which is related to the interactions of the nonconvex region
of φ1 with the numerical scheme with fixed nodes, deserves further investigation.
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[5] G. I. Barenblatt, M. Bertsch, R. Dal Passo, and M. Ughi, A degenerate pseudoparabolic
regularization of a nonlinear forward-backward heat equation arising in the theory of heat
and mass exchange in stably stratified turbulent shear flow, SIAM J. Math. Anal., 24
(1993), pp. 1414–1439.

[6] G. I. Barenblatt, M. Bertsch, R. Dal Passo, V. M. Prostokishin, and M. Ughi, A
mathematical model of turbulent heat and mass transfer in stably stratified shear flow, J.
Fluid Mech., 253 (1993), pp. 341–358.

[7] G. Bellettini and G. Fusco, A regularized Perona-Malik functional: Some aspects of the gra-
dient dynamics, in Proceedings of the International Conference on Differential Equations,
Hasselt, Belgium, 2003, pp. 639–644.

[8] G. Bellettini and G. Fusco, The Γ-Limit and the Related Gradient Flow for Singular Per-
turbation Functionals of Perona-Malik Type, Preprint Centro De Giorgi, Scuola Normale
Superiore di Pisa, Pisa, Italy, 2004, submitted.

[9] G. Bellettini, G. Fusco, and N. Guglielmi, A Concept of Solution for Forward-Backward
Equations of the Form ut = 1

2
(φ′(ux))x and Numerical Experiments for the Singular

Perturbation ut = −ε2uxxxx + 1
2
(φ′(ux))x, Preprint Centro De Giorgi, Scuola Normale

Superiore di Pisa, Pisa, Italy, 2005, submitted.
[10] G. Bellettini and M. Novaga, Minimal barriers for geometric evolutions, J. Differential

Equations, 139 (1997), pp. 76–103.
[11] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, MA, 1987.
[12] H. Brezis, Operateurs Maximaux Monotones, North–Holland, Amsterdam, Elsevier, New York,

1973.



GLOBAL SOLUTIONS TO THE GRADIENT FLOW 1687
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DYNAMICS OF A STAGE-STRUCTURED POPULATION MODEL
ON AN ISOLATED FINITE LATTICE∗
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Abstract. In this paper we derive a stage-structured model for a single species on a finite one-
dimensional lattice. There is no migration into or from the lattice. The resulting system of equations,
to be solved for the total adult population on each patch, is a system of delay equations involving
the maturation delay for the species, and the delay term is nonlocal involving the population on
all patches. We prove that the model has a positivity preserving property. The main theorems of
the paper are comparison principles for the cases when the birth function is increasing and when
the birth function is a nonmonotone function. Using these theorems we prove results on the global
stability of a positive equilibrium.
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1. Background. There has recently been some interest in the study of stage-
structured population models on lattices. The following model, which is of particular
relevance to the present paper, was derived and studied by Weng, Huang, and Wu [8]:

dwj(t)

dt
=

μ

2π

∞∑
k=−∞

Bα(j − k)b(wk(t− r)) + Dm [wj+1(t) + wj−1(t) − 2wj(t)]

− dmwj(t), t > 0, j ∈ Z,(1.1)

where j ∈ Z := {0,±1,±2, . . .} are the integer nodes of an infinite one-dimensional
lattice. The r-dependent parameters μ and α are given by

μ = exp

(
−
∫ r

0

d(a) da

)
, α =

∫ r

0

D(a) da(1.2)

with d(a), D(a), and r defined below, and the function Bα(l) in (1.1), which we shall
sometimes refer to as the kernel, is given by

Bα(l) = 2e−2α

∫ π

0

cos(lω)e2α cosω dω.(1.3)

In their paper, Weng, Huang, and Wu [8] actually used the symbol β for their kernel.
However, it is important that their kernel should not be confused with the correspond-
ing kernel for a finite lattice (which we are calling β in this paper); thus we shall refer
to the infinite lattice kernel of Weng, Huang, and Wu as B.

In (1.1) the parameter r measures the time from birth until reaching maturity and
wj(t) denotes the total number of adults (i.e., the total number of age at least r) in
the jth patch. The function b(·), which always satisfies b(0) = 0, is the birth function
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and the constants Dm and dm are, respectively, the diffusion coefficient and death
rate for the mature population.

In (1.2), the functions D(a) and d(a) are the diffusion coefficient and death rate
for the immature population. For the immature population these rates can depend
on age a, but for the mature population the diffusion coefficient and death rate must
be independent of age and they are taken as Dm and dm.

Weng, Huang, and Wu [8] derived their model from the following von Foerster
type of equation:

∂uj

∂t
+

∂uj

∂a
= D(a) [uj+1(t, a) + uj−1(t, a) − 2uj(t, a)] − d(a)uj(t, a)(1.4)

with D(a) = Dm and d(a) = dm for a ≥ r. Equation (1.4) incorporates a discrete
representation of diffusion. Von Foerster equations for the case of continuous space
have been considered also, in which case the Laplacian operator can be used to model
Fickian diffusion (see [4]). In (1.4), uj(t, a) is the density of age a at time t in the jth
patch. Furthermore

wj(t) =

∫ ∞

r

uj(t, a) da.

In [8] the interest is mainly in the existence of travelling front solutions connecting two
distinct equilibria. The highly nontrivial matter of the stability of these fronts is also
investigated. Gourley and Wu [3] continued the study in [8] by providing conditions
under which the population will go extinct, and conditions for the existence of periodic
travelling waves.

The aim of the present paper is to derive and study an equation analogous to (1.1)
for the case when the lattice is finite, with the nodes being given by j = 1, 2, . . . , N .
As we shall see, the model changes in two main respects. The first is that the discrete
representation of diffusion will only be wj+1(t)+wj−1(t)−2wj(t) at “interior” points of
the lattice (i.e., the nodes j = 2, 3, . . . , N−1) with a different expression for the nodes
j = 1 and j = N . We shall use the expression appropriate for an isolated lattice which
individuals cannot escape from or enter into; this is the analogy of the homogeneous
Neumann problem (i.e., no flux at boundaries) in the case of continuous space. The
second and more complicated difference between the model of the present paper and
(1.1) is that the term with the time delay assumes a rather different appearance. The
function Bα(l) given by (1.3) is completely inappropriate for the case of a finite lattice.
Additionally, as we shall see, in the case of a finite lattice the time delay term no longer
assumes a “convolution” structure (i.e., depending on the lattice index through the
variables j − k and k with summation over k). This convolution formulation cannot
allow for interactions with the endpoints of a finite lattice and therefore is strictly for
infinite lattices only.

The derivation in [8] relies heavily on the fact that their lattice was infinite (their
derivation utilizes a discrete Fourier transform technique). For a finite lattice a dif-
ferent model derivation is required and this will be the subject of the next section.

A model on a finite lattice similar to the one we propose in this paper was con-
sidered in Smith and Thieme [7]. Their model has n patches each of which offers
a different quality of life (the per capita reproduction rates, mortality rates, and
maturation delays can vary from patch to patch). Additionally their model permits
individuals to migrate from any one patch directly to any other. Their model assumes
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the form

(
∂

∂t
+

∂

∂a

)
uj(t, a) =

n∑
k=1

γjkuk(t, a) −
(

n∑
k=1

γkj + μj

)
uj(t, a)

with birth law

uj(t, 0) = gj

(∫ ∞

τj

uj(t, a) da

)
,

where each gj is a bounded function. In some respects this model is more general
than the one we propose in this paper, particularly with regard to the migration terms
(γjk is the per capita migration rate from node k to node j). Their key assumption
on the migration terms is that the matrix (γjk) be irreducible. Our model in this
paper considers migration only on a nearest neighbor basis, but we study our model
in somewhat more detail.

Our approach is to start with an age-structured model (the “original problem”)
given by system (2.1) below, and derive from it a delay differential equation system
(the “reduced problem”) for wj(t), the total mature population at the jth patch.
As we shall discover, the reduced system (system (2.10) below) is valid only after
a transient period of length r. For 0 < t < r the variable wj(t) is governed by
some different nonautonomous equations that involve the initial data u0(a) for the
original problem (2.1). We shall not be concerned in this paper with these other
nonautonomous equations but will effectively neglect the transient phase and study
the reduced problem independently (i.e., we study system (2.10) below for t > 0, sub-
ject to (2.11)). However, there are delicate issues regarding initial data and positivity
which will be discussed later in this paper and which are treated in more detail in
Bocharov and Hadeler [2] for problems without diffusion. For example, only certain
initial data for the reduced problem with delay are related to the original problem.
Also, while positive solutions of the original problem lead to positive solutions of the
reduced problem, the cone of positive solutions of the reduced problem is larger in
general, since we study the reduced problem for arbitrary nonnegative initial data,
and not just those initial data that are related to the original problem. These issues
will be discussed further as they arise.

2. Finite lattice: Model derivation. Let uj(t, a) denote the density of the
population of the species at the jth patch at time t ≥ 0 and age a ≥ 0. Let D(a) and
d(a) denote the diffusion and death rates of the population at age a. Assume that the
patches are located at the integer nodes j = 1, 2, . . . , N of a one-dimensional lattice
and that spatial diffusion occurs only at the nearest neighborhood and is propor-
tional to the difference of the densities of the population at adjacent patches. These
assumptions lead to the model

(
∂

∂t
+

∂

∂a

)
u(t, a) = D(a)Au(t, a) − d(a)u(t, a)(2.1)

for t > 0, where

u(t, a) = (u1(t, a), . . . , uN (t, a))T
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and

A =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎠ ,(2.2)

subject to

uj(t, 0) = b(wj(t)),(2.3)

where wj(t) is the total mature population at the jth patch, given by

wj(t) =

∫ ∞

r

uj(t, a) da(2.4)

and b(·) is the birth function, which satisfies b(0) = 0. Furthermore, it is natural to
assume that

uj(t,∞) = 0, t ≥ 0, j = 1, . . . , N.

The initial data for (2.1) has the form

u(0, a) = u0(a), 0 ≤ a < ∞(2.5)

with u0(a) prescribed.
Note that, at the node j = 1, the diffusion term is D(a)(u2 − u1) with a similar

expression for the other “end” node j = N . In this way the model (2.1) has been
set up so as to be the discrete analogue of what is commonly called the homogeneous
Neumann problem in the continuous case, in which no-flux boundary conditions are
applied. For the heat equation ut = Δu on a finite domain Ω with homogeneous
Neumann boundary conditions ∂u/∂n = 0 on ∂Ω, it is well known that

∫
Ω
u(t, x) dx

is constant. An analogous result holds for (2.1) in the case when there are no births
or deaths (i.e., b(·) = d(·) = 0). Indeed, in this case,

d

dt

N∑
j=1

∫ ∞

0

uj(t, a) da

︸ ︷︷ ︸
total population

=

N∑
j=1

∫ ∞

0

∂uj(t, a)

∂t
da = −

N∑
j=1

∫ ∞

0

∂uj(t, a)

∂a
da

+

N−1∑
j=2

∫ ∞

0

D(a)(uj−1(t, a) − 2uj(t, a) + uj+1(t, a)) da

+

∫ ∞

0

D(a)(−u1(t, a) + u2(t, a)) da +

∫ ∞

0

D(a)(uN−1(t, a) − uN (t, a)) da

= −
N∑
j=1

(uj(t,∞)︸ ︷︷ ︸
=0

− b(wj(t))︸ ︷︷ ︸
=0 if no births

) = 0.

Our intention is to derive from (2.1), (2.3) a system of equations satisfied by the
total matured population wj(t), j = 1, 2, . . . , N . Before doing so, let us introduce the
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function β(t, k, j) defined by

β(t, k, j) =
1

N
+

2

N

N∑
l=1

e−4 sin2( lπ
2N )t cos

[
(2j − 1)

lπ

2N

]
cos

[
(2k − 1)

lπ

2N

]
.(2.6)

We will prove the following result which is useful for later calculations.
Proposition 2.1. The function β(t, k, j) defined by (2.6) has the following prop-

erties:
(i) it satisfies

d

dt

⎛
⎜⎝

β(t, k, 1)
...

β(t, k,N)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

β(t, k, 1)
...

β(t, k,N)

⎞
⎟⎠ ,(2.7)

(ii) β(0, k, j) is the Kronecker delta:

β(0, k, j) =

{
1 if j = k,
0 if j �= k;

(2.8)

(iii)
∑N

k=1 β(t, k, j) = 1 for each j = 1, 2, . . . , N and all t ≥ 0;
(iv) β(t, k, j) > 0 for all t > 0 and all 1 ≤ k, j ≤ N .
Proof. Property (i) is straightforward. Property (ii) is fairly easily seen. Indeed,

β(0, k, k) =
1

N
+

2

N

N∑
l=1

cos2(2k − 1)
lπ

2N
=

1

N
+

1

N

N∑
l=1

(
1 + cos(2k − 1)

lπ

N

)

=
1

N
+ 1 +

1

N
Re

(
N∑
l=1

ei(2k−1) lπ
N

)

=
1

N
+ 1 +

2

N
Re

(
ei(2k−1) π

N

1 − ei(2k−1) π
N

)
= 1

after some algebra. Similarly, β(0, k, j) = 0 for j �= k.
To show statement (iii) it is clearly sufficient to prove that

N∑
k=1

cos(2k − 1)
lπ

2N
= 0

and this is easily shown.
Finally we prove (iv), that β(t, k, j) > 0 for all t > 0. We have already noted that

the function β(t, k, j) defined by (2.6) satisfies the system of differential equations
(2.7) with the initial condition (2.8). Here, j is thought of as the spatial coordinate
and k ∈ {1, 2, . . . , N} as fixed. Certain theorems in the theory of matrices (Berman
and Plemmons [1]) are useful here. The matrix β(t) = [β(t, k, j)]N×N is the solution
of the linear system β̇ = Aβ, where A is the matrix defined by (2.2), subject to
β(0) = I. Thus

β(t) = eAt = e−3te(3I+A)t = e−3t
∞∑
i=0

ti(3I + A)i

i!
.
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It is easily checked that 3I + A is a positive and irreducible matrix. Therefore, it
follows [1] that (3I + A)i is a strictly positive matrix for all i ≥ N + 1. Therefore,
for any t > 0 the infinite sum above furnishes a matrix all of whose elements are
strictly positive. Therefore, β(t, k, j) > 0 for all t > 0. The proof of Proposition 2.1
is complete.

We will now prove the following theorem.
Theorem 2.2. Assume that the diffusion and death rates of the mature population

are age-independent, i.e.,

D(a) = Dm, d(a) = dm for a ∈ [r,∞),

where Dm > 0 and dm > 0 are constants. Let the function β(t, k, j) be defined by
(2.6) and let

μ = e−
∫ r
0
d(z) dz, α =

∫ r

0

D(z) dz.(2.9)

Then for t ≥ r the total matured population wj(t) defined by (2.4) satisfies

d

dt

⎛
⎜⎜⎜⎜⎜⎝

w1(t)
w2(t)
...
wN−1(t)
wN (t)

⎞
⎟⎟⎟⎟⎟⎠ = μ

N∑
k=1

b(wk(t− r))

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠

+Dm

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

w1(t)
w2(t)
...
wN−1(t)
wN (t)

⎞
⎟⎟⎟⎟⎟⎠− dm

⎛
⎜⎜⎜⎜⎜⎝

w1(t)
w2(t)
...
wN−1(t)
wN (t)

⎞
⎟⎟⎟⎟⎟⎠ .(2.10)

Remark 1. For 0 < t < r the variable wj(t) does not obey system (2.10) but
is governed instead by some different (nonautonomous) equations that still contain
information about the initial data of the system (2.1). This issue is discussed in detail
in Bocharov and Hadeler [2] for systems without diffusion. However, in this paper we
shall concentrate on the problem consisting of system (2.10) for t > 0, subject to the
initial conditions

wj(s) = w0
j (s) ≥ 0, j = 1, 2, . . . , N, s ∈ [−r, 0](2.11)

with w0
j (s) prescribed.

Remark 2. Related to the above point, is the issue of initial data. If we solve
(2.10) for t > 0 an important question arises: does an arbitrary nonnegative initial
function w0

j (s), s ∈ [−r, 0], necessarily result, in any sense, from an initial datum
u0(a) for system (2.1)? The answer is, not necessarily. Given an initial datum u0(a)
for system (2.1), one should first evolve the variable wj(t) until time r according to
the nonautonomous equations which govern wj(t) for 0 < t < r, and then evolve
wj(t) for t > r according to (2.10) with initial time r, using as initial data the values
of wj(t), t ∈ [0, r], found by solving the nonautonomous equations. Those functions
wj(t), t ∈ [0, r], which arise in this way are, once translated r units back in time, those
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functions which are admissible in (2.11) as initial data for system (2.10) with initial
time 0. For a class of systems without diffusion, Bocharov and Hadeler [2] characterize
completely those initial data for their delay equation starting at time r, which result
from a positive initial datum of their analogy to our system (2.1). In this paper we
shall not develop this issue further but will consider (2.10) for t > 0 subject only to
(2.11) (i.e., as though the system had not been derived from a structured population
model).

Proof of Theorem 2.2. Letting

w(t) = (w1(t), . . . , wN (t))T ,

we have

dw(t)

dt
=

∫ ∞

r

∂

∂t
u(t, a) da =

∫ ∞

r

[
− ∂

∂a
u(t, a) + D(a)Au(t, a) − d(a)u(t, a)

]
da.

(2.12)

We obtain from (2.1) and (2.12) that

dw(t)

dt
= u(t, r) + DmAw(t) − dmw(t) for t > 0.(2.13)

In order to have a complete system for wj(t) we need to calculate uj(t, r), j =
1, 2, . . . , N . For fixed s ≥ 0 let Vs(t) = (V s

1 (t), . . . , V s
N (t))T , where

V s
j (t) = uj(t, t− s) for s ≤ t ≤ s + r.(2.14)

Since only the mature population can reproduce, we have

V s
j (s) = uj(s, 0) = b(wj(s)),(2.15)

where b : R+ → R+ is the birth function. From (2.1), we have

d

dt
Vs(t) =

(
∂

∂t
+

∂

∂a

)
u(t, a)

∣∣∣∣∣
a=t−s

= D(t− s)AVs(t) − d(t− s)Vs(t).(2.16)

We want to solve (2.16) subject to (2.15). First, let

V s
j (t) = Ṽ s

j (t)e−
∫ t−s
0

d(z) dz

and Ṽs(t) = (Ṽ s
1 (t), . . . , Ṽ s

N (t))T ; then system (2.16) becomes

d

dt
Ṽs(t) = D(t− s)AṼs(t).

Making a further transformation of time t as

t̃ =

∫ t−s

0

D(z) dz

so that dt̃/dt = D(t− s), we obtain

d

dt̃
Ṽs(t̃) = AṼs(t̃)(2.17)
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which has to be solved subject to the initial condition (2.15) in the form

Ṽ s
j (0) = b(wj(s)), j = 1, 2, . . . , N.(2.18)

We look for a solution of (2.17) in the form

Ṽ s
j (t̃) =

N∑
k=1

ckβ(t̃, k, j),

where the function β(t, k, j) is defined in (2.6) and ck are unknown constants to be
found using the initial condition (2.18). That is, with t̃ = 0 one gets

Ṽ s
j (0) =

N∑
k=1

ckβ(0, k, j) = cj ,

by (ii) of Proposition 2.1. Consequently,

cj = b(wj(s)),

and the solution of the system (2.17) is given as follows:

Ṽ s
j (t̃) =

N∑
k=1

b(wk(s))β(t̃, k, j),

or, in terms of t,

Ṽ s
j (t) =

N∑
k=1

b(wk(s))β

(∫ t−s

0

D(z)dz, k, j

)
.

Hence,

uj(t, t− s) = V s
j (t) = e−

∫ t−s
0

d(z)dz
N∑

k=1

b(wk(s))β

(∫ t−s

0

D(z)dz, k, j

)
.

Recalling that s ≥ 0 we deduce that, for t ≥ r,

uj(t, r) = μ

N∑
k=1

b(wk(t− r))β(α, k, j),(2.19)

where b(wk(t)) is the birth function introduced above, and μ and α are given by (2.9).
Thus, the system for wj has the form (2.10) for t ≥ r.

3. Positivity of solutions. In the previous sections we derived the reduced
model for wj(t) and proved various properties of β(t, k, j). Using the fact that
β(t, k, j) > 0 for all t > 0 we shall now prove a positivity-preserving property for
system (2.10).

The result which we shall prove in this section is for the system consisting of
the differential equations (2.10) for t > 0, supplemented by the initial data (2.11).
As noted previously, the reduced system (2.10) is actually only valid for t ≥ r. For
0 < t < r another nonautonomous system applies and governs wj(t). Thus there
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is a subtle relationship between the original problem (2.1) and the reduced problem
(2.10) as regards positivity. This issue is discussed in detail in [2] for systems without
diffusion, and the issues concerning positivity are basically the same for systems with
and without diffusion.

First, we consider the initial value problem

dv(t)

dt
= DAv(t) − dv(t) + h(t),(3.1)

where v(t) = (v1(t), . . . , vN (t))T and h(t) = (h1(t), . . . , hN (t))T , subject to

vj(0) = cj , cj ∈ R, j = 1, . . . , N.

From the definition of β(t, k, j) it is easy to check that the solution to this problem is

vj(t) = e−dt
N∑

k=1

β(Dt, k, j)ck +

N∑
k=1

∫ t

0

e−d(t−s)β(D(t− s), k, j)hk(s) ds, j = 1, . . . , N.

(3.2)

Therefore if cj ≥ 0 and hj(t) ≥ 0 for all t ≥ 0 and j = 1, . . . , N , then, since β(t, k, j) ≥
0, we have vj(t) ≥ 0 for all j = 1, . . . , N and t ≥ 0. We shall now prove that the
solutions of (2.10) enjoy positivity-preserving properties analogous to results that can
be proved using the strong maximum principle in the case of continuous space.

Theorem 3.1. Let b(0) = 0 and b(w) > 0 when w > 0, and let {wj} be the
solution of system (2.10), t > 0, corresponding to the initial data wj(s) = w0

j (s),

s ∈ [−r, 0]. If w0
j (s) ≥ 0 for all j = 1, . . . , N and s ∈ [−r, 0], then wj(t) ≥ 0 for all

j = 1, . . . , N and t ≥ 0.
Also, if w0

j (s) �≡ 0 on (s, j) ∈ [−r, 0] × {1, 2, . . . , N}, then wj(t) > 0 for all
j = 1, . . . , N and t ≥ r.

Proof. We first prove the nonnegativity property wj(t) ≥ 0. This is achieved in
steps; we first prove the result for t ∈ [0, r]. Applying (3.2) to system (2.10) with

hj(t) = μ

N∑
k=1

β(α, k, j)b(wk(t− r))

gives, for t ∈ [0, r],

wj(t) = e−dmt
N∑

k=1

β(Dmt, k, j)wk(0)(3.3)

+ μ

N∑
k=1

∫ t

0

e−dm(t−s)β(Dm(t− s), k, j)

N∑
l=1

β(α, l, k)b(wl(s− r)) ds.

Now t ∈ [0, r] so the right-hand side of the above expression refers only to the initial
data for wj(t), which is nonnegative by hypothesis. Since β is nonnegative also, we
conclude that wj(t) ≥ 0 for t ∈ [0, r]. On the interval t ∈ [r, 2r] an expression
analogous to (3.3) can easily be found, referring in its right-hand side to wj(·) only at
times between 0 and r, on which interval we have just shown nonnegativity. Therefore,
wj(t) ≥ 0 for t ∈ [r, 2r]. This argument can be continued indefinitely, and so we have
shown wj(t) ≥ 0 for all t ≥ 0.
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We now prove the second part of the theorem: strict positivity of wj(t) for all
t ≥ r, provided the initial data is not identically zero. From (3.3) we can infer that

wj(r) > 0 for all j = 1, . . . , N.

Indeed, if we had wj(r) = 0, then, since β(t, k, j) > 0 for t > 0 and since b(·) is positive
definite, it would follow that wj(s) ≡ 0 on (s, j) ∈ [−r, 0]× {1, 2, . . . , N}, contrary to
hypothesis. For t ≥ r an expression for wj(t) similar to (3.3) can be found, and from
this expression we can infer that, for t ≥ r,

wj(t) ≥ e−dm(t−r)
N∑

k=1

β(Dm(t− r), k, j)wk(r) > 0

for all j = 1, . . . , N . The proof of the theorem is complete.

4. Comparison principle: Monotone birth functions. In this section we
shall prove a comparison theorem for system (2.10) for the case when the birth func-
tion is increasing, and we shall use it to prove that in this case if a positive uniform
equilibrium solution exists, then it is globally stable. Theorem 4.1 below can also be
established using results in Chapter 5 of Smith [6] (indeed, for increasing birth func-
tions system (2.10) satisfies the quasimonotone condition on page 78 of [6], and (2.10)
constitutes a cooperative and irreducible system of functional differential equations).
However, we will include a self-contained proof of our Theorem 4.1 here because, as
will become clear later, a detailed understanding of the monotone case throws much
light on how one can approach the case of a nonmonotone birth function which we do
later in Theorem 5.1.

Theorem 4.1. Let the birth function b(w) be increasing and differentiable for
all w ≥ 0 and let β(t, k, j) be given by (2.6). Let w̄(t) = (w̄1(t), . . . , w̄N (t))T and
ŵ(t) = (ŵ1(t), . . . , ŵN (t))T be such that

dw̄(t)

dt
−DmAw̄(t) + dmw̄(t) − μ

N∑
k=1

b(w̄k(t− r))

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠

≥ dŵ(t)

dt
−DmAŵ(t) + dmŵ(t) − μ

N∑
k=1

b(ŵk(t− r))

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠(4.1)

for t > 0 and

w̄j(s) ≥ ŵj(s), j = 1, . . . , N, s ∈ [−r, 0].

Then w̄j(t) ≥ ŵj(t) for all t > 0 and j = 1, . . . , N .
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Proof. Let W(t) be the vector with components Wj(t) := w̄j(t) − ŵj(t). Then
(4.1) can be rewritten as

dW(t)

dt
−DmAW(t) + dmW(t)

−μ
N∑

k=1

[b(w̄k(t− r)) − b(ŵk(t− r))]

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠ ≥ 0.

Applying the mean value theorem to the last term in the left-hand side of the above
inequality we obtain

dW(t)

dt
−DmAW(t) + dmW(t) − μ

N∑
k=1

b′(θk(t− r))Wk(t− r)

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠ ≥ 0,

(4.2)

where θk(t) is between w̄k(t) and ŵk(t), k = 1, . . . , N . By hypothesis w̄j(s) ≥ ŵj(s)
for s ∈ [−r, 0], so Wj(s) ≥ 0 for s ∈ [−r, 0]. To prove the theorem we need to show
that Wj(t) ≥ 0 for all t > 0, and as a first step we shall prove this fact for t ∈ (0, r].
For t ∈ (0, r],

fj(t) := μ

N∑
k=1

b′(θk(t− r))Wk(t− r)β(α, k, j) ≥ 0.

Inequality (4.2) becomes

dW(t)

dt
−DmAW(t) + dmW(t) ≥ f(t),(4.3)

where f(t) = (f1(t), . . . , fN (t))T . We claim that Wj(t) ≥ 0 for all j = 1, . . . , N and
t ∈ [0, r]. Suppose this is false, i.e., that Wj(t) goes negative. Then Wj(t) must attain
a negative minimum on the set (t, j) ∈ [0, r] × {1, 2, . . . , N}. Let this happen at time
t∗ and at the node j∗. Since Wj(0) ≥ 0 we must have t∗ > 0, but it is possible that
t∗ = r. In any case,

dWj∗(t
∗)

dt
≤ 0,

and, of course, Wj∗(t
∗) < 0. Also, if j∗ is an “interior” node, then

Wj∗−1(t
∗) − 2Wj∗(t

∗) + Wj∗+1(t
∗) ≥ 0

while if j∗ = 1, then −W1(t
∗) + W2(t

∗) ≥ 0 and similarly if j∗ = N . Extracting the
j∗th component of (4.3) and evaluating it at time t∗ gives

dWj∗(t
∗)

dt
− (j∗th component of Dm term)︸ ︷︷ ︸

≤0

+ dmWj∗(t
∗)︸ ︷︷ ︸

<0

≥ fj∗(t
∗)︸ ︷︷ ︸

≥0
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which is a contradiction. Thus Wj(t) ≥ 0 for all j = 1, . . . , N and t ∈ [0, r]. Repeating
this argument establishes that Wj(t) ≥ 0 for t ∈ [r, 2r] and the argument can be
continued to include all positive times. The proof of the theorem is complete.

4.1. Convergence to equilibrium. In this section we will prove that if the
birth function b(w) is increasing and is such that there exists a uniform equilibrium
solution w∗ (independent of both j and t) to system (2.10) and is biologically realis-
tic, then solutions of (2.10) approach the equilibrium w∗. Note first that a uniform
equilibrium state w∗ must necessarily satisfy

μb(w∗) = dmw∗.(4.4)

We will prove the following theorem.
Theorem 4.2. In system (2.10) let the birth function b(w) satisfy b(0) = 0 and

be an increasing differentiable function for all w ≥ 0. Assume there exists w∗ > 0
such that μb(w) > dmw when 0 < w < w∗ and μb(w) < dmw when w > w∗. Assume
further that, in (2.11), w0

j (s) �≡ 0 on (s, j) ∈ [−r, 0]×{1, 2, . . . , N}. Then the solution
wj(t) of (2.10) for t > 0, subject to (2.11), satisfies wj(t) → w∗ as t → ∞, for each
j = 1, 2, . . . , N .

Proof. To prove this theorem we shall use Theorem 4.1. More specifically, we
shall show using Theorem 4.1 that the solution wj(t) of (2.10) subject to (2.11) can
be bounded above and below by solutions of (2.10) that are functions of t only.

Indeed, if we denote by w(t) any solution of the scalar equation

dw(t)

dt
= μb(w(t− r)) − dmw(t),(4.5)

then the function

(w1(t), w2(t), . . . , wN (t)) := (w(t), w(t), . . . , w(t))

satisfies (2.10). Two applications of Theorem 4.1 are required. In the first, we choose
ŵj(t) to be the solution wj(t) of (2.10) subject to (2.11) and w̄j(t) = w̄(t) for each j,
where w̄(t) satisfies

dw̄(t)

dt
= μb(w̄(t− r)) − dmw̄(t),

w̄(s) = max{w0
j (s), j = 1, 2, . . . , N} for s ∈ [−r, 0].

(4.6)

Then Theorem 4.1 yields

wj(t) ≤ w̄(t), t > 0, j = 1, 2, . . . , N.

For the second application of Theorem 4.1 the most obvious choices are to take w̄j(t)
as the solution wj(t) of (2.10) subject to (2.11) and, for each j, ŵj(t) = ŵ(t) where
ŵ(t) satisfies

dŵ(t)

dt
= μb(ŵ(t− r)) − dmŵ(t),

ŵ(s) = min{w0
j (s), j = 1, 2, . . . , N} for s ∈ [−r, 0]

(4.7)

so that

wj(t) ≥ ŵ(t), t > 0, j = 1, 2, . . . , N,



1700 Y. KYRYCHKO, S. A. GOURLEY, AND M. V. BARTUCCELLI

but this presents a possible problem in that ŵ(s) could be zero on all of s ∈ [−r, 0]
without violating the assumption w0

j (s) �≡ 0 on (s, j) ∈ [−r, 0]× {1, 2, . . . , N} (e.g., if

w0
j (s) were zero for all s on one particular node) in which case ŵ(t) would be zero for

all t > 0, which is not helpful for us. The way round this difficulty is to remember
that we showed earlier (Theorem 3.1) that wj(t) > 0 for all t ≥ r. Consider the initial
value problem starting at time t = 2r and consisting of equation (2.10) for t > 2r, with
initial data taken to be the solution wj(t), t ∈ [r, 2r], of the original problem. The
solution of this new initial value problem for t > 2r is clearly the same as the solution
wj(t) of the original problem, but the new problem has strictly positive initial data.
This means that, without loss of generality, the minimum in (4.7) can be assumed to
be strictly positive for all s ∈ [−r, 0].

To complete the proof of Theorem 4.2 it therefore suffices to prove that every
solution of the scalar ODE (4.5) such that w(s) > 0 for all s ∈ [−r, 0] will satisfy
w(t) → w∗, if the hypotheses on the parameters and the function b(w) are satisfied.
This follows immediately from Theorem 9.1 on page 159 of the book by Kuang [9].
Therefore, the proof of Theorem 4.2 is complete.

5. Nonmonotone birth functions. Of considerable interest to ecologists, is
the case of a birth function b(w) which is increasing up to a certain value of w and de-
creasing thereafter (for example, a function qualitatively resembling b(w) = Pwe−Aw).
Such birth functions are important in modelling certain insect populations in which
the birth rate is observed to be roughly proportional to the number of adults if the
number of adults is small, but effectively zero if the number of adults is large, since
competition for resources then becomes so intense that the adults require all their
resources for their own maintenance. The aims of this section are to establish a
comparison principle that works for very general birth functions, and then to use
the comparison principle to prove convergence theorems in the case when the birth
function qualitatively resembles b(w) = Pwe−Aw.

Theorem 5.1. Let the birth function b(w) be a differentiable function for all
w ≥ 0 and satisfy b(0) = 0, b(w) > 0 when w > 0. Let ŵ and w̄ be a pair of sub- and
supersolutions for (2.10), (2.11), i.e., a pair of functions satisfying

(i) ŵj(t) ≤ w̄j(t) for all t ∈ [−r,∞), j = 1, 2, . . . , N ;
(ii) letting w̄(t) = (w̄1(t), . . . , w̄N (t))T and ŵ(t) = (ŵ1(t), . . . , ŵN (t))T for t > 0

and j = 1, 2, . . . , N ,

dŵ(t)

dt
≤ DmAŵ(t) − dmŵ(t) + μ

N∑
k=1

b(ϕk(t− r))

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠ ,

(5.1)

and

dw̄(t)

dt
≥ DmAw̄(t) − dmw̄(t) + μ

N∑
k=1

b(ϕk(t− r))

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠(5.2)
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for all functions ϕj(t) such that ŵj(t) ≤ ϕj(t) ≤ w̄j(t), t ∈ [−r,∞), j =
1, 2, . . . , N ;

(iii) ŵj(s) ≤ w0
j (s) ≤ w̄j(s), s ∈ [−r, 0], j = 1, 2, . . . , N , where w0

j (s) is the initial
data for (2.10).

Then the solution wj(t) of (2.10), (2.11) satisfies

ŵj(t) ≤ wj(t) ≤ w̄j(t) for all t > 0, j = 1, 2, . . . , N.

Proof. Using (2.10), inequality (5.1) can be rewritten as

dŵ(t)

dt
−DmAŵ(t) + dmŵ(t) − μ

N∑
k=1

b(ϕk(t− r))

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠

≤ dw(t)

dt
−DmAw(t) + dmw(t) − μ

N∑
k=1

b(wk(t− r))

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠ .(5.3)

Define Wj(t) = wj(t) − ŵj(t) and W(t) to be the vector with components Wj(t).
Then (5.3) becomes

dW(t)

dt
−DmAW(t) + dmW(t) − μ

N∑
k=1

[b(wk(t− r))

− b(ϕk(t− r))]

⎛
⎜⎜⎜⎜⎜⎝

β(α, k, 1)
β(α, k, 2)
...
β(α, k,N − 1)
β(α, k,N)

⎞
⎟⎟⎟⎟⎟⎠ ≥ 0

(5.4)

and by hypothesis this holds for all ϕj(t) such that ŵj(t) ≤ ϕj(t) ≤ w̄j(t), t ∈ [−r,∞),
j = 1, 2, . . . , N .

We need to prove that Wj(t) ≥ 0 for all t > 0 and all j, and we shall first prove
this conclusion for t ∈ (0, r]. In inequality (5.4), for each j choose ϕj(t) to be any
function between ŵj(t) and w̄j(t), t ∈ [−r,∞), which is such that ϕj(s) = w0

j (s) when
s ∈ [−r, 0]. From this choice for ϕj(t) we infer that, for t ∈ (0, r] only, the last term in
the left-hand side of inequality (5.4) is zero, so that the inequality holds for t ∈ (0, r]
with just the first three terms in the left-hand side. The proof that Wj(t) ≥ 0 for
t ∈ (0, r] then proceeds the same way as in the proof of Theorem 4.1 because our
inequality is the same as (4.3) in the case when the functions fi(t) of the latter are
zero.

Proving that wj(t) ≤ w̄j(t) for t ∈ (0, r] and all j is similar. Thus

ŵj(t) ≤ wj(t) ≤ w̄j(t) for t ∈ (0, r], j = 1, 2, . . . , N.(5.5)
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0 ww wmax*

y y=d mw

μy=   b(w)

Fig. 1. Graphical depiction of the situation in which Theorem 5.2 holds. In particular, the
equilibrium w∗ has to satisfy 0 < w∗ < wmax.

Proving that Wj(t) = wj(t) − ŵj(t) ≥ 0 for t ∈ (r, 2r] is similar. Inequality (5.4) still
holds for all t > 0 and in particular for t ∈ (r, 2r]. This time, we choose ϕj(t) to be any
function between ŵj(t) and w̄j(t), t ∈ [−r,∞), which is such that ϕj(t) = wj(t) when
t ∈ [0, r]. This choice furnishes for us inequality (5.4), on t ∈ (r, 2r] only, but without
the term involving summation. We thus conclude that Wj(t) ≥ 0 for t ∈ (r, 2r] and
it is clear how to continue the proof.

Remark. A comparison theorem similar to Theorem 5.1 was proved for the case
of continuous space by Redlinger [5].

5.1. Convergence to equilibrium when w∗ < wmax. We will use Theo-
rem 5.1 to establish, essentially, that if b(w) qualitatively resembles Pwe−Aw and if
a nonzero equilibrium of (2.10) exists, is unique, and is in the interval of w for which
b(w) is increasing, then the equilibrium is globally stable as a solution of (2.10).

Theorem 5.2. In system (2.10) let the birth function b(w) satisfy b(0) = 0
and b(w) > 0 when w > 0. Also, let b(w) be increasing for 0 < w < wmax, with
b′(wmax) = 0, and decreasing for w > wmax. Assume further that there exists w∗ > 0
such that μb(w) > dmw when 0 < w < w∗ and μb(w) < dmw when w > w∗, and
assume that w∗ < wmax.

Then, if w0
j (s) �≡ 0 on (s, j) ∈ [−r, 0]×{1, 2, . . . , N}, the solution wj(t) of (2.10)

for t > 0, subject to (2.11), satisfies wj(t) → w∗ as t → ∞, for each j = 1, 2, . . . , N .

Remark. The situation we have in mind is shown in Figure 1.

Proof of Theorem 5.2. Let ŵj(t) = 0 and w̄j(t) = v(t) for each j = 1, 2, . . . , N ,
where v(t) is the solution of

dv(t)

dt
= μb(wmax) − dmv(t),

v(s) = max{w0
j (s), j = 1, 2, . . . , N}, s ∈ [−r, 0].
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It is easily seen that ŵj(t) and w̄j(t) are a pair of sub- and supersolutions. Thus, by
Theorem 5.1,

0 ≤ wj(t) ≤ v(t) for all t > 0, j = 1, . . . , N.

Thus

lim sup
t→∞

max
j∈{1,2,...,N}

wj(t) ≤ lim
t→∞

v(t) =
μb(wmax)

dm
.

Under the hypotheses it can be shown that

w∗ <
μb(wmax)

dm
< wmax.

Choose ε > 0 sufficiently small such that

μb(wmax)

dm
+ ε < wmax.

There exists a time T > 0 such that, for all t > T and all j,

wj(t) ≤
μb(wmax)

dm
+ ε < wmax.

Then as soon as t exceeds T +r there is effectively no record, as far as system (2.10) is
concerned, of the solution wj(t) ever having taken values outside the interval [0, wmax].
From this point on the analysis proceeds as if the birth function were increasing for
all w, and therefore it follows from Theorem 4.2 that the solution converges to w∗.
The proof is complete.

5.2. Convergence to equilibrium when w∗ > wmax. This section will show
that if w∗ > wmax, then solutions of (2.10), (2.11) will still converge to w∗ if additional
conditions hold. These additional conditions will hold if w∗ is not too much larger
than wmax.

Theorem 5.3. In system (2.10) let the birth function b(w) satisfy b(0) = 0
and b(w) > 0 when w > 0. Also, let b(w) be increasing for 0 < w < wmax, with
b′(wmax) = 0, and decreasing for w > wmax. Assume further that there exists w∗ > 0
such that μb(w) > dmw when 0 < w < w∗ and μb(w) < dmw when w > w∗. Assume
that w∗ > wmax and that

1

dm
μb

(
μb(wmax)

dm

)
> wmax.(5.6)

Furthermore, we assume that

(dm + f̄)r < 1,(5.7)

where

f̄ = μmax{|b′(w)|, w ∈ [w,w]}

with w = (μ/dm)b(wmax) and w = b−1(b(w∗))|[0,wmax]. Assume further that

μ

dm
b′(w∗) > −1.(5.8)
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0 wwmax

y

μy=   b(w)

y=d mw

w* μ b(w  max )
dm

Fig. 2. Graphical depiction of the situation in which Theorem 5.3 holds. In particular, the
equilibrium w∗ has to satisfy w∗ > wmax.

Then, if w0
j (s) �≡ 0 on (s, j) ∈ [−r, 0]× {1, 2, . . . , N}, the solution wj(t) of (2.10) for

t > 0, subject to (2.11) satisfies wj(t) → w∗ as t → ∞, for each j = 1, 2, . . . , N .
Remarks. It is natural to question whether these hypotheses can be satisfied. The

graph shown in Figure 2 shows that they can, and also suggests that the hypotheses
are likely to be satisfied only when w∗ is not too much greater than wmax.

The notation b−1(b(w∗))|[0,wmax] requires some explaining. Under the assumptions
on b(w), b−1(w) will, if defined, have in general two values. Thus b−1(b(w∗)) is either
w∗ or a value in [0, wmax] and b−1(b(w∗))|[0,wmax] means the latter value.

Proof of Theorem 5.3. Let us define

w0
max = max{w∗,max{w0

j (s), j = 1, 2, . . . , N, s ∈ [−r, 0]}},
w0

min = min{w∗,min{w0
j (s), j = 1, 2, . . . , N, s ∈ [−r, 0]}}.

We can assume without loss of generality that w0
min > 0 (this can be justified similarly

to the proof of Theorem 4.2).
The proof begins with the observation that (ŵj(t), w̄j(t)) = (0, V1(t)) is a sub/

supersolution pair for (2.10), (2.11), where V1(t) satisfies

dV1(t)

dt
= μb(wmax) − dmV1(t),

V1(s) = w0
max, s ∈ [−r, 0].

Therefore,

lim sup
t→∞

max
j∈{1,2,...,N}

wj(t) ≤ lim
t→∞

V1(t) =
μb(wmax)

dm
.

Next it is easy to see that (v1, V1) is a sub/supersolution pair, where V1 is the above
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function and v1 satisfies

dv1

dt
= μmin {b(v1(t− r)), b(V1(t− r))} − dmv1(t),

v1(s) = w0
min, s ∈ [−r, 0].

(5.9)

Inequality (5.7) assures us that the solution of

dv

dt
= μb(v(t− r)) − dmv(t)

with positive initial data satisfies limt→∞ v(t) = w∗. This follows from Theorem 9.5
in Kuang (see [9, page 165]). On the other hand, any solution of

dv

dt
= μb(V1(t− r)) − dmv(t)

satisfies

lim
t→∞

v(t) =
μ

dm
b

(
μb(wmax)

dm

)
.

Therefore the solution v1(t) of (5.9) tends, as t → ∞, to either w∗ or μ
dm

b(μb(wmax)
dm

)
and so our proof proceeds by considering two cases.

Case 1. limt→∞ v1(t) = w∗. In this case we obtain immediately that

lim inf
t→∞

min
j∈{1,2,...,N}

wj(t) ≥ w∗.

It can be shown similarly that

lim sup
t→∞

max
j∈{1,2,...,N}

wj(t) ≤ w∗,

completing the proof of the theorem for Case 1.

Case 2. limt→∞ v1(t) = μ
dm

b(μb(wmax)
dm

). What we initially get in this case is

lim inf
t→∞

min
j∈{1,2,...,N}

wj(t) ≥
μ

dm
b

(
μb(wmax)

dm

)
,

which, by (5.6), strictly exceeds wmax. Therefore, for t sufficiently large, wj(t) > wmax.
Since the problem has finite delay, this further means that for t sufficiently large there
is no history of wj(t) ever having assumed values below wmax, so that for the remainder
of the proof b(w) can be treated as decreasing in w. In fact we may shift the origin of
time such as to assume, without loss of generality, that w0

min > wmax. With this fact in
mind, our proof now proceeds by successive refinement of pairs of sub/supersolutions.

In general, for each n = 2, 3, . . . , let (vn, Vn) be defined by

dvn
dt

= μb(Vn−1(t− r)) − dmvn,

dVn

dt
= μb(vn−1(t− r)) − dmVn

(5.10)
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with the initial conditions Vn(s) = w0
max, s ∈ [−r, 0], and vn(s) = w0

min, s ∈ [−r, 0].
We will show that (vn, Vn) is a sub/supersolution pair for each n = 2, 3, . . . . According
to Theorem 5.1, what we need to show is that

b(Vn−1(t− r)) ≤
N∑

k=1

b(ϕk(t− r))β(α, k, j)

whenever ϕj(t) is such that vn(t) ≤ ϕj(t) ≤ Vn(t) for j = 1, 2, . . . , N and t ∈ [−r,∞).
Since we are now working in an interval of w in which b(w) is decreasing, it is enough
to establish that

b(Vn−1(t− r)) ≤
N∑

k=1

b(Vn(t− r))β(α, k, j) = b(Vn(t− r))

and the latter is true if Vn(t) ≤ Vn−1(t) for each n = 2, 3, . . . . Similarly, we need to
show that vn(t) ≥ vn−1(t) for each n. In fact, we shall show by induction that

v1(t) ≤ · · · ≤ vn−1(t) ≤ vn(t) < w∗ < Vn(t) ≤ Vn−1(t) ≤ · · · ≤ V1(t).(5.11)

To achieve this we assume (5.11) and prove that

w∗ < Vn+1(t) ≤ Vn(t)(5.12)

and

w∗ > vn+1(t) ≥ vn(t).(5.13)

We will prove only (5.12). Now

dVn+1(t)

dt
= μb(vn(t− r)) − dmVn+1(t)

≤ μb(vn−1(t− r)) − dmVn+1(t).

Therefore

dVn+1(t)

dt
+ dmVn+1(t) ≤

dVn(t)

dt
+ dmVn(t),

or, equivalently,

d

dt
(Vn+1 − Vn)(t) + dm(Vn+1 − Vn)(t) ≤ 0.

Therefore

Vn+1(t) − Vn(t) ≤ (Vn+1(0) − Vn(0))︸ ︷︷ ︸
=0

e−dmt

and so

Vn+1(t) ≤ Vn(t).

Also

dVn+1(t)

dt
= μb(vn(t− r)) − dmVn+1(t)

≥ μb(w∗) − dmVn+1(t)

= dm(w∗ − Vn+1)
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so that

d

dt
(Vn+1 − w∗) ≥ −dm(Vn+1 − w∗).

Therefore,

Vn+1(t) − w∗ ≥ (Vn+1(0) − w∗)︸ ︷︷ ︸
≥0

e−dmt ≥ 0

and so

Vn+1(t) ≥ w∗

which establishes (5.12).

Denote V ∗
n = limt→∞ Vn(t) and v∗n = limt→∞ vn(t). That these limits exist follows

from (5.10) and an inductive argument. We know v1(t) and V1(t) approach limits as
t → ∞. There are theories of asymptotically autonomous differential equations which
allow us to let t → ∞ in system (5.10), with n = 2, giving an autonomous system
of differential equations from which it becomes clear that v2(t) and V2(t) approach
limits as t → ∞. The argument can be continued and we thus conclude the existence
of the limits as t → ∞ for each n. From (5.10) these limits satisfy

μb(V ∗
n−1) = dmv∗n,

μb(v∗n−1) = dmV ∗
n .

(5.14)

We define V ∗ = limn→∞ V ∗
n and v∗ = limn→∞ v∗n; then (5.14) reduces to a limiting

system

μb(V ∗) = dmv∗,

μb(v∗) = dmV ∗.
(5.15)

These equations imply that V ∗ = v∗ = w∗ (condition (5.8) assures us that they have
no other solutions). Therefore, limt→∞ wj(t) = w∗ and the proof of the theorem is
complete.

6. Discussion. The main results in this paper are, first, the derivation of the
model (2.10) itself, which is nontrivial and substantially different from the case of
an infinite lattice considered previously in [8]. Second, the positivity-preservation
properties of solutions which turn out to be analogous to results that can be proved
using the strong maximum principle in the case of continuous space. Third, the
comparison principle of section 4 for the case of increasing birth functions. Fourth,
the use of this comparison principle to prove that the positive equilibrium of system
(2.10), if feasible, is globally asymptotically stable for increasing birth functions. Fifth,
in section 5, the comparison principle for the case of nonmonotone birth functions is
proved. With the help of this principle we have shown that the nontrivial equilibrium
is globally asymptotically stable if it is in the interval of w for which the birth function
b(w) is increasing, and that it can remain globally stable if it is larger, but not
too much larger, than the value of w at which b(w) attains its maximum, assuming
additionally the delay is not too large.
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NEW LYAPUNOV FUNCTIONALS OF THE
VLASOV–POISSON SYSTEM∗
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Abstract. We present new Lyapunov functionals and L1-stability for the Vlasov–Poisson system
with a self-consistent electrostatic force in a small initial data case. Lyapunov functionals measure
possible future crossings of projected particle trajectories in the physical space, and they are nonin-
creasing along smooth solutions when the initial datum is smooth and decays fast enough at infinity
in the phase space. For sufficiently large physical dimensions, we also show that smooth solutions
are uniformly L1-stable.
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1. Introduction. Consider a collisionless plasma consisting of M distinct species
under the effect of an electromagnetic field. The issue can be understood by the
Vlasov–Maxwell system. When the speed of light is taken to be infinity and a mag-
netic field is ignored, the Vlasov–Poisson system with a self-consistent electrostatic
field is addressed. Suppose there are M species of particles with mass mα, charge qα,
and density in the phase space fα(x, v, t) for α = 1, . . . ,M . Here (x, v) ∈ R

N × R
N

denotes position and velocity, respectively. The self-consistent electric field is denoted
by E = −∇xφ and the total charge density ρ is

ρ(x, t) =
M∑
α=1

qα

∫
RN

fα(x, v, t) dv.

In this case, the Vlasov–Poisson system reads⎧⎨
⎩∂tfα + v · ∇xfα +

qα
mα

∇xφ · ∇vfα = 0 in R
N × R

N × R+,

−Δxφ = N(N − 2)ωNρ,
(1.1)

with the prescribed initial datum

fα(x, v, 0) = fα,0(x, v) in R
N × R

N ,(1.2)

where ωN is the volume of the unit ball in R
N .

The Vlasov–Poisson system has many applications in the modeling of an electron
gun, plasma sheath, and galaxies as a large ensemble of stars in plasma physics and
astrophysics, respectively. The global existence of a smooth solution in one space
variable has been proved by Iordanskii [25] and that of two space variables by Ukai
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and Okabe [36]. On the other hand, for the three-dimensional case, Batt [3] and Horst
[21, 22, 23] established the global existence for spherical and cylindrically symmetric
data, respectively. For general but small data, Bardos and Degond [2] obtained global
existence, and finally Pfaffelmoser [30] proved the global existence of a smooth solution
with large data, and simpler proofs were provided by Schaeffer [33] and Lions and
Perthame [27]. For other issues such as weak solutions, relativistic effects, stability,
and dispersion estimates, we refer the reader to [1, 4, 12, 23, 28, 29, 31, 34, 35, 38, 40].

The aim of this paper is twofold. First, we present Lyapunov functionals for the
repulsive Vlasov–Poisson system when the dimension of the physical space N �= 2.
These functionals measure the future collisions between charged particles, although
the Vlasov–Poisson system does not register them. As in the Boltzmann equation
[19, 20], these functionals might be useful to establish L1-scattering-type results for
the Vlasov–Poisson–Boltzmann equation near vacuum [18]. Second, we study the
L1-stability of smooth C2-solutions to (1.1) using Gronwall-type estimates when the
dimension of the physical space is sufficiently large, and the initial data are smooth
and decay fast enough in the phase space. Throughout this paper, we denote by C a
universal positive constant independent of time t.

The above two main results of this paper are subject to the following estimates on
the time-decay of the electric field and the velocity variation of the density function
fα (see section 2).

(E1) The electric field E(x, t) decays, and it is integrable in t:∫ ∞

0

‖E(t)‖L∞(RN
x ) dt < ∞.

(E2) For fixed (x, t) ∈ R
N × R+ and α ∈ {1, . . . ,M},

∥∥∥∫
RN

|∇vfα(t)| dv
∥∥∥
L∞(RN

x )
≤ C

(1 + t)N−1
,

∥∥∥∫
RN

|∇vfα(t)| dv
∥∥∥
L1(RN

x )
≤ C(1 + t).

Based on the time-integrable decay of the electric field E, we first construct an
interaction potential D(fα) which is nonincreasing along smooth solutions to (1.1)
with N ≥ 3, and which satisfies a Lyapunov estimate: for α ∈ {1, . . . ,M},

D(fα(t)) +

∫ t

0

Λ(fα(s)) ds = D(fα,0), t ≥ 0,

where Λ(fα(s)) ≥ 0 is an interaction production functional

Λ(fα(t)) :=

∫∫∫
RN×RN×RN

fα(x, v, t)fα(x, v∗, t) dv∗ dv dx.

The above functional measures the possible crossings of the projected particle trajec-
tories in the physical space, and hence it can be regarded as a kinetic counterpart
of Glimm’s interaction potential [17] in hyperbolic conservation laws in one-space di-
mension. Due to the strong dispersive effect of the free transport part, the crossings
of projected trajectories in the physical space will tend to be nonincreasing in time
t. In fact, in the absence of external forces, such interaction potentials have been
constructed for the full Boltzmann equation in [6, 19, 20] based on the free transport
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equation ∂tf + v · ∇xf = 0 with small initial data. Unlike the Boltzmann equation,
where the interaction potential is constructed based on the free transport part, the
external force term ∇xφ · ∇vfα produces error terms which cannot be controlled by
the interaction production functional Λ(fα(t)). We overcome this difficulty by devis-
ing a new functional capturing the nonlinear feature of the system, and by essentially
using time-integrable decay of the electric field; thus small initial data are assumed.

Second, we establish the uniform L1-stability for (1.1) with N ≥ 4:

sup
0≤t<∞

‖f(t) − f̄(t)‖L1 ≤ G‖f0 − f̄0‖L1 ,(1.3)

where G is a positive constant independent of t, and a simplified notation for L1-norm
is used:

‖f(t) − f̄(t)‖L1 :=

M∑
α=1

‖fα(·, ·, t) − f̄α(·, ·, t)‖L1(RN×RN ).

Unlike the Boltzmann equation [19, 20], the nonlinear functional approach incorpo-
rating the Lyapunov functional D(fα) cannot be applied to L1-stability estimates for
(1.1). By direct calculation, |fα − f̄α| satisfies

∂t|fα − f̄α| + v · ∇x|fα − f̄α| + E(f) · ∇v|fα − f̄α| ≤ |E(f̄) − E(f)||∇v f̄α|,(1.4)

which yields

d

dt
‖fα(t) − f̄α(t)‖L1 ≤

∫∫
RN×RN

|E(f̄) − E(f)||∇v f̄α| dv dx.(1.5)

In contrast, the time-derivative of D(|fα − f̄α|) based on the left-hand sides of (1.1)
and (1.4) yields good decay terms:

−
∫∫∫

RN×RN×RN

|fα − f̄α|(x, v, t)fα(x, v∗, t) dv∗ dv dx;

however, these terms cannot control the right-hand side of (1.5). In fact these good
terms can be used to control the error terms due to the difference Q(f, f) − Q(f̄ , f̄)
in the L1-stability estimates of the Vlasov–Poisson–Boltzmann system (see [19, 20]
for the related issue of the Boltzmann equation); hence instead of using the nonlinear
functional approach for (1.3), we employ Gronwall-type estimates incorporating (E2)
in Theorem 1.2 (see section 4):

‖f(t) − f̄(t)‖L1 ≤ ‖f0 − f̄0‖L1 + C

∫ t

0

(1 + s)−(N−2)‖f(s) − f̄(s)‖L1 ds.

Since ∫ t

0

(1 + s)−(N−2) < C for N ≥ 4,

we can establish the uniform L1-stability (1.3) for the physical space dimension N ≥ 4.
The main hypotheses (H) employed in this paper are as follows:

(H1) The initial data fα,0 (α = 1, . . . ,M) are twice continuously differentiable:

fα,0 ∈ C2(RN × R
N ).
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(H2) The initial data are small and decay at infinity in the phase space:

M
max
α=1

∑
0≤i,j≤2

sup
x,v

(1 + |x|2)
μ1
2 (1 + |v|2)

μ2
2 |∇i

x∇j
vfα,0(x, v)| ≤ ε0,

where μ1 > N + 2, μ2 > N + 1, and 0 < ε0 	 1.
Our first main result shows that the system (1.1) with N ≥ 3 admits an interaction

potential.
Theorem 1.1. Suppose the main hypotheses (H) with N ≥ 3 hold, and let fα

(1 ≤ α ≤ M) be a smooth solution to (1.1) corresponding to the initial datum fα,0.
Then there exists an interaction potential D(fα) satisfying a Lyapunov estimate:

D(fα(t)) +

∫ t

0

Λ(fα(s)) ds = D(fα,0), t ≥ 0.

Remark 1.1. (1) Following the arguments in [2], the global existence of smooth
C2-solutions satisfying the main estimates (E1)–(E2) can be shown.

(2) For N = 1, we can construct a similar Lyapunov functional under the mono-
tonicity assumption of the electric field (see section 3.1).

Our second main theorem is concerned with the uniform L1-stability.
Theorem 1.2. Suppose the main hypotheses (H) with N ≥ 4 hold, and let fα

and f̄α be smooth solutions to (1.1) corresponding to the initial data fα,0 and f̄α,0,
respectively. Then smooth solutions are uniformly L1-stable with respect to the initial
data:

sup
0≤t<∞

‖f(t) − f̄(t)‖L1 ≤ G‖f0 − f̄0‖L1 ,

where G is a positive constant independent of time t.
The rest of this paper is organized as follows. In section 2, we review basic a

priori estimates for the Vlasov–Poisson system, and in section 3 we construct kinetic
Glimm-type interaction potentials for the one-dimensional (1D) and multidimensional
cases, respectively. In section 4, we study the uniform L1-stability estimate. Finally,
in the appendix, we briefly discuss an interaction potential for the relativistic Vlasov–
Maxwell system with small data.

2. Preliminaries. We briefly review dispersion estimates for the local charge
density, the electric force, and the velocity variation of the density function, and we
study the strict separation property of backward particle trajectories. The details can
be found in [2, 7].

2.1. Time-decay estimate of the electric field. In this part, we review the
dispersion estimates studied in [2]. Consider C2-initial data for the system (1.1)
satisfying

M
max
α=1

∑
0≤i,j≤2

sup
x,v

(1 + |x|2)
μ1
2 (1 + |v|2)

μ2
2 |∇i

x∇j
vfα,0(x, v)| ≤ ε0,

where μ1 > N + 2, μ2 > N + 1, and 0 < ε0 	 1.
Let h ∈ C(R+; (L1 ∩W 1,∞)(RN )) be given, and define a Newtonian potential P

by the representation formula

P(h)(x, t) :=

∫
RN

h(y, t)

|x− y|N−2
dy.(2.1)
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The following lemmas can be found in [2] for N = 3, and their proofs are exactly the
same as those for N > 3; hence we omit its proof.

Lemma 2.1. Suppose that a function h(·, t) ∈ (L1 ∩W 1,∞)(RN ) for all t ∈ R
+.

Then we have

(1) ‖P(h)(t)‖L∞ ≤ C(N)‖h(t)‖
2
N

L1‖h(t)‖
N−2
N

L∞ .

(2) ‖∇xP(h)(t)‖L∞ ≤ C(N)‖h(t)‖
1
N

L1‖h(t)‖
N−1
N

L∞ .

(3) ‖∇2
xP(h)(t)‖L∞ ≤ C(N,κ)‖h(t)‖

κ
κ+N

L1 ‖h(t)‖
N(1−κ)
N+κ

L∞ ‖∇xh(t)‖
Nκ

N+κ

L∞ for κ ∈ (0, 1).
A direct modification of the proof given in [2] for N = 3 and Lemma 2.1 give the

global existence of smooth C2-solutions under the main hypotheses (H).
Theorem 2.2 (see [2]). Suppose the main hypotheses (H) hold. Then the Vlasov–

Poisson system (1.1) has a unique global in time solution such that fα ∈ C1(RN ×
R

N × R+) satisfies the following uniform estimate:

‖f(t)‖L∞(RN×RN ) ≤ ε0, ‖f(t)‖L1(RN×RN ) ≤ Cε0,∥∥∥∫ f(t) dv
∥∥∥
L∞(RN

x )
≤ Cε0

(1 + t)N
.

Moreover, we have for any κ ∈ (0, 1),

max
1≤k≤2

‖∇k
xE(·, t)‖L∞ ≤ Cε0

(1 + t)
N2

N+κ

.

Remark 2.1. The time-decay rate N2

N+κ has a lower bound which is strictly greater
than 2 (see [2]).

e(N,κ) :=
N2

N + κ
≥ N2

N + 1
> 2 for N ≥ 3.(2.2)

The decay estimates of the electric field and the initial data yield the following
estimate. The detailed proof for N = 3 can be found in [2], and it can be directly
applied for the general case N ≥ 4.

Lemma 2.3 (see [2]). Suppose the main hypotheses (H) hold, and let f be the
smooth solution to (1.1). Then we have∥∥∥∫

RN

|∇vf(t)| dv
∥∥∥
L∞(RN

x )
≤ Cε0

(1 + t)N−1
and

∥∥∥∫
RN

|∇vf(t)| dv
∥∥∥
L1(RN

x )
≤ Cε0(1 + t).

The above estimate will be used in the L1-stability analysis in section 4.

2.2. Particle trajectories. In this part, we study the “strict separation prop-
erty” of particle trajectories when an external force decays sufficiently fast in time t.
Consider a Vlasov equation with a sufficiently smooth electric field E:

∂tf + v · ∇xf + E · ∇vf = 0.(2.3)

We define a particle trajectory as the characteristic curve related to (2.3), i.e., for a
fixed point (x, v) ∈ R

N×R
N at time t, the particle trajectory [X(s; t, x, v), V (s; t, x, v)]

passing through (x, v) at time t is defined as the unique solution of the ODE system:

d

ds
X(s; t, x, v) = V (s; t, x, v) and

d

ds
V (s; t, x, v) = E(X(s; t, x, v), s)(2.4)
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with an initial datum

X(t; t, x, v) = x and V (t; t, x, v) = v.

We integrate (2.4) along the particle trajectory to see that Liouville’s principle holds:

f(x, v, t) = f0(X(0; t, x, v), V (0; t, x, v)), t ≥ 0;

therefore, the Lp-norm of f is conserved for every p, 1 ≤ p ≤ ∞,

‖f(t)‖Lp = ‖f0‖Lp , t ≥ 0,

since the mapping (x, v) → (X,V ) is measure preserving.
Note that in the absence of an external field (F ≡ 0), the particle trajectory is

simply a straight line:

X(s; t, x, v) = x− v(t− s) and V (s; t, x, v) = v.

Hence particle trajectories with different initial velocities are well separated in the
sense that

|X(s; t, x, v) −X(s; t, x, w)| = (t− s)|v − w|.

While external forces such as an electromagnetic force act on particles, trajectories
are no longer straight lines; they, nevertheless, behave almost like straight lines as
long as the external force is sufficiently small and decays fast enough in time. The
following lemma shows this strict separation property of particle trajectories.

Lemma 2.4 (see [7]). Suppose the main hypotheses (H) in section 1 hold and
N ≥ 3. Then particle trajectories are strictly separated: for fixed x, v, t, there exists
a positive constant C1 independent of t and s such that

1

C1
|t− s||v − w| ≤ |X(s; t, x, v) −X(s; t, x, w)| ≤ C1|t− s||v − w|, 0 ≤ s ≤ t.

Proof. Let x, v, w, and t be given, and for the simplicity of notation set

X1(s) := X(s; t, x, v), V1(s) := V (s; t, x, v) and

X2(s) := X(s; t, x, w), V2(s) := V (s; t, x, w).

Then it follows from (2.4) that

X1(s) = x−
∫ t

s

V1(τ) dτ and X2(s) = x−
∫ t

s

V2(τ) dτ.

We use the above two equations to find

X1(s) −X2(s) = −
∫ t

s

(V1(τ) − V2(τ)) dτ(2.5)

=

∫ t

s

[ ∫ t

τ

(∂θV1(θ) − ∂θV2(θ)) dθ − (v − w)

]
dτ

=

∫ t

s

∫ t

τ

(E(X1(θ), θ) − E(X2(θ), θ))dθ dτ − (v − w)(t− s).
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We set

A(s) := |X1(s) −X2(s) + (t− s)(v − w)|.

Then (2.5) implies

A(s) ≤
∫ t

s

∫ t

τ

‖∇xE(·, θ)‖L∞ |X2(θ) −X1(θ)| dθ dτ

≤
∫ t

s

∫ t

τ

‖∇xE(·, θ)‖L∞(|X2(θ) −X1(θ) + (t− θ)(v − w)| + (t− θ)|v − w|) dθ dτ

≤ O(ε0)

∫ t

s

∫ t

τ

(
A(θ)

(1 + θ)e(N,κ)
+

(t− θ)|v − w|
(1 + θ)e(N,κ)

)
dθ dτ

≤ O(ε0)

∫ t

s

∫ θ

s

(
A(θ)

(1 + θ)e(N,κ)
+

t− θ

(1 + θ)e(N,κ)
|v − w|

)
dτ dθ

≤ O(ε0)

∫ t

s

(
(θ − s)A(θ)

(1 + θ)e(N,κ)
+

(t− θ)(θ − s)

(1 + θ)e(N,κ)
|v − w|

)
dθ

≤ O(ε0)

(∫ t

s

A(θ)dθ

(1 + θ)e(N,κ)−1
+ (t− s)|v − w|

)
,

where we used Theorem 2.2 and

e(N,κ) > 2, θ − s ≤ θ + 1, and

∫ t

s

(t− θ)(θ − s)

(1 + θ)e(N,κ)
dθ ≤ O(1)|t− s|.

Since

exp

(∫ ∞

0

dθ

(1 + θ)e(N,κ)−1

)
= O(1),

Gronwall’s inequality implies

A(s) ≤ O(ε0)(t− s)|v − w|.

By a triangle inequality, we have

(1 −O(ε0))(t− s)|v − w| ≤ |X1(s) −X2(s)| ≤ (1 + O(ε0))(t− s)|v − w|.

Since ε0 	 1, we obtain the desired result.
Lemma 2.5 (see [18]). Suppose the main hypotheses (H) holds. For any fixed

(x, v, t), let [X(s), V (s)] be the particle trajectory passing through the point (x, v) at
time t. Then we have

|V (s1) − V (s2)| ≤ O(ε0) and ||V (s1)|2 − |V (s2)|2| ≤ O(ε0), 0 ≤ s1, s2 ≤ ∞.

3. Interaction potentials. In this part, we present an interaction potential
measuring possible future crossings of projected particle trajectories in the physical
space. For the one-space-dimensional case N = 1, we consider a plasma consisting of
a single species with a positive charge q = 1; hence the electric field

∂xE(x, t) =

∫
R

f(x, v, t) dv ≥ 0

is monotonic increasing in the space. In contrast, for the multidimensional case N ≥ 3,
we consider a plasma with M species. In the multispecies case, we crucially use the
time-integrable decay of electric force.
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3.1. 1D Vlasov–Poisson system. Consider the planar motion of single species
particles with a positive charge confined inside the self-consistent potential field E :=
∂xφ as in [37, 39]:

∂tf + v∂xf + E∂vf = 0 and ∂xE =

∫
R

fdv.(3.1)

Note that the electric field E(·, t) is nondecreasing in x. In what follows, we con-
sider smooth solutions to (3.1); hence particle trajectories [X(s;x, v, t), V (s;x, v, t)]
associated with a divergence-free vector field (v,E) do not cross in the phase space.
However, their projected trajectories onto the physical space can cross each other,
which explains the occurrence of singularities such as shocks in the corresponding
macroscopic Euler–Poisson system. For a repulsive external force, particles tend to
repel each other; so it is feasible to expect that the number of future crossings of
projected trajectories will be nonincreasing in time. In the following, we measure
this dispersive phenomenon via an interaction potential. Throughout the paper, we
suppress t-dependence in f , i.e.,

f(x, v) := f(x, v, t).

3.1.1. Construction of an interaction potential. Note that f(x, v)f(y, v∗)
satisfies the Vlasov equation on the two-point particle phase space R

4:

(3.2)

∂t(f(x, v)f(y, v∗)) + ∇(x,y) · (vf(x, v)f(y, v∗), v∗f(x, v)f(y, v∗))

+ ∇(v,v∗) · (E(x, t)f(x, v)f(y, v∗), E(y, t)f(x, v)f(y, v∗)) = 0.

Define an interaction potential D1(f) and its production Λ1(f) as follows:

D1(f(t)) :=

∫∫∫∫
︸ ︷︷ ︸
x<y,v>v∗

f(x, v)f(y, v∗) dv∗ dv dy dx,(3.3)

Λ1(f(t)) :=

∫∫∫
R3

|v − v∗|f(x, v)f(x, v∗) dv∗ dv dx

+

∫∫∫
R3

|E(y, t) − E(x, t)|f(x, v)f(y, v) dv dy dx.

For each t ∈ (0,∞), D1(f(t)) is a priori bounded by the square of the total mass:

D1(f(t)) ≤ ‖f0‖2
L1 .

3.1.2. Time-decay estimate. In this part, we study the time-decay of the
interaction potential.

Proposition 3.1. Let f be a smooth C1-solution with an initial datum f0 with
a finite mass, and f decays at infinity in the phase space. Then the functional D1(f)
satisfies a time-decay estimate

D1(f(t)) +
1

2

∫ t

0

Λ1(f(s)) ds = D1(f0), t ≥ 0.

Proof. It follows from (3.2) that

∂t[f(x, v)f(y, v∗)] = −∇(x,y) · [vf(x, v)f(y, v∗), v∗f(x, v)f(y, v∗)](3.4)

−∇(v,v∗) · [E(x, t)f(x, v)f(y, v∗), E(y, t)f(x, v)f(y, v∗)].
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We integrate (3.4) and use the Fubini theorem to get

d

dt
D1(f(t)) = −

∫∫∫∫
v>v∗,x<y

∇(x,y) · [vf(x, v)f(y, v∗), v∗f(x, v)f(y, v∗)] dv∗ dv dy dx

−
∫∫∫∫

x<y,v>v∗

∇(v,v∗) · [E(x, t)f(x, v)f(y, v∗), E(y, t)f(x, v)f(y, v∗)] dv∗ dv dy dx

= I1 + I2.

We first estimate I1. The Fubini and Green theorems yield

I1 = −
∫∫∫∫

v>v∗,x<y

[∂x(vf(x, v)f(y, v∗)) + ∂y(v∗f(x, v)f(y, v∗))] dy dx dv dv∗

= −
∫∫

v>v∗

∫
R

|v − v∗|f(x, v)f(x, v∗) dx dv∗ dv

= −1

2

∫∫∫
R3

|v − v∗|f(x, v)f(y, v∗) dv∗ dv dx.

Similarly, we have

I2 = −1

2

∫∫∫
R3

|E(y, t) − E(x, t)|f(x, v)f(y, v) dv dy dx,

where we used the fact that the electric field E(·, t) is nonincreasing: for each t,

E(x, t) ≤ E(y, t) if x ≤ y.

We finally combine the above two estimates:

dD1(f(t))

dt
+

1

2
Λ1(f(t)) = 0.

This implies

D1(f(t)) +
1

2

∫ t

0

Λ1(f(s)) ds = D1(f0).

Remark 3.1. The above lemma holds for the general 1D Vlasov equation with a
smooth monotone increasing force field F (·, t):

∂tf + v∂xf + F∂vf = 0 and ∂xF ≥ 0.

3.2. Multidimensional Vlasov–Poisson system. In this part, we consider
the multidimensional Vlasov–Poisson system with N ≥ 3. Compared to the 1D case
in the previous section, we consider a collisionless plasma consisting of M distinct
species. The main difficulty in the multidimensional case is that it is not easy to
identify the region of two-point particle phase spaces where interactions occur. Hence
we need to devise a more sophisticated functional which takes into account all possible
interaction pairs. For this, we will see that the time-integrability of the electric field
does play a key role in the following analysis.
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3.2.1. Construction of an interaction functional. Let t ≥ 0 be given, and
let (x, v) be the phase space position of a given test particle at time s = 0. We denote
[X̂(s), V̂ (s)] by the trajectory of a test particle,

X̂(0) = x and V̂ (0) = v,

and set its terminal velocity v∞ by

v∞(x, v) ≡ v +

∫ ∞

0

E(X̂(s), s) ds.

Then v∞(x, v) is well defined, since the electric field E has an integrable time-decay.

s = 0

s = t 

s = t + 

x

xx v v
v

(( ) ), ,

τ τ
τ

τ τ

(X(t +  ), V(t+  ))

(X(t),V(t))(X(t,  ), V(t,  ))

(X(t+  ) , v )*
τ

^ ^

^ ^

~ ~

^

Fig. 3.1. Schematic diagram of X(t, τ) and V (t, τ) in the phase space.

Let t, τ ≥ 0 be given, and for v∗ �∈ {V̂ (t + τ), v∞(x, v)}, we set (see Figure 3.1)

X(t, τ) := X(t; t + τ, X̂(t + τ), v∗), V (t, τ) := V (t; t + τ, X̂(t + τ), v∗),(3.5)

x̃ := X(0; t + τ, X̂(t + τ), v∗), ṽ := V (0; t + τ, X̂(t + τ), v∗).

The invariance of fα along the trajectory gives

fα(X(t, τ), V (t, τ), t) = fα,0(x̃, ṽ),

and we have

X(t, τ) = X̂(t + τ) − τv∗

+

∫ t+τ

t

∫ t+τ

θ2

E(X(θ1; t + τ, X̂(t + τ), v∗), θ1) dθ1 dθ2,(3.6)

V (t, τ) = v∗ −
∫ t+τ

t

E(X(θ1; t + τ, X̂(t + τ), v∗), θ1) dθ1.(3.7)
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Define an interaction potential and its production functional: for α ∈ {1, . . . ,M},

D(fα(t)) :=

∫∫
RN×RN

fα(X̂(t), V̂ (t), t)

×
[ ∫ ∞

0

∫
RN

fα(X(t, τ), V (t, τ), t)dv∗dτ

]
dv dx,(3.8)

Λ(fα(t)) :=

∫∫∫
RN×RN×RN

fα(x, v, t)fα(x, v∗, t) dv∗ dv dx.

Here we used the simplified notation

X̂(t) := X(t; 0, x, v), V̂ (t) := V (t; 0, x, v).

In order to show that D(fα(t)) is well defined, i.e., bounded for each t, we need to
estimate the quantity inside the bracket of (3.8). For notational simplicity, we denote
it by Ifα(x, v, t):

Ifα(x, v, t) :=

∫ ∞

0

∫
R3

fα(X(t, τ), V (t, τ), t) dv∗ dτ.

Lemma 3.2. Suppose the main hypotheses (H) in section 1 hold. Then Ifα(x, v, t)
is finite for a.e. (x, v, t). Moreover, we have the following estimate: for any fixed
x ∈ R

N ,

M
max
α=1

sup
v,t

Ifα(x, v, t) ≤ O(ε0)(|x| + 1)2.

Proof. Let (x, v, t) ∈ R
N × R

N × R+ be given. Since fα is invariant along the
trajectory, it is easy to see that Ifα(x, v, t) is nonincreasing with respect to t; hence it
suffices to estimate Ifα(x, v, 0). Let α ∈ {1, . . . ,M} be fixed and let A be a positive
number to be chosen later. We decompose Ifα(x, v, 0) into three parts,

Ifα(x, v, 0) =

∫ A+1

0

∫
R3

fα,0(X(0, τ), V (0, τ)) dv∗ dτ

+

∫ ∞

A+1

∫
|v∗−V̂ (τ)|≤ 1√

τ

fα,0(X(0, τ), V (0, τ)) dv∗ dτ

+

∫ ∞

A+1

∫
|v∗−V̂ (τ)|> 1√

τ

fα,0(X(0, τ), V (0, τ)) dv∗ dτ

:= I1
fα(x, v, 0) + I2

fα(x, v, 0) + I3
fα(x, v, 0),

where we used the simplified notation (3.5) with t = 0:

X(0, τ) := X(0; τ, X̂(τ), v∗), V (0, τ) := V (0; τ, X̂(τ), v∗).

Case 1: I1
fα

(x, v, 0). By (H2) and Lemma 2.5,

I1
fα(x, v, 0) ≤ ε0

∫ A+1

0

∫
RN

1

(1 + |X(0, τ)|2)
μ1
2 (1 + |V (0, τ)|2)

μ2
2

dv∗ dτ

≤ ε0

∫ A+1

0

∫
RN

1

(1 + |X(0, τ)|2)
μ1
2 (1 + |v∗|2 + O(ε0))

μ2
2

dv∗ dτ

≤ O(ε0)(A + 1),
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where we used Lemma 2.5 to get∫
RN

1

(1 + |V (0, τ)|2)
μ2
2

dv∗ =

∫
RN

1

(1 + |v∗|2 + O(ε0))
μ2
2

dv∗ = O(1).(3.9)

Case 2: I2
fα

(x, v, 0). Similarly to Case 1, we have

I2
fα(x, v, 0) ≤ ε0

∫ ∞

A+1

∫
|v∗−V̂ (τ)|≤ 1√

τ

1

(1 + |X(0, τ)|2)
μ1
2 (1 + |V (0, τ)|2)

μ2
2

dv∗ dτ

≤ O(ε0)

∫ ∞

A+1

τ−
N
2 dτ

= O(ε0)(A + 1)−
N−2

2 .

Case 3: I3
fα

(x, v, 0). For v∗ satisfying |v∗ − V̂ (τ)| > 1√
τ
, we have

|X(0, τ) − x| ≥
√
τ

C1
by Lemma 2.4.

This yields

|X(0, τ)| ≥
√
τ

C1
− |x| ≥ 0 for τ ≥ C2

1 |x|2.

We now set

A := C2
1 |x|2.

I3
fα(x, v, 0) ≤ ε0

∫ ∞

C2
1 |x|2+1

∫
|v∗−V̂ (τ)|> 1√

τ

1

(1+(
√
τ/C1−|x|)2)

μ1
2 (1+ |V (0, τ)|2)

μ2
2

dv∗ dτ

≤ O(ε0)

∫ ∞

C2
1 |x|2+1

1

(1 +
√
τ/C1 − |x|)μ1

∫
RN

1

(1 + |V (0, τ)|2)
μ1
2

dv∗ dτ

≤ O(ε0)

∫ ∞

C2
1 |x|2+1

1

(1 +
√
τ/C1 − |x|)μ1

dτ by (3.9).(3.10)

In (3.10), we have

∫ ∞

C2
1 |x|2+1

1

(1 +
√
τ/C1 − |x|)μ1

dτ ≤ 2C2
1

∫ ∞

0

ξ + |x|
(1 + ξ)μ1

dξ, where ξ :=
√
τ/C1 − |x|

= O(1)(1 + |x|).

Finally we combine all cases to see

Ifα(x, v, 0) ≤ O(ε0)
(
|x|2 + (|x|2 + 1)−

(N−2)
2 + |x| + 1

)
= O(ε0)(|x| + 1)2.

Remark 3.2. The above lemma implies a priori boundedness of D(fα):

D(fα(t)) ≤ O(ε2
0) for t ≥ 0.
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3.2.2. Time-decay estimate. In this part we study the time-evolution of the
functional D(fα) along smooth solutions to (1.1). We first estimate the difference
between ∂t and ∂τ derivatives of X(t, τ) and V (t, τ), respectively.

Lemma 3.3. For any fixed (x, v, t) ∈ R
N × R

N × R+ and α, let [X(t, τ), V (t, τ)]
be given by (3.6) and (3.7). Then we have

∂tX(t, τ) − ∂τX(t, τ) = V (t, τ) and ∂tV (t, τ) − ∂τV (t, τ) = E(X(t, τ), t).

Proof. Recall that

X(t, τ) = X̂(t + τ) − τv∗ +

∫ t+τ

t

∫ t+τ

θ2

E(X(θ1; t + τ, X̂(t + τ), v∗), θ1) dθ1 dθ2.

We take ∂t and ∂τ to the above identity to get

• ∂tX(t, τ) = V̂ (t + τ) + τE(X̂(t + τ), t + τ) −
∫ t+τ

t

E(X(θ1; t + τ, X̂(t + τ), v∗), θ1) dθ1,

+

∫ t+τ

t

∫ t+τ

θ2

∂t(E(X(θ1; t + τ, X̂(t + τ), v∗), θ1)) dθ1 dθ2,

• ∂τX(t, τ) = V̂ (t + τ) − v∗ + τE(X̂(t + τ), t + τ)

+

∫ t+τ

t

∫ t+τ

θ2

∂τ (E(X(θ1; t + τ, X̂(t + τ), v∗), θ1)) dθ1 dθ2

= V̂ (t + τ) −
(
V (t, τ) +

∫ t+τ

t

E(X(θ1; t + τ, X̂(t + τ), v∗), θ1) dθ1

)

+ τE(X̂(t + τ), t+τ)+

∫ t+τ

t

∫ t+ τ

θ2

∂τ (E(X(θ1; t+τ, X̂(t+τ), v∗), θ1))dθ1dθ2.

Note that

∂t(E(X(θ1; t + τ, X̂(t + τ), v∗), θ1)) = ∂τ (E(X(θ1; t + τ, X̂(t + τ), v∗), θ1))

to get

∂tX(t, τ) − V (t, τ) = ∂τX(t, τ).

Again we use the relation

V (t, τ) = v∗ −
∫ t+τ

t

E(X(θ1; t + τ, X̂(t + τ), v∗), θ1) dθ1

to find

• ∂tV (t, τ) = E(X(t, τ), t) − E(X̂(t + τ), t + τ)

−
∫ t+τ

t

∂t(E(X(θ1; t + τ, X̂(t + τ), v∗), θ1)) dθ1,

• ∂τV (t, τ) = −E(X̂(t + τ), t + τ)

−
∫ t+τ

t

∂t(E(X(θ1; t + τ, X̂(t + τ), v∗), θ1)) dθ1.
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The above relations yield

∂tV (t, τ) = ∂τV (t, τ) + E(X(t, τ), t).

Lemma 3.4. For any (x, v, t) ∈ R
N × R

N × R+ and α ∈ {1, . . . ,M}, let
[X̂(t), V̂ (t)] be the trajectory of a test particle. Then we have

∂t(fα(X̂(t), V̂ (t), t)fα(X(t, τ), V (t, τ), t))

= ∂τ (fα(X̂(t), V̂ (t), t)fα(X(t, τ), V (t, τ), t)).

Proof. By direct calculation, we have

∂t(fα(X̂(t), V̂ (t), t)fα(X(t, τ), V (t, τ), t))

= fα(X̂(t), V̂ (t), t)(∂tfα + ∇yfα · ∂tX(t, τ) + ∇v∗fα · ∂tV (t, τ))

= fα(X̂(t), V̂ (t), t)[∂tfα + ∇yfα · (V (t, τ) + ∂tX(t, τ) − V (t, τ))

+∇v∗fα · (E(X(t, τ), t) + ∂tV (t, τ) − E(X(t, τ), t))]

= fα(X̂(t), V̂ (t), t)[∇yfα · ∂τX(t, τ) + ∇v∗fα · ∂τV (t, τ)]

= fα(X̂(t), V̂ (t), t)∂τ (fα(X(t, τ), V (t, τ), t))

= ∂τ (fα(X̂(t), V̂ (t), t)fα(X(t, τ), V (t, τ), t)),

where ∇yfα and ∇v∗fα are evaluated at (X(t, τ), V (t, τ), t), and we used

d

dt
fα(X̂(t), V̂ (t), t) = 0.

Finally, the above lemma yields the time-decay of D(fα(t)) as follows.
Proof of Theorem 1.1. Let t ≥ 0 be given. Then by definition of D(fα)

d

dt
D(fα(t)) =

∫∫
RN×RN

∫ ∞

0

∫
RN

∂t(fα(X̂(t), V̂ (t), t)fα(X(t, τ), V (t, τ), t)) dv∗ dτ dv dx

=

∫∫
RN×RN

∫ ∞

0

∫
RN

∂τ (fα(X̂(t), V̂ (t), t)fα(X(t, τ), V (t, τ), t)) dv∗ dτ dv dx

=

∫∫
RN×RN

∫ ∞

0

∂τ

(∫
RN

fα(X̂(t), V̂ (t), t)fα(X(t, τ), V (t, τ), t) dv∗

)
dτ dv dx

=

∫∫
RN×RN

fα(X̂(t), V̂ (t), t)

(
lim
τ→∞

∫
RN

fα(X(t, τ), V (t, τ), t) dv∗

)
dv dx

−
∫∫∫

RN×RN×RN

fα(X̂(t), V̂ (t), t)fα(X̂(t), v∗, t) dv∗ dv dx

= J1 + J2.

Case 1: (J2). We use the Liouville property dxdv = dX̂(t) dV̂ (t) to get

J2 = −
∫∫∫

RN×RN×RN

fα(x, v, t)fα(x, v∗, t) dv∗ dv dx.
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Case 2: (J1). We split the integral J1 into two parts:

J1 =

∫∫
RN×RN

fα(X̂(t), V̂ (t), t)

(
lim
τ→∞

∫
RN

fα(X(t, τ), V (t, τ), t) dv∗

)
dv dx

=

∫∫
RN×RN

fα(X̂(t), V̂ (t), t) lim
τ→∞

(∫
|v∗−V̂ (t+τ)|≤ 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗

+

∫
|v∗−V̂ (t+τ)|> 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗

)
dv dx.

We claim

lim
τ→∞

(∫
|v∗−V̂ (t+τ)|≤ 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗

+

∫
|v∗−V̂ (t+τ)|> 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗

)
= 0.

Proof of claim. We repeat the argument used in the proof of Lemma 3.2. Let τ0
be a positive number to be chosen later and consider τ ≥ max{τ0, C2

1 |x|2}. For v∗
such that |v∗ − V̂ (t + τ)| ≤ 1√

τ
, we use the fact

fα(X(t, τ), V (t, τ), t) = fα,0(x̃, ṽ) ≤
ε0

(1 + |x̃|2)
μ1
2 (1 + |ṽ|2)

μ2
2

to get

∫
|v∗−V̂ (t+τ)|≤ 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗=

∫
|v∗−V̂ (t+τ)|≤ 1√

τ

fα,0(x̃, ṽ) dv∗≤O(ε0)τ
−N

2 .

(3.11)

On the other hand, for v∗ such that |v∗ − V̂ (t + τ)| ≥ 1√
τ
, we use Lemma 2.4 to find

√
τ

C1
≤ t + τ

C1
|v∗ − V̂ (t + τ)| ≤ |x− x̃|,

from which we have

1 + |x̃|2 ≥ 1 + (|x− x̃| − |x|)2 ≥ 1 +
(√τ

C1
− |x|

)2

since |x| ≤
√
τ

C1
.

Hence if

√
τ ≥ 2C1|x| + C2

1 +
√

4C3
1 |x| + C4

1

2
:=

√
τ0(x),

we have

(√τ

C1
− |x|

)2

≥
√
τ or

1

(1 + (
√
τ/C1 − |x|)2)

μ1
2

≤ 1

(1 +
√
τ)

μ1
2

.(3.12)
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Then the second integral in the claim can be estimated as follows: for τ ≥ τ0(x),∫
|v∗−V̂ (t+τ)|> 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗(3.13)

=

∫
|v∗−V̂ (t+τ)|> 1√

τ

fα,0(x̃, ṽ) dv∗

≤ ε0

∫
|v∗−V̂ (t+τ)|> 1√

τ

1

(1 + |x̃|2)
μ1
2 (1 + |ṽ|2)

μ2
2

dv∗

≤ O(ε0)

∫
|v∗−V̂ (t+τ)|> 1√

τ

1

(1 + (
√
τ/C1 − |x|)2)

μ1
2 (1 + |v∗|2 + O(ε0))

μ2
2

dv∗

≤ O(ε0)

(1 +
√
τ)

μ1
2

∫
RN

1

(1 + |v∗|2 + O(ε0))
μ2
2

dv∗ by (3.12)

=
O(ε0)

(1 +
√
τ)

μ1
2

.

We combine (3.11) and (3.13) to get

lim
τ→∞

(∫
|v∗−V̂ (t+τ)|≤ 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗

+

∫
|v∗−V̂ (t+τ)|> 1√

τ

fα(X(t, τ), V (t, τ), t) dv∗

)
= lim

τ→∞

(
τ−

N
2 + τ−

μ1
4

)
= 0,

which yields

J1 = 0.

Finally we combine Cases 1 and 2 to conclude

d

dt
D(fα(t)) = −Λ(fα(t)).

Remark 3.3. The functional D(fα(t)) is also a Lyapunov functional for the
relativistic Vlasov–Maxwell system for sufficiently small and smooth decaying solutions
given in [7] (see the appendix).

4. Uniform L1-stability. In this section, we study uniform L1-stability for
smooth solutions to (1.1). Unlike the case of the Boltzmann equation in [6, 19, 20],
the nonlinear functional approach based on the interaction potential D(fα) seems very
difficult to apply to the Vlasov–Poisson system. For large physical dimensions N ≥ 4,
instead, the direct L1-stability estimate based on the Gronwall-type inequality can be
used; we first need to estimate an integral

Kα(x, t) :=

∫
RN

1

|x− y|N−1

(∫
RN

|∇vfα|(y, v, t) dv
)
dy.

Lemma 4.1. Suppose the main hypothesis (H) in section 1 holds, and N ≥ 4.
Let f and f̄ be two smooth solutions corresponding to the initial data f0 and f̄0,
respectively. Then we have

M∑
α=1

‖Kα(·, t)‖L∞(RN
x ) ≤ CM(1 + t)−(N−2).
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Proof. Let α ∈ {1, . . . ,M} be given and recall Lemma 2.3:

∥∥∥∫
RN

|∇vfα(x, v, t)| dv
∥∥∥
L∞(RN

x )
≤ O(1)(1 + t)−(N−1),(4.1)

∥∥∥∫
RN

|∇vfα(x, v, t)| dv
∥∥∥
L1(RN

x )
≤ O(1)(1 + t).(4.2)

Let r be a positive constant to be determined later. Then we split Kα(x, t) into two
parts:

Kα(x, t) =

∫
|y−x|≤r

1

|x− y|N−1

(∫
RN

|∇vfα(y, v, t)| dv
)
dy(4.3)

+

∫
|y−x|>r

1

|x− y|N−1

(∫
RN

|∇vfα(y, v, t)| dv
)
dy

≤ d(N)r
∥∥∥∫

RN

|∇vfα(x, v, t)| dv
∥∥∥
L∞(RN

x )

+
∥∥∥∫

RN

|∇vfα(x, v, t)| dv
∥∥∥
L1(RN

x )

1

rN−1
,

where d(N) is a positive constant depending only on N . In order to minimize the
right-hand side of (4.3), we choose r such that

∥∥∥∫
RN

|∇vfα| dv
∥∥∥
L∞(RN

x )
d(N)r =

∥∥∥∫
RN

|∇vfα| dv
∥∥∥
L1(RN

x )

1

rN−1
,

i.e.,

r =

⎛
⎜⎝

∥∥∥ ∫
RN |∇vfα| dv

∥∥∥
L1(RN

x )∥∥∥ ∫
RN |∇vfα| dv

∥∥∥
L∞(RN

x )
d(N)

⎞
⎟⎠

1
N

.

Hence for such r, we have

Kα(x, t) ≤ 2d(N)
N−1
N

∥∥∥∫
RN

|∇vfα| dv
∥∥∥1− 1

N

L∞(RN
x )

∥∥∥∫
RN

|∇vfα| dv
∥∥∥ 1

N

L1(RN
x )

≤ O(1)(1 + t)−(N−2).

We take a supremum over x and add all α to get the desired result.
Remark 4.1. Note that

∑M
α=1 ‖Kα(·, t)‖L∞(RN

x ) is integrable in t for N ≥ 4.
Based on the above estimate, we obtain the uniform L1-stability estimate.
Proof of Theorem 1.2. Let fα and f̄α be smooth solutions of (1.1) corresponding

to the initial data fα,0 and f̄α,0, respectively:

∂tfα + v · ∇xfα + E(f) · ∇vfα = 0,(4.4)

∂tf̄α + v · ∇xf̄α + E(f̄) · ∇v f̄α = 0.(4.5)

We subtract (4.5) from (4.4) to get

∂t(fα − f̄α) + v · ∇x(fα − f̄α) + E(f) · ∇v(fα − f̄α) = (E(f̄) − E(f)) · ∇v f̄α.(4.6)
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Let (x, v, t) ∈ R
N × R

N × R+ be fixed and let (X(s), V (s)) be the trajectories of
particles for fα passing through the point (x, v) at time t, i.e.,

X(t) = x and V (t) = v.

We integrate (4.6) along the trajectory (X(s), V (s)) to get

(fα − f̄α)(x, v, t) = (fα,0 − f̄α,0)(X(0), V (0))

+

∫ t

0

(E(f̄) − E(f))(X(s), s) · ∇v f̄α(X(s), V (s), s) ds.(4.7)

If we take an absolute for (4.7) and integrate it over the whole phase space, then we
obtain

(4.8)

‖fα(t) − f̄α(t)‖L1 ≤ ‖fα,0 − f̄α,0‖L1

+

∫ t

0

∫∫
RN×RN

|(E(f̄) − E(f))(X(s), s)||∇v f̄α(X(s), V (s), s)| dv dx ds

≤ ‖fα,0 − f̄α,0‖L1 + C

∫ t

0

∫
RN

|ρ(y, s) − ρ̄(y, s)|

×
[ ∫

RN

dX(s)

|X(s) − y|N−1

(∫
RN

|∇v f̄α(X(s), V (s), t)dV (s)

)]
dy ds ≤ ‖fα,0 − f̄α,0‖L1

+C

∫ t

0

∫∫
RN×RN

Kα(y, s)
( M∑

α=1

|fα(y, v∗, s) − f̄α(y, v∗, s)|
)
dv∗ dy ds

= ‖fα,0 − f̄α,0‖L1 + C

∫ t

0

‖Kα(·, s)‖L∞

M∑
α=1

‖fα(s) − f̄α(s)‖L1ds,

where Lemma 4.1 and the Liouville principle dx dv = dX(s)dV (s) were employed to
get ∫∫

RN×RN

1

|X(s) − y|N−1
|∇v f̄α(X(s), V (s), t)| dX(s) dV (s)

=

∫∫
RN×RN

1

|x− y|N−1
|∇v f̄α(x, v, t)| dx dv.

We now add (4.8) over all α to get

‖f(t) − f̄(t)‖L1 ≤ ‖f0 − f̄0‖L1 + C

∫ t

0

( M∑
α=1

‖Kα(·, s)‖L∞

)
‖f(s) − f̄(s)‖L1ds

≤ ‖f0 − f̄0‖L1 + CM

∫ t

0

(1 + s)−(N−2)‖f(s) − f̄(s)‖L1ds.

Hence Gronwall’s inequality yields

‖f(t) − f̄(t)‖L1 ≤ ‖f0 − f̄0‖L1 exp
(
CM

∫ t

0

(1 + s)−(N−2)ds
)

= G‖f0 − f̄0‖L1 ,(4.9)
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where

G := exp

(
CM

∫ ∞

0

(1 + s)−(N−2)ds

)
< ∞ for N ≥ 4.

Appendix. Relativistic Vlasov–Maxwell system. In this appendix we
briefly discuss the interaction potential D(f) for the relativistic Vlasov–Maxwell sys-
tem. For details on the global existence, we refer the reader to [5, 8, 9, 10, 11, 13, 14,
15, 16, 26]. Since the number of species is irrelevant in the following analysis, without
loss of generality, we assume that a plasma consists of single species, i.e., M = 1;
moreover, we also assume the phase space is R

3 × R
3.

Consider a plasma consisting of ions confined to the whole phase space R
3 ×

R
3 under the self-consistent electromagnetic force. We denote a one-point particle

distribution function by f , and the electric field and magnetic field are denoted by E
and B, respectively. The total charge ρ and the current j are defined as

ρ = 4π

∫
R3

fdv and j = 4π

∫
R3

v̂fdv,

where the relativistic velocity is

v̂ =
v√

1 + |v|2

if the speed of light c and the particle mass are taken to be 1. In this case, the
relativistic Vlasov–Maxwell system reads⎧⎪⎨

⎪⎩
∂tf + v̂ · ∇xf + (E + v̂ ×B) · ∇vf = 0 in R

3 × R
3 × R+,

∂tE = ∇×B − j, ∇ · E = ρ,

∂tB = −∇× E, ∇ ·B = 0,

(A.1)

subject to the initial data

f(x, v, 0) = f0(x, v) and (E,B)(x, 0) = (E0, B0)(x) (x, v) ∈ R
3 × R

3

satisfying constraint conditions

∇ · E0 = ρ0 and ∇ ·B0 = 0.

The smooth global solution is known to exist under the small data assumption.
Theorem A.1 (see [7, 16]). Let f0 be a nonnegative C1 function with supports in

|x| ≤ k, |v| ≤ k and let E0, B0 be C2 functions with supports in |x| ≤ k. If the initial
data satisfy the smallness assumption

‖f0‖C1 + ‖E‖C2 + ‖B‖C2 ≤ ε0 	 1,

then there exists a unique C1-global solution: for (x, t) ∈ R
3 × R+,

f(t, x, v) = 0 for |v| ≥ β and |E(t, x)| + |B(t, x)| ≤ ε0

(1 + t)(t− |x| + 2k)
.(A.2)

Remark A.1. The compact support assumption |v| ≤ k on the initial data can
be relaxed to include the Gaussian-type initial data [32].
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In what follows, we consider smooth solutions. For a given point (x, v) ∈ R
3×R

3,
the particle path [X̄(s), V̄ (s)] is defined as the solution of the following ODE system:

dX̄(s)

ds
= ˆ̄V (s) and

dV̄ (s)

ds
= E(X̄(s), s) + ˆ̄V ×B,(A.3)

with the initial data

X̄(0) = x and V̄ (0) = v,

where

ˆ̄V =
V̄√

1 + |V̄ |2
.

Since ∇(X,V ) · (V̂ , E + V̂ × B) = 0, the mapping (x, v) −→ (X̄(s), V̄ (s)) is measure
preserving. As in section 3.2 we define [X(t, τ), V (t, τ)] by

X(t, τ) := X(t; t + τ, X̄(t + τ), v∗) and

V (t, τ) := V (t; t + τ, X̄(t + τ), v∗),

from which we have

X(t, τ) := X̄(t + τ) −
∫ t+τ

t

V̂ (θ; t + τ, X̄(t + τ), v∗) dθ,(A.4)

V (t, τ) := v∗ −
∫ t+τ

t

E(X(θ; t + τ, X̄(t + τ), v∗), θ)(A.5)

+ V̂ (θ; t + τ, X̄(t + τ), v∗) ×B(X(θ; t + τ, X̄(t + τ), v∗), θ) dθ.

The following lemma can easily be computed.

Lemma A.2. Let [X(t, τ), V (t, τ)] be the curve parameterized by τ and given by
(A.4) and (A.5). Then the following estimates hold:

(1) ∂tX(t, τ) − ∂τX(t, τ) = V̂ (t, τ),
(2) ∂tV (t, τ) − ∂τV (t, τ) = E(X(t, τ), t) + V̂ (t, τ) ×B(X(t, τ), t).

We also define D(f(t)) and Λ(f(t)) by

D(f(t)) :=

∫∫
R3×R3

f(X̄(t), V̄ (t), t)

(∫ ∞

0

∫
R3

f(X(t, τ), V (t, τ), t) dτ dv∗

)
dv dx,

Λ(f(t)) :=

∫∫∫
R3×R3×R3

f(x, v, t)f(x, v∗, t) dv∗ dv dx.

Below we state two lemmas whose proofs can be found in [7].

Lemma A.3. If 0 ≤ s ≤ t and f(t, x, v) �= 0, then

s− |X(s; t, x, v)| + 2k ≥ (k + s)(2 + 2P 2(t))−1,

where the function P (t) is bounded by a constant β.
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Lemma A.4. If ε0 is sufficiently small, there is a constant c > 0 such that

|X(0; t, x, v) −X(0; t, x, w)| ≥ ct|v − w|.

For us to follow the steps in section 3.2, it is enough to prove Lemma 2.5 for the
relativistic Vlasov–Maxwell system or to verify directly (3.9):∫

R3

1

(1 + |V (0, τ)|2)
μ2
2

dv∗ = O(1).

Below for the simplicity of notation, we denote X(s; τ, X̄(τ), v∗), V (s; τ, X̄(τ), v∗)
by X(s, τ), V (s, τ), respectively. Note that X(s, τ), V (s, τ) here are not the same as
X(s, τ), V (s, τ) defined in (3.5). It follows from (A.2) and Lemma A.3 that∣∣∣∣

∫ τ

0

E(X(s, τ), θ) + V̂ (s, τ) ×B(X(s, τ), θ) dθ

∣∣∣∣
≤ ε0

∫ τ

0

1

(s + 1)(s− |X(s, τ)| + 2k)
ds

≤ ε0

∫ τ

0

2 + 2P 2(s)

(s + 1)(k + s)
ds

≤ C̄1ε0 for some positive constant C̄1(A.6)

and that∫
R3

1

(1 + |V (0, τ)|2)
μ2
2

dv∗

=

∫
R3

1(
1 +

∣∣v∗ − ∫ τ

0
E(X(s, τ), s) + V̂ (s, τ) ×B(X(s, τ), s)ds

∣∣2)μ2
2

dv∗

≤
∫
|v∗|≤2C̄1ε0

1(
1 +

∣∣|v∗| − |
∫ τ

0
E(X(s, τ), s) − V̂ (s, τ) ×B(X(s, τ), s)ds|

∣∣2)μ2
2

dv∗

+

∫
|v∗|≥2C̄1ε0

1(
1 +

∣∣|v∗| − |
∫ τ

0
E(X(s, τ), s) − V̂ (s, τ) ×B(X(s, τ), s)ds|

∣∣2)μ2
2

dv∗

≤ O(ε0) +

∫
|v∗|≥2C̄1ε0

1

(1 + 1
2 |v∗|2)

μ2
2

dv∗

≤ O(1).

We obtain the time decay estimates of the interaction potential.
Proposition A.5. Let f be a smooth solution to (A.1). Then if ε0 is sufficiently

small, D(f) satisfies

dD(f(t))

dt
+ Λ(f(t)) = 0.

Acknowledgment. The second author thanks Prof. Tai-Ping Liu for his hospi-
tality and support.
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COARSENING RATES IN OFF-CRITICAL MIXTURES∗

SERGIO CONTI† , BARBARA NIETHAMMER‡ , AND FELIX OTTO§

Abstract. We study coarsening of a binary mixture within the Mullins–Sekerka evolution in
the regime where one phase has small volume fraction φ � 1. Heuristic arguments suggest that
the energy density, which represents the inverse of a typical length scale, decreases as φt−1/3 as
t → ∞. We prove rigorously a corresponding weak lower bound. Moreover, we establish a stronger
result for the two-dimensional case, where we find a lower bound of the form φ(lnφ−1)1/3t−1/3. Our
approach follows closely the analysis in [R. V. Kohn and F. Otto, Comm. Math. Phys., 229 (2002),
pp. 375–395], which exploits the relation between two suitable length scales. Our main contribution
is an isoperimetric inequality in the two-dimensional case.

Key words. Mullins–Sekerka evolution, coarsening rates, isoperimetric inequalities
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1. Introduction. The Mullins–Sekerka model describes the late stage coarsen-
ing in the phase separation of a binary mixture. In this model the interface between
two phases is characterized by the boundary ∂Ω of a region Ω ⊂ Q ⊂ R

n, where Ω
denotes the region covered by one phase. The Mullins–Sekerka model is based on
the assumption that the diffusion field, given by the negative gradient −∇u of the
chemical potential u, is in quasi-stationary equilibrium given the phase distribution
and satisfies the Gibbs–Thomson condition of local equilibrium on the interface. That
is, u satisfies

−Δu = 0 in Q\∂Ω,(1.1)

u = κ on ∂Ω,(1.2)

where κ denotes the mean curvature of the interface and is defined to be positive if
Ω is a ball. Then the normal velocity v of the interface is given by the jump of the
normal component of the diffusion field across the interface, that is,

v = [∇u · �n] := lim
x∈Q\Ω

x→∂Ω

∇u(x) · �n− lim
x∈Ω

x→∂Ω

∇u(x) · �n on ∂Ω,(1.3)

where �n denotes the outer normal to Ω. With periodic or Neumann boundary con-
ditions the evolution (1.1)–(1.3) reduces the total surface area and keeps the volume
fraction covered by each phase constant. In the following we consider a periodic set-
ting with period cell Q = [0, l)n, where l is the system size. This is not a significant
restriction, since our results will be independent of the size l.
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Equations (1.1)–(1.3) do not in general possess a global smooth solution since
the geometry might become singular—for example, when two previously separated
regions touch or when pinching occurs. We assume in the following that we are in
a situation where a piecewise smooth solution of the Mullins–Sekerka problem exists
and for which the evolution of ∂Ω is continuous for all times. For typical scenarios
in the regime of small volume fraction this assumption is satisfied. In this regime the
new phase nucleates in the form of many small well-separated regions which quickly
become approximately radially symmetric. If such a configuration is taken as initial
data for the Mullins–Sekerka evolution, then there exists a global solution in the
described sense [1, 2]. The different regions compete for surface area such that the
smaller ones shrink and disappear while the larger ones grow.

We are interested in the coarsening rate within the Mullins–Sekerka evolution in
the regime of small volume fraction, i.e., φ := |Ω ∩ Q|/|Q| � 1. Here and in the
following we denote by |ω| := Ln(ω) the n-dimensional Lebesgue measure of a set
ω ⊂ R

n. The coarsening rate is described by the growth rate of a typical length scale
L = L(t). Since the Mullins–Sekerka evolution is scale invariant with respect to a
rescaling x �→ λx, t �→ λ3t, the only possible universal growth law is L(t) ∼ t1/3. This
growth law has been rigorously established in the form of a weak upper bound in [7]
for the Cahn–Hilliard equation in the case of equal volume fractions, that is, φ ∼ 1

2 .
How do we expect that this growth law depends on the volume fraction φ? To

that aim consider as a natural inverse length scale the energy density

E = interfacial area per unit volume =
Hn−1(∂Ω ∩Q)

|Q| .(1.4)

If now, for example, the configuration consists of N approximately spherical domains
of mean radius R(t), we expect

E(t) ∼ 1

|Q|NR
n−1

(t) ∼ φ
1

R(t)
.(1.5)

A prediction of the scaling of R(t) goes back to the classical theory by Lifshitz
and Slyozov [9] and Wagner [12] (see also [10] for more details on the two-dimensional
case). To that aim consider again a collection of approximately spherical regions with
radius R and total volume fraction φ, which are well separated by a typical distance
of order d ∼ R

φ1/n . Due to the clear separation of length scales, the potential u should

approximately be close to a slowly varying field ū away from the particles. Hence,
due to (1.1) and (1.2) we expect that close to a particle with center x0 the potential
is well approximated by

u ∼

⎧⎨
⎩

(1 −Rū) Rn−3

|x−x0|n−2 , n ≥ 3,(
1
R − ū

)
ln d

|x−x0|

ln
(

d
R

) , n = 2.

Plugging the preceding formula into (1.3) gives

Ṙ(t) ∼
{ n−2

R2(t) (Rū− 1), n ≥ 3,
1

ln
(

d
R

) 1
R2(t) (Rū− 1), n = 2.(1.6)

Thus, the growth rate of a particle is, to leading order, independent of φ for n ≥ 3
and depends only on ln

(
d
R

)
∼ lnφ−1 for n = 2. In particular we also find R2Ṙ ∼ 1



1734 SERGIO CONTI, BARBARA NIETHAMMER, AND FELIX OTTO

and R2Ṙ ∼ 1
ln( d

R )
, respectively, such that the mean radius should follow the growth

law

R(t) ∼
{

t1/3, n ≥ 3,
1

(lnφ−1)1/3 t
1/3, n = 2.

(1.7)

This implies, together with (1.5), that

E(t) ∼
{

φt−1/3, n ≥ 3,
φ(lnφ−1)1/3t−1/3, n = 2.

(1.8)

Our goal in this article is to support these heuristics by rigorously establishing a
corresponding weak lower bound in the spirit of [7]. This approach has also been suc-
cessfully applied to other cases, such as phase separation in multicomponent systems
or epitaxial growth [8], mean-field models for coarsening [3], temperature-dependent
phase field models [4], and coarsening of droplet configurations [11]. The approach
is based on exploiting the relation of two suitably chosen global length scales. The
first has already been introduced and is given by the inverse of the energy density E.
In the following we use the notation from geometric measure theory and denote the
perimeter of Ω with respect to Q by

∫
Q
|∇χ|, where χ denotes here and in the follow-

ing the characteristic function of the set Ω. It is well known (cf., e.g., [6]) that if ∂Ω
is smooth, which we assume here for all but finitely many times, then the perimeter
equals the surface area. Thus, the energy can also be written as E = −

∫
Q
|∇χ|, where

here and in the following −
∫
Q

:= 1
|Q|

∫
Q

.

The second length scale is, as in [7], a suitable negative norm of the characteristic
function of Ω. We define

L :=
(
−
∫
Q

|∇−1(χ− φ)|2 dx
)1/2

,(1.9)

where ‖∇−1u‖L2 = ‖u‖H−1 denotes the H−1-norm for Q-periodic functions with
mean value zero.

This choice of length scale is motivated by the interpretation of the Mullins–
Sekerka evolution as a gradient flow on a Riemannian manifold. In fact, it is the
gradient flow of the surface energy with respect to the scalar product given by the
H−1-norm in the bulk. In principle a natural choice for L would be the induced
distance on the manifold between the phase configuration and the uniform reference
state φ. However, we cannot easily compute this distance in the present setting due to
the nonconvex constraint that χ takes only two integer values. Nevertheless one would
expect that this distance is close to the distance within the Cahn–Hilliard model which
is just given by (1.9). In fact, the main result formulated in the following theorem
can with similar arguments also be established within the Cahn–Hilliard framework.

Theorem 1.1. Let E0 and L0 be the initial energy density and initial length,
respectively, and let φ � 1. Then we have for T � φ−3/2L3

0 that

−
∫ T

0

E2(t) dt
>∼
{

φ2 T−2/3, n ≥ 3,

φ2
(
lnφ−1

)2/3
T−2/3, n = 2.

Here and in the following we use the notation A
<∼ B or A

>∼ B if there is a
constant C such that A ≤ CB or A ≥ CB, respectively. The constants will be
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independent of φ but may depend on the space dimension n. Such a dependence we
sometimes indicate with C = C(n).

The proof of Theorem 1.1 is based exactly as in [7] on three ingredients. The
first is an interpolation (or isoperimetric) inequality which relates E and L and is
independent of the dynamics of the evolution.

Lemma 1.2. We have

EL
>∼
{

φ3/2, n ≥ 3,

φ3/2
(
lnφ−1

)1/2
, n = 2.

The proof of Lemma 1.2—in particular for the case n = 2—is the main contribu-
tion of this article. We provide it in the next section.

The second ingredient in the analysis of [7] is a diffusion inequality which relates
the rate of change of the length L to the rate of change of the energy density.

Lemma 1.3. For almost all t ∈ (0, T ) we have

|L̇(t)|2 ≤ −Ė(t).

Proof. We denote by u the potential of the normal velocity v of ∂Ω and by w the
potential for χ− φ, that is,

−Δu = v dHn−1�∂Ω and − Δw = χ− φ in D′(Q),

with periodic boundary conditions. Here dHn−1�∂Ω denotes the Hausdorff measure
restricted onto ∂Ω.

We assume that for all but a finite number of times the solution of the Mullins–
Sekerka equation is smooth, and for those times we have the relation ∂tw = u. By
definition L2(t) = −

∫
Q
|∇w|2 dx and we find

L(t)L̇(t) = −
∫
Q

∇w · ∇u dx

≤
(
−
∫
Q

|∇u|2 dx
)1/2(

−
∫
Q

|∇w|2 dx
)1/2

=
(
−
∫
Q

|∇u|2 dx
)1/2

L(t).

Hence, dividing by L(t), integrating by parts, and using (1.1)–(1.3), it follows that

|L̇(t)|2 ≤ −
∫
Q

|∇u|2 dx =
1

|Q|

∫
∂Ω∩Q

vκ dHn−1 = −Ė .

The last equality follows from the well-known fact that the mean curvature is the
variation of the surface area with respect to kinematically admissible normal velocities
of the surface (cf., e.g., [6, Chap. 10]).

The final ingredient of Theorem 1.1 is an ODE lemma which we can take directly
from [7].

To that aim we consider the rescaled quantities

Ê =

{
φ(1−n)/nE, n ≥ 3,

φ−1/2
(
lnφ−1

)−1/2
E, n = 2,

L̂ = φ−(n+2)/2nL,(1.10)

t̂ =

{
φ−3/nt, n ≥ 3,

φ−3/2
(
lnφ−1

)1/2
t, n = 2,
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and obtain

ÊL̂
>∼ 1 and | ˙̂L|2 ≤ − ˙̂

E.(1.11)

In order to arrive at (1.11) one has some freedom in the choice of factors in (1.10).
The present choice is just the natural one in the sense that for typical configurations
the new quantities are of order one in φ.

The ODE lemma (see [7, Lemma 3]) now yields for T̂ � (L̂0)
3

−
∫ T̂

0

(Ê(t̂))2 dt̂
>∼ T̂−2/3,

which in view of (1.10) implies the estimate in Theorem 1.1.

2. Proof of the interpolation inequality. Let χ denote the characteristic
function of the set Ω. We claim that for φ ≤ 1

2 the following interpolation inequality
is true:

−
∫
Q

(χ− φ)2 dx
<∼
(
−
∫
Q

|∇χ| dx
)2/3(

−
∫
Q

|∇−1(χ− φ)|2 dx
)1/3

.(2.1)

To see that, define (χ− φ)ε := (χ− φ) ∗ ηε and χε := χ ∗ ηε, where ηε is a standard
sequence of mollifiers. We have

−
∫
Q

|∇χε|2 dx
<∼ 1

ε2
−
∫
Q

|χ− φ|2 dx ,

such that by duality

−
∫
Q

|(χ− φ)ε|2 dx
<∼ 1

ε2
−
∫
Q

|∇−1(χ− φ)ε|2 dx ≤ 1

ε2
−
∫
Q

|∇−1(χ− φ)|2 dx .(2.2)

Hence, using |χ|, |χε| ≤ 1, we find

−
∫
Q

(χ− φ)2 dx ≤ 2 −
∫
Q

|χ− χε|2 + 2 −
∫
Q

|(χ− φ)ε|2 dx

(2.2)
<∼ −

∫
Q

|χ− χε| +
1

ε2
−
∫
Q

|∇−1(χ− φ)|2 dx

<∼ ε−
∫
Q

|∇χ| +
1

ε2
−
∫
Q

|∇−1(χ− φ)|2 dx.

The preceding inequality is optimal for

ε =

(
−
∫
Q
|∇−1(χ− φ)|2 dx

−
∫
Q
|∇χ|

)1/3

,

which proves (2.1). Since

−
∫
Q

(χ− φ)2 dx ≥ 1

2
−
∫
Q

χ2 dx =
1

2
−
∫
Q

χdx =
1

2
φ,

inequality (2.1) implies Lemma 1.2 for the case n ≥ 3.
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In the case n = 2 we can even do better. We claim that

−
∫
Q

χ2 dx
<∼ 1(

lnφ−1
)1/3

(
−
∫
Q

|∇χ| dx
)2/3(

−
∫
Q

|∇−1(χ− φ)|2 dx
)1/3

if n = 2.(2.3)

We recall that by the definition of the dual norm we have for all ζ ∈ H1
per(Q), that

is, the space of H1 functions with periodic boundary conditions, that

−
∫
Q

|∇−1(χ− φ)|2 dx ≥

(
−
∫
Q

(χ− φ)ζ dx
)2

−
∫
Q
|∇ζ|2 dx .(2.4)

We are going to construct a periodic test function ζ ≥ 0 which satisfies the following
properties:

−
∫
Q

χζ dx ≥ 1

2
−
∫
Q

χdx,(2.5)

−
∫
Q

ζ dx � 1 ,(2.6)

−
∫
Q

|∇ζ|2 dx <∼ φ

R2 lnφ−1
,(2.7)

where

R :=
φ

−
∫
Q
|∇χ| .(2.8)

Then (2.5) and (2.6) imply

−
∫
Q

(χ− φ)ζ dx ≥ 1

4
−
∫
Q

χdx =
1

4
−
∫
Q

χ2 dx,

and using (2.4) and (2.7) we find

(
−
∫
Q

χ2 dx
)2 <∼

(
−
∫
Q

(χ− φ)ζ dx
)2

≤

(
−
∫
Q
|∇χ|

)2

φ lnφ−1
−
∫
Q

|∇−1(χ− φ)|2 dx,

which, recalling −
∫
Q
χ2 = φ, proves (2.3).

Hence it remains to construct a test function ζ with the properties (2.5)–(2.7).
Fundamental for the construction is the following geometric lemma which says that
for given Ω we can construct another set ΩR which covers a substantial part of Ω and
behaves like a union of balls with radius larger than R.

Lemma 2.1. Let Ω ⊂ R
n be a given Q-periodic set and χ its characteristic

function, and let R be such that

R
∫
Q

|∇χ| ≤ |Ω ∩Q|.

Then there exists a Q-periodic set ΩR ⊂ R
n such that

|Ω ∩ ΩR ∩Q| ≥ 1

2
|Ω ∩Q|
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and, for all r > 0,

|Ωr
R ∩Q| ≤ C|Ω ∩Q|

(
1 +

( r

R

)n)
,

where Ωr
R = {x |dist(x,ΩR) ≤ r} and C is a constant which depends only on n.

We postpone the proof of the lemma, choose R as in (2.8), and define

ζ(x) := ψ(r(x)),

where r(x) := dist(x,ΩR) and

ψ(r) =

⎧⎪⎨
⎪⎩

0, r ≥ d,
ln d

r

ln d
R
, r ∈ (R, d),

1, r ≤ R

with d = R
φ1/2 � R. This choice of test function is motivated by the simplest case,

when Ω = BR(0) and Bd(0) ⊂ Q, whence ζ(x) := ln d
|x|/ln

d
R fulfills (2.5)–(2.7). (Here

and in the following we use the notation Br(x) to denote a ball with radius r and
center x.)

The fact that |∇r(x)| = 1 for almost all x and Theorem 2, Ch.3.4.3 and Proposi-
tion 2, Ch. 3.4.4 of [5] imply∫

Q

|∇ζ|2 dx =

∫
Q

|ψ′(r(x))|2|∇r(x)|2 dx

=

∫ ∞

0

|ψ′(s)|2Hn−1({x ∈ Q | r(x) = s}) ds

=

∫ d

R
|ψ′(s)|2Hn−1({x ∈ Q | r(x) = s}) ds

≤ −
∫ d

R

d

ds
|ψ′(s)|2|{x ∈ Q | r(x) < s}| ds

+|ψ′(d)|2|{x ∈ Q | r(x) < d}| .

Lemma 2.1 for n = 2 gives |{x ∈ Q | r(x) < s}| ≤ C|Ω∩Q|
(

s
R
)2

, and a straightforward
computation yields

−
∫
Q

|∇ζ|2 dx <∼
∫ d

R

φ

s3| ln d
R |2

( s

R

)2

ds +
φ

|d ln d
R |2

(
d

R

)2

<∼ φ

R2| ln d
R |

,

which establishes (2.7).
Furthermore, an analogous computation yields∫

Q

ζ dx =

∫ d

R
ψ(s)Hn−1({x ∈ Q | r(x) = s}) ds + |ΩR

R ∩Q|

= −
∫ d

R
ψ′(s)|{x ∈ Q | r(x) < s}| ds + ψ(s)|{x ∈ Q | r(x) < s}|

∣∣∣d
R

+ |ΩR
R ∩Q| .(2.9)
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Since ψ(d) = 0 and ψ(R) = 1 the last two terms cancel. Lemma 2.1 and the choice
of d imply

−
∫
Q

ζ dx
<∼ 1

ln d
R

∫ d

R

φs

R2
ds

<∼ d2

R2 ln d
R
φ =

1

lnφ−1/2
� 1,

so that the desired property (2.6) follows.
Proof of Lemma 2.1. We first observe that it suffices to prove the statement for

|Q ∩Ω| ≤ 1
2 |Q|; otherwise one can take ΩR = Q. Next, it is convenient to redefine R

such that

R
∫
Q

|∇χ| ≤ 1

4
|Ω ∩Q|.(2.10)

We notice that the isoperimetric inequality in particular implies that

R ≤ 1

4
|Ω ∩Q|1/n ≤ 1

4
|Q|1/n.(2.11)

We set

ΩR :=

{
x | |Ω ∩BR(x)| > 1

2
|BR(x)|

}
(2.12)

and claim that

|Ω ∩ ΩR ∩Q| ≥ 1

2
|Ω ∩Q|.(2.13)

We first notice that

ΩR =

{
x |χR(x) >

1

2

}
, where χR(x) :=

|Ω ∩BR(x)|
|BR(x)| ,

and χR can be considered as a convolution of the characteristic function χ of Ω.
Furthermore we have

χ− χR ≥ 1 − 1

2
=

1

2
on Ω\ΩR,

so that

|(Ω\ΩR) ∩Q| ≤ 2

∫
Q

|χ− χR| dx

≤ 2 sup
|h|≤R

∫
Q

|χ(x) − χ(x + h)| dx

≤ 2R
∫
Q

|∇χ|

≤ 1

2
|Ω ∩Q|,

where the last inequality follows from (2.10). Thus

|Ω ∩ ΩR ∩Q| = |Ω ∩Q| − |(Ω\ΩR) ∩Q| ≥ 1

2
|Ω ∩Q|,
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which establishes (2.13).
Next we claim that there exists a set A ⊂ ΩR ∩Q of points such that

#A ≤ C
|Ω ∩Q|
|BR| and ΩR ∩Q ⊂

⋃
x∈A

B2R(x),(2.14)

where #A denotes the cardinality of the set A. To that aim let A ⊂ ΩR ∩ Q be a
maximal family such that

{BR(x)}x∈A are disjoint.(2.15)

We claim that

ΩR ∩Q ⊂
⋃
x∈A

B2R(x) ∩Q.(2.16)

Indeed, assume that (2.16) were wrong. Then there exists y ∈ ΩR ∩Q such that for
all x ∈ A we have y /∈ B2R(x); that is, for all x ∈ A we find BR(y)∩BR(x) = ∅. This
contradicts the maximality of A.

We now have, because of A ⊂ ΩR ∩Q,

#A|BR| =
∑
x∈A

|BR(x)|

(2.12)
< 2

∑
x∈A

|Ω ∩BR(x)|

(2.15),(2.11)

≤ C(n)|Ω ∩Q|.

Finally we claim

|Ωr
R ∩Q| ≤ C(n)|Ω ∩Q|

(
2 +

r

R

)n

.(2.17)

In view of (2.16) we have the inclusion ΩR ∩ Q ⊂
⋃

x∈A B2R(x) ∩ Q, which implies
Ωr

R ⊂
⋃

x∈A B2R+r(x) ∩Q. Thus

|Ωr
R ∩Q| ≤

∑
x∈A

|B2R+r(x) ∩Q|

(2.14)

≤ C
|Ω ∩Q|
|BR| |B2R+r|

= C|Ω ∩Q|
(2R + r

R

)n

,

which proves (2.17) and thus completes the proof of Lemma 2.1.
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UNIQUENESS OF WEAK SOLUTIONS OF THE NAVIER–STOKES
EQUATIONS OF MULTIDIMENSIONAL, COMPRESSIBLE FLOW∗
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Abstract. We prove uniqueness and continuous dependence on initial data of weak solutions of
the Navier–Stokes equations of compressible flow in two and three space dimensions. The solutions
we consider may display codimension-one discontinuities in density, pressure, and velocity gradient,
and consequently are the generic singular solutions of this system. The key point of the analysis is
that solutions with minimal regularity are best compared in a Lagrangean framework; that is, we
compare the instantaneous states of corresponding fluid particles in two different solutions rather
than the states of different fluid particles instantaneously occupying the same point of space-time.
Estimates for H−1 differences in densities and L2 differences in velocities are obtained by duality
from bounds for the corresponding adjoint system.

Key words. uniqueness, continuous dependence, Navier–Stokes equations, compressible flow
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1. Introduction. We prove uniqueness and continuous dependence on initial
data of weak solutions of the Navier–Stokes equations of compressible flow{

ρt + div(ρu) = 0,

(ρuj)t + div(ρuju) + P (ρ)xj
= μΔuj + λdivuxj

+ ρf j
(1.1)

for x ∈ R
n, n = 2, 3, and t > 0, and with initial data

(ρ, u)|t=0 = (ρ0, u0).(1.2)

Here ρ and u = (u1, . . . , un) are the unknown functions of x and t representing density
and velocity, P = P (ρ) is the pressure, f is a given external force, μ > 0 and λ ≥ 0
are viscosity constants, and div and Δ are the usual spatial divergence and Laplace
operators.

We compare solutions with only minimal regularity, including the generic singular
solutions of the Navier–Stokes system—solutions with codimension-one discontinuities
in density, pressure, and velocity gradient (see Hoff [6]). Our result extends that of
Danchin [1], which applies to solutions in certain Besov spaces of continuous functions.
Danchin makes a direct comparison by subtracting the equations satisfied by different
solutions and controlling the linearization errors by the assumed regularity. This
regularity is absent for solutions in the class considered here, however, and a different
approach is required.

One could hope to prove uniqueness and continuous dependence for solutions in
the largest class for which existence is known, that is, solutions with finite energies
and nonnegative densities (see Feireisl [3] and Feireisl, Novotny, and Petzeltova [4],
for example). Such a result may be unattainable, however, and may be in fact be
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under grant DMS–0305072.

http://www.siam.org/journals/sima/37-6/61805.html
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false: it is known that certain anomalies can arise in solutions of (1.1) when densities
are zero on nonnegligible sets, and there are examples of nonphysical solutions. To
be more specific, we say that a solution (ρ, u) is locally momentum conserving if,
whenever E and V are bounded open sets in R

n with Ē ⊂ V and with ρ = 0 a.e. in
(V − E) × [t1, t2], then the change in the momentum of the fluid in E from time t1
to time t2 should be the impulse

∫ t2
t1

∫
E
ρf dxdt applied by the external force to the

fluid in E. Weak solutions violating this condition do in fact exist, one such solution
being constructed in Hoff and Serre [8]: initial data (ρ0, u0) is given corresponding
to two fluids initially separated by a vacuum; it is shown that, if ρ0 is replaced by
ρ0 + δ, then the limit as δ → 0 of the corresponding perturbed solutions exists and
is a weak solution in the entire physical space but fails to be locally momentum
conserving. It is also shown that there is a different, locally momentum conserving
solution corresponding to the same initial data, but this solution is defined only on
the support of the density and cannot be extended as a weak solution to the entire
space. We also point out that it appears likely, although it is not presently known,
that even if the initial density is strictly positive, large energies can cause spontaneous
cavitation. (This cannot occur in one space dimension, however, but the argument,
given in Hoff and Smoller [9], depends upon restoring forces which scale unfavorably
with dimension.) It therefore remains an interesting open problem to select physical
solutions from the most general class of known weak solutions with large energies and
possible vacuum states and to establish their uniqueness and continuous dependence
on initial data. In the present paper we avoid these issues and difficulties by assuming
that at least one of the solutions being compared has strictly positive density.

Our regularity assumptions are listed below in (1.4)–(1.14). These have been
made as weak as the analysis will allow and consequently are somewhat technical. We
discuss these assumptions in some detail below following the statement of the theorem,
giving at the very end of this section six somewhat stronger sufficient conditions under
which our result applies. Five of these are fairly mild a priori conditions on the system
parameters P , μ, and λ and on the forces and initial data, and are easily checked.

The sixth condition is an a posteriori condition imposed on solutions rather than
on data, and therefore deserves special comment. A key point of our analysis is that
weak solutions are best compared in a Lagrangean framework: it is more natural to
compare the instantaneous states of corresponding fluid particles in different solutions
rather than the states of different fluid particles which are instantaneously at the same
point of space-time. Consequently, the function which maps the position x of a fluid
particle in one solution to the position of the corresponding particle in the other
solution at a given time plays a special role in the analysis. Our proof requires that
this function be Lipschitz continuous with respect to x, a condition which follows
from the assumption that velocity gradients are in the space L1((0, T );L∞(Rn)); this
is the sixth condition. Now, a large class of weak solutions is constructed in Hoff [6]
that satisfy this regularity condition and that at the same time exhibit the generic
singularities described above. However, a simple characterization of singular data
for which there exist corresponding solutions satisfying this sixth condition has been
elusive. The difficulty is essentially equivalent to the classical fact that Calderon–
Zygmund operators map Lp into Lp for p ∈ (1,∞) but not for p = 1 or ∞. We shall
discuss this point in greater detail below.

We compare two weak solutions (ρ, u, f) and (ρ, u, f) defined on R
n × (0, T ) and

obtain bounds for(∫ T

0

∫
Rn

|u− u|2dxdt
)1/2

+ sup
0≤t≤T

‖(ρ− ρ)(·, t)‖H−1(Rn)
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in terms of ‖ρ0 −ρ0‖L2 , ‖ρ0u0 −ρ0u‖L2 , and
(∫ T

0

∫
|f − f |2dxdt

)1/2

. Now, a cursory

examination of the second equation in (1.1) suggests that L2 differences in u are driven
by H−1 differences in P (ρ), whereas H−1 bounds for differences in ρ, not P (ρ), are
natural in this theory. These are the same when P is linear or more generally when
the divided difference (ρ− ρ)−1[P (ρ) − P (ρ)] is somewhat regular. Our theorem will
therefore apply either when P is the pressure P = Kρ of an ideal isothermal fluid, or
for more general pressures when somewhat greater regularity conditions are imposed
on solutions; see (1.16) below and the corresponding discussion following (3.13).

Before describing our result in more detail, we introduce some standard notation.
First, the usual convective derivative d

dt of a given function w : R
n × (0, T ) → R with

respect to a velocity field u is given by dw
dt = ẇ = wt +u ·∇w, where ∇w is the spatial

gradient of w, and for w : R
n × (0, T ) → R

n, dw
dt = ẇ = wt + ∇wu, where ∇w is

the n × n matrix of partial derivatives of w. We apply this notation to rewrite the
momentum equation in (1.1): subtracting uj times the first equation in (1.1) from
the second, we obtain

ρu̇j + P (ρ)xj = μΔuj + λ divuxj + ρf j ,

and adding and subtracting terms, that

ρu̇j = [(μ + λ)divu− P (ρ) + P (ρ̃)]xj
+ μ(uj

xk
− uk

xj
)xk

+ ρf j

≡ Fxj + μωj,k
xk

+ ρf j
(1.3)

(summation over repeated indices is understood, and ρ̃ is a constant, positive reference
density). Here ω is the vorticity matrix, which together with the scalar quantity F
plays an important role in the existence theory: F and ω are more regular than are
∇u and ρ in general, and (1.3) gives a representation of the internal surface forces
acting in the fluid as the sum of a divergence-free field and the gradient of a scalar
field. As we shall see, F and ω play an important role in the uniqueness theory as
well.

We now give a precise formulation of our results. Let ρ̃ be a fixed, positive,
constant reference density as above and let P̃ = P (ρ̃). The solutions we consider will
be weak solutions in the following sense.

Definition. A weak solution on R
n× [0, T ] of the system (1.1)–(1.2) is a triple

(ρ, u, f) satisfying the following:

ρ− ρ̃ is a bounded map from [0, T ] into L1
loc(R

n) ∩H−1(Rn) and ρ ≥ 0 a.e.;(1.4)

ρ0u0 ∈ L2(Rn); ρu, P − P̃ , ∇u, ρf ∈ L2(Rn × (0, T )); ρ|u|2 ∈ L1(Rn × (0, T ));

(1.5)

For 0 ≤ t1 ≤ t2 ≤ T and for test functions ϕ which are Lipschitz on

R
n × [t1, t2] and for which suppϕ(·, t) ⊂ K, t1 ≤ t ≤ t2, where K

is compact, ∫
Rn

ρϕdx

∣∣∣∣
t2

t1

=

∫ t2

t1

∫
Rn

(ρϕt + ρu · ∇ϕ)dxdt

(it is understood here that ρ(·, 0) = ρ0);

(1.6)
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The weak form of the momentum equation

−
∫

Rn

ρ0u0 · ψ(·, 0)dx =

∫ T

0

∫
Rn

[ρu · (ψt + ∇ψu) + (P (ρ) − P̃ )divψ

− μ∇uj · ∇ψj − λ(divu)(divψ) + ρf · ψ]dxdt

holds for test functions ψ which are locally Lipschitz on R
n × [0, T ]

and for which ψ,ψt,∇ψ ∈ L2(Rn × (0, T )), ∇ψ ∈ L∞(Rn × (0, T )),

and ψ(·, T ) = 0.

(1.7)

The two solutions (ρ, u, f) and (ρ, u, f) we compare will also be assumed to satisfy

u, u ∈ C(Rn × (0, T ]) ∩ L1((0, T );W 1,∞(Rn)) ∩ L∞
loc((0, T ];L∞(Rn))(1.8)

and

ρ− ρ̃, ρ− ρ̃, u, u, f, f ∈ L2(Rn × (0, T )).(1.9)

One of the solutions (ρ, u, f) will have to satisfy

ρ, ρ−1 ∈ L∞(Rn × (0, T ))(1.10)

and ∫ T

0

∫
Rn

|u|rdxdt < ∞(1.11)

for some r > n, and the other solution (ρ, u, f) will have to satisfy

∫ T

0

[
‖u(0, t)‖2

L∞ + t‖∇u(·, t)‖2
L∞ + t‖∇F ,∇ω‖2

L2 + (t‖∇F ,∇ω‖2
L4)a

]
dt < ∞,

(1.12)

where F̄ and ω̄ are as in (1.3), the gradients are with respect to x, and a = 2/3 for
n = 2 and a = 4/5 for n = 3; and

f ∈ L1((0, T );L2q(Rn))(1.13)

for some q ∈ [1,∞]. Finally, we shall assume that

ρ0 − ρ0 ∈ (L2 ∩ L2p)(Rn),(1.14)

where p is the Hölder conjugate of q.
We now state our main result.
Theorem. Given P = Kρ, M , T , and r > n, where n is 2 or 3, there is a

constant C depending on K, M , T , and r such that if (ρ, u, f) and (ρ, u, f) are weak
solutions of (1.1) satisfying (1.4)–(1.9), with (ρ, u, f) satisfying (1.10) and (1.11) and
(ρ, u, f) satisfying (1.12) and (1.13), if (1.14) holds, and if all norms occurring in
these conditions are bounded by M , then

(∫ T

0

∫
Rn

|u− u|2dxdt
)1/2

+ sup
0≤t≤T

‖(ρ− ρ)(·, t)‖H−1(Rn)

≤ C

⎡
⎣‖ρ0 − ρ0‖L2∩L2p + ‖ρ0u0 − ρ0u0‖L2 +

(∫ T

0

∫
Rn

|f − f ◦ S|2dxdt
)1/2

⎤
⎦

(1.15)
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(the notation f ◦ S is explained below in (1.18)). If
∫ T

0
t‖∇f(·, t)‖L∞dt ≤ M , then

f ◦S may be replaced by f in (1.15). Also, these same results hold with no restriction
on the pressure function P provided that

sup
0≤t≤T

∥∥∥∥∇
(
P (ρ(·, t)) − P (ρ(·, t))

ρ(·, t) − ρ(·, t)

)∥∥∥∥
Lα

< ∞,(1.16)

where α > 2 when n = 2 and α = 3 when n = 3; in this case the constant C depends
additionally on α and on the above sup.

The key point of the analysis, and the major premise of this paper, is that solutions
with minimal regularity are best compared in a Lagrangean framework, as mentioned
earlier. Now, in one space dimension, the initial position of a fluid particle and the
cumulative mass are equivalent Lagrangean coordinates, and the corresponding La-
grangean formulation of the system (1.1) consists of simple equations in divergence
form for which a straightforward weak interpretation is possible. In several space vari-
ables, however, the only Lagrangean coordinate is the initial position, and the system
(1.1), written in Lagrangean coordinates, is neither simple nor in divergence form,
making a weak interpretation problematic. We deal with this difficulty as follows.
First, by imposing the condition (1.8), we ensure the existence of particle trajectories
X(y, t, s) satisfying ⎧⎨

⎩
∂X

∂t
(y, t, s) = u(X(y, t, s), t),

X(y, s, s) = y,
(1.17)

and similarly for X. X(y, t, s) is therefore the position at time t of the fluid particle
whose position at time s is y. In particular, the fluid particle in (ρ, u, f) at (x, t) was

at X(x, 0, t) initially and so corresponds to the particle in (ρ, u, f) which at time t is
at the point

X(X(x, 0, t), t, 0) ≡ S(x, t)(1.18)

(this is the S appearing in (1.15)). The “Lagrangean” comparison therefore consists of
an estimate for u−u◦S, where we abuse notation slightly and abbreviate u(S(x, t), t) =
(u ◦ S)(x, t). The advantages of the Lagrangean formulation may be understood
briefly as follows. First, from its definition, S(X(y, t, 0), t) = X(y, t, 0), and thus
St + ∇Su = u ◦ S. It then follows easily that if w = u ◦ S,

(ut + ∇uu) ◦ S = wt + ∇wu,

a result which could have been predicted from the meaning of convective differentia-
tion. Given the form of the momentum equation, the comparison of u with w = u ◦S
now appears quite natural and proceeds in the usual way: bounds for u − u ◦ S are
obtained by duality from estimates for solutions of the adjoint of the weak equation
satisfied by u− u ◦ S. A bound for the Eulerian difference u− u can then be derived
via the regularity assumption in (1.12) for ‖∇u‖L∞ (which is required elsewhere in
the analysis) and the simple fact that∫

|x− S(x, t)|2dx ≤ Ct

∫ t

0

∫
|u− u ◦ S|2dxdt.

The convenience of the Lagrangean framework comes at a price, however: we require
at several points in the analysis a bound for supt ‖∇S(·, t)‖L∞ . This bound follows
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from corresponding bounds for ∇X(·, 0, t) and ∇X(·, t, 0), and these in turn are con-
sequences of the hypothesis in (1.8) that u, u ∈ L1((0, T );W 1,∞(Rn)), about which
more below.

We now discuss the existence of solutions satisfying the conditions listed in (1.4)–
(1.12). First we recall the results of Hoff [7], which apply to flows both in half-spaces
and in the whole space: under somewhat technical but fairly mild restrictions on P ,
μ, λ, and f , which we refer to as conditions (H), the system (1.1)–(1.2) has a global
weak solution (ρ, u) provided that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 ≤ ρ0 a.e., ρ0 ∈ L∞,∫ [
ρ0|u0|q + ϕ(ρ0|u0|2 + (ρ0 − ρ̃)2)

]
dx < ∞∫

[ρ0|u0|2 + (ρ0 − ρ̃)2]dx  1,

(1.19)

where q > 6 and ϕ = 1 for n = 3 and q > 2 and ϕ = (1 + |x|2)β , β > 0, for n = 2.
The solution is shown to satisfy all the conditions in (1.4)–(1.9) as well as the energy
estimates

sup
0≤t≤T

∫ [
ρ|u|2 + t|∇u|2 + tnρ|u̇|2

]
dx

+

∫ T

0

∫ [
|∇u|2 + t|(ρuj)t + div(ρuju)|2 + tn|∇u̇|

]2
dxdt

≤ C(T ),

with the exception of the condition in (1.8) that u ∈ L1((0, T );W 1,∞(Rn)). Moreover,
if inf ρ0 > 0, then ρ ≥ C−1 > 0 a.e., and as a consequence, the conditions (1.10) and
(1.11) hold. To summarize, the results of [7] guarantee the existence of a solution
(ρ, u, f) satisfying all the conditions (1.4)–(1.11), with the exception of the requirement
in (1.8) that u ∈ L1((0, T );W 1,∞(Rn)), provided only that the system conditions (H)
hold, that (ρ0, u0) satisfies (1.19), and that inf ρ0 > 0.

Next, by applying the interpolation techniques of [6], we can show that if inf ρ0 > 0
and u0 ∈ Hs(Rn) for some s ∈ [0, 1], then the improved energy estimates

sup
0≤t≤T

∫ [
ρ|u|2 + (ρ− ρ̃)2 + t1−s|∇u|2 + tσ|u̇|2

]
dx

+

∫ T

0

∫ [
|∇u|2 + t1−s|u̇|2 + tσ|∇u̇|2

]
dxdt

≤ C(T )

(1.20)

hold, where

σ =

{
2 − s, n = 2,

max{2 − s, 3 − 3s}, n = 3.
(1.21)

It then follows that the bounds in (1.12) hold if s > 0 when n = 2 and s > 1/2 when
n = 3. For example, when n = 2 we can apply the fact that ∇F = div(ρ u̇− ρf) (see
(1.3)) together with standard elliptic theory and Sobolev estimates to obtain that,
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modulo constants depending on f ,

∫ T

0

t2/3‖∇F (·, t)‖4/3
L4 dt ≤ C

∫ T

0

t2/3
(∫

|u̇|2dx
)1/3 (∫

|∇u̇|2dx
)1/2

dt

≤ C

(∫ T

0

t2s−1dt

)1/3 (∫ T

0

∫
t1−s|u̇|2dxdt

)1/3 (∫ T

0

∫
t2−s|∇u̇|2dxdt

)1/3

,

which is finite if s > 0. A similar result holds for n = 3 if s > 1/2. To summarize,
the results of [6] and [7] guarantee the existence of a solution (ρ, u) satisfying all
the conditions (1.4)–(1.9) and (1.12)–(1.13), with the exception of the condition in
(1.8) that u ∈ L1((0, T );W 1,∞(Rn)), provided that the system conditions (H) hold,
that (ρ0, u0) satisfies (1.19), and that inf ρ0 > 0 and u0 ∈ Hs(Rn), where s > 0 for
n = 2 and s > 1/2 for n = 3. Recall that functions in Hs may be discontinuous
across hypersurfaces of R

n for s < 1/2 but not for s > 1/2. The above restrictions
on u0 therefore allow locally Riemann-like initial data in R

2, but codimension-one
singularities only in ρ0 in R

3.
The assumption in (1.8) that ∇u, ∇u ∈ L1((0, T );L∞(Rn)) is the most restrictive

condition on the list. In order to examine it in more detail we decompose the velocity
field u by splitting off its most singular part: recalling the definitions in (1.3) of F
and ω, we write

Δuj = uj
xkxk

= uk
xkxj

+ (uj
xk

− uk
xj

)xk

=
[
(μ + λ)−1Fxj

+ ωj,k
xk

]
+ (μ + λ)−1(P − P̃ )xj

≡ Δuj
F,ω + Δuj

P ,

(1.22)

so that u = uF,ω + uP . We can easily show that
∫ T

0
‖∇uF,ω(·, t)‖L∞dt < ∞ if

(1.20) holds for the same values of s as above, which again is a consequence of the
assumptions (1.19), inf ρ0 > 0, and u0 ∈ Hs. To see this, we apply standard elliptic
theory in the definitions (1.22) and (1.3) of uF,ω and F , ignoring the contribution of
ω, which turns out to be the same as that of F , and of f , which is a lower-order term,
to obtain that, in R

3, for some γ > 3 and some ε > 0 determined by γ,

‖∇uF,ω(·, t)‖L∞ ≤ C‖D2
xuF,ω(·, t)‖Lγ ≤ C‖∇F (·, t)‖Lγ

≤ C‖u̇(·, t)‖Lγ ≤ C‖u̇(·, t)‖(1−ε)/2
L2 ‖∇u̇(·, t)‖(1+ε)/2

L2 ,

so that∫ T

0

‖∇uF,ω(·, t)‖L∞dt ≤ C

∫ T

0

tβ
(
t1−s

∫
|u̇|2dx

)(1−ε)/4 (
tσ

∫
|∇u̇|2dx

)(1+ε)/4

dt

≤ C

(∫ T

0

t2βdt

)1/2

by (1.20), where 4β = (s − 1)(1 − ε) − σ. The above integral is therefore finite if
2β > −1 for some ε > 0 and hence some γ > 3, and this holds if s > 1/2. A
similar result holds for n = 2 with s > 0. Thus for the solution constructed in [7],∫ T

0
‖∇uF,ω(·, t)‖L∞dt is finite if (1.16) holds, inf ρ0 > 0, and u0 ∈ Hs, where s > 1/2

for n = 3 and s > 0 for n = 2.
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There remains the condition that
∫ T

0
‖∇uP (·, t)‖L∞dt < ∞, that is, that

∫ T

0

‖∇Γxj ∗ (P (ρ(·, t)) − P̃ )‖L∞dt < ∞,

where Γ is the fundamental solution of the Laplace operator on R
n. Now, it is a stan-

dard result of Calderon–Zygmund theory that ∇Γxj∗ is a bounded linear transforma-
tion from Lp to Lp for p ∈ (1,∞) but not for p = 1 or ∞ (see [5, pp. 230–235], for exam-

ple). It is also true that if P (ρ(·, t)) ∈ L∞, then uj
P (·, t) = (μ+λ)−1Γxj

∗(P (ρ(·, t))−P̃ )
is log-Lipschitz, if not Lipschitz. This is sufficient to guarantee the existence and
uniqueness of the particle trajectories X(y, t, s) in (1.17). It does not ensure, however,
that X is Lipschitz with respect to y, and this is essential for our analysis. Of course,
we could obtain that ∇uP (·, t) ∈ L∞ by imposing the condition that P (ρ(·, t)) ∈ Cα,
but this would exclude solutions with codimension-one singularities and is altogether
too strong. On the other hand, a large class of solutions is constructed in Hoff [6] in
which densities are piecewise Cα and, as a consequence, ∇uP (·, t) ∈ L∞. The results
of the present paper therefore do apply to this class, which includes solutions with
Riemann-like initial data.

We make one final observation concerning (1.8) for the isothermal case P = Kρ,
namely that for the solutions constructed in Hoff [6, 7], the condition ∇uP (·, t) ∈ L∞

can be shown to hold if in addition to (1.19) it is assumed that inf ρ0 > 0 and there
is a constant C such that ∣∣∣∣

∫
ρ0(x)ϕ(x)dx

∣∣∣∣ ≤ C‖ϕ‖L1
w

(1.23)

for integrable functions ϕ. Here ‖ϕ‖L1
w

is the weak-L1 norm of ϕ, which is the smallest
number M ≥ 0 such that k|{x : |ϕ(x)| ≥ k}| ≤ M for all k > 0. L1

w contains L1 but
is not a Banach space, and ‖ · ‖L1

w
is not a norm. However, A ≡ Γxjxk

∗ : L1 → L1
w

is “bounded,” and the adjoint of the mass equation in (1.1) is easily seen to preserve
the class L1

w. That is, if ϕ is the solution of the initial-value problem{
ϕt + ∇ϕ · u = 0,

ϕ(x, t) = Φ(x),

then as a simple consequence of the conservation of mass, ‖ϕ(·, t)‖L1
w
≤ C‖Φ‖L1

w
for

a constant C determined by the assumed pointwise bounds on ρ. Taking ψ ∈ L1 and
Φ = Aψ ∈ L1

w, we then obtain that∣∣∣∣
∫

(Aρ)(x, t)ψ(x)dx

∣∣∣∣ =

∣∣∣∣
∫

ρ(x, t)Φ(x)dx

∣∣∣∣
=

∣∣∣∣
∫

ρ0(x)ϕ(x, 0)dx

∣∣∣∣ ≤ C‖ϕ(·, 0)‖L1
w

≤ C‖Φ‖L1
w
≤ C‖ψ‖L1

by (1.23), so that ‖(Aρ)(·, t)‖L∞ ≤ C, as required. While fairly simple and appealing,
this argument is apparently of little practical importance because of the extreme
difficulty in verifying the condition (1.23).

We summarize the above considerations as follows: solutions (ρ, u) and (ρ, u)
satisfying all the conditions (1.4)–(1.14) are known to exist under the following hy-
potheses:
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• The conditions (H) described in [7] on the system parameters P , f , f , μ,
and λ hold;

• Both (ρ0, u0) and (ρ0, u0) satisfy (1.19);
• inf ρ0 > 0 and inf ρ0 > 0;
• The initial densities and forces satisfy (1.13) and (1.14);
• u0, u0 ∈ Hs(Rn) where s > 0 for n = 2 and s > 1/2 for n = 3;
• ∇uP ,∇uP ∈ L1([0, T ];L∞(Rn)), where uP and uP are as defined in (1.22).

The first five of these conditions may be verified a priori and, again, the last is
known to hold for the large class of solutions exhibiting codimension-one singularities
constructed in Hoff [6].

There is now a large and growing literature on various mathematical aspects of
the Navier–Stokes equations of compressible fluid flow. See the books of Feireisl [2]
and Lions [10] for general discussions and more complete bibliographies relating to the
existence of weak solutions, including for the nonbarotropic case in which temperature
appears and an energy balance equation is appended to (1.1). See also Xin [11] for
a result concerning the blowup of smooth solutions of (1.1) when the initial density
has compact support.

2. Lagrangean structure. In this section we discuss properties of the particle
trajectories X(y, t, s) required for the proof of the theorem. We shall make repeated
use both in this section and in the next of Rademacher’s theorem and some of its
consequences (see Ziemer [12, pp. 49–53]): a Lipschitz function has a differential
almost everwhere; the composition of a function in W 1,p with a bi-Lipschitz map is
again in W 1,p, and the chain rule holds; and the usual change of variables formula
holds for integrable functions composed with univalent Lipschitz mappings.

Lemma 2.1. Let u satisfy (1.8). Then there is a unique function X ∈ C(Rn ×
[0, T ]2) satisfying ⎧⎨

⎩
∂X

∂t
(y, t, s) = u(X(y, t, s), t)

X(y, s, s) = y.
(2.1)

X(·, t, s) is Lipschitz on R
n for (t, s) ∈ [0, T ]2, and there is a constant C such that∥∥∥∥∂X∂y (·, t, s)

∥∥∥∥
L∞

≤ C, (t, s) ∈ [0, T ]2.

Also, given τ > 0 there is a constant C = C(τ) such that∣∣∣∣∂X∂t (y, t, s)

∣∣∣∣ ≤ C(τ)

for all (y, s) ∈ R
n × [0, T ] and almost all t ∈ [τ, T ], and∣∣∣∣∂X∂s (y, t, s)

∣∣∣∣ ≤ C(τ)

for all (y, t) ∈ R
n × [0, T ] and almost all s ∈ [τ, T ].

Proof. The proof is elementary and thus is omitted. We do note, however, the
importance of the assumption that u ∈ L1((0, T );W 1,∞) in the derivation of the first
bound above:

1

2

∂

∂t
|∇yX(y, t, s)|2 = ∇yX(y, t, s) · ∇yu(X(y, t, s), t)

≤ ‖∇u(·, t)‖L∞ |∇yX(y, t, s)|2 .
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In the following lemma we compute the Jacobian determinant of X(·, t, s).
Lemma 2.2. Let u be as in (1.8) and ρ as in (1.4). Assume that ρu is locally

integrable on R
n × [0, T ] and that the weak form (1.6) of the mass equation holds. If

Et0 is a bounded measurable set in R
n and if Et = {X(y, t, t0) : y ∈ Et0}, then∫

Et

ρ(x, t)dx =

∫
Et0

ρ(y, t0)dy.(2.2)

Also,

ρ(X(·, t, t0), t) |det∇yX(·, t, t0)| = ρ(·, t0)(2.3)

a.e. on R
n.

Proof. The conservation of mass (2.2) is proved by applying (1.6) to the solution
ϕη,δ of the adjoint system {

ϕη,δ
t + ∇ϕη,δ · uδ = 0,

ϕη,δ(·, t0) = χη
Et0

,

where uδ and χη
Et0

are smooth approximations to u and to the characteristic function

of Et0 , and then letting first δ, then η tend to zero. The bound ‖∇ϕη,δ‖L∞ ≤ C(η),

which follows from the condition
∫ T

0
‖∇u(·, t)‖L∞dt < ∞ as in the proof of Lemma 2.1,

ensures that the approximation errors disappear in the limit. This proves (2.2). Then
as a consequence,∫

Et0

ρ(y, t0)dy =

∫
Et

ρ(x, t)dx

=

∫
Et0

ρ(X(y, t, t0), t) |det∇yX(y, t, t0)| dy.

This holds for all bounded measureable sets Et0 ; the integrands therefore agree
a.e.

In the following lemma we list properties of the mapping S defined in (1.18) that
are required for the proof of the theorem.

Lemma 2.3. Let both (ρ, u) and (ρ, u) satisfy the hypotheses of Lemmas 2.1
and 2.2, let X and X be as in Lemma 2.1, and define{

S(x, t) = X(X(x, 0, t), t, 0),

S−1(x, t) = X(X(x, 0, t), t, 0).
(2.4)

Then
(a) S±1 is continuous on R

n × [0, T ] and Lipschitz continuous on R
n × [τ, T ] for

all τ > 0, and there is a constant C such that

‖∇S±1(·, t)‖L∞ ≤ C, t ∈ [0, T ];

(b) (St + ∇Su)(x, t) = u(S(x, t), t) a.e. in R
n × (0, T );

(c) ρ(S(x, t), t)ρ0(X(x, 0, t)) det∇S(x, t) = ρ(x, t)ρ0(X(x, 0, t)) a.e. in R
n×(0, T );

(d) if u, u ∈ L2(Rn × (0, T )), then∫
|x− S(x, t)|2dx ≤ Ct

∫ t

0

∫
|u(x, s) − u(S(x, s), s)|2dxds,∫

|x− S−1(x, t)|2dx ≤ Ct

∫ t

0

∫
|u(S−1(x, s), s) − u(x, s)|2dxds.
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The constants C in (a) and (d) depend on upper bounds for u and u in L1((0, T );
W 1,∞(Rn)).

Proof. (a) and (b) follow directly from Lemmas 2.1 and 2.2. To prove (c) we
differentiate the relation S(X(y, t, 0), t) = X(y, t, 0) to obtain

det∇S(X(y, t, 0), t)det∇yX(y, t, 0) = det∇yX̄(y, t, 0)

a.e. Multiplying by ρ(X(y, t, 0), t)ρ̄(X̄(y, t, 0), t) and applying (2.3) with t0 = 0, we
then get

ρ̄(X̄(y, t, 0), t)ρ0(y)det∇S(X(y, t, 0), t) = ρ(X(y, t, 0))ρ̄0(y) .

We then set x = X(y, t, 0) so that y = X(x, 0, t) and S(x, t) = X̄(y, t, 0) to obtain (c).
To prove (d) we compute∫

|x− S(x, t)|2dx ≤ C

∫
|X(y, t, 0) −X(y, t, 0)|2dy

= C

∫ ∣∣∣∣
∫ t

0

[u(X(y, s, 0), s) − u(X(y, s, 0), s)]ds

∣∣∣∣
2

dy

≤ Ct

∫ t

0

∫
|u(x, s) − u(S(x, s), s)|2dxds.

Notice that the Jacobian determinants occurring in the above changes of variables are
bounded by (a). The proof for S−1 is similar.

3. Proof of the theorem. We now fix two solutions (ρ, u, f) and (ρ, u, f) as
described in the theorem of section 1 and define the mappings X, X, and S as in
(2.1) and (2.4). We shall make frequent use of the conclusions of Lemma 2.3 and the
properties of Lipschitz mappings described at the beginning of section 2.

We begin by deriving the weak form of the equation satisfied by u− u ◦ S, where
again we abuse notation slightly and write u(S(x, t), t) = (u ◦ S)(x, t). Let ψ : R

n ×
[0, T ] → R

n be a test function satisfying the conditions in (1.7) and which additionally
is in (H2 ∩ C2)(Rn × [0, T ]). Then

−
∫

Rn

ρ0(x)u0(x) · ψ(x, 0)dx

=

∫ T

0

∫
Rn

[
ρu · (ψt + ∇ψu) + (P (ρ) − P̃ )divψ

− μ∇uj · ∇ψj − λ divu divψ + ρf · ψ
]
dxdt.

(3.1)

Now let ψ ≡ ψ ◦ S−1 and note that ψ also satisfies the conditions in (1.7). Thus

−
∫

Rn

ρ0(x)u0(x) · ψ(x, 0)dx

=

∫ T

0

∫
Rn

[
ρu · (ψt + ∇ψu) + (P (ρ) − P̃ )divψ

− μ∇uj · ∇ψ
j − λ divu divψ + ρf · ψ

]
dxdt.
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We make the change of variables x = S(y, t) in the first and last terms on the right
here, noting that, by Lemma 2.3,

(ψt + ∇ψu) ◦ S = ψt + ∇ψu

and

(ρ ◦ S)|det∇S| = A0ρ,

where

A0(x, t) = ρ0(X(x, 0, t))/ρ0(X(x, 0, t))(3.2)

(recall that ρ0 is strictly positive by (1.10)). The result is that

−
∫

Rn

ρ0(x)u0(x) · ψ(x, 0)dx

=

∫ T

0

∫
Rn

[
A0ρ(u ◦ S) · (ψt + ∇ψu) + (P (ρ) − P̃ )divψ

−μ∇uj · ∇ψ
j − λ divu divψ + A0ρ(f ◦ S) · ψ

]
dxdt.

(3.3)

Next we subtract (3.3) from (3.1), letting

z = u− u ◦ S

and noting that ψ(·, 0) = ψ(·, 0):∫
Rn

(ρ0u0 − ρ0u0) · ψ(·, 0)dx

=

∫ T

0

∫
Rn

[
ρz · (ψt + ∇ψu) + (1 −A0)ρ(u ◦ S)(ψt + ∇ψu)

+ (P (ρ) − P̃ )divψ − (P (ρ) − P̃ )divψ

− μ(∇uj · ∇ψj −∇uj · ∇ψ
j
)

− λ(divu divψ − divu divψ)

+ρ(f − f ◦ S) · ψ + (1 −A0)ρ(f ◦ S) · ψ
]
dxdt.

(3.4)

We rewrite three of the terms on the right here as follows (recall the definitions of F
and ω in (1.3)):∫∫ [

(P̃ − P (ρ))divψ + μ∇uj · ∇ψ
j
+ λ divu divψ

]
=

∫∫ [
((μ + λ)divu− P (ρ) + P̃ )divψ + μ(uj

xk
− uk

xj
)ψ

j

xk

]
= −

∫∫
(∇F · ψ + μωj,k

xk
ψ
j
)

= −
∫∫

(∇F · ψ + μωj,k
xk

ψj) + E1

=

∫∫ [
(P̃ − P (ρ))divψ + μ∇uj · ∇ψj + λ divu divψ

]
+ E1,
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where

E1 =

∫ T

0

∫ [
∇F · (ψ − ψ ◦ S−1) + μωj,k

xk
(ψj − ψj ◦ S−1)

]
dxdt.(3.5)

Defining E2 by

E2 =

∫∫ [
ρ(f − f ◦ S) · ψ + (1 −A0)ρ(f ◦ S) · ψ

]
,

we then have from (3.4) that∫
Rn

(ρ0u0 − ρ0u0) · ψ(·, 0)dx

=

∫ T

0

∫
Rn

[ρz · (ψt + ∇ψu) + (1 −A0)ρ(u ◦ S)(ψt + ∇ψu)

+ (P (ρ) − P (ρ))divψ

−μ(∇uj −∇uj) · ∇ψj − λ(divu− divu)divψ
]
dxdt

+ E1 + E2.

(3.6)

We write∫∫
ρz · [(ψt + ∇ψu) − μ(∇uj −∇uj) · ∇ψj − λ(divu− divu)divψ]

=

∫∫
z · [ρ(ψt + ∇ψu) + μΔψ + λ∇divψ] + E3 ,

where

E3 =

∫∫
(u ◦ S − u) · (μΔψ + λ∇divψ).

We then have from (3.6) that∫
Rn

(ρ0u0 − ρ0u0) · ψ(·, 0)dx

=

∫ T

0

∫
Rn

z · [ρ(ψt + ∇ψu) + μΔψ + λ∇divψ] dxdt

+

∫ T

0

∫
Rn

[(1 −A0)ρ(u ◦ S)(ψt + ∇ψu) + (P (ρ) − P (ρ))divψ] dxdt

+ E1 + E2 + E3.

(3.7)

Now extend ρ and u to be constant in t outside [0, T ], let ρδ and uδ be cor-
responding smooth approximations obtained by mollifying in both x and t, and let
ψδ : R

n × [0, T ] → R
n be the solution of the adjoint system{
ρδ(ψδ

t + ∇ψδuδ) + μΔψδ + λ∇divψδ = G,

ψδ(·, T ) = 0
(3.8)

for a given G ∈ H∞(Rn× [0, T ]). The existence of the solution ψδ is a straightforward
exercise; bounds for various of its norms are given in the following lemma.
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Lemma 3.1. There is a constant C as described in the theorem of section 1 and
independent of δ and G such that the solution ψδ of (3.8) satisfies

sup
0≤t≤T

∫
Rn

[|ψδ(x, t)|2 + |∇ψδ(x, t)|2]dx +

∫ T

0

∫
Rn

[
|ψδ

t + ∇ψδuδ|2 + |D2
xψ

δ|2
]
dxdt

≤ C

∫ T

0

∫
Rn

|G|2dxdt,

(3.9)

and there is a constant C = C(G) depending on higher derivatives of G but indepen-
dent of δ, such that

sup
0≤t≤T

‖∇ψδ(·, t)‖L∞ +

∫ T

0

∫
Rn

|ψδ|rdxdt ≤ C(G),(3.10)

where r is as in (1.11).
The proof, which is elementary, is deferred to the end of this section.
We now take ψ = ψδ in (3.7) to obtain finally that∫

Rn

(ρ0u0 − ρ0u0) · ψδ(·, 0)dx

=

∫ T

0

∫
Rn

z ·Gdxdt + E1 + E2 + E3 + E4 + E5 + E6 ,

(3.11)

where

E4 =

∫∫
z ·

[
(ρ− ρδ)ψδ

t + ∇ψδ(ρu− ρδuδ)
]
,

E5 =

∫∫
(1 −A0)ρ(u ◦ S) · (ψδ

t + ∇ψδu),

and

E6 =

∫∫
(P (ρ) − P (ρ))divψδ.

We now apply the bounds of Lemma 3.1 to estimate each of the terms E1, . . . , E6 and
the term on the left-hand side of (3.11), and then take the limit as δ → 0. First, it is
easy to see that E4 → 0 as δ → 0 and that the term on the left-hand side of (3.11) is
bounded by

‖ρ0u0 − ρ0u0‖L2

(∫∫
|G|2

)1/2

.

Next we note that, from the definition (3.2) of A0,

sup
0≤t≤T

‖1 −A0(·, t)‖L2p ≤ C‖ρ0 − ρ0‖L2p ,(3.12)

so that, if q is the Hölder conjugate of p as in (1.13)–(1.14), then the force terms E2
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are bounded by

C

[(∫∫
|f − f ◦ S|2

)1/2 (∫∫
|ψδ|2

)1/2

+ sup
t

‖ρ0 − ρ0‖L2p sup
t

(∫
|ψδ|2dx

)1/2 ∫ T

0

‖f(·, t)‖L2qdt

]

≤ C

[(∫∫
|f − f ◦ S|2

)1/2

+ ‖ρ0 − ρ0‖L2p

](∫∫
|G|2

)1/2

by (3.9).
Next we bound the term E1, disregarding the contribution of ω, which is essen-

tially identical to that of F . The argument requires that we subdivide time intervals
into smaller subintervals. Thus let J be a large positive integer and for t ∈ [0, T ]
define tj = jt/J , j = 0, . . . , J . Then

|E1| ≤
∫ T

0

∫
Rn

|∇F (x, t)| |ψδ(x, t) − ψδ(S−1(x, t), t)|dxdt

≤
∑
j

∫ T

0

∫
Rn

|∇F (x, t)| |ψδ(S−1(x, tj+1), t) − ψδ(S−1(x, tj), t)|dxdt

≤
∑
j

∫ T

0

‖∇F (·, t)‖L4‖S−1(·, tj+1) − S−1(·, tj)‖L2

×
(∫ 1

0

∫
Rn

|∇ψδ(θS−1(x, tj+1) + (1 − θ)S−1(x, tj), t)|4dxdθ
)1/4

dt.

Now, the mapping x �→ S−1(x, tj) is bi-Lipschitz on R
n, so that the inner double

integral here is bounded by

C

∫ 1

0

∫
Rn

|∇ψδ(x + θT (x), t)|4dxdθ,

where T (x) = S−1(S(x, tj), tj+1) − x. It is easy to check from the definitions (2.4)
and the condition (1.8) that ‖∇T‖L∞ is arbitrarily small if tj+1 is sufficiently close
to tj , i.e., if J is sufficiently large. The mapping x �→ x + θT (x) is then one-to-one
(and bi-Lipschitz) on R

n, so that the change of variables y = x+ θT (x) is valid. The
inner double integral above is thus bounded by C

∫
|∇ψδ(x, t)|4dx, and therefore

|E1| ≤ C

(∫∫
|z|2dxdt

)1/2 ∫ T

0

t1/2‖∇F (·, t)‖L4‖∇ψδ(·, t)‖L4dt

by Lemma 2.3(d). Finally we apply the standard Sobolev embedding H1(R3) →
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L4(R3) for n = 3 to obtain

|E1| ≤ C

(∫∫
|z|2dxdt

)1/2∫ T

0

t1/2‖∇F (·, t)‖L4

(∫
|∇ψδ|2dx

)1/8 (∫
|D2

xψ
δ|2

)3/8

dt

≤ C

(∫∫
|z|2dxdt

)1/2 (∫∫
|G|2dxdt

)1/8 (∫
t4/5‖∇F (·, t)‖8/5

L4 dt

)5/8

×
(∫∫

|D2
xψ

δ|2dxdt
)3/8

≤
(∫∫

|z|2dxdt
)1/2 (∫∫

|G|2dxdt
)1/2

(∫ T

0

β(t)dt

)5/8

,

where β(t) = Ct4/5‖∇F (·, t)‖8/5
L4 , which is in L1((0, T )) by the hypothesis (1.12). A

similar bound holds for n = 2. More generally, we can define E1(t1, t2) to be the
integral in (3.5), but with [0, T ] replaced by [t1, t2] ⊆ [0, T ]. It is then clear from the
above analysis that

|E1(t1, t2)| ≤
(∫ t2

0

∫
|z|2dxdt

)1/2 (∫ t2

0

∫
|G|2dxdt

)1/2 (∫ t2

t1

β(t)dt

)s

(3.13)

for the same β and s, where β is determined solely by the properties of (ρ, u, f) and
(ρ, u, f) and s is determined by n. In particular, C, β, and s are independent of G,
t1, and t2.

The term E3 is bounded in almost the same way as E1 (the hypothesis on the
second term in (1.12) is required here), and the bound for E5 is trivial. For E6 we
first define the divided difference

a(x, t) =

∫ 1

0

P ′(ρ(x, t) + θ(ρ(x, t) − ρ(x, t)))dθ

as in (1.16). Then for ϕ ∈ D(Rn) and at a fixed time t,∣∣∣∣
∫

Rn

[P (ρ) − P (ρ)]ϕdx

∣∣∣∣ =

∣∣∣∣
∫

Rn

a(ρ− ρ)ϕdx

∣∣∣∣
≤ ‖(ρ− ρ)(·, t)‖H−1‖aϕ‖H1

≤ C‖(ρ− ρ)(·, t)‖H−1 (‖ϕ‖H1 + ‖ϕ∇a‖L2) .

Now, for an ideal isothermal fluid, P (ρ) = Kρ, a is constant, and ∇a = 0. For more
general P we apply the hypothesis (1.16) for the case n = 3 that ∇a ∈ L3 and the
embedding H1 → L6 to obtain

‖ϕ∇a‖L2 ≤ ‖ϕ‖L6‖∇a‖L3 ≤ C‖∇ϕ‖L2 ≤ C‖ϕ‖H1 .

A similar result holds for n = 2. It follows that

‖(P (ρ) − P (ρ))(·, t)‖H−1 ≤ C‖(ρ− ρ)(·, t)‖H−1

when either P (ρ) = Kρ or for more general P when (1.16) holds. Thus in either case,

|E6| ≤
∫ T

0

‖P (ρ) − P (ρ)‖H−1‖divψδ‖H1dt

≤ CT 1/2 sup
0≤t≤T

‖(ρ− ρ)(·, t)‖H−1

(∫∫
|G|2dxdt

)1/2(3.14)
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by Lemma 3.1. In order to complete the bound for E6 we therefore need to obtain a
bound for ‖ρ− ρ‖H−1 . Again let ϕ ∈ D(Rn) so that at a fixed time,∣∣∣∣

∫
(ρ− ρ)ϕdx

∣∣∣∣ =

∣∣∣∣
∫

[ρϕ− (ρ ◦ S)(ϕ ◦ S)|det∇S|] dx
∣∣∣∣

=

∣∣∣∣
∫

ρ(ϕ−A0(ϕ ◦ S))dx

∣∣∣∣
≤

∫
ρ|ϕ− ϕ ◦ S|dx +

∫
ρ|ϕ ◦ S| |1 −A0|dx

by Lemma 2.3(c) and the definition (3.2). An argument similar to that given above
in the bound for E1 shows that the first term on the right here is bounded by

Ct1/2
(∫∫

|z|2dxdt
)1/2 (∫

|∇ϕ|2dx
)1/2

,

and the second term is clearly bounded by C‖ρ0 − ρ0‖L2‖ϕ‖L2 , by (3.12). We thus
obtain that

sup
0≤t≤T

‖(ρ− ρ)(·, t)‖H−1 ≤ C

[
‖ρ0 − ρ0‖L2 + T 1/2

(∫∫
|z|2dxdt

)1/2
]
,(3.15)

and, substituting into (3.14), that

|E6| ≤ CT 1/2

[
‖ρ0 − ρ0‖L2 +

(∫∫
|z|2dxdt

)1/2
](∫∫

|G|2dxdt
)1/2

.

Combining all the above bounds, we conclude from (3.11) that

∣∣∣∣∣
∫ T

0

∫
z ·Gdxdt

∣∣∣∣∣ ≤ C

⎡
⎣M0

(∫ T

0

∫
|G|2dxdt

)1/2

+ E1(0, T )

⎤
⎦ ,(3.16)

where

M0 = ‖ρ0 − ρ0‖L2∩L2p + ‖ρ0u0 − ρ0u0‖L2

+

(∫ T

0

∫
|f − f ◦ S|2dxdt

)1/2

+ T 1/2

(∫ T

0

∫
|z|2dxdt

)1/2

,

E1 is as in (3.13), and C is now fixed.
We note that (3.16) holds with T replaced by any time τ ≤ T with the same

constant C, and we recall that β and s in (3.13) are fixed and are independent of G. To

complete the bound for z we therefore choose a time τ > 0 so that
(∫ t2

t1
β
)s ≤ 1/(2C)

when 0 ≤ t2 − t1 ≤ τ . Then applying (3.16) with T replaced by τ and bounding
E1(0, τ) as in (3.13), we obtain that

(∫ τ

0

∫
|z|2dxdt

)1/2

≤ 2CM0
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and as a consequence that

|E1(0, τ)| ≤ M0

(∫ τ

0

∫
|G|2dxdt

)1/2

for any G, again by (3.13). We now apply (3.16) with T replaced by 2τ :

∣∣∣∣
∫ 2τ

0

∫
z ·Gdxdt

∣∣∣∣ ≤ CM0

(∫ 2τ

0

∫
|G|2dxdt

)1/2

+ C[E1(0, τ) + E1(τ, 2τ)]

≤ 2CM0

(∫ 2τ

0

∫
|G|2dxdt

)1/2

+ C

(∫ 2τ

0

∫
|z|2dxdt

)1/2 (∫ 2τ

0

∫
|G|2dxdt

)1/2

· (2C)−1

by (3.13), so that

(∫ 2τ

0

∫
|z|2dxdt

)1/2

≤ 4CM0.

Since τ > 0 is fixed, we can exhaust [0, T ] in a finite number of such steps to obtain

that
(∫ T

0

∫
|z|2

)1/2

≤ CM0 for a new constant C. The term T 1/2
(∫ T

0

∫
|z|2

)1/2

can

then be eliminated from the definition of M0 by a Gronwall-type argument. This
together with (3.15) then proves the required bound (1.15), but with u − u replaced
by z = u− u ◦ S. However, by Lemma 2.3(d) and the assumed bound for the second
term in (1.12),∫∫

|u− u ◦ S|2dxdt ≤
∫

‖∇u(·, t)‖2
L∞

∫
|x− S(x, t)|2dxdt

≤ C

(∫
t‖∇u(·, t)‖2

L∞dt

)(∫∫
|z|2dxdt

)

≤ C

∫∫
|z|2dxdt,

which has just been shown to satisfy the bound in (1.15). This completes the proof
of the theorem.

Proof of Lemma 3.1. We omit the superscripts. Multiplying the differential
equation in (3.8) by ψj and adding the equation 1

2 |ψ|2(ρt + div(ρu)) = 0, we obtain(
1
2 ρ|ψ|2

)
t
+ div

(
1
2 ρ|ψ|2u

)
+ ψ · (μΔψ + λ∇divψ) = ψ ·G,

from which it follows easily that

sup
0≤t≤T

∫
|ψ(x, t)|2dx +

∫ T

0

∫
Rn

|∇ψ|2dxdt ≤ C

∫ T

0

∫
Rn

|G|2dxdt,

since C−1 ≤ ρ ≤ C. Next, writing ψ̇ = ψt + ∇ψu, we obtain from (3.8) that

ρ|ψ̇|2 +
(

1
2μ|Δψ|2 + 1

2 λ(divψ)2
)

+ {. . . }x ≤ ψ ·G + C|∇ψ|2|∇u|,
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so that

sup
0≤t≤T

∫
|∇ψ(x, t)|2dx +

∫ T

0

∫
|ψ̇|2dxdt ≤ C

∫ T

0

∫
|G|2dxdt(3.17)

since ∇u ∈ L1((0, T );L∞(Rn)) by (1.8). It then follows from (3.8) that∫∫
|μΔψ + λ divψ|2dxdt ≤ C

∫∫
|G|2dxdt

and therefore that ∫∫
|D2

xψ|2dxdt ≤ C

∫∫
|G|2dxdt

because the operator μΔ + λ∇div is elliptic. This proves (3.9). The a priori bound
required for the proof of (3.10) is similar but slightly more technical: we take the
convective derivative in (3.8) then multiply by sgn(ψ̇j)|ψ̇j |s−1, where s > n, to obtain
a bound for supt

∫
|ψ̇|sdx. This gives a bound for supt

∫
|D2

xψ|sdx, as above, hence a
bound for supt ‖∇ψ(·, t)‖L∞ .
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Abstract. A nonlinear fourth-order parabolic equation with nonhomogeneous Dirichlet–Neu-
mann boundary conditions in one space dimension is analyzed. This equation appears, for instance,
in quantum semiconductor modeling. The existence and uniqueness of strictly positive classical
solutions to the stationary problem are shown. Furthermore, the existence of global nonnegative weak
solutions to the transient problem is proved. The proof is based on an exponential transformation
of variables and new “entropy” estimates. Moreover, it is proved by the entropy–entropy production
method that the transient solution converges exponentially fast to its steady state in the L1 norm as
time goes to infinity, under the condition that the logarithm of the steady state is concave. Numerical
examples show that this condition seems to be purely technical.
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1. Introduction. In recent years, the nonlinear fourth-order parabolic equation

ut + (u(log u)xx)xx = 0, u(·, 0) = uI ≥ 0 in Ω, t > 0,(1.1)

in a bounded interval Ω = (0, 1) with periodic or Dirichlet–Neumann boundary condi-
tions or in the whole space Ω = R, has attracted the interest of many mathematicians
since it possesses some interesting mathematical properties. For instance, the solu-
tions are nonnegative, there are several Lyapunov functionals, and related logarithmic
Sobolev inequalities can be derived [4, 10].

Equation (1.1) was first derived in the context of fluctuations of a stationary
nonequilibrium interface [9]. It also appears as an approximation of the so-called quan-
tum drift-diffusion model for semiconductors [1], which can be derived by a quantum
moment method from a Wigner-BGK (Bhatnagar–Gross–Krook) equation [8]. More
precisely, the quantum drift-diffusion model for the electron density u and the electron
current density J reads as

ut − Jx = 0, J = −ε2

2
u

(
(
√
u)xx√
u

)
x

+ Tux + uE,

where ε is the scaled Planck constant, T the temperature, and E = E(x, t) the
electric field. Then (1.1) follows from this equation for ε = 1, zero temperature, and
zero electric field since u((

√
u)xx/

√
u)x = 2(u(log u)xx)x.
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The first analytical result for (1.1) has been presented in [4]; more precisely, the
existence of local-in-time positive classical solutions with periodic boundary conditions
has been proved. This result has been generalized to global nonnegative weak solutions
in [10]. The existence of global weak periodic solutions in several space dimensions
has been proved very recently employing Wasserstein space techniques [12].

In quantum semiconductor modeling, Dirichlet–Neumann boundary conditions of
the type

u(0, t) = u(1, t) = 1, ux(0, t) = ux(1, t) = 0, t > 0,(1.2)

have been employed to model resonant tunneling diodes in Ω = (0, 1) [14]. Here,
the function u(x, t) signifies the (nonnegative) electron density in the semiconductor
device. The existence of global weak solutions to (1.1)–(1.2) has been proved in [13].

The boundary conditions (1.2) simplify the analysis considerably. Indeed, one of
the main ideas of the existence proof is to employ an exponential transformation of
variables, u = ey. In the new variable y, the boundary conditions are homogeneous.
Thus, using, for instance, the test function y in the weak formulation of (1.1), no
integrals with boundary data appear.

The boundary conditions (1.2) follow from physical considerations like the charge
neutrality at the boundary contacts, i.e., u−C = 0 at x = 0, 1, where C = C(x) mod-
els fixed background charges. Numerical results show that the Neumann boundary
conditions for the density u should be nonhomogeneous for ultrasmall semiconductor
devices (see section 4 in [16]). Moreover, when the values of the doping profile C(x)
are different at the contacts, the Dirichlet boundary conditions satisfy u(0, t) �= u(1, t).
Therefore, we wish to study the more general nonhomogeneous boundary conditions

u(0, t) = u0, u(1, t) = u1, ux(0, t) = w0, ux(1, t) = w1, t > 0,(1.3)

where u0, u1 > 0 and w0, w1 ∈ R. The treatment of the nonhomogeneities is also
interesting from a mathematical point of view. Indeed, almost all results for (1.1)
(and for related fourth-order equations like the thin-film model [3]) are shown only
for periodic or no-flux boundary conditions or for whole-space problems, in order
to avoid integrals with boundary data. In this paper, we show how to deal with
nonhomogeneous boundary conditions for (1.1).

More precisely, we show (i) the existence and uniqueness of a classical positive
solution u∞ to the stationary problem corresponding to (1.1), (ii) the existence of
global nonnegative weak solutions u(·, t) to the transient problem (1.1), (1.3), and
(iii) the exponential convergence of u(·, t) to its steady state u∞ as t → ∞ in the L1

norm, under the assumption that the boundary data is such that log u∞ is concave.
The long-time behavior is illustrated by numerical experiments. Notice that this is
the first result of the stationary problem corresponding to (1.1) in the literature (if
(1.2) or periodic boundary conditions are assumed, the steady state is constant). We
also remark that the Wasserstein techniques of [12] cannot be applied to (1.1), (1.3)
since this technique relies on the conservation of the L1 norm which is not the case
here.

The long-time behavior of solutions to (1.1) has been studied for periodic bound-
ary conditions [5, 10] and for the boundary conditions (1.2) [15]. In particular, it
could be shown that the solutions converge exponentially fast to their (constant)
steady states. The decay rate has been numerically computed in [6]. No results are
available up to now for the case of the nonhomogeneous boundary conditions (1.3).
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Our first main result is the existence and uniqueness of stationary solutions needed
in the existence proof for the transient problem.

Theorem 1.1. Let u0, u1 > 0 and w0, w1 ∈ R. Then there exists a unique
classical solution u ∈ C∞([0, 1]) to

(u(log u)xx)xx = 0 in (0, 1), u(0) = u0, u(1) = u1,(1.4)

ux(0) = w0, ux(1) = w1,

satisfying u(x) ≥ m > 0 for all x ∈ [0, 1], and the constant m > 0 depends only on
the boundary data.

The existence proof is based on a fixed-point argument and appropriate a priori
estimates, using the structure of the equation and the one-dimensionality heavily.
More precisely, we perform the exponential transformation u = ey and write the
equation in (1.4) as yxx = (ax + b)e−y for some a, b ∈ R. The key point is to
derive uniform bounds on a and b. This implies a uniform H1 bound for y and, in
view of the one-dimensionality, a uniform L∞ bound for y = log u, hence showing the
positivity of u. For the uniqueness we employ a monotonicity property of the operator√
u �→ −(u(log u)xx)xx/(2

√
u) for suitable functions u (the monotonicity property was

first observed in [13]).
The second main result is the existence of solutions to the transient problem. For

simplicity, we consider time-independent boundary data only.
Theorem 1.2. Let u0, u1 > 0 and w0, w1 ∈ R. Let uI(x) ≥ 0 be integrable

such that
∫ 1

0
(uI − log uI)dx < ∞. Then there exists a weak solution u to (1.1), (1.3)

satisfying u(x, t) ≥ 0 in (0, 1) × (0,∞) and

u ∈ L
5/2
loc (0,∞;W 1,1(0, 1)) ∩W

1,10/9
loc (0,∞;H−2(0, 1)), log u ∈ L2

loc(0,∞;H2(0, 1)).

For the proof of this theorem we semidiscretize (1.1) in time and solve at each time
step a nonlinear elliptic problem. The main difficulty is to obtain uniform estimates.
The idea of [13] is to derive these estimates from a special Lyapunov functional,

E1(t) =

∫ 1

0

(
u

u∞
− log

u

u∞

)
dx,

which is also called an “entropy” functional. Indeed, a formal computation (made
precise in section 3) shows that

dE1

dt
+

∫ 1

0

(log u)2xxdx =

∫ 1

0

u(log u)xx

(
1

u∞

)
xx

dx,(1.5)

implying that E1 is nonincreasing if (1/u∞)xx = 0, which is the case in [13] where
u∞ = const holds. However, in the general case (1/u∞)xx �= 0, the right-hand side of
(1.5) still needs to be estimated.

The key idea is to employ the new “entropy”

E2(t) =

∫ 1

0

(
√
u−√

u∞)2dx.

A formal computation yields

dE2

dt
+ 2

∫ 1

0

(
4

√
u∞
u

(
√
u)xx − 4

√
u

u∞
(
√
u∞)xx

)2

dx = 0.(1.6)
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With this estimate the right-hand side of (1.5) can be treated. Indeed, the above
entropy production integral allows us to find the bound∫ 1

0

(√
u(log u)2xx + ( 8

√
u)4x

)
dx ≤ c(1.7)

for some constant c > 0 depending only on the boundary data; see Lemma 3.2 for
details. (Here and in the following, the notation (f(u))4x means [(f(u))x]4.) Then,
using Young’s inequality, the right-hand side of (1.5) is bounded from above by∫ 1

0

√
u(log u)2xxdx + ‖1/u2

∞‖W 2,∞(0,1)

∫ 1

0

u3/2dx,

which is bounded in view of (1.7). We stress the fact that this idea is new in the
literature.

The above estimates are only valid if u is nonnegative. However, no maximum
principle is generally available for fourth-order equations. We prove the nonnegativity
property by employing the same idea as in the stationary case: after introducing an
exponential variable u = ey, we obtain a uniform H2 bound by (1.5) and (1.7) and
hence an L∞ bound for y = log u, which shows that u is positive. Letting the
parameter of the time discretization tend to zero, we conclude the nonnegativity of u.

We notice that, interestingly, the new entropy E2 is connected with the mono-
tonicity property of

√
u �→ −(u(log u)xx)xx/(2

√
u) since the proof of this property

also relies on the estimate (1.6) (see Lemma 2.3 in [13] and (2.7) below).
The physical (relative) entropy

E3(t) =

∫ 1

0

(
u log

u

u∞
− u + u∞

)
dx

is still another Lyapunov functional. It is used in the proof of the long-time behavior
of solutions, which is our final main result.

Theorem 1.3. Let the assumptions of Theorem 1.2 hold and let
∫ 1

0
uI(log uI −

1)dx < ∞. Let u be the solution to (1.1), (1.3) constructed in Theorem 1.2 and let
u∞ be the unique solution to (1.4). We assume that the boundary data is such that
log u∞ is concave. Then there exist constants c, λ > 0 depending only on the boundary
and initial data such that for all t > 0,

‖u(·, t) − u∞‖L1(0,1) ≤ ce−λt.

In order to prove this result, we take formally the time derivative of the rela-
tive entropy E3. It can be shown (see section 4 for details) that the assumption
(log u∞)xx ≤ 0 allows us to derive

dE3

dt
+ P ≤ 0,

where P ≥ 0 denotes the entropy production term involving second derivatives of u.
This term can be estimated similarly as in [15] in terms of the entropy yielding

dE3

dt
+ 2λE3 ≤ 0

for some λ > 0. Gronwall’s inequality implies the exponential convergence in terms
of the relative entropy. A Csiszar–Kullback-type inequality then gives the assertion.
The assumption on the concavity of log u∞ can be slightly relaxed (see Remark 4.4).



A NONLINEAR FOURTH-ORDER PARABOLIC EQUATION 1765

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.1. Then the existence of transient solutions (Theorem 1.2) is shown in section 3.
Theorem 1.3 is proved in section 4, and finally in section 5, some numerical results
are presented.

2. Existence and uniqueness of stationary solutions. In this section we
will prove Theorem 1.1. First, we perform the transformation of variables y = log u
and consider the problem

(eyyxx)xx = 0 in (0, 1), y(0) = y0, y(1) = y1, yx(0) = α, yx(1) = β,(2.1)

where y0 = log u0, y1 = log u1, α = w0/u0, and β = w1/u1. Clearly, any classical
solution of (2.1) is a positive classical solution of (1.4). We show first some a priori
estimates for the solution of (2.1).

Lemma 2.1. Let y be a classical solution to (2.1). Then

y(x) ≤ M := max{y0, y1} + |α| + |β|.(2.2)

Proof. First we observe that there exist constants a, b ∈ R such that y solves the
equation yxx = (ax + b)e−y. This implies that yxx can change its sign at most once.
In the following we consider several cases for the sign of yxx(0) and yxx(1).

First case. Let yxx(0) ≥ 0 and yxx(1) ≥ 0. Since yxx can change the sign at most
once it follows that yxx ≥ 0 in (0, 1). We conclude that y(x) ≤ max{y0, y1} for all
x ∈ [0, 1].

Second case. Let yxx(0) ≥ 0 and yxx(1) < 0. There exists x1 ∈ [0, 1) such that
yxx(x1) = 0. Therefore, ax+ b ≥ 0 for all x ∈ [0, x1] and ax+ b ≤ 0 for all x ∈ [x1, 1].
A Taylor expansion gives for all x ∈ [x1, 1]

y(x) = y(1) + yx(1)(x− 1) +

∫ 1

x

(s− x)yxx(s)ds

= y1 + β(x− 1) +

∫ 1

x

(s− x)(as + b)e−y(s)ds ≤ max{y0, y1} + |β|.

We claim that y(x) ≤ max{y0, y1}+|β| holds for all x ∈ [0, x1]. For this, let x2 ∈ [0, x1]
be such that y(x2) = max{y(x) : x ∈ [0, x1]}. Suppose that y(x2) > max{y0, y1} +
|β|. Then x2 ∈ (0, x1) and, since y(x) reaches a maximum at the interior point x2,
yxx(x2) ≤ 0. Since x2 ∈ (0, x1), we have yxx(x2) = (ax2 + b)e−y(x2) ≥ 0. This shows
that yxx(x2) = 0. But then yxx(x2) = (ax2 +b)e−y(x2) implies that ax2 +b = 0. Since
also ax1 + b = 0, it follows that a = b = 0 and thus yxx(x) = 0 for all x ∈ [0, 1]; this
is a contradiction to yxx(1) < 1. Hence, y(x) ≤ max{y0, y1} + |β| for all x ∈ [0, 1].

Third case. Let yxx(0) < 0 and yxx(1) ≥ 0. By similar arguments as in the second
case, it can be shown that y(x) ≤ max{y0, y1} + |α| for all x ∈ [0, 1].

Fourth case. Let yxx(0) < 0 and yxx(1) < 0. This implies that ax + b < 0 for all
x ∈ [0, 1] and, by a Taylor expansion,

y(x) = y0 + αx +

∫ x

0

(x− s)(as + b)e−y(s)ds ≤ y0 + |α|, x ∈ [0, 1].

The lemma is proved.
Lemma 2.2. Let y be a classical solution to (2.1). Then there exists a constant

K > 0 depending only on y0, y1, α, and β such that

‖y‖H2(0,1) ≤ K.



1766 M. P. GUALDANI, A. JÜNGEL, AND G. TOSCANI

Proof. There exist constants a, b ∈ R such that y solves the equation

yxx = (ax + b)e−y in (0, 1),(2.3)

and b = ey0yxx(0), a = ey1yxx(1) − ey0yxx(0). In order to obtain a uniform estimate
for yxx we first have to find uniform estimates for a and b. For this, we multiply (2.3)
by y2

x and integrate over (0, 1):∫ 1

0

(ax + b)e−yy2
xdx =

∫ 1

0

yxxy
2
xdx =

1

3

∫ 1

0

(y3
x)xdx =

1

3
(β3 − α3).

Next we multiply (2.3) by yxx, integrate over (0, 1), integrate by parts, and use the
above equality:∫ 1

0

y2
xxdx =

∫ 1

0

(ax + b)e−yyxxdx

=

∫ 1

0

(ax + b)e−yy2
xdx− a

∫ 1

0

e−yyxdx + [(ax + b)e−y(x)yx(x)]10

=
1

3
(β3 − α3) + a(e−y1 − e−y0) + (a + b)e−y1β − be−y0α.

By Young’s inequality this becomes∫ 1

0

y2
xxdx ≤ C +

1

60
e−2Ma2 +

1

12
e−2Mb2,(2.4)

where C := (β3−α3)/3+15e2M ((1+β)e−y1 −e−y0)2+3e2M (βe−y1 −αe−y0)2. Taking
the square of (2.3) and integrating over (0, 1) yields, by Lemma 2.1,∫ 1

0

y2
xxdx =

∫ 1

0

(ax + b)2e−2ydx ≥ e−2M

∫ 1

0

(ax + b)2dx

=
1

3
e−2M (a2 + 3ab + 3b2) ≥ 1

3
e−2M

(
a2

10
+

b2

2

)
,(2.5)

where we have used the Young inequality 3ab ≥ −9a2/10 − 5b2/2. Putting together
(2.4) and (2.5), we obtain

a2

10
+

b2

2
≤ 3e2M

∫ 1

0

y2
xxdx ≤ 3e2MC +

a2

20
+

b2

4
.(2.6)

Therefore, a and b are bounded by a constant which depends only on y0, y1, α, and
β. By (2.4) this gives a uniform estimate for ‖yxx‖L2(0,1) and, employing Poincaré’s
inequality, also for ‖y‖H2(0,1).

Proof of Theorem 1.1. We wish to employ the Leray–Schauder fixed-point the-
orem. For this let σ ∈ [0, 1] and z ∈ H1(0, 1) and let y ∈ H2(0, 1) be the unique
solution of

(ezyxx)xx = 0 in (0, 1), y(0) = σy0, y(1) = σy1, yx(0) = σα, yx(1) = σβ.

This defines a fixed-point operator S : H1(0, 1) × [0, 1] → H1(0, 1), S(z, σ) = y.
Clearly, S(z, 0) = 0 for all z. Moreover, by standard arguments, S is continuous and
compact, since the embedding H2(0, 1) ↪→ H1(0, 1) is compact. It remains to show
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that there exists a constant K > 0 such that for all σ ∈ [0, 1] and for any fixed point y
of S(·, σ), the estimate ‖y‖H1(0,1) ≤ K holds. Lemma 2.2 settles the case σ = 1. For
σ < 1, a similar proof as in Lemma 2.2 shows the existence of a constant K > 0 such
that ‖y‖H2(0,1) ≤ K holds. By the Leray–Schauder theorem, this proves the existence
of a solution y ∈ H2(0, 1) to (2.1).

Actually, the solution y is a classical solution. Indeed, y satisfies yxx = (ax +
b)e−y ∈ H2(0, 1) for some a, b ∈ R, and hence, y ∈ H4(0, 1). By bootstrapping,
y ∈ Hn(0, 1) for all n ∈ N and y is a classical solution.

In order to prove the uniqueness of solutions, we extend an idea of [13]. Let
u1 and u2 be two positive classical solutions to (1.4). We multiply (1.4) for u1 by
1−

√
u2/u1 and (1.4) for u2 by

√
u1/u2 − 1, integrate, and take the difference. This

yields, by integrating by parts,

0 =

∫ 1

0

[
(u1(log u1)xx)xx(1 −

√
u2/u1) − (u2(log u2)xx)xx(

√
u1/u2 − 1)

]
dx(2.7)

= 2

∫ 1

0

[
(
√
u1)xxxx − 1

√
u1

(
√
u1)

2
xx − (

√
u2)xxxx

+
1

√
u2

(
√
u2)

2
xx

]
(
√
u1 −

√
u2)dx

= 2

∫ 1

0

[
((
√
u1)xx − (

√
u2)xx)(

√
u1 −

√
u2)xx

− (
√
u1)

2
xx

(
1 −

√
u2

u1

)
+ (

√
u2)

2
xx

(√
u1

u2
− 1

) ]
dx

= 2

∫ 1

0

(
4

√
u2

u1
(
√
u1)xx − 4

√
u1

u2
(
√
u2)xx

)2

.

Therefore,

0 = 4

√
u2

u1
(
√
u1)xx − 4

√
u1

u2
(
√
u2)xx in (0, 1).

Writing u1 = ey1 and u2 = ey2 , this identity is equal to

0 = e(y2−y1)/4(ey1/2)xx − e(y1−y2)/4(ey2/2)xx

=
1

2
e(y2+y1)/4

(
y1,xx +

1

2
y2
1,x

)
− 1

2
e(y1+y2)/4

(
y2,xx +

1

2
y2
2,x

)
,

and hence

y1,xx − y2,xx = −1

2
(y2

1,x − y2
2,x) in (0, 1).(2.8)

We integrate this equation over (0, x0), use the boundary condition y1x(0) = y2x(0),
and take the supremum,

‖(y1 − y2)x‖L∞(0,x0) ≤
∫ x0

0

|(y1 + y2)x| · |(y1 − y2)x|dx ≤ x0L‖(y1 − y2)x‖L∞(0,x0),

where L = ‖y1,x‖L∞(0,1)+‖y2,x‖L∞(0,1). Choosing x0 = 1/2L gives (y1−y2)x = 0 and
hence y1 − y2 = 0 in [0, x0]. In particular, (y1 − y2)x(x0) = 0. Therefore, integrating
(2.8) over (x0, 2x0) we obtain by the same arguments that y1 − y2 = 0 in [x0, 2x0].
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After a finite number of steps we achieve y1 − y2 = 0 in [0, 1]. This proves the
uniqueness of solutions.

Remark 2.3. Equation (2.3) with y(0) = y(1) and yx(0) = −yx(1) ≤ 0 is formally
related to a combustion problem. Indeed, the boundary conditions imply that y is
symmetric around x = 1

2 and that y(x) ≤ y(0) = y0 holds for any x ∈ [0, 1]. The
symmetry implies further a = ey0(yxx(1)−yxx(0)) = 0 and moreover, b = ey0yxx(0) ≥
0. Thus we can write (2.3) as yxx = be−y or, introducing z(x) = −y(x),

zxx + bez = 0 in (0, 1), z(0) = z(1) = −y0.

This is the solid fuel ignition model of [2]. It is well known that there exists b∗ > 0
such that this problem has exactly two solutions if b ∈ (0, b∗), it has exactly one
solution if b = b∗, and it has no solution if b > b∗ [2, 11]. This relation provides
a better bound for b (for the above special boundary conditions) than the estimate
(2.6). Indeed, a = 0 and b is uniformly bounded by a number b∗ > 0 independently of
the boundary conditions (and depending only on the domain (0, 1)).

3. Existence of transient solutions. In order to prove Theorem 1.2 we again
perform the exponential change of unknowns and we semidiscretize (1.1) in time. For
this, we divide the time interval (0, T ] for some T > 0 into N subintervals (tk−1, tk],
with k = 1, . . . , N , where 0 = t0 < · · · < tN = T . Define τk = tk − tk−1 > 0 and
τ = max{τk : k = 1, . . . , N}. We assume that τ → 0 as N → ∞.

Let u∞ > 0 be the unique classical solution to (1.4) and set y∞ = log u∞.
We perform the transformation z = log(u/u∞) and z0 = log(uI/u∞). For given
k ∈ {1, . . . , N} and zk−1 we first solve the semidiscrete problem

ey∞

τk
(ezk − ezk−1) = −

(
ezk+y∞(zk + y∞)xx

)
xx

, zk ∈ H2
0 (0, 1).(3.1)

Proposition 3.1. For each k = 1, . . . , N , there exists a unique weak solution
zk ∈ H2

0 (0, 1) to (3.1).
For the proof of this proposition we first show some a priori estimates.
Lemma 3.2. Let zk ∈ H2

0 (0, 1) be a weak solution to (3.1). Then there exists a
constant c > 0 depending only on T, uI , and u∞ such that

‖ezk/2‖L2(0,1) ≤ c,(3.2)

N∑
i=1

τi

∫ 1

0

ezi/2
(
(zi + y∞)2xx + (zi + y∞)4x

)
≤ c,(3.3)

N∑
i=1

τi‖ezi‖L∞(0,1) ≤ c.(3.4)

Proof. Similarly as in the uniqueness proof of Theorem 1.1 we use the test func-
tions 1 − e−zk/2 ∈ H2

0 (0, 1) in the weak formulation of the semidiscretized equation
(3.1) and ezk/2−1 ∈ H2

0 (0, 1) in the weak formulation of the stationary equation (1.4)
and take the sum of the corresponding equations:

1

τk

∫ 1

0

ey∞(ezk − ezk−1)(1 − e−zk/2)dx =

∫ 1

0

ezk+y∞(zk + y∞)xx(e−zk/2)xxdx

+

∫ 1

0

ey∞y∞,xx(ezk/2)xxdx.(3.5)
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The right-hand side is equal to the first integral in (2.7) with u1 = ezk+y∞ and
u2 = ey∞ . Therefore, the right-hand side is equal to the expression

−2

∫ 1

0

(
e−zk/4(e(zk+y∞)/2)xx − ezk/4(ey∞/2)xx

)2

dx.

For the left-hand side of (3.5) we write

1

τk

∫ 1

0

ey∞(ezk − ezk−1)(1 − e−zk/2)dx

=
1

τk

∫ 1

0

ey∞((ezk/2 − 1)2 − (ezk−1/2 − 1)2)dx +
1

τk

∫ 1

0

ey∞(ezk/4 − ezk−1/2−zk/4)2dx

≥ 1

τk

∫ 1

0

ey∞
(
(ezk/2 − 1)2 − (ezk−1/2 − 1)2

)
dx.

Therefore, we conclude from (3.5), for all k = 1, . . . , N ,

1

τk

∫ 1

0

ey∞(ezk/2 − 1)2dx + 2

∫ 1

0

(
e−zk/4(e(zk+y∞)/2)xx − ezk/4(ey∞/2)xx

)2

dx

≤ 1

τk

∫ 1

0

ey∞(ezk−1/2 − 1)2dx.(3.6)

This yields∫ 1

0

ey∞(ezk/2 − 1)2dx ≤
∫ 1

0

ey∞(ez0/2 − 1)2dx =

∫ 1

0

(
√
uI −

√
u∞)2dx < ∞(3.7)

and thus (3.2). Moreover, after summing up (3.6),

2
k∑

i=1

τi

∫ 1

0

(
e−zi/4(e(zi+y∞)/2)xx − ezi/4(ey∞/2)xx

)2

dx ≤
∫ 1

0

ey∞(ez0/2 − 1)2dx.

Young’s inequality gives

4

k∑
i=1

τi

∫ 1

0

e−zi/2
(
e(zi+y∞)/2

)2

xx
dx ≤ c + c

k∑
i=1

τi

∫ 1

0

ezi/2dx,

where here and in the following, c > 0 denotes a generic constant depending only on
T , uI , and u∞. In view of (3.7), the right-hand side is uniformly bounded. Hence

k∑
i=1

τi

∫ 1

0

e−(zi+y∞)/2
(
e(zi+y∞)/2

)2

xx
dx

≤ ‖ey∞/2‖L∞(0,1)

k∑
i=1

τi

∫ 1

0

e−zi/2
(
e(zi+y∞)/2

)2

xx
dx ≤ c.

Now the assertion (3.3) follows since, by integration by parts,

∫ 1

0

eu/2u2
xuxxdx = −1

6

∫ 1

0

eu/2u4
x +

1

3
(eu(1)/2ux(1)3 − eu(0)/2ux(0)3)
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for all u ∈ H2(0, 1), and hence,∫ 1

0

e−(zi+y∞)/2
(
e(zi+y∞)/2

)2

xx
dx

=
1

4

∫ 1

0

e(zi+y∞)/2

(
(zi + y∞)2xx +

1

4
(zi + y∞)4x + (zi + y∞)xx(zi + y∞)2x

)
dx

=
1

4

∫ 1

0

e(zi+y∞)/2

(
(zi + y∞)2xx +

1

12
(zi + y∞)4x

)
dx +

1

12
(ey1/2β3 − ey0/2α3).

Finally, (3.4) is a consequence of (3.3) and the Poincaré–Sobolev inequality since∫ 1

0

ezi/2(zi)
4
xdx = 84

∫ 1

0

(ezi/8)4x ≥ c‖ezi/8‖4
L∞(0,1).

This shows the lemma.
Lemma 3.3. Let zk ∈ H2

0 (0, 1) be a weak solution to (3.1). Then there exists a
constant c > 0 depending only on T , uI , and u∞ such that∫ 1

0

(ezk − zk)dx +

k∑
i=1

τi

∫ 1

0

(zi + y∞)2xxdx ≤ c.(3.8)

Proof. We choose the test function e−y∞(1− e−zk) ∈ H2
0 (0, 1) in the weak formu-

lation of (3.1). Then, by Young’s inequality,∫ 1

0

(ezk − ezk−1)(1 − e−zk)dx

= −τk

∫ 1

0

ezk(zk + y∞)xx(y2
∞,x − y∞,xx)dx− τk

∫ 1

0

(zk + y∞)2xxdx

+ τk

∫ 1

0

(zk + y∞)2x(zk + y∞)xxdx

≤ τk

∫ 1

0

ezk/2(zk + y∞)2xxdx + τk

∫ 1

0

e3zk/2(y2
∞,x − y∞,xx)2dx

− τk

∫ 1

0

(zk + y∞)2xxdx +
τk
3

(β3 − α3).

In view of (3.3) and (3.4), the right-hand side is uniformly bounded. The left-hand
side can be estimated by∫ 1

0

(ezk − ezk−1)(1 − e−zk)dx ≥
∫ 1

0

(ezk − zk)dx−
∫ 1

0

(ezk−1 − zk−1)dx,

which is a consequence of the elementary inequality ex − 1 ≥ x for all x ∈ R. Thus,
(3.8) is proved.

Proof of Proposition 3.1. The existence of a solution to (3.1) is shown by the
Leray–Schauder fixed-point theorem. For this, let k ∈ {1, . . . , N} and zk−1 be given.
Furthermore, let w ∈ H1(0, 1) and σ ∈ [0, 1], and define the linear forms

a(z, φ) =

∫ 1

0

ew+y∞zxxφxxdx,

F (φ) = − 1

τk

∫ 1

0

ey∞(ew − ezk−1)φdx−
∫ 1

0

ew+y∞y∞,xxφxxdx,
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where φ ∈ H2
0 (0, 1). Consider the linear problem

a(z, φ) = σF (φ) for all φ ∈ H2
0 (0, 1).

By the Lax–Milgram lemma, there exists a unique solution z ∈ H2
0 (0, 1) to this prob-

lem. This defines the fixed-point operator S : H1(0, 1)×[0, 1] → H1(0, 1), S(w, σ) = z.
It is not difficult to show that S is continuous and compact, since the embedding
H2

0 (0, 1) ↪→ H1(0, 1) is compact. Moreover, S(w, 0) = 0 for all w ∈ H1(0, 1). It re-
mains to prove that any fixed point of S satisfies a uniform bound in H1(0, 1). In fact,
Lemma 3.3 shows that any fixed point z ∈ H2

0 (0, 1) is uniformly bounded if σ = 1.
The estimate for σ < 1 is similar (and, in fact, independent of σ). This provides the
wanted bound in H1(0, 1), and the Leray–Schauder theorem can be applied to yield
the existence of a solution to (3.1).

For the proof of Theorem 1.2 we need some more uniform estimates. Let z(N) be
defined by z(N)(x, t) = zk(x) if t ∈ (tk−1, tk], x ∈ (0, 1).

Lemma 3.4. The following estimates hold:

‖z(N)‖L∞(0,T ;L1(0,1)) + ‖z(N)‖L2(0,T ;H2(0,1)) ≤ c,(3.9)

‖z(N)‖L5/2(0,T ;W 1,∞(0,1)) + ‖ez(N)‖L5/2(0,T ;W 1,1(0,1)) ≤ c,(3.10)

where c > 0 depends only on uI and the boundary data.
Proof. The inequality ex − x ≥ |x| for all x ∈ R and the estimate (3.8) imply

that z(N) is uniformly bounded in L∞(0, T ;L1(0, 1)) which, together with (3.8), shows
(3.9). Then, using the Poincaré and Gagliardo–Nirenberg inequalities, we obtain from
(3.8)

‖z(N)‖L5/2(0,T ;W 1,∞(0,1)) ≤ c‖z(N)
x ‖L5/2(0,T ;L∞(0,1))

≤ c‖z(N)‖1/5
L∞(0,T ;L1(0,1))‖z

(N)‖4/5
L2(0,T ;H2(0,1)) ≤ c.

This estimate, (3.2), and the first bound in (3.9) imply (3.10) since

‖ez(N)‖L5/2(0,T ;W 1,1(0,1)) ≤ c
(
‖ez(N)‖L5/2(0,T ;L1(0,1)) + ‖(ez(N)

)x‖L5/2(0,T ;L1(0,1))

)
≤ c‖ez(N)‖L5/2(0,T ;L1(0,1))

+ c‖ez(N)‖L∞(0,T ;L1(0,1))‖z(N)
x ‖L5/2(0,T ;L∞(0,1))

≤ c.

The lemma is proved.
We also need an estimate for the discrete time derivative. For this, introduce the

shift operator (σN (z(N)))(·, t) = zk−1 for t ∈ (tk−1, tk].
Lemma 3.5. The following estimate holds:

‖ez(N) − eσN (z(N))‖L10/9(0,T ;H−2(0,1)) ≤ cτ,(3.11)

where c > 0 depends only on uI and u∞.
Proof. From (3.1) and Hölder’s inequality we obtain

1

τk
‖ez(N) − eσN (z(N))‖L10/9(0,T ;H−2(0,1)) ≤ ‖ez(N)+y∞(z(N) + y∞)xx‖L10/9(0,T ;L2(0,1))

≤ ‖ez(N)+y∞‖L5/2(0,T ;L∞(0,1))‖(z(N) + y∞)xx‖L2(0,T ;L2(0,1))
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and the right-hand side is uniformly bounded by (3.9) and (3.10) since W 1,1(0, 1) ↪→
L∞(0, 1).

Proof of Theorem 1.2. For any N ∈ N, there exists a solution z(N) ∈ L2(0, T ;
H2

0 (0, 1)) to the sequence of recursive equations (3.1) satisfying z(N)(·, 0) = z0. The
uniform bounds (3.10) and (3.11) and the compact embedding W 1,1(0, 1) ↪→ L1(0, 1)
allow us to apply Theorem 5 of [17] (Aubin’s lemma) yielding the existence of a subse-

quence of ez
(N)

(not relabeled) such that ez
(N) → ρ strongly in L1(0, T ;L1(0, 1)) and

hence also in L1(0, T ;H−2(0, 1)). The above results give, using (3.2) and L1(0, 1) ↪→
H−2(0, 1),

‖ez(N) − ρ‖2
L2(0,T ;H−2(0,1)) ≤ ‖ez(N) − ρ‖L∞(0,T ;H−2(0,1))‖ez

(N) − ρ‖L1(0,T ;H−2(0,1))

≤ c
(
‖ez(N)‖L∞(0,T ;L1(0,1)) + ‖ρ‖L∞(0,T ;L1(0,1))

)
× ‖ez(N) − ρ‖L1(0,T ;H−2(0,1))

≤ c‖ez(N) − ρ‖L1(0,T ;H−2(0,1)) → 0 as N → ∞.(3.12)

Moreover, the estimate (3.9) provides the existence of a subsequence, also denoted by
z(N), such that

z(N) ⇀ z weakly in L2(0, T ;H2(0, 1)) as N → ∞.(3.13)

We claim now that ez = ρ. For this, let w be a smooth function. Letting N → ∞
in

0 ≤
∫ T

0

〈ez(N) − ew, z(N) − w〉H−2,H2
0
dt

and using the convergence results (3.12) and (3.13) yield

0 ≤
∫ T

0

∫ 1

0

(ρ− ew)(w − z)dxdt.

The strict monotonicity of x �→ ex then implies that ez = ρ.

Thus, ez
(N) → ez strongly in L1(0, T ;L1(0, 1)) and (maybe for a subsequence) a.e.

The uniform bound (3.10) implies that (after extracting a subsequence) ez
(N)

⇀ ez

weakly* in L5/2(0, T ;L∞(0, 1)) since W 1,1(0, 1) ↪→ L∞(0, 1). Therefore, we conclude
via Lebesgue’s convergence theorem that

ez
(N) → ez strongly in L2(0, T ;L2(0, 1)).(3.14)

Finally, the uniform estimate (3.11) gives for a subsequence

1

τ
(ez

(N) − eσN (z(N))) ⇀ (ez)t weakly in L10/9(0, T ;H−2(0, 1)).(3.15)

The convergence results (3.13)–(3.15) allow us to pass to the limit N → ∞ in the
weak formulation of (3.1) to obtain a weak solution z ∈ L2(0, T ;H2

0 (0, 1)) to

ey∞(ez)t = −(ez+y∞(z + y∞)xx)xx in (0, 1), t > 0,

such that z(·, 0) = z0 = log(uI/u∞) in the sense of H−2(0, 1). Transforming back to
the variable u = ez+y∞ gives the assertion.
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4. Long-time behavior of the solutions. This section is devoted to the proof
of Theorem 1.3. The proof is based on the entropy–entropy production method. For
this we need the following lemma for lower and upper estimates for the entropy

E3 =

∫ 1

0

ey∞(ez(z − 1) + 1)dx.

Lemma 4.1. Let z, y∞ ∈ L∞(0, 1). Then

c1

(∫ 1

0

ey∞ |ez − 1|dx
)2

≤ E3 ≤ c2‖ez/2 − 1‖2
L∞(0,1),(4.1)

where c1, c2 > 0 depend on ‖ey∞‖L∞(0,1) and ‖ez‖L1(0,1).
The lower bound for E3 is a Csiszar–Kullback-type inequality. A similar version

of this lemma is shown in [15].
Proof. The upper bound is proved by expanding the function f(x) = x2(log x2 −

1) + 1 around x = 1,

f(ez/2) = f(1) + f ′(1)(ez/2 − 1) +
1

2
f ′′(θ)(ez/2 − 1)2

= 2(log θ + 1)(ez/2 − 1)2 ≤ 2(ez/2 + 1)(ez/2 − 1)2,

where θ lies between ez/2 and 1, and using the inequality log θ ≤ θ−1 ≤ max{ez/2, 1}−
1 ≤ ez/2. Then

E3 ≤ 2

∫ 1

0

ey∞(ez/2+1)(ez/2−1)2dx ≤ 2‖ey∞‖L∞(0,1)(‖ez‖1/2
L1(0,1)+1)‖ez/2−1‖2

L∞(0,1),

and we set c2 = 2‖ey∞‖L∞(0,1)(‖ez‖1/2
L1(0,1) + 1).

For the lower bound we observe that a Taylor expansion of f(x) = x(log x−1)+1
around x = 1 yields

e2y∞ (ez(z − 1) + 1) =
e2y∞

2θ
(ez − 1)2,

and θ = θ(z) lies between ez and 1. Then, by the Cauchy–Schwarz inequality,∫ 1

0

ey∞ |ez − 1|dx ≤
∫
{z<0}

ey∞(1 − ez)dx +

∫
{z>0}

ey∞(ez − 1)dx

≤
∫
{z<0}

ey∞
1 − ez

θ(z)1/2
dx +

∫
{z>0}

ey∞
ez − 1

θ(z)1/2
θ(z)1/2dx

≤ meas{z < 0}1/2

(∫
{z<0}

e2y∞
(1 − ez)2

θ(z)
dx

)1/2

+

(∫
{z>0}

e2y∞
(ez − 1)2

θ(z)
dx

)1/2 (∫
{z>0}

θ(z)dx

)1/2

≤ (1 + ‖ez‖1/2
L1(0,1))

(∫ 1

0

e2y∞
(ez − 1)2

θ(z)
dx

)1/2

≤
√

2‖ey∞‖1/2
L∞(0,1)(1 + ‖ez‖1/2

L1(0,1))E
1/2
3 ,
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and the assertion follows with c−1
1 = 2‖ey∞‖L∞(0,1)(1 + ‖ez‖1/2

L1(0,1))
2.

Proof of Theorem 1.3. The idea is to differentiate the entropy E3 of the intro-
duction with respect to time and to use the differential equation (1.1). Since we do
not have enough regularity for the solution u to (1.1), we need to regularize. We set
as in the proof of Theorem 1.2 u∞ = ey∞ , where u∞ is the unique solution to (1.4).
There exist numbers a, b ∈ R such that ey∞y∞,xx = ax+ b ≤ 0 for all x ∈ (0, 1) since
y∞ = log u∞ is assumed to be concave. This implies that y∞ ≥ min{y∞(0), y∞(1)}
and hence ey∞ ≥ min{u0, u1} in (0, 1). Furthermore, let zk ∈ H2

0 (0, 1) be a solution
to (3.1) for given zk−1. We assume for simplicity that τ = τk for all k ∈ N.

Using zk as a test function in the weak formulation of (3.1), we obtain, after
integrating by parts,

1

τ

∫ 1

0

ey∞(ezk − ezk−1)zkdx = −
∫ 1

0

ezk+y∞(zk + y∞)xxzk,xxdx

= −
∫ 1

0

ezk+y∞z2
k,xxdx−

∫ 1

0

ezkzk,xx(ax + b)dx

= −
∫ 1

0

ezk+y∞z2
k,xxdx +

∫ 1

0

ezkz2
k,x(ax + b)dx + a

∫ 1

0

ezkzk,xdx(4.2)

≤ −min{u0, u1}
∫ 1

0

ezkz2
k,xxdx,

since ax + b ≤ 0 in (0, 1) and ezk(x) = 1 for x = 0, 1. The left-hand side is estimated
from below by employing the elementary inequality ex ≥ x + 1 for all x ∈ R:

1

τ

∫ 1

0

ey∞(ezk − ezk−1)zkdx

=
1

τ

∫ 1

0

ezk+y∞(zk − 1)dx− 1

τ

∫ 1

0

ezk−1+y∞(zk−1 − 1)dx

+
1

τ

∫ 1

0

ezk−1+y∞(ezk−zk−1 + zk−1 − zk − 1)dx

≥ 1

τ

∫ 1

0

ezk+y∞(zk − 1)dx− 1

τ

∫ 1

0

ezk−1+y∞(zk−1 − 1)dx.(4.3)

This shows that the sequence E(k) =
∫ 1

0
ey∞(ezk(zk − 1) + 1)dx is nonincreasing and

bounded from below by E(0) =
∫ 1

0
(uI(log(uI/u∞) − 1) + 1)dx, which is finite.

We relate the entropy production term on the right-hand side of (4.2) to the
entropy itself. We first claim that

∫ 1

0

ezkz2
k,xxdx ≥ 4

∫ 1

0

(ezk/2)2xxdx.(4.4)

To see this we set u = ezk and observe that an integration by parts yields

∫ 1

0

uxxu
2
x

u2
dx =

2

3

∫ 1

0

u4
x

u3
dx.
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Then ∫ 1

0

ezkz2
k,xxdx =

∫ 1

0

(
u2
xx

u
− 1

3

u4
x

u3

)
dx ≥

∫ 1

0

(
u2
xx

u
− 5

12

u4
x

u3

)
dx(4.5)

= 4

∫ 1

0

(
√
u)2xxdx = 4

∫ 1

0

(ezk/2)2xxdx.

We need the Poincaré inequalities

‖u‖L2(0,1) ≤
1

π
‖ux‖L2(0,1), ‖u‖L∞(0,1) ≤ ‖ux‖L2(0,1)

for all u ∈ H1
0 (0, 1). Therefore, using Lemma 4.1, we infer

∫ 1

0

ezkz2
k,xxdx ≥ 4π2

∫ 1

0

(ezk/2 − 1)2xdx ≥ 4π2‖ezk/2 − 1‖2
L∞(0,1) ≥

4π2

c2
E(k).(4.6)

Setting γ = 4π2 min{u0, u1}/c2, we obtain from (4.2) the difference inequality

E(k) ≤ E(k−1) − γτE(k),

from which

E(k) ≤ (1 + γτ)−1E(k−1) ≤ (1 + γτ)−kE(0) ≤ (1 + γτ)−t/τE(0)(4.7)

follows. The parameter γ depends on ‖ezk‖L1(0,1) through c2. However, since ez
(N)

is
uniformly bounded in L∞(0, T ;L1(0, 1)) in view of Lemma 3.3, γ is bounded uniformly
in k. We have shown in the proof of Theorem 1.2 that ezk → ez a.e. Then the uniform
boundedness of ezk and zk and Lebesgue’s dominated convergence theorem imply that

E(k) → E3(t) =

∫ 1

0

ey∞(ez(·,t)(z(·, t) − 1) + 1)dx.

Hence, after letting τ → 0, we conclude from (4.7) that E3(t) ≤ E3(0)e−γt. The first
inequality in (4.1) gives the assertion with λ = γ/2.

Remark 4.2. The decay rate λ is not optimal. For instance, we neglected the

term
∫ 1

0
u4
x/12u3dx in (4.5) and the constants in (4.1) are not the best ones. For

optimal constants in logarithmic Sobolev inequalities related to (1.1) with periodic
boundary conditions, we refer the reader to [10].

Remark 4.3. It is not easy to find conditions on the boundary data for which
log u∞ is concave. An example is u0 = u1 and w0 = −w1 ≥ 0. Indeed, if y = log u∞,
we have y(0) = y(1) and yx(0) = −yx(1) ≥ 0 and therefore, y is symmetric around
x = 1

2 . Thus (see Remark 2.3) a = ey0(yxx(1) − yxx(0)) = 0 and b = ey0yxx(0) ≤ 0.
This implies (log u∞)xx = yxx = be−y ≤ 0 in (0, 1).

Remark 4.4. The assumption on the concavity of log u∞ can be slightly relaxed.
Indeed, we claim that the assertion of Theorem 1.3 also holds if ((log u∞)xx)+ is small
enough in the sense

4
max{u∞(x) : 0 ≤ x ≤ 1}
min{u∞(x) : 0 ≤ x ≤ 1}

∫ 1

0

((log u∞)xx)
+
dx ≤ 1 − δ(4.8)
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for some δ > 0, where (x)+ = max{0, x}. We prove this result by deriving a bound on
the second integral in (4.2) in terms of the first one, employing the weighted Poincaré
inequality [7, Thm. 1.4] ∫ 1

0

u2
xμ(x)dx ≤ K

∫ 1

0

u2
xxdx

for all u ∈ H2(0, 1) satisfying u(0) = u(1) (which implies that
∫ 1

0
uxdx = 0). The

function μ is assumed to be nonnegative and measurable. The best constant K > 0

is not explicit but can be bounded by K ≤ 4
∫ 1

0
μ(x)dx [7, Rem. 1.10.4]. We choose

μ(x) = (ax + b)+ = (u∞(log u∞)xx)+. Then the weighted Poincaré inequality and
(4.4) give ∫ 1

0

ezk+y∞z2
k,xxdx ≥ 4m

∫ 1

0

(ezk/2)2xxdx ≥ 4m

K

∫ 1

0

(ezk/2)2xμ(x)dx

=
m

K

∫ 1

0

(ax + b)+ezkz2
k,xdx,

where m = min{u∞(x) : 0 ≤ x ≤ 1}. Inserting this inequality into (4.2) and using
(4.3), we obtain

1

τ

(
E(k) − E(k−1)

)
≤ −

∫ 1

0

ezk+y∞z2
k,xxdx +

∫ 1

0

(ax + b)+ezkz2
k,xdx

≤
(
K

m
− 1

)∫ 1

0

ezk+y∞z2
k,xxdx.

Assumption (4.8) shows that K/m ≤ 1 − δ and hence, by (4.6),

1

τ

(
E(k) − E(k−1)

)
≤ −δ

∫ 1

0

ezk+y∞z2
k,xxdx ≤ −4π2δm

c2
E(k).

Now proceed as in the proof of Theorem 1.3. The convergence rate in the L1 norm is
given by λ = 2π2δm/c2.

5. Numerical examples. In this section we show by numerical examples that
the assumption of concavity of log u∞ (or the assumption (4.8)), where u∞ is the
solution to (1.4), seems to be only technical. Equation (1.1) is solved numerically in
the formulation

ut = −uxxxx +

(
u2
x

u

)
xx

in (0, 1).(5.1)

We use a uniform grid (xi, tj) = (�x · i,�t · j) with spatial mesh size �x = 10−3

and time step �t = 10−6. With the approximation uij of u(xi, tj), the fully implicit
discretization reads as

1

�t
(uij − ui,j−1) = −D+D−D+D−uij + D+D−

(
(D+uij)

2

uij

)
,

where D+ and D− are the forward and backward difference operators on the spatial
mesh (see [13]). The nonlinear equations are solved on each time level by Newton’s
method where the initial guess is chosen to be the solution of the previous time level.
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For the first example we use the boundary conditions

u(0, t) = u0, u(1, t) = u1,(5.2)

ux(0, t) = w0 = 2
√
u0(

√
u1 −

√
u0), ux(1, t) = w1 = 2

√
u1(

√
u1 −

√
u0),(5.3)

with u0 ≤ u1. The advantage of these conditions is that the stationary problem (1.4)
has the exact solution

u∞(x) = ((
√
u1 −

√
u0)x +

√
u0)

2
, x ∈ (0, 1).

We choose the initial condition uI(x) = e−x sin(3πx)+3x+1 and the boundary values
u0 = 1 and u1 = 4. The numerical solution at various times is displayed in Figure 5.1.
The discrete solution seems to converge to the exact solution u∞ as t → ∞. Figure
5.2 shows the exponential decay of the relative entropy

E3(t) =

∫ 1

0

u(·, t)((log(u(·, t)/u∞) − 1) + u∞)dx

and of the L1 deviation ‖u(·, t) − u∞‖L1(0,1). As predicted by the proof of Theorem
1.3, the decay rate of the L1 deviation is half of the rate of the relative entropy. Notice
that the function log u∞ is concave; i.e., the assumptions of Theorem 1.3 are satisfied.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

u(
x,

t)

t = 0
t = 10-5

t = 10 -4

t = +∞

Fig. 5.1. Numerical solution to (5.1)–(5.3) with u0 = 1, u1 = 4, w0 = 2, and w1 = 4 at various
times.

In the second example we show by a numerical example that the solution to (1.1)
decays exponentially fast even if the function log u∞ is convex. For this we choose
the boundary conditions u0 = 1.5, u1 = 0.8, w0 = −4.6127, and w1 = 2.0618. The
stationary solution u∞ is computed numerically from the equation

u∞(log u∞)xx = ax + b, x ∈ (0, 1),

where a = 1 and b = 3. Then, log u∞ is strictly convex in (0, 1) and the assumption
(4.8) is not satisfied. We choose the initial function uI(x) = −e−x sin(2πx)− 7

10x+ 3
2 .

Figure 5.3 shows the discrete solution for various times. In this case, the relative
entropy and the L1 deviation are also exponentially decaying (Figure 5.4) although the
condition of Theorem 1.3 is not satisfied. This suggests that the concavity hypothesis
is purely technical.
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Fig. 5.2. Logarithmic plot of the relative entropy E3(t) (left) and the L1 deviation ‖u(·, t) −
u∞‖L1(0,1) (right) for the solution to (5.1)–(5.3) with u0 = 1, u1 = 4.
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Fig. 5.3. Numerical solution to (5.1), (1.3) with u0 = 1.5, u1 = 0.8, w0 = −4.6127, and
w1 = 2.0618 at various times.
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Fig. 5.4. Logarithmic plot of the relative entropy E3(t) (left) and the L1 deviation ‖u(·, t) −
u∞‖L1(0,1) (right) for the solution to (5.1), (1.3) with u0 = 1.5, u1 = 0.8, w0 = −4.6127, and
w1 = 2.0618.
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[6] J. A. Carrillo, A. Jüngel, and S. Tang, Positive entropic schemes for a nonlinear fourth-
order equation, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), pp. 1–20.

[7] S.-K. Chua and R. Wheeden, Sharp conditions for weighted 1-dimensional Poincaré inequal-
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ON THE EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS
FOR A VORTICITY SEEDING MODEL∗

LUIGI C. BERSELLI† AND MARCO ROMITO‡

Abstract. In this paper we study the Navier–Stokes equations with a Navier-type boundary
condition that has been proposed as an alternative to common near wall models. The boundary
condition we study, involving a linear relation between the tangential part of the velocity and the
tangential part of the Cauchy stress-vector, is related to the vorticity seeding model introduced in the
computational approach to turbulent flows. The presence of a pointwise nonvanishing normal flux
may be considered as a tool to avoid the use of phenomenological near wall models in the boundary
layer region. Furthermore, the analysis of the problem is suggested by recent advances in the study
of large eddy simulation.

In the two-dimensional case, by using rather elementary tools, we prove existence and uniqueness
of weak solutions. The asymptotic behavior of the solution, with respect to the averaging radius δ, is
also studied. In particular, we prove convergence of the solutions toward the corresponding solutions
of the Navier–Stokes equations with the usual no-slip boundary conditions, as the small parameter
δ goes to zero.

Key words. Navier–Stokes equations, boundary models for turbulent flows, existence, unique-
ness, LES models
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1. Introduction. In this paper we consider the Navier–Stokes equations and in
particular the role of boundary conditions in the simulation of boundary effects in
turbulent flows. We consider the Navier–Stokes equations (in nondimensional form)
for viscous incompressible fluids in a bounded smooth domain Ω ⊂ R

n, n = 2, 3:

⎧⎨
⎩ ∂tu− 2

Re
∇ · D(u) + (u · ∇)u + ∇p = 0 in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ).
(1.1)

We recall that u = (u1, . . . , un) is the unknown velocity field, p is the hydrostatic
pressure, Re > 0 is the Reynolds number, and D(u) is the deformation tensor, i.e.,
the symmetric part of the matrix of derivatives of u,

D(u) =
1

2

(
∂ui

∂xk
+

∂uk

∂xi

)
,

and the Navier–Stokes equations are generally equipped with the no-slip boundary
conditions on Γ = ∂Ω ,

u = 0 on Γ × (0, T ).(1.2)
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To introduce the problem that we shall study, we recall that while at a free surface it
is natural to require continuity of the stress-tensor (I being the identity)

T(u, p) = −p I +
2

Re
D(u),

the conditions at a solid wall are very challenging. The no-slip condition (1.2) has
been justified by Stokes [37] since the contrary assumption“. . . implies an infinitely
greater resistance to the sliding of one portion of fluid past another than to the sliding
of fluid over a solid.”

It is well known that there are situations in which the boundary condition (1.2)
may not be valid. For instance, in Serrin [35, sect. 64] it is pointed out that in high
altitude aerodynamics, or, more generally, when moderate pressure and low surface
stresses are involved, the adherence condition is no longer true; see also the review in
Truesdell [38]. In this respect several authors proposed various slip (generally non-
linear) conditions, modeling precise physical situations; see, for instance, Serrin [35],
Beavers and Joseph [4], and Krĕın and Laptev [23].

From the historical point of view, the slip (with friction) boundary condition
proposed by Navier [30] was

u · n = 0 and β uτ + T (u, p) = 0, β > 0, on Γ × (0, T ),(1.3)

where n denotes the unit normal vector to Γ, uτ = u−(u·n)n, while T (u, p) = t(u, p)−
(t(u, p) · n) n denotes the tangential part of the Cauchy stress vector t defined by

t(u, p) = n · T(u, p) =

n∑
k=1

Tik(u, p)nk.

Maxwell [27] analyzed the two types of boundary conditions (condition (1.3) proposed
by Navier and condition (1.2) proposed by Stokes), observing that the same conditions
may be derived within the kinetic theory of gases and that the parameter β should
depend on the Reynolds number Re and on the mean free-path λ, satisfying the pair
of consistency conditions

β → ∞ as λ → 0 for Re fixed,

β → 0 as Re → ∞ for λ fixed.

With the above asymptotics it possible to recover in both cases the correct no-slip
boundary condition for viscous fluids and the no-penetration condition for ideal flu-
ids. A study of the numerical problems related to the implementation of (1.3) can be
found in John [20].

Recently, Fujita [12] performed the analysis with the “slip or leak with friction”
boundary conditions. These conditions are of particular interest in the study of poly-
mers, blood flow, and flow through filters. The boundary conditions studied in [12],
with the techniques of variational inequalities, turn out to be particular cases of the
nonlinear boundary condition proposed in [35, p. 240] and they are very strictly re-
lated to both the Navier and the no-slip boundary conditions. See also Consiglieri [9]
for similar problems.

For laminar flows the Navier boundary condition (1.3) also appears in the presence
of rough boundaries; see Jäger and Mikelić [18, 19] and Achdou, Pironneau, and
Valentin [1]. In the modeling of turbulent flows it appears (with several variants, see
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Sagaut [34]) in connection with conventional turbulence models and recently also in
large eddy simulation (LES) models (see Layton [24]), as we shall introduce in the
next section.

Among other nonstandard boundary conditions we recall those studied by Begue
et al. [5] and the “do-nothing” Neumann conditions, very appealing for numerical
studies, implemented in Heywood, Rannacher, and Turek [16].

1.1. Near wall models and turbulent flows. Our interest in nonstandard
boundary conditions comes essentially from the study of turbulent flows. First, we
recall that in the boundary layer theory several log-law and power-law boundaries
with asymptotics are introduced, together with the fictitious boundaries, in order to
model turbulent flows within a small region near the boundary. Roughly speaking,
appropriate nonlinear boundary conditions are imposed on an artificial boundary
that lies inside the computational domain. The boundary conditions may simulate
(at least in a computational approach) the behavior of the boundary layer, and they
are modeled to take into account the peculiar behavior of a fluid near the boundaries.
In this respect we recall that Maxwell [27] observed “ . . . it is almost certain that the
stratum of gas next to a solid body is in a very different state from the rest of the gas.”

Our main motivation comes from the mathematical theory of LES. In fact, the
purpose of LES is to model the evolution of large coherent structures (eddies); this is
done by studying the equations satisfied by a filtered velocity. Generally, the filtered
velocity u is defined through a convolution

u(x, t) = gδ(x) ∗ u(x, t)

with a rapidly decreasing smoothing kernel gδ of width δ; in several cases of practical
interest gδ is a Gaussian, i.e.,

gδ(x) =
(γ
π

)3/2 1

δ3
e−γ|x|2

δ2 .

By definition, the value of u at a point x0 on the boundary Γ will depend on the
behavior of u in a neighborhood of width δ near that point; even if u is extended to
zero for each x �∈ Ω, it is clear that in general u(x0) �= 0.

As pointed out in Galdi and Layton [15] the physical intuition may suggest that
large coherent structures touching a wall do not penetrate, but instead slide along
the wall and lose their energy. The boundary condition of Navier may be revisited
by linking the microscale λ of the kinetic theory of gases with the radius δ of the
averaging filter.

Many near wall models have been tested in the computational approach; see
Sagaut [34] and Piomelli and Balaras [33]. The results are not uniformly successful,
and a positive application is very often based on a fine tuning of parameters. This is
why new models require at least a positive background from the physical hypotheses
and a coherent mathematical analysis. In particular, a successful application of the
Navier slip-with-friction boundary condition (1.3) is prevented by two main facts:
(1) the presence of recirculation regions and (2) the presence of fast time-fluctuating
quantities.

The first problem is motivated by the fact that in recirculation regions the local
Reynolds number is very different from the main stream, and it is natural to expect
that β should depend (possibly in a nonlinear way) on a local Reynolds number related
to the local slip speed, i.e.,

β = β(δ, |uτ |).
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Preliminary analysis has been performed by John, Layton, and Sahin [21] and Dunca
et al. [11], and an appropriate power-law choice of β seems promising to improve the
estimation of reattachment points.

The limitation of Navier law (1.3) in a boundary layer theory is that it can well
describe time-averaged flow profiles, while the information coming from fluctuating
quantities in the wall-normal direction can play an important role in triggering sepa-
ration and detachment. To try to overcome this limitation, very recently Layton [24]
recognized a particular class of boundary conditions, leading to conditions similar “in
spirit” to the so-called vorticity seeding methods. In fact, a Navier slip-with-friction
boundary condition implies the generation of vorticity at the boundary, proportional
to the tangential velocity. More precisely, in the case of a two-dimensional domain Ω,
for each smooth function v such that v · n = 0 on the boundary, it holds that

n · D(v) · τ − 1

2
curl v + k(v · τ) = 0 on Γ,

where curl v = ∂v1/∂x2 − ∂v2/∂x1, and τ denotes the unit tangent vector, while k is
the curvature of Γ.

In particular, in [24] the following boundary condition is proposed to simulate the
boundary effects

u · n = δ2g(x, t) and
L

δRe
uτ + T (u, p) = 0,(1.4)

where g is a highly oscillating function in the time variable (hopefully a random
variable in numerical tests), while it may be very smooth in the space variables and
should satisfy the natural compatibility condition∫

Γ

g(x, t) dσ = 0 ∀ t ∈ (0, T ),(1.5)

which is required by the normal trace of a divergence-free vector field.
This way of reasoning is also similar to the introduction of stochastic fluctuations

to simulate the microscale effects. A comprehensive introduction to stochastic partial
differential equations in fluid mechanics and the statistical approach can be found in
Monin and Yaglom [28], and one main mathematical paradigm is that an additional
nonsmooth term on the right-hand side may naturally take into account the effect of
the fast fluctuating quantities. This leads us to study the system

∂tu− 2

Re
∇ · D(u) + (u · ∇)u + ∇p = f +

∂g

∂t
,

where g is a function that does not have a proper time derivative, but is just continuous
or with other weak properties. For the above problems the study of an appropriate
notion of solution, together with the corresponding statistical properties, started in
Bensoussan and Temam [7] and Vǐsik and Fursikov [39].

1.2. Setting of the problem. In what follows we shall restrict our discussion to
the two-dimensional case, since the nonlinear character of the equations imposes some
restriction; see Remark 2.5. Furthermore, we fix the values of both L and the Reynolds
number to 2, due to the fact that we will not deal with the singular limit Re → ∞.
(Regarding this limit see also the recent works of Clopeau, Mikelić, and Robert [8],
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Lopes Filho, Nussenzveig Lopes, and Planas [26], Mucha [29], and Kelliher [22].) In
our case we shall study the following boundary-initial value problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu−∇ · D(u) + (u · ∇)u + ∇p = f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

u · n = δαg(x, t) on Γ × (0, T ),

u · τ + δ n · D(u) · τ = 0 on Γ × (0, T ),

u(x, 0) = u0(x) in Ω.

(1.6)

Remark 1.1. The above problem with α = 2 describes the experiment in [4],
where δ represents the characteristic pore size and the system is laminar. The error
estimate we derive is consistent with the first step in the homogenization procedure
employed by Jäger and Mikelić [17] to obtain the law of Beavers and Joseph.

Note that a similar problem, but involving the Smagorinsky–Ladyžhenskaya tur-
bulence model together with a nonlinear dependence of β on u, has been studied, for
instance, by Parés [32], but in that reference the normal datum g is not allowed to
depend on the time variable. In what follows our main interest will be to find weak
hypotheses on g(x, t) with respect to the time variable (without any essential restric-
tion on the space regularity) that allow us to prove existence of weak solutions to the
Navier–Stokes equations; see Theorem 1.2. In particular, in our analysis we will focus
on two main points: (1) to show the existence of weak solutions in the sense of Leray
and Hopf (since we do not want to deal with any weaker concept of solution) and (2)
to use only elementary tools of functional analysis.

In other words, we want to consider solutions in a very standard sense and we
also want to interact with applied people interested in this problem, while still keeping
all the mathematical rigor needed to deal with the problem and a certain sharpness
of the results. In the case of nonhomogeneous no-slip conditions, several results of
existence and uniqueness of other classes of solutions can be found in Amann [3].

Our intent to have a nonvanishing normal datum can be heuristically understood
also with the following argument: Suppose that (for simplicity in two dimensions)
we have a fictitious boundary Γ1 and we want to impose a condition on it in order
to resolve numerically the equation in a smaller domain Ω1 ⊂ Ω that rules out the
boundary layer (see Figure 1 below).

We have to require, by the incompressibility of the flow, that∫
{ABCD}

∇ · u dx =

∫
∂{ABCD}

u · n dσ = 0

A B

CD

Γ

Γ1

Boundary Layer Boundary Layer

Fig. 1. The fictitious boundary.
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for each (also curvilinear or infinitesimal) “rectangle” {ABCD} touching the bound-
ary Γ as in the figure. Since the behavior of the flow is not known, in general we
have ∫

{CD}
u · n ds = −

[∫
{BC}

u · n ds +

∫
{DA}

u · n ds

]
�= 0,

while the line integral over the segment {AB} vanishes, since on the “true boundary”
Γ both the Navier and no-slip conditions impose that u · n = 0.

This may justify the introduction of a nonvanishing normal flux, also with very
low regularity properties, namely, the same shared by the trace of a turbulent flow in
the boundary layer region.

1.3. Main results. In this section we briefly enunciate the results we shall prove,
together with their precise and rigorous statement.

In what follows Ω will denote a bounded, connected, open set in R
2, locally

situated on one side of its boundary Γ, a manifold of (at least) class C1,1 (Lipschitz-
continuous first derivatives). The existence of the unit outward normal n derives by
results proved in Nečas [31].

The first result we shall prove is an existence and uniqueness theorem for weak
solutions of the Navier–Stokes system (1.6), with boundary conditions (1.4).

Theorem 1.2. Assume g ∈ H
1
2+ε(0, T ;H

1
2 (Γ)), for some ε > 0 satisfying the

compatibility condition (1.5); f ∈ L2((0, T ) × Ω); and u0 ∈ L2(Ω), with ∇ · u0 = 0.
Then there exists a unique weak solution

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

of problem (1.6).
Next, we want to study the behavior of the solution to problem (1.6) as the small

parameter δ converges to zero. (Other convergence results, under similar assump-
tions, have been also proved in [22].) In view of the considerations of the previous
section, one can expect that, as the boundary layer becomes thinner and thinner, the
solutions will look more and more like the classical solutions corresponding to the
no-slip boundary condition. Indeed, this is the case, as shown by Theorem 1.3.

Let uδ be the solution of (1.6) (we emphasize the dependence on δ in this frame-
work) and let v be the solution to the Navier–Stokes equations with the same initial
value and no-slip boundary conditions. (To be more precise, the vector field v is the
solution to system (3.2).) As we shall see in section 3,

uδ = v + O(δ
1
3 ),

so that the “no-slip solution” represents the average behavior, once one neglects the
effect at the boundary. The term uδ − v can be seen as the “fluctuation term,” which
takes into account the nontrivial dynamics at the boundary.

Theorem 1.3. Assume u0 ∈ H1(Ω), with ∇ · u0 = 0, g ∈ H
1
2+ε(0, T ;H

1
2 (Γ))

satisfying the compatibility condition (1.5), and f ∈ L2((0, T ) × Ω). Then

sup
0≤t≤T

‖uδ − v‖2 +

∫ T

0

(
‖D(uδ − v)‖2 +

1

δ
‖(uδ − v) · τ‖2

Γ

)
dt = O(δ

2
3 ).

In particular, uδ converges to v in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)).
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2. A result of existence and uniqueness of weak solutions. In this section
we prove Theorem 1.2. For the sake of simplicity, we consider the normal datum as

u · n = g(x, t);

i.e., we drop the dependence on δ, since it is not relevant in view of the existence and
uniqueness result we are going to show. In the last section we shall see how to deal
with a right-hand side that scales by a power of δ.

Let us consider the evolution problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tu−∇ · D(u) + (u · ∇)u + ∇p = f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

u · n = g(x, t) on Γ × (0, T ),

δ n · D(u) · τ + u · τ = 0 on Γ × (0, T ),

u(x, 0) = u0(x) in Ω,

(2.1)

with f ∈ L2((0, T ) × Ω) and ∇ · f = 0, just to avoid technicalities, and with g not
very smooth, say

g ∈ H1/2+ε(0, T ;H1/2(Γ)),(2.2)

satisfying the compatibility condition (1.5).

2.1. Function spaces. We use the classical Lebesgue spaces and in particular,
we will work exclusively in the Hilbert framework and thus use the space L2. For
simplicity we do not distinguish between space of scalar, vector, or either tensor
valued functions, and the symbol ‖ . ‖ will denote the norm in L2(Ω). The norm in
L2(Γ) will be denoted by ‖ . ‖Γ.

In what follows we shall use the customary Sobolev spaces, for which we refer
to Adams [2], and the notion of “trace” over the boundary Γ of Ω. Mainly we shall
use the space H1(Ω) with norm denoted by ‖ . ‖H1 and its trace space H1/2(Γ), with
norm ‖ . ‖

H
1
2 (Γ)

.

In addition, we define the spaces

H = {u ∈ L2(Ω) | ∇ · u = 0, u · n = 0 on Γ },

and

V = {u ∈ H1(Ω) | ∇ · u = 0, u · n = 0 on Γ },

and we endow V with the norm ‖u‖V = ‖∇u‖. Moreover, we define the space of
tangential vector fields as

H1
τ = {u ∈ H1(Ω) |u · n = 0 on Γ }.

2.1.1. Fractional derivative. In order to properly define the spaces we shall
use, we also need to define fractional derivatives. The fractional derivative may be
defined through singular integrals

Dα
t U(x, t) =

d

dt

∫ t

0

U(s, x)

(t− s)α
ds for 0 ≤ α < 1,

but for our purposes it is better to deal with a definition via the Fourier transform.
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Given φ(x, t), defined for t ∈ [0, T ], with values in the Hilbert space (X, ‖ . ‖X)
and integrable (in the Bochner sense), we define

φ̃(t, x) =

{
φ(t, x) for t ∈ [0, T ],

0 elsewhere,
(2.3)

and its Fourier transform (with respect to the time variable) is

φ̂(x, ξ) =
1√
2π

∫
R

φ̃(x, t) e−itξ dt,

so that we can define the fractional Sobolev spaces of functions having α-order deriva-
tive in L2:

Hα(R; X) :=

{
f ∈ L2(R; X) :

∫
R

|ξ|2α‖f̂(ξ)‖2
X
dξ < ∞

}
.

2.2. The linear stationary problem. The first step in solving (2.1) is to
consider the linear stationary problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−∇ · D(G) + ∇Π = 0 in Ω × (0, T ),

∇ ·G = 0 in Ω × (0, T ),

G · n = g(x, t) on Γ × (0, T ),

δ n · D(G) · τ + G · τ = 0 on Γ × (0, T ),

(2.4)

where the time variable is now just a parameter.
Theorem 2.1. Let the following be given: g ∈ H1/2+ε(0, T ;H1/2(Γ)), satisfying

the compatibility condition (1.5). Then, there exists a unique G solution of (2.4) such
that

G(x, t) ∈ H1/2+ε(0, T ;H1(Ω)).(2.5)

Moreover, there is a constant C0, depending only on Ω, such that

‖∇G‖ + ‖Π‖ ≤ C0(1 + δ−
1
2 )‖g‖

H
1
2 (Γ)

.(2.6)

Proof. See Solonnikov and Ščadilov [36] and Beirão da Veiga [6]. In fact, for
each t it is possible to solve a linear stationary Stokes problem (with the appropriate
boundary conditions) that has a unique solution belonging to H1(Ω). The regularity
in the time variable is inherited by the function G.

We give a formal (but completely justified) argument for the estimate (2.6), fol-
lowing the approach to the existence in L2-spaces introduced in Beirão da Veiga [6]
to find appropriate estimates on G. We consider the bilinear form

B(u, φ) =

∫
Ω

D(u)D(φ) dx,

and the functions (G,Π) that solve (2.4) must satisfy

B(G,φ) −
∫

Ω

Π∇ · φdx +
1

δ

∫
Γ

G · φdσ = 0 ∀φ ∈ H1
τ .
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In order to deal with the inhomogeneous problem, we introduce a vector field G1 such
that ⎧⎪⎨

⎪⎩
∇ ·G1 = 0 in Ω,

G1 · n = g on Γ,

‖G1‖H1 ≤ C‖g‖
H

1
2 (Γ)

.

The construction of such a vector field is rather standard and can be found, for
instance, in Galdi [14].

By defining G = G1 + G2, the function G2 must satisfy

B(G2, φ) −
∫

Ω

Π∇ · φdx +
1

δ

∫
Γ

G2 · φdσ = −B(G1, φ) − 1

δ

∫
Γ

G1 · φdσ

for each φ tangential to the boundary. If φ = G2, we get (since G2 · n = 0 and
∇ ·G2 = 0)

‖∇G2‖2 +
1

δ
‖G2‖2

Γ ≤ ‖∇G2‖ ‖∇G1‖ +
1

δ
‖G1‖Γ‖G2‖Γ

and, consequently,

1

2
‖∇G2‖2 +

1

2δ
‖G2‖2

Γ ≤ 1

2
‖∇G1‖2 +

1

2δ
‖G1‖2

Γ.

This finally implies that

‖∇G2‖2 ≤ C

(
1 +

1

δ

)
‖g‖2

H
1
2 (Γ)

,

where the constant C depends on Ω but is independent of δ. The estimate on the
pressure can be obtained by approximation, by studying a slightly different equation;
see [6] for details.

Indeed, notice that, for our aims, it is enough to have

G(x, t) ∈ H1/2+ε(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),(2.7)

but currently we do not know the minimal assumption on g in order to have the above
regularity. Regarding the usual no-slip boundary conditions, see the result proved by
Fursikov, Gunzburger, and Hou [13].

2.3. The linear evolution problem. The next step for the analysis of the
nonlinear evolution problem (2.1) is the following linear evolution problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tz −∇ · D(z) + ∇q = 0 in Ω × (0, T ),

∇ · z = 0 in Ω × (0, T ),

z · n = g on Γ × (0, T ),

δ n · D(z) · τ + z · τ = 0 on Γ × (0, T ),

z(x, 0) = G(x, 0) in Ω.

(2.8)

We shall treat the nonlinear problem as a perturbation of such a linear system. Let
us introduce the new unknowns

Z(x, t) = z(x, t) −G(x, t) and Q(x, t) = q(x, t) − Π(x, t)
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so that we are reduced to a homogeneous problem for the new unknowns (Z,Q):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tZ −∇ · D(Z) + ∇Q = −∂tG in Ω × (0, T ),

∇ · Z = 0 in Ω × (0, T ),

Z · n = 0 on Γ × (0, T ),

δ n · D(Z) · τ + Z · τ = 0 on Γ × (0, T ),

Z(x, 0) = 0 in Ω.

(2.9)

The above problem is not completely standard, since the right-hand side does not
satisfy the usual properties. For instance, one can note that ∂tG does not belong to
the domain of the Stokes operator, since ∂tG · n �= 0. This is the main difficulty: The
low regularity of this term can be treated in a more standard way, while the above
fact is responsible for a different approach.

Theorem 2.2. Assume that (G,Π) is a solution to system (2.4), with G satisfying
the regularity property (2.7). Then there exists a unique solution (z, q) (where q is
unique up to an additive function not depending on the space variable) to system (2.8)
such that

z ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩H
1
2−ε(0, T ;L2(Ω)).(2.10)

Moreover,

(2.11) sup
0≤t≤T

‖z(t)‖2 +

∫ T

0

(
‖D(z)(t)‖2 +

1

δ
‖z(t) · τ‖2

Γ

)
dt + ‖z‖2

H
1
2
−ε(0,T ;L2(Ω))

≤ C

(
‖G‖2

H
1
2
+ε(0,T ;L2(Ω))

+

∫ T

0

‖D(G)‖2 dt

)
.

Proof. By virtue of Theorem 2.1, it is enough to prove the same claim of this
theorem on the solution (Z,Q) of problem (2.9). Since we just know that ∂tG ∈
H− 1

2+ε(0, T ;L2(Ω)), we introduce a sequence GN ∈ H1(R;L2(Ω)) of approximate
functions such that

(a) GN |[0,T ] −→ G in H
1
2+ε(0, T ;L2(Ω)) as N → ∞,

(b) ‖∂tGN‖L2(0,T ;L2(Ω)) = N .

The way to do this extension is rather standard: First, we can define G : R → L2(Ω)
with an extension by reflection. Then, we consider a sequence ρN of mollifiers and
the function GN will be the restriction on [0, T ] of the function ρN ∗G.

The proof is based on the Faedo–Galerkin procedure. By Clopeau, Mikelić, and
Robert [8] (but also the recent abstract results in [6]), we know that there exists a
basis {φn}n∈N of functions in H3(Ω) of the space V (and also of H), such that

δ n · D(φn) · τ + φn · τ = 0.

Now, let ZN
n (t, x) =

∑n
k=1 ζ

N
n,k(t)φk(x) be the solution of the following (finite-dimen-

sional) linear system of ordinary differential equations (ODEs):⎧⎪⎪⎨
⎪⎪⎩

d

dt

∫
Ω

ZN
n · φk +

∫
Ω

D(ZN
n ) · D(φk) +

1

δ

∫
Γ

(ZN
n · τ) (φk · τ) dσ = − d

dt

∫
Ω

GN · φk,∫
Ω

ZN
n (x, 0) · φk dx = 0
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for t ∈ (0, T ) and k = 1, . . . , n. Notice that the divergence-free constraint and
the boundary conditions on ZN

n are automatically verified. By using a standard
argument it is easy to prove that such a system of ODEs has a unique solution
ZN
n ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). Indeed, by multiplying each equation by

the corresponding term ζNn,k, summing over k, and integrating by parts over Ω, one
easily obtains the following estimate:

sup
0≤t≤T

‖ZN
n (t)‖2 +

∫ T

0

(
‖D(ZN

n )‖2 +
1

δ

∫ T

0

‖ZN
n ‖2

Γ

)
dt ≤ C‖GN‖2

H1(0,T ;L2(Ω)),

with a constant C, depending only on Ω. Unfortunately, such an estimate, beside
being uniform in n, is not uniform in N due to property (b) of the approximate
sequence {GN}N∈N. Hence, we need other a priori estimates on the solutions ZN

n of
the finite-dimensional problem. We continue working on the ZN

n , since such functions
are smooth enough for all computations that will be performed.

We again multiply the equations by the terms ζNn,k, sum over k, and integrate by
parts, but now we estimate the right-hand side in the following way:

sup
0≤t≤T

‖ZN
n (t)‖2 +

∫ T

0

(
‖D(ZN

n )‖2 +
1

δ
‖ZN

n ‖2
Γ

)
dt ≤

∣∣∣∣∣
∫ T

0

∫
Ω

∂tG
n · ZN

n

∣∣∣∣∣ dx dt
≤ ‖∂tGN‖

H− 1
2
+ε(0,T ;L2(Ω))

‖ZN
n ‖

H
1
2
−ε(0,T ;L2(Ω))

≤ ‖GN‖
H

1
2
+ε(0,T ;L2(Ω))

‖ZN
n ‖

H
1
2
−ε(0,T ;L2(Ω))

,

(2.12)

so that we need only show a uniform estimate (with respect to both n and N) of ZN
n

in the space H
1
2−ε(0, T ;L2(Ω)). We shall use the Fourier transform characterization

of the norm of fractional Sobolev spaces (see Adams [2]) to get such an estimate. Each

Z̃N
n (such functions have been defined in (2.3)) is a solution of the following equation:

d

dt

∫
Ω

Z̃N
n · φk +

∫
Ω

D(Z̃N
n ) · D(φk) +

1

δ

∫
Γ

Z̃N
n · φk dσ

= − d

dt

∫
Ω

G̃N · φk + δ(t)

∫
Ω

GN (0) · φk − δ(t− T )

∫
Ω

(ZN
n (T ) + GN (T )) · φk

for each k = 1, . . . , n, in the sense of distributions with respect to the time variable.
Here δ(·) is the usual Dirac’s delta function. In the frequency Fourier variable ξ, the
above equation reads as follows:

− iξ

∫
Ω

ẐN
n · φk +

∫
Ω

D(ẐN
n ) · D(φk) +

1

δ

∫
Γ

ẐN
n · φk dσ

= iξ

∫
Ω

ĜN · φk +

∫
Ω

GN (0) · φk − e−iξT

∫
Ω

(ZN
n (T ) + GN (T )) · φk;

see, for instance, Lions [25], where this tool is used to prove estimates on the fractional
derivative of the solution. Note that in [25], and in all works involving fractional
derivatives for the Navier–Stokes equations, the starting point is the existence of a
weak solution, on which it is possible to prove additional estimates. In our case the
existence of a weak solution derives from the fractional derivative estimates and at
present it does not seem possible to prove the usual existence results.
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Consequently, we get

− iξ‖ẐN
n (ξ)‖2 + ‖D(ẐN

n )(ξ)‖2 +
1

δ
‖ẐN

n (ξ)‖2
Γ

= iξ

∫
Ω

ĜN · ẐN
n +

∫
Ω

GN (0) · ẐN
n − e−iξT

∫
Ω

(ZN
n (T ) + GN (T )) · ẐN

n .

Take the imaginary part and multiply both sides of the previous formula by
|ξ|2α−1, with α < 1

2 so that, by using Young’s inequality, one gets

|ξ|2α‖ẐN
n (ξ)‖2 ≤ C|ξ|2α‖ĜN‖2 + C|ξ|2α−2(‖GN (T )‖ + ‖ZN

n (T )‖ + ‖GN (0)‖)2.

In order to estimate the integral
∫

R
|ξ|2α‖ẐN

n (ξ)‖2 dξ, we split it into two parts: by
the above estimate,

∫
|ξ|>1

|ξ|2α‖ẐN
n (ξ)‖2

≤ C

∫
R

|ξ|2α‖ĜN‖2 + C(‖GN (T )‖ + ‖ZN
n (T )‖ + ‖GN (0)‖)2

∫
|ξ|>1

|ξ|2α−2;

the first term on the right-hand side is controlled by C‖GN‖2

H
1
2
+ε(0,T ;L2(Ω))

, while

‖ZN
n (T )‖2 ≤ C‖GN‖

H
1
2
+ε(0,T ;L2(Ω))

‖ZN
n ‖

H
1
2
−ε(0,T ;L2(Ω))

,

by virtue of (2.12); ‖GN (0)‖ is bounded by ‖G(0)‖; and finally, by using the Morrey
inequality (see Adams [2]), which implies H1/2+ε(0, T ) ⊂ C([0, T ]), we get

‖GN (T )‖ ≤ ‖GN‖
H

1
2
+ε(0,T ;L2(Ω))

.

The second part is estimated as follows, by using Parseval’s theorem, Poincaré’s in-
equality, and estimate (2.12):

∫
|ξ|≤1

|ξ|2α‖ẐN
n ‖2 dξ ≤

∫
R

‖ẐN
n ‖2 dξ =

∫ T

0

‖ZN
n (t)‖2 dt

≤ C

∫ T

0

‖D(ZN
n )‖2dt

≤ C‖GN‖
H

1
2
+ε(0,T ;L2(Ω))

‖ZN
n ‖

H
1
2
−ε(0,T ;L2(Ω))

.

In conclusion, by collecting all of the above estimates we finally get that, for each
ε ∈ (0, 1

2 ), there exists a constant C, depending only on Ω and ε, such that

‖ZN
n ‖

H
1
2
−ε(0,T ;L2(Ω))

≤ C‖GN‖
H

1
2
+ε(0,T ;L2(Ω))

,(2.13)

which, together with (2.12), shows that ZN
n is bounded, uniformly in n and N , in the

spaces H
1
2−ε(0, T ;L2(Ω)), L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)).

Hence, it is possible to extract a (diagonal) subsequence converging weakly in
L2(0, T ;H1(Ω)), weakly-∗ in L∞(0, T ;L2(Ω)), and strongly in L2((0, T ) × Ω) to the

unique solution Z of problem (2.9). Indeed, Z ∈ H
1
2−ε(0, T ;L2(Ω)), that is, the
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topological dual space of H− 1
2+ε(0, T ;L2(Ω)), the space to which ∂tG belongs. Fur-

thermore, by passing to the limit and using the semicontinuity of the norms, it follows
that Z satisfies the claim stated at the beginning of this proof.

Remark 2.3. The assumption g ∈ H
1
2+ε(0, T ;H

1
2 (Γ)), which in turn gives

G ∈ H
1
2+ε(0, T ;H1(Ω)), seems to be rather technical for the presence of ε. If

g ∈ H
1
2 (0,+∞;H

1
2 (Γ)), it follows that G ∈ H

1
2 (0,+∞;H1(Ω)) and Theorem 2.2

holds accordingly.
Indeed, the main point is estimate (2.12), in which the right-hand side becomes

‖GN‖
H

1
2
‖ZN

n ‖
H

1
2

and, following the lines of the proof presented above, the esti-

mate on the Fourier transform gives that ZN
n is bounded, uniformly in n and N , in

H
1
2 (0,+∞;L2(Ω)). Notice that in the critical case H

1
2 , we work on the whole time

interval [0,+∞) to avoid the boundary terms ‖GN (0)‖ and ‖GN (T )‖, which cannot
be estimated by using the Morrey inequality.

We also note that this small relaxation on the assumptions on G requires us to
add the hypothesis G ∈ L∞(0, T ;L2(Ω)). Otherwise the function z will not itself
belong to L∞(0, T ;L2(Ω)) and this fact is crucial to proving the corresponding bound
for weak solutions to the full nonlinear Navier–Stokes problem.

2.4. The nonlinear problem. In this section we finally prove Theorem 1.2.
Again, we make use of an auxiliary problem; namely, we introduce the new variables

U = u− z and P = p− q,

where (z, q) is the solution to the linear evolution problem (2.8), and the pair (U,P )
solves the following problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tU −∇ · D(U) + [(U + z) · ∇](U + z) + ∇P = f in Ω × (0, T ),

∇ · U = 0 in Ω × (0, T ),

U · n = 0 on Γ × (0, T ),

δ n · D(U) · τ + U · τ = 0 on Γ × (0, T ),

U(x, 0) = u0(x) −G(x, 0) in Ω.

(2.14)

By virtue of Theorem 2.2, the existence Theorem 1.2 for the nonlinear problem
is a straightforward consequence of the following proposition.

Proposition 2.4. Assume that (G,Π) is a solution to system (2.4), with G ∈
H

1
2+ε(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). Then, there exists a unique

U ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))(2.15)

solution to problem (2.14). Moreover, the following estimate holds true:

(2.16) sup
0≤s≤t

‖U(s)‖2 +

∫ t

0

(
‖D(U)‖2 +

1

δ
‖U‖2

Γ

)
ds

≤ ‖u0 −G(·, 0)‖2eA(t) + C

∫ t

0

(‖f‖2 + ‖∇z(s)‖2‖z(s)‖)eA(t)−A(s) ds,

where

A(t) = Ct + C
(
1 + ‖z‖2

L∞(0,T ;L2(Ω))

)∫ t

0

‖∇z‖2 ds

and C is a constant depending only on Ω.
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Proof. The proof is rather standard and proceeds via a Faedo–Galerkin approx-
imation, as in the proof of Theorem 2.2. We show only an a priori estimate, whose
computations are formal but completely meaningful at the level of the Faedo–Galerkin
approximate functions. Multiply (2.14) by U and integrate by parts to get

1

2

d

dt
‖U‖2 + ‖D(U)‖2 +

1

δ
‖U‖2

Γ =

∫
Ω

U · [(U + z) · ∇](U + z) +

∫
Ω

f · U.

The estimate of the integral involving f is straightforward, since it is bounded by
‖f‖2 + ‖U‖2. We estimate the nonlinear term in the right-hand side by using the
Gagliardo–Nirenberg inequality

‖u‖L4 ≤ C‖u‖1/2‖∇u‖1/2 ∀u ∈ H1(Ω).(2.17)

Note that such an inequality is a little bit more general than the so-called Ladyžhen-
skaya inequality, since here the functions are not vanishing on the boundary of Ω and
the constant C depends on Ω.

We first observe that since ∇ · U = 0 and U · n = 0, then∫
Ω

U · (U · ∇)U = 0 and

∫
Ω

U · (U · ∇)z = −
∫

Ω

z · (U · ∇)U,

so that, by using repeatedly the Gagliardo–Nirenberg inequality given above, Hölder’s
inequality, and Young’s inequality, we get∣∣∣∣
∫

Ω

U · [(U + z) · ∇](U + z)

∣∣∣∣ ≤ 2‖U‖L4‖z‖L4‖∇U‖ + ‖U‖L4‖z‖L4‖∇z‖

≤ 1

2
‖∇U‖2 + C‖z‖4

L4‖U‖2 + C‖z‖
4
3

L4‖∇z‖ 4
3 ‖U‖ 2

3

≤ 1

2
‖∇U‖2 + C‖z‖2‖∇z‖2‖U‖2 + C‖z‖ 2

3 ‖∇z‖2‖U‖ 2
3

≤ 1

2
‖∇U‖2 + C(1 + ‖z‖2)‖∇z‖2‖U‖2 + C‖∇z‖2‖z‖.

Since, by Theorem 2.2, z ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), both terms (1 +
‖z‖2)‖∇z‖2 and ‖∇z‖2‖z‖ are integrable in time, and, by Gronwall’s lemma, we
can deduce that U is bounded in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)). Moreover,
formula (2.16) also follows.

Finally, uniqueness of the solution follows from similar arguments. Indeed, if Ũ
is the difference between two solutions U1 and U2, one easily gets

1

2

d

dt
‖Ũ‖2 ≤ (‖U2‖4

L4 + ‖z‖4
L4 + ‖∇z‖2)‖Ũ‖2

and, since Ũ(0) = 0, from Gronwall’s lemma it follows that Ũ ≡ 0.
Remark 2.5. In the proof of the result of this section we used in a fundamental

way estimate (2.17). In the three-dimensional case this inequality is no longer true.
Instead, it holds that

‖u‖L4 ≤ C‖u‖1/4‖∇u‖3/4 ∀u ∈ H1(Ω),

which can be used to prove just local existence of weak solutions. The global result
proved in the two-dimensional case depends in an essential manner on the stronger
estimate, and this is the critical difference between the two cases.
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3. The proof of Theorem 1.3. In this section we study the limit of the solution
of the vorticity seeding model as δ → 0. We prove the convergence of the solutions
of (3.1) to the solutions of the nonstationary Navier–Stokes system with the no-slip
boundary condition (3.2). This supports the idea of using a nonstandard boundary
condition on the new boundary Γ1 ⊂ Ω, such that the region between Γ and Γ1 is very
narrow. When the width of this region (presumably the boundary layer) shrinks to
zero, then the solution of the Navier–Stokes equations with the usual no-slip boundary
condition is recovered.

3.1. Comparison of solutions with different boundary data. Let the fol-
lowing be given: g ∈ H

1
2+ε(0, T ;H

1
2 (Γ)), satisfying the compatibility condition (1.5);

f ∈ L2((0, T ) × Ω); and u0 ∈ H1(Ω), with ∇ · u0 = 0. Without loss of generality,
we can assume that u0 ≡ 0. Denote by Gδ the solution of the linear stationary prob-
lem (2.4), with boundary condition Gδ · n = δ g. Consider the solution (uδ, pδ) to the
system ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tuδ −∇ · D(uδ) + uδ · ∇uδ + ∇pδ = f in Ω × (0, T ),

∇ · uδ = 0 in Ω × (0, T ),

uδ · n = δ g(x, t) on Γ × (0, T ),

δ n · D(uδ) · τ + uδ · τ = 0 on Γ × (0, T ),

uδ(x, 0) = u0(x) + G(x, 0) in Ω.

(3.1)

We want to show the convergence of the vector valued function uδ to the solution
v of the Navier–Stokes equations with zero Dirichlet data:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tv −∇ · D(v) + v · ∇v + ∇π = f in Ω × (0, T ),

∇ · v = 0 in Ω × (0, T ),

v = 0 on Γ × (0, T ),

v(x, 0) = u0 in Ω.

(3.2)

To this end, we also introduce the solution zδ to the linear evolution problem (2.8),
with boundary condition zδ · n = δ g, and we set

Uδ = uδ − zδ and wδ = uδ − zδ − v.

The function wδ satisfies the following “homogeneous” system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂twδ −∇ · D(wδ) + R(wδ, zδ, v, Uδ) + ∇r = 0 in Ω × (0, T ),

∇ · wδ = 0 in Ω × (0, T ),

wδ · n = 0 on Γ × (0, T ),

δ n · D(wδ) · τ + wδ · τ = −δ n · D(v) · τ on Γ × (0, T ),

wδ(x, 0) = 0 in Ω,

(3.3)

where

R(wδ, zδ, v, Uδ) = (Uδ · ∇)wδ + (wδ · ∇)v + (Uδ · ∇)zδ + (zδ · ∇)Uδ + (zδ · ∇)zδ.

We multiply the first equation in (3.3) by wδ and integrate by parts to get

1

2

d

dt
‖wδ‖2+‖D(wδ)‖2+

1

δ
‖wδ‖2

Γ = −
∫

Γ

(n·D(v)·τ)(wδ·τ) dσ−
∫

Ω

wδ·R(wδ, zδ, v, Uδ)dx.



ON A VORTICITY SEEDING MODEL 1795

The boundary integral in the right-hand side may be increased in the following way.∣∣∣∣
∫

Γ

(n · D(v) · τ)(wδ · τ) dσ

∣∣∣∣ ≤ δ

2
‖v‖2

H2 +
1

2δ
‖wδ‖2

Γ.(3.4)

Then we analyze the second integral. By integration by parts over Ω (note that
Uδ ·n = 0 on Γ) and by using Hölder’s inequality, the Gagliardo–Nirenberg inequality,
and Young’s inequality, we obtain∣∣∣∣

∫
Ω

wδ ·R(wδ, zδ, v, Uδ) dx

∣∣∣∣
≤ 1

2
‖D(wδ)‖2 + C

[
‖∇v‖2 + ‖∇Uδ‖

2
3 ‖∇zδ‖

4
3 + ‖∇Uδ‖

4
3 ‖∇zδ‖

2
3 + ‖∇zδ‖2

]
‖wδ‖2

+ C
[
‖∇Uδ‖

2
3 ‖∇zδ‖

4
3 ‖Uδ‖ + ‖∇Uδ‖

4
3 ‖∇zδ‖

2
3 ‖zδ‖ + ‖∇zδ‖2‖zδ‖

]
.

Indeed, for example,∣∣∣∣
∫

Ω

wδ · (zδ · ∇)Uδ

∣∣∣∣ ≤ ‖wδ‖L4‖zδ‖L4‖∇U‖

≤ C‖wδ‖
1
2 ‖D(wδ)‖

1
2 ‖zδ‖

1
2 ‖D(zδ)‖

1
2 ‖∇Uδ‖

≤ 1

8
‖D(wδ)‖2 + C‖∇Uδ‖

4
3 ‖∇zδ‖

2
3 ‖wδ‖

2
3 ‖zδ‖

2
3

≤ 1

8
‖D(wδ)‖2 + C‖∇Uδ‖

4
3 ‖∇zδ‖

2
3 (‖wδ‖2 + ‖zδ‖).

For simplicity we set

ψ(t) := C
[
‖∇Uδ‖

2
3 ‖∇zδ‖

4
3 ‖Uδ‖ + ‖∇Uδ‖

4
3 ‖∇zδ‖

2
3 ‖zδ‖ + ‖∇zδ‖2‖zδ‖

]
,

φ(t) :=
[
‖∇v‖2 + ‖∇Uδ‖

2
3 ‖∇zδ‖

4
3 + ‖∇Uδ‖

4
3 ‖∇zδ‖

2
3 + ‖∇zδ‖2

]
,

χ(t) := ‖v‖2
H2 ,

so that, by collecting all of the estimates we obtained before, we end up with the
following differential inequality:

d

dt
‖wδ‖2 + ‖D(wδ)‖2 +

1

δ
‖wδ‖2

Γ ≤ δχ(t) + ψ(t) + φ(t)‖wδ‖2.(3.5)

3.1.1. Estimate of ψ and φ in terms of δ. First, we note that the functions
ψ and φ belong to L1(0, T ), by virtue of the regularity properties (2.10) and (2.15) of
zδ and Uδ, respectively. The function χ(t) belongs to L1(0, T ) as well, since

‖v‖L2(0,T ;H2) ≤ C
[
‖v(x, 0)‖H1 + ‖f‖L2((0,T )×Ω)

]
;

see, for instance, Constantin and Foiaş [10]. And also at this point is crucial to
consider the two-dimensional problem, since such an estimate is available just for
small times in the three-dimensional case.

It is important now to sharply check the correct behavior of the functions φ(t)
and ψ(t) in terms of δ. Before going further, we collect in the following lemma the
results of section 2 that we shall need.
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Lemma 3.1. Under the assumptions of Theorem 1.3, the following estimates hold:

(i) sup0≤t≤T ‖zδ‖2 +
∫ T

0
‖D(zδ)‖2 dt ≤ C1δ‖g‖2

H
1
2
+ε(0,T ;H

1
2 (Γ))

,

(ii) sup0≤t≤T ‖Uδ‖2 +
∫ T

0

(
‖D(Uδ)‖2 + 1

δ ‖Uδ‖2
Γ

)
dt ≤ C2,

for all 0 < δ ≤ 1, where the constant C1 depends only on Ω, while the constant C2

depends only on Ω, T , ‖f‖L2 , and ‖g‖
H

1
2
+ε .

Proof. Property (i) is a consequence of (2.11). Indeed, by (2.6) and Poincaré’s
inequality,

‖Gδ‖ ≤ C‖D(Gδ)‖ ≤ C
√
δ‖g‖,

so that ‖Gδ‖
H

1
2
+ε(0,T ;L2(Ω))

≤ C
√
δ‖g‖

H
1
2
+ε(0,T ;L2(Ω))

.

Again, from (2.6),∫ T

0

‖D(Gδ)‖2 dt ≤ Cδ‖g‖2

H
1
2
+ε(0,T ;L2(Ω))

,

and in conclusion (i) holds true.
As it concerns (ii), we have that, by Poincaré’s inequality, (2.6), and Sobolev

embeddings,

‖Gδ(·, 0)‖ ≤ C‖D(Gδ)(·, 0)‖ ≤ C
√
δ‖g(·, 0)‖ ≤ C

√
δ‖g‖

H
1
2
+ε(0,T ;L2)

.

Moreover, since δ ≤ 1 and from the above estimates it follows that

A(t) ≤ A(T ) ≤ CT + C
(
1 + ‖g‖4

H
1
2
+ε(0,T ;L2(Γ))

)
,

that is, A(t) is uniformly bounded by a constant independent of δ, and that∫ t

0

(‖f‖2 + ‖∇zδ‖2‖zδ‖) eA(t)−A(s) ds ≤ eA(T )

(∫ T

0

‖f‖2 + ‖zδ‖L∞(0,T ;L2)‖D(zδ)‖2

)

≤
(
‖f‖2

L2((0,T )×Ω) + C‖g‖3

H
1
2
+ε(0,T ;L2(Γ))

)
eA(T )

as well, so that, by (2.16), (ii) also follows.
The first consequence of the above lemma is that∫ t

0

φ(s) ds ≤
∫ T

0

‖∇v‖2 dt + C(Ω, T, f, g), 0 ≤ t ≤ T,

with a bound uniform in δ, for δ small. Moreover, for t ∈ [0, T ]

∫ t

0

ψ(s) ds ≤ C

(∫ T

0

‖∇Uδ‖2

) 1
3
(∫ T

0

‖∇zδ‖2

) 2
3

‖Uδ‖L∞(0,T ;L2)

+ C

(∫ T

0

‖∇Uδ‖2

) 2
3
(∫ T

0

‖∇zδ‖2

) 1
3

‖zδ‖L∞(L2)

+ C‖zδ‖L∞(L2)

∫ T

0

‖∇zδ‖2

≤ C(δ
2
3 + δ

5
6 + δ

3
2 )

≤ Cδ
2
3 ,
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so that, by (3.5) and Gronwall’s inequality, it follows that

sup
0≤t≤T

‖wδ‖2 +

∫ T

0

(
‖D(wδ)‖2 +

1

δ
‖wδ‖2

Γ

)
dt ≤

∫ T

0

[δχ(s) + ψ(s)]e
∫ T
s

φ(r) dr ds

≤ e
∫ T
0

φ(s) ds

∫ T

0

[δχ(s) + ψ(s)] ds

≤ Cδ
2
3

and finally

sup
0≤t≤T

‖wδ‖2 +

∫ T

0

(
‖D(wδ)‖2 +

1

δ
‖wδ‖2

Γ

)
dt = O(δ

2
3 ).

Since the corresponding norms of zδ are of order δ
1
2 , by the previous lemma, we finally

deduce that uδ − v is of the order δ
1
3 , and Theorem 1.3 is proved.

Remark 3.2. The tangential trace of the function wδ converges a little better,
since from the above estimate we can deduce

‖wδ‖L2(Γ×(0,T )) = O(δ5/6).

Remark 3.3. The above proof shows that there is a crucial loss in the estimates
due to: (1) the boundary effect in the estimate (2.6) and (2) the nonlinearity (recall
the contribution of Uδ in the estimate of ψ(t)). We observe that the original model
was supplemented by the boundary condition

u · n = δ2g,

but we used in fact u · n = δ g. By running through the proof of Theorem 1.3 one
gets, using the boundary condition

u · n = δαg,

that zδ = O(δα−
1
2 ), so that

∫ T

0
ψ(t) dt = O(δ

4
3 (α− 1

2 )) and finally wδ = O(δ
2
3 (α− 1

2 )).
In particular, for α = 2, which is the value corresponding to models in [4, 24], the
behavior of zδ matches the loss in the estimates due to the boundary term (3.4); see
section 1.2. Hence, for larger values of α, the convergence remains slow, because of
this term. Supposedly, the loss in the convergence rate caused by this term is an
intrinsic feature of the problem, while those losses caused by the nonlinearity may
have technical reasons.
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[18] W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an
incompressible viscous flow, J. Differential Equations, 170 (2001), pp. 96–122.
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[24] W. J. Layton, Advanced models for large eddy simulation, in Proceedings of the 32nd Compu-
tational Fluid Dynamics—Multiscale Methods, VKI Lectures Series Monographs, vol. VKI
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ON THE GEOMETRY OF OPTIMAL WINDOWS, WITH SPECIAL
FOCUS ON THE SQUARE∗
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Abstract. For the Laplace operator with mixed (Dirichlet and Neumann) boundary conditions,
the dependence of the principal eigenvalue on the placement of the Dirichlet part is investigated. An
optimal window is a Dirichlet part of the boundary that minimizes the principal eigenvalue among
all competitors of the same area.

In the special case of a square, we provide both numerical evidence and rigorous partial results
for the conjecture that optimal windows in a square are segments centered at either a corner or the
midpoint of a side. In particular, we prove that the principal eigenvalue decreases as a window is
shifted from a side-centered position towards the corner. An optimal window contained in two sides
of the square is connected and contains a corner in its interior. Optimal windows whose length does
not exceed the length of one side break the symmetry of the square.

We also construct a star-shaped domain whose optimal window(s) must be disconnected. Finally
we give, for general domains in Rd, continuity results for the eigenvalue as a function of the window,
and examples of discontinuity when crucial hypotheses are violated. We also give a variation formula
that relates the eigenvalue to the singularities of the eigenfunction (stress intensity coefficient) near
the boundary of the window.

Methods are based on the variational problem and include rearrangement, Dirichlet–Neumann
bracketing, capacity estimates, and deformation under a flow.

Key words. optimal eigenvalue, Laplace operator, mixed boundary conditions, shape optimiza-
tion, capacity, singular coefficient, rearrangement
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1. Introduction.

1.1. Overview over the results. Consider the first eigenvalue of the Laplace
operator in a fixed domain Ω ⊂ R

d (say, bounded Lipschitz)

−Δu = λu , u ≥ 0 in Ω(1.1)

with Dirichlet boundary conditions on some subset D ⊂ Ω and Neumann on the
complement of D, i.e.,

u|D = 0, ∂νu|∂Ω\D = 0.(1.2)

Technical questions of how these boundary conditions should be interpreted will be
discussed below. We will call λ = λ(D) the principal eigenvalue of the Laplacian
under the window boundary conditions on D. The problem of optimal windows asks
for minimization of this eigenvalue for prescribed surface area of the window.

As explained in [8], one may think of Ω as representing a room with perfectly heat-
conducting windows at D and insulating walls along ∂Ω\D. The principal eigenvalue
λ(D) gives the rate of exponential decay of any initial temperature distribution due
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to heat diffusion through the window as time becomes large, while the corresponding
eigenfunction gives the asymptotic temperature profile. An optimal window minimizes
long-term heat loss among all windows of a given size.

It has been shown in [9] that such optimal windows exist and that in the case
of a ball of any dimension the optimal window is a spherical cap of the appropriate
area. Similar results have been obtained independently by Cox and Uhlig [6], who
treat windows as a singular limiting case of Robin boundary conditions.

Here we are concerned with the question of what can be said about the geometry
of optimal windows when Ω is not a ball. We suspect that an optimal window in a
convex domain Ω should be connected, have some basic regularity properties, and lie
in a region of ∂Ω with large mean curvature. This is certainly not the case for more
general domains, as we show by constructing an example of a star-shaped domain
with a disconnected optimal window. Heuristic evidence concerning the location of
optimal windows has been discussed in [8], and is also corroborated by results of
Harrell, Kröger, and Kurata [13] on a different, but related, problem.

As a model case for a convex domain, we study a square: The determination of
the shape of optimal windows is already nontrivial in this case. Here we conjecture
that the optimal window is a segment, centered either at the midpoint of a side
or at a corner depending on the prescribed boundary measure (length), and that
there are no other optimal windows, up to sets of measure zero. This conjecture
is supported by a number of rigorous partial results as well as numerical evidence
(see Figure 2.1). In particular, we prove that the eigenvalue decreases as a short
segment is moved from a side-centered position to a position adjacent to a corner and
that this monotonicity extends at least for some distance as the window is moved
around the corner. We show the first part of this result by means of a Dirichlet–
Neumann bracketing argument (section 3.1). The second part is proved by means
of an Euler–Lagrange-type variational formula, which we derive for any domain of
sufficient regularity in arbitrary dimension (section 6).

Furthermore, we show that some segment containing a corner in its interior is
optimal among all windows lying on only two sides of the square (adjacent or not). The
proof relies on discrete rearrangement arguments that are specific to the square (with
some obvious, but maybe not too interesting, generalization to a cube or hypercube).

Numerical evidence shows that for segments whose length exceeds the sidelength
by a certain small amount, up to slightly more than two sidelengths, the corner-
centered position ceases to be optimal, with the side-centered position being better
(section 2). This can be understood heuristically in terms of the fact that optimal
windows prefer to use corners, as was already discussed in terms of a model problem
in [8]. However, sacrificing connectedness to distribute the window evenly around
the corners is not advantageous and results in windows inferior to either the side-
centered segment or the corner-centered segment (section 3.3). For windows up to one
sidelength, we can prove this analytically, for larger ones numerically. On the other
hand, our analytic results prove that the (nonoptimal) window with four congruent
corner-centered components is still better than any other window that has the full
symmetry of the square.

Our study of the square also serves as a building block for an example of a star-
shaped domain where any optimal window is disconnected (section 4). A related
example was discussed heuristically in Figure 3 of [8].

The variation formula mentioned above is derived in section 6 for windows in
general domains of any dimension. Its upshot is that the rate of change of the eigen-
value as a function of the window is determined by certain singular coefficients of the
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eigenfunction that show up at each interface of window and wall on the boundary. In
a neighborhood of such interface points, the eigenfunction (albeit in W 1,2) cannot be
expected to be W 2,2.

In special geometries the singularities have been studied by Grisvard (e.g., [12]).
In the situation of a simple interface of a wall and a window segment on a side of the
square, the typically expected singular behavior of the eigenfunction is like c Im

√
z

in a neighborhood of 0, where the number c is the singular coefficient. We give a
simple lower estimate for this coefficient, based on a maximum principle, to ensure
that it does not vanish. In contrast, in a corner of the square, the singular coefficient
vanishes. These two facts make it possible for the eigenvalue to be lowered by moving
a segment a bit around the corner. For segments up to one sidelength, a better
control of the singular coefficients appearing in the variational formula (which depend
on global properties of the eigenfunction) should extend this monotonicity all the way
until a minimum is achieved when the segment is centered at a corner, but a proof of
this extended monotonicity has eluded us so far.

Contributions from geometric singularities (corners, ridges, conical points) have
been studied by many authors, and in vast generality, e.g., Maz’ya and Plamenevskii
[21]. Surveys are [16] and [23]. We are using only the very simplest case here.

The continuous dependence of the eigenvalue under shifts of the window and
other reasonable modifications of its geometry is an intuitively plausible but nontrivial
result of relevance. For deformations of windows that can be achieved by the flow of
a vector field, our Euler–Lagrange argument proves even differentiability. However,
in the absence of good a priori information on the window geometry, such flow type
modifications are rather weak; this is why we include some continuity results for other
modifications, in general Lipschitz domains (section 5). In this context, it is crucial
to consider, in addition to the formulation of the eigenvalue problem (EVP) adopted
in [9], [8], a more sophisticated definition that takes into account fine properties
of eigenfunctions. It is easy to see that the results in [9], [8] carry over. We will
argue this point specifically for the existence of optimal windows in section 1.3. Both
definitions coincide for optimal windows, as well as for windows of sufficient regularity,
in particular for open windows.

1.2. Basic facts, context, and notation; variational formulation. Let us
introduce some notation. The symbol Ω will generally denote a bounded Lipschitz
domain in R

d, and the window D will be a measurable subset of ∂Ω. As surface
measure on ∂Ω, we use d − 1-dimensional Hausdorff measure, denoted here by σ. A
point in D ∩ ∂Ω \D will be called an interface point .

The Laplacian with the window boundary conditions (1.2) will be denoted by
ΔD. The word “eigenvalue” without adjective or ordinal will always denote the lowest
eigenvalue, which is simple. This eigenvalue will be denoted by λ(D).

Define the optimal eigenvalue for windows of a given surface measure by

λ∗(�) = inf {λ(D) | D ⊂ ∂Ω, σ(D) = �} .(1.3)

A set D ⊂ ∂Ω will be called an optimal window if λ(D) = λ∗(σ(D)), that is, if

λ(D) = inf {λ(D′) | D′ ⊂ ∂Ω, σ(D′) = σ(D)} .(1.4)

The eigenvalue λ(D) in (1.1) and (1.3) can be defined by the Courant–Hilbert varia-
tional problem (CHVP)

λ(D) = min

{∫
Ω

|∇u|2 dx
∣∣∣ u ∈ W 1,2(Ω),

∫
Ω

u2 dx = 1, u|D = 0

}
.(1.5)
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In [8] and [9], the restriction u|D of a function u ∈ W 1,2(Ω) was to be understood as
the trace in L2(∂Ω). By general Sobolev space theory ([1, Theorem 5.4] or [10, section
4.3, Theorem 1]), the trace of a W 1,2-function is guaranteed to be an L2(∂Ω) function.
Note that the condition u|D = 0, in the L2-sense, allows the boundary condition to
be violated on a set of d − 1-dimensional measure zero. We refer to this definition
of λ as the coarse formulation of the eigenvalue problem (1.1) and the CHVP (1.5).

The Neumann boundary conditions on ∂Ω \D in (1.1) arise as natural boundary
conditions for the variational problem in (1.5). The minimizing function u is a nor-
malized eigenfunction corresponding to λ(D) and can be chosen to be nonnegative.
It agrees a.e. with an analytic function in the interior of Ω, but is not guaranteed
to be continuous up to the boundary ∂Ω, unless some assumptions are made on the
geometry of D.

Clearly, the principal eigenvalue λ1(D) increases under inclusion of windows,

D1 ⊂ D2 =⇒ λ(D1) ⊂ λ(D2),

since the minimizing function in the CHVP for λ(D1) is an admissible test function
for λ(D2).

1.3. Fine variational formulation. As mentioned above, there is another
meaningful definition of the boundary conditions (1.2) and the corresponding vari-
ational problem (1.5). Since W 1,2-functions can actually be determined quasi-every-
where, that is, up to a set of zero capacity , one can insist that the Dirichlet boundary
conditions in (1.1) and in the CHVP (1.5) hold up to a set of zero capacity. Since every
set of capacity zero has d− 1-dimensional measure zero, but not vice versa, this is a
stronger condition. It corresponds to choosing a smaller domain for the quadratic form
associated with ΔD. We will refer to this definition of λ(D) as the fine formulation
of (1.1) or (1.5). When necessary, we distinguish the two definitions by superscripts,
writing λc(D) and λf (D) for the coarse and fine eigenvalues, respectively. In general,

λf (D) ≥ λc(D),(1.6)

and it is easy to construct examples where the inequality is strict: any (fractal) window
with Hausdorff dimension between d − 2 and d − 1 has measure 0 and nonvanishing
capacity [10, section 4.7.2],[19, section 2.1.7], hence coarse eigenvalue 0, but positive
fine eigenvalue. The notion of sets of capacity 0 is well defined even in two dimensions,
where capacity can only be defined subject to some arbitrary choice. Such subtleties
can also be avoided by replacing the window D in Ω ⊂ R

2 with the equivalent window
D × [0, 1] in Ω × ]0, 1[ ⊂ R

3.
In order to relate coarse and fine eigenvalues more precisely, we represent an

element u of a Sobolev space by a function defined everywhere, which will be called
the preferred representative. For any given Lipschitz domain Ω and any neighborhood
V of Ω, there is a linear bounded operator E : W 1,2(Ω) → W̊ 1,2(V ) ↪→ W 1,2(Rd) that
extends Sobolev functions in Ω to the entire space as outlined in [10, section 4.4], i.e.,
Eu|Ω = u. Then we choose the preferred representative as

ũ(x) := lim sup
r→0

�
∫
Br(x)

Eu(y) dy for x ∈ Ω.(1.7)

The lim sup is in fact a limit, except on a set of zero capacity, and ũ is quasi-continuous
(as defined in [19, section 2.17]).
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The extension operator E is not unique but depends on a choice of locally flatten-
ing coordinate charts, and we make such a choice once and for all for each given Ω.
The preferred representative on Ω depends on the extension operator, but any two
choices will only differ on a set of capacity zero. See [19, Theorem 2.55 with following
remark] or [10, section 4.8, Theorem 1]. The restriction of ũ to ∂Ω represents the
trace of u.

Theorem 1.1. For the CHVP (1.5) in the fine formulation, there exists a mini-
mizer which is uniquely determined quasi-everywhere up to choice of a sign.

Proof. This is a slight modification of the classical argument for the existence of
a minimizer for (1.5) in the (coarse) Sobolev sense. Let uj be a minimizing sequence
of quasi-continuous functions (in W 1,2(Rd), by extension) satisfying the boundary
conditions in the fine sense. Extracting a subsequence (again denoted by uj), we may
assume weak convergence in W 1,2(Ω), strong convergence in L2(Ω), and (by compact-
ness of the trace map) strong convergence in L2(∂Ω), to a limit function u∗. We have
to show that u∗ inherits the fine boundary conditions from {uj}. To this end, we
replace the sequence {uj} by a sequence {ūj} of convex combinations that converges
strongly in W 1,2, according to Mazur’s theorem (see, e.g., [18, section 2.13]). The
normalized sequence ûj := ūj/‖ūj‖L2(Ω) still converges strongly in W 1,2(Ω) because
‖ūj‖L2(Ω) → 1. The ûj inherit the fine boundary conditions from uj and therefore
form a sequence of legitimate competitors in the CHVP.

Now by convexity we obtain∫
|∇u∗|2 = lim

∫
|∇ûj |2 = lim

∫
|∇ūj |2 ≤ lim

∫
|∇uj |2 = inf

∫
|∇u|2.

We must show that u∗ inherits the fine boundary conditions from the ûj . This follows
from the arguments in section 2.1.3 of [19], which we sketch briefly, for the sake of
being self-contained:

(1) If a sequence of C∞
0 functions vj (with uniformly bounded support) converges

strongly in W 1,2(Ω) to some u∗, then it holds for some subsequence (again called vj):

∀ε > 0 ∃Vε open : cap(Vε) < ε, ‖vj − u∗‖C0(Ω\Vε)
→ 0

(2) Every W 1,2(Ω) function u can be approximated in W 1,2(Ω) norm by C∞
0

functions vk (with uniformly bounded support), such that

∀ε > 0 ∃Wε open : cap(Wε) < ε, ‖vk − u‖C0(Ω\Wε)
→ 0.

(The existence of a quasi-continuous representative is actually a consequence of this.)
Now there are open sets Vj with cap(Vj) < 2−j such that ûj is continuous on

Ω \ Vj and vanishes on D \ Vj , and there are smooth approximants v̂j such that
‖v̂j − ûj‖W 1,2(Ω) < 2−j and ‖v̂j − ûj‖C0(Ω\Vj\Wj)

< 2−j for appropriate open sets Wj

with cap(Wj) < 2−j . Therefore, for every j0, the sequence v̂j converges uniformly to
u∗ outside the set Vj0 :=

⋃
j≥j0

(Vj ∪Wj), whose capacity is at most 22−j0 . Hence u∗

vanishes on D \ Vj0 , for every j0.
Uniqueness and positivity follow from the strong maximum principle as in the

classical argument.
The coarse and fine formulations of optimal windows and their eigenfunctions

essentially agree.
Proposition 1.2. Let λc

∗(�) and λf
∗(�) be optimal eigenvalues for windows of

size �, as defined by (1.3) in the coarse and fine sense, respectively. Then

λf
∗(�) = λc

∗(�), (0 ≤ � ≤ λDir).(1.8)
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Furthermore, D is an optimal window with respect to the coarse definition if and only
if it differs by a set of d − 1-dimensional measure zero from an optimal window for
the fine formulation.

Proof. Clearly, from (1.6) we have

λf
∗(�) ≥ λc

∗(�).

To see the converse inequality, take an optimal window D for the coarse formulation,
i.e., λc(D) = λc

∗(�), and let uc be a minimizer of the corresponding CHVP (1.5). Let
ũc be the preferred representative of uc, as defined above, and set

D′ := {x ∈ ∂Ω | ũc(x) = 0}.

We refer to this procedure as refining the window D. By definition, σ(D′) ≥ � and
λc(D′) = λ∗(�). Since ũc|D′ vanishes identically, it is an admissible candidate for the
CHVP (1.5) for λf (D′). It follows that

λf
∗(�) ≤ λf (D′) = λc(D) = λc

∗(�).

Note that we always have λf (D′) ≤ λc(D) since ũc vanishes on D′. Whenever
λf (D) > λc(D) occurs, this is due to D \ D′ having positive capacity, which makes
ũc ineligible for the fine CHVP. Whenever de Giorgi’s continuity argument applies
at each point of D, i.e., when uc has a representative that is continuous on Ω ∪ D,
then ũc is admissible for the fine CHVP and thus λf (D) = λc(D). This holds in
particular if D is open, notwithstanding possible discontinuities of uc at interface
points. A de Giorgi argument can also be used to show continuity of uc, provided
the window has positive density at every interface point p ∈ D ∩ ∂Ω \D. We suspect
that eigenfunctions for optimal windows should be continuous up to the boundary,
but this is an unresolved question.

2. Numerical results for the square. We have used the MATLAB pdetool
to calculate, by means of finite elements, the lowest eigenvalue for various window
configurations. The calculation was done with a sequence of at least three subsequent
mesh refinements so that numerical convergence within the precision of the graphics
could be checked by inspection. In the accompanying Figure 2.1, we show the eigen-
value as a function of the length of the window, for five different simple geometric
configurations.

As outlined in section 1.1, we conjecture that the configurations giving the lowest
eigenvalue in Figure 2.1 (namely either a side-centered or a corner-centered segment,
depending on the length) are in fact the optimal configurations. As a rule of thumb,
the better of the two choices of symmetric and connected windows is the one that con-
tains more corners. Exceptions to this rule occur near integer multiples of a sidelength.

Figure 2.1 also displays a feature of the first variation formula: When the interface
points are in the corner (which implies vanishing of the singular coefficients), the
derivative of the eigenvalue vanishes. These are just the explicitly calculable cases
marked in the figure. Our numerics do not resolve the modulus of continuity at
length 0. However, for each of the curves printed, it can be seen analytically that
c1/ ln(1/δ) ≤ λ(δ) ≤ c2/ ln(1/δ) (with δ the total length of the window): The lower
bound follows from Theorem 5 in [8] (slightly modified for two dimensions, as pointed
out there); the upper bound is an immediate consequence of our capacity estimate in
Proposition 5.2 and its proof. Sharp asymptotics for a different, but closely related,
problem can be found in Chapter 9 of [20].
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one-component window, symmetric to diagonal

four-component window, corner-centered, 
full symmetry ( = scaled version of  )

one-component window, symmetry axis parallel to side

two-component window, symmetric to diagonals

two-component window, symmetry axes parallel to sides

�

λ

Fig. 2.1. Five sections through the space of windows, each parametrized by length. The hori-
zontal axis measures the length, in units of the perimeter of the square, the vertical axis gives the
eigenvalue relative to the full Dirichlet eigenvalue. The labels mark those window configurations
that can be calculated explicitly by separation of variables. In these pictograms, bold lines denote
Dirichlet BCs.

We next study the dependence of the eigenvalue on the position of the window.
We cannot expect the eigenvalue to depend monotonically on the shift parameter for
all lengths, because the side-centered and the corner-centered configuration yield the
same eigenvalue for three particular lengths, close to 1.02, 2.04, 3.15 sidelengths, as
seen in Figure 2.1. In Figure 2.2, we shift windows of a given length from a side-
centered to a corner-centered position. However, we observe in each case that local
minima only occur in symmetric positions, supporting our conjecture.

The derivative of the eigenvalue with respect to the shift parameter is proportional
to the difference of the squares of the singular coefficients at the endpoints of the
segment (section 6). In the symmetric configurations, this derivative vanishes by
symmetry. When both endpoints lie in a corner, where the singular coefficients vanish,
the derivative appears to vanish to a higher order, indicating further cancellations.
This can be plausibly observed for lengths 1 and 3 in the side-centered configuration,
and for length 2 in the corner-centered configuration.

Figure 2.3 shows the effect of tearing apart a connected window into two pieces.
Note the competition between corner positions and connectedness as geometric fea-
tures favoring low eigenvalues.
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Fig. 2.2. The eigenvalue for connected windows of nine different lengths and two-component
windows of two different lengths, as a function of a shift parameter. The horizontal axis indicates
the distance to a side-centered position.

0.4444
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Fig. 2.3. Examples of competition between connectedness and corner position for small win-
dows. Dotted lines: The first hump for the side-centered window is actually axially symmetric, due
to the argument used in section 3.1.
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Ω = ]0, 1[ × ]0, h[

D = ] 12 + t− �
2 ,

1
2 + t + �

2 [ × {0}

λ(D) =: λ(t) �/2 �/2

t

Ω̂ (cylinder)

�/2�/2

t1t2

Fig. 3.1. Shifting windows in a rectangle after doubling it to obtain a cylinder.

3. Rigorous results for the square. In this section, we collect some inequal-
ities and monotonicity results that are specific to the square.

3.1. Monotonicity of shifting (rectangle). For the geometric situation, see
the top of Figure 3.1.

Theorem 3.1. Let Ω be a rectangle. The principal eigenvalue of a connected win-
dow D that is contained entirely in one side of ∂Ω is a continuous, strictly decreasing
function of the distance of D from the side-centered position.

Proof. By scaling, rotating, and translating, we may assume that Ω = ]0, 1[×]0, h[,
and that the window is contained in the bottom side of the rectangle; see Figure 3.1.
For 0 < � < 1 and |t| ≤ (1− �)/2, let D(t) = ] 12 + t− �

2 ,
1
2 + t+ �

2 [×{0} be the window
of length � that has been shifted by t from the side-centered position, and denote the
corresponding eigenvalue by λ(t). By symmetry, λ is an even function of t. Continuity
of λ(t) follows most easily from Proposition 5.2. To prove the last assertion, we will
show that

λ
(

1
2 (t1 + t2)

)
> min {λ(t1), λ(t2)}(3.1)

holds for any pair t1 < t2. Setting t1 = −t, t2 = t in (3.1) and using that λ(−t) = λ(t)
shows that λ takes its global maximum at t = 0. Setting t1/2 = t ∓ ε in (3.1) shows
that λ(t) cannot assume a local minimum on the open interval ]0, (1 − �)/2[. We
conclude that λ(t) is strictly decreasing on [0, (1 − �)/2], as claimed.

In order to prove claim (3.1), we combine a doubling trick with a special case of
Dirichlet–Neumann bracketing (see [22, section XIII.15]). Fix t1 ≤ t2 with |t1|, |t2| ≤
(1 − �)/2, set t = (t1+t2)/2, and let u be the positive normalized eigenfunction for
the rectangle Ω = ]0, 1[ × ]0, h[ with the window D(t).

Consider the CHVP on the cylinder Ω̂ = (R/2Z) × ]0, h[, with window D̂(t) =
D(t)∪(−D(t)), which is obtained by gluing a copy of Ω with window D(t) to its mirror
image along the vertical edges. Since the minimizing function û is automatically
symmetric by simplicity of the principal eigenvalue in a connected domain, it follows
that this CHVP on Ω̂ with window D̂(t) is equivalent to the CHVP on Ω with window
D(t). In particular,

û(x, y) =
1√
2
u(|x|, y), (−1 ≤ x ≤ 1, 0 ≤ y ≤ h),

and the corresponding principal eigenvalue coincides with λ(t).
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On the other hand, with the understanding that x coordinates are interpreted
modulo 2, the cylinder Ω̂ contains the disjoint union of the rectangles Ω1 = ](t2 −
t1)/2, 1+(t2 − t1)/2[× ]0, h[ and Ω2 = ]−1+(t2 − t1)/2, (t2 − t1)/2[× ]0, h[, which are
copies of Ω with windows D(t1) and D(t2), respectively. By restricting û to Ω1 ∪ Ω2

we obtain a test function for Ω1 ∪Ω2 with window D(t1)∪D(t2). Since the principal
eigenvalue for a disjoint union of domains is the smaller of the two eigenvalues, it
follows that

λ(t) ≥ min{λ(t1), λ(t2)}.

The functions u1 = û|Ω1 and u2 = û|Ω2 cannot be eigenfunctions for λ(t1) and λ(t2),
because the gradient of û vanishes at those boundary points of Ω1 or Ω2 that were
corners of Ω, in violation of the Hopf boundary point lemma for u1 and u2. This
completes the proof of (3.1).

The doubling argument used in the proof shows that two connected window seg-
ments of length � each, placed symmetrically with distance 2s from the center of a
rectangle of sidelength 2, yield the same eigenvalue as two such windows placed sym-
metrically with distance 2(1− �− s) apart. This can be observed in the curve for the
side-centered configurations in Figure 2.3.

3.2. Optimality among windows on one or two sides. The monotonicity
argument in the previous subsection implies in particular that among all connected
windows contained in one side of a rectangle, the one touching a corner produces the
minimal eigenvalue. We next consider windows contained in two sides of a square.

Theorem 3.2. Among all windows that lie on only two sides of the square
(adjacent or not), the optimal window is connected and contains a corner of the square
in its interior.

The proof is based on rearrangement techniques, which have been widely used
for geometric inequalities (see [15], [18] for a general reference). Here we will use two
rearrangements adapted to the square: the increasing rearrangement and polarization.

For a nonnegative measurable function u on a rectangle, we define the increasing
rearrangement in the x-direction, Ru, by replacing the restriction of u to each line y =
const with the unique nondecreasing left-continuous function which is equimeasurable
with u(·, y); see Figure 3.2. By Fubini’s theorem, Ru is equimeasurable with u.

Lemma 3.3. Let u be a nonnegative W 1,2-function on a rectangle Ω = ]0, 1[ ×
]0, h[, and let Ru be its increasing rearrangement in the x-direction. If the trace of u
vanishes σ-a.e. on a window

D =
(
{0} ×Dl

)
∪
(
{1} ×Dr

)
∪
(
Db × {0}

)
∪
(
Dt × {h}

)
,

then Ru vanishes σ-a.e. on the window RD defined by

(RD)l = Dl ∪Dr, (RD)r = ∅, (RD)b = ]0, σ(Db)[, (RD)t = ]0, σ(Dt)[.(3.2)

In general,

σ(D) ≥ σ(RD),

with equality certainly when Dr = ∅. The corresponding principal eigenvalues satisfy

λ(D) ≥ λ(RD),

with equality only when RD agrees σ-a.e. with either D or its mirror image.
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u

D RD

increasing

Fig. 3.2. The effect of the symmetric increasing rearrangement on a window with components
on all four sides of a rectangle.

Proof. If u is continuous up to the boundary of the rectangle and vanishes on
D, then its rearrangement Ru is also continuous and vanishes on the window RD.
To see that the trace of Ru vanishes on RD for any nonnegative function u in W 1,2

vanishing on D, we note that the increasing rearrangement is closely related with
Steiner symmetrization. In fact, if we extend both u and Ru by reflection across the
line x = 1 to functions û and R̂u on the doubled rectangle Ω̂ = ]0, 2[× ]0, h[, then R̂u
is just the Steiner symmetrization of û. Since Steiner symmetrization is continuous
on W 1,2 according to [4], R is continuous as well, and the first claim follows by a
density argument.

For the second claim we use that R preserves the L2-norm but reduces the norm
of the gradient. In particular, R can only decrease the Rayleigh quotient. Choosing
u to be the principal eigenfunction of the CHVP corresponding to the window D, we
see that

λ(D) =

∫
|∇u|2 dx∫
|u|2 dx ≥

∫
|∇Ru|2 dx∫
|Ru|2 dx ≥ λ(RD).(3.3)

By analyticity, the partial derivative ∂xu vanishes only on a set of zero measure. It
follows from a theorem of Brothers and Ziemer [3] that the rearrangement inequality
in (3.3) is strict unless u is already either increasing or decreasing in x on each line
y = const .

The second rearrangement exploits the symmetry of the square under reflections
at the diagonals. Let Ω = ]0, 1[ × ]0, 1[ be the unit square, and let τ(x, y) = (y, x)
denote the reflection at the diagonal joining the lower left with the upper right-hand
corner. For any function u on Ω, the polarization Pu of u with respect τ is given by

Pu(x, y) =

{
max{u(x, y), u(τ(x, y))} if y ≥ x,
min{u(x, y), u(τ(x, y))} if y ≤ x.

For a comprehensive account of polarization we refer to [2]. We have the following
lemma.

Lemma 3.4. Let u be a nonnegative W 1,2-function on the unit square Ω =
]0, 1[ × ]0, 1[, and let Pu be its polarization, as defined above. If (the trace of) u
vanishes σ-a.e. on a window

D =
(
{0} ×Dl

)
∪
(
{1} ×Dr

)
∪
(
Db × {0}

)
∪
(
Dt × {1}

)
,

then Pu vanishes σ-a.e. on the window PD with

(PD)l = Dl ∩Db, (PD)r = Dr ∪Dt, (PD)b = Dl ∪Db, (PD)t = Dr ∩Dt.

In general,

σ(D) = σ(PD),
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and the principal eigenvalues satisfy

λ(D) ≥ λ(PD),

with equality only if PD agrees σ-a.e. with either D or τ(D).
Proof. The form of PD is immediate from the definition of P. To see the sec-

ond claim, choose u to be the principal eigenfunction corresponding to the window
D. Since Pu is equimeasurable with u and |∇Pu| is equimeasurable with |∇u| by
definition of the polarization, we have

λ(D) =

∫
|∇u|2 dx∫
|u|2 dx =

∫
|∇Pu|2 dx∫
|Pu|2 dx ≥ λ(PD).

Unless Pu agrees with either u or u ◦ τ , it cannot be real analytic, and hence is not
the eigenfunction corresponding to λ(PD). We conclude that then the last inequality
is strict.

Proof of Theorem 3.2. Within the class of windows contained in two sides of the
square, there clearly exists an optimal one. By Lemma 3.4, a window consisting of
two nonempty parts contained in two opposite sides of the square cannot be optimal,
since it can be improved by polarization.

If D is contained in two adjacent sides (say, left and bottom) of the square,
Lemma 3.3 implies that replacing D with RD strictly reduces the principal eigenvalue,
unless the bottom part of the window is connected and contains a corner. Note that
in this case, RD has the same length as D. Repeating this argument for the vertical
direction, we see that also the part of D on the left-hand side must be connected and
contain the lower left corner.

It remains to show that a corner must lie in the interior of the window. If the
length of D happens to equal the length of one side of the square, we refer to the
numerical result, which shows that the corner-centered position improves over the
one-side position. Otherwise, we refer to Corollary 6.3 below to show that moving
the segment a short distance around the corner improves the eigenvalue.

3.3. Nonoptimality of Z2×Z2-symmetric windows. We have the following
theorem.

Theorem 3.5. In a rectangle, any window of sufficiently small length that has the
full symmetry group of a rectangle is not optimal. In particular, a symmetric window
whose length does not exceed the length of one side is not optimal in a square.

As mentioned before, numerical results for the square indicate that the length
restriction is not needed.

Proof. In self-explanatory pictogram notation, we reason that

λ

( )
= λ

( )
= 4λ

( )
≥ 4λ

( )
,(3.4)

exploiting symmetry, scaling, and the rearrangement of Lemma 3.3 in turn. The last
inequality is strict unless the window consists of four L-shaped windows in the corners
to begin with, showing that an optimal window having full symmetry must be of that
form. In (3.4), we have gained a factor 4, but lost half of the window length. We now
double the window using Lemma 6.1.

Assume that the rectangle has the form Ω = ]0, a[×]0, b[ and the L-shaped window
(called DL) has lengths qxa and qyb on the horizontal and vertical parts, respectively.
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An admissible test function for the CHVP for an L-shaped window with sidelengths
2qxa and 2qyb is given by u◦ψ, where ψ(x, y) = (h(x), k(y)) with h, k piecewise linear
such that h(0) = k(0) = 0, h(a) = a, k(b) = b, and h(2qxa) = qxa, k(2qyb) = qyb. It is
easy to see that ψ : Ω → Ω is bi-Lipschitz. The largest value for the spectral radius of
(Dψ)(Dψ)T /detDψ is 2(1−q)/(1−2q) with q = max{qx, qy}, and the largest value for
detDψ is (1−qx)/(1−2qx)×(1−qy)/(1−2qy). By Lemma 6.1, the window ψ−1(DL)
is an improvement over the original window, whenever 2(1− q)3/(1− 2q)3 ≤ 4, which
happens for q < 0.17 and translates to a smallness condition on the window size,
depending on the sidelengths of the rectangle.

In the square ]0, 1[×]0, 1[, an optimal window which is symmetric under reflections
at the vertical and horizontal axes must be symmetric under reflection in the diagonals
as well, since otherwise a better window is obtained by polarization; this gives qx =
qy =: q. We can now get a better quantitative estimate in (3.4) for the square. Define
a bi-Lipschitz map by setting

ψ : (x, y) �→

⎧⎨
⎩

(
x, 1 − 1−q

1−2q (1 − y)
)

if y ≥ 1 − (1 − 2q)(1 − x) (I),(
x, 1

2 (x + y)
)

if x ≤ y ≤ 1 − (1 − 2q)(1 − x) (II)

above the diagonal, and an analogous formula below the diagonal. The spectral radius
of (Dψ)(Dψ)T /detDψ is (1 − q)/(1 − 2q) in domain (I) and 1

2 (3 +
√

5) in (II). The
Jacobian detDψ is largest in (I), namely (1−q)/(1−2q). Lemma 6.1 implies that the
window can be doubled with a factor ≤ 4 in the eigenvalue, provided σ(D) = 4q ≤
4(5 −

√
5)/(13 −

√
5) ≈ 1.027.

Corollary 3.6. The result of Theorem 3.5 holds, for sufficiently small windows
in a rectangle ]−a, a[ × ]−b, b[, under the weaker assumption that either (a) there is
equal window area in each of the four quadrants, or (b) the window is symmetric
under the 180◦ rotation (x, y) �→ (−x,−y).

Proof. For (a), the first step in (3.4) can be replaced with an inequality, where
that quarter is selected that contributes the smallest Rayleigh quotient. For (b), note
that the symmetry is inherited by the eigenfunction, and we have u(0, y) = u(0,−y).
Thus we can define û ∈ W 1,2 by û(x, y) = u(x, y) for x ≤ 0 and û(x, y) = u(x,−y)
for x ≥ 0. û represents another window D̂ with the same area as D, has the same
Rayleigh quotient, and is not the optimizer yet, unless D̂ = D; this reduces the
corollary to the theorem again.

4. A star-shaped domain with disconnected optimal window. Here we
prove the properties of the following example.

Example 4.1. There exists a star-shaped Lipschitz domain Ω in R
2 and a length

� such that a connected window of length � in Ω cannot be optimal.
Proof. In a one-parameter family of domains Ωε, we calculate an upper bound

for the eigenvalue of a certain window D2 with two components. Then we establish a
larger lower bound for the eigenvalue of any connected window D. These estimates,
based on Dirichlet–Neumann bracketing, work for sufficiently small ε, and can be
made quantitative.

Ωε is the union of a “torso” rectangle Tε and a pair of “handles” Hε, −Hε:

Tε := ]−1, 1[ × ]−1 − ε, 1 + ε[, Hε := [1, 9 − ε[ × ]−ε, ε[.(4.1)

See the top left part of Figure 4.1. We choose D2 := (∂Ωε) \ T ε, with σ(D2) = 32.
The remaining boundary W := (∂Ωε) \D2 has measure σ(W ) = 8.



OPTIMAL WINDOWS, PARTICULARLY FOR THE SQUARE 1813

(not to scale)

Ωε

D2

Tε

Tε

Dε

HεHε

D0

D1

Fig. 4.1. Top left: A star-shaped Lipschitz domain whose optimal window(s) of a certain length
� cannot be connected. Top right: Upper bound for eigenvalue of disconnected window. Bottom:
Lower bounds for connected windows.

For comparison, disconnect the handles from the torso by means of extra Dirich-
let boundary Dε = {±1} × [−ε, ε], as in the top right of Figure 4.1. With fewer
competitors in the CHVP (1.5), we get an upper bound. In self-explanatory notation,
we conclude

λ(Ωε, D2) < min
{
λDir(Hε), λ(Tε, Dε)

}
= λ(Tε, Dε).

By testing the EVP for Tε with sin π
2 (|y| − ε)+, one can see that the evaluation of the

minimum is valid for all ε ≤ 1.
For any connected window D of length 32, it can easily be seen that, except for

reflection symmetry, either D ⊃ D0 or D ⊃ D1, where

D0 = {(x, y) ∈ ∂Ωε | y ≤ −ε},
D1 = {(x, y) ∈ ∂Ωε | x ≤ 1} ∪ [1, 5] × {−ε}.

To get lower bounds for λ(Ωε, D0) and λ(Ωε, D1), disconnect the handles from the
torso by means of extra Neumann boundary {±1} × [−ε, ε]. With slight abuse of
notation, we write λ(Tε, Di) for λ(Tε, Di ∩∂Tε), and similarly for Hε. We have either

λ(Ωε, D) > min
{
λ(Hε, D0), λ(Tε, D0)

}
= λ(Tε, D0) > ( π

4+4ε )
2(4.2)

or

λ(Ωε, D) > min
{
λ(Hε, D1), λ(Tε, D1)

}
= λ(Hε, D1).(4.3)

The evaluation of the minimum in (4.2), for any ε, relies on a test function that
vanishes for y ≤ −ε. The evaluation of the minimum in (4.3) is valid for all ε < 3

2 ,
since then, using comparison functions cos(πy/(2 + 2ε)) and sinπ(x− 5)+/2(4 − ε),

λ(Tε, D1) > (π/(2 + 2ε))2 ≥ (π/(2(4 − ε)))2 > λ(Hε, D1).

For ε < 2
3 , we can also conclude that

λ(Hε, D1) < (π/(8 − 2ε))2 < (π/(4 + 4ε))2 < λ(Tε, D0).
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It therefore only remains to prove the middle inequality in

λ(Ωε, D) > λ(Hε, D1) > λ(Tε, Dε) > λ(Ωε, D2).

But as ε → 0, one has λ(Tε, Dε) → 0, whereas λ(Hε, D1) → (π/8)2. This plausible
singular domain limit can be proved in a straightforward way by writing the quadratic
form

∫
Hε

(u2
x + u2

y) dx dy as a quadratic form
∫

(εχ(ξ)−1u2
ξ + ε−1χ(ξ)u2

η) dξ dη on L2

with measure εχ(ξ)dξ dη in a fixed reference domain ]0, 8[ × ]−1, 1[. Here χ(ξ) = 1
for ξ < 4, and χ(ξ) = 1− ε/4 for ξ > 4. If we carry out the limit ε → 0 in the CHVP
with the appropriate eigenfunctions, we have the uniform upper bound (π/(8− 2ε))2

for the eigenvalue, as mentioned before. This controls the W 1,2 norm in the fixed
domain, and actually enforces uη → 0. The limiting function will indeed not depend
on the η coordinate and solve the 1-dimensional eigenvalue problem −uξξ = λu on
[4, 8] � ξ, with u(4) = 0, uξ(8) = 0.

5. Some continuity results. In this section, we study how the eigenvalue
changes if a window of a particular size is added at a particular location. The basic
philosophy is that windows can be added more cheaply at locations where the eigen-
function was already small before the addition. In the second subsection, we discuss
related continuity properties of the corresponding eigenfunctions.

5.1. Continuity of eigenvalues. Our first result is an estimate for the increase
of the principal eigenvalue if a set of small capacity is added to a given window.

Lemma 5.1. Let D2 ⊃ D1 and let u1 be the normalized eigenfunction for D1. Let
G be a domain containing D2 \D1; in case the dimension d = 2, assume additionally
that G is bounded. Then

λ(D2) − λ(D1) ≤
λ(D1) vol (G ∩ Ω) + cap(D2 \D1, G)

1 − (supG∩Ω u1)2 vol (G ∩ Ω)

(
sup
G∩Ω

u1

)2
,(5.1)

where cap is the capacity defined in [19, section 2.2.1], namely

cap(D2 \D1, G) := inf

{∫
G

|∇v|2
∣∣∣∣ v = 1 in a nbhd of D2 \D1 ; v ∈ C∞

0 (G)

}
.

Proof. Let M := supG∩Ω u1. As explained in [9] near equation (3.2), it follows
from de Giorgi’s argument (see formula (5.12) in Chapter 2 of Ladyzhenskaya and
Ural’tseva [17]) that supΩ u1 is finite, and can even be chosen to depend only on Ω,
not on D1. To obtain a test function for the CHVP which determines λ(D2), we
modify u1 in G: In G∩Ω, let u2 := min{u1,M(1−v)}, where v is one of the functions
that approximate the capacity of D2 \D1; outside (if any), let u2 = u1. Since u2 = u1

on Ω∩∂G, this does not introduce discontinuities, and u2 is an admissible test function
for λ(D2).

Clearly ∫
Ω

u2
2(x) ≥

∫
Ω\G

u2
1 ≥ 1 −M2 vol (G ∩ Ω)

and ∫
Ω

|∇u2|2 ≤
∫

Ω

|∇u1|2 + M2

∫
G

|∇v|2 →
∫

Ω

|∇u1|2 + M2 cap(D2 \D1, G)

as v runs through a minimizing sequence for the capacity functional. We conclude
(5.1) immediately.
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In applications of the lemma, G should be a small neighborhood of D2 \D1, so
that in the numerator on the right-hand side of (5.1), the capacity term dominates
the volume term. It can be used to establish continuity of the eigenvalue under
deformations of sufficiently regular windows. The following simplified estimate suffices
to show the continuous dependence of the eigenvalue on the length and position of a
segment in a square.

Proposition 5.2. For a given bounded Lipschitz domain Ω ⊂ R
d, there exists

a nonnegative continuous function η with η(0) = 0 so that for any pair of windows
D1 ⊂ D2 ⊂ ∂Ω,

λ(D2) ≤ λ(D1) + η (diam(D2 \D1)) ,

where the η is a continuous function with η(0) = 0 which depends only on Ω but not
on D1 and D2. The result applies to the coarse as well as to the fine definition of the
eigenvalue.

Proof. We assume D2 \ D1 ⊂ Bδ(x0) where δ := diam(D2 \ D1) and use the
Green’s function as a legitimate limiting case for v in the capacity functional; namely,
for dimension d = 2, let G = BR(x0) and 1− v := ln+(|x−x0|/δ)/ ln(R/δ), with, say,
R =

√
δ when δ < 1. For d ≥ 3, we can take G = BR(x0) with R := δ(d−2)/d and let

1− v := (δ−(d−2) − |x− x0|−(d−2))+/(δ
−(d−2) −R−(d−2)). For simplicity, we can take

M := supΩ u1 as an upper bound for supG∩Ω u1 and obtain the claim with

η(δ) :=

⎧⎪⎪⎨
⎪⎪⎩

πM2 δλDir + 2/ ln(δ−1/2)

1 − πM2δ
for d = 2,

(d− 1)2ωdM
2δd−2

1 − ωdM2δd−2
for d > 2,

(5.2)

where ωd is the volume of the unit ball.
It should be noted that the modulus of continuity of the eigenvalue cannot be

expressed in terms of σ(D2 \ D1) alone. This is due to the fact [8, Theorem 8]
that for any ε there exists a window of measure < ε with eigenvalue > λDir − ε.
This observation also implies, in view of the a priori estimate for ‖u‖∞ and Hölder’s
inequality, that an estimate in terms of ‖u1‖p is not possible for any p < ∞.

Theorem 5.3. The optimal eigenvalue λ∗ depends continuously on the prescribed
boundary measure of the window.

Proof. We will prove that in dimensions d > 2, the function � �→ λ∗(�) is Hölder
continuous with exponent (d − 2)/(d − 1), for � < σ(∂Ω). In d = 2 dimensions, we
will obtain a logarithmic estimate for the modulus of continuity.

Fix �1 < σ(∂Ω) and let D1 be an optimal window with σ(D1) = �1. It follows
from Proposition 5.2 that

λ
(
D1 ∪ (Bδ(x0) ∩ ∂Ω)

)
− λ(D1) < η(δ)

for any choice of x0 ∈ ∂Ω and δ > 0. We want to choose x0 in such a way that
σ((Bδ(x0)∩∂Ω)\D1) is bounded away from zero. To do this, we use Fubini’s theorem
to estimate

�
∫
∂Ω

σ((Bδ(x) ∩ ∂Ω) \D1)dσ(x) =
1

σ(∂Ω)

∫
∂Ω

∫
∂Ω\D1

1|x−y|<δ dσ(y)dσ(x)

=
1

σ(∂Ω)

∫
∂Ω\D1

σ(Bδ(y)) dσ(y)

≥ σ(∂Ω) − σ(D1)

σ(∂Ω)
inf

y∈∂Ω
σ(Bδ(y)).
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Since Ω is a bounded Lipschitz domain, there exists a constant c, depending only on
Ω, such that σ(Bδ(x0)) ≥ cδd−1. We conclude that for any value of δ there exists a
point x0 ∈ ∂Ω such that

σ
(
Bδ(x0) \D1

)
≥

(
1 − �1

σ(∂Ω)

)
cδd−1.

For �2 > �1, set

δ =

(
�2 − �1

c(1 − �1/σ(∂Ω))

)1/(d−1)

,

and let D2 = D1 ∪ (Bδ(x0) ∩ ∂Ω). Since σ(D2) ≥ �2, it follows that

λ∗(�2) − λ∗(�1) ≤ λ(D2) − λ(D1) ≤ η(δ).

The claim now follows from the expression for η given in Proposition 5.2.
The punchline of Theorem 5.3 is that we get a uniform modulus of continuity

without extra regularity assumptions on the boundary. For smoother ∂Ω, stronger
results could be obtained using the tools of section 6. We conjecture (but have not
pursued) that the window D2 in Example 4.1 is actually optimal, and that the modulus
of continuity at that length in Example 4.1 is precisely O(δ2/3). This intuition is
based on the r1/3 singularity of the eigenfunction at the re-entrant corner, the role
of singularities revealed in section 6, and the estimate from Lemma 5.1. A Lipschitz
estimate for � �→ λ∗(�) should not be expected without further assumptions on ∂Ω,
but smoothness (a.e.) of ∂Ω will improve upon Theorem 5.3.

The following simple lemma estimates the change of the eigenvalue under increase
of a window solely in terms of the eigenfunction.

Lemma 5.4. Let Ω ⊂ R
d, and consider two windows D1 ⊂ D2 ⊂ ∂Ω. Let u1 be

the normalized eigenfunction corresponding to λ(D1). Then

λ(D2) − λ(D1) ≤ λ(D1)

√
vol (Ω) supD2\D1

u1

1 −
√

vol (Ω) supD2\D1
u1

.(5.3)

Proof. Let ε := supD2\D1
u1. Then vε = (u1 − ε)+ is an admissible test function

for both the CHVPs defining λ(D2) and λ(D1) . We compute

‖∇vε‖2
2 =

∫
∇u1 · ∇(u1 − ε)+ = λ(D1)

∫
u1(u1 − ε)+,(5.4)

where we have used the weak form
∫
∇u∇ϕ = λ

∫
uϕ of the eigenvalue equation

Δu = −λu, with ϕ := vε. It follows that

λ(D2) − λ(D1) ≤
∫
|∇vε|2∫
v2
ε

− λ(D1)

≤ λ(D1)

∫
ε(u1 − ε)+∫
(u1 − ε)2+

≤ λ(D1)
ε

‖(u1 − ε)+‖2
(vol (Ω))

1/2
.

The triangle inequality ‖(u1 − ε)+‖2 ≥ 1− ε (vol (Ω))
1/2

now yields the claim.
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For a given window D ⊂ ∂Ω, denote by

Dδ :=

( ⋃
x∈D

Bδ(x)

)
∩ ∂Ω (δ > 0), D0 := D(5.5)

the relative δ-neighborhood of D in ∂Ω. Continuity of the eigenfunction up to the
boundary is sufficient for continuity of the eigenvalue function δ �→ λ(Dδ).

Theorem 5.5. Let u be an eigenfunction for window boundary conditions on D,
and assume that the preferred representative ũ vanishes everywhere on D.

(a) If ũ is upper semicontinuous on Ω, then λ(·) is outer regular at D in the sense
that for every ε > 0 there exists a relatively open subset U ⊂ ∂Ω containing D, with
the property that

λ(U) ≤ λ(D) + ε.

(b) If u is continuous up to the boundary of Ω, then the map δ �→ λ(Dδ) is right
continuous at δ = 0.

We will show below (Theorem 5.7) that the hypothesis of part (a) is satisfied
for C1,α domains in R

2, and at flat pieces of the boundary in any dimension. We
conjecture that upper semicontinuity may hold at least for smooth domains in any
dimension.

Concerning part (b), continuity up to the boundary can be shown for the eigen-
function by a careful analysis of de Giorgi’s argument, under the assumption that the
window D has positive Lebesgue density at every interface point x0 ∈ D ∩ ∂Ω \D.
We conjecture, but cannot prove, that eigenfunctions for optimal windows are con-
tinuous up to the boundary. Below, we show by an example that continuity of the
eigenfunction is not necessary for continuity of δ �→ λ(Dδ).

Proof of Theorem 5.5. If the preferred representative ũ is upper semicontinuous
on the closure of Ω, then the set

U = {x ∈ ∂Ω | u(x) < η}

is a (relatively) open set containing D. By Lemma 5.4, we have that

λ(D) ≤ λ(U) ≤ λ(D)

1 − ημ(Ω)1/2
< λ(D) + ε

if η = η(ε) is chosen sufficiently small (e.g., η := ε(λDir(Ω) vol (Ω))−1). This proves
outer regularity. If ũ is continuous, then D is compact, and hence there exists a δ > 0
so that Dδ ⊂ U , which proves the second claim.

Note that assuming that ũ vanishes everywhere on D amounts to replacing D
with its refinement and selecting the fine eigenvalue. Since coarse and fine eigenvalues
agree for the open windows Dδ, continuity of λc certainly fails at any window D for
which λc(D) < λf (D). Cantor sets of zero measure but positive capacity provide
examples of such windows.

However, δ �→ λf (Dδ) cannot be continuous in general either. For an open-dense
window D of small measure, we clearly have λ(Dδ) = λDir for all δ > 0. However,
we claim that λD < λDir. To see this, note that uD cannot agree with uDir, since
eigenfunctions do not take on“extra” Dirichlet boundary conditions, as was shown
near Figure 1 in [9]. Since uDir is an admissible candidate for the CHVP for λD, it
follows from the uniqueness of the minimizer that λDir > λD. This also provides an
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example of a window whose eigenfunction is discontinuous on a set of large measure
on the boundary.

Example 5.6. There exists an open window D with discontinuous eigenfunction,
such that still δ �→ λ(Dδ) is right continuous.

Proof. In a planar domain, parametrize a portion of the boundary by arclength
and refer to segments on the boundary as intervals in this parameter. We will con-
struct two decreasing sequences xn ↘ 0 and δn ↘ 0 and let In := ]xn − δn, xn + δn[.
The sequences xn and δn will be specified later. The window will be D :=

⋃∞
n=1 In,

and we will also define DN :=
⋃N

n=1 In, with the eigenvalues and normalized eigen-
functions λ, λN , u, uN , respectively. If N is the first index such that xN < δ, then

Dδ \D ⊂ ]−δ, δ[ ∪
⋃N

n=1
[xn + δn, xn + δn + δ[ ∪

⋃N−1

n=1
]xn − δn − δ, xn − δn].

It follows from Proposition 5.2 that λ(Dδ)−λ(D) < (2N+1)η(δ) < (2N+1)η(xN−1).
Choosing the sequence (xn) such that (2N + 1)η(xN−1) → 0 as N → ∞ ensures the
right continuity of δ �→ λ(Dδ).

With (xn) thus fixed, we introduce the compact set K := {0}∪{yn | n ∈ N}, where
yn = (xn+xn+1)/2 and construct the sequence (δn) inductively. Let δ1 = (x1−y1)/2.

Since D1 has positive Lebesgue density at all interface points, it follows from
de Giorgi’s argument that the corresponding eigenfunction u1 is Hölder continuous
up to the boundary. Let a := infK u1 > 0 and define an := (1/2 + 1/2n)a. We
will choose δN in such a way that infK uN ≥ aN . Assume δ1, . . . , δN−1 have been
constructed. The interval IN , and thus DN and uN , will depend on the choice of
δN . But as δN → 0, the local de Giorgi estimates near K remain uniform, because
the L∞ estimate for uN does not depend on the window and the interface stays away

from K. Then u
(δN )
N converges weakly in W 1,2(Ω), strongly in L2(Ω), and strongly in

L2(∂Ω) by the usual compactness arguments. It also converges strongly in W 1,2(Ω)

to uN−1 since λ
(δN )
N → λN−1; the convergence is uniform in a neighborhood of K by

the equicontinuity obtained from de Giorgi. Since uN−1 ≥ aN−1 on the compact set
K, we can achieve uN ≥ aN−1 − ε for any ε > 0 by making δN small; in particular
we can achieve uN ≥ aN .

It is now easy to show that u is discontinuous at 0. Indeed, as N → ∞, uN →
u in the Sobolev spaces mentioned above. Again, the convergence is uniform in a
neighborhood of each single yn. Therefore, u(yn) ≥ a/2 for each n, whereas u(xn) = 0.
Hence u is discontinuous at 0.

We finally refer to Lemma 6.1, which gives continuity estimates under distortion
of a window by means of a bi-Lipschitz homeomorphism. Due to the similarity of
proofs, we conveyed it to section 6.

5.2. On upper semicontinuity of eigenfunctions. Here, we will prove semi-
continuity of eigenfunctions as a consequence of a subharmonicity argument.

Theorem 5.7. If Ω ⊂ R
2 has a C1,α boundary, then for any measurable window

D ⊂ ∂Ω, the eigenfunction u has an upper semicontinuous preferred representative ũ.
If Ω ⊂ R

d with d > 2, then ũ is upper semicontinuous at any boundary point where
the boundary is locally part of a hyperplane.

Proof. Let u be the solution of the CHVP (1.5) for D, the eigenvalue being λ(D).
Fix x0 ∈ ∂Ω. We will show that if the ∂Ω coincides with a hyperplane in some
neighborhood of x0, then the limit

ũ(x) := lim
r→0

�
∫
Br(x)∩Ω

u(y) dy(5.6)
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exists for all points in this neighborhood and defines an upper semicontinuous func-
tion. This limit agrees with the preferred representative defined in (1.7). In the special
case of two dimensions, the conclusion holds assuming only that ∂Ω is of regularity
C1,α near x0. We note that in the interior of Ω, u is always smooth.

The basic idea is as follows: When the boundary is locally part of a hyperplane,
extend u by even reflection, regardless of the type of boundary conditions. The
nonnegative function u, thus extended, has only such discontinuities as are possible
for a subharmonic distribution, and this fact is shown by means of the test function
(u − tϕ)+ in the CHVP, where ϕ is smooth nonnegative. Subharmonicity implies
upper semicontinuity according to Theorem 9.3 in [18]. For curved boundary in 2D,
the Riemann mapping theorem locally provides an analogue of the reflection.

Consider first the case where there exists a neighborhood V of x0 such that
∂Ω ∩ V is contained in a hyperplane. We may assume that the hyperplane is given
by xd = 0, that Ω lies above the hyperplane, and that V is symmetric under the
reflection (x′, xd) �→ (x′,−xd). Let ϕ be a smooth nonnegative function with support
in V . Since (u− tϕ)+ is a legitimate candidate for the CHVP when t ≥ 0, we have

A(t)

B(t)
≥ A(0)

B(0)
,(5.7)

where

A(t) :=

∫
Ω

|∇(u− tϕ)+|2, B(t) :=

∫
Ω

|(u− tϕ)+|2.

We calculate from the weak Euler equations

A(t) =

∫
Ω

∇(u− tϕ)+∇u− t

∫
Ω

∇(u− tϕ)+∇ϕ

= λ

∫
Ω

(u− tϕ)+u− t

∫
u>tϕ

∇u∇ϕ + t2
∫
u>tϕ

|∇ϕ|2,
(5.8)

and expand

B(t) =

∫
Ω

u (u− tϕ)+ − t

∫
Ω

ϕ (u− tϕ)+.(5.9)

Inserting (5.8) and (5.9) into (5.7) and using that A(0) = λ and B(0) = 1, we obtain
the following for t > 0:

0 ≤ t−1(A(t)B(0) −A(0)B(t))

=

∫
u>tϕ

[
−∇u∇ϕ + λuϕ

]
+ t

∫
u>tϕ

[
|∇ϕ|2 − λϕ2

]
.

Since all integrals over sets u > tϕ converge to integrals over Ω by Lebesgue’s domi-
nated convergence theorem, we obtain for t → 0+ that

0 ≤
∫
V ∩Ω

[
−∇u∇ϕ + λuϕ

]
.(5.10)

We now extend u by even reflection u(x′,−xd) := u(x′, xd) and use (5.10) for the
likewise reflected test function ϕ. Adding the reflected and the original (5.10), we
obtain

0 ≤
∫
V

[
−∇u∇ϕ + λuϕ

]
=

∫
V

[
uΔϕ + λuϕ

]
,(5.11)

where we have used that ϕ is C2 and supported in V .
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z0

U

V+

B+ψ

μ

w

p

Fig. 5.1. The Riemann mappings used in the proof of Theorem 5.7.

We have shown that Δu + λu is nonnegative in the sense of distributions. If
v := u + Mλ

2d |x|2, where M := ‖u‖∞ < ∞, then Δv ≥ 0 in the sense of distributions.
By [18, Theorem 9.3], v is subharmonic; that is,

v(x) ≤ �
∫
Br

v(5.12)

for almost every x ∈ V , provided Br(x) ⊂ V . Furthermore, the preferred representa-
tive ṽ of v is upper semicontinuous and satisfies the subharmonicity condition (5.12)
for all x and r so that Br(x) ⊂ V . Since ũ differs from ṽ by a continuous function, it
is upper semicontinuous as well. This settles the case where ∂Ω∩ V is contained in a
hyperplane, in some neighborhood of x0.

In the case where Ω ⊂ R
2 we use complex notation. Let V be a neighborhood

of z0 ∈ ∂Ω such that ∂Ω ∩ V is of class C1,α, and let V+ be the intersection of V
with Ω. Replacing V by a subset, we may assume that there exists a conformal map
ψ from a semidisc B+ to V+ such that the diameter of the semidisc maps onto V ∩∂Ω.
The function ū = u ◦ ψ on the semidisc satisfies Δū = |ψ′|2 (Δu) ◦ ψ. Our argument
will rely on the boundedness of |ψ′| (shown below). By reflection, we can extend ū
into the full disc B. The extended function ū is still in W 1,2(B+) since ψ′ ∈ L∞; as
before, the extended function remains in W 1,2(B). From (5.10), we conclude, using
the conformal invariance of the Dirichlet integral, that

0 ≤
∫
B+

[
−∇(u ◦ ψ)∇(ϕ ◦ ψ) + λ|ψ′|2(u ◦ ψ)(ϕ ◦ ψ)

]

for all 0 ≤ ϕ ∈ W 1,2(V+) that vanish on Ω ∩ ∂V+, particularly for all ϕ := ϕ̄ ◦ ψ−1

with ϕ̄ ∈ C2
0 (B). As with (5.11), we can now conclude that v := ū + Mλ2d sup |ψ′|2

is subharmonic and finish the argument as before.
We still need to explain why |ψ′| remains bounded near ∂Ω; this is where the

C1,α regularity of the boundary enters. Refer to Figure 5.1. Choose U to be the
intersection of a neighborhood of z0 ∈ ∂Ω with Ω such that U is simply connected.
Choose a point p ∈ U . The Green’s function of U can be obtained in the form
ln |z − p| + ξ(z) with ξ harmonic subject to boundary values − ln |z − p|. Near z0,
this harmonic function ξ is C1,α up to the boundary, because the boundary has this
regularity there. This result follows from the Schauder estimates given in [11], namely
their Theorem 5.1 in connection with Lemma 2.1. If η is a conjugate harmonic to ξ
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(namely ηy = ξx, ηx = −ξy), then w : z �→ (z−p) exp[ξ(z)+ iη(z)] is a conformal map
of U onto a disc. (For more details, see [5, section I.7].) The mapping w inherits the
C1,α regularity from ξ. With a conformal mapping μ from the disc onto a half plane,
we select an appropriate semidisc B+ from this half plane and let ψ := (μ ◦ w)−1|B+

with V+ := ψ(B+) ⊂ U .
It is worth noting that a C1 boundary is not sufficient for the bounded derivatives

of a Riemann map, as can be seen from the map w(z) = z ln z and its inverse, which
map neighborhoods of 0 in the half planes Re z > 0 or Rew > 0, respectively, onto
domains bounded by C1 curves.

6. First variation, and the role of singular coefficients in optimality.
In this section, we study how the principal eigenvalue of the Laplacian with window
boundary conditions changes under deformations of the window. The first lemma
contains some estimates for distortions by bi-Lipschitz maps.

Lemma 6.1. Let ψ : Ω1 → Ω2 be a bi-Lipschitz map. Then for any window D in
Ω2, it holds that

λ(ψ−1(D)) ≤ λ(D) sup
Ω1

ρ
(
(Dψ)(Dψ)T (detDψ)−1

)
sup
Ω1

(detDψ),

where ρ denotes the spectral radius. In terms of the distortion ratios

a(x) := lim sup
y→x

|ψ(y) − ψ(x)|
|y − x| , b(x) := 1/ lim inf

y→x

|ψ(y) − ψ(x)|
|y − x| ,

we have the simpler (but weaker) estimates

λ(ψ−1(D))

λ(D)
≤ sup(abd−1) sup(ad−1/b) ≤ (sup a)d+1(sup b)d−1.

Proof. For any two differentiable functions h1, h2 on Ω and any diffeomorphism ψ,
we have the transformation formulas∫

Ω

h1(y)h2(y) dy =

∫
ψ−1(Ω)

(h1 ◦ ψ)(x) (h2 ◦ ψ)(x) detDψ(x) dx(6.1)

and ∫
Ω

∇h1(y) · ∇h2(y) dy =

∫
ψ−1(Ω)

∇x(h1 ◦ ψ)(x)TM(x)∇x(h2 ◦ ψ)(x) dx,(6.2)

where the matrix M is given by

M(x) = Dψ(x)−1 Dψ(x)−T detDψ(x).(6.3)

Let u be the nonnegative normalized eigenfunction for window D ⊂ ∂Ω, and take u◦ψ
as a test function in the CHVP for ψ−1(D). The first claim follows from (6.1)–(6.3)
by setting h1 = h2 = u and using that the smallest eigenvalue of M(x) is the recip-
rocal of the spectral radius of M(x)−1. The distortion ratio estimates follow for ψ ∈
C1 from ρ(Dψ(x)TDψ(x)) ≤ a(x)2 and a(x)2/b(x)2(d−1) ≤ det(Dψ(x)TDψ(x)) ≤
a(x)2(d−1)/b(x)2, as calculated in an eigenbasis of this symmetric matrix. Both esti-
mates extend to bi-Lipschitz maps by approximation.
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Ω � x

D

test fct called g

Ω(t) ≡ Ω � y

−Δut = λ(t)ut

D(t) = ψt(D)

test fct ft = g ◦ ψ−1
t

ψt(·)
diffeo

utut ◦ ψt = vt

R

Fig. 6.1. The mappings in the proof of Theorem 6.2.

Our main result in this section describes the change of the principal eigenvalue
under a diffeomorphism generated by a flow.

Theorem 6.2. Let Ω be a Lipschitz domain in R
d, D a window, u its normalized

eigenfunction, and X a vector field of regularity C1(Ω) that is “parallel” to the bound-
ary in the sense that Ω is the union of an increasing sequence of smoothly bounded
subdomains Ωδ, with δ ↘ 0, such that X is tangential on ∂Ωδ for δ sufficiently small.

Let ψt be the flow of X. Consider the dependence of the first eigenvalue λ as D
changes under the flow. Then it holds that

d

dt
λ(ψt(D))

∣∣∣∣
t=0

= −2 lim
δ→0

∫
∂Ωδ

∂νuLXu,(6.4)

where LXu denotes the directional derivative of u in direction X.
Remark. The assumptions guarantee that X is tangential to the boundary of Ω

at smooth boundary points and X may need to vanish in boundary points where the
boundary is not C1.

Proof. Let ψt : x �→ ψt(x) = y, and Ω → Ω be the bi-Lipschitz homeomorphism
arising from the vector field X, i.e., d

dtψt(x)|t=0 = X(ψt(x)), ψ0(x) = x. Refer to
Figure 6.1. Since X ∈ C1, ψ is a C1-diffeomorphism in the interior of Ω and satisfies
a Lipschitz estimate up to the boundary.

Let ut(·) and λ(t) be the eigenfunctions and eigenvalue for D(t) := ψt(D), and
let g be a test function on Ω whose trace vanishes on D. The variation of geometry
will be expressed as a variation of the operator by referring all windows back to the
coordinates x.

We will denote the pullback of the eigenfunction ut to Ω with window boundary
conditions on D as ut ◦ψt =: vt . Similarly ft := g ◦ψ−1

t , the pushforward of the test
function g. The weak eigenvalue equation for ut(·) is

∫
Ω(t)

∇yut(y) · ∇yft(y) dy = λ(t)

∫
Ω(t)

ut(y)ft(y) dy,

where, in our case, Ω(t) ≡ Ω, g vanishes on D, and ft vanishes on D(t).
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We now use (6.1)–(6.3) with ψ = ψt, h1 = ut, h2 = ft and expand to first order
in t. From d

dtψt(x) = X(ψt(x)), ψ0(x) = x, we obtain

ψt(x) = x + tX(x) + o(t)

Dψt(x)ji = δji + t
∂Xj

∂xi
+ o(t)

(
Dψt(x)−1

)j

i = δji − t
∂Xj

∂xi
+ o(t)

detDψt(x) = 1 + tdivX + o(t).

The estimates for the remainder terms are uniform in x ∈ Ω. Inserting the first and
last estimate into (6.1) with ψ = ψt, h1 = ut, h2 = ft yields

utft dy = (vtg(1 + tdivX) + o(t)) dx,

where the o(t) term represents an L1 function. Similarly, we obtain from (6.2)

∇yut(y) · ∇yft(y) dy =

{
∇xvt(x) · ∇xg(x)

+ t

(
(divX)∇xvt · ∇xg −

(
∂g

∂xi

∂vt
∂xj

+
∂vt
∂xi

∂g

∂xj

)
∂Xj

∂xi

)
+ o(t)

}
dx,

where the o(t) term again represents an L1 function. We have used the Einstein
summation convention to express the sum over i and j.

If we truncate the bilinear forms by dropping the o(t) terms, it is immediate
that the eigenvalue will only change by o(t). Since the truncated operators depend
analytically on the perturbation parameter t, we may use results from Chapter VII of
Kato [14] to estimate the eigenvalue up to errors of order o(t). Kato’s Theorem VII.4.2
and his discussion in Chapter VII §6, sections 2–5 ascertain, via spectral projections
and for any finite set of isolated eigenvalues, that the perturbation theory works as
in finite-dimensional spaces. In particular, a simple eigenvalue and its corresponding
eigenfunction of the truncated operators depend analytically on t. We may therefore
write down expansions vt = v0 + tv1 + O(t2) of the eigenfunction for the truncated
problem, and λ(t) = λ0 + tλ1 + o(t) of the eigenvalue (for the truncated as well as for
the full problem), and compare like powers of t.

Order t0 yields ∫
Ω

∇v0 · ∇g dx = λ0

∫
Ω

v0g dx,

which is just the weak Euler equation for v0. Order t1 yields

λ1

∫
v0g dx + λ0

∫
{v1g + (divX)v0g} dx

=

∫ {
∇v1 · ∇g + (divX)∇v0 · ∇g − ∂Xj

∂xi

(
∂g

∂xi

∂v0

∂xj
+

∂v0

∂xi

∂g

∂xj

)}
dx.

These equations are valid for integration over any subdomain of Ω. We will integrate
over Ωδ, where Ωδ runs through an increasing sequence of smoothly bounded domains
compactly contained in Ω such that X is tangent to the boundary of Ωδ. We write

•
∮

:=

∫
Ωδ

and

∮
:=

∫
∂Ωδ
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for volume and surface integrals, respectively. Using g = v0 as a test function, we
obtain in first order

λ1 •
∮

v2
0 = •

∮
(∇v1 · ∇v0 − λ0v0v1) + •

∮ {
(divX)

(
|∇v0|2 − λ0v

2
0

)
− 2

∂Xj

∂xi

∂v0

∂xi

∂v0

∂xj

}
.

Since v1 lies in W 1,2(Ω) and satisfies window boundary conditions for D, it is a valid
test function in the Euler–Lagrange equation for v0, and we conclude that the first
integral vanishes as δ → 0. For the second integral, we use the identity

∂Xj

∂xi

∂v0

∂xi

∂v0

∂xj
=

∂

∂xi

(
∂v0

∂xi
LXv0

)
−Xj ∂

∂xi

(
∂v0

∂xi

∂v0

∂xj

)

= div(LXv0 ∇v0) +
1

2
LX(λ0v

2
0 − |∇v0|2)

and Gauss’ divergence theorem to compute

•
∮ {

(divX)
(
|∇v0|2 − λ0v

2
0) − 2

∂Xj

∂xi

∂v0

∂xi

∂v0

∂xj

}

= •
∮

div
(
(|∇v0|2 − λ0v

2
0)X

)
− 2 div(∇v0 LXv0)

=

∮
(|∇v0|2 − λ0v

2
0)X · ν − 2∂νv0 LXv0.

The first term under the integral vanishes since X is tangential to the boundary of
Ωδ by assumption, and the claim follows as δ → 0.

We note that, at least formally, the integrand on the right-hand side of (6.4)
vanishes on both the Dirichlet and the Neumann parts of the boundary of Ω. The
evaluation of the limit of the integral as δ → 0 is far from trivial in higher dimensions,
but reasonably straightforward in two dimensions with nice window geometry. It
amounts to the evaluation of certain singular coefficients at interface points between
the Neumann and Dirichlet parts of ∂Ω. It has been shown that in polygonal domains,
in the neighborhood of a corner, solutions of elliptic boundary problems lie locally in
the direct sum of W 2,2 with a singular space, and in two dimensions, this singular space
is one-dimensional. See, eg., Grisvard [12], in particular his Theorem 2.4.3. Indeed,
functions in the singular space behave like the explicit harmonic functions Re(czα)
with α appropriate for the boundary conditions. In this context, it is understood
that an interface point between Dirichlet and Neumann data is a corner even if (in
particular if!) the geometric boundary is smooth there. As noted, corners that can
be made to disappear by means of the reflection principle (like the geometric corners
of a rectangle) do not have a singular space. The singular coefficients (also called
stress intensity coefficients) must be calculated (numerically) in practical situations.
They depend on global information. For a wider background concerning singular
contributions, see [7], [12], [16], [21], [23], and much other work by these authors and
references given there.

In particular, the variational equation gives rise to the following corollary.
Corollary 6.3. Consider a segment on the boundary of a rectangle, such that

one endpoint of the segment is a corner of the rectangle, whereas the other endpoint
is a point that is not a corner. Such a segment is not an optimal window, but can be
improved infinitesimally by shifting in the direction that brings the corner point inside
the window
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Proof. In self-explanatory notation, we refer to the windows as intervals; let [a, b]
be an interval with corner point b and noncorner point a. We will show that (with
some positive constants m, M)

λ([a + ε, b + ε]) ≤ λ([a + ε, b]) + Mε2 and λ([a + ε, b]) ≤ λ([a, b]) −mε .

From this the claim is immediate.
The first estimate (local near b) follows from Lemma 5.1, with G a ball of radius 2ε

centered at the corner b. The eigenfunction is smooth near b, because reflection in
the Neumann boundary removes the singularity: |u| = O(ε) in G, and the estimate
is uniform with respect to small changes at the other end a. The capacity term is
bounded as ε → 0, based on a radial test function ln+(|x− b1|/ε)/ ln 2 as in the proof
of Proposition 5.2.

The second estimate (local near a) follows from an evaluation of the singular
boundary integral

∫
∂Ω

LXu∂νu. In the particular case of an interface point on a
straight line, the local behavior of a solution u is u = c

√
r sin(ϕ/2)+v with v ∈ W 2,2.

x

y

r

NBC DBC
ϕ

Ω

∂Ω

u = us + v = c
√
r sin

ϕ

2
+ v

ux = vx − c

2r1/2
sin

ϕ

2

uy = vy +
c

2r1/2
cos

ϕ

2

Fig. 6.2. Coordinates near an interface point.

To evaluate the singular boundary integral in terms of the singular coefficient,
define coordinates as in Figure 6.2, with the boundary point a located at (0, 0). Let
us assume that the C1 vector field X is given by f(x, y)∂x with the coefficient at
the interface f(0, 0) = 1. It can easily be seen that the regular function v does not
contribute to the integral, nor do the mixed terms. We have

−2

∫ t

−t

LXu ∂νu dx = 2

∫ t

−t

∂us

∂x

∂us

∂y
dx = −c2

4

∫ t

−t

y

x2 + y2
dx = −c2

2
arctan

t

y
,

and this converges to − c2π
4 as y → 0+.

Finally, we estimate the singular coefficient. Choose r so small that Br(0) in-
tersects ∂Ω in a straight line as in Figure 6.2, with one radius (Nr) being Neumann
boundary and one radius (Dr) Dirichlet boundary; let Sr := (∂Br(0))∩Ω, and count
ϕ from the Dirichlet to the Neumann boundary. Let

−Δh = 0 in Br(0) ∩ Ω, ∂νh = 0 on Nr, h = 0 on Dr, h = u on Sr,

−Δv = λu in Br(0) ∩ Ω, ∂νv = 0 on Nr, v = 0 on Dr, v = 0 on Sr.

Then u = v + h with v ≥ 0. Evaluation on the boundary implies that the singular
coefficient of u is at least as large as the singular coefficient of h. Explicit calculation
of the singular coefficient of h by means of Fourier analysis gives exactly

c ≥ 2

πr1/2

∫ π

0

u(reiϕ) sin
ϕ

2
dϕ > 0.
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The above estimate of the singular coefficient is closely related to formula (2.3)
in Dauge, Lubuma, and Nicaise [7], which actually gives the exact coefficient (in
terms of u). However, their formula is not designed to show nonvanishing (which
relies on using the maximum principle), but is instead built on Fredholm properties.
(The distinction that their formula is for a Dirichlet–Dirichlet corner, not a Dirichlet–
Neumann corner, is a minor issue.)

Our argument shows that shortening a window infinitesimally at the interface
decreases the eigenvalue by an amount proportional to the square of the singular
coefficient at the end of the window. Moving a window amounts to shortening it at
one end and lengthening it at the other end. To decrease the eigenvalue, the window
should be moved in the direction of the smaller singular coefficient (i.e., towards
the corner of the square if it is already close to a corner). If the window consists
of several intervals, nonlocal changes that lengthen one component at the expense
of the other can also be studied in terms of the singular coefficients. Conversely,
singular coefficients can be determined graphically from the slopes in Figure 2.1, for
the geometric configurations depicted there.

As an immediate consequence of the role of singular coefficients, a window con-
sisting of any number of equidistant and congruent arcs on the boundary of a circle
is a critical point for the first eigenvalue. Since these arcs can now be moved inde-
pendently, these are critical points of arbitrarily large index. The optimal window in
a circle is known to be a single arc [9].

Limitations of our result should also be observed. The variations induced by the
flow of vector fields correspond to the “weak,” C1-small variations (as opposed to
“strong,” C0-small variations) that are exploited in the Euler–Lagrange equations of
the classical calculus of variations. It is doubtful how significant a role such variations
can play if it comes to show, say, that a certain open-dense set of small measure is
not an optimal window.

We have not established an analogue of the fundamental lemma of the calculus
of variations that would permit elimination of the vector field X. In the absence of
a priori regularity for optimal windows, such an attempt seems extremely difficult.
There is, however, some hope to get nontrivial boundary regularity for the optimal
eigenfunction by selecting vector fields constructed from the eigenfunction in some
appropriate way. We plan a further investigation of this issue.

In spite of these limitations, Theorem 6.2 does give some insight into the question
of optimal windows, and in particular into the variation of windows with a given a
priori regularity.
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ON THE DIFFERENTIAL EQUATION uxxxx + uyyyy = f
FOR AN ANISOTROPIC STIFF MATERIAL∗

B. KAWOHL† AND G. SWEERS‡

Abstract. We study the differential operator L = ∂4

∂x4 + ∂4

∂y4 and investigate positivity pre-

serving properties in the sense that f ≥ 0 implies that solutions u of Lu− λu = f are nonnegative.
Since the operator is of fourth order we have no maximum principle at our disposal. The operator
models the deformation of an anisotropic stiff material like a wire fabric, and it has to be comple-
mented by appropriate boundary conditions. Our operator was introduced by Jacob II Bernoulli as
the operator that supposedly models the vibrations of an elastic plate. This model was later revised
by Kirchhoff, because the operator and its solutions were anisotropic. Modern materials, however,
are often anisotropic, and therefore the old model of Bernoulli deserves an updated investigation. It
turns out that even our apparently simple model problem contains some hard analytical challenges.

Key words. orthotropic plate, anisotropic operator, vibrations, spectrum, fourth order elliptic,
clamped and hinged boundary condition, positivity of the operator, Green’s function, Kirchhoff plate
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74K20
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1. Introduction. Small vertical deformations u of an elastic membrane are usu-
ally described by a second order differential equation −Δu = f with f denoting the
load, whereas the deformation of a plate is commonly modeled by a fourth order equa-
tion Δ2u = f . Suppose that the membrane is replaced by a piece of material or cloth
that is woven out of elastic strings. Then the material properties change drastically,
and in [4] such a problem was studied for second order differential operators. If a
plate is replaced by a stiff woven material [17] (running in Cartesian directions), its
deformation energy can be described by∫

Ω

(
u2
xx + u2

yy

)
dx dy(1)

rather than by the functional for the elastic plate [40]∫
Ω

(
(Δu)2 − (1 − σ)

(
uxxuyy − u2

xy

))
dx dy.(2)

For the energy that corresponds to the reinforcement or wire fabric that is embedded
in, for example, concrete, a linear combination of (1) and (2) is appropriate.

In contrast to the plate equation, that is, the Euler equation for (2) which contains
the operator Δ2u = uxxxx + 2uxxyy + uyyyy, the linearized differential equation for
a stiff fabric consisting of perpendicular fibers does not contain mixed terms when
these fibers run parallel to the x- and y-axes. Indeed, if the torsional stiffness can
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be neglected, the energy stored in the grid under a vertical load f is supposed to be
given by

E (u) =

∫
Ω

{
1

2

(
u2
xx + u2

yy

)
− fu

}
dx dy.

The corresponding Euler equation is uxxxx + uyyyy = f. This equation has to be
complemented by suitable boundary conditions, and in the present paper we shall
study the problem on a planar domain Ω:

• as a general grid that is hinged at the boundary{
uxxxx + uyyyy = f in Ω,

u = n2
1 uxx + n2

2 uyy = 0 on ∂Ω,
(3)

where n = n(x, y) is the exterior normal at (x, y) ∈ ∂Ω;
• or as a general grid that is clamped at the boundary{

uxxxx + uyyyy = f in Ω,

u = ∂
∂nu = 0 on ∂Ω.

(4)

When we checked the literature for this type of equation, we found a remarkable
hint in the chapter on the history of plate theory in Szabó’s book [37, p. 409]. Jacob
II Bernoulli, inspired by Chladni’s experiments on vibrating plates, had attempted to
model their behavior by our differential equation in [5], but this was later dismissed
for isotropic plates and replaced by Kirchhoff’s theory [24]. However, there is more
to it. According to [30], Bernoulli had also studied and absorbed Euler’s idea that
an elastic membrane should be modeled as a fabric of one-dimensional orthogonal
elastic strings, and he tried to carry this idea over to modeling a plate as a fabric of
one-dimensional beams. Thus he arrived at

∂4z

∂x4
+

∂4z

∂y4
=

z

c4

as “the fundamental equation of the entire theory” of plate vibrations. In those days
church bells were intended as applications for the theory. Both operators, the isotropic
plate operator Δ2 and the anisotropic

L =
∂4

∂x4
+

∂4

∂y4
,(5)

retain a certain degree of isotropy. They are special cases of

L̃ =
∂4

∂x4
+ P

∂4

∂x2∂y2
+ Q

∂4

∂y4
(6)

with P ≥ 0 and Q > 0 denoting material constants. Notice that L̃ is always invari-
ant under reflections across Cartesian axes, but not always under rotations. Plates
whose deformation is described by such operators are called orthotropic; see, e.g.,
[29], [31]. By scaling y and not scaling x one can always force Q to be 1. Real-
istic values for P and Q in the case of plywood material (birch with bakelite glue)
can be found in [25, p. 92], [26, p. 269], or [31]. It is not unrealistic to expect
Q to be of order 1–10 and P ∈ [0, 1). Modern (composite) materials like GLARE
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(see http://www.lr.tudelft.nl/highlights/glare.asp), a composite of layers of fiber-
glass and aluminum that is also called “plymetal,”can be expected to satisfy similar
orthotropic equations. Orthotropic plate equations like L̃u = f have been rigorously
derived by homogenization methods as the right macroscopic model for grid structures
as the thickness of the structure and the size of its cells go to zero. To be precise,
in [3, p. 130] and using our notation, the limit equation has coefficients Q = 1 and
P = 4/(1 + ν), where ν denotes the Poisson ratio of the original (solid and unhomog-
enized) plate material. For ν = −1/3 one gets P = 6, as in (19) below. We take the
differential equation for granted here and do not address issues of homogenization as
in [3].

Section 2 is devoted to proving existence and uniqueness questions, and section 3
to regularity of solutions to these boundary value problems. Regularity near corners
of Ω is delicate, and its discussion will be limited to some special cases. Moreover, we
address the subject of representations of solutions by series or by means of a Green
function at the end of section 3.

In section 4 we study the spectrum of the operator L on rectangular domains
and for hinged and clamped boundary conditions. Since the operator is separable, on
special domains like rectangles all of its eigenfunctions can be represented in terms
of products of one-dimensional eigenfunctions. We learned this from Courant and
Hilbert (see [10, Chapter II, Par. 1.6]), who did it for operators of second order.
Therefore the one-dimensional cases will always be treated before the rectangular
domains. We present all eigenvalues and eigenfunctions for a number of examples and
compare spectra for different (parallel or diagonal) alignments of our anisotropic grid.

Section 5 is dedicated to positivity questions. Suppose that the load f on a beam
(or grid) is pointing downwards. Does this imply that the deformation u has the
same sign everywhere in Ω? The answer is in general negative, unless the geometry of
the domain is special or unless the beam (or grid) is embedded in an elastic ambient
medium that exerts a restoring force proportional to the deformation. So the modified
question is for which (presumably negative) values of λ one can show that f ≥ 0
implies positivity of the solution to

uxxxx + uyyyy = λu + f in Ω,

which satisfies the boundary conditions under consideration. This question turns out
to be technically most challenging, and its answer is given using different tricks for
different alignments or boundary conditions.

For the reader’s convenience we finish with a summary in section 6 and an ap-
pendix.

2. Existence and uniqueness for hinged and clamped grids. Let Ω ⊂ R
n

be a bounded simply connected set. Then the variational problem

Minimize: E(v) =

∫
Ω

(
1

2

n∑
i=1

v2
xixi

− f v

)
dx on W 1,2

0 (Ω) ∩W 2,2(Ω)(7)

has a unique solution. To see this directly we follow the ideas of [16] and first show
that E(v) is coercive on W 2,2(Ω). Obviously 2uxxuyy ≤ u2

xx + u2
yy, so that

E(v) ≥ c(n)

∫
Ω

(Δv)2 dx−
∫

Ω

f v dx.
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If we denote Δv by g, then a well-known a priori estimate for solutions of Dirichlet
problems for second order elliptic differential equations on bounded domains (see, e.g.,
[14, p. 317]) implies that

||D2v||L2(Ω) ≤ C||Δv||L2(Ω),

so that all second derivatives of v are in L2(Ω). This and a Poincaré-type inequality
show the coerciveness of E on W 1,2

0 (Ω)∩W 2,2(Ω). Now the existence and uniqueness
of a solution follow from the direct method in the calculus of variations and from
the strict convexity of the functional E. The solution satisfies the Euler equation∑n

i=1 uxixixixi = f in Ω. To derive the boundary conditions, we note that a weak
solution satisfies

∫
Ω

(
n∑

i=1

uxixiϕxixi − f ϕ

)
dx = 0,(8)

and after two integrations by parts we obtain

0 =

∫
Ω

(
−

n∑
i=1

uxixixi
ϕxi

− f ϕ

)
dx +

∫
∂Ω

n∑
i=1

uxixi
ϕxi

νi dσ(9)

= 0 +

∫
∂Ω

n∑
i=1

uxixi
ϕxi

νi dσ −
∫
∂Ω

n∑
i=1

uxixixi
ϕ νi dσ(10)

=

∫
∂Ω

(
n∑

i=1

uxixiν
2
i

)
∂ϕ

∂ν
dσ.(11)

Notice that the last integral in (10) vanishes because ϕ vanishes on the boundary.
Therefore the first boundary integral in (10) must vanish too. The vanishing of ϕ on
∂Ω implies in particular that the bracket in (11) must vanish on ∂Ω. Thus we have
formally derived (3) in the plane case. See also [32].

If the grid or stiff fabric is clamped, we consider the variational problem

Minimize: E(v) =

∫
Ω

(
1

2

n∑
i=1

v2
xixi

− f v

)
dx on W 2,2

0 (Ω)(12)

and observe that the same existence proof works for this problem, too. The solution
satisfies { ∑n

i=1 uxixixixi = f in Ω,

u = ∂u
∂ν = 0 on ∂Ω.

(13)

We have the following existence and uniqueness results.
Theorem 2.1. Let Ω ⊂ R

n be a bounded domain with piecewise smooth boundary,
and suppose that f ∈ L2(Ω). Then problems (7) and (12) have a unique minimizer.
Moreover, the corresponding boundary value problems, which in the case n = 2 are
given by (3) and (4), have a unique weak solution.

Remark 2.1. As usual, a weak solution for (3) is a function u in W 2,2
0 (Ω) that

satisfies (8) for all ϕ ∈ W 2,2
0 (Ω). A weak solution of (4) is a function u in W 2,2(Ω) ∩

W 1,2
0 (Ω), satisfying (8) for all ϕ ∈ W 2,2(Ω) ∩W 1,2

0 (Ω).
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The existence was shown above by variational methods, and the uniqueness of the
weak solution follows from the strict convexity of the underlying functional E. Notice
that the second order boundary condition holds only in the sense of distributions. To
see that it holds pointwise in every smooth point of the boundary, we need to know
more about its regularity.

3. Regularity. One may use the standard regularity theory for elliptic opera-
tors whenever the elliptic system is of an appropriate type and if the boundary is
sufficiently smooth. First we will show that our systems are regular elliptic.

3.1. Regular elliptic. The symbol, that is L = L( ∂
∂x ,

∂
∂y ), of our fourth order

operator can be decomposed as follows:

L(ξ1, ξ2) := ξ4
1 + ξ4

2 =
(
ξ2
1 +

√
2ξ1ξ2 + ξ2

2

)(
ξ2
1 −

√
2ξ1ξ2 + ξ2

2

)
.(14)

Hence L can be written as the composition of two second order elliptic operators.
Notice, however, that the boundary value problem (4) cannot be split into a system
of two second order equations with separated boundary conditions. In fact, even
for the boundary value problem (3) this seems to be out of reach. The boundary
operators have the following symbols:

• for (3): B1 (ξ) = 1 and B2 (ξ) = n1(x)2ξ2
1 + n2(x)2ξ2

2 ;
• for (4): B1 (ξ) = 1 and B2 (ξ) = n1(x)ξ1 + n2(x)ξ2.

A necessary condition for obtaining the full classical regularity results is that the
corresponding boundary value problem should be regular elliptic in the sense of [27],
and this is indeed the case.

Lemma 3.1. Problems (3) and (4) are regular elliptic.
Proof. The differential operator is regular elliptic of order 2k if there is c > 0 such

that L(ξ) ≥ c |ξ|2k for ξ ∈ R
2. To show that the operator and boundary conditions

constitute a regular elliptic problem in the sense of [27], one has to consider the
factorization of τ �→ L(ξ + τη). One finds that the roots of this polynomial are

τk = − ξ1 + (−1)
2k−1

4 ξ2

η1 + (−1)
2k−1

4 η2

with k ∈ {1, 2, 3, 4} .

We use (−1)
α

= cosπα + i sinπα. Depending on ξ and η, which should be taken
independently, there are two roots, τI and τII , which have positive imaginary part.
We find L(ξ + τη) = a+(ξ, η; τ)a−(ξ, η; τ) with

a+(ξ, η; τ) =
√
η4
1 + η4

2 (τ − τI) (τ − τII) ,

a−(ξ, η; τ) =
√
η4
1 + η4

2 (τ − τ̄I) (τ − τ̄II) .

Since the imaginary parts of τI and τII have the same sign the first order term in
a+(ξ, η; τ) has a coefficient with a strictly negative imaginary part; indeed,

(τ − τI) (τ − τII) = τ2 − (τI + τII) τ − τIτII .

The condition for regularity that has to be verified is that, for ξ a tangential direc-
tion and η a normal direction, the polynomials τ �→ B1 (ξ + τη) and τ �→ B2 (ξ + τη)
are independent modulo τ �→ a+(ξ, η; τ). Therefore we set η = (n1, n2) and ξ =
(−n2, n1).
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Fig. 1. A rectangular wire fabric with fibers in Cartesian directions.

For (3), B1 (ξ + τη) = 1 and

B2 (ξ + τη) = n2
1 (−n2 + n1τ)

2
+ n2

2 (n1 + n2τ)
2

= 2n2
1n

2
2 + (n2

2 − n2
1)n1n2τ +

(
n4

1 + n4
2

)
τ2.

This is a polynomial with only real coefficients. Since a+(ξ, η; τ) contains a real
second order term and an imaginary first order term, both polynomials are linearly
independent.

For (4), B1 (ξ + τη) = 1 and B2 (ξ + τη) = 1 + τ. These are clearly independent
modulo any second order polynomial.

3.2. Regularity for smooth domains. Near the smooth boundary part the
standard regularity results, e.g., from [27, Ch. 2], may be used, since both the clamped
and the hinged problems are regular elliptic. Only the corners need more attention.
But to fix the facts let us summarize the regularity results in a theorem.

Theorem 3.2. Let Ω ⊂ R
2 be a bounded domain with piecewise smooth boundary,

and let Ω′ ⊂ Ω be a subset such that Ω′ contains only the smooth boundary points of
∂Ω. If f ∈ W k,2(Ω) and k ∈ {0, 1, 2, . . . }, then the weak solutions of (3) and (4)
are of class W k+4(Ω′). In particular, for f ∈ L2(Ω) the derivatives uxixi

are in
W 3/2,2(∂Ω∩ ∂Ω′), so that the boundary condition in (3) holds pointwise a.e. on ∂Ω.

3.3. Regularity near corners. It remains to discuss the regularity near singu-
lar points of the boundary, and this will be done for some special but typical situations.
First we will give an explanation for a simple case.

3.3.1. The hinged rectangular grid with aligned fibers. Let R = (0, a) ×
(0, b) be the rectangle. It will be relatively easy to study the regularity of the hinged
grid near a corner, say (0, 0), when the grid is aligned with the rectangle as in Figure
1.

Reflection. The first approach is through a reflection argument. As an example
we will consider the hinged rectangular grid with horizontally and vertically aligned
fibers.

Note that the differential operator and boundary conditions all satisfy

L
(
± ∂

∂x
,
∂

∂y

)
= L

(
∂

∂x
,
∂

∂y

)
and B

(
± ∂

∂x
,
∂

∂y

)
= B

(
∂

∂x
,
∂

∂y

)
.

Instead of considering⎧⎨
⎩

uxxxx + uyyyy = f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a] × {0, b} ,

(15)

we extend f to f̃ on (−a, a) × (0, b) by

f̃(x, y) = sign(x) f(|x| , y)
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Fig. 2. Rectangular grid with diagonal fabric.

and consider ⎧⎨
⎩

ũxxxx + ũyyyy = f̃ in R̃ = (−a, a) × (0, b) ,
ũ = ũxx = 0 on {−a, a} × [0, b] ,
ũ = ũyy = 0 on [−a, a] × {0, b} .

(16)

If f ∈ Lp(R), then f̃ ∈ Lp(R̃), and by the result above there is unique solution
ũ ∈ W 2,p(R̃) and ũ ∈ W 4,p(R̃\N) with N some neighborhood of the four corners of
R̃; (0, 0) has become a regular boundary point. Since the solution ũ is unique one
finds that ũ(x, y) = −ũ(−x, y) and hence ũ(0, y) = ũxx(0, y) = 0. In other words,
u := ũ|R is the solution of (15) which is in W 4,p(R ∩Bε(0)). Since we may do so for
every corner of R we find that u ∈ W 4,p(R).

Separation of eigenfunctions. A second approach can be used if there is a complete
orthonormal system of eigenfunctions of the form {ϕi(x)ψj(y); i, j ∈ N} . For example,
for the problem (15) the set {Φij ; i, j ∈ N

+} with

Φi,j(x, y) =
2√
ab

sin
(
i
π

a
x
)

sin
(
j
π

b
y
)

is a complete orthonormal set of eigenfunctions. Writing fij = 〈Φi,j , f〉, the solution
u is given by

u(x, y) =

∞∑
i,j=1

fij(
iπa

)4
+

(
j π
b

)4 Φi,j .

Using Parseval’s identity, a straightforward computation shows that

∥∥∥∥∥
(

∂

∂x

)k (
∂

∂y

)�

u

∥∥∥∥∥
2

L2(R)

=

∞∑
i,j=1

(
iπa

)2k (
j π
b

)2�((
iπa

)4
+

(
j π
b

)4
)2 (fij)

2
,

which is bounded if f ∈ L2(R) and k, l ∈ N with k + l ≤ 4. Thus u ∈ W 4,2(R).

3.3.2. The hinged rectangular grid with diagonal fibers. Now suppose
that the grid runs diagonally into the horizontal and vertical axes, as in Figure 2,
and that x̂ := 1

2

√
2 (x + y) and ŷ = 1

2

√
2 (y − x). Then a straightforward calculation

shows that

uxxxx + uyyyy =
1

2
ux̂x̂x̂x̂ +

6

2
ux̂x̂ŷŷ + t

1

2
uŷŷŷŷ = f(17)

while the boundary condition from (10) becomes

uxx + uyy = Δu = 0 = ux̂x̂ + uŷŷ(18)
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because (ν1)
2 = (ν2)

2 = 1/2 on the sides of the rectangle and because the Laplacian
is invariant under rotations. Since also u = 0 on the boundary, this implies ux̂x̂ = 0 =
uŷŷ. Therefore after an obvious change of notation the deformation u of the hinged
diagonal grid satisfies again a regular elliptic boundary value problem, namely,⎧⎨

⎩
uxxxx + 6uxxyy + uyyyy = 2f in R = (0, a) × (0, b) ,

u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a] × {0, b} .

(19)

Also for this boundary value problem we find that L(± ∂
∂x ,

∂
∂y ) = L( ∂

∂x ,
∂
∂y ) and

B(± ∂
∂x ,

∂
∂y ) = B( ∂

∂x ,
∂
∂y ), and hence we may use the odd reflection argument of (16)

to find u ∈ W 4,2(R) that satisfies the boundary conditions for x = 0.

Incidentally, the transformed elliptic operator has a symbol that can again be
factorized as

2L̂(ξ1, ξ2) := ξ4
1 + 6ξ2

1ξ
2
2 + ξ4

2 =
(
ξ2
1 +

(
3 − 2

√
2
)
ξ2
2

) (
ξ2
1 +

(
3 + 2

√
2
)
ξ2
2

)
.(20)

The fact that (19) constitutes a regular elliptic boundary value problem does not need
to be checked again, since this property is invariant under changes of the coordinate
system. Moreover, the boundary conditions fit nicely with this factorization, and we
find a system of two well-posed second order problems:

⎧⎪⎪⎨
⎪⎪⎩

uxx +
(
3 − 2

√
2
)
uyy = v in R,
u = 0 on ∂R,

vxx +
(
3 + 2

√
2
)
vyy = 2f in R,

v = 0 on ∂R.

(21)

Using the result of Kadlec [22] for second order operators on convex domains, one
finds that f ∈ L2(R) implies v ∈ W 2,2(R) ∩W 1,2

0 (R). Since v satisfies the boundary
conditions of u (!), we find not only that u ∈ W 2,2(R) ∩ W 1,2

0 (R) but even that
u ∈ W 4,2(R) ∩W 1,2

0 (R).

We remark that some boundary value problems with different boundary condi-
tions along each side can be treated by a reflection argument. In fact, the same
reflection argument works for the aligned rectangular grid if it is clamped on the
horizontal parts of the boundary and hinged on the vertical part. To be specific, for
f ∈ L2(Ω) the unique solution u of⎧⎨

⎩
uxxxx + uyyyy = f in R,

u = uxx = 0 on {0, a} × [0, b] ,
u = uy = 0 on [0, a] × {0, b}

(22)

is in W 4,2(R).

3.3.3. The clamped rectangular grid with aligned fibers. The regularity
of the clamped grid near a corner does not follow from such a simple reflection ar-
gument, because uxx does in general not vanish on (0, y) with y ∈ (0, b). However,
provided the grid is aligned with the rectangle as in Figure 1, we may proceed by
“separation of eigenfunctions.” To complete this argument we need to borrow some
results of subsection 4.2.3 and more specifically Lemmas 4.3 and 4.4.
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The set {Φij} of eigenfunctions in (34) is a complete orthonormal system in L2(Ω).
Then, as above for the hinged rectangular grid, the solution of (4) can be represented
by

u(x, y) =

∞∑
i,j=1

αij

Γij
Φij(x, y),

where αij are the Fourier coefficients from the representation of f with
∑

i,j α
2
ij being

finite by Parseval’s identity. The eigenvalues Γij are defined by Γij = a−4λi + b−4λj ,
and we find that

∂n+m

∂xn∂ym
u(x, y) =

∞∑
i,j=1

a−nλ
n/4
i b−mλ

m/4
j

a−4λi + b−4λj
αijΦij(x, y),

which is bounded when n + m ≤ 4. This shows that u ∈ W 4,2(R) even in this case
of a clamped rectangular grid aligned with R. From Theorem 2.1 we were allowed to
conclude only that u ∈ W 2,2(R).

3.3.4. The clamped rectangular grid with diagonal fibers. How to obtain
the regularity of u for a clamped–hinged or clamped–clamped diagonal grid near a
corner is a nontrivial problem and will not be discussed here.

One conceivable way to represent a solution would be using a Green function
g0,ξ(·) = F (· − ξ) + h(ξ, ·). This can in principle be obtained by adding a solution
h of Lh(ξ, ·) = 0 in R, h(ξ, ·) + F (· − ξ) = 0 = B2h(ξ, ·) + B2F (· − ξ) on ∂R to a
fundamental solution F (· − ξ), i.e., to a distributional solution of LF (· − ξ) = δ0(·).
Clearly F is not unique, but just for the record let us quote a fundamental solution
F (for L as in (22)) from [39] or [29]:

F (x, y) = − 1

16π
√

2

[
(x2 + y2) log(x4 + y4) + 2

√
2xy log

(
x2 + y2 +

√
2xy

x2 + y2 −
√

2xy

)

+ 2
√

2

(
x2 arctan

x2

y2
+ y2 arctan

y2

x2

) ]
.

(23)

An explicit calculation of the Green function even on a quarter plane seems to be
beyond reach.

4. Eigenfunctions and eigenvalues.

4.1. Eigenfunctions for a hinged rectangular grid. The eigenfunctions for
the hinged beam {

ϕxxxx = λϕ in (0, 1),
ϕ = ϕxx = 0 in {0, 1}(24)

are obviously given by φi(x) =
√

2 sin(iπx), and the eigenvalues are λi = i4π4.
If a hinged grid is rectangular and aligned with the Cartesian coordinates, then a

calculation shows that the eigenfunctions and eigenvalues of⎧⎨
⎩

Φxxxx + Φyyyy = ΛΦ in R,
Φ = Φxx = 0 on {0, a} × [0, b] ,
Φ = Φyy = 0 on [0, a] × {0, b}

(25)
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are given by

Φij (x, y) =
2√
ab

sin

(
iπx

a

)
sin

(
jπy

b

)
and Λij =

i4π4

a4
+

j4π4

b4
.(26)

For i = j = 1 one finds the following result.
Lemma 4.1. The first eigenfunction for (25), the hinged rectangular grid with

aligned fibers, is of fixed sign.
Even if the hinged grid is diagonally aligned, we can determine the eigenfunctions

and eigenvalues of⎧⎨
⎩

1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = Λ̃Φ in R,
Φ = Φxx = 0 on {0, a} × [0, b] ,
Φ = Φyy = 0 on [0, a] × {0, b}

(27)

by a separation of variables. In fact, the eigenfunctions are still given by

Φij (x, y) =
2√
ab

sin

(
iπx

a

)
sin

(
jπy

b

)
,

but now the eigenvalues are given by

2Λ̃ij = π4

(
i4

a4
+

6i2j2

a2b2
+

j4

b4

)
.(28)

We may conclude as before, with the following claim.
Lemma 4.2. The first eigenfunction for (27), the hinged rectangular grid with

diagonal fibers, is of fixed sign.
Notice that

1
2Λij ≤ Λ̃ij ≤ 2Λij ,(29)

Λ̃ij =
π4

2

(
i4

a4
+

6i2j2

a2b2
+

j4

b4

)
and Λij = π4

(
i4

a4
+

j4

b4

)
.

Notice also that the first eigenfunction is of fixed sign.

4.2. Eigenfunctions for clamped problems.

4.2.1. Eigenfunctions for the clamped beam. The set of all normalized
eigenfunctions for {

ϕ′′′′ = λϕ in (0, 1) ,
ϕ(0) = ϕ′(0) = 0 = ϕ(1) = ϕ′(1)

(30)

forms a complete orthonormal system in L2 (0, 1) .
Lemma 4.3. These eigenfunctions and eigenvalues are

ϕi (x) = βi cosh νi

(
cosh (νix) − cos (νix)

cosh νi − cos νi
− sinh (νix) − sin (νix)

sinh νi − sin νi

)
and λi = ν4

i ,

with i = 1, 2, . . . , where νi is the ith positive zero of cos ν − 1
cosh ν = 0 and βi is the

normalization factor such that
∫ 1

0
ϕi (x)

2
dx = 1.

Note that the first eigenfunction is of fixed sign.
The statement of this lemma is shown by a lengthy but straightforward calcula-

tion.
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Table 1

Comparison of the of the eigenvalues λi and the approximation in Lemma 4.4.

λi : 500.56390 3803.5370 14617.630 39943.799 89135.406 173881.31 308208.45(
i− 1

2

)4
π4 : 493.13352 3805.0426 14617.451 39943.815 89135.406 173881.31 308208.45

Lemma 4.4. The sequences νi and βi as above have the following asymptotics:
• limi→∞ iπ − νi = 1

2π and hence λi ≈ (i− 1/2)
4
π4;

• limi→∞ βi = 1.
Proof. For obvious reasons two subsequent zeroes νi and νi+1 of cos ν− 1

cosh ν = 0
are in the interval ((i− 1

2 )π, (i+ 1
2 )π) and close to its boundaries. Since 1

cosh νi
≤ 2e−νi

and | sinx| > 1
2 in a sufficiently small neighborhood of (i− 1

2 )π we have

|νi − (i− 1
2 )π| < 4 eπ/2 e−iπ.

This proves the first statement, as Table 1 illustrates.
Let us now turn to the second statement. With the help of Mathematica one sees

that

βi =
−Zi(cosh νi)

2

4 νi (cos νi − cosh νi)
2

(sin νi − sinh νi)
2

with

Zi = 2 νi cos 2 νi + 4 cosh νi sin νi − sin 2 νi − cosh 2 νi (2 νi + sin 2 νi)
− 4 cos νi sinh νi + 8 νi sin νi sinh νi + sinh 2 νi + cos 2 νi sinh 2 νi.

Now the second statement follows by a straightforward computation.

4.2.2. Comparing eigenvalues of clamped plates and grids. In [33] Philip-
pin, following ideas of Hersch [20], obtained estimates for the eigenvalues of a clamped
plate through these for clamped rectangular and diagonal grids. Let us state a special
result in this direction that compares the first eigenvalues of a clamped grid,{

Φxxxx + Φyyyy = ΓΦ in Ω,
Φ = |∇Φ| = 0 on ∂Ω,

(31)

with those of the clamped plate,{
Δ2Φ = ΥΦ in Ω,

Φ = |∇Φ| = 0 on ∂Ω.
(32)

Lemma 4.5. Let Ω ⊂ R
2 be a bounded domain with a C0,1-boundary. Let Γ1 and

Υ1 be the first eigenvalues of (31), respectively (32). Then it holds that 1
2Υ1 ≤ Γ1 ≤

Υ1.
For approximations of the lowest eigenvalues for the clamped aligned square grid

and the clamped square plate, see Tables 2 and 3.
Proof. The result follows from the definition of the eigenvalue by Rayleigh’s

quotient and some energy estimates. For the first inequality one uses

1

4

∫
Ω

(Δu)2dx dy =
1

4

∫
Ω

(
u2
xx + 2uxxuyy + u2

yy

)
dx dy ≤ 1

2

∫
Ω

(
u2
xx + u2

yy

)
dx dy.
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Table 2

Numerical eigenvalues Λij , with i, j ≤ 5, of a clamped square grid of length 1 that is aligned
with Cartesian coordinates (without repeating the multiple ones like Λ1,2 = Λ2,1).

Γij : 1001.13 4304.10 15118.2 40444.4 89636.0
7607.07 18421.2 43747.3 92938.9

29235.3 54561. 103753.
79887. 129079.

178271.

Table 3

Numerical eigenvalues for a clamped square plate of length 1. We used the values found in [15,
p. 79] and scaled these.

Υij : 1294.93 5386.63
11710.3

For the second one proceeds via an integration by parts that shows, due to the clamped
boundary conditions,∫

Ω

uxxuyy dx dy =

∫
∂Ω

(uxuyyn1 − uxuxyn2) dσ +

∫
Ω

u2
xy dx dy

=

∫
Ω

u2
xy dx dy ≥ 0,

and hence

1

2

∫
Ω

(
u2
xx + u2

yy

)
dx dy ≤ 1

2

∫
Ω

(
u2
xx + 2u2

xy + u2
yy

)
dx dy =

1

2

∫
Ω

(Δu)2 dx dy.

This completes the proof.

4.2.3. Eigenfunctions for the clamped rectangular grid. A complete or-
thonormal system of eigenfunctions and eigenvalues for the grid aligned with the Carte-
sian coordinates {

Φxxxx + Φyyyy = ΓΦ in R,
Φ = |∇Φ| = 0 on ∂R

(33)

with R = (0, a) × (0, b) is given in terms of the one-dimensional eigenfunctions and
eigenvalues ϕj and λj from Lemma 4.3 by

Φij (x, y) =
1√
ab

ϕi

(x

a

)
ϕj

(y

b

)
and Γij = a−4λi + b−4λj .(34)

Lemma 4.6. The first eigenfunction for (33), the clamped rectangular grid with
aligned fibers, is of fixed sign.

This is in marked contrast to the biharmonic operator, whose first eigenfunction
under Dirichlet conditions on a rectangle is known to change sign infinitely often (see
[8]), and positivity of the ground state for our anisotropic operator cannot be expected
for a general domain.

An explicit determination of all eigenfunctions and eigenvalues for the diagonally
aligned clamped grid, however,⎧⎨

⎩
1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = Γ̃Φ in R,
Φ = Φx = 0 on {0, a} × [0, b] ,
Φ = Φy = 0 on [0, a] × {0, b} ,

(35)
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Fig. 3. Numerical approximations of the first “clamped” eigenfunctions on a disk for Li,
i = 1, 2, 3. One sees hardly any difference. We remark that the eigenfunctions for the first and the
second operator differ “analytically” just by a 45◦ rotation. The finite difference scheme, however,
is different since in each case the discrete version of the corresponding operator Li has been used.

seems to be a nontrivial problem. From Lemma 4.5 we can find an estimate, namely
Γ1 ≤ 2Γ̃1, by using Γ1 ≤ Υ1 and 1

2Υ1 ≤ Γ̃1, and similarly Γ̃1 ≤ 2Γ1. This is consistent

with inequality (29) for hinged grids. Note that the estimate 1
2 Γ̃1 ≤ Γ1 ≤ 2Γ̃1 even

holds on general domains.

Remark 4.1. We do not know if the first eigenfunction for (35), the clamped
rectangular grid with diagonal fibers, is of fixed sign. Some evidence against a fixed
sign follows from Coffman’s result in [8].

4.2.4. Eigenfunctions for the clamped circular grid. For a clamped circu-
lar plate there are radially symmetric eigenfunctions, and these can be expressed in
terms of the (modified) Bessel functions J0 and I0. Since Boggio [2] gave an explicit
formula for the Dirichlet biharmonic on a circular disk Jentzsch’s theorem implies
that the first eigenfunction is positive (of fixed sign) and unique and hence radially
symmetric. Although a numerical approximation shows that the first eigenfunction
of the clamped grid looks similar to the one for the clamped plate (see Figure 3), this
eigenfunction is not radially symmetric.

Lemma 4.7. Let D denote the unit disk. There is no radial eigenfunction for

{
Φxxxx + Φyyyy = ΓΦ in D,

Φ = |∇Φ| = 0 on ∂D.
(36)

Remark 4.2. Of course, since the differential equation uxxxx + uyyyy = λu is not
rotation invariant, this result should not come as a surprise. A nasty consequence,
however, is that the first eigenfunction does not seem to have an “easy” explicit
representation. We do not even have analytical proof that this eigenfunction has a
fixed sign or that it is unique.

Remark 4.3. The first eigenvalue λcp,1 ≈ 104.363 for the circular clamped plate
may be found in [1]. The first one for the clamped grid is approximately 75% of this
value.

Proof of Lemma 4.7. Suppose that Φ is a radial eigenfunction. Then we can
rotate this eigenfunction by π/4 and it is still an eigenfunction. However, the rotated
Φ now satisfies (see (19))

{ 1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = ΓΦ in D,

Φ = |∇Φ| = 0 on ∂D.
(37)
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Consequently we can add (36) to (37) to arrive at 3
2Φxxxx + 3Φxxyy + 3

2Φyyyy = 2ΓΦ
or {

Δ2 Φ = 4
3ΓΦ in D,

Φ = |∇Φ| = 0 on ∂D.
(38)

But then Φ must be a radial eigenfunction of the plate equation, an unlikely coin-
cidence. To show that this cannot be the case suppose that Φ(r) is such a radial
function. Then

Φxx = Φ′′x
2

r2
+ Φ′ y

2

r3
and Φxx = Φ′′ y

2

r2
+ Φ′x

2

r3

and

Φxxxx + Φyyyy

= Φ′′′′ r
4 − 2x2y2

r4
+ Φ′′′ 12x2y2

r5
+ Φ′′ 3r

4 − 30x2y2

r6
+ Φ′−3r4 + 30x2y2

r7
= ΓΦ ,

or equivalently

2x2y2
(
−Φ′′′′ + 6r−1Φ′′′ − 15r−2Φ′′ + 15r−3Φ′) = r4ΓΦ − r4Φ′′′′ − 3r2Φ′′ + 3rΦ′.

But this implies that either x2y2 is a function of r or both sides are identical zero.
Thus we have to show that this second case cannot occur. Suppose that both sides
are identical zero. The solutions of

−Φ′′′′ + 6r−1Φ′′′ − 15r−2Φ′′ + 15r−3Φ′ = 0

that satisfy the boundary conditions are the functions (ar2 + b)(1− r2)2. No nonzero
a and b will make the right-hand side identically zero, a contradiction.

5. Positivity questions. From the Krein–Rutman theorem one knows that for
a regular elliptic problem strong positivity of the solution operator implies that the
first eigenfunction has multiplicity one and, moreover, is of fixed sign. If the solution
operator has an integral kernel, one may even use a much earlier result of Jentzsch
[21]. Let us be more precise and consider{

Lu = λu + f in Ω,
Bu = 0 on ∂Ω.

(39)

If the solution operator (L− λ)
−1
B : X �→ X for (39) in the Banach lattice X is

compact, positive, and irreducible for some λ0, then there exists an eigenvalue λ1 ∈
(λ0,∞) with a positive eigenfunction. For a precise statement, see [6]. Moreover, for
all λ ∈ [λ0, λ1) and f ∈ X one finds that there is a solution uλ ∈ X and

f > 0 implies uλ > 0.

5.1. Known results for plates. Let us recall some of the known positivity
preserving results for plates.

For the hinged plate {
Δ2u = λu + f in Ω,
u = Δu = 0 on ∂Ω;

(40)
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this question was studied in [23] on a general bounded domain Ω. The problem is
positivity preserving if λ ∈ [−λc(Ω), λ1(Ω)2). Here λc is a critical number which
is bounded above by λ1(Ω)λ2(Ω), and λi(Ω) are the eigenvalues of the Laplacian
operator under Dirichlet conditions. If Ω is a rectangle R with sides a and b < a, one
can easily calculate λ1(R) = π2(a2 + b2) and λ2(R) = π2(a2 + 4b2), so that (40) with
Ω = R is positivity preserving for

−π4(a2 + b2)(a2 + 4b2) ≤ −λc(R) ≤ λ < π4(a2 + b2)2.(41)

The clamped plate {
Δ2u = λu + f in Ω,
u = |∇u| = 0 on ∂Ω

(42)

is a more delicate problem. In general (42) is not positivity preserving for λ = 0; see
[13] or [36]. The boundary value problem in (42) is positivity preserving only in the
case of the following special domains Ω:

• If Ω is a ball or a disk, Boggio’s explicit formula for the solution operator
with λ = 0 implies positivity.

• For small perturbations of the disk, positivity has been shown in [19].
• For Ω some limaçons positivity can be found in [11].
• For a combination of the above results with Möbius transformations, see [12].

5.2. Positivity under hinged boundary conditions.

5.2.1. Hinged beam. For the hinged beam{
uxxxx = λu + f in (0, 1),
u = uxx = 0 in {0, 1},(43)

the boundary value problem (43) is positivity preserving, provided that (see [23])

−950.884 ≈ λc ≤ λ < π4 ≈ 97.409.(44)

Here the lower bound λc equals 4(κ0)
4, where κ0 is the first positive zero of tan(x) +

tanh(x).

The Green function of the hinged beam. For the sake of completeness we list some
facts about the Green function of the hinged beam problem (43). We set ν = 4

√
λ and

μ = 4

√
− 1

4λ,

φ (λ;x) =

⎧⎪⎪⎨
⎪⎪⎩

sinh νx−sin νx
ν3 if λ > 0,

1
3x

3 if λ = 0,

cosh(μx) sinμx−cos(μx) sinhμx
2μ3 if λ < 0,

ψ (λ;x) =

⎧⎪⎪⎨
⎪⎪⎩

sinh νx+sin νx
2ν if λ > 0,

x if λ = 0,

cosh(μx) sinμx+cos(μx) sinhμx
2μ if λ < 0.
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Table 4

These values for the coefficients in (45) were obtained using Mathematica.

0 < λ �= λi λ = 0 λ < 0

set ν =
4
√
λ set μ = 4

√
− 1

4
λ

αλ
ν3

8

(
1

sin ν
− 1

sinh ν

)
ν

2 sin ν
0 μ3 cosμ sinhμ−coshμ sinμ

cosh 2μ−cos 2μ

βλ − ν
4

(
1

sin ν
+ 1

sinh ν

)
− 1

2
−μ sinhμ cosμ+coshμ sinμ

cosh 2μ−cos 2μ

γλ − 1
2ν

(
1

sin ν
− 1

sinh ν

)
1
6

coshμ sinμ−cosμ sinhμ
μ(cosh 2μ−cos 2μ)

Now gλ(x, y) can be represented as follows:

gλ(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αλ φ (λ;x)φ (λ; 1 − y) + βλ ψ (λ;x)φ (λ; 1 − y)
+ βλ φ (λ;x)φ′ (λ; 1 − y) + γλ ψ (λ;x)ψ (λ; 1 − y) if 0 ≤ x ≤ y ≤ 1,

αλ φ (λ; y)φ (λ; 1 − x) + βλ ψ (λ; y)φ (λ; 1 − x)
+ βλ φ (λ; y)ψ (λ; 1 − x) + γλ ψ (λ; y)ψ (λ; 1 − x)

if 0 ≤ y < x ≤ 1,

(45)

and the constants αλ, βλ, and γλ are suitably chosen in order to accommodate the
boundary values in 1 and the continuity requirements of gλ. Some tedious calculations
lead to the coefficients in Table 4.

For λ ≥ 0 formula (45) can be simplified to

gλ(x, y) = sin(x ν) sin(ν(1−y))
2 ν3 sin ν − sinh(x ν) sinh(ν(1−y))

2 ν3 sinh ν if 0 ≤ x ≤ y ≤ 1,

g0(x, y) = 1
6x (1 − y) − 1

6x (1 − y)
3 − 1

6x
3 (1 − y) if 0 ≤ x ≤ y ≤ 1.

(46)

5.2.2. Hinged rectangular grid with aligned fibers. In this section it will
be convenient to use (x1, x2) instead of (x, y). An investigation of positivity preserving
properties for the hinged rectangular grid that is aligned with the Cartesian axes seems
to be difficult. The eigenfunctions are

Φij (x1, x2) =
1√
ab

ϕi

(
a−1x1

)
ϕj

(
b−1x2

)
with ϕi (t) =

√
2 sin(iπt). Recall that the first eigenfunction is of fixed sign and has

multiplicity one. Using these eigenfunctions and the Green function gλ from (45) or
(46), the solution of { (

∂4

∂x4
1

+ ∂4

∂x4
2

)
u = λu + f in R,

u = Δu = 0 on ∂R,
(47)

can be written as

u(x) =
∞∑

i,j=1

1

a−4λi + b−4λj − λ
〈Φij , f〉Φij(x)

=
1√
ab

∞∑
j=1

〈
ϕj

(◦
b

)
,

∫ a

s=0

gb−4λj−λ (x1, s) f (s, ◦) ds
〉

(0,b)

ϕj

(x2

b

)
.
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Fig. 4. The sets Rε and R \ (C + Bε) from Lemma 5.1.

An inspection of the series representation above suggests that for nonnegative and
nontrivial f , for λ < Λ11 and λ close to Λ11 the coefficient in front of Φ11 becomes
very large and positive. This suggests that the first term in the series determines the
sign of u. But estimating the remainder of the series in terms of Φ1,1 turns out to be
a hard technical problem.

In order to verify that problem (47) is positivity preserving at least for λ in some
interval [Λ11 − γ,Λ11) it suffices to show that the solution of (47) with f = δy is
positive for every y ∈ R, where δy is the delta function at y.

Since the first eigenfunction is strictly positive in the interior we may prove the
following result, in which we use this notation for a domain Ω:

• the ε-interior: Aε = {x ∈ A; d(x, ∂Ω) > ε} ,
• the ε-neighborhood: A + Bε = {x ∈ Ω; d(x, ∂A) < ε} .

Lemma 5.1. Let uλ be the solution of (47). For every ε > 0 there is a positive
γ > 0 such that for λ ∈ [Λ11 − γ,Λ11) and f ≥ 0 the following two statements hold
(here C denotes the set of corner points):

• if support f ∈ Rε, then uλ(x) ≥ 0 for all x ∈ R \ (C + Bε),
• if support f ∈ R \ (C + Bε) , then uλ(x) ≥ 0 for all x ∈ Rε.

See Figure 4.
Proof. It is sufficient to show such a result for f = δy, the delta function, with

y ∈ Rε. Formally we have

δy (·) =

∞∑
i,j=1

Φij (y) Φij (·) ,

but since δy /∈ L2(R) this series does not converge. The distributional solution uy,λ

of (47) with f = δy, that is,

uy,λ (·) =

∞∑
i,j=1

Φij (y)

Λij − λ
Φij (·) ,(48)

lies in L2 (R) since its coefficients are in �2 :

∞∑
i,j=1

(
Φij (y)

Λij − λ

)2

≤
∞∑

i,j=1

⎛
⎝ 1

π4
(

i4

a4 + j4

b4

)
− λ

⎞
⎠

2

< ∞.

We even find for α + β < 3 that{
iαjβ

Φij (y)

Λij − λ

}
∈ �2,
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Fig. 5. The sets suppf and Rε ∪ (R \ (suppf + Bε)) from Lemma 5.2.

and hence uy,λ ∈ W 3−t,2(R) for all t > 0.

We split uy,λ = uy,λ
1 + uy,λ

2 , where

uy,λ
1 (·) =

Φ11 (y)

Λ11 − λ
Φ11 (·) .

By our assumption we have

|Φij (y)| ≤ c

ε
Φ11 (y) and |Φij (x)| ≤ cmax (i, j) Φ11(x).

This implies that we find∣∣∣uy,λ
2 (x)

∣∣∣ ≤ ∞∑
i,j=1

(i,j) �=(1,1)

∣∣∣∣ Φij (y)

Λij − λ
Φij (x)

∣∣∣∣

≤ c3

ε2
Φ11 (x) Φ11 (y)

∞∑
i,j=1

(i,j) �=(1,1)

max (i, j)

π4
(

i4

a4 + j4

b4

)
− λ

.

Since Λ12 and Λ21 are greater than Λ11, a straightforward computation shows that the
last sum is bounded uniformly with respect to λ < Λ11 by a constant γ = C (a, b) ε−2.
For λ ∈ [Λ11 − γ,Λ11) we find∣∣∣uy,λ

2 (x)
∣∣∣ ≤ γΦ11 (x) Φ11 (y) ≤ uy,λ

1 (x)

and hence that uy,λ(x) > 0.
Lemma 5.2. For every ε > 0 there is a γ > 0 such that if λ ∈ [Λ11 − γ,Λ11) and

f ≥ 0, then the solution of (47) satisfies uλ(x) ≥ 0 for all x ∈ Rε∪(R\ (suppf + Bε)) ;
see Figure 5.

Proof. If suppf ∈ Rε, then the previous lemma yields that uλ(x) ≥ 0 except near
the corners C. By Proposition A.1 in the appendix and using duality, we find that∥∥uλ

2

∥∥
W 28,2(C+Bε/2)

≤ c(ε) ‖f‖W−4,2(Ω) . Let us denote by dh(x) and dv(x) the distance

of x ∈ R to the horizontal and vertical parts of its boundary, and by 〈v, f〉 the L2(R)
product, when applicable. Then one continues with the imbedding of W 4,2

0 (Ω) in
C2(Ω̄) ∩ C1

0 (Ω̄), through

‖f‖W−4,2(Ω) = sup
{
〈v, f〉 ; v ∈ W 4,2

0 (Ω) with ‖v‖W 4,2(Ω) ≤ 1
}

≤ c sup
{
〈v, f〉 ; v ∈ C2(Ω̄) ∩ C1

0 (Ω̄) with ‖v‖C2(Ω̄) ≤ 1
}

≤ c sup {〈v, f〉 ; |v(x)| ≤ dh(x)dv(x)|}
≤ c′ 〈Φ11, f〉 .
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The last inequality is due to the fact that Φ11 can be bounded above and below by
multiples of dh(x)dv(x).

Similarly, again with an imbedding, we find for the function uλ
2 ∈ C2(Ω̄)∩C1

0 (Ω̄)
and for x ∈ C + Bε/2 that

uλ
2 (x) ≤ c1

∥∥uλ
2

∥∥
C2(C+Bε/2)

Φ11(x) ≤ c2
∥∥uλ

2

∥∥
W 28,2(C+Bε/2)

Φ11(x)

≤ c(ε) ‖f‖W−3,2(Ω) Φ11(x) ≤ c′(ε) 〈Φ11, f〉Φ11(x).

Since uλ
1 (x) = (Λ11 − λ)

−1 〈Φ11, f〉Φ11(x) we find uλ(x) > 0 near the corners for
Λ11 − λ chosen sufficiently small. A similar proof can be followed for the remaining
claim.

Let us summarize our results in terms of positivity for the Green function uy,λ

from (48) belonging to the hinged rectangular grid.
Corollary 5.3. For every ε > 0 there is a γ(ε) > 0 such that uy,λ(x) ≥ 0 for

all x ∈ R, all y ∈ R2ε, and all λ ∈ [Λ11 − γ(ε),Λ11).
Proof. We approximate δy(·) in D′(Ω) by a sequence of smooth fn with support

in Bε(y), and note that the corresponding solutions uy,λ
n (x) of (47) are nonnegative

for all x ∈ R and all y ∈ R2ε due to Lemma 5.2. Then we send n → ∞. Since fn
converges in W−1,2(R), the sequence un converges pointwise.

Notice that when sending ε to zero it is conceivable (although it seems unlikely)
that γ(ε) → 0. In that case, as εn → 0 there exist sequences λn < Λ11 with λn → Λ11,
yn ∈ R \R2εn with yn → y0 ∈ ∂R, and xn → x0 ∈ R such that

zn := uyn,λn(xn) < 0 for all n ∈ N.

At present we are unable to derive a contradiction from this.
We will end this section by a another nonuniform positivity result near Λ11 by

using the fact that the projection on the first eigenfunction will dominate near Λ11.
We proceed as for the nonuniform version of the antimaximum principle in [7] to
obtain the following nonuniform result.

Proposition 5.4. For all f ∈ L2(R) with f ≥ 0 there exists λf < Λ11 such that
for λ ∈ [λf ,Λ11) the solution uλ of (47) satisfies uλ ≥ 0.

Proof. We will adjust the arguments in [7] for the present situation. Let L :
W 4,2(R) ∩ W 2,2

0 (R) → L2(R) be the operator that corresponds to (47). Fix P0 to
be the projection on the first eigenfunction, that is, P0f = 〈Φ11, f〉R Φ11, and set

Λ̃ ∈ (Λ11,min (Λ12,Λ21)). Then, using our regularity result for (47) as in [7], we find
that there exists a constant C such that for all λ ∈

[
0, Λ̃

]
the following holds:∥∥∥(L − λ)

−1
(I − P0) f

∥∥∥
W 4,2(R)

≤ C ‖f‖L2(R) .

Since the domain R satisfies a uniform interior cone condition we find by [18, Theorem
7.26] that W 4,2(R) is imbedded in C2,α(Ω̄) for any α ∈ (0, 1) . Since

(L − λ)
−1

(I − P0) f ∈ W 2,2
0 (Ω)

we find that u ∈ C0(Ω̄) and hence that∥∥∥∥∥ (L − λ)
−1

(I − P0) f

Φ11

∥∥∥∥∥
∞

≤ C ′
∥∥∥(L − λ)

−1
(I − P0) f

∥∥∥
W 4,2(R)

.
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Fig. 6. Top to bottom: a hinged plate, a hinged grid with rectangular fibers, and a hinged grid
with diagonal fibers. The arrow denotes the location of the pointed force, and the red (dark) part
represents the part of the grid with a negative deviation.

The solution uλ of (47) can be written as

uλ(x) =
〈Φ11, f〉R
Λ11 − λ

Φ11(x) +
(
(L − λ)

−1
(I − P0) f

)
(x)

≥
(
〈Φ11, f〉R
Λ11 − λ

− C ′′ ‖f‖L2(R)

)
Φ11(x),

which is positive for 0 ≤ Λ11 − λ sufficiently small.

5.2.3. Hinged rectangular grid with diagonal fibers. The positivity ques-
tion is much simpler to decide if the grid runs diagonally. For the diagonally hinged
grid on the rectangle R as in (17)–(20),

⎧⎨
⎩

1
2uxxxx + 3uxxyy + 1

2uyyyy = λu + f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a] × {0, b} ,

(49)

one may decouple the fourth order equation (19) (or (49) with λ = 0) into a system
of two second order equations by using (20).

Since the boundary conditions decouple nicely with the two second order opera-
tors, one may use the substitution v := −uxx − (3 + 2

√
2)uyy and two iterations of

the standard maximum principle for second order differential operators to find that
(49) is positivity preserving for λ = 0.

Going back to the fourth order problem, one has a strongly positive and compact
solution operator that maps f ∈ C(Ω) to u ∈ C(Ω). From the Krein–Rutman theorem
one finds that there exists a first eigenvalue, and this eigenvalue corresponds to an
eigenfunction of fixed sign. But then one can show the following as in [35].

Proposition 5.5. For λ ∈
[
0, π4

(
1
2a

−4 + 3a−2b−2 + 1
2b

−4
))

the problem (49) is
positivity preserving.

The upper bound for λ is the first eigenvalue Γ11 given in (28).

5.2.4. Numerical comparison for hinged rectangles. For the hinged rect-
angular plate and grids we obtained the numerical result shown in Figure 6 by a finite
difference method.

5.3. Positivity under clamped boundary conditions.
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Table 5

These values for the coefficients in (52) were obtained using Mathematica.

0 < λ �= λi λ = 0 λ < 0

set ν =
4
√
λ set μ = 4

√
− 1

4
λ

αλ
ν3(sinh ν+sin ν)
4−4 cosh ν cos ν

3
2μ3(cosμ sinhμ+coshμ sinμ)

cosh 2μ+cos 2μ−2

βλ
ν2(cos ν−cosh ν)
4−4 cosh ν cos ν

− 3
2

−2μ2 sinhμ sinμ
cosh 2μ+cos 2μ−2

γλ
ν(sinh ν−sin ν)
4−4 cosh ν cos ν

1
2

μ(coshμ sinμ−cosμ sinhμ)
cosh 2μ+cos 2μ−2

5.3.1. Clamped beam. What can be said about positivity preservation for the
clamped beam (50)? {

uxxxx = λu + f in (0, 1),
u = ux = 0 in {0, 1}.(50)

This requires more effort. If λ is not an eigenvalue, there exists a Green function gλ
for the clamped beam problem (50) such that the solution can be represented as

u(x) =

∫ 1

0

gλ(x, y)f(y) dy.

Let us define

φ (λ;x) =

⎧⎪⎨
⎪⎩

ν−3 (sinh (νx) − sin (νx)) if λ > 0,
1
3x

3 if λ = 0,
1
2μ

−3 (cosh (μx) sin (μx) − sinh (μx) cos (μx)) if λ < 0,

(51)

where ν = 4
√
λ and μ =

4
√
− 1

4λ. The functions φ (λ; ·) and ∂
∂xφ (λ; ·) are two linearly

independent solutions of the differential equation and the boundary conditions of (50)
in the left end point 0. By the definition of the Green function it follows that

gλ(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αλ φ (λ;x)φ (λ; 1 − y) + βλ φ′ (λ;x)φ (λ; 1 − y)
+ βλ φ (λ;x)φ′ (λ; 1 − y) + γλ φ′ (λ;x)φ′ (λ; 1 − y) if 0 ≤ x ≤ y ≤ 1,

αλ φ (λ; y)φ (λ; 1 − x) + βλ φ′ (λ; y)φ (λ; 1 − x)
+ βλ φ (λ; y)φ′ (λ; 1 − x) + γλ φ′ (λ; y)φ′ (λ; 1 − x)

if 0 ≤ y < x ≤ 1,

(52)

with appropriate constants to accommodate the boundary values in 1 and the conti-
nuity requirements of gλ. Some tedious calculations lead to the coefficients given in
Table 5.

For λ = 0 formula (52) can be simplified to

g0(x, y) =

{
1
2x

2(1 − y)
2 (

y − x + 2
3x(1 − y)

)
if 0 ≤ x ≤ y ≤ 1,

1
2y

2(1 − x)
2 (

x− y + 2
3y(1 − x)

)
if 0 ≤ y < x ≤ 1.

Problem (50) is positivity preserving if and only if the Green function is positive,
and for g0 this is now easily seen to be the case. Instead of directly computing for
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which λ the Green function gλ is in fact positive, one may proceed through the results
of Schröder in [34]. The Green function changes sign for some λ if and only if this λ
is an eigenvalue of either (30) or of

{
ϕ′′′′ = λϕ in (0, 1) ,

ϕ(0) = ϕ′(0) = ϕ′′′(0) = 0 = ϕ(1).
(53)

The “first” solution of (53) is gλ(x, 1) with λc = −4ν4
0 , where ν0 is the first positive

zero of tanh ν = tan ν.

Lemma 5.6. Problem (50) is positivity preserving if and only if λ ∈ [λc, λ1),
where

• λ1 is the first eigenvalue of (30), that is, the fourth power of the first positive
solution of

cosλ =
1

coshλ
,

• λc is the “first” eigenvalue of (53), that is, the first negative solution of

tan
4

√
−1

4
λ = tanh

4

√
−1

4
λ.(54)

The numerical approximations are λ1 ≈ 4.7300 and λc ≈ −950.884. Notice that
this is the same λc as in (44) for problem (43).

Proof. The arguments are similar to the ones in [23] and reflect the ideas from
[34].

Direct inspection shows that g0 is strictly positive. To study the case of positive
λ, notice that (50) can be rewritten as (I − λL−1)u = f , where Lu = uxxxx, so that
by a Neumann series argument u =

∑∞
k=1(λL

−1)kf converges and is positive for all
λ ∈ [0, λ1) . For λ = λ1 no solution exists when f = ϕ1. For λ > λ1 and f = ϕ1 the
solution is u = (λ1 − λ)−1ϕ1, and this is negative.

For λ < 0 one finds from (52)–(51) and the coefficients in Table 4 that λ �→ gλ(x, y)
is continuous for λ ≤ 0 in almost every sense. Let λc < 0 be the first number after
which positivity fails. Suppose that for a fixed y ∈ (0, 1) the value of gλc

(x, y) is
nonnegative but equals 0 for some xy ∈ (0, 1) . And suppose w.l.o.g. that xy ≤ y.
Then gλc

(xy, y) = ∂
∂xgλc (xy, y) = ∂

∂xgλc (0, y) = ∂
∂xgλc (0, y) = 0 and we have found

an eigenfunction scaled to [0, xy] , a contradiction. Hence xy = 0. Using the symmetry
gλ(x, y) = gλ(y, x), we may assume that y is at the boundary, say y = 1. We

may repeat the argument above for g̃λc
defined by g̃λ(x) = limy↑1 (1 − y)

−2
gλ(x, y),

which is a nontrivial function. Again if g̃(x1) = 0 for some x1 ∈ (0, 1), we find an
eigenfunction by scaling on [0, x1] . Since g̃′(1) < 0 = g̃(1) it remains that x1 = 0.
One finds that g̃ is an eigenfunction of (53). The first eigenfunction of that eigenvalue
problem is

ψ1(x) = cosh (μx) sin (μx) − sinh (μx) cos (μx)

with μ the first positive root of coshμ sinμ = sinhμ cosμ and λc = 4μ2. This can be
rephrased to (54). For λ < λc one finds that g̃λ is sign changing, implying that for y
near 1 the function x �→ gλ(x, y) is sign changing.
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Fig. 7. Numerical simulation of a clamped rectangularly aligned grid; (55) with μ = 0 and a
point source f .

Fig. 8. Numerical simulation of a clamped diagonally aligned grid.

5.3.2. Clamped rectangular grid with aligned fibers. In this section we
investigate the problem{

uxxxx + uyyyy = λu + f in R,
u = |∇u| = 0 on ∂R.

(55)

Numerical calculations suggest that for λ = 0 a point load f = δy(·) can lead to a sign
changing solution; see Figure 7, in which the sign of u is color coded. This behavior
is also known and recorded in [9] for isotropic rectangular plates, whose deformation
solves Δ2u = f instead.

However, since the first eigenfunction is positive, by using the eigenfunction ex-
pansion one finds the following solution formula for (55):

u (x, y) =
∞∑

i,j=1

1

Λij − λ
〈Φij , f〉R Φij (x, y) .

As for the hinged plate one might hope that for λ near Λ11 the projection on the first
eigenfunction will dominate the sign. But to find such a result we would need a C4

estimate near corner points, which, unfortunately, we do not have at our disposal.

5.3.3. Clamped diagonal grid. Since we do not know if the first eigenfunction
is of fixed sign for this grid we can only give some numerical evidence. With the same
point source and domain as in rectangularly aligned grid from Figure 7, the area
where the solutions change sign seems to be much smaller for the diagonally aligned
grid; see Figure 8.

5.3.4. Numerical comparison for clamped rectangles. Duffin’s famous
counterexample in [13] for the conjecture of Boggio and Hadamard (the clamped
plate problem on convex domains is positivity preserving) uses a long thin rectan-
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Fig. 9. Top to bottom: a clamped plate, a clamped grid with rectangular fibers, and a clamped
grid with diagonal fibers. The arrow denotes the location of the pointed force and the red (dark) part
represents the part of the grid with a negative deviation.

Table 6

Overview for rectangular plates and grids.

Positive eigenfunction Positivity preserving

Plate Φ1 > 0 for λ ∈ [0,Λ1)

H
in

g
ed

Grid aligned with sides Φ1 > 0 conditionally near Λ1

Grid with diagonal fibers Φ1 > 0 for λ ∈ [0,Λ1)

Plate Φ1 changes sign no

Grid aligned with sides Φ1 > 0 conditionally near Λ1

C
la

m
p
ed

Grid with diagonal fibers ? ?

gle. In Figure 9 we present numerical results for long clamped rectangular plates
and grids. Rather surprisingly, the numerical result for a long thin rectangle with a
diagonal fabric hardly shows any sign change.

The numerical illustrations have been obtained using a finite difference method.

6. Summary for rectangular grids. We set out to study positivity for rect-
angular grids with aligned and with diagonal fibers. An overview of the results we
obtained for those problems can be found in Table 6. For the sake of comparison we
include the known results for the rectangular plate.

Numerics for the clamped plate with diagonal fabric suggest that the first question
mark in the table above should be answered affirmatively; the second question mark
might have a positive answer for λ near Λ1. Of course “near Λ1” always means in a
left neighborhood of Λ1.

Appendix. Nonlocal smoothness. The standard regularity statement for
2m-th order elliptic problems is usually a statement of the form that f ∈ W k,p(Ω)
implies u ∈ W k+2m,p(Ω) or f ∈ Ck,γ(Ω̄) implies u ∈ Ck+2m,γ(Ω̄). Such a maximal
regularity result is optimal. However, for a function f ∈ Lp(Ω) which has its support
in Ω′ ⊂ Ω one may show that the corresponding solution is smooth outside of Ω′.
Although this result is well known, we are not aware of any reference. So allow us to
formulate a corresponding statement.

Consider a regular elliptic problem with L of order 2m and Ω a domain in R
n:{

Lu = f in Ω,
Biu = 0 on ∂Ω for i = 0, . . . ,m.

(56)
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Proposition A.1. Let Ω1,Ω2 be two disjoint subdomains of Ω having a positive
distance r, that is, r := inf {|x− y| ;x ∈ Ω1, y ∈ Ω2} > 0. Suppose that there exists
c > 0 such that for all k ∈ {0, . . . , κ} and all f ∈ W k,2(Ω) there is a solution
u ∈ W 2m+k,2(Ω) of (56) with

‖u‖W 2m+k,2(Ω) ≤ c ‖f‖Wk,2(Ω) ;(57)

then there exists C (c, κ, r) such that for all f ∈ L2(Ω) with supportf ⊂ Ω1 the
following holds true:

‖u‖W 2m+κ,2(Ω2)
≤ C (c, κ, r) ‖f‖L2(Ω1)

.(58)

Proof. We will prove this by induction. For k = 0 the estimate (58) follows
from (57) and the fact that supp f ⊂ Ω1. Next we do the induction from k to k + 1
and suppose that ‖u‖W 2m+k,2(Ω2)

≤ C (c, k, r) ‖f‖L2(Ω1)
for some k ≥ 0. One may

construct a cut-off function χ such that for some c1 ∈ R
+

1. χ ∈ C∞(Ω̄) with χ|Ω1
= 0 and χ|Ω2

= 1;
2. Ω̄2 � supportχ � Ω̄\Ω1;
3. ‖χ‖Ci(Ω̄) ≤ c1r

−i for i ∈ {0, . . . , k} .
Note that L (χu) = χLu + l.o.t. = 0 + l.o.t. and that χu satisfies the boundary

conditions from (56). Since the right-hand-side l.o.t. lies in W k+1,2(Ω) we find χu ∈
W 2m+k+1,2(Ω). Moreover,

‖u‖W 2m+k+1,2(Ω2)
≤ ‖χu‖W 2m+k+1,2(Ω) ≤ c1 ‖l.o.t.‖Wk+1,2(Ω)

= c1 ‖l.o.t.‖Wk+1,2(supportχ) ≤ c(r) ‖u‖W 2m+k,2(Ω̃2)
≤ C ′ (c, k, r/2) ‖f‖L2(Ω1)

.

Here Ω̃2 can be chosen so that d(Ω1, Ω̃2) < r/(2k).

Acknowledgments. Special thanks go to W. Jäger for bringing [17] to our at-
tention and also to P. Seidel for her help in locating some of the older literature.
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Abstract. In this paper the vanishing Debye length limit (space charge neutral limit) of bipolar
time-dependent drift-diffusion models for semiconductors with p-n junctions (i.e., with a fixed bipolar
background charge) is studied in one space dimension. For general sign-changing doping profiles, the
quasi-neutral limit (zero-Debye-length limit) is justified rigorously in the spatial mean square norm
uniformly in time. One main ingredient of our analysis is the construction of a more accurate
approximate solution, which takes into account the effects of initial and boundary layers, by using
multiple scaling matched asymptotic analysis. Another key point of the proof is the establishment
of the structural stability of this approximate solution by an elaborate energy method which yields
the uniform estimates with respect to the scaled Debye length.
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1. Introduction. The scaled one-dimensional isothermal drift-diffusion model
for semiconductors reads

nλ
t = (nλ

x − nλΦλ
x)x, 0 < x < 1, t > 0,(1)

pλt = (pλx + pλΦλ
x)x, 0 < x < 1, t > 0,(2)

λ2Φλ
xx = nλ − pλ −D, 0 < x < 1, t > 0,(3)

nλ
x − nλΦλ

x = pλx + pλΦλ
x = Φλ

x = 0, x = 0, 1, t > 0,(4)

nλ(x, 0) = nλ
0 (x), pλ(x, 0) = pλ0 (x), 0 ≤ x ≤ 1.(5)

The variables nλ, pλ,Φλ are the electron density, the hole density, and the electric
potential, respectively. The constant λ is the scaled Debye length of the semiconductor
device under consideration. D = D(x) is the given function of space and models
the doping profile (i.e., the preconcentration of electrons and holes). Because of the
occurrence of p-n junctions in realistic semiconductor devices, the doping profile D(x)
typically changes its sign.
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In this paper, we assume that D(x) is a smooth function.
Note that for the sake of simplicity we take insulating boundary conditions mod-

eled by outward electric field and current density components, namely (4).
A necessary solvability condition for the Poisson equation (3) subject to the Neu-

mann boundary condition for the field in (4)3 is global space charge neutrality∫ 1

0

(nλ − pλ −D)dx = 0.

Since the total numbers of electrons and holes are conserved, it is sufficient to require
the following corresponding condition for the initial data:∫ 1

0

(nλ
0 − pλ0 −D)dx = 0.(6)

Usually semiconductor physics are concerned with large-scale structures with respect
to the Debye length λ (λ takes small values, typically λ2 ≈ 10−7). For such scales, the
semiconductor is almost electrically neutral, i.e., there is no space charge separation
or electric field. This is the so-called quasi-neutrality assumption of semiconductors
or plasma physics, which was applied by Shockley [31] in the first theoretical studies
of semiconductor devices in 1949, but was also applied in other contexts such as
the modeling of plasmas [32] and ionic membranes [29]. Under the assumption of
space charge neutrality, i.e., λ = 0, we formally arrive at the following quasi-neutral
drift-diffusion model:

nt = (nx + nE)x,(7)

pt = (px − pE)x,(8)

0 = n− p−D,(9)

E = −Φx.

This formal limit was obtained by Roosbroeck [28] in 1950. For further formal asymp-
totic analysis, see [25, 27, 20, 33].

Generally speaking, it should be expected at least formally that (nλ, pλ,−Φλ
x) →

(n, p, E) as λ → 0 in the interior of the interval [0, 1], while it cannot be expected
a priori that all boundary and initial value conditions are maintained for the limit
problem because of the singular perturbation character of the problem (the Poisson
equation becomes an algebraic equation in the limit). However, by the conservation
form of the continuity equations the property of zero fluxes through the boundary
will prevail in the limit

nx + nE = 0, px − pE = 0, x = 0, 1, t > 0,(10)

while the boundary condition for the electric field Eλ does not.
Similarly, we can expect a priori that quasi-neutral drift-diffusion models (7)–(9)

are supplemented by the initial data

n(x, 0) = n0(x), p(x, 0) = p0(x)(11)

satisfying locally initial time space charge neutrality

n0 − p0 −D = 0.(12)

The aim of this paper is to justify rigorously the above formal limit for O(1)-time and
sufficiently smooth solutions.
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It is important to mention that the quasi-neutral limit is a well-known challenging
and physically very complex modeling problem for (bipolar) fluid dynamic models
and for kinetic models of semiconductors and plasmas. In both cases there exist only
partial results. In particular, for time-dependent transport models, the limit λ → 0
has been performed for the Vlasov–Poisson system by Brenier [2], Grenier [12, 13],
and Masmoudi [21]; for the Schrödinger–Poisson system by Puel [26] and Jüngel and
Wang [16]; for the drift-diffusion-Poisson system by Gasser et al. [10, 11], Jüngel and
Peng [15], and Schmeiser and Wang [30] under much more restrictive assumptions on
the doping profile that is used in this paper (no sign changes of D are allowed); and
for the Euler–Poisson system by Cordier and Grenier [5, 6], Cordier et al. [4], and
Wang [35]. However, as already mentioned, all these results are restricted to the special
cases of doping profiles, i.e., either assuming that D(x) is constant zero or assuming
that D(x) does not change its sign. But p-n junctions are of great importance both
in modern electronic applications and in understanding semiconductor devices since
the p-n junction theory serves as the foundation of the physics of semiconductor
devices (see Sze [34]). For physically interesting doping profiles with p-n junctions,
i.e., for the case where the doping profile can change its sign, there is no rigorous
result available for time-dependent semiconductor models for either fluid dynamic
models or for kinetic models up to now. Therefore, it is natural to study the quasi-
neutral limit on the level of the drift-diffusion-Poisson models first. For stationary
drift-diffusion-Poisson models, rigorous convergence results for p-n junction devices
with contacts can be found in Markowich [19], and recent extensions were done by
Caffarelli et al. [3] and Dolbeault, Markowich, and Unterreiter [7].

In this paper we consider the quasi-neutral limit of the time-dependent drift-
diffusion model (1)–(6) for semiconductors with p-n junctions in the general case of
physically relevant sign-changing doping profiles.

Our main result can be summarized as follows: The convergence of the drift
diffusion models (1)–(5) to (7)–(11) is rigorously proved for general sign-changing
and smooth doping profiles in one-space dimension case on time intervals, on which
a smooth nonvacuum solution of the reduced problem (7)–(11) exists (the precise
statement will be given in section 2).

We mention that one of the main difficulties in dealing with quasi-neutral limits
is the oscillatory behavior of the electric field. Usually it is difficult to obtain uniform
estimates on the electric field with respect to the Debye length λ due to a possible
vacuum set of the density, in particular, the occurrence of the depletion region.

In this paper, we overcome this difficulty by the following strategy. First, we in-
troduce a new transformation (see (13) in section 2) that changes the original problem,
(1)–(5), into an equivalent one, (14)–(17), where the dissipation for the electric field
becomes apparent. Second, we construct carefully a better uniformly valid approxima-
tion solution to (14)–(17) by using a method of matched asymptotic analysis. Finally,
we show the asymptotic structural stability of the resulting approximate solution by
energy methods based on studies on a weighted entropy and entropy dissipation. This
approach is strongly motivated by the analysis of boundary layers in the fluid-dynamic
limit of a nonlinear Boltzmann equation by Liu and Xin in [18] and viscous boundary
layers by Xin in [36]. This ansatz deviates from the solutions to (7)–(11) slightly in
a region away from the parabolic boundaries, since it changes more rapidly in the
electronic field in the parabolic boundaries (boundary layers and initial layers). It is
this kind of structure of the ansatz that governs the main oscillatory feature of the
electric field and plays a key role in our analysis. Due to the special structure of
the quasi-neutral drift-diffusion model (7)–(11), and the more or less explicit forms
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of the boundary layer functions and initial layer functions, the asymptotic ansatz can
be estimated rather easily. Thus, the quasi-neutral limit problem is reduced to show
the structural stability of such an ansatz. To achieve this goal, our basic idea in the
whole analysis in this paper is that the more accurate approximate solutions make it
easier to obtain their structural stability for the following reasons.

First, though the linearized system around the approximate solutions is complic-
taed and involves many scales due to the presence of boundary and initial layers, the
detailed forms of the layer structure in the ansatz and the explicit form of the dissi-
pation for the electric field make it possible to derive the uniform energy estimates
for the linearized operator. Furthermore, the ansatz is constructed in such a way so
that the deviation from the ansatz, the error, satisfies the so-called “error” system
(see (104)–(105)) which is only weakly nonlinear with source terms suitably small in
appropriate norms. Since the detailed estimates, given in section 4, are very lengthy
and involved, we would like to outline some main ingredients here. Note that although
the “error” system is very complicated due to the layer structure of the ansatz and the
complexity of the problem involved, it is in fact a coupled nonlinear parabolic system
with nonhomogeneous source terms, and the major part of its linearized operator has
an extra dissipative term for the electric field due to the uniform positivity of the total
interior density Z0, which yields the uniform energy estimates of the electric field with
respect to the Debye length λ if one just deals with only the linearized system of the
error system. Moreover, according to the structure of the ansatz, we can decompose
the inhomogeneous source term of the error system into the inner part, the boundary
layer part, the initial layer part, and the mixed boundary and initial layer part, which
has a uniform decay rate with respect to λ in a weighted Sobolev’s norm. Hence an
extra power of λ can be created in the energy bound, as is the main purpose of the
approximate solution constructed in this paper. Because there is no maximal principle
for the error system (104)–(105), the classical energy method is employed to establish
the uniform energy estimates with respect to the Debye length λ in Sobolev’s space.
However, due to the complexity of the “error” equations, it is not easy to obtain the
uniformly a priori energy bound with respect to the Debye length λ or the decay rate
(a power of λ) if one just uses only the standard energy estimate techniques. So one
needs some new techniques for establishing the uniformly a priori estimate in order to
derive the energy bound. One basic point of our approach here is to derive high order
spatial energy estimates by combining the basic L2-estimates of (zλR, E

λ
R) (see below)

and the L2-estimates of the time derivatives of (zλR, E
λ
R) to avoid meeting the strong

singularity caused by the boundary layer function appearing in the ansatz. Hence
the inhomogeneous source terms can be controlled by further using the decay rate of
the boundary layer and initial layer functions. Another technique involved here is to
control strong nonlinear oscillation, caused by the nonlinearity of the error system,
by a combination of the entropy and the entropy dissipation, which is the reason why
one can establish the uniform energy bound. Namely, one controls the deviation of
the solution to (14)–(17) from the ansatz by introducing the following two λ-weighted
Liapunov-type functionals:

Γλ(t) =

∫ 1

0

(
|zλR|2 + |zλR,x|2 + |zλR,t|2 + λ2(|Eλ

R|2 + |Eλ
R,x|2 + |Eλ

R,t|2) + |Eλ
R|2

)
dx

and

Gλ(t) =

∫ 1

0

(
|zλR,x|2 + |zλR,xt|2 + |Eλ

R|2 + |Eλ
R,t|2 + λ2(|Eλ

R,x|2 + |Eλ
R,xt|2)

)
dx,
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where zλR = nλ
R +pλR, Eλ

R = −Φλ
R,x, and (nλ

R, p
λ
R,Φ

λ
R)T denotes the difference between

the solution to (14)–(17) from the ansatz (see section 2 for details). Notice that,
physically, Γλ(t) is called the entropy while Gλ(t) is called the entropy dissipation be-
cause it is an entropy derived from the dissipation term of the error system (14)–(17).
By a careful energy method, we are able to prove the entropy production integration
inequality

Γλ(t) +

∫ t

0

Gλ(s)ds

≤ MΓλ(t = 0) + M

∫ t

0

(Γλ(s) + (Γλ(s))ι)ds

+M

∫ t

0

Γλ(s)Gλ(s)ds + Mλq, t ≥ 0,

for some ι > 1, q > 0, and M > 0, independent of λ, which implies the desired
convergence result of this paper.

Finally, we also mention that for drift-diffusion models there are many results on
existence, uniqueness, large time asymptotic behavior, stability of stationary states,
regularity of weak solutions, etc. For example, see [1, 8, 9, 14, 20, 22, 23, 24].

The plan of this paper is as follows. In section 2 we reformulate our problem
and state the main results of this paper; furthermore, the existence and regularity of
solutions to the quasi-neutral drift-diffusion models are discussed. In section 3 we give
the approximate solutions by a method of matched asymptotic analysis and study the
properties of initial and boundary layer function. Finally, section 4 is devoted to the
energy estimates for the main theorems of this paper.

2. Reformulation of the equations and main results. Introduce the new
variables (zλ, Eλ) by the following transformation:

Eλ = −Φλ
x, nλ =

zλ + D − λ2Eλ
x

2
, pλ =

zλ −D + λ2Eλ
x

2
(zλ = nλ + pλ).(13)

Adding (1) and (2) and using (3); taking ∂t of (3) and replacing nt, pt of the resulting
equation by (1), (2) and then integrating over [0, x] with respect to x; and using
the boundary condition (4) and the transformation (13), we can reduce the initial
boundary value problem (1)–(6) to the following equivalent system for (zλ, Eλ):

zλt = (zλx + DEλ)x − λ2(EλEλ
x )x, 0 ≤ x ≤ 1, t > 0,(14)

λ2(Eλ
t − Eλ

xx) = −(Dx + zλEλ), 0 ≤ x ≤ 1, t > 0,(15)

zλx = Eλ = 0, x = 0, 1, t > 0,(16)

zλ(x, 0) = zλ0 (x), Eλ(x, 0) = Eλ
0 (x), 0 ≤ x ≤ 1.(17)

Note that the equivalence between system (1)–(6) and system (14)–(17) is easily
verified for classical solutions by using the transformation (13). Thus, we have the
following proposition.

Proposition 1 (existence and uniqueness). Assume that (zλ0 , E
λ
0 ) ∈ (C2)2 sat-

isfies the compatibility conditions

zλ0,x = Eλ
0 = 0, −λ2Eλ

0,xx = −Dx at x = 0, 1.(18)

Then system (14)–(17) has a unique, global, and classical solution (zλ, Eλ) ∈ C2,1([0, 1]×
[0,∞)).
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Remark 1. The existence in Proposition 1 is obtained by the known existence
results for (1)–(6) (see, for example, [24, 9]) and by the transformation (13), while
uniqueness in Proposition 1 can be proved easily for H1-solutions of (14)–(17).

Let us assume that the initial datum (zλ0 , E
λ
0 ) is taken to guarantee that boundary-

initial consistency for the initial boundary value problem (14)–(17) for λ > 0 holds. In
particular, the compatibility condition (18) is assumed and the initial datum (zλ0 , E

λ
0 )

is assumed to have an expansion of the form

(zλ0 , E
λ
0 )T =

(
z0
0(x) + λ

(
f(x)z1

+

(x
λ

)
+ g(x)z1

−

(
1 − x

λ

))
+ λzλ0R(x),

E0
0(x) + f(x)E0

+

(x
λ

)
+ g(x)E0

−

(
1 − x

λ

)
+ λEλ

0R(x)

)T

.(19)

To justify the rigorous quasi-neutral assumptions, we make the following ansatz for
the approximate solution:

(zλ, Eλ)Tapp =

(
Z0(x, t) +

2∑
i=0

λi
(
f(x)zi+(ξ, t) + g(x)zi−(η, t) + ziI(x, s)

)
,

E0(x, t) + f(x)E0
+(ξ, t) + g(x)E0

−(η, t) + E0
I (x, s)

)T

,(20)

where the inner function (Z0, E0)T is independent of λ; zi+, E
0
+, z

i
−, E

0
−, i = 0, 1, 2, are

the left boundary layer functions near x = 0 and the right boundary layer functions
near x = 1, respectively; and ziI , i = 0, 1, 2, E0

I , are the initial time layer functions
near t = 0. The cut-off functions f(x) and g(x) are smooth C2 functions satisfying
f(0) = g(1) = 1 and f(1) = f ′(1) = f ′′(1) = f ′(0) = f ′′(0) = g(0) = g′(0) = g′′(0) =
g′(1) = g′′(1) = 0. Here we set

ξ =
x

λ
, η =

1 − x

λ
, s =

t

λ2
,

which corresponds physically to the dielectric relaxation time scale, and (·, ·)T repre-
sents transposition. We will discuss in detail the construction of the inner, boundary
layer, and initial layer functions in the next section; however, we summarize the results
here.

First, the inner function (Z0, E0)T is determined as a solution of the follow-
ing initial boundary value problems for the transformed quasi-neutral drift/diffusion
equations:

Z0
t = (Z0

x + DE0)x, 0 < x < 1, t > 0,(21)

0 = −(Dx + Z0E0), 0 < x < 1, t > 0,(22)

(Z0
x + DE0)(0, 1; t) = 0, t > 0,(23)

Z0(x, 0) = z0
0(x), 0 ≤ x ≤ 1.(24)

The existence of the above inner problem is guaranteed by the following proposi-
tion.

Proposition 2. Assume that D ∈ C2(l+1)+1 and that z0
0 ∈ C2(l+1) for some

integer l ≥ 0. Also assume that z0
0 ≥ δ0 > 0 satisfy the compatibility condition

of order l for (21)–(24). Then there exist a T0 ∈ (0,+∞] and a unique classical
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solution (Z0, E0), well defined on [0, 1] × [0, T0], of (21)–(24) satisfying Z0, E0 ∈
C2(l+1),l+1([0, 1] × [0, T0]) and Z0(x, t) ≥ δ1 > 0 on [0, 1] × [0, T0] for some positive
constant δ1. In particular, if D ∈ C∞([0, 1]) and z0

0 ∈ C∞([0, 1]) satisfying the
compatibility condition of any order, then Z0, E0 ∈ C∞([0, 1] × [0, T0]).

Moreover, if δ0 is suitably large, then T0 = ∞.
Proof of Proposition 2. The proof is elementary. For completeness, we outline it

here. First, it follows from (80) that E0(x, t) = − Dx

Z0(x,t) . Then the problem (79)–(82)

is reduced to the following system:

Z0
t =

(
Z0

x − DDx

Z0

)
x

, 0 < x < 1, t > 0,(25) (
Z0

x − DDx

Z0

)
(0, 1; t) = 0, t > 0,(26)

Z0(x, 0) = z0
0(x), 0 ≤ x ≤ 1.(27)

For z0
0 ≥ δ0 > 0, the standard parabolic theory yields the desired local existence of

classical positive solution Z0. This concludes the first part of Proposition 2.
To prove the global existence of large classical solutions for large initial data, one

introduces the transformation

(Z0)2 −D2 = w.(28)

Then it follows from the system (25)–(27) that w satisfies

wt = wxx − w2
x + 2DDxwx

2(w + D2)
, 0 < x < 1, t > 0,(29)

wx(0, 1, t) = 0, t > 0,(30)

w(x, 0) = w0(x) = (z0
0)2 −D2.(31)

If δ0 ≥
√
D2 + δ2 for some δ2 > 0, then w0 ≥ δ2 > 0.

By the standard parabolic theory [17], we know that there exists a unique, clas-
sical, and global solution w for (29)–(31) satisfying 0 < δ2 ≤ w ∈ C2(l+1),l+1([0, 1] ×
[0, T ]) for any T > 0. By transformation (28), we conclude the second part of Propo-
sition 2. The proof of Proposition 2 is complete.

Remark 2. By the transformation

n(x, t) =
Z0(x, t) + D(x)

2
, p(x, t) =

Z0(x, t) −D(x)

2
, E(x, t) = E0(x, t)

it is easy to verify that the system (7)–(12) and the system (21)–(24) are equivalent.
Thus, by Proposition 2, one obtains the existence of the classical nonvacuum solution
of the quasi-neutral drift-diffusion system (7)–(12). The uniform positivity of z0

0(x),
together with (12), excludes singularities of the solution of the quasi-neutral drift-
diffusion system (7)–(12). Indeed, if z0

0(x) = D(x), then (21)–(24) has a stationary
solution

Z0(x, t) = D(x), E0 = −(lnD(x))x.

In this case, the electric field E0 has a singularity in the vacuum set of the density Z0.
In the present paper, the case of singular solutions of the quasi-neutral drift-diffusion
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models is thus not allowed due to our assumption that z0
0 ≥ δ0 > 0. But the singular

solution case is interesting and will be investigated in the future.
Remark 3. Proposition 2 cannot hold true in the unipolar case. In fact, in

the unipolar case we must have z0
0(x) = D(x) or z0

0(x) = −D(x) due to the local
quasi-neutrality assumption (12) of the initial data, and hence we have no uniform
positivity of z0

0(x) if the doping profile D(x) changes sign. This comes back to the
above vacuum singular solution case.

Next, the boundary layer functions ziB , E
0
B , B = +/−, i = 0, 1, 2, are governed

by the following boundary value problems for the elliptic equations:

−E0
+,ξξ = J0

+, −E0
−,ηη = J0

−, 0 < ξ, η < ∞, t > 0,(32)

E0
+(ξ = 0, t) = −E0(x = 0, t), E0

−(η = 0, t) = −E0(x = 1, t), t > 0,(33)

E0
+(ξ → ∞, t) = E0

−(η → ∞, t) = 0, t > 0,(34)

and

z0
+ = z0

− = z2
+ = z2

+ = 0, 0 < ξ, η < ∞, t > 0,(35)

z1
+,ξ + D(0)E0

+ = 0, 0 < ξ, η < ∞, t > 0,(36)

−z1
−,η + D(1)E0

− = 0, 0 < ξ, η < ∞, t > 0,(37)

z0
+(ξ → ∞, t) = z0

−(η → ∞, t) = 0, t > 0,(38)

where

J0
+ = −Z0(0, t)E0

+, J0
− = −Z0(1, t)E0

−.(39)

Finally, the initial layer functions ziI , i = 0, 1, 2, E0
I , are given by the following equa-

tions (initial value problems):

E0
I,s = J0

I , s > 0, 0 < x < 1,(40)

E0
I (x, 0) = E0

0(x) − E0(x, 0), 0 < x < 1,(41)

and

z0
I = z1

I = 0, 0 < x < 1, s > 0,(42)

z2
I,s = (DE0

I )x, 0 < x < 1, s > 0,(43)

z2
I (x, 0) = 0, 0 < x < 1,(44)

where

J0
I = −Z0(x, 0)E0

I .(45)

It follows from the special structures of the boundary layer problem (32)–(38) and
the initial layer problem (40)–(44) that the existence of solutions of these equations
is immediate. We will solve these equations explicitly in section 3.

Define the error term (zλR, E
λ
R)T of the approximation solution (20) to (14)–(17)

with the initial datum

(zλ0 , E
λ
0 )T

=

(
z0
0(x) + λ

(
f(x)z1

+

(x
λ
, 0
)

+ g(x)z1
−

(
1 − x

λ
, 0

))
+ λzλ0R(x),

E0
0(x) + f(x)E0

+ =
(x
λ
, 0
)

+ g(x)E0
−

(
1 − x

λ
, 0

)
+ λEλ

0R(x)

)T

(46)
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by

(zλR(x, t), Eλ
R(x, t))T = (zλ, Eλ)T − (zλ, Eλ)Tapp.(47)

Theorem 3. Let l ≥ 1 and all assumptions of Proposition 2 hold. Assume also
that the initial datum (zλ0 , E

λ
0 ) satisfies (46) with E0

0 ∈ C2(l+1)([0, 1]),

E0
0(x)|x=0,1 = −Dx(x)

z0
0(x)

|x=0,1(= E0(x = 0, 1, t = 0)),(48)

and

‖zλ0R(x)‖H1 ≤ M
√
λ, ‖∂2

xz
λ
0R(x)‖L2

x
≤ Mλ− 1

2 ,(49)

‖∂j
xE

λ
0R(x)‖L2

x
≤ Mλ

1
2−j , j = 0, 1, 2.(50)

Then, for any T ∈ (0, T0), where T0 is given by Proposition 2, there exist positive
constants M and λ0, λ0 
 1 such that, for any λ ∈ (0, λ0],

sup
0≤t≤T

(
‖(zλR, Eλ

R, z
λ
R,x, z

λ
R,t)‖L2

x
+ λ‖(Eλ

R, E
λ
R,x, E

λ
R,t)‖L2

x

)
≤ M

√
λ1−δ(51)

for any δ with 0 < δ < 1.
In particular, if (zλ0 , E

λ
0 ) satisfies (46) with (zλ0R, E

λ
0R) = (0, 0), then

sup
0≤t≤T

‖(zλ −Z0)(·, t)‖L∞
x

≤ M
√
λ1−δ.

Remark 4. The compatibility assumption (48) in Theorem 3 is important in
our analysis. It guarantees that one can take the “well-prepared” initial datum (46)
instead of the general initial datum (19), and hence the ansatz (20) is appropriate
in this case while, generally speaking, its breakdown will introduce an extra layer
WIB(x, ξ, η, s) of mixing of fast time and fast space scales. The main strategy involved
here can be applied to this case too. This will be done in the future.

It should also be noted that assumptions (49) and (50) are just technical ones. In
general, (zλ0R, E

λ
0R)T in (19) can be written as

(zλ0R, E
λ
0R)T = (z1

0(x), E1
0(x))T + (z̃λ0R, Ẽ

λ
0R)T ,(52)

where

(z̃λ0R, Ẽ
λ
0R)T = λO(1).(53)

Here O(1) is a smooth bounded function in x, x
λ ,

1−x
λ , so that the general assumptions

on the initial data become

‖(zλ0R − z1
0)(x)‖H1 ≤ M

√
λ, ‖∂2

x(zλ0R − z1
0)(x)‖L2

x
≤ Mλ− 1

2 ,(54)

‖∂j
x(Eλ

0R − E1
0)(x)‖L2

x
≤ Mλ

1
2−j , j = 0, 1, 2.(55)

In this case, it turns out that an additional correction term λ(z1
0 , E

1
0), and hence an

extra initial layer term (λ3z3
I , λE

1
I ), caused by z1

0 , will appear in the solution. Thus,
we have more general results as follows.

Theorem 4. Under the assumptions of Theorem 3, with assumptions (49)
and (50) replaced by (54) and (55) with (z1

0 , E
1
0) ∈ C3, we have that, for any
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T ∈ (0, T0), where T0 is given by Proposition 2, there exist positive constants M
and λ0, λ0 
 1 such that, for any λ ∈ (0, λ0],

sup
0≤t≤T

(
‖(z̃λR, Ẽλ

R, z̃
λ
R,x, z̃

λ
R,t)‖L2

x
+ λ‖(Ẽλ

R, Ẽ
λ
R,x, Ẽ

λ
R,t)‖L2

x

)
≤ M

√
λ1−δ(56)

for any δ ∈ (0, 1), where

(z̃λR(x, t), Ẽλ
R(x, t))T = (zλR(x, t), Eλ

R(x, t))T − (λz1
0 + λ3z3

I , λ(E1
0 + E1

I ))T

= (zλ, Eλ)T − (zλ, Eλ)Tapp − (λz1
0 + λ3z3

I , λ(E1
0 + E1

I ))T .

The initial layer functions z3
I and E1

I solve the following problems (initial value prob-
lems):

E1
I,s = −Z0(x, 0)E1

I − z1
0(x)E0

I , s > 0, 0 < x < 1,(57)

E1
I (x, 0) = 0, 0 < x < 1,(58)

and

z3
I,s = (DE1

I )x, 0 < x < 1, s > 0,(59)

z3
I (x, 0) = 0, 0 < x < 1.(60)

Remark 5. It follows from Theorems 3 and 4 above that the approximation of
vanishing space charge holds in the interior part of the parabolic domain, but it cannot
be valid uniformly up to the boundary in the case where the doping profile changes
its sign.

Remark 6. Note that our smoothness assumption on the doping profile D excludes
so-called abrupt p-n junctions, where the doping profile has a jump discontinuity. An
additional layer thus has to be introduced locally at abrupt junctions. This will be
studied further in the future.

Remark 7. It should be noted that in Theorems 3 and 4 the quasi-neutral limits
justified rigorously only in spatial L2-norm. In order to justify this limit in super-
norm, a more accurate ansatz than (20) has to be constructed by using higher order
corrections. This is left for the future.

3. Approximate solutions and matched asymptotic analysis. In this sec-
tion we derive the limit equation and the forms of the boundary layers and of the initial
time layers by the multiple scaling asymptotic expansion of a singular perturbation
with respect to the scaled Debye length.

Let us look for Wλ = (zλ, Eλ)T of the form

Wλ =

N∑
i=0

λiW i

(
x,

x

λ
,
1 − x

λ
, t,

t

λ2

)
+ Wλ

R(x, t),

where λ and λ2 are the lengths of the boundary layer and of the initial time layer,
respectively, and

W i = W i
Inn(x, t) + W i

B(x, ξ, η, t) + W i
I (x, s)

is the sum of an interior term W i
Inn, the boundary layer term W i

B near x = 0 and
x = 1, and the initial time layer term W i

I near t = 0. Here we set ξ = x
λ , η = 1−x

λ ,
s = t

λ2 , and W = (z, E)T .



1864 SHU WANG, ZHOUPING XIN, AND PETER A. MARKOWICH

For simplicity of presentation, we will carry out the constructions of boundary
layers W i

B = W i
+(ξ, t) only near the left boundary, x = 0; the parts at x = 1 can be

done similarly. Thus, we enforce

lim
ξ→∞

WB(ξ, t) = 0.(61)

In this section, without explicitly writing out the scaled variables, the functions
marked by Inn, B, I, BI, and R are ones with respect to (x, t), (ξ, t), (x, s), (x, ξ, t, s),
and (x, t). In the following we denote (zInn, EInn) by (Z, E).

Our primary interests lie in the rigorous justification of the quasi-neutral assump-
tions. Thus, we will ignore the higher corrections to the drift-diffusion equations.
Hence, we impose the following decomposition for the solution (zλ, Eλ) of (14)–(17):

(zλ, Eλ)T =
(
Z0 + z0

B + z0
I + λ(z1

B + z1
I ) + λ2(z2

B + z2
I ) + zλR(x, t),

E0 + E0
B + E0

I + Eλ
R(x, t)

)T
.(62)

Thus, we obtain an approximation of the solution (zλ, Eλ) of (14)–(17). The expan-
sion (62) will satisfy the differential equations (14)–(15), the boundary condition (16),
and the initial condition (17) for arbitrary “well-prepared” initial data (zλ0 , E

λ
0 ) sat-

isfying (46).
Inserting (62) into (14) and (15), by direct computations one gets

Z0
t +

2∑
i=0

λiziB,t +
1

λ2
z0
I,s +

1

λ
z1
I,s + z2

I,s + zλR,t

=
[
(zλR,x + DEλ

R)x + (Z0
x + DE0)x

+
1

λ

(
1

λ
z0
B,ξ + (z1

B,ξ + D(0)E0
B) + λz2

B,ξ + (D(λξ) −D(0))E0
B

)
ξ

+

2∑
i=0

λiziI,xx + (DE0
I )x

]
− λ2

[
K0

Inn + K̃B + Kλ
I + K̃λ

IB + F̃λ
R

]
x

(63)

and

λ2(E0
t − E0

xx) +
(
E0

I,s − λ2E0
I,xx

)
+
(
λ2E0

B,t − E0
Bξξ

)
+ λ2(Eλ

R,t − Eλ
R,xx)

= J0
Inn + (J̃0

B + J̃0
BR) + (J0

I + J0
IR) + J̃0

BI +

2∑
i=1

λi
(
J̃ i
B + J i

I + J̃ i
BI

)
+ G̃λ

R,(64)

where K0
Inn, K̃i

B , Kλ
I , K̃λ

IB , and F̃λ
R are defined by

K0
Inn = E0E0

x ,

K̃λ
B = (E0(0, t) + E0

B)E0
B,ξ + E0

BE0
x(0, t)

+(E0(λξ, t) − E0(0, t))E0
B,ξ + E0

B(E0
x(λξ, t) − E0

x(0, t)),

Kλ
I =

(
E0(x, λ2s)E0

I,x + E0
I (E0

Inn,x(x, λ2s) + E0
I,x)

)
,

K̃λ
IB = E0

BE
0
I,x + E0

I

1

λ
E0

B,ξ,

F̃λ
R = (E0 + E0

B + E0
I )Eλ

R,x + Eλ
R

(
E0
x + E0

B,ξ

1

λ
+ E0

I,x

)
+ Eλ

R,x,
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and J0
Inn, J̃

0
B , J̃

0
BR, J

0
I , J

0
IR, J̃

0
BI , J̃

i
B , J

i
I , J̃

i
BI , i = 1, 2, and G̃λ

R are defined by the fol-
lowing:

J0
Inn = −(Dx + Z0E0),

J̃0
B = −(Z0(0, t)E0

B + z0
B(E0(0, t) + E0

B)),

J̃0
BR = −

(
(Z0 −Z0(0, t))E0

B + z0
B(E − E0(0, t))

)
,

J0
I = −

(
Z0(x, 0)E0

I + z0
I (E0(x, 0) + E0

I )
)
,

J0
IR = −

(
(Z0 −Z0(x, 0))E0

I + z0
I (E0 − E0(x, 0))

)
,

J̃0
BI = −(z0

BE
0
I + z0

IE
0
B),

J̃ i
B = −ziB(E0 + E0

B), i = 1, 2,

J i
I = −ziI(E0 + E0

I ), i = 1, 2,

J̃ i
BI = −ziBE

0
I + ziIE

0
B , i = 1, 2,

and

Gλ
R = −

(
(E0 + E0

B + E0
I )zλR +

(
Z0 + z0

B + z0
I +

2∑
i=1

λi(ziB + ziI)

)
Eλ

R

)
− zλRE

λ
R.

Similarly, inserting (62) into the boundary condition (16) yields an expansion
at the boundary x = 0. Since the boundary expansion is expected to correct the
boundary conditions of inner solutions to quasi-neutral drift-diffusion equations well,
according to the expansion at the boundary x = 0 we may impose the following
boundary conditions:

z0
B,ξ(ξ = 0; t) = 0,(65)

z1
B,ξ(ξ = 0; t) = −Z0

x(x = 0; t),(66)

z2
B,ξ(ξ = 0; t) = 0,(67)

E0
B(ξ = 0; t) = −E0(x = 0; t).(68)

Now we start to derive the equations of the inner solution (Z0, E0) of the various
orders of boundary layer and initial time layer functions in the above expansion (62)
by comparing coefficients of O(λk) of (63) and (64). At the leading order λ−2 of (63),
one gets

z0
I,s(x, s) = 0.(69)

For z0
I we take the initial data

z0
I (x, 0) = 0.(70)

The only solution of (69) and (70) is given as

z0
I (x, s) = 0, x ∈ [0, 1], s ≥ 0.(71)

Similarly

z0
B,ξξ = 0.(72)
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We also expect the decay condition at the infinity for z0
B such that

z0
B(ξ, t) → 0 as ξ → ∞.(73)

The only solution of (65), (72), and (73) is given as

z0
B(ξ, t) = 0, ξ ≥ 0, t ≥ 0,(74)

which partially explains that the Neumann boundary condition of the density does
not produce the boundary layer at the leading order.

At the order λ−1 of (63), one gets

z1
I,s(x, s) = 0, hence z1

I = 0, x ∈ [0, 1], s ≥ 0,(75)

since z1
I (x, 0) = 0.

One also has from the order λ−1 of (63) that

z1
B,ξξ + D(0)E0

B,ξ = 0.(76)

As before, we impose the decay condition at the infinity such that

z1
B(ξ, t) → 0, E0

B(ξ, t) → 0 as ξ → ∞.(77)

It follows from (76) and (77) that

z1
B,ξ + D(0)E0

B = 0.(78)

Next, we determine the limit equations, which form a system satisfied by the first-
order term (Z0, E0) in the above expansion. At the order of λ0 of (63) and (64), one
gets

Z0
t = (Z0

x + DE0)x, 0 < x < 1, t > 0,(79)

0 = −(Dx + Z0E0), 0 < x < 1, t > 0.(80)

This is nothing but the well-known quasi-neutral drift-diffusion model, which can be
formally obtained by setting λ equal to zero in (14)–(15), too. In the context of
semiconductor device physics, problems (79)–(80) are referred to as “space charge
approximation.”

Notice that (80) is an algebraic equation. If Z0(x, t) ≥ C0 > 0, then

E0(x, t) = − Dx(x)

Z0(x, t)
.

Generally speaking, E0(x, t)|x=0,1 �= 0, but Eλ(x, t)|x=0,1 = 0. Therefore, E0(x, t)
has to be supplemented by a boundary layer term there. Similarly, owing to the
arbitrariness of the initial data Eλ

0 (x), there is an initial layer. Furthermore, it should
be clear that the boundary and initial layers are caused by the electric field.

Now we supplement the limit equations (79)–(80) by the appropriate boundary
conditions. According to conditions (66) and (68) and equation (78), one gets

Z0
x(x = 0, t) = −z1

B,ξ(ξ = 0, t) = D(0)E0
B(ξ = 0) = −D(0)E0(x = 0, t), t ≥ 0,

i.e.,

Z0
x + D(0)E0 = 0, x = 0, t ≥ 0.(81)

For the initial data of Z0(x, t), we can take this as

Z0(x, 0) = z0
0(x) ≥ δ > 0, 0 ≤ x ≤ 1.(82)

Here z0
0(x) is given by (19).
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Finally, one also gets from the order λ0 of (63) and (64) that

E0
I,s(x, s) = J0

I (x, s), 0 ≤ x ≤ 1, s ≥ 0,(83)

z2
I,s(x, s) = (D(x)E0

I )x, 0 ≤ x ≤ 1, s ≥ 0,(84)

and

−E0
B,ξξ(ξ, t) = J̃0

B(ξ, t), ξ > 0, t > 0,(85)

z2
B,ξξ = 0, ξ > 0, t > 0.(86)

The initial data of E0
I can be taken as

E0
I (x, 0) = E0

0(x) − E0(x, 0), 0 ≤ x ≤ 1.(87)

The only solution to (83) and (87) can be given explicitly by

E0
I (x, s) = (E0

0(x) − E0(x, 0)) exp(−z0
0(x)s).(88)

The initial data of z2
I are

z2
I (x, 0) = 0, 0 ≤ x ≤ 1.(89)

The unique solution of (84) and (89) can be given, using (88), by

z2
I (x, s) =

∫ s

0

(D(x)E0
I )xds

= b(x) + (b0(x) + b1(x)s) exp{−z0
0(x)s}, 0 ≤ x ≤ 1, s ≥ 0,(90)

where b(x), b0(x), and b1(x) depend only upon D(x) and (z0
0 , E

0
0) and satisfy b0(x) =

−b(x) �= 0.
For E0

B , we impose the decay condition at infinity as

E0
B(ξ, t) = 0 as ξ → ∞,(91)

and we also take the boundary condition at ξ = 0 as

E0
B(ξ = 0, t) = −E0(x = 0, t), t > 0.(92)

The unique solution of (85), (91), and (92) can be given by

E0
B(ξ, t) = −E0(0, t) exp(−

√
Z0(0, t)ξ).(93)

For z2
B , the decay condition at infinity is

z2
B(ξ, t) = 0 as ξ → ∞.(94)

Then the only solution of (86), (67), and (94) is given by

z2
B(ξ, t) = 0, ξ > 0, t > 0.(95)

Similarly, we can construct the boundary layer functions near x = 1 and hence
deduce the similar boundary conditions of the inner solutions at x = 1.
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We end this section by summarizing some properties of the boundary layers and
the initial time layer and discussing their decay rate, which will be useful for the
energy estimates in the next section.

Using (93), one gets from (78) and (77) that

z1
B(ξ, t) = −D(0)E0(0, t)

∫ ∞

ξ

e−
√

Z0(0,t)ydy

= −D(0)E0(0, t)√
Z0(0, t)

e−
√

Z0(0,t)ξ.(96)

Thus, we obtained exact formulae of all initial layer functions and the left boundary
layer functions. In particular, we can determine the values of z1

B(ξ) and E0
B(ξ),

depending only upon D(0), z0
0(0), and E0(0, 0) = E0

0(0), which are given by

z1
B(ξ) = z1

B(x, 0)

= −D(0)E0
0(0)√

z0
0(0)

e−
√

z0
0(0)ξ, ξ > 0,(97)

E0
B(ξ) = E0

B(x, 0) = −E0
0(0)e−

√
z0
0(0)ξ, ξ > 0.(98)

Similarly, the right boundary layer functions at x = 1, denoted by zi−(η, t), i =
0, 1, 2, E0

−(η, t), satisfy similar equations and have exactly the same properties as the
left boundary layer functions ziB(ξ, t), i = 0, 1, 2, E0

B(ξ, t) at x = 0, denoted by zi+(ξ, t),
i = 0, 1, 2, E0

+(ξ, t). We omit this.

Thus, we have the following properties of the boundary layer and initial layer
functions.

Lemma 5. (i) z0
+ = z0

− = z2
+ = z2

− = z0
I = z1

I = 0.

(ii) Assume that the inner solution (Z0, E0) is C∞. Then,

(a) for any T > 0, there exists a positive constant M independent of λ such that

‖∂k1
t (ξk2∂k3

ξ (z1
+, E

0
+), ηk4∂k5

η (z1
−, E

0
−))‖L∞

(x,t)([0,1]×[0,T ]) ≤ M(99)

and

‖∂k1
t (ξk2∂k3

ξ (z1
+, E

0
+), ηk4∂k5

η (z1
−, E

0
−))‖L∞

t ([0,T ];L2
x([0,1])) ≤ Mλ

1
2(100)

for any nonnegative integer kj, j = 0, . . . , 5;

(b) for any T > 0, there exists a positive constant M independent of λ such that

‖∂k6
x (z2

I , s
k7(∂k8

s z2
I , ∂

k9
s E0

I ))‖L∞
(x,t)([0,1]×[0,T ]) ≤ M(101)

and

‖∂k10
x sk11(∂k12

s z2
I , ∂

k13
s E0

I )‖L2
t ([0,T ];L∞

x ([0,1])) ≤ Mλ(102)

for any nonnegative integer kj, j = 6, 7, 9, 10, 11, 13, and any positive integers k8, k12.

4. Energy estimates. In this section we investigate the asymptotic behavior
of the solution to the problem (14)–(17) as λ → 0 and prove our main theorems,
Theorems 3 and 4. From now on, we may assume 0 < λ ≤ 1.
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4.1. The proof of Theorem 3. In this subsection we prove Theorem 3 by a
careful energy method based on the approximate solutions constructed in the previous
section.

Let Z0, E0, E0
+, E

0
−, E

0
I , z

1
+, z

1
−, z

2
I be the functions constructed in the previous

sections.
Let us assume

(zλ(x, 0), Eλ(x, 0))T

=

(
z0
0(x) + λ

(
f(x)z1

+

(x
λ
, 0
)

+ g(x)z1
−

(
1 − x

λ
, 0

))
+ λzλ0R(x),

E0
0(x) + f(x)E0

+

(x
λ
, 0
)

+ g(x)E0
−

(
1 − x

λ
, 0

)
+ λEλ

0R(x)

)T

,

where f(x) and g(x) are two smooth C2 cut-off functions satisfying f(0) = g(1) = 1
and f(1) = f ′(1) = f ′′(1) = f ′(0) = f ′′(0) = g(0) = g′(0) = g′′(0) = g′(1) = g′′(1) =
0, and (zλ0R, E

λ
0R) satisfies assumptions (49) and (50). In this case, one gets

(zλR, E
λ
R)T (x, 0) = λ(zλ0R(x), Eλ

0R(x))T .

Replacing (zλ, Eλ)T by

(zλ, Eλ)T =
(
Z0 + λ(f(x)z1

+ + g(x)z1
−) + λ2z2

I + zλR(x, t),

E0 + f(x)E0
+ + g(x)E0

− + E0
I + Eλ

R(x, t)
)T

(103)

in the system (14)–(15) and using the equations of the inner solutions, the boundary
layers, and the initial layers, one gets

zλR,t = Hλ
x + fλ, 0 < x < 1, t > 0,(104)

λ2(Eλ
R,t − Eλ

R,xx) + Z0Eλ
R = gλ, 0 < x < 1, t > 0,(105)

where

Hλ = zλR,x + DEλ
R + HInn + Hλ

B + Hλ
I + Hλ

IB + Hλ
R,

fλ = −λ1(f(x)z1
+,t + g(x)z1

−,t), gλ = GInn + Gλ
B + Gλ

I + Gλ
IB + Gλ

R,

and HInn (GInn), Hλ
B (Gλ

B), Hλ
I (Gλ

I ), Hλ
IB (Gλ

IB), Hλ
R (Gλ

R) represent the inner part,
the boundary layer part, the initial layer part, the mixed boundary and initial layer
part, and the error parts involving nonlinearities, respectively, and are defined by the
following:

HInn(x, t) = −λ2E0E0
x ,

Hλ
B(x, t, ξ, η) =

(
(D(x) −D(0))f(x)E0

+ + (D(x) −D(1))g(x)E0
−
)

+λ
(
f ′(x)z1

+ + g′(x)z1
− − E0(f(x)E0

+,ξ − g(x)E0
−,η)

+ (f(x)E0
+ + g(x)E0

−)(f(x)E0
+,ξ − g(x)E0

−,η)
)

+λ2
(
−E0(f ′(x)E0

+ + g′(x)E0
−)

− (f(x)E0
+ + g(x)E0

−)(E0
x + f ′(x)E0

+ + g′(x)E0
−)

)
=

(
(D(x) −D(0))f(x)Ei

+ + (D(x) −D(1))g(x)Ei
−

)
+ λ{· · ·}RHB .
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Note that {· · ·}RHB is the sum of the boundary layer functions z1
+, z1

−, E0
+, E0

−,
E0

+,ξ, E0
−,η, E0

+E
0
+, E0

−E
0
−, E0

+E
0
−, E0

+E
0
+,ξ, E0

−E
0
−,η, E0

+E
0
−,η, and E0

−E
0
+,ξ with

the coefficients consisting of D(x), f(x), g(x), E0, f ′(x), g′(x), and E0
x , and that

{· · ·}RHB does not depend upon the fast dielectric relaxation time scale. Hence, by
(99) and (100), we easily obtain that there exists a constant M , independent of λ,
such that

‖{· · ·}RHB(t)‖2
L2

x
+

∫ t

0

‖∂t{· · ·}RHB(t)‖2
L2

x
dt ≤ Mλ,(106)

Hλ
I (x, s) = λ2z2

I,x − λ2
(
E0E0

I + E0
I (E0

x + E0
I,x)

)
,

Hλ
IB(x, ξ, η, t, s) = −λ

(
E0

I (f(x)E0
+,ξ − g(x)E0

−,η)
)

−λ2
(
E0

I (f ′(x)E0
+ + g′(x)E0

−) + (f(x)E0
+ + g(x)E0

−)E0
I,x

)
,

Hλ
R = −λEλ

R(f(x)E0
+,ξ − g(x)E0

−,η)

−λ2
(
(E0 + f(x)E0

+ + g(x)E0
−)Eλ

R,x + (E0
x + f ′(x)E0

+ + g′(x)E0
−)Eλ

R

)
−λ2

(
E0

IE
λ
R,x + E0

I,xE
λ
R

)
− λ2Eλ

RE
λ
R,x,

GInn(x, t) = −λ2
(
E0
t − E0

xx

)
,

Gλ
B(x, ξ, η, t) =

(
−f(x)(Z0(x, t) −Z0(0, t))E0

+ − g(x)(Z0(x, t) −Z0(1, t))E0
−

)
+λ{· · ·}RGB .

Here {· · ·}RGB is the sum of the boundary layer functions z1
+,t, z

1
−,t, E

0
+, E0

−, E0
+,ξ,

E0
−,η, z

1
+E

0
+, z1

−E
0
−, z1

+E
0
−, and z1

−E
0
+ with the coefficients consisting of f(x), g(x),

E0, f ′(x), g′(x), f ′′(x), g′′(x), and Z0. Like {· · ·}RHB , {· · ·}RGB does not depend upon
the fast dielectric relaxation time scale, and hence it easily follows from (99) and (100)
that there exists a constant M , independent of λ, such that

‖{· · ·}RGB(t)‖2
L2

x
+

∫ t

0

‖∂t{· · ·}RGB(t)‖2
L2

x
dt ≤ Mλ,(107)

Gλ
I = (Z0 −Z0(x, 0))E0

I + λ2E0
I,xx + λ2z2

I (E0 + E0
I ),

Gλ
IB = −λ(f(x)z1

+ + g(x)z1
−)E0

I − λ2z2
I (f(x)E0

+ + g(x)E0
−),

Gλ
R = −(E0 + f(x)E0

+ + g(x)E0
− + E0

I )zλR

−λ(f(x)z1
+ + g(x)z1

−)Eλ
R − λ2z2

IE
λ
R − zλRE

λ
R.

We now derive the boundary conditions for the error functions.
First, the assumption

E0
0(x = 0, 1) = −Dx(x = 0, 1)

z0
0(x = 0, 1)

= E0(x = 0, 1; t = 0),
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together with the initial layer function (88), gives

E0
I (x = 0, 1; t) = 0, t > 0.(108)

Then it follows from (17), (68), and (108) that

Eλ
R(x = 0, 1; t) = 0, t > 0.(109)

Next we claim that

Hλ(x = 0, 1; t) = 0, t > 0.(110)

In fact, we can rewrite Hλ(x, t) as

Hλ = zλR,x + DEλ
R + HInn + Hλ

B + Hλ
I + Hλ

IB + Hλ
R

= zλR,x + λ(f ′(x)z1
+ + g′(x)z1

−) + λ2z2
I,x + f(x)(D(x) −D(0))E0

+

+g(x)(D(x) −D(1))E0
− + DEλ

R − λ2EλEλ
x .(111)

Then, by the definitions of cut-off functions f(x) and g(x), the boundary condition
Eλ(x = 0, 1; t) = 0, and (109), one gets from (111) that

Hλ(x = 0, 1; t) = (zλR,x + λ2z2
I )|x=0,1.(112)

Also, replacing zλ by (103) in the boundary condition zλx(x = 0, 1; t) = 0 and using

z1
+,ξ(ξ = 0; t) = −Z0

x(x = 0; t), z1
−,η(η = 0; t) = Z0

x(x = 1; t), t > 0,

one gets

(zλR,x + λ2z2
I )|x=0,1 = 0,

which, together with (112), gives (110).
Now we start the energy estimates. In the following, we use ci, δi, ε, and M(ε) or

M to denote the constants which are independent of λ and may differ from one line
to another.

First we derive the basic energy estimates on (zλR, E
λ
R).

Lemma 6. Under the assumptions of Theorem 3, we have

‖zλR(t)‖2
L2

x
+ λ2‖Eλ

R(t)‖2
L2

x
+

∫ t

0

‖(zλR,x, E
λ
R)‖2

L2
x
dt + λ2

∫ t

0

‖Eλ
R,x‖2

L2
x
dt

≤ ‖zλR(x, 0)‖2
L2

x
+ λ2‖Eλ

R(x, 0)‖2
L2

x

+M

∫ t

0

‖zλR‖2
L2

x
dt + Mλ4

∫ t

0

‖(Eλ
R, E

λ
R,x)‖2

L2
x
‖Eλ

R,x‖2
L2

x
dt

+M

∫ t

0

‖(zλR, zλR,x)‖2
L2

x
‖Eλ

R‖2
L2

x
dt + Mλ.(113)

Proof of Lemma 6. Multiplying (104) by zλR and integrating the resulting equation
over [0, 1] with respect to x, by (110) and integrations by parts one gets

1

2

d

dt
‖zλR‖2

L2
x

= −
∫ 1

0

HλzλR,xdx +

∫ 1

0

fλzλRdx

= −
∫ 1

0

(zλR,x + DEλ
R)zλR,xdx +

∫ 1

0

fλzλRdx

−
∫ 1

0

(HInn + Hλ
B + Hλ

I + Hλ
IB + Hλ

R)zλR,xdx.(114)
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Now we estimate each term in the right-hand side of (114).
First, by the Cauchy–Schwarz inequality and the properties of the boundary lay-

ers, one gets

−
∫ 1

0

(zλR,x + DEλ
R)zλR,xdx ≤ −1

2
‖zλR,x‖2

L2
x

+ M(ε)‖Eλ
R‖2

L2
x

(115)

and ∫ 1

0

fλzλRdx ≤ M‖zλR‖2
L2

x
+ M‖fλ‖2

L2
x
dx ≤ M‖zλR‖2

L2
x

+ Mλ3.(116)

Here we used ‖(z1
+,t, z

1
−,t)‖2

L2
x
≤ Mλ due to (100).

Then, using the regularity of inner solutions, the properties (99) and (100) of
boundary layer functions, the properties (101) and (102) of initial layer functions,
and the definitions of HInn, Hλ

B , Hλ
I , and Hλ

IB , one easily gets

‖HInn‖2
L2

x
+ ‖Hλ

B‖2
L2

x
+ ‖Hλ

I ‖2
L2

x
+ ‖Hλ

IB‖2
L2

x
≤ Mλ.

This, combined with the Cauchy–Schwarz inequality, yields

−
∫ 1

0

(HInn + Hλ
B + Hλ

I + Hλ
IB)zλR,xdx

≤ ε‖zλR,x‖2
L2

x
+ M(ε)(‖HInn‖2

L2
x

+ ‖Hλ
B‖2

L2
x

+ ‖Hλ
I ‖2

L2
x

+ ‖Hλ
IB‖2

L2
x
)

≤ ε‖zλR,x‖2
L2

x
+ Mλ.(117)

Finally, for the nonlinear term, using E0, E0
x ∈ C0([0, 1] × [0, T ]), (99), and (101), one

gets, with the aid of the Cauchy–Schwarz inequality and Sobolev’s lemma, that∫ 1

0

Hλ
Rz

λ
R,xdx

≤ ε‖zλR,x‖2
L2

x
+ M(ε)‖Hλ

R‖2
L2

x

≤ ε‖zλR,x‖2
L2

x
+ Mλ2‖Eλ

R‖2
L2

x
+ Mλ4‖Eλ

R,x‖2
L2

x
+ Mλ4

∫ 1

0

|Eλ
RE

λ
R,x|2dx

≤ ε‖zλR,x‖2
L2

x
+ Mλ2‖Eλ

R‖2
L2

x
+ Mλ4‖Eλ

R,x‖2
L2

x

+Mλ4‖(Eλ
R, E

λ
R,x)‖2

L2
x
‖Eλ

R,x‖2
L2

x
.(118)

Thus, combining (114) with (115)–(118) and taking ε small enough, one gets

d

dt
‖zλR‖2

L2
x

+ c1‖zλR,x‖2
L2

x
≤ M‖(zλR, Eλ

R)‖2
L2

x
+ Mλ4‖Eλ

R,x‖2
L2

x

+Mλ4(‖(Eλ
R, E

λ
R,x)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ Mλ.(119)

Integrating (119) with respect to t over [0, t], one gets

‖zλR(t)‖2
L2

x
+ c1

∫ t

0

‖zλR,x‖2
L2

x
dt

≤ ‖zλR(x, 0)‖2
L2

x
+ M

∫ t

0

‖(zλR, Eλ
R)‖2

L2
x
dt + Mλ4

∫ t

0

‖Eλ
R,x‖2

L2
x
dt

+Mλ4

∫ t

0

‖(Eλ
R, E

λ
R,x)‖2

L2
x
‖Eλ

R,x‖2
L2

x
dt + Mλ.(120)
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Multiplying (105) by Eλ
R and integrating the resulting equation over [0, 1] with respect

to x, by (109) and integrations by parts one gets

λ2

2

d

dt
‖Eλ

R‖2
L2

x
+ λ2‖Eλ

R,x‖2
L2

x
+

∫ 1

0

Z0|Eλ
R|2dx =

∫ 1

0

gλEλ
Rdx.(121)

By the Cauchy–Schwarz inequality, we have∫ 1

0

gλEλ
Rdx ≤ ε‖Eλ

R‖2
L2

x
+ M(ε)‖gλ‖2

L2
x
.

On one hand, noting that∫ 1

0

∣∣∣∣(Z0(x, t) −Z0(x, 0))E0
I

(
x,

t

λ2

)∣∣∣∣
2

dx

=

∫ 1

0

∣∣∣∣
∫ 1

0

∂tZ0(x, tθ)dθt · E0
I

(
x,

t

λ2

)∣∣∣∣
2

dx

≤ M sup
s≥0

(
max

0≤x≤1
|sE0

I (x, s)|2
)
λ4

≤ Mλ4,

and using Z0, E0 ∈ C2,1([0, 1]×[0, T ]), (99), (100), (101), and (102), and the definitions
of GInn, Gλ

B , Gλ
I , and Gλ

IB , we have∫ 1

0

(|GInn|2 + |Gλ
B |2 + |Gλ

I |2 + |Gλ
IB |2)dx ≤ Mλ.

On the other hand, as in (118), with the aid of Sobolev’s lemma we have that

‖Gλ
R‖2

L2
x
≤ M‖zλR‖2

L2
x

+ Mλ2‖Eλ
R‖2

L2
x

+ M‖(zλR, zλR,x)‖2
L2

x
‖Eλ

R‖2
L2

x
.

Thus

∫ 1

0

gλEλ
Rdx ≤ ε‖Eλ

R‖2
L2

x
+ M‖zλR‖2

L2
x

+ Mλ2‖Eλ
R‖2

L2
x

+ M‖(zλR, zλR,x)‖2
L2

x
‖Eλ

R‖2
L2

x
+ Mλ.

(122)

Then, combining (121) with (122), using the positivity of Z0, taking ε small enough,
and then restricting λ to be small enough, one gets

λ2 d

dt
‖Eλ

R‖2
L2

x
+ λ2‖Eλ

R,x‖2
L2

x
+ c2‖Eλ

R‖2
L2

x

≤ M‖zλR‖2
L2

x
+ M‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R‖2
L2

x
+ Mλ.(123)

Integrating (123) with respect to t, one gets

λ2‖Eλ
R(t)‖2

L2
x

+ λ2

∫ t

0

‖Eλ
R,x‖2

L2
x
dt + c2

∫ t

0

‖Eλ
R‖2

L2
x
dt

≤ λ2‖Eλ
R(x, 0)‖2

L2
x

+ M

∫ t

0

‖zλR‖2
L2

x
dt

+ M

∫ t

0

‖(zλR, zλR,x)‖2
L2

x
‖Eλ

R‖2
L2

x
dt + Mλ.(124)
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The desired estimate (113) follows from (120) and (124). This completes the proof of
Lemma 6.

Next we show the estimates of the time derivatives ∂t(z
λ
R, E

λ
R) of (zλR, E

λ
R).

Lemma 7. Under the assumptions of Theorem 3, we have

(125)

‖zλR,t(t)‖2
L2

x
+ λ2‖Eλ

R,t(t)‖2
L2

x
+

∫ t

0

‖(zλR,xt, E
λ
R,t)‖2

L2
x
dt + λ2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt

≤ M(‖zλR,t(x, 0)‖2
L2

x
+ λ2‖Eλ

R,t(x, 0)‖2
L2

x
)

+ M

∫ t

0

‖(Eλ
R, z

λ
R, z

λ
R,t)‖2

L2
x
dt + Mλ2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + Mλ4

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

+Mλ4

∫ t

0

(
‖(Eλ

R,t, E
λ
R,xt)‖2

L2
x
‖ER,x‖2

L2
x

+ ‖Eλ
R‖2

L2
x
‖Eλ

R,xt‖2
L2

x

)
dt

+M

∫ t

0

(
‖(zλR,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt + Mλ.

Proof of Lemma 7. Differentiating (104) with respect to t, multiplying the result-
ing equations by zλR,t, then integrating it over [0, 1] × [0, t] and noting that Hλ

t also
satisfies the same boundary condition as in (110), one gets by integration by parts
that

‖zλR,t(t)‖2
L2

x
= ‖zλR,t(x, 0)‖2

L2
x

+

∫ t

0

∫ 1

0

fλ
t z

λ
R,tdxdt−

∫ t

0

∫ 1

0

(zλR,xt + DEλ
R,t)z

λ
R,xtdxdt

−
∫ t

0

∫ 1

0

HInn,tz
λ
R,xtdxdt−

∫ t

0

∫ 1

0

Hλ
B,tz

λ
R,xtdxdt−

∫ t

0

∫ 1

0

Hλ
I,tz

λ
R,xtdxdt

−
∫ t

0

∫ 1

0

Hλ
IB,tz

λ
R,xtdxdt−

∫ t

0

∫ 1

0

Hλ
R,tz

λ
R,xtdxdt.(126)

One needs to estimate the terms on the right in the above carefully.
First, it follows from the Cauchy–Schwarz inequality that∫ t

0

∫ 1

0

(zλR,xt + DEλ
R,t)z

λ
R,xtdxdt ≤ −1

2

∫ t

0

‖zλR,xt‖2
L2

x
dt + M

∫ t

0

‖Eλ
R,t‖2

L2
x
dt(127)

and ∫ t

0

∫ 1

0

fλ
t z

λ
R,tdxdt ≤ ε

∫ t

0

‖zλR,t‖2
L2

x
dt + M(ε)λ3,(128)

since fλ does not depend upon the fast time scale. Here we also used Z0
tt, E0

tt ∈
C0([0, 1] × [0, T ]).

Similarly, since HInn and Hλ
B do not depend upon the fast time scale, HInn,t and

Hλ
B,t have the same structures as HInn and HB,t, respectively. Hence, using (106)

one obtains in a similar way as for (117) that∫ t

0

∫ 1

0

HInn,tz
λ
R,xtdxdt ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ4(129)

and ∫ t

0

∫ 1

0

Hλ
B,tz

λ
R,xtdxdt ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ.(130)
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Here we used the regularity of the inner solutions E0, E0
x , E0

t , E0
xt, Z0, Z0

x, Z0
t , Z0

xt ∈
C0([0, 1] × [0, T ]).

Owing to the strong singularity of time derivatives of the initial layers, we must
estimate the integrals involving initial layers carefully.

First, by the Cauchy–Schwarz inequality, we have

∫ t

0

∫ 1

0

Hλ
I,tz

λ
R,xtdxdt ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)

∫ t

0

∫ 1

0

|Hλ
I,t|2dxdt.

But, by (101) and (102), one gets

∫ t

0

∫ 1

0

|Hλ
I,t|2dxdt

=

∫ t

0

∫ 1

0

|z2
I,xs − λ2

(
E0
t (x, t)E0

I,x + E0
IE0

xt(x, t)
)

−
(
E0(x, t)E0

I,xs + E0
I,s(E0

x(x, t) + E0
I,x) + E0

IE
0
I,xs

)
|2dxdt

≤ M

∫ t

0

∫ 1

0

(
|z2

I,xs|2 + |E0
I,x|2 + |E0

I |2 + |E0
I,xs|2 + |E0

I,s|2
)
dxdt

≤ Mλ2.

Hence ∫ t

0

∫ 1

0

Hλ
I,tz

λ
R,xtdxdt ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
+ Mλ2.(131)

Then, using the definition of Hλ
IB , we have

∫ t

0

∫ 1

0

Hλ
IB,tz

λ
R,txdxdt

=

∫ t

0

∫ 1

0

−λ
(
E0

I (f(x)E0
+,ξ − g(x)E0

−,η)
)
t
zλR,txdxdt

+

∫ t

0

∫ 1

0

λ2∂t

(
· · ·

)R

HIB
zλR,xtdxdt,(132)

where (· · ·)RHIB represents the remaining higher order term O(λ2) of Hλ
IB . By (101)

and (102), one easily gets

∫ t

0

∫ 1

0

|λ2∂t

(
· · ·

)R

HIB
|2dxdt ≤ Mλ3,

which leads to∫ t

0

∫ 1

0

λ2∂t

(
· · ·

)R

HIB
zλR,txdxdt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)

∫ t

0

∫ 1

0

|λ2∂t

(
· · ·

)R

HIB
|2dxdt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ3.(133)
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It remains to control the first term on the right-hand side of (132). Note that this
singular integration is caused by the interactions between the boundary layer and the
initial layer. So, to control it, we must use twofold integrals in the time and space
directions to cancel the oscillation of the electric field. Indeed, it can be treated as
follows:

−
∫ t

0

∫ 1

0

λ
(
E0

I (f(x)E0
+,ξ − g(x)E0

−,η)
)
t
zλR,txdxdt

= − 1

λ

∫ t

0

∫ 1

0

(
E0

I,s(f(x)E0
+,ξ − g(x)E0

−,η)
)
zλR,txdxdt

−
∫ t

0

∫ 1

0

λ
(
E0

I (f(x)E0
+,ξt − g(x)E0

−,ηt)
)
zλR,txdxdt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt +

1

λ2

∫ t

0

∫ 1

0

|E0
I,s(f(x)E0

+,ξ − g(x)E0
−,η)|2dxdt + Mλ5

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ,(134)

where we have used

1

λ2

∫ t

0

∫ 1

0

|E0
I,s(f(x)E0

+,ξ + g(x)E0
−,η)|2dxdt

≤ M

λ2

∫ t

0

∫ 1

0

|E0
I,s|2(|E0

+,ξ|2 + |E0
−,η|2)dxdt

≤ M

λ2

∫ t

0

max
0≤x≤1

|E0
I,s|2dt

(∫ 1

0

max
0≤t≤T

|E0
+,ξ|2dx +

∫ 1

0

max
0≤t≤T

|E0
+,ξ|2dx

)
≤ Mλ.

Combining (132) with (133) and (134), one gets∫ t

0

∫ 1

0

Hλ
IB,tz

λ
R,xtdxdt ≤

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ.(135)

Finally, we estimate the last integral on the right-hand side of (126). We split it into
five parts: ∫ t

0

∫ 1

0

Hλ
R,tz

λ
R,xtdxdt = I1 + I2 + I3 + I4 + I5,(136)

where

I1 = −λ

∫ t

0

∫ 1

0

{(
f(x)E0

+,ξ − g(x)E0
−,η

)
Eλ

R,t

+
(
f(x)E0

+,ξt − g(x)E0
−,ηt

)
Eλ

R

}
zλR,xtdxdt,

I2 = −λ2

∫ t

0

∫ 1

0

{(
E0 + f(x)E0

+ + g(x)E0
−
)
Eλ

R,xt

+
(
E0
t + f(x)E0

+,t + g(x)E0
−,t

)
Eλ

R,x +
(
E0
x + f ′(x)E0

+ + g′(x)E0
−
)
Eλ

R,t

+
(
E0
xt + f ′(x)E0

+,t + g′(x)E0
−,t

)
Eλ

R

}
zλR,xtdxdt,
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I3 = −λ2

∫ t

0

∫ 1

0

(E0
IE

λ
R,xt + E0

I,xE
λ
R,t)z

λ
R,xtdxdt,

I4 = −λ2

∫ t

0

∫ 1

0

(Eλ
R,tE

λ
R,x + Eλ

RE
λ
R,xt)z

λ
R,xtdxdt,

I5 = −
∫ t

0

∫ 1

0

(E0
I,sE

λ
R,x + E0

I,xsE
λ
R)zλR,xtdxdt.

Noting that there are an λ factor in the first term I1 of (136) and an λ2 factor in the
second and third terms I2, I3 of (136), by the Cauchy–Schwarz inequality, (99), (101),
and the fact that E0, E0

x , E0
t , E0

xt ∈ C0([0, 1] × [0, T ]), we have

I1 ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)λ2

∫ t

0

‖(Eλ
R, E

λ
R,t)‖2

L2
x
dt,(137)

I2 ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)λ4

∫ t

0

‖(Eλ
R, E

λ
R,x, E

λ
R,t, E

λ
R,xt)‖2

L2
x
dt,(138)

and

I3 ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)λ4

∫ t

0

‖(Eλ
R,t, E

λ
R,xt)‖2

L2
x
dt.(139)

For the nonlinear term I4 of (136), one gets by Sobolev’s lemma that

I4 ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
+ M(ε)λ4

∫ t

0

∫ 1

0

(|Eλ
R,tE

λ
R,x|2 + |Eλ

RE
λ
R,xt|2)dxdt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
+ Mλ4

∫ t

0

(‖Eλ
R,t‖2

L∞
x
‖Eλ

R,x‖2
L2

x
+ ‖Eλ

R‖2
L∞

x
‖Eλ

R,xt‖2
L2

x
)dt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x

+Mλ4

∫ t

0

(
‖(Eλ

R,t, E
λ
R,xt)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ ‖Eλ

R‖2
L2

x
‖Eλ

R,xt‖2
L2

x
)dt.(140)

It remains to estimate I5. This is more difficult due to the lack of the uniform
L2 estimate of Eλ

R,x. This will be achieved by using the uniform boundedness on

‖s(E0
I,s, E

0
I,xs)‖L∞

(x,t)([0,1]×[0,T ]) and employing Hardy–Littlewood’s inequality. In fact,

by the Cauchy–Schwarz inequality, one gets

(141)

I5 ≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)

∫ t

0

∫ 1

0

|E0
I,sE

λ
R,x + E0

I,xsE
λ
R|2dxdt

= ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)

∫ t

0

∫ 1

0

∣∣∣∣∣t
(
E0

I,s

Eλ
R,x − Eλ

R,x(x, 0)

t

+E0
I,xs

Eλ
R − Eλ

R(x, 0)

t

)
+
(
E0

I,sE
λ
R,x(x, 0) + E0

I,xsE
λ
R(x, 0)

)∣∣∣∣∣
2

dxdt
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= ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + M(ε)

∫ t

0

∫ 1

0

∣∣∣∣∣λ2s

(
E0

I,s

Eλ
R,x − Eλ

R,x(x, 0)

t

+E0
I,xs

Eλ
R − Eλ

R(x, 0)

t

)
+ (E0

I,sE
λ
R,x(x, 0) + E0

I,xsE
λ
R(x, 0)

)∣∣∣∣∣
2

dxdt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt

+Mλ4 max
0≤s≤∞

max
0≤x≤1

(s|E0
I,s| + s|E0

I,xs|)2
∫ 1

0

∫ t

0

(
|
Eλ

R,x − Eλ
R,x(x, 0)

t
|2

+ |E
λ
R − Eλ

R(x, 0)

t
|2
)
dtdx + M

∫ t

0

∫ 1

0

(|E0
I,sE

λ
R,x(x, 0)|2 + |E0

I,xsE
λ
R(x, 0)|2)dxdt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ4

∫ 1

0

(∫ t

0

|Eλ
R,xt|2dt +

∫ t

0

|Eλ
R,t|2dt

)
dx + Mλ

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ4

∫ t

0

‖(Eλ
R,xt, E

λ
R,t)‖2

L2
x
dt + Mλ.

Here we have used∫ t

0

∫ 1

0

(|E0
I,sE

λ
R,x(x, 0)|2 + |E0

I,xsE
λ
R(x, 0)|2)dxdt

≤ Mλ2

(
‖Eλ

0R,x‖2
L∞

x

∫ t

0

∫ 1

0

|E0
I,s|2dxdt + ‖Eλ

0R‖2
L∞

x

∫ t

0

∫ 1

0

|E0
I,xs|2dxdt

)

≤ Mλ4((Mλ
1
2−2)2 + (Mλ

1
2−1)2)

≤ Mλ,

due to Sobolev’s lemma; (102) and the assumption (50);

max
0≤s≤∞

max
0≤x≤1

(s|E0
I,s| + s|E0

I,xs|)

= max
0≤t≤T

max
0≤x≤1

(
t

λ2

(
|E0

I,s

(
x,

t

λ2

)
| + |E0

I,xs

(
x,

t

λ2

)
|
))

≤ M max
0≤t≤T

((
t

λ2

)
e−δ t

λ2

)
≤ M ;

and the fact that (Eλ
R − Eλ

R(x, 0))(x, 0) = 0 and hence (Eλ
R,x − Eλ

R,x(x, 0))(x, 0) = 0.

We have also applied Hardy–Littlewood’s inequality to control
∫ t

0
|E

λ
R,x−Eλ

R,x(x,0)

t |2dt
and

∫ t

0
|E

λ
R−Eλ

R(x,0)
t |2dt by

∫ t

0
|Eλ

R,xt|2dt and
∫ t

0
|Eλ

R,t|2dt, respectively.
Combining (136) with (137)–(142), one gets∫ t

0

∫ 1

0

Hλ
R,tz

λ
R,xtdxdt

≤ ε

∫ t

0

‖zλR,xt‖2
L2

x
dt + Mλ2

∫ t

0

‖(Eλ
R, E

λ
R,t)‖2

L2
x
dt + Mλ4

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

+Mλ4

∫ t

0

(
‖(Eλ

R,t, E
λ
R,xt)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ ‖Eλ

R‖2
L2

x
‖Eλ

R,xt‖2
L2

x

)
dt + Mλ2.(142)
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Therefore, putting (126) and estimates (127), (128), (129), (130), (131), (135),
and (142) together and taking ε small enough, one shows that

‖zλR,t(t)‖2
L2

x
+ c3

∫ t

0

‖zλR,xt‖2
L2

x
dt

≤ ‖zλR,t(x, 0)‖2
L2

x
+ M

∫ t

0

‖(zλR,t, E
λ
R,t)‖2

L2
x
dt

+Mλ2

∫ t

0

‖Eλ
R‖2

L2
x
dt + Mλ4

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

+Mλ4

∫ t

0

(
‖(Eλ

R,t, E
λ
R,xt)‖2

L2
x
‖ER,x‖2

L2
x

+ ‖Eλ
R‖2

L2
x
‖Eλ

R,xt‖2
L2

x

)
dt + Mλ.(143)

Note that Eλ
R,t also satisfies the same boundary condition as in (109). Thus, differen-

tiating (104) with respect to t, multiplying the resulting equations by zλR,t, and then
integrating it over [0, 1] × [0, t], one gets by integrations by parts that

λ2

2
‖Eλ

R,t(t)‖2
L2

x
+ λ2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt +

∫ t

0

∫ 1

0

Z0|Eλ
R,t|2dxdt

=
λ2

2
‖Eλ

R,t(x, 0)‖2
L2

x
−
∫ t

0

∫ 1

0

Z0
t E

λ
RE

λ
R,tdxdt +

∫ t

0

∫ 1

0

gλt E
λ
R,tdxdt.(144)

First, by the Cauchy–Schwarz inequality, one gets

−
∫ t

0

∫ 1

0

Z0
t E

λ
RE

λ
R,tdxdt ≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

‖Eλ
R‖2

L2
x
dt(145)

and ∫ t

0

∫ 1

0

gλt E
λ
R,tdxdt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

‖gλ‖2
L2

x
dt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

(∫ t

0

∫ 1

0

|GInn,t|2dxdt +

∫ t

0

∫ 1

0

|Gλ
B,t|2dxdt

+

∫ t

0

∫ 1

0

|Gλ
I,t|2dxdt +

∫ t

0

∫ 1

0

|Gλ
IB,t|2dxdt +

∫ t

0

∫ 1

0

|Gλ
R,t|2dxdt

)
.(146)

Now we treat each term on the right-hand side of (146).
Using the structures of the inner solutions E0

tt, E0
xxt ∈ C0([0, 1] × [0, T ]), one can

get ∫ t

0

∫ 1

0

|GInn,t|2dxdt ≤ Mλ4.(147)

Since Gλ
B,t has the same structure as Gλ

B , one can estimate the third term of (146)
by (107) as ∫ t

0

∫ 1

0

|Gλ
B,t|2dxdt ≤ Mλ.(148)
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Using the definition of Gλ
I , we have∫ t

0

∫ 1

0

|Gλ
I,t|2dxdt

≤
∫ t

0

∫ 1

0

|E0
I,xxs|2dxdt + JIR

≤ Mλ2 + JIR,(149)

where

JIR =

∫ t

0

∫ 1

0

|z2
I,s(E0 + E0

I ) + z2
IE

0
I,s|2dxdt +

∫ t

0

∫ 1

0

(
|λ2z2

IE0
t |2 + |Z0

t E
0
I |2

)
dxdt

+

∫ t

0

∫ 1

0

|λ−2(Z0 −Z0(x, 0))E0
I,s|2dxdt.

Using ‖z2
I‖L∞

x,t
≤ M and ‖(z2

I,s, E
0
I , E

0
I,s)‖L2

t (L
∞
x ) ≤ Mλ, one gets

JIR ≤ Mλ2 +

∫ t

0

∫ 1

0

|λ−2(Z0 −Z0(x, 0))E0
I,s|2dxdt.(150)

To estimate the remaining singular term on the right-hand side of (150), we will use
the higher regularity of Z0

t . It will follow from the mean value theorem and (102)
that ∫ t

0

∫ 1

0

|λ−2(Z0 −Z0(x, 0))E0
I,s|2dxdt

=

∫ t

0

∫ 1

0

|
∫ 1

0

Z0
t (x, tθ)dθ

t

λ2
E0

I,s

(
x,

t

λ2

)
|2dxdt

≤ M

∫ t

0

∫ 1

0

(
t

λ2
)2|E0

I,s

(
x,

t

λ2

)
|2dxdt

≤ Mλ2.(151)

Thus,

JIR ≤ Mλ2.(152)

Therefore, ∫ t

0

∫ 1

0

|Gλ
I,t|2dxdt ≤ Mλ2.(153)

The fifth term of (146) can be treated as in (132) so that∫ t

0

∫ 1

0

|Gλ
IB,t|2dxdt

=

∫ t

0

∫ 1

0

|λ
(
(f(x)z1

+ + g(x)z1
−)E0

I

)
t
+ λ2∂t

(
· · ·

)R

GIB
|2dxdt

≤ M

λ2

∫ t

0

∫ 1

0

(|z1
+E

0
I,s|2 + |z1

−E
0
I,s|2)dxdt + Mλ2

≤ Mλ.(154)



QUASI-NEUTRAL LIMIT 1881

To estimate the sixth term of (146), we split it into four parts:∫ t

0

∫ 1

0

Gλ
R,tE

λ
R,tdxdt = I6 + I7 + I8 + I9,(155)

where

I6 = −
∫ t

0

∫ 1

0

{
(E0

t + f(x)E0
+,t + g(x)E0

−,t)z
λ
R

+(E0 + f(x)E0
+ + g(x)E0

− + E0
I )zλR,t

+(Z0
t + λ(f(x)z1

+,t + g(x)z1
−,t))E

λ
R

}
Eλ

R,tdxdt,

I7 = −
∫ t

0

∫ 1

0

(Z0 + λ(f(x)z1
+ + g(x)z1

−) + λ2z2
I )E

λ
R,tE

λ
R,tdxdt,

I8 = −
∫ t

0

∫ 1

0

(zλR,tE
λ
R + zλRE

λ
R,t)E

λ
R,tdxdt,

and

I9 = − 1

λ2

∫ t

0

∫ 1

0

(E0
I,sz

λ
R + λ2z2

I,sE
λ
R)Eλ

R,tdxdt.

First I6, I7, and I8 are treated as in (137)–(140) so that

I6 + I7 ≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλR, zλR,t, E
λ
R)‖2

L2
x
dt + Mλ2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt

(156)

and

I8 ≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

∫ 1

0

(|zλR,tE
λ
R|2 + |zλREλ

R,t|2)dxdt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

(‖zλR,t‖2
L∞‖Eλ

R‖2
L2

x
+ ‖zλR‖2

L∞
x
‖Eλ

R,t‖2
L2

x
)dt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt

+M

∫ t

0

(
‖(zλR,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt.(157)

Now we treat the most singular term I9 by employing the Hardy–Littlewood inequal-
ity.

(158)

I9 = − 1

λ2

∫ t

0

∫ 1

0

(E0
I,sz

λ
R + λ2z2

I,sE
λ
R)Eλ

R,tdxdt

= − 1

λ2

∫ t

0

∫ 1

0

t

(
E0

I,s

zλR − zλR(x, 0)

t
+ λ2z2

I,s

Eλ
R − Eλ

R(x, 0)

t

)
Eλ

R,tdxdt

− 1

λ2

∫ t

0

∫ 1

0

(E0
I,sz

λ
R(x, 0) + λ2z2

I,sE
λ
R(x, 0))Eλ

R,tdxdt
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≤
∫ t

0

∫ 1

0

(
‖sE0

I,s‖L∞
(x,t)

|z
λ
R − zλR(x, 0)

t
||Eλ

R,t|

+λ2‖sz2
I,s‖L∞

(x,t)
|E

λ
R − Eλ

R(x, 0)

t
||Eλ

R,t|
)
dxdt

+
1

λ2

∫ t

0

∫ 1

0

|(E0
I,sz

λ
R(x, 0) + λ2z2

I,sE
λ
R(x, 0))Eλ

R,t|dxdt

≤ M

∫ 1

0

‖z
λ
R − zλR(x, 0)

t
‖L2

t
‖Eλ

R,t‖L2
t
dx + Mλ2

∫ 1

0

‖E
λ
R − Eλ

R(x, 0)

t
‖L2

t
‖Eλ

R,t‖L2
t
dx

+
ε

2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt +

M

λ4

∫ t

0

∫ 1

0

|E0
I,sz

λ
R(x, 0)|2dxdt + M

∫ t

0

∫ 1

0

|z2
I,sE

λ
R(x, 0)|2dxdt

≤ ε

2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ 1

0

‖zλR,t‖L2
t
‖Eλ

R,t‖L2
t
dx + Mλ2

∫ 1

0

‖Eλ
R,t‖L2

t
‖Eλ

R,t‖L2
t
dx

+
M

λ4
‖zλR(x, 0)‖2

L∞
x

∫ t

0

∫ 1

0

|E0
I,s|2dxdt + M‖Eλ

R(x, 0)‖2
L∞

x

∫ t

0

∫ 1

0

|z2
I,s|2dxdt

≤ (ε + Mλ2)

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

‖zλR,t‖2
L2

x
dt + Mλ.

Here we used the fact that ‖zλR(x, 0)‖L∞
x

= λ‖zλ0R‖L∞
x

≤ Mλ
3
2 and ‖Eλ

R(x, 0)‖L∞
x

=
λ‖Eλ

0R‖L∞
x

≤ M .
Hence, combining (155) with (156)–(158), one gets∫ t

0

∫ 1

0

Gλ
R,tE

λ
R,tdxdt

≤ (ε + Mλ2)

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλR, zλR,t, E
λ
R)‖2

L2
x
dt

+M

∫ t

0

(
‖(zλR,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt.(159)

Thus, putting (146), (147), (148), (153), (154), and (159) together and taking ε small
enough shows∫ t

0

∫ 1

0

gλt E
λ
R,tdxdt

≤ (ε + Mλ2)

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλR, zλR,t, E
λ
R)‖2

L2
x
dt

+M

∫ t

0

(
‖(zλR,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt + Mλ.(160)

Therefore, for ε small enough, (144), together with (145) and (160), gives

λ2‖Eλ
R,t(t)‖2

L2
x

+ λ2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt + c4

∫ t

0

‖Eλ
R,t‖2

L2
x
dt

≤ Mλ2‖Eλ
R,t(x, 0)‖2

L2
x

+ Mλ2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλR, Eλ
R, z

λ
R,t)‖2

L2
x
dt

+M

∫ t

0

(
‖(zλR,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt + Mλ.(161)



QUASI-NEUTRAL LIMIT 1883

The desired estimate (126) follows from (143) and (161). This completes the proof of
Lemma 7.

Finally, we use the basic estimates and the time derivative estimates of (zλR, E
λ
R)

to obtain these estimates of the space derivatives ∂x(zλR, E
λ
R) of (zλR, E

λ
R).

Lemma 8. Under the assumptions of Theorem 3, we have

‖(zλR,x, E
λ
R)‖2

L2
x

+ λ2‖Eλ
R,x‖2

L2
x

≤ M‖(zλR, zλR,t)‖2
L2

x
+ Mλ2‖(Eλ

R, E
λ
R,t)‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4‖(Eλ
R, E

λ
R,x)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ M‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R‖2
L2

x
+ Mλ.(162)

Proof of Lemma 8. It follows from (119) and the Cauchy–Schwarz inequality that

c1‖zλR,x‖2
L2

x
≤ − d

dt
‖zλR‖2

L2
x

+ M‖(zλR, Eλ
R)‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4(‖(Eλ
R, E

λ
R,x)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ Mλ

≤ M‖(zλR, zλR,t, E
λ
R)‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4‖(Eλ
R, E

λ
R,x)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ Mλ.(163)

Similarly, it follows from (123) and the Cauchy–Schwarz inequality that

λ2‖Eλ
R,x‖2

L2
x

+ c2‖Eλ
R‖2

L2
x

≤ −λ2 d

dt
‖Eλ

R‖2
L2

x
+ M‖zλR‖2

L2
x

+ M‖(zλR, zλR,x)‖2
L2

x
‖Eλ

R‖2
L2

x
+ Mλ

≤ Mλ2‖(Eλ
R, E

λ
R,t)‖2

L2
x

+ M‖zλR‖2
L2

x
+ M‖(zλR, zλR,x)‖2

L2
x
‖Eλ

R‖2
L2

x
+ Mλ.(164)

The desired estimate (162) follows from (163) and (164). This completes the proof of
Lemma 8.

The end of the proof of Theorem 3. Introduce the following λ-weighted functional
for the remainder terms

Γλ(t) = ‖(zλR, zλR,x, z
λ
R,t)‖2

L2
x

+ λ2‖(Eλ
R, E

λ
R,x, E

λ
R,t)‖2

L2
x

+ ‖Eλ
R‖2

L2
x
.(165)

Then it follows from (113) + (126) + δ(162) that, by taking δ small enough and then
λ small enough, and hence absorbing δ

(
M‖(zλR, zλR,t)‖2

L2
x

+ Mλ2‖(Eλ
R, E

λ
R,t)‖2

L2
x

)
and

Mδλ4‖Eλ
R,x‖2

L2
x
+Mλ4

∫ t

0
‖Eλ

R,xt‖2
L2

x
dt of the right-hand side of (113)+(126)+ δ(162)

by ‖(zλR, zλR,t)‖2
L2

x
+ λ2‖(Eλ

R, E
λ
R,t)‖2

L2
x

and δλ2‖Eλ
R,x‖2

L2
x

+ λ2
∫ t

0
‖Eλ

R,xt‖2
L2

x
dt of the

left-hand side of (113) + (126) + δ(162), and then using the definition of Γλ(t),

Γλ(t) +

∫ t

0

‖(zλR,x, z
λ
R,xt, E

λ
R, E

λ
R,t)‖2

L2
x
dt + λ2

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

≤ MΓλ(t = 0) + M

∫ t

0

(Γλ(t) + (Γλ(t))2)dt + Mλ2

∫ t

0

Γλ(t)‖Eλ
R,xt‖2

L2
x
dt

+M

∫ t

0

Γλ(t)‖(zλR,xt, E
λ
R,t)‖2

L2
x
dt + Mλ + M(Γλ(t))2.(166)

We claim that, for any T ∈ [0, Tmax), Tmax ≤ ∞, there exists an λ0 
 1 such that,
for any λ ≤ λ0, if Γλ(t = 0) ≤ M̃λmin{α,1} for some α > 0, then

Γλ(t) ≤ M̃λmin{α,1}−δ(167)

holds for any δ ∈ (0,min{α, 1}) and 0 ≤ t ≤ T .
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Otherwise, there exists T ∈ [0, Tmax), Tmax ≤ ∞, for any λ0 
 1 such that, for
some λ ≤ λ0,

Γλ(tλ0 ) > M̃λmin{α,1}−δ

holds for some δ ∈ (0,min{α, 1}) and for some 0 < tλ0 ≤ T .
Denote the first root of Γλ(t) = M̃λmin{α,1}−δ in [0, tλ0 ] by tλ1 . Then we have

Γλ(t) ≤ M̃λmin{α,1}−δ, 0 < t ≤ tλ1 ≤ tλ0 ≤ T, Γλ(tλ1 ) = M̃λmin{α,1}−δ.(168)

Using (166) and (168), one gets

Γλ(t) +

∫ t

0

‖(zλR,x, z
λ
R,xt, E

λ
R, E

λ
R,t)‖2

L2
x
dt + λ2

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

≤ MM̃λmin{α,1}

+M

∫ t

0

(Γλ(t) + M̃λmin{α,1}−δΓλ(t))dt + Mλ2

∫ t

0

M̃λmin{α,1}−δ‖Eλ
R,xt‖2

L2
x
dt

+M

∫ t

0

M̃λmin{α,1}−δ‖(zλR,xt, E
λ
R,t)‖2

L2
x
dt + Mλ + MM̃λmin{α,1}−δΓλ(t)

≤ MM̃λmin{α,1} + 2M

∫ t

0

Γλ(t)dt +
λ2

2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt

+
1

2

∫ t

0

(‖zλR,xt‖2
L2

x
+ ‖Eλ

R,t‖2
L2

x
)dt + Mλ +

1

2
Γλ(t),(169)

since λ ≤ λ0 
 1 and λ0 can be chosen to satisfy that

M̃λ
min{α,1}−δ
0 ≤ 1,MM̃λ

min{α,1}−δ
0 ≤ 1

2
.

Hence, it follows from (169) that

Γλ(t) ≤ 2MM̃λmin{α,1} + 4M

∫ t

0

Γλ(t)dt + 2Mλ.

Gronwall’s lemma gives

Γλ(t) ≤ (4Me4MTT + 1) max{2MM̃, 2M}λmin{α,1}

≤ (4Me4MTT + 1) max{2MM̃, 2M}λδλmin{α,1}−δ

≤ M̃

2
λmin{α,1}−δ,

which contradicts (168). This proves our claim (167).
What remains is to prove that there exist a positive constant M̃ and α > 0 such

that

Γλ(t = 0) ≤ M̃λα.(170)

In fact, it follows from the assumptions (49) and (50) on the initial data and (165)
that

Γλ(t = 0) = ‖zλR,t(x, 0)‖2
L2

x
+ λ2‖Eλ

R,t(x, 0)‖2
L2

x
+ Mλ.(171)
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First, note that (104) implies

‖zλR,t(x, 0)‖L2
x
≤ λ‖∂2

xz
λ
0R‖L2

x
+ λ‖∂x(DEλ

0R)‖L2
x

+‖(HInn,x, H
λ
B,x, H

λ
I,x, H

λ
IB,x, H

λ
R,x)(t = 0)‖L2

x
+ M‖fλ(t = 0)‖L2

x
.

The assumptions (49) and (50) lead to

λ‖∂2
xz

λ
0R‖L2

x
+ λ‖∂x(DEλ

0R)‖L2
x
≤ M

√
λ,

while the definitions of HInn, Hλ
B , Hλ

I , Hλ
IB , and fλ yield that

‖(HInn,x, H
λ
I,x, H

λ
IB,x)(t = 0)‖L2

x
≤ M

√
λ,

‖fλ(t = 0)‖L2
x
≤ Mλ

3
2 ,

and

‖Hλ
B,x(t = 0)‖L2

x

≤ M
√
λ +

∥∥∥∥
(

(D(x) −D(0))
1

λ
f(x)E0

+,ξ + (D(x) −D(1))
1

λ
g(x)E0

−,η

)
(t = 0)

∥∥∥∥
L2

x

= M
√
λ +

∥∥∥∥
(∫ 1

0

Dx(θx)dθ
x

λ
f(x)E0

+,ξ

−
∫ 1

0

Dx(1 − θ(1 − x))dθ(x)
1 − x

λ
g(x)E0

−,η

)
(t = 0)

∥∥∥∥
L2

x

≤ M
√
λ.

Here we have used the mean value theorem and the estimates ‖(ξE0
+,ξ, ηE

0
+,η)(t =

0)‖L2
x
≤ M

√
λ.

In addition, the definition of Hλ
R(t = 0) and assumption (50) imply that

‖Hλ
R,x‖L2

x
≤ Mλ2‖λ∂2

xE
λ
0R(x)‖L2

x
+ Mλ‖λ∂xEλ

0R‖L2
x

+ M‖λEλ
0R(x)‖L2

x

+λ2‖(λ2Eλ
0R(x)∂2

xE
λ
0R(x), (λ∂xE

λ
0R(x))2)‖L2

x

≤ Mλ
3
2 .

Hence,

‖zλR,t(x, 0)‖L2
x
≤ M

√
λ.(172)

Next, (105) implies that

‖λEλ
R,t(x, 0)‖L2

x
≤ λ2‖∂2

xE
λ
0R(x)‖L2

x
+ ‖z0

0(x)Eλ
0R(x)‖L2

x

+

∥∥∥∥ 1

λ
(GInn, G

λ
B , G

λ
I , G

λ
IB , G

λ
R)(t = 0)

∥∥∥∥
L2

x

.

Note that the only singular term is

I10 = ‖ 1

λ

(
−f(x)(Z0(x, t) −Z0(0, t))E0

+ − g(x)(Z0(x, t) −Z0(1, t))E0
−
)
(t = 0)‖L2

x
,
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while the other terms are easily controlled by M
√
λ. By the mean value theorem, one

gets

I10 ≤ M

∥∥∥∥ 1

λ
(Z0(x, t) −Z0(0, t))E0

+(t = 0)

∥∥∥∥
L2

x

+M

∥∥∥∥ 1

λ
(Z0(x, t) −Z0(1, t))E0

−(t = 0)

∥∥∥∥
L2

x

= M

∥∥∥∥xλ
∫ 1

0

Z0
x(θx, 0)dθE0

+(t = 0)

∥∥∥∥
L2

x

+M

∥∥∥∥1 − x

λ

∫ 1

0

Z0
x(1 − θ(1 − x), 0)dθE0

−(t = 0)

∥∥∥∥
L2

x

≤ M‖(ξE0
+, ηE

0
−)(t = 0)‖2

L2
x

≤ M
√
λ.

This gives

‖λEλ
R,t(x, 0)‖L2

x
≤ M

√
λ.(173)

Notice that here we have used the assumptions

‖∂2
xE

λ
0R(x)‖L2

x
≤ Mλ

1
2−2, ‖Eλ

0R(x)‖L2
x
≤ M

√
λ.

Thus, (171), together with (172) and (173), gives the desired result (170) with
α = 1.

By (167) with α = 1, one gets (51). This completes the proof of Theorem 3.

4.2. The proof of Theorem 4. In this subsection we prove Theorem 4 by
pointing out some necessary modifications of the proof of Theorem 3. We want to
proceed as in the proof of Theorem 3.

Now we assume that (54) and (55) hold. In this case, we must consider the effect
of the nonzero limit (z1

0 , E
1
0) of the error terms (zλ0R, E

λ
0R) of the initial data (46). In

fact, z1
0(x) produces the extra initial layer functions (z3

I , E
1
I ), given by the solution

to (57)–(60). Since (57)–(60) can be solved exactly, it is easy to see that (z3
I , E

1
I ) has

exactly the same properties as (z2
I , E

0
I ). Hence we choose the ansatz as

(z̃λ, Ẽλ)Tapp =
(
Z0 + λ(f(x)z1

+ + g(x)z1
−) + λz1

0(x) + λ2z2
I + λ3z3

I ,

E0 + f(x)E0
+ + g(x)E0

− + E0
I + λ(E1

0(x) + E1
I )
)T

.

Set

(
z̃λR(x, t), Ẽλ

R(x, t)
)T

= (zλ, Eλ)T −
(
z̃λ, Ẽλ

)T
app

.(174)

Then

(
z̃λR(x, t), Ẽλ

R(x, t)
)T

(x, 0) = λ(zλ0R − z1
0 , E

λ
0R − E1

0)T

= λ(z̃λ0R, Ẽ
λ
0R).
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By assumptions (54) and (55), one gets that (z̃λ0R, Ẽ
λ
0R) satisfies assumptions (54) and

(55). It remains to establish the energy estimates for the error function

(
z̃λR(x, t), Ẽλ

R(x, t)
)T

.

First, replacing (zλ, Eλ)T with

(zλ, Eλ)T =
(
z̃λ, Ẽλ

)T
app

+
(
z̃λR(x, t), Ẽλ

R(x, t)
)T

in the system (14)–(15), we obtain (104) and (105) with (zλR, E
λ
R) replaced by (z̃λR(x, t),

Ẽλ
R(x, t))T and H,G replaced by H̃, G̃, where H̃λ

B = Hλ
B , G̃λ

B = Gλ
B , and H̃Inn (G̃Inn),

H̃λ
I (G̃λ

I ), H̃λ
IB (G̃λ

IB), H̃λ
R (G̃λ

R) are defined by the following:

H̃Inn(x, t) = λ(z1
0x(x) + D(x)E1

0(x)) − λ2E0E0
x − λ3E0E1

0(x),

H̃λ
I (x, s) = λ2z2

I,x + λ3z3
I,x

−λ2
(
E0(E0

I,x + λE1
I,x) + (E0

I + λE1
I )(E0

x + E0
I,x + λ(E1

0x + E1
I,x))

)
,

H̃λ
IB(x, ξ, η, t, s) = −λ

(
(E0

I + λE1
I )(f(x)E0

+,ξ − g(x)E0
−,η)

)
−λ2

(
(E0

I + λE1
I )(f ′(x)E0

+ + g′(x)E0
−)

+ (f(x)E0
+ + g(x)E0

−)(E0
I,x + λE1

I,x)
)
,

H̃λ
R = −λẼλ

R(f(x)E0
+,ξ − g(x)E0

−,η)

−λ2
(
((E0 + λE1

0) + f(x)E0
+ + g(x)E0

−)Ẽλ
R,x

+ ((E0
x + λE1

0x) + f ′(x)E0
+ + g′(x)E0

−)Ẽλ
R

)
−λ2

(
(E0

I + λE1
I )Ẽλ

R,x + (E0
I,x + λE1

I,x)Ẽλ
R

)
− λ2Ẽλ

RẼ
λ
R,x,

G̃Inn(x, t) = −λ2
(
E0
t − E0

xx − λE1
0xx

)
− λ(Z0E1

0 + z1
0E0) − λ2z1

0E
1
0 ,

G̃λ
I = −(Z0 −Z0(x, 0))(E0

I + λE1
I ) + λ2E0

I,xx + λ3E1
I,xx − λ2z1

0E
1
I

−λ2(z2
I + λz3

I )(E0 + λE1
0 + E0

I + λE1
I ),

G̃λ
IB = −λ(f(x)z1

+ + g(x)z1
−)(E0

I + λE1
I ) − λ2(z2

I + λz3
I )(f(x)E0

+ + g(x)E0
−),

G̃λ
R = −(E0 + λE1

0 + f(x)E0
+ + g(x)E0

− + E0
I + λE1

I )z̃λR

−λ(f(x)z1
+ + g(x)z1

− + z1
0)Ẽλ

R − λ2(z2
I + λz3

I )Ẽ
λ
R − z̃λRẼ

λ
R.

Next, we point out the difference at the boundary between (z̃λR, Ẽ
λ
R) and (zλR, E

λ
R).

At present, Ẽλ
R satisfies the nonhomogeneous boundary condition

(Ẽλ
R + λE1

0)(x = 0, 1; t) = 0, t > 0.(175)

In fact, since E0
I (x = 0, 1; t) = 0, it follows from the system (57)–(58) that

E0
I (x = 0, 1; t) = 0, t > 0,(176)
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which gives with (57) and (58) that

E1
I (x = 0, 1; t) = 0, t > 0.(177)

Combining (174), the boundary condition (16), (68), (176), and (177), one gets (175).
But H̃λ still satisfies the homogeneous boundary condition

H̃λ(x = 0, 1; t) = 0, t > 0.

Thus

H̃λ
t (x = 0, 1; t) = Ẽλ

R,t(x = 0, 1; t) = 0, t > 0,

due to the fact that E1
0 = E1

0(x) does not depend upon time t.
Finally, notice that H̃(G̃) is the sum of H(G) and the extra higher order O(λ),

and hence it has the very similar structure as H(G), and that the only term to be

affected by nonhomogeneous boundary condition (175) is −λ2
∫ 1

0
Ẽλ

R,xxẼ
λ
Rdx, which

can be dealt with as follows:

−λ2

∫ 1

0

Ẽλ
R,xxẼ

λ
Rdx

= −λ2

∫ 1

0

Ẽλ
R,xx(Ẽλ

R + λE1
0)dx + λ3

∫ 1

0

Ẽλ
R,xxE

1
0dx

= λ2

∫ 1

0

|Ẽλ
R,x|2dx + λ3

∫ 1

0

Ẽλ
R,xE

1
0xdx + λ

∫ 1

0

(λ2Ẽλ
R,t + Z0Ẽλ

R − gλ)E1
0dx

≥ λ2

2

∫ 1

0

|Ẽλ
R,x|2dx−Mλ−Mλ5

∫ 1

0

|Ẽλ
R,t|2dx− λ

∫ 1

0

(|Ẽλ
R|2 + |gλ|2)dx

≥ λ2

2

∫ 1

0

|Ẽλ
R,x|2dx−Mλ5

∫ 1

0

|Ẽλ
R,t|2dx− λ

∫ 1

0

|Ẽλ
R|2dx−Mλ.

Here we had used (105). Thus, we can proceed with the energy method as in the
previous proof of Theorem 3. The proof of Theorem 4 is complete.
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ON THE STOLZ–ADAMS DECONVOLUTION MODEL FOR THE
LARGE-EDDY SIMULATION OF TURBULENT FLOWS∗

A. DUNCA† AND Y. EPSHTEYN†

Abstract. We consider a family of large-eddy simulation (LES) models with an arbitrarily
high consistency error O(δ2N+2) for N = 1, 2, 3, . . . that are based on the van Cittert deconvolution
procedure. This family of models has been proposed and tested for LES with success by Adams and
Stolz in a series of papers, e.g., [Deconvolution methods for subgrid-scale approximation in large-
eddy simulation, in Modern Simulation Strategies for Turbulent Flow, R. T. Edwards, Philadelphia,
2001, pp. 21–41], [Phys. Fluids, 11 (1999), pp. 1699–1701]. We show that these models have an
interesting and quite strong stability property. Using this property we prove an energy equality,
existence, uniqueness, and regularity of strong solutions and give a rigorous bound on the modeling
error ‖u − w‖, where w is the model’s solution and u is the true flow averages.

Key words. large-eddy simulation, scale similarity models, deconvolution, approximate decon-
volution models

AMS subject classifications. 76F65, 76D03

DOI. 10.1137/S0036141003436302

1. Introduction. We consider the problem of modeling the motion of large
structures in a turbulent fluid. This involves the interaction of many complex decisions
made in the simulation. To isolate some effects, we study herein the correctness of
the approximate deconvolution modeling (ADM) approach to closure pioneered by
Adams and Stolz; see, e.g., [1], [9].

The pointwise velocity and pressure, u, p, in an incompressible viscous flow satisfy
the Navier–Stokes equations

ut + ∇ · (uuT ) − νΔu + ∇p = f ,
∇ · u = 0,

u(x, 0) = u0(x).
(1)

We study (1) subject to periodic boundary conditions (with zero mean)

u(x + Le, t) = u(x, t)(2)

for x ∈ R
3, 0 < t ≤ T.

Periodic boundary conditions separate the hard problem of closure for the interior
equations from another hard problem of wall laws and near wall models in turbulence.

Let an overbar denote a local spacial averaging associated with a length scale δ
which commutes with differentiation. Averaging the Navier–Stokes equations gives
the nonclosed equations for u, p,

ut + ∇ · (uuT ) − νΔu + ∇p = f ,
∇ · u = 0.

(3)
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Let the averaging operation u → u be denoted formally by G so u = Gu. In
the most interesting cases G is not invertible. Nevertheless, the closure problem
(of replacing uuT by a tensor depending only on u) is solved once the approximate
deconvolution problem (of approximating the action of G−1) is solved.

The van Cittert approximation to G−1 can be developed in various ways (see [2]
and section 2 for a precise definition of it). The simplest is to find an approximation
to u by extrapolating from the resolved scales of u to those of u. The first three
examples are

u ≈ G0u := u (constant extrapolation in δ),
u ≈ G1u := u − u (linear extrapolation in δ),

u ≈ G2u := 3u − 3u + u (quadratic extrapolation in δ).

(4)

Let GNu denote the analogous Nth degree accurate approximate inverse (sec-
tion 2). Calling (w, q) the approximations that result when this is used in (3) to treat
the closure problem, we are inevitably led to the fundamentally important question
of how well the solution w of the resulting model,

wt + ∇ · (GNw(GNw)T ) − νΔw + ∇q = f ,
∇ · w = 0,

(5)

matches the behavior of the true flow averages u. This question has obvious theo-
retical and experimental components. We consider herein the theoretical parts of the
question for the whole family of models. Our analysis is based on a delicate skew
symmetry property that the model’s nonlinear interaction terms have when the aver-
aging operator is the differential filter ϕ → ϕ (as studied by Germano [4]). Here for
given ϕ ∈ L2(Q), ϕ is defined to be the unique periodic solution of

−δ2Δϕ + ϕ = ϕ(6)

in Q, where Q denotes the d-dimensional cube of size L > 0, Q = (0, L)d.
Our analysis is for periodic boundary conditions. We believe that many of the

results presented in this work can be extended to nonperiodic boundary conditions
with further research. Indeed, the basic model (5) does not increase the order of
the differential operator, so the model makes perfect sense coupled with any of the
well-posed boundary conditions used for the Navier–Stokes equations.

Remark 1.1. The model (5) using G0 was considered recently in [6] and [7]. On
the other hand, practical calculations of Adams and Stolz in [1] and [9] have stressed
the superiority of models of order 4, 5 and higher in practical tests.

Herein we show that a single, unified mathematical theory is possible for the entire
family of models building on the analysis in [6] and [7].

2. Deconvolution models. It has been pointed out by Germano (presented
well in [5]) that with the differential filter ϕ := (−δ2Δ + I)−1ϕ it seems that no
deconvolution is necessary; one can write exactly ϕ := (−δ2Δ + I)ϕ.

This leads to the exact model for u given by

ut + ∇ · ((−δ2Δ + I)u[(−δ2Δ + I)u]T ) − νΔu + ∇p = f(7)

subject to the periodic boundary conditions. One criticism with using the exact
deconvolution model (7) to predict u is that going from the Navier–Stokes equations
to (7), no information is lost.
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Thus there is no reason to believe that (7) can be approximated with fewer degrees
of freedom than the Navier–Stokes equation itself. Another difficulty with (7) is that
any model that increases the order of the differential equation must be supplied with
extra boundary conditions. Thus for nonperiodic problems, models such as (7) shift
the essential difficulty from interior closure to the harder problem of specifying as
boundary conditions the higher derivatives of turbulent velocities at walls. Thus
approximate deconvolution which will lose information is necessary. The van Cittert
method of approximate deconvolution (see [2]) constructs a family GN of inverses to
G as follows: writing G = I − (I − G), a formal inverse to G can be written as the
nonconvergent power series,

G−1 =

∞∑
n=0

(I − G)n.

Truncating this series gives

GN =

N∑
n=0

(I − G)n.(8)

The first three approximations are given in (4).
Lemma 2.1. The operator GN : L2(Q) → L2(Q) is compact, self-adjoint, and

positive.
Proof. The operator G : L2(Q) → L2(Q) is compact and self-adjoint. Multiplying

(6) by ϕ and integrating over Q gives

δ2‖∇ϕ‖2 + ‖ϕ‖2 = (ϕ,ϕ) ≤ 1

2
‖ϕ‖2 +

1

2
‖ϕ‖2.

It follows that G is positive and ‖G‖ ≤ 1. Let hN (x) =
∑N

k=0(1 − x)k. By the
definition of GN ,

GN = hN (G)

and, consequently, GN is also a compact self-adjoint operator. Because hN is positive
on [0, 1], which contains the spectrum of G, it also follows that GN is positive.

Remark 2.1. The operators {GN}N satisfy the following recursion:

(I − δ2Δ)GNu = −δ2ΔGN−1u + (I − δ2Δ)u.(9)

The following lemma, which is a consequence of the identity

GNG = I − (I −G)N+1,

was proved in [10].
Lemma 2.2. For smooth u the approximate deconvolution (8) has the consistency

error O(δ2N+2),

u − GNu = (−1)N+1δ2N+2ΔN+1GN+1u,(10)

locally in Q and also

‖u − GNu‖ ≤ δ2N+2 ‖u‖H2N+2(Q) .
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Lemma 2.2 shows that GNu gives an approximation to u to the accuracy O(δ2N+2)
in the smooth flow regions. Thus it is justified to use it for the closure approximation

∇ · (uuT ) ≈ ∇ · (GNu(GNu)T ) + O(δ2N+2).

If μ denotes the usual subfilter scale stress tensor μ(u,u) := uuT − ūūT , then the
closure approximation is equivalent to the closure model

μ(u,u) ≈ μN (u,u) := GNu(GNu)T − ūūT .(11)

The true subgrid stress tensor μ(u,u) is both reversible and Galilean invariant
(Sagaut [8]). Thus many feel that appropriate closure models should at least, to
leading order effects, share these two properties. We next show that the model (11)
is both reversible and Galilean invariant.

Lemma 2.3. For each N = 0, 1, 2, . . . the closure model (11) is reversible and
Galilean invariant.

Proof. Reversibility is immediate. Galilean invariance also follows easily once it is
noted that UwT = UwT so GN (UuT = UGN (u)T . Using these and other analogous
properties gives

∇ · μ(u + U,u + U) = ∇ · [GN (u)GN (u)T + UGN (u)
T

+ GN (u)UT + UUT − (u + U)(u + U)T ]

= ∇ · [GN (u)GN (u)T − ūūT ] + ∇ · GN (u)U

+ U∇ · (GN (u) −∇ · (u)U − U∇ · (u)

= ∇ · [GN (u)GN (u)T − ūūT ] = ∇ · μN (u,u),

since ∇ · u = ∇ · GN (u) = ∇ · GN (u) = 0 and UUT = UUT .

3. Variational spaces. Q denotes a d-dimensional cube of size L > 0,

Q = (0, L)d.

Let

Hm(Q) = {u ∈ Hm
loc(R

n)|u periodic with period Q}

and

H
m

(Q) =

{
u ∈ Hm(Q)|

∫
Q

udx = 0

}
.

For the variational formulation of the scale similarity model with periodic bound-
ary conditions, we consider the spaces of divergence-free functions

V = {u ∈ H1(Q),∇ · u = 0 in R
d}

and

H = {u ∈ L2(Q),∇ · u = 0 in R
d}

as in Temam [12].
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D(Q) is defined as

D(Q) = {ψ ∈ C∞(Rd)|ψ is periodic with period Q}

and

D(QT ) = {ψ ∈ C∞([0, T ) × R
d)| for t ∈ [0, T ), ψ(·, t) is periodic with period Q

and ψ has compact support in variable t ∈ [0, T )}.

The space of vector valued functions D(Q) is defined as

D(Q) = D(Q)d.(12)

The other spaces D(QT ),H,H
p
(Q), and V,L2(Q) are defined accordingly.

Remark 3.1. Because the inclusion H
2
(Q) → H is compact, the inverse of the

Laplacian operator (−Δ)−1 : H → H
2
(Q) ⊂ H is a bounded, self-adjoint, and compact

operator. This implies that there exists an orthonormal basis (wj)j∈N of H consisting
of eigenfunctions of the Laplacian operator.

4. The models and the existence of weak solutions.
Definition 4.1. The strong form of the Stolz–Adams model that we analyze is

as follows: Find (w, q) such that

w ∈ (H
2
(Q) ∩H)d for a.e. t ∈ [0.T ],

w ∈ (H1(0, T ))d for a.e. x ∈ Q,

q ∈ H1(Q) ∩ L2
0(Q) if t ∈ (0, T ]

(13)

and

wt − νΔw + ∇ · ((GNw)(GNw)T ) + ∇q = f in (0, T ) ×Q,
∇ · w = 0 in (0, T ] ×Q,
w|t=0 = u0 in Q,∫
Q

q dx = 0 in (0, T ].

(14)

Definition 4.2. Let f ∈ L2(0, T ; V′) and w0 ∈ H
2
(Q). A measurable function

w : [0, T ] ×Q → R
d is a weak solution of (14) if

w ∈ L2(0, T,H
1
(Q)) ∩ L∞(0, T ; H)(15)

and ∫ ∞

0

[(
w,

∂ϕ

∂t

)
− ν(∇w,∇φ) − (∇ · ((GNw)(GNw)T ), ϕ)

]
dt(16)

= −
∫ ∞

0

(f , ϕ) dt− (w0, ϕ(0))

for all ϕ ∈ D(Q).
The following lemma gives an energy inequality satisfied by the strong solutions

of the Stolz–Adams models. We mention here that the same argument is used to
derive an energy inequality for the approximate solutions in the proof of existence of
weak solutions to the Stolz–Adams models.
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Lemma 4.1. If w is a strong solution of (14) as in Definition 4.1, then w satisfies
the following energy inequality:

1

2
(‖w(t)‖2 + δ2‖∇w(t)‖2) +

ν

2

∫ t

0

‖∇w(s)‖2 + δ2‖Δw(s)‖2 ds(17)

≤ K

(∫ T

0

‖f(s)‖2
V ′ds + ‖w0‖2 + δ2‖∇w0‖2

)

for all t ∈ [0, T ] with K = max{
2‖GN‖2

L2(Q)

ν , 1
2δ

2, 1
2 ,

δ2

2 ‖GN−1‖L2(Q)}.
Proof. We multiply (14) by the test function ϕ = (−δ2Δ + I)GNw and integrate

on Q. Because the weak form of the nonlinear term will vanish,

(∇ · ((GNw)(GNw)T ), (−δ2Δ + I)GNw)(18)

= (∇ · ((GNw)(GNw)T ), (−δ2Δ + I)GNw) = (∇ · ((GNw)(GNw)T ),GNw) = 0,(19)

we obtain the following energy equality:

1

2

d

dt
(w, (−δ2Δ+I)GNw)+ν(Δw, (−δ2Δ+I)GNw) = (f , (−δ2Δ+I)GNw).(20)

In the above equality all terms (−δ2Δ+I)GNw are replaced using Remark 2.1, leading
to

1

2

d

dt
(w, (−δ2Δ + I)w) +

1

2

d

dt
(w,−δ2ΔGN−1w) − ν(Δw, (−δ2Δ + I)w)

+ νδ2(Δw, δ2ΔGN−1w) = (f ,GNw).

Using integration by parts and the commutation property of the operator GN−1 with
differentiation gives

1

2

d

dt
‖w‖2

+
1

2
δ2 d

dt
‖∇w‖2

+
δ2

2

d

dt
(∇w,GN−1∇w)

+ ν ‖∇w‖2
+ νδ2 ‖Δw‖ + νδ4(Δw,GN−1Δw) = (f ,GNw).(21)

We then integrate on [0, t] and obtain

1

2
‖w(t)‖2

+
1

2
δ2 ‖∇w(t)‖2

+
δ2

2
(∇w(t),GN−1∇w(t)) + ν

∫ t

0

‖∇w(s)‖2
ds

+ νδ2

∫ t

0

‖Δw(s)‖2
ds + νδ4

∫ t

0

(Δw(s),GN−1Δw(s)) ds

=

∫ t

0

(f(s),GNw(s)) ds +
1

2
‖w0‖2

+
1

2
δ2 ‖∇w0‖2

+
δ2

2
(∇w0,GN−1∇w0).

We use the positivity of the operators (GN )N in the above inequality to get

1

2
‖w(t)‖2

+
1

2
δ2 ‖∇w(t)‖2

+ ν

∫ t

0

‖∇w(s)‖2
ds + νδ2

∫ t

0

‖Δw(s)‖2
ds(22)

≤
∫ t

0

(f(s),GNw(s)) ds +
1

2
δ2 ‖w0‖2

+
1

2
‖∇w0‖2

+
δ2

2
(∇w0,GN−1∇w0).
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An application of Cauchy’s inequality on the first term on the right-hand side above
gives ∫ t

0

(f(s),GNw(s)) ds ≤
∫ t

0

‖f(s)‖V ′ ‖GN‖L2(Q) ‖∇w(s)‖L2(Q) ds

≤
2 ‖GN‖2

L2(Q)

ν

∫ t

0

‖f(s)‖2
V ′ ds +

ν

2

∫ T

0

‖∇w(s)‖2
L2(Q) ds.

We use this inequality in (22) to obtain

1

2
‖w(t)‖2

+
1

2
δ2 ‖∇w(t)‖2

+ νδ2

∫ t

0

‖Δw(s)‖2
ds

+
ν

2

∫ t

0

‖∇w(s)‖2
ds ≤

2 ‖GN‖2
L2(Q)

ν

∫ t

0

‖f(s)‖2
V ′ ds

+
1

2
δ2 ‖w0‖2

+
1

2
‖∇w0‖2

+
δ2

2
‖GN−1‖L2 ‖∇w0‖2

L2 .

Remark 4.1. The turbulence model based on the approximate deconvolution
procedure introduced by Stolz and Adams in [9] and tested by Stolz, Adams, and Kleizer
in [10] and [11] contains a relaxation term added to the right-hand side of the first
equation in (14) to drain energy near cutoff length scale. This term takes the form

−χω(I −GNG)w,(23)

where χω > 0 is a function of space and time. If χω is smooth and bounded in space
and time, the addition of the relaxation term (23) does not change the mathematical
results proved in this paper. For this model one can derive an energy estimate like
Lemma 4.1 by treating the weak form of the relaxation term in the following way:

(−χω(I −GNG)w, (−δ2Δ + I)GNw)

= (−χω(I −GNG)w, GNw) + (χω(I −GNG)w, δ2GNΔw)

≤ C(ε, ‖χω‖∞, N, δ, ν, ‖G‖)‖w‖2 + ε‖Δw‖2

for given ε > 0

One can then pick ε = νδ2

4 , which results in the cancellation of the term νδ2

4 ‖Δw‖
on the right-hand side (see (21)) and apply the Gronwall lemma to get an energy
inequality similar to (17).

Based on this energy inequality all other results proved here for the Stolz–Adams
model without the relaxation term can be extended to the case where the relaxation
term is incorporated into the equations.

For less regular functions χω > 0 the same results cannot be proved with the same
arguments; this case requires further investigation.

Proposition 4.1. Let T > 0. Then for w0 ∈ H
2
(Q) ∩ H and f ∈ L2(0, T ; V′),

there exists a weak solution w of (14) in the sense of Definition 4.2. This solution w

belongs to the space L2(0, T,H
2
(Q)) ∩ L∞(0, T ; V); it is L2-weakly continuous and

satisfies the following energy inequality:

1

2
(‖w(t)‖2

+ δ2 ‖∇w(t)‖2
) + δ2ν

∫ t

0

‖Δw(s)‖2
ds(24)

≤ K

(∫ t

0

‖f(s)‖2
V ′ ds + ‖w0‖2

+ ‖∇w0‖2

)
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for all t ∈ [0, T ] with K = max{
2‖GN‖2

L2(Q)

ν , 1
2δ

2, 1
2 ,

δ2

2 ‖GN−1‖L2(Q)}.
Proof. The proof uses the Faedo–Galerkin method. We will use Galdi [3] as a

reference and only point out the differences between the proof of existence of the weak
solution of the Navier–Stokes equations and the proof of existence for our models.
We pick an orthonormal basis {ψj}j ∈ D(Q) of H consisting of eigenfunctions of the
Laplacian operator as in Remark (3.1). Let

wk(x, t) =

k∑
r=1

ηkr(t)ψr(x)(25)

for k ∈ N be the solution of the following ODE system:(
∂wk

∂t
, ψr

)
+ ν(∇wk,∇ψr) + (∇ · (GNwk)(GNwk)T , ψr) = (f , ψr)(26)

for all r = 1, . . . , k with the initial condition

(wk(0), ψr) = (w0, ψr)

for all r = 1, . . . , k. It follows that the coefficients ηkr satisfy the following ODE
system:

dηkr
dt

+
k∑

i=1

airηki +

k∑
i,j=1

aijrηkiηkj = fr(27)

for all r = 1, . . . , k with the initial condition

ηkr(0) = C0r for all r = 1, . . . , k,

where air = ν(∇ψi,∇ψr), aijr = (∇ · ((GNψi)(GNψj)T ), ψr), fr = (f , ψr), and C0r =
(bw0, ψr).

The function fr belongs to L2[0, T ) for any r, and consequently (27) has a unique
solution near 0,

ηkr ∈ W 1,2(0, Tk),

where Tk ≤ T . Because w0 ∈ H
2
(Q) ∩ H there exists u0 ∈ H such that u0 = w0. For

the ODE defined above we have (wk0, ψr) = (w0, ψr) for all r = 1, . . . , k. This gives

(wk0, ψr) = (u0, ψr)(28)

for all r = 1, . . . , k. But wk,0 ∈ Gk = span{ψj}j=1,...,k and Gk is an invariant
subspace of the Laplacian operator. Consequently, we can replace ψr in formula (28)
with (I − δ2Δ)wk,0 to get

(wk0, (I − δ2Δ)wk,0) = (u0, (I − δ2Δ)wk,0) = (u0,wk,0).(29)

Integrating by parts the first term above and using Cauchy’s inequality in the second,
we get

‖wk0‖2
+ δ2 ‖∇wk0‖2

= (u0,wk,0) ≤
1

2
(‖u0‖2

+ ‖wk0‖2
),(30)
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which gives the following estimate:

1

2
‖wk0‖2

+ δ2 ‖∇wk0‖2 ≤ 1

2
‖u0‖2

.(31)

We want to prove that we can pick Tk = T . In (26) we replace ψr with (I −
δ2Δ)GNwk. We can do this since (I− δ2Δ)GNwk(t) ∈ Gk = span{ψj}j=1,...,k for any
t ∈ [0, T ). In the same way in which the energy inequality (17) for strong solutions
was derived, we obtain

(32)

1

2
(‖wk(t)‖2

+ δ2 ‖∇wk(t)‖2
) + δ2ν

∫ t

0

‖Δwk(s)‖2
ds +

ν

2

∫ t

0

‖Δwk(s)‖2
ds ≤ M,

where

M := K

(∫ t

0

‖f(s)‖2
V ′ ds + ‖wk0‖2

+ δ2 ‖∇wk0‖2

)
(33)

with K = max{
2‖GN‖2

L2(Q)

ν , 1
2δ

2, 1
2 ,

δ2

2 ‖GN−1‖L2(Q)}.
M does not depend on t and using (31) M also does not depend on k. Due to

orthonormality of the family {ψj}j in H we get that a priori the coefficients ηkr satisfy

|ηkr|2 ≤ 2M
1
2

for any t ∈ [0, T ), r = 1, . . . , k, and k ∈ N. This implies that for any k there exists a
global solution (that is, on [0, T ))

ηkr ∈ W 1,2[0, T ),

r = 1, . . . , k, of the ODE system (26).
In the same way as in Galdi [3] one can show, using estimate (32), that there

exists a subsequence of wk (which is redenoted by wk) which converges weakly
in V uniformly in t to a function w ∈ L∞(0, T,V). From estimate (32) we infer
that the sequence wk is bounded in L2(0, T,H

2
(Q)); consequently, it contains a

subsequence (which is redenoted by wk) which is weakly convergent to a function
w′ ∈ L2(0, T,H

2
(Q)). One can show, taking limits of wk in the space L2(0, T,L2(Q)),

that w = w′. It follows that w ∈ (H
2
(Q) ∩ H)d.

We can show that w satisfies the variational equality (16) in the same way as in
Galdi [3] taking the limits of wk in equality (26). In the case of Stolz–Adams models,
when taking limits, the nonlinear term is handled in the following way: one needs to
show that for a given eigenfunction ψr,∫ t

0

(GNwk · ∇GNwk, (I − δ2Δ)−1ψr) − (GNw · ∇GNw, (I − δ2Δ)−1ψr) ds → 0.

However,∣∣∣∣
∫ t

0

(GNwk · ∇GNwk, (I − δ2Δ)−1ψr) − (GNw · ∇GNw, (I − δ2Δ)−1ψr) ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

(GNwk · ∇GNwk, ψr) − (GNw · ∇GNw, ψr) ds

∣∣∣∣
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≤
∣∣∣∣
∫ t

0

(GN (wk − w) · ∇GNwk, ψr) ds

∣∣∣∣ +

∣∣∣∣
∫ t

0

(GNw · ∇GN (wk − w), ψr) ds

∣∣∣∣
≤ ‖GN‖2

L2(Q) ‖wk − w‖L2(0,T,L2) ‖ψr‖∞ ‖∇wk‖L2(0,T,L2)

+

∣∣∣∣
∫ t

0

(GNw · GN (∇(wk − w)), ψr) ds

∣∣∣∣.
The first term on the right-hand side above converges to 0 since wk → w in
L2(0, T,L2(Q)), and the second converges to 0 because ∇wk → ∇w weakly in
L2(0, T,L2(Q)) and the operator GN is self-adjoint. The energy inequality (24) is
obtained in the same way as in the case of the Navier–Stokes equations taking limits
in (32).

Lemma 4.2. The weak solution w that was constructed in the previous theorem
is also a strong solution of (14).

Proof. This follows directly from definition (16), the regularity proven for the
solution, and an integration by parts.

Lemma 4.3. The weak solution w of (14) constructed in Proposition 4.1 is the
unique weak solution of (14).

Proof. This is a consequence of the regularity of w. The proof is the same as in
the case of the Navier–Stokes equations.

5. An a priori estimate of the modeling error. Our goal here is to give an
a priori estimate of the modeling error ‖u − w‖. In this direction there are several
fundamental problems. First, in three dimensions there is no proof of uniqueness of
weak solutions u of the Navier–Stokes equations. Thus for u a general weak solution
of the Navier–Stokes equations, the best result attainable in the usual norms with the
present technique seems to be the following.

Proposition 5.1. Let w = w(δ) be the unique strong solution of the model
(14). Then there is a subsequence δj → 0 as j → ∞ and a weak solution u of the
Navier–Stokes equations such that w(δj) → u in L∞(0, T,L2(Q))∩L2(0, T,H1(Q)).

Proof. This proof follows that of Theorem 3.1 of Layton and Lewandowski
[6].

The second question concerns the right norm. Obviously if we are restricting our
attention to general weak solutions, the right norm must be a very weak norm for
which the modeling residual

∥∥uuT − GNu(GNu)T
∥∥ is not only well defined but also

vanishes as δ → 0. The answer to this question is still unknown; see, e.g., Layton
and Lewandowski [6] for first steps. The third question concerns extracting a rate of
convergence for ‖u − w‖ which gives some insight into the model’s accuracy on the
laminar regions. This problem is much simpler. It reduces to proving the highest
possible rate of convergence for ‖u − w‖ → 0 for very smooth solution u.

In the remainder of this subsection we give the answer: the modeling error is
a priori O(δ2N+2) for smooth u.

Proposition 5.2. Assume u is a weak solution of the Navier–Stokes equa-

tions and ∇u ∈ L4(0, T,L2(Q)). For w ∈ L2(0, T,H
2
(Q)) ∩ L∞(0, T ; V) a weak

solution of (14) and τ := uuT − GNu(GNu)T there exists a positive constant P =
P (ν,N, ‖∇u‖L4(0,T,L2)) ≥ 0 such that

(34)

‖u − w‖2
L∞(0,T,L2) + ‖∇(u − w)‖2

L2(0,T,L2) ≤ P (ν,N, ‖∇u‖L4(0,T,L2)) ‖τ‖
2
L2(0,T,L2) .
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Proof. To begin we derive an equation for φ := u − w. First we note that w
is a unique strong solution of the model and under stated regularity assumptions on
u,u is a unique strong solution of the Navier–Stokes equations; see [12, Remark 3.3].
Thus there are no subtleties in the derivation of the error equation. Equality (3) can
be rewritten as

ut + ∇ · (GNuGNuT ) − νΔu + ∇p = f + ∇ · (GNuGNuT − uuT ),

∇ · u = 0.
(35)

Subtraction gives the equation for ϕ := u − w,

ϕt + ∇ · (GNuGNuT − GNwGNwT ) − νΔϕ + ∇(p− q) = −∇ · τ in (0, T ) × R
d,

∇ · ϕ = 0 in (0, T ] × R
d,

ϕ|t=0 = 0 in R
d,∫

Q

p− q dx = 0 in (0, T ].

(36)

We multiply the first equation in (36) by (I − δ2Δ)−1GNϕ and then integrate on Q.
Following exactly the same computations as in Lemma 4.1 gives

1

2

d

dt
‖ϕ‖2

+
1

2
δ2 d

dt
‖∇ϕ‖2

+
δ2

2

d

dt
(∇ϕ,GN−1∇ϕ) + ν ‖∇ϕ‖2

+ νδ2 ‖Δϕ‖(37)

+ νδ4(Δφ,GN−1Δϕ) = −(∇ · τ,GNϕ) + b(GNϕ,GNu,GNϕ),

where b is the standard trilinear form

b(u,v,w) = ((u · ∇)v,w).

The first term on the right-hand side is bounded as follows:

|(∇ · τ,GNϕ)| = |(τ,GN∇ϕ)| ≤ ‖τ‖ ‖GN‖L2 ‖∇ϕ‖ ≤ 2 ‖GN‖2
L2

ν
‖τ‖2

+
1

2
ν ‖∇ϕ‖2

.

To bound the second term we use Young’s inequality

ab ≤ εa4 +
3

4
(4ε)−

1
3 b

4
3 ,

together with the standard estimate for the trilinear form

|b(GNϕ,GNu,GNϕ)| ≤ C(Q) ‖∇u‖ ‖ϕ‖
1
2 ‖∇ϕ‖

3
2 ,

to obtain that for any ε > 0,

|b(GNϕ,GNu,GNϕ)| ≤ ε ‖GN‖2 ‖∇ϕ‖2
+

3

4
(4ε)−

1
3 ‖GN∇u‖4 ‖GNϕ‖2

.

Plugging ε = ν
2‖GN‖2 into the above inequality, we get that

|b(GNϕ,GNu,GNϕ)| ≤ ν

2
‖∇ϕ‖2

+
3

4

(
2ν

‖GN‖2

)− 1
3

‖GN‖4 ‖∇u‖4 ‖ϕ‖2
.
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Using the last two inequalities in (37) gives

1

2

d

dt
‖ϕ‖2

+
1

2
δ2 d

dt
‖∇ϕ‖2

+
δ2

2

d

dt
(∇ϕ,GN−1∇ϕ) + νδ2 ‖Δϕ‖

+ νδ4(Δφ,GN−1Δϕ) ≤ 2 ‖GN‖2
L2

ν
‖τ‖2

+
3

4
(2ν)−

1
3 ‖GN‖

10
3 ‖∇u‖4 ‖w‖2

.

Gronwall’s inequality and positivity of the operators (GN )N give

‖ϕ‖2 ≤
∫ t

0

exp

(
−2

∫ t

s

3

4
(2ν)−

1
3 ‖GN‖

10
3 ‖∇u‖4

ds′
)

2 ‖GN‖2
L2

ν
‖τ‖2

L2 ds.

For fixed N we have that

‖GN‖ ≤ 1 + (1 + ‖G‖) + (1 + ‖G‖)2 + · · · + (1 + ‖G‖)N ,

and since for every δ, ‖G‖ ≤ 1 it follows that

‖GN‖ ≤ 2N+1 − 1

uniformly in δ. Under the assumption that ∇u ∈ L4(0, T, L2) we infer the existence
of a constant M = M(ν,N, ‖∇u‖L4(0,T,L2)) such that

‖ϕ‖2
L∞(0,T,L2) ≤ M

(
ν,N, ‖∇u‖L4(0,T,L2)

) ∫ T

0

‖τ‖2
0,T,L2 .(38)

To estimate ‖∇ϕ‖2
L2(0,T,L2) we integrate (37) from 0 to t and, using inequality (38),

we obtain

‖∇φ‖2
L2(0,T,L2) ≤ R(ν,N, ‖∇u‖L4(0,T,L2))

∫ T

0

‖τ‖2
0,T,L2

for positive constant R = R(ν,N, ‖∇u‖L4(0,T,L2)). Consequently, there exists a con-

stant P = P (ν,N, ‖∇u‖L4(0,T,L2)) such that

‖ϕ‖2
L∞(0,T,L2) + ‖∇φ‖2

L2(L2) ≤ P (ν,N, ‖∇u‖L4(0,T,L2)) ‖τ‖
2
L2(0,T,L2) .(39)

Proposition 5.3. Under the conditions of the previous theorem, if u ∈ H
N+1(Q),

there exists P = P (ν,N,u) ≥ 0 such that

‖u − w‖2
L∞(0,T,L2) + ‖∇(u − w)‖2

L2(0,T,L2) ≤ P (ν,N,u)δ2N+2.(40)

Proof. An application of Lemma 2.2 gives

‖τ‖2
L2(0,T,L2) ≤ C(u)δ2N+2;

(40) will then follow from (39).
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6. Conclusions. The Stolz–Adams deconvolution models analyzed herein are
shown to have very good mathematical properties, better than any other large-eddy
simulation model for turbulent flows that is currently used.

There exists a weak solution of these models; that solution is unique, and further
it is shown that it belongs to higher order Sobolev spaces and that it is also the strong
solution of the models.

We proved that the Stolz–Adams models give a good description of the local
spatial averages of fluid velocities, the modeling error converges to 0, and the rate of
convergence is also derived.

This paper provides the mathematical foundations of the Stolz–Adams models,
giving guidance for practical computations with these models.
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2000.

[4] M. Germano, Differential filters of elliptic type, Phys. Fluids, 29 (1986), pp. 1757–1758.
[5] J.L. Guermond, J. Tinsley Oden, and S. Prudhomme, Mathematical perspectives on large

eddy simulation models for turbulent flows, J. Math. Fluid Mech., 6 (2004), pp. 194–248.
[6] W. Layton and R. Lewandowski, Analysis of the Zeroth order model for Large Eddy Simu-

lation of Turbulence, technical report, 2003.
[7] W. Layton and R. Lewandowski, A simple and stable scale similarity model for large eddy

simulation: Energy balance and existence of weak solutions, Appl. Math. Lett., 16 (2003),
pp. 1205–1209.

[8] P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer-Verlag, Berlin, Heidel-
berg, New York, 2001.

[9] S. Stolz and N.A. Adams, An approximate deconvolution procedure for large eddy simulation,
Phys. Fluids, 11 (1999), pp. 1699–1701.

[10] S. Stolz, N.A. Adams, and D. Kleiser, An approximate deconvolution model for large-eddy
simulation with application to incompressible wall-bounded flows, Phys. Fluids, 13 (2001),
pp. 997–1015.

[11] S. Stolz, N.A. Adams, and D. Kleiser, The approximate deconvolution model for large-eddy
simulations of compressible flows and its applications to shock-turbulent-boundary-layer
interaction, Phys. Fluids, 13 (2001), pp. 2985–3001.

[12] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia,
1995.



SIAM J. MATH. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 37, No. 6, pp. 1903–1922

LATTICE POINTS ON CIRCLES AND DISCRETE VELOCITY
MODELS FOR THE BOLTZMANN EQUATION∗
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Abstract. The construction of discrete velocity models or numerical methods for the Boltzmann
equation, may lead to the necessity of computing the collision operator as a sum over lattice points.
The collision operator involves an integral over a sphere, which corresponds to the conservation of
energy and momentum. In dimension two there are difficulties even in proving the convergence of
such an approximation since many circles contain very few lattice points, and some circles contain
many badly distributed lattice points. However, by showing that lattice points on most circles are
equidistributed we find that the collision operator can indeed be approximated as a sum over lattice
points in the two-dimensional case. The proof uses a weak form of the Halberstam–Richert inequality
for multiplicative functions (a proof is given in the paper), and estimates for the angular distribution
of Gaussian primes. For higher dimensions, this result has already been obtained by Palczewski,
Schneider, and Bobylev [SIAM J. Numer. Anal., 34 (1997), pp. 1865–1883].

Key words. Boltzmann equation, discrete velocity model, multiplicative functions, distribution
of Gaussian primes
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1. Introduction. The phase space density f of a dilute gas evolves according to
the Boltzmann equation. In the physically relevant case, the gas would be confined to
a subset Ω ⊂ R

3, and then f(x, v, t):Ω×R
3×R

+ → R
+, where x denotes a position in

space, v ∈ R
3 is a velocity, and t denotes the time. From a mathematical point of view,

it is equally natural to consider the Boltzmann equation in any spatial dimension, and
in some cases because of symmetries of Ω, it is also relevant to consider Ω ⊂ R

d1 and
v ∈ R

d2 with d1 < d2.

By a dilute gas we mean one where the particles interact with each other essen-
tially only by pairwise interactions. Moreover, the Boltzmann equation assumes that
the particles are so small compared to other distances, that they can be considered
to be points.

Under these hypotheses, one can formally derive the Boltzmann equation (see [7])

∂tf(x, v, t) + v · ∇xf(x, v, t) = Q(f, f)(x, v, t).(1)

The left-hand side describes the evolution of the density by free transport, and the
right-hand side describes the impact of collisions. Per definition, a collision is a
pairwise interaction that takes place instantaneously and at one single point in space.
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Hence x and t appear only as parameters in Q(f, f), and we can write

Q(f, f)(v) =

∫
Rd

∫
Sd−1

(f(v′)f(v′∗) − f(v)f(v∗)) q(|w|, cos θ) dS(u)dv∗,(2)

where the velocities “before and after a collision” are related by

v′ = 1
2 (v + v∗) + |w|u

v′∗ = 1
2 (v + v∗) − |w|u,

(3)

with w = (v∗ − v)/2, and with cos θ = u·w
|w| ; dv∗ is the Lebesgue measure in R

d,

and dS(u) is the surface measure on Sd−1. Note that the pair of velocities before a
collision, v and v∗, and the pair of velocities after the collision, v′ and v′∗, are the
endpoints of a diameter on the sphere which has its center at v+v∗

2 and diameter
|v∗ − v|. This is exactly the condition needed in order that the collisions preserve the
momentum and energy of the pair of particles. For d = 2, the sphere becomes a circle,
and this motivates the title of the paper.

In a discrete velocity model (DVM), the velocities are concentrated on a (usually
finite) set of points vj ∈ R

d in the velocity space:

f(x, v, t) =
∑
j

fj(x, t)δv=vj .

The Boltzmann equation (1) is then changed into a nonlinear system of conservation
laws,

∂tfj + vj · ∇xfj =
∑

k,k′,j′

Γj′,k′

j,k (fj′fk′ − fjfk) ,(4)

where the constants Γj′,k′

j,k ≥ 0 must be chosen so that (4) makes sense from a physical
point of view. In particular, we require that (vj , vk) and (vj′ , vk′) define two diameters
on the same sphere, just as for the usual Boltzmann equation.

The first example of a discrete velocity model is that of Carleman [5], which
has two velocities in R. Many other models have been proposed, and there is vast
literature on how to construct and analyze physically realistic models (i.e., that satisfy
the right conservation laws and an entropy principle); see, e.g., [4, 24, 25].

In this paper we are not mainly concerned with the question of whether the model
we study is correct in this sense (this has actually been demonstrated in [4]), and so
we defer our discussion on this matter to the last section of the paper.

Besides offering many interesting mathematical challenges (for example, there is
no general theory of global existence of solutions to systems like (4)), the DVMs are
also candidates for the numerical approximation of the real Boltzmann equation (1).
This leads naturally to the following question, which is the subject matter of the
paper.

Suppose that we choose the discrete set of velocities to be hZ
d, i.e., the integer

lattice in R
d, scaled by a factor h, and that we take

fh(v) =
∑
ξ∈Zd

fξ,hδv=hξ,

so that fh → f , in some suitable sense, where f ∈ L1(Rd). Is it then true that
Q(fh, fh)(v) → Q(f, f)(v) for all v ∈ hZ

d when h → 0? (This property, which is
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called consistency, together with stability are the main ingredients when proving that
a numerical method converges.) The answer is yes. This was proven by Palczewski,
Schneider, and Bobylev [3] for dimensions d ≥ 3 (see also [2]). In this paper, we prove
that it is also true for d = 2, and hence for all relevant cases.

Results of this kind are interesting, because, together with the corresponding
existence results [21], they provide examples that are relevant to previous results of
Desvillettes and Mischler [8], who proved that solutions to families of DVMs can
converge to DiPerna–Lions’ solutions to (1) if certain conditions are satisfied.

Our result should not, however, be considered as relevant for numerical analysis,
because the rate of convergence is so slow that a numerical method based on the
theory presented here would hardly ever become useful.

The family of models considered here can be seen as coming from a rather straight-
forward discretization of the collision integral (2). This integral should be interpreted
as an average over the (2d− 1)-dimensional manifold defined by

Mv =
{
(v∗, v

′, v′∗) ∈ R
3d such that v′ + v′∗ − v∗ = v(5)

|v′|2 + |v′∗|2 − |v∗|2 = |v|2
}
,

and (2) is an iterated integral over this manifold. For a fixed v, we write w = (v∗−v)/2,
and then (3) becomes

v′ = v + w + |w|u
v′∗ = v + w − |w|u,

and also v∗ = v + 2w. We then write

gv(w, u) = (f(v′)f(v′∗) − f(v)f(v∗)) q(|w|, cos θ),(6)

and so (after changing variables in the integral),

Q(f, f)(v) = 2d
∫

Rd

(∫
Sd−1

gv(w, u) dS(u)

)
dw.

If g is sufficiently regular (continuous), and decays sufficiently rapidly for large w,
then the Riemann sum for the outer integral converges:

(2h)d
∑
ζ∈Zd

∫
Sd−1

gv(hζ, u) dS(u) −→ 2d
∫

Rd

(∫
Sd−1

gv(w, u) dS(u)

)
dw(7)

when h → 0. In order to construct a consistent DVM, it is then sufficient to evaluate
the inner integral in terms of the values of g on the lattice points hZ

d, in such a
way that the result converges to

∫
Sd−1 g(w, u) dS(u). While with the formula (3), the

collision integral should be taken over all u ∈ Sd−1, we have here only access to those
u for which v′ and v′∗ belong to hZ

d. But this is automatically achieved if ζ ∈ Z
d,

and if u = ζ ′/|ζ ′|, where ζ ′ ∈ Z
d and |ζ ′| = |ζ|; then for all v ∈ hZ

d,

v + hζ ± h|ζ|u ∈ hZ
d.

However, note that with this construction, the center of the sphere is restricted to lie
on a lattice point, so it excludes cases like v = (0, 0), v∗ = (h, h).
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Giving all points on the sphere equal weight, one arrives at the expression

1

rd(|ζ|2)
∑
ζ′∈Z

d

|ζ′|=|ζ|

(f(v′)f(v′∗) − f(v)f(v∗)) q(|hζ|, cos θ),(8)

for approximating the inner integral in (7). The function rd(n) denotes the number of
points with integer coordinates on a sphere in R

d with center at the origin and radius√
n, i.e., the number of integer solutions to x2

1 + · · · + x2
d = n.

We write, for all v ∈ hZ
d,

Qh(f, f)(v) = (2h)d
∑
ζ∈Zd

1

rd(|ζ|2)
∑
ζ′∈Z

d

|ζ′|=|ζ|

(f(v′)f(v′∗) − f(v)f(v∗)) q(|hζ|, cos θ).(9)

In the two-dimensional case, all the terms in the sum are 2π-periodic functions of
θ, and assuming sufficient regularity, they can be expressed as a convergent Fourier
series. It is then natural to introduce the exponential sum

S(n, k) =
∑

u∈Z2:|u|2=n

eikθu ,(10)

where θu is defined by u = |u| · (sin θu, cos θu). We will see in section 4 that to prove
that (8) converges to the angular integral in (7), it is enough to prove that for k �= 0,
there is sufficient cancellation in the exponential sums S(n, k) on average. Similar
exponential sums are relevant for any dimension, and the work of Bobylev et al. [2]
and Palczewski et al. [3] also involves such estimates.

Here the needed estimate is given as Proposition 6 in section 3. Then in section 4
we put the estimates together to a proof of the main result.

Theorem 1. Consider the Boltzmann equation in two dimensions. Assume that
f and q are so smooth that the function gv(w, u) defined in (6) is a C2-function. Then
for all v ∈ hZ

2 ∣∣Q(f, f)(v) −Qh(f, f)(v)
∣∣ → 0

when h → 0.
Section 5, finally, contains a discussion of spurious invariants and of numerical

cost. We also illustrate the distribution of points such that the circles passing through
them contain many lattice points.

A more general construction of discrete velocity models on scaled integer lattices
hZ

2 consists of finding sets of integer points on the manifold M defined in (5). In this
way, mass and energy conservation are automatically satisfied, but one also needs to
verify that these are the only conserved quantities. Finally, in order that the models
converge to the continuous model when h → 0, it is necessary that the integer points
are more or less uniformly distributed on M.

The models studied here are constructed by discretizing, one at a time, the it-
erated integrals (2). An alternative way of writing this integral was introduced by
Carleman [5]. Using that v′ − v and v′∗ − v are orthogonal, one can write (here we
specialize to d = 3)

Q(f, f)(v) =

∫
R3

∫
Ev,v′

(f(v′)f(v′∗) − f(v)f(v∗)) q(w, cos θ)
1

|v − v′|2 dE(v′∗) dv
′,
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where Ev,v′ is the plane that contains v and is orthogonal to v′−v, and where dE(v′∗)
is the Euclidean measure on this plane. Panferov and Heintz [17] have analyzed a
DVM based on this iterated integral, and proved that the method is consistent with
the continuous model. This is somehow easier, because on a given plane, one can find
all integer points by solving linear Diophantine equations. However, the density of
points depends strongly on v′−v, and so it is far from trivial to prove the consistency.
Again, the two-dimensional situation is more difficult, and has not yet been studied.

Yet another approach was introduced by Rogier and Schneider [23], who used the
theory of Farey series to discretize the angular variable in the collision integral. Some
recent, related results on DVMs can be found in [1].

2. Number theoretic background.

2.1. Points on spheres; Asymptotics. To prove that (8) converges to the
correct limit when h → 0, one has to study the set

{ζ/|ζ| : ζ ∈ Z
d, |ζ|2 = n}

and show that the points of this set are sufficiently well distributed on Sd−1 when n
is large; it is here that the number theoretical issues enter the game. Indeed, we
can view the set of points with integer coordinates on a sphere of squared radius n
centered at the origin,

{(x1, . . . xd) ∈ Z
d,

d∑
i=1

x2
i = n},

as the solution set for a quadratic form, and use the theory of integral quadratic forms
to get estimates on the number of points (see, for instance, [13]). The expected number
of points with integer coordinates on a sphere clearly depends on the dimension d.
The naive approach to find the order of magnitude for a given dimension is to use
the volume of a ball, divided by the number of spheres contained in the ball. The
volume of a ball of radius

√
n grows as nd/2 while the number of spheres is n. For

d = 2, this leads us to expect a constant number of lattice points on circles, for d = 3,
a growth proportional to

√
n, etc. However, for small d this approach is misleading;

the growth is quite irregular and depends on the divisor structure of n. For d = 2,
we will see below that only values of n of the form n = 2sq2pα1

1 . . . pαr
r , where q is a

product of primes of the form 4k + 3 and the pi’s are primes of the form 4k + 1 (see
below), yield circles with lattice points, and thus most circles have no points at all. In
fact, Landau proved in 1908 that the number of circles with at least one lattice point,
of integer squared radius smaller than x, grows as Cx/

√
log x. Moreover, there are

also infinite families of circles with very few lattice points; radii that are a power of 2
yield 4 points for instance, and radii that are the square root of a prime of the form
p = 4k + 1 yield exactly 8 points. On the other hand, the number of lattice points
on a circle is not bounded; for instance, a circle with n = p1 . . . pr as above, where all
the pi are distinct from each other, has 4 · 2r points.

In dimension 3, all values of n not of the form n = 4s(8k + 7) yield spheres
containing points with integer coordinates. This still leaves a fairly large number of
spheres having no points, but for our purposes this does not really matter, as such
spheres do not appear in the summation formulas (there is no relevant value for ζ).
Among the spheres with lattice points, multiplying the radius by a power of 2 does
not increase the number of points, but if we correct for this fact, the ratio between the
number of points and the naive estimate is bounded, up to constants only depending
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on ε, from above by nε, and below by n−ε for all ε > 0 (see [13, Chap. 4] for exact
formulas involving class numbers or L-series.)

The higher-dimensional cases behave in a somewhat more regular fashion. La-
grange proved that every positive integer can be written as the sum of four squares,
and thus for dimension d ≥ 4, every sphere whose squared radius is an integer has
lattice points. For d = 4, the number of points still oscillates rather wildly (e.g.,
spheres with radius a power of 2 only have 24 points) but for greater dimensions, the
naive estimate gives the correct asymptotic growth of the number of points.

Getting circles (or spheres) with “sufficiently many” lattice points, however, is not
quite enough for our purposes: we also require that the lattice points be sufficiently
uniformly distributed when projected on the unit sphere. In dimensions 3 and higher,
this follows from estimates on Fourier coefficients of modular forms. The case d ≥ 4,
with some restrictions on the set of numbers in which n tends to infinity when d = 4,
is due to Pommerenke [22]. For d = 3, Duke [10] and Golubeva–Fomenko [14] used
Iwaniec’s [18] estimates on Fourier coefficients of half integral weight forms to obtain
uniform distribution. Unfortunately, these techniques do not apply in dimension 2.
Moreover, there are circles with a large number of lattice points that are poorly
distributed.

Theorem 2 (see Cilleruelo [6]). For any ε > 0 and for any integer k, there exists
a circle x2 + y2 = n with more than k lattice points such that all the lattice points are
on the arcs

√
ne(π/2)(t+θ)i with |θ| < ε, t ∈ {0, 1, 2, 3}.

On the other hand, we may use some other techniques from analytic number
theory to show that lattice points on circles are equidistributed on average, and this
is good enough for our purpose.

2.2. From points on circles to Gaussian integers. In the plane, we can view
lattice points on a circle of radius

√
n, centered at the origin, as complex numbers

with integer real and imaginary parts, and squared modulus n. It might seem as a
trivial restatement, but doing so allows us to use use some techniques from algebraic
number theory. The Gaussian integers, i.e., the set

Z[i] = {x + iy ∈ C, (x, y) ∈ Z
2}

is the ring of integers of the field Q(i). It shares an important property with the
ordinary integers, namely, unique factorization,1 i.e., just as every integer in Z factors
into prime numbers, and the factorization is unique up to ordering the primes and
multiplying by −1, Gaussian integers factor into Gaussian primes, uniquely up to
ordering and multiplication by −1, i,−i (these and 1 are the units, i.e., the elements
having a multiplicative inverse in Z[i]). For a more thorough introduction to primes
in quadratic number fields, see, for instance, [16, Chap. XV].

The Gaussian primes (i.e., the elements of Z[i] that cannot be written as a product
of Gaussian integers with smaller modulus) are of three types:

• The prime numbers q ∈ Z such that q ≡ 3 mod 4 remain prime in Z[i] (e.g.,
3, 7, 11, 19, . . . ).

• For prime numbers p ∈ Z such that p ≡ 1 mod 4, there exists x, y ∈ Z such
that p = x2 +y2. Hence p factors in Z[i] as a product of two Gaussian primes

p = (x + iy)(x− iy).

For example, 5 factors into (2 + i)(2 − i) in Z[i].

1This is rather unusual; the ring of integers in most number fields will not have this property.
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• Last (and least!), 1 + i is prime. (Note that (1 + i)(1 − i) = 2 and that
1 − i = −i(1 + i) is merely “another form of the same prime,” just as 3 and
−3 represent the same prime.)

If n is the sum of two squares, then it can be factored in Z[i]:

n = X2 + Y 2 = (X + iY )(X − iY ).

If z = x + iy is a prime factor of X + iY , then z̄ = x− iy must be a prime factor of
X − iY . It follows that prime factors q ≡ 3 mod 4 of n must appear in even powers.
In addition, multiplying n by an even power of a prime q that is congruent with 3
mod 4 changes neither the number of solutions to n = X2 + Y 2 nor the distribution
of arguments of the solutions.

Suppose now that n contains a factor pα, where p ≡ 1 mod 4. The number p can
be factored in Z[i] as (x+ iy)(x− iy), and hence the multiplicity of x+ iy as a factor
of n is α, and the same is true for x− iy. It follows that the multiplicity of x + iy in
X + iY can be any integer j, with 0 ≤ j ≤ α, and the multiplicity of x − iy is then
α− j.

The same calculation can be done for powers of 2; however, the solutions given
by different choices of j in that case differ by a multiplication by a power of i, and so
the power of 2 does not influence the number of solutions.

All solutions to n = X2 + Y 2 can now be expressed as X + iY =
√
n exp(iθ),

where all possible values of the argument θ can be computed as sums of terms deriving
from the different factors of n in the following way:

1. X + iY can be multiplied by any unit, i.e., by ±1 or ±i. This gives a term
kπ/2 in the argument, k = 0, 1, 2, 3.

2. If the multiplicity of 2 in n is odd, then the argument must contain π/4, the
argument of 1 + i; the number of solutions does not change.

3. For each prime factor p ≡ 1 mod 4 in n, let αp be the multiplicity of p in
n, let p = x2

p + y2
p, and set θp = arg(xp + iyp). For a particular choice of j,

0 ≤ j ≤ αp, the argument added to X + iY is jθp − (αp − j)θp = (2j−αp)θp.
Since the choices of k and of the different j′s are independent the number of different
solutions is 4

∏
p≡1 mod 4(αp + 1).

2.3. Results on the distribution of primes and on the angular distribu-
tion of points. We will need the results that follow.

Theorem 3 (Merten’s theorem, see [16, Chap. 22.8]).∏
p≤x

p prime

(1 − 1/p) ∼ e−γ/ log x,

where γ � 0.57 is Euler’s constant.
As for the angular distribution of Gaussian primes, a result by Kubilyus gives

that the angles {θp}p≡1 mod 4 are equidistributed in [0, π/4] as shown in the following
theorem.

Theorem 4 (Kubilyus [20]). The number of Gaussian primes ω in the sector
0 ≤ α ≤ arg(ω) ≤ β ≤ 2π, |ω|2 ≤ u is equal to

2

π
(β − α)

∫ u

2

dv

log v
+ O

(
u exp(−b

√
log u)

)
,

where b is an absolute positive constant.



1910 LAURA FAINSILBER, PÄR KURLBERG, AND BERNT WENNBERG

From Kubilyus’ theorem, it is straightforward to deduce (see [11, p. 92]) the
following corollary.

Corollary 5. If k ∈ 4N and log k ≤ b
√

log x, then∑
p≤x

p≡1 mod 4

| cos(kθp)|
p

≤ 1

π
log log x + (1 − 2/π) log log k + O(1).

3. Equidistribution of lattice points on circles. What is needed for the
proof of consistency of the discrete velocity model are estimates on the equidistribution
of lattice points on circles, and the aim of this section is to show that lattice points
on circles are equidistributed on average.

Let r(m) = r2(m) be the number of integer solutions to x2 + y2 = m. We recall
the definition of S(m, k):

S(m, k) =
∑

|w′|2=m

eikθw′ .

Proposition 6. If 4 � k, then |S(m, k)| = 0. If 4|k and k �= 0, there exist C and
b > 0 such that

log

⎛
⎝ 1

X

∑
m≤X

|S(m, k)|

⎞
⎠ ≤ C − (1 − 2/π) log

(
logX

(log |k|)2

)

for X sufficiently large and log |k| ≤ b
√

logX.
Remark. The mean discrepancy of the distribution of angles of Gaussian integers

was studied by Kátai and Környei in [19], and by Erdős and Hall in [11]. Our method
is similar to theirs, except that they bound

1

X/
√

logX

∑
m≤X

|S(m, k)|
r(m)

instead of

1

X

∑
m≤X

|S(m, k)|.

The proof is based on the observation that |S(m, k)|/4 is a multiplicative function,
i.e., a function f : N → C such that f(mn) = f(m)f(n) for all m,n such that
(m,n) = 1. It turns out that the mean value of a multiplicative function, under
fairly general circumstances, can be bounded in terms of an exponential of a sum
over primes. To make the paper more self-contained, we include a weak form of the
Halberstam–Richert inequality (cf. [15]).

Theorem 7. Let f be a nonnegative multiplicative function such that∑
n≤x

f(n) = O(x),(11)

and f(pk) = O(k) for all primes p and k ≥ 1. Then there exists C > 0 such that

1

X

∑
m≤X

f(m) ≤ C · exp

⎛
⎝∑

p≤X

f(p) − 1

p

⎞
⎠ + O

(
1

logX

)

for all sufficiently large X.
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Proof. Following Wirsing [26], let

F (t) =
∑
n≤t

f(n).

Then ∫ X

1

F (t)

t
dt = F (X) logX + O(1) −

∑
n≤X

f(n) log n.

On the other hand, by assumption, we have F (t) = O(t), thus

∫ X

1

F (t)

t
dt = O(X),

and hence

F (X) logX ≤ O(1) + X +
∑
n≤X

f(n) log n.

Using log n =
∑

d|n Λ(d), where Λ is the von Mangoldt function,2 we have

∑
n≤X

f(n) log n =
∑
n≤X

f(n)
∑
d|n

Λ(d) =
∑
d≤X

Λ(d)
∑

m≤X/d

f(dm)

=
∑
d≤X

Λ(d)
∑

m≤X/d,
(m,d)=1

f(dm) +
∑
d≤X

Λ(d)
∑

m≤X/d,
(m,d)>1

f(dm).(12)

Now, since Λ(d) = 0 unless d is a prime power, we have∑
d≤X

Λ(d)
∑

m≤X/d,
(m,d)>1

f(dm) =
∑

pk+l≤X
k,l≥1

log(p)
∑

m≤X/pk+l

(p,m)=1

f(pk+lm)(13)

=
∑

pk+l≤X
k,l≥1

log(p)f(pk+l)
∑

m≤X/pk+l

(p,m)=1

f(m).

By the assumptions on f ,

f(pk+l)
∑

m≤X/pk+l

(p,m)=1

f(m) ≤ O(k + l)
∑

m≤X/pk+l

f(m) = O

(
(k + l)

X

pk+l

)
,

and thus the second term in (12) is

= O

⎛
⎜⎜⎝ ∑

pn≤X
n≥2

log(p)n2 X

pn

⎞
⎟⎟⎠ = O(X),

2That is, Λ(d) = log p if d = pk and k ≥ 1; otherwise Λ(d) = 0.
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since ∑
p

∑
n≥2

log(p)n2p−n ≤
∑
p

log(p)

p2

∑
m≥0

(2 + m)22−m < ∞.

As for the first term in (12), we have (recall that f is multiplicative and nonneg-
ative) ∑

d≤X

Λ(d)
∑

m≤X/d,
(m,d)=1

f(dm) =
∑
d≤X

Λ(d)f(d)
∑

m≤X/d,
(m,d)=1

f(m)

≤
∑
m≤X

f(m)
∑

d≤X/m

Λ(d)f(d).

Now, ∑
d≤X/m

Λ(d)f(d) =
∑

pk≤X/m
k≥1

log(p)f(pk) ≤
∑

pk≤X/m
k≥1

log(p)O(k) = O(X/m)

since ∑
p≤X/m

log(p) = O(X/m)

by the prime number theorem, and∑
pk≤X/m

k≥2

k log(p) = O
(
(X/m)1/2 log3(X/m)

)
= O(X/m).

Thus,

∑
m≤X

f(m)
∑

d≤X/m

Λ(d)f(d) = O

⎛
⎝ ∑

m≤X

f(m)
X

m

⎞
⎠ .

But since f is nonnegative and multiplicative, we have

∑
m≤X

f(m)

m
≤

∏
p≤X

(
1 + f(p)/p + f(p2)/p2 + . . .

)

≤
∏
p≤X

(
(1 + f(p)/p) ·

(
1 + f(p2)/p2 + f(p3)/p3 + . . .

))
,

and since ∑
p≤X

(
f(p2)/p2 + f(p3)/p3 + . . .

)
≤

∑
p

∑
k≥2

O(k)

pk
< ∞,

we find that

∑
m≤X

f(m)

m
= O

⎛
⎝∏

p≤X

(1 + f(p)/p)

⎞
⎠ .
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Thus,

F (X) logX = O

⎛
⎝X + X ·

∏
p≤X

(1 + f(p)/p)

⎞
⎠ ,

and hence

F (X)

X
= O

(
1

logX
+

∏
p≤X (1 + f(p)/p)

logX

)
.

Now, by Merten’s theorem, we have

∏
p≤X

(1 − 1/p) ∼ e−γ

logX
,

and thus

F (X)

X
= O

⎛
⎝ 1

logX
+

∏
p≤X

(
1 +

f(p) − 1

p
− f(p)

p2

)⎞⎠

= O

⎛
⎝ 1

logX
+ exp

⎛
⎝∑

p≤X

f(p) − 1

p

⎞
⎠
⎞
⎠ .

Proof of Proposition 6. To see that |S(m, k)/4| is a multiplicative function, it is
enough to recall the factorization of m into Gaussian primes. Namely, if pα1

1 , . . . , pαJ

J

are all prime factors of m with p ≡ 1 mod 4,

S(m, k) =

3∑
	=0

ik	
α1∑

j1=1

· · ·
αJ∑

jJ=1

eik(θ0+(α1−2j1)θp1
+···+(αJ−2jJ )θpJ ).

Here θ0 is a multiple of π/4 which comes from powers of 2 in m, and the θpj can be
computed from the Gaussian factorization as described in section 2.2. Also, because∑3

	=0 i
k	 = 4 if 4 | k and zero otherwise,

|S(m, k)|
4

=

∣∣∣∣∣∣
α1∑

j1=1

· · ·
αJ∑

jJ=1

eik((α1−2j1)θp1
+...+(αJ−2jJ )θpJ )

∣∣∣∣∣∣ ,
and this sum clearly factors, each factor containing a sum of terms corresponding to
one of the prime factors p. Hence

fk(m) =
|S(m, k)|

4

is a nonnegative multiplicative function, as stated. In addition it satisfies fk(m) ≤
r(m)/4 for all m. Thus, since

∑
n≤T

r(n) = |{x, y ∈ Z : x2 + y2 ≤ T}| ∼ π
(√

T
)2

= πT,
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we have ∑
n≤T

fk(n) = O(T ).

Moreover, if p ≡ 3 mod 4, then

fk(p
l) =

{
1 if l is even,

0 if l is odd,
(14)

and if p ≡ 1 mod 4, then

fk(p
l) =

∣∣∣∣∣∣
l∑

j=0

eik(l−2j)θp

∣∣∣∣∣∣ ,(15)

and thus fk(p
l) ≤ l+1 for all primes p and l ≥ 1. The assumptions in Theorem 7 are

thus satisfied, and we obtain

1

X

∑
m≤X

|S(m, k)| =
4

X

∑
m≤X

fk(m) ≤ C exp

⎛
⎝∑

p≤X

fk(p) − 1

p

⎞
⎠ + O

(
1

logX

)
.

Now, by (14) and (15), we have

fk(p) =

{
2| cos(kθp)| if p ≡ 1 mod 4,

0 if p ≡ 3 mod 4.

Hence

∑
p≤X

fk(p) − 1

p
=

∑
p≤X

p≡1 mod 4

2| cos(kθp)|
p

−
∑
p≤X

1

p
.

By Corollary 5,

∑
p≤X

p≡1 mod 4

2| cos(kθp)|
p

≤ 2

π
log logX + 2(1 − 2/π) log log k + O(1)

if log k ≤ b
√

logX. By Merten’s theorem,

∑
p≤X

1

p
= log logX + O(1),

and thus

∑
p≤X

fk(p) − 1

p
≤ (2/π − 1) log log x + 2(1 − 2/π) log log k + O(1).
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4. Proof of Theorem 1. Here we carry out the steps of the proof as indicated
in the introduction. First recall that the collision operator can be written

Q(f, f)(v) = 4

∫
R2

(∫ π

−π

gv(w, θ) dθ

)
dw,(16)

where, if we identify u ∈ S1 with θ ∈ [−π, π[,

gv(w, θ) = q(|w|, cos(θ)) (f(v′)f(v′∗) − f(v)f(v∗)) ,

and

v′ = v + w + Rθw,

v′∗ = v + w −Rθw;

as before, w = (v∗ − v)/2, and Rθ denotes a rotation by an angle θ. Writing the
Boltzmann equation for two-dimensional velocities, we have of course already stepped
away from the physically realistic case. Disregarding this, a common assumption on
q is that

q(|w|, cos(θ)) = q1(|w|)q2(θ),

where q1(|w|) ∼ |w|α for some α ∈ [0, 1], and where q2(θ) ∼ |θ|−γ for some γ ∈]1, 3[.
This corresponds to a molecular interaction by hard inverse power law forces. With
the stronger assumption that q1 is smooth and strictly positive, it is possible to prove
that there is a smooth solution f(v, t) to the Boltzmann equation (see [9]), and then
this also gives some regularity to g(w, θ), in spite of the singularity of q2.

However, much work on the Boltzmann equation has been done with the hypoth-
esis that q is bounded or continuous with respect to θ. With that assumption, the
solution f(v, t) keeps exactly the regularity of the initial data.

Because of this, it is appropriate to assume whatever regularity of the solutions
that is needed for the computations. With the aim of making the calculations easy,
Theorem 1 has been written with unnecessarily strong hypotheses.

To simplify notation a little, let

Gv(w) =

∫ π

−π

gv(w, θ) dθ,

in the continuous case, and for the discrete case (where we assume, of course, that
v ∈ hZ

2)

Gh
v (hζ) =

1

r(|ζ|2)
∑
ζ′∈Z

d

|ζ′|=|ζ|

gv(hζ, θ),

where θ is the angle between ζ ′ and ζ. As before, r(|ζ|2) denotes the number of integer
points on a sphere with radius |ζ|.

Let

Zh,R = {z ∈ Z
2 such that |z| ≤ R/h}(17)
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for some R > 0 (this is the most natural example, but other choices might be more
efficient). We want to prove that

Q(f, f)(v) − (2h)2
∑

ζ∈Zh,R

Gh
v (hζ) → 0(18)

when h → 0, and also make as precise a statement as possible about the rate of
convergence, and thus give a more explicit version of Theorem 1.

Theorem 8. Suppose that gv(w, θ) in (16) satisfies:

(1) gv(w, θ) is a C1-function w.r.t. w,
(2) gv(w, θ) is a C2-function w.r.t. θ, and
(3) ‖gv(·, θ)(1 + | · |2)‖L1(dw) ≤ C.

(This holds, e.g., if the function f and the cross section q are C2.) For given R > 0
and h > 0, let Zh,R be as in (17). Then given ε > 0 there are reals R > 0 and h > 0
such that ∣∣∣∣∣∣Q(f, f)(v) − (2h)2

∑
ζ∈Zh,R

Gh
v (hζ)

∣∣∣∣∣∣ ≤ ε.

Proof. We still consider Q(f, f) as an iterated integral, and write (for v ∈ hZ
2)

Q(f, f)(v) − (2h)2
∑

ζ∈Zh,R

Gh
v (hζ) =

∫
R2

Gv(w) dw − (2h)2
∑

ζ∈Zh,R

Gv(hζ)

+(2h)2
∑

ζ∈Zh,R

(
Gv(hζ) −Gh

v (hζ)
)
.(19)

From the third part of the hypothesis on g (which is implied by a decay of f(v)
for large velocities), it follows that for all R > 0,∫

|w|≥R

Gv(w) dw ≤ C1

R2
.(20)

Continuity of Gv(w) would be enough to conclude that∣∣∣∣∣∣
∫
|w|<R

Gv(w) dw − (2h)2
∑

ζ∈Zh,R

Gv(hζ)

∣∣∣∣∣∣ → 0

when h → 0. The hypothesis on gv(w, θ) implies that actually Gv(·) ∈ C1, and there
is a constant C2 such that the difference is smaller than

C2R
2h = C max

w,j
|∂wjGv(w)| R2h.(21)

Next we turn to the difference Gv(hζ) −Gh
v (hζ), i.e.,

1

2π

∫ π

−π

gv(hζ, θ) dθ −
1

r(|ζ|2)
∑
ζ′∈Z

2

|ζ′|=|ζ|

gv(hζ, θ),(22)
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(recall that in the second term, θ is the angle between ζ ′ and ζ). We first write the
periodic function gv(hζ, θ) as a Fourier series,

gv(hζ, θ) =
∑
k∈Z

ĝv(ζ, k)eikθ,

where

ĝv(ζ, k) =
1

2π

∫ π

−π

gv(hζ, θ)e
−ikθ dθ.

The assumptions on g imply the existence of a constant C3 so that

|ĝv(ζ, k)| ≤ C3

1 + k2
.(23)

Then (22) becomes

ĝv(ζ, 0) − 1

r(|ζ|2)
∑
ζ′∈Z

2

|ζ′|=|ζ|

ĝv(ζ, 0) +
1

r(|ζ|2)
∑
ζ′∈Z

2

|ζ′|=|ζ|

∑
k 	=0

ĝv(ζ, k)eikθ,

where the first terms cancel out, and only last sum remains. We next split that sum
into a part with |k| ≤ M , and a remainder, which can be made small by choosing M
large, if g is sufficiently smooth with respect to θ. Using (23),∣∣∣∣∣∣∣∣∣

1

r(|ζ|2)
∑
ζ′∈Z

2

|ζ′|=|ζ|

∑
|k|≥M

ĝv(ζ, k)eikθ

∣∣∣∣∣∣∣∣∣
≤ 2

C3

M
.

To find the contribution of this term to (19), we multiply by (2h)2 and sum over
ζ ∈ Zh,R to find a bound of the form

R2C4

M
.(24)

For the remaining part, using (23) again, we find a bound of the form∣∣∣∣∣∣∣∣∣
∑

0<|k|<M

C3

1 + k2

1

r(|ζ|2)
∑
ζ′∈Z

2

|ζ′|=|ζ|

eikθ

∣∣∣∣∣∣∣∣∣
≤ max

0<|k|<M

∣∣∣∣S(|ζ|2, k)

r(|ζ|2)

∣∣∣∣ · ∑
0<|k|<M

C3

1 + k2
.(25)

Adding the error terms (20), (21), (24) and (25) gives

|Q(f, f)(v) −Qh(fh, fh)(v)|

≤ C1

R2
+ C2R

2h +
R2C4

M
+ C3(2h)2 max

0<|k|<M

∑
ζ∈Zh,R

∣∣∣∣S(|ζ|2, k)

r(|ζ|2)

∣∣∣∣ .(26)

In the sum on the right-hand side,

∑
ζ∈Zh,R

∣∣∣∣S(|ζ|2, k)

r(|ζ|2)

∣∣∣∣ =
∑

n<(R/h)2

∣∣S(n, k)
∣∣,
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and this can be estimated by using Proposition 6 with X = (R/h)2. To do this, we
must require that

R/h > exp
(
log(M)2/b

)
(27)

for some positive constant b. Then there is a constant C5 such that

∑
n<(R/h)2

∣∣S(n, k)
∣∣ ≤ C5

(
R

h

)2

exp

(
−
(

1 − 2

π

)
log

(
(R/h)2

)
(logM)

2

)
.

The last term in (26) will always be the dominating one, and at this point, it
does not give much to try to optimize the choices of R, M and h. Hence to achieve
an error of magnitude ε we

1. Take R =
√

4C1/ε,
2. Observe that we must have h < ε/(4R2C2) = ε2/(4C1C2), and
3. Choose M = 4R2C4/ε = 64C1C4/ε

2.
With these choices of R and M , the last term can then be bounded by

4C3C5
4C1

ε
exp

(
−
(

1 − 2

π

)
log

log(4C1/(εh
2))

(log(64C1C4/ε2))
2

)
,(28)

which converges to zero when h → 0, and so there is an h so small that also the last
term in (26) is smaller than ε/4. We see that in order to achieve an error of magnitude
ε, one must take h very small:

h = o
(
exp

(
−2 (log ε)

2
ε−2/(1− 2

π )
))

(note that (27) is then satisfied).

5. Some remarks. From a numerical point of view, the discretization discussed
above would be far too costly. It is most common to express the rate of convergence
by giving an estimate of the error as a function of h, which in our case is the lattice
parameter. The proof of Theorem 8 gives an estimate of h needed to achieve an error
of the order ε, and this corresponds to a rate of convergence of the order (log(1/h))p,
where p < (1 − 2/π)/2. This can then be used to give an estimation of the computa-
tional cost. A discrete velocity model with N velocities would at least correspond to
a computational cost of O(N) per time step, because one needs to compute a value
for each velocity. When the collision term is computed by the sum (18), the cost is
O(N2) times some logarithmic factor of N (which comes from the summation over
the points on the circles). Because N ∼ h−2, we can conclude that N >> exp(ε−c)
for some positive constant c. It seems clear that this kind of DVM will rarely be
useful for numerical computations.

However, disregarding the computational cost, there is also another interesting
issue with this kind of discrete velocity model, namely, the possibility of spurious
invariants. By a collision invariant, we mean a function Ψ(v) that satisfies

∀(j, k, j′, k′) such that Γj′,k′

j,k > 0,

Ψ(vj) + Ψ(vk) = Ψ(vj′) + Ψ(vk′).(29)

The only invariants should be those corresponding to the conservation of mass, mo-
mentum and energy, i.e.,

Ψ(v) = 1, Ψ(v) = b · v (b ∈ R
2), and Ψ(v) = |v|2.

All other functions satisfying (29) are called spurious invariants.
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Fig. 1. Lattice points such that circles through these points contain at least 72 lattice points.

It is interesting to note that the present planar lattice model does not admit any
spurious invariants, at least under some very modest requirements on the differential
cross section (29). The proof, which can be found in [4], is constructive and basically
works in the following way: Starting from a model which is known to possess the cor-
rect invariants, one adds one point at a time in such a way that the correct invariants
are maintained. The planar lattice models that we study in this paper can thus be
obtained by adding points to the Broadwell model, which consists of the velocities
(±1, 0), (0,±1), extended with the point (0, 0).

Another question one might ask is whether it is always essential to avoid spurious
invariants. When considering whole families of models, one can at least imagine two
different definitions of a spurious invariant. Taking into account the scaling of the
lattice with respect to the total number of velocity points, N , the definition of a
collision invariant would be

∀(j, k, j′, k′) such that Γj′,k′

j,k > 0,

Ψ(hNvj) + Ψ(hNvk) = Ψ(hNvj′) + Ψ(hNvk′),(30)

where hN is the lattice parameter corresponding to a given model with N velocities. A
“strong invariant” would then be a function Ψ that satisfies (30), for all N sufficiently
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Fig. 2. Lattice points such that circles through these points contain at least 72 lattice points
(small dots), or at least 192 points (large dots).

large, or for a large set of N ∈ Z. However, besides the desired ones, such functions
cannot exist in our case, because that would contradict the strong convergence result,
namely, Theorem 8.

Although the estimated rate of convergence indicates that the computational cost
would be prohibitive for a model with many velocities, it is still possible to carry out
simulations. In a companion paper [12], a numerical calculation on a 400×400 grid is
reported. This calculation could not have been done with a reasonable computational
effort if all terms in (9) had been included. To reduce the number of terms, we chose
to only include those ζ for which r2(|ζ|2) is larger than an (arbitrary) threshold. To
justify this, one should check that the remaining points are well distributed, and one
should verify that there are no spurious invariants in the reduced model.

Proposition 6, which gives an effective estimate on the equidistribution of points,
is indirect, and it is interesting to see how the points ζ ∈ Z

2 ζ are distributed. We
consider {ζ = (ζ1, ζ2) ∈ Z

2 such that ζ1, ζ2 ≥ 0, |ζ| < 20000}. This is an extremely
large set of points, which corresponds to a huge number of velocities (the O(N2) factor
would in this case be of the order 1017, which is, of course, absurd).
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Among the circles with radii |ζ| in this set, the largest number of points on one
circle is 384. In Figure 1, we show all points ζ = (ζ1, ζ2) with 0 < ζi < 2000 such
that the circle passing through ζ has more than 72 points. There are 36163 points in
this set. This is a small fraction of the total number of integer points, but they are
seemingly well distributed, except near the origin.

Figure 2 shows points in the range 10000 ≤ ζi ≤ 12000. Here the small dots
denote points on circles having at least 72 points, and the larger dots denote points
on circles with at least 192 points (there are 141562 and 1120 points, respectively, in
these sets).

As for the question of spurious invariants in this restricted model, this can be
checked by an algorithm based on the Bobylev–Cercignani [4] construction. We refer
to [12] for a more detailed description of this, but it is interesting to note that if
admissibility of the model (i.e., the absence of spurious invariants) is all that one is
interested in, then it is in many cases sufficient to use only points lying on circles
with just one radius |ζ|. This could be chosen to be a radius giving many points
on the corresponding circle, and thus a good approximation of the angular integral.
However, the integral over R

2 would be poorly approximated.

Acknowledgment. We would like to thank A. Bobylev, J. Brzezinski, A. Heintz,
and Z. Rudnick for useful discussions.
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MASS CONCENTRATION PHENOMENON FOR THE QUINTIC
NONLINEAR SCHRÖDINGER EQUATION IN ONE DIMENSION∗

NIKOLAOS TZIRAKIS†

Abstract. We consider the L2-critical quintic focusing nonlinear Schrödinger equation (NLS)
on R. It is well known that H1 solutions of the aforementioned equation blow up in finite time. In
higher dimensions, for H1 spherically symmetric blow-up solutions of the L2-critical focusing NLS,
there is a minimal amount of concentration of the L2-norm (the mass of the ground state) at the
origin. In this paper we prove the existence of a similar phenomenon for the one-dimensional case
and rougher initial data, (u0 ∈ Hs, s < 1), without any additional assumption.
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1. Introduction. This paper continues the investigation of the quintic nonlinear
Schrödinger equation (NLS) in one dimension that we started in [27]:

iut + uxx ± |u|4u = 0,

u(x, 0) = u0(x) ∈ Hs(R), t ∈ R.
(1)

The (+) sign in front of the nonlinearity corresponds to the focusing NLS while the
(−) sign corresponds to the defocusing NLS. The Cauchy problem for (1) is known to
be locally well-posed in Hs(R) for s > 0 (see [4]). A local result also exists for s = 0,
but the time of existence depends on the profile of the data as well as the norm. NLS
is an infinite-dimensional Hamiltonian system with energy space H1. It also has a
scaling property. Thus u(x, t) is a solution of (1) with initial data u0 if and only if

uλ(x, t) =
1

λ1/2
u

(
x

λ
,
t

λ2

)

is a solution to the same equation with initial data u0(
x
λ ). In [27] we extend the local

existence theorem for the defocusing NLS for all times. We do so by iterating the
local result in the appropriate norms. To iterate the local result by standard limiting
arguments we just need an a priori bound for our solutions in Hs. This bound comes
from the next theorem that we proved in [27].

Theorem 1. Let u be a global H1 solution to (1) with the (−) sign. Then for
any T > 0 and s > 4/9 we have that

sup
0≤t≤T

‖u(t)‖Hs � C(‖u0‖Hs,T ),

where the right-hand side does not depend on the H1-norm of u.
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Remark 1. Note that in the focusing case (where in front of the nonlinearity we
have the (+) instead of the (−) sign) we can also proved global well-posedness for
4/9 < s ≤ 1/2, but with the crucial assumption that ‖u0‖L2 < ‖Q‖L2 , where Q is the
unique positive solution (up to translations) of

Qxx −Q + |Q|4Q = 0.

In [29], Q was solved explicitly as Q(x) = 3
1
4√

cosh(2x)
and then ‖Q‖2

L2 =
√

3π
2 . In

the same paper the author also proved a result that we will use below, namely that
C = ‖Q‖−4

L2 is the best constant in the Gagliardo–Nirenberg inequality

1

6
‖u‖6

L6 ≤ C

2
‖∇u‖2

L2‖u‖4
L2 .

We used the “I-method” that was recently introduced by Colliander et al. [5, 7, 8, 9].
This method allows us to define a modification of the energy functional that is “almost
conserved”; that is, its time derivative decays with respect to a very large parameter.
Since an implementation of this method also gives the main result of this paper, the
details of the method are delayed until the next section. As we mentioned above for
the focusing case, the solutions blow up in H1, in finite time. An elementary proof
of the existence of blow-up solutions has been known since the 1960s, but is based
on energy constraints and is not constructive (see [26]). In particular, no qualitative
information of any type is obtained for the blow-up dynamics. A lower estimate for
the blow-up solutions in H1 is given by Theorem 2 using the scaling and the local
existence theorem (see [3]).

Theorem 2. Let [0, T �) be the maximal interval of existence of the following
Cauchy problem:

iut + uxx + |u|4u = 0,

u(x, 0) = u0(x) ∈ H1(R), t ∈ R.
(2)

If u0 ∈ H1 is such that T � < ∞, then there exists a C such that

‖ux‖L2 ≥ C

(T � − t)
1
2

for 0 ≤ t < T �. This bound is often called the scaling bound. It is also fairly easy
to show that ‖u(t)‖Lp blows up for p > 2. In particular we have

‖u‖Lp ≥ C

(T � − t)
1
4−

1
2p

for p > 2.
Because it is related to the scaling symmetry of the problem, the above lower

bound has long been conjectured to be optimal. But in 1988, Landman, et al. [14]
suggested that the correct and stable blow-up speed is a slight correction to the scaling
bound:

‖ux‖L2 ∼
√

log | log |T � − t||
T � − t

.
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In this framework Perelman [24] has constructed a family of blow-up solutions for
which

(
log | log |T � − t||

T � − t

)− 1
4

‖u(t)‖L∞ → c > 0

as t → T �, which is very close to but different from the scaling bound. Moreover, for
initial data in some special class, Merle and Raphael [18, 19] recently showed that for
t close to T �, there is a universal constant C� such that

‖ux‖L2 ≤ C�

√
log | log |T � − t||

T � − t
,

as suggested by the numerics in [14]. Finally it is worth noting that an easy application
of the pseudoconformal transformation yields interesting information on the blow-up
solutions. In particular we can show that some solutions blow up twice as fast as the
scaling bound. For details see [2] and [28]. The above results show in particular that
at least two different blow-up estimates are actually achieved.

Another property of the blow-up solutions in the critical case is the phenomenon
of mass concentration [3, 26]. For H1 solutions, there is a concentration of a finite
amount of mass in a neighborhood of the focus of width slightly larger than (T �−t)1/2.
For radial initial data in dimension d ≥ 2 there is a precise lower bound on the amount
of concentrated mass in terms of the mass of the ground state Q (see [20]). More
precisely we have the following.

Let d ≥ 2 and let γ : (0,∞) → (0,∞) be any function such that γ(s) → ∞ and
s1/2γ(s) → 0 as s ↓ 0. Finally, let u0 ∈ H1(Rd) be radial symmetric. Then if u(x, t)
is the maximal solution of the equivalent of (2) in higher dimensions and T � < ∞, we
have

lim inf
t↑T�

‖u(t)‖L2

{|x|<|T�−t|1/2γ(T�−t)}
≥ ‖Q‖L2 ,

where Q is the ground state solution of the elliptic equation Qxx −Q + |Q| 4dQ = 0.
In the nonradial case and in dimension d = 1 this was generalized by Nawa

[22] using concentration compactness techniques [15, 16]. In addition to the scaling
properties of the NLS, the main ingredients in the proof that H1 blow-up solutions
concentrate at least the mass of the ground state are

(i) the conservation of mass

‖u(t)‖L2 = ‖u0‖L2

and the energy

E(u)(t) = E(u0),

where

E(u) =
1

2

∫
|ux(t)|2dx− 1

6

∫
|u(t)|6dx,

(ii) a precise Galiardo–Nirenberg inequality which implies that nonzero H1 func-
tions of nonpositive energy have at least ground state mass.
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The purpose of this paper is to investigate the mass concentration phenomenon in
Hs, for s < 1, where the conservation of energy cannot be used. Using the I-method
we show that solutions of (2) with a finite maximal (forward) existence interval are
expected to concentrate at least the L2-mass of the ground state in Hs for s < 1.
More precisely we have the following theorem.

Theorem 3. Suppose Hs � u0 −→ u(t) with s > 0 solves (2) on the maximal
interval of existence [0, T �) with T � < ∞. Then for any 1 > s > 10

11 there exists a
positive function γ(x) ↑ ∞ arbitrarily slowly as x ↓ 0 and a real function z(t) such
that

lim sup
t↑T�

‖u(t)‖L2

{|x−z(t)|<(T�−t)
s
2 γ(T�−t)}

≥ ‖Q‖L2 .

Remark 2. In a recent preprint, Colliander, et al. [11] considered the two-
dimensional (2D) focusing critical NLS and proved a similar theorem with the addi-
tional assumption of radial symmetry. The radial symmetry assumption is needed in
order to pass from weak to strong convergence since the general embedding H1(Rd) ↪→
L2(Rd) is not compact. But as the four authors noted in [11], one can utilize the
concentration compactness method of Lions [15, 16] and prove the analogous theo-
rem in two dimensions. The one-dimensional case that we are dealing with has some
similar features but also significant differences. First, in the one dimensional case,
the radial assumption does not play a role. More precisely, in one dimension, radial
symmetry is not enough for a bounded sequence in H1 to have a strongly convergent
subsequence in Lp for 2 < p < ∞, although the latter is true if we further assume that
the sequence in question is a nonincreasing function of |x| for every n ≥ 0. (For the
above discussion the reader can also consult [25]). So we have to prove Theorem 3 by
implementing techniques different from those used in [11]. Second, the nonlinearity
has a fifth power, and thus the correction terms in the “modified energy” have larger
growth. We take advantage of the fact that at each step we work on [0, δ] and prove
a stronger proposition about the decay of the “modified energy” and thus somehow
balance the additional correction terms with the greater decay that we prove. Finally,
the crucial Lemma 3 that we use in one dimension is true only if the frequencies of
the two solutions are separated. In higher dimensions the analogous lemma holds in
general [1], although we avoid this difficulty in one dimension by analyzing further
the correction terms of the “modified energy”; see Proposition 5.

Remark 3. As we mentioned before, to prove the theorem we use a combination
of the concentration compactness and the I-method. Since the energy is infinite
for initial data in Hs we define a “modified energy,” E(Iu), which is finite, where
I : Hs → H1 is a multiplier operator defined below. The crucial step is to prove that
the modified total energy grows more slowly than the modified kinetic energy

1

2

∫
|Iux(t)|2dx.

These two steps are shown in Propositions 5 and 3, respectively. Note that Proposition
5 relies on the local theory that we shall establish in Proposition 1.

Remark 4. Let p(s) be a number that depends on s and for the range of s in
Theorem 3, (10/11 < s < 1), it is p(s) < 2. The statement that the modified total
energy grows more slowly than the modified kinetic energy is reflected exactly on
p(s) < 2 and is proven in Proposition 3 below. Note also that our concentration
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width (T � − t)
s
2 is larger than (T � − t)

1
2 with which ground state mass concentration

is conjectured to occur.
Two quick by-products of the above theorem follow. The first is the conjecture

that tiny L2 mass concentration cannot occur when u0 ∈ L2, a question that was
asked in [21]. See also the relevant result of Bourgain [1]. The second is the following
lemma which, as we mention on the first page, is basically a result of the work in [27].

Lemma 1. If u0 ∈ Hs, s > 10
11 , and ‖u0‖L2 < ‖Q‖L2 , then the initial value

problem (2) is globally well-posed.
We end this section by introducing some useful notation. In what follows we use

A � B to denote an estimate of the form A ≤ CB for some constant C. If there
exist constants C and D such that DB ≤ A ≤ CB, we say that A ∼ B, and A � B
to denote an estimate of the form A ≤ cB for small constant c > 0. In addition,
〈a〉 := 1 + |a| and a± := a± ε.

2. Linear and bilinear estimates. Before we state the linear and bilinear
estimates that we will use throughout this paper, we recall some basic facts about the
Xs,b spaces. For an equation of the form

iut − φ(−i∇)u = 0,(3)

where φ is a measurable function, let Xs,b be the completion of S(Rd+1) with respect
to

‖u‖Xs,b = ‖〈ξ〉s〈τ + φ(ξ)〉bû(ξ, τ)‖L2
ξL

2
τ
.

From the above definition it is clear that the dual space of Xs,b
τ=φ(ξ) is X−s,−b

τ=−φ(−ξ).

Furthermore for a given interval I, we define

‖f‖Xs,b(I) = inf
f̃|I=f

‖f̃‖Xs,b .

In our case, the interval of existence of the local solutions will be [0, δ] and we write

Xs,b
δ = Xs,b

[0,δ]. Since conjugate solutions will not play any role in our arguments from

now on, we omit any reference to the difference between u and ū. We know that if u
is a solution of (3) with u(0) = f and if ψ is a cut-off function in C∞

0 with support of
ψ ⊂ (−2, 2), ψ = 1 on [0, 1], ψ(−t) = ψ(t), ψ(t) ≥ 0, ψδ(t) = ψ( t

δ ), then if 0 < δ ≤ 1,
we have that for b ≥ 0

‖ψ1u‖Xs,b ≤ C‖f‖Hs .(4)

In addition, if ν is a solution of

iνt − φ(−i∇)ν = F

with ν(0) = 0, then for b
′
+ 1 ≥ b ≥ 0 ≥ b

′
> − 1

2 ,

‖ψδν‖Xs,b ≤ Cδ1+b
′
−b‖F‖

Xs,b
′ .(5)

The proofs of (4) and (5) can be found in [12]. The Strichartz estimates for the
Schrödinger equation on R

d state that for q, r ≥ 2 such that (d, q) �= (2, 2) and
0 ≤ 2

q = d( 1
2 − 1

r ) < 1, we have that

‖eitΔu0‖Lq
tL

r
x

� ‖u0‖L2(Rd).(6)
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In particular, in one dimension we have

‖eit∂2
xu0‖L6

tL
6
x

� ‖u0‖L2(R)

and

‖eit∂2
xu0‖L∞

t L2
x

� ‖u0‖L2(R),

which by a standard argument gives

‖u‖L6
tL

6
x

� ‖u‖
X

0,1/2+
δ

(7)

and

‖u‖L∞
t L2

x
� ‖u‖

X
0,1/2+
δ

.(8)

By the Sobolev embedding theorem in one dimension, (8) implies that

‖u‖L∞
t L∞

x
� ‖u‖

X
1/2+,1/2+
δ

.(9)

Also by interpolation between (7) and the trivial estimate

‖u‖L2
tL

2
x

= ‖u‖X0,0
δ

,(10)

we get

‖u‖Lp
tL

p
x

� ‖u‖
X

0,(1/2+)·(3/2−3/p)
δ

(11)

for any 2 ≤ p ≤ 6.
The dual version of (6) gives

‖u‖
X

0,−1/2−
δ

� ‖u‖
Lq

′
t Lr

′
x

,(12)

where r
′

and q
′

are the conjugate exponents of r and q, respectively. Interpolation
with the trivial estimate

‖u‖X0,0
δ

= ‖u‖L2
tL

2
x

(13)

gives that

‖u‖
X

0,−1/2+
δ

� ‖u‖
Lq

′
+

t Lr
′
+

x

(14)

and also that

‖u‖
X

1,−1/2+
δ

� ‖u‖
Lq

′
+

t W 1,r
′
+

x

(15)

for any 2
q + 1

r = 1
2 .

As we state in the introduction, we prove that the modified energy grows more
slowly than the modified kinetic energy in Proposition 3. We can take advantage of
the fact that we work on a small interval [0, δ] and improve the decay of the “modified
energy.” To do so we state the following lemma, which we can find in [12] and [23].
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Lemma 2. If 1/2 > b > b′ ≥ 0 and s ∈ R, then the following embedding is true:

‖f‖
Xs,b′

δ

� δb−b′‖f‖Xs,b
δ

.

The second lemma that we state in this section is an improved bilinear Strichartz-type
estimate. It is due to Bourgain [1]. As we mentioned before, a general analogue of
Lemma 3 holds for d ≥ 2; see, for example, [10].

Lemma 3. Let u and v be any two Schwartz functions whose support of Fourier
transform is in |ξ| ∼ M and |ξ| � M , respectively, and let M � 1. Then

‖(D
1
2
x u)v‖L2

tL
2
x

= ‖(D
1
2
x ū)v‖L2

tL
2
x

� ‖u‖X0,1/2+‖v‖X0,1/2+ .

3. The I-method and the proof of Theorem 3. As we mentioned above, the
basic step toward Theorem 3 is the fact that the “modified total energy” decays more
slowly than the “modified kinetic energy.” To prove the last statement we iterate the
local solutions for the new modified system

iIut + Iuxx + I(|u|4u) = 0,

Iu(x, 0) = Iu0(x) ∈ H1(R), t ∈ R.
(16)

Thus let us define the I-operator. We introduce as in [5, 8] a radial C∞, monotone
multiplier, taking values in [0,1], where

m(ξ) :=

{
1 if |ξ| < N,(

|ξ|
N

)s−1

if |ξ| > 2N,

and we define I : Hs → H1 by Îu(ξ) = m(ξ)û(ξ). The operator I is smoothing of
order 1 − s, and we have that

‖u‖
X

s0,b0
δ

� ‖Iu‖
X

s0+1−s,b0
δ

� N1−s‖u‖
X

s0,b0
δ

(17)

for any s0, b0 ∈ R.
Remark 5. It is shown in [6] that if

‖uv‖Xs,b−1 � ‖u‖Xs,b‖v‖Xs,b ,

then

‖I(uv)‖X1,b−1 � ‖Iu‖X1,b‖Iv‖X1,b ,

where the constants in the above inequality are independent of N . From now on we
use this fact and refer to it as the “interpolation lemma.” For details see [8].

Proposition 1. Let s > 10/11 and consider the equation

iIut + (Iu)xx + I(|u|4u) = 0(18)

with initial data Iu(x, 0) = Iu0. Then there exists a

δ ∼ (‖Iu0‖H1)−4−ε

such that for all times in [0, δ], the above problem is locally well-posed and

‖Iu‖
X

1,1/2+
δ

� ‖Iu0‖H1 .
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Proof. By Duhamel’s formula (18) is equivalent to

Iu(t) = ψ1(t)e
it∂2

x(Iu0) + iψδ(t)

∫ t

0

ei(t−s)∂2
xI(|u|4u)(s)ds.

By (4) and (5) and the fact that δ ≤ 1 we have

‖Iu‖
X

1,1/2+
δ

� ‖Iu0‖H1 + ‖I(|u|4u)‖
X

1,−1/2+
δ

.

Now recall the dual Strichartz estimate (15)

‖u‖
X

1,−1/2+
δ

� ‖u‖
Lq′+

t W 1,r′+
x

,

where 2
q = 1

2 − 1
r . Thus for r′ = 2− we have

‖I(|u|4u)‖
X

1,−1/2+
δ

� ‖I(|u|4u)‖L1+ε
t H1

x
� δ1−ε‖I(|u|4u)‖L∞

t H1
x
.

Since for s > 1/2, Hs is a Banach algebra, we have that

‖|u|4u‖Hs
x

� ‖u‖5
Hs

x
,

which by the interpolation lemma quickly translates to

‖I(|u|4u)‖H1
x

� ‖Iu‖5
H1

x
.

But then

‖Iu‖
X

1,1/2+
δ

� ‖Iu0‖H1 + δ1−ε‖Iu‖5
L∞

t H1
x

� ‖Iu0‖H1 + δ1−ε‖Iu‖5
Xδ

1,1/2+ ,

and by standard iteration arguments (see [13]), we have that the system is locally
well-posed for

δ1−ε‖Iu0‖4
H1 <

1

2
.

We also need an analogue of Theorem 2 for the I-system (16). Let ∇s denote the

operator which on the Fourier side is given by ∇̂su(ξ) = |ξ|sû(ξ). It then follows by
the definition of the Japanese bracket that on the Fourier side the 〈∇〉u is given by
(1 + |ξ|)û(ξ).

Proposition 2. If Hs � u0 −→ u(t) with s > 10/11 solves (2) for all t close
enough to T � in the maximal finite interval of existence [0, T �), then

‖I〈∇〉u(t)‖L2 ≥ C(T � − t)−
s
2 .

Proof. Since we know that

‖I〈∇〉u(t)‖L2 ≥ ‖u(t)‖Hs ,

it suffices to show that

‖∇su(t)‖L2 ≥ C(T � − t)−
s
2 .
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We assume that ‖∇su(t)‖L2 > 1 since otherwise we can change variables to put
the time origin near T �. Now fix t ∈ [0, T �) and consider

vt(τ, x) = λ−1/2u
(
t +

τ

λ2
,
x

λ

)
,

where λ = ‖∇su(t)‖
1
s

L2 . By scaling, invariance vt(τ, x) is a solution to (2). Moreover,
an easy calculation shows that

‖vt(0, x)‖L2 = ‖u0‖L2

and that

‖∇svt(0, x)‖L2 = λ−s‖u(t, x)‖Ḣs = 1.

Thus ‖vt(t, x)‖Hs < C, and by the local theory, this means that there exists a
τ0 > 0, independent of t, such that vt(t, x) is defined on [0, τ0] and therefore

t +
τ0

‖∇su(t)‖
2
s

L2

≤ T � =⇒ ‖∇su(t)‖L2 ≥ C(T � − t)−
s
2 .

The last step for the proof of Theorem 3 is the following proposition, which for
the moment we assume and prove later.

Proposition 3. For s > 10
11 there exists p(s) < 2 such that the following hold

true:
If Hs � u0 −→ u(t) solves (2) on [0, T �), then for all T < T � there exists

N = N(T ) such that

|E[IN(T )u(T )]| ≤ C0Λ(T )p(s)

with C0 = C0(s, T
�, ‖u0‖Hs), and Λ(T ) is given in terms of N(T ) by N(T ) =

C(Λ(T ))
p(s)

2(1−s) .
We prove Theorem 3 by using the concentration compactness method that was

developed by Lions in [15, 16]. We will need a series of lemmas. The proofs of the
first two lemmas are easy and can be found on pages 21 and 24, respectively, of [3].

Lemma 4. Let u ∈ L2 and let the concentration function be defined by

ρ(u, t) = sup
y∈R

∫
{|x−y|<t}

|u(x)|2dx

for t > 0. Then ρ is a nondecreasing function of t, and there exists y(u, t) ∈ R such
that

ρ(u, t) =

∫
{|x−y(u,t)|<t}

|u(x)|2dx.

Moreover, if u ∈ Lr(R) for some r > 2, then for all s, t > 0 and C = C(r) we
have

|ρ(u, t) − ρ(u, s)| ≤ C‖u‖2
Lr |t− s| r−2

r .

Lemma 5. There exists a constant K such that for all u ∈ H1, all t > 0, and ρ
defined above we have∫

|u|6 ≤ Kρ(u, t)2
(∫

|∇u|2 + t−2

∫
|u|2

)
.
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Lemma 6. Let (un)n≥0 ⊂ H1 be such that

‖un‖L2 ≤ a < ∞,

sup
n≥0

‖∇un‖L2 < ∞,

and let ρ(un, t) be defined as before. Set

μ = lim
t→∞

lim inf
n→∞

ρ(un, t).

Then there exist a subsequence (unk
)nk≥0, a nondecreasing function γ(t), and a se-

quence tk → ∞ with the following properties:
(i) ρ(unk

, .) → γ(.) ∈ [0, a] as k → ∞ uniformly on bounded sets of [0,∞).
(ii) μ = limt→∞ γ(t) = limk→∞ ρ(unk

, tk) = limk→∞ ρ(unk
, tk/2).

Proof. Since

μ = lim
t→∞

lim inf
n→∞

ρ(un, t),

there exists a tk → ∞ such that

μ = lim
k→∞

ρ(unk
, tk)(19)

and thus one part of (ii) is evident. To prove the first part note that

ρ(un, t) ≤ ‖un‖L2 ≤ a < ∞.

In addition since H1(R) ↪→ Lr(R) for some r, by the last property of the previous
lemma ρ(un, ·) is Hölder continuous. Therefore (i) follows from Ascoli’s theorem (after
renaming the sequence nk). Notice that property (19) is still true after passing to a
subsequence. For the rest of (ii) by (19) and the fact that ρ(un, ·) is nondecreasing
we deduce that

lim sup
k→∞

ρ

(
unk

,
tk
2

)
≤ lim sup

k→∞
ρ(unk

, tk) = μ.(20)

Next for every t > 0 we have

lim inf
k→∞

ρ (unk
, t) ≥ lim inf

n→∞
ρ(un, t),

Now by letting t → ∞ and using part (i) of the lemma and the definition of μ we get
that

lim
t→∞

γ(t) ≥ μ.(21)

Finally, given t > 0 we have tk
2 > t for k large, so that

ρ

(
unk

,
tk
2

)
≥ ρ(unk

, t),

and by letting k → ∞ by part (i) we get

lim inf
k→∞

ρ

(
unk

,
tk
2

)
≥ μ.(22)
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By (20) and (22) we have that

μ = lim
k→∞

ρ(unk
, tk/2).

Similarly

ρ

(
unk

,
tk
2

)
≥ ρ(unk

, t) ⇒ sup ρ

(
unk

,
tk
2

)
≥ ρ(unk

, t),

and by taking k → ∞ and using (20) we get

μ ≥ lim
t→∞

γ(t).(23)

Lemma 7. Let (un)n≥0 ⊂ H1 be such that

‖un‖L2 ≤ a < ∞,

lim
n→∞

‖un‖2
L2 = b > 0,

and

sup
n≥0

‖∇un‖L2 < ∞.

Then there exists a subsequence (unk
)k≥0 which satisfies the following.

There exist (qk)k≥0, (wk)k≥0 ⊂ H1(R) such that

suppqk ∩ suppwk = ∅,(24)

|qk| + |wk| ≤ |unk
|,(25)

‖qk‖H1 + ‖wk‖H1 ≤ C‖unk
‖H1 ,(26)

lim
k→∞

‖qk‖2
L2 = μ, lim

k→∞
‖wk‖2

L2 = b− μ,(27)

lim inf
k→∞

{∫
|∇unk

|2 −
∫

|∇qk|2 −
∫

|∇wk|2
}

≥ 0,(28)

lim
k→∞

∣∣∣∣
∫

|unk
|p −

∫
|qk|p −

∫
|wk|p

∣∣∣∣ = 0(29)

for all 2 ≤ p < ∞.
Proof. We use the sequences (unk

)k≥0 and (tk)k≥0 constructed in the previous
lemma. We fix θ, φ ∈ C∞([0,∞)) such that 0 ≤ θ, φ ≤ 1 and

θ(t) = 1 for 0 ≤ t ≤ 1

2
, θ(t) = 0 for t ≥ 3

4
,

φ(t) = 0 for 0 ≤ t ≤ 3

4
, φ(t) = 1 for t ≥ 1,

and we set

qk = θkunk
, wk = φkunk

,
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where

θk = θ

( |x− y(unk
, tk

2 )|
tk

)
, φk = φ

( |x− y(unk
, tk

2 )|
tk

)
.

Now (24), (25), and (26) are immediate. To prove (27) we estimate

ρ

(
unk

,
tk
2

)
=

∫
|x−y(unk

,
tk
2 )|≤ tk

2

|unk
|2 ≤

∫
|qk|2 ≤

∫
|x−y(unk

,
tk
2 )|≤tk

|unk
|2

≤
∫
|x−y(unk

,tk)|≤tk

|unk
|2 ≤ ρ(unk

, tk).

Applying the second part of Lemma 6 we immediately get

lim
k→∞

‖qk‖2
L2 = μ.(30)

We now set zk = unk
− qk − wk. Note that in particular |zk| ≤ |unk

|. We have∫
|zk|2 ≤

∫
tk
2 ≤|x−y(unk

,
tk
2 )|≤tk

|unk
|2

=

∫
|x−y(unk

,
tk
2 )|≤tk

|unk
|2 −

∫
|x−y(unk

,
tk
2 )|≤ tk

2

|unk
|2

≤
∫
|x−y(unk

,tk)|≤tk

|unk
|2 −

∫
|x−y(unk

,
tk
2 )|≤ tk

2

|unk
|2 = ρ(unk

, tk) − ρ

(
unk

,
tk
2

)

and again by Lemma 6 we have

lim
k→∞

‖zk‖2
L2 = 0.(31)

By the Cauchy–Schwartz inequality and the above we have that

lim
k→∞

∫
unk

z̄k = 0.

But now by (24), (30), (31), and some trivial algebra we get after integration that

lim
k→∞

‖wk‖2
L2 = b− μ

and (27) follows. Also note that zk is bounded in H1 and converges to 0 in L2, and
by the Gagliardo–Nirenberg inequality, in Lp for any 2 ≤ p < ∞. Moreover, one can
easily verify that ∣∣∣|unk

|p − |qk|p − |wk|p
∣∣∣ ≤ C|unk

|p−1|zk|

and by Cauchy–Schwartz since zk tends to 0 in Lp, (29) follows. Finally, (28) follows
easily from the initial assumptions, the Cauchy–Schwartz inequality and the easy
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calculation

|∇unk
|2 − |∇qk|2 − |∇wk|2 = |∇unk

|2(1 − θ2
k − φ2

k) − |unk
|2(|∇θk|2 + |∇φk|2)

−Re(ūnk
∇unk

) · ∇(θ2
k + φ2

k) ≥ −C

t2k
|unk

|2 − C

tk
|unk

| |∇unk
|.

Proof of Theorem 3. Define the blowup parameters:

λ(t) = ‖u(t)‖Hs , Λ(t) = sup
0≤τ≤t

λ(τ),

σ(t) = ‖IN 〈∇〉u(t)‖L2 , Σ(t) = sup
0≤τ≤t

σ(τ).

Let {tn}∞n=1 be a sequence such that tn ↑ T � and for each tn we have

‖u(tn)‖Hs = Λ(tn)

and with u(tn) = un we define

INun = IN(tn)u(tn).

We rescale these as follows:

vn(x) =
1

√
σn

INun

(
x

σn

)
,

where

σn = ‖IN 〈∇〉un‖L2 = σ(tn).

Note that for these sequences (let us call them maximizing) we have that

Λ(tn) ≤ σn,

where σn → ∞ as n → ∞. It is important to note that we are in the blow-up regime
and thus

‖u0‖L2 ≥ ‖Q‖L2 .

Moreover, the L2 part of vn is bounded uniformly in n. This is because

‖vn‖L2 = ‖INun‖L2 ≤ ‖un‖L2 = ‖u(tn)‖L2 = ‖u0‖L2 .

Thus in the limit as n → ∞ we have

lim
n→∞

‖∇vn‖L2 = 1.

Also, since N(tn) goes to infinity as n → ∞,

lim
n→∞

‖vn‖L2 = lim
n→∞

‖INun‖L2 = lim
n→∞

‖u(tn)‖L2 = ‖u0‖L2 ≥ ‖Q‖L2 .

In addition, by Proposition 3 we have that

|E(vn)| =
1

σ2
n

|E(INun)| ≤ Cσ−2
n Λp(s)(tn) ≤ CΛp(s)−2(tn)
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and thus

lim
n→∞

E(vn) = 0

since p(s) < 2. This allows another way to prove that

lim
n→∞

‖vn‖L2 ≥ ‖Q‖L2

since by the optimality of the Gagliardo–Nirenberg inequality we have

E(vn) ≥ 1

2

(
1 − ‖vn‖4

L2

‖Q‖4
L2

)
‖∇vn‖2

L2

and in the limit as n → ∞ we get

lim
n→∞

‖vn‖L2 ≥ ‖Q‖L2 .

We collect the three important relations that we have:

lim
n→∞

‖vn‖L2 = ‖u0‖L2 ≥ ‖Q‖L2 ,(32)

lim
n→∞

‖∇vn‖L2 = 1,(33)

lim
n→∞

E(vn) = 0.(34)

With the help of (32), (33), and (34) we will conclude the following claim.
Claim 1.

μ({vn}n≥0) ≥ ‖Q‖2
L2 .

First assuming the claim and revisiting the statement of the theorem, it is enough to
prove that for any ε > 0 we have

lim
n→∞

‖u(tn)‖L2

{|x−zn|<(T�−tn)
s
2 γ(T�−tn)}

≥ ‖Q‖L2 − ε.

Note that since N(tn) goes to ∞ we have

lim
n→∞

‖u(tn)‖L2 = lim
n→∞

‖IN(tn)u(tn)‖L2 .

Now given ε > 0, the relation

μ({vn}n≥0) ≥ ‖Q‖2
L2

by Lemma 6 implies that there exists a T ∈ R such that

ρ(vn, T ) ≥ ‖Q‖2
L2 − ε

for large n. Note that ρ is a nondecreasing function of t and it is crucial to find a fixed
T such that ρ(vn, T ) ≥ ‖Q‖2

L2 − ε holds for any large n, for the given ε. That this T
is independent of all the n’s after some n large, up to a subsequence, is guaranteed
by the two parts of Lemma 6. Thus the same T works for all large n.
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Now setting yn = y(vn, T ) defined by Lemma 4, we have that

lim inf
n→∞

‖v(tn)‖L2
{|x−yn|<T}

≥ ‖Q‖2
L2 − ε

and up to a subsequence

lim
n→∞

‖v(tn)‖L2
{|x−yn|<T}

≥ ‖Q‖2
L2 − ε.(35)

But

lim
n→∞

‖v(tn)‖L2
{|x−yn|<T}

= lim
n→∞

∥∥∥∥ 1
√
σn

INun

(
x

σn

)∥∥∥∥
L2

{|x−yn|<T}

= lim
n→∞

‖Inun(x)‖L2

{|x− yn
σn

|< T
σn

}
= lim

n→∞
‖un(x)‖L2

{|x− yn
σn

|< T
σn

}
= lim

n→∞
‖un(x)‖L2

{|x−zn|< T
σn

}
,

where zn = yn

σn
. Moreover, note that T

σn
→ 0 and that σn goes to infinity at least as

fast as (T � − t)−
s
2 . Thus there exists a function γ(x) ↑ ∞ as x ↓ 0 such that

lim
n→∞

‖u(tn)‖L2

{|x−zn|<(T�−tn)
s
2 γ(T�−tn)}

≥ lim
n→∞

‖un(x)‖L2

{|x−zn|< T
σn

}

= lim
n→∞

‖v(tn)‖L2
{|x−yn|<T}

≥ ‖Q‖2
L2 − ε

by equation (35), and the proof is complete.
Proof of Claim 1. We prove the claim by contradiction. We claim that there

exists δ > 0 with the following property. If (vn)n≥0 ∈ H1 is such that

lim
n→∞

‖vn‖2
L2 = ‖u0‖2

L2 ,(36)

0 < lim inf
n→∞

‖∇vn‖L2 ≤ lim sup
n→∞

‖∇vn‖L2 < ∞,(37)

lim sup
n→∞

E(vn) ≤ 0,(38)

and

μ({vn}n≥0) < ‖Q‖2
L2 ,(39)

then there exists a sequence (ṽn)n≥0 ∈ H1 satisfying (37), (38), and (39) and such
that

lim
n→∞

‖ṽn‖2
L2 = ‖u0‖2

L2 − β

for some β > δ. Clearly the sequence vn of Theorem 3 satisfies (36), (37), and (38).
But then by Galiardo–Nirenberg and (37), (38), and (39) we have that

μ({vn}n≥0) < ‖u0‖2
L2 − δ.

If we apply the above procedure k times, we get μ({vn}n≥0) < ‖u0‖2
L2 − kδ, which

for large k is absurd. Thus it suffices to prove the claim. We apply Lemmas 6 and
7 to the sequence (vn)n≥0 and we consider the corresponding sequences (qn)n≥0 and
(wn)n≥0. We set

δ =

(
3

K

) 1
2

> 0,
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where K is given in Lemma 5. We first show that

μ({vn}n≥0) ≥ δ.

By Lemma 5 and the definition of δ we have that

E(vnk
) ≥ 1

2

(
1 −

(
ρ(vnk

, tk)

δ

)2
)∫

|∇vnk
|2 − K

6t2k
ρ(vnk

, tk)
2.

Now if we assume by contradiction that μ < δ, then we obtain by letting k → ∞,
applying the second part of Lemma 6, and using (37) that up to a subsequence

lim sup
n→∞

E(vn) ≥ 1

2

(
1 −

(μ
δ

)2
)

lim inf
n→∞

∫
|∇vn|2 > 0,

which is absurd. Now since by (25) we know that |wk| ≤ |vnk
|, we have by the second

part of Lemma 6 and (39)

μ((wk)k≥0) ≤ μ < ‖Q‖2
L2 .

This proves that (wk)k≥0 satisfies (39). Also by (27), (39), and the Gagliardo–
Nirenberg inequality we know that there exists a σ > 0 such that for k large

E(qk) ≥ σ‖∇qk‖2
L2 .(40)

On the other hand, by (28) and (29) we have that

lim inf
k→∞

{E(vnk
) − E(qk) − E(wk)} ≥ 0(41)

and thus

lim sup
k→∞

E(wk) ≤ 0.

This proves that (wk)k≥0 satisfies (38). By (26) and (37) we easily get that

‖∇wk‖L2 ≤ C‖vnk
‖H1 < ∞.

Finally we show the last property (37), namely, that

lim inf
k→∞

‖∇wk‖L2 > 0.

We argue again by contradiction and assume that there exists a sequence which we
still denote by (wk)k≥0 such that limk→∞ ‖∇wk‖L2 = 0. But then it trivially follows
that E(wk) → 0 as k → ∞ and thus by (38), (40), and (41) we get that

lim
k→∞

‖∇qk‖L2 = 0.

But then by (29) and the fact that ‖wk‖L6 , ‖qk‖L6 → 0 we deduce that limk→∞ ‖vnk
‖L6 =

0 and thus

lim sup
k→∞

E(vnk
) > 0,
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which contradicts (38). Now setting

ṽk =

√
‖u0‖2

L2 − μ

‖wk‖L2

wk,

we see that with the help of (27) the sequence (ṽn)n≥0 satisfies (37), (38), and (39)
and that

lim
k→∞

‖ṽk‖2
L2 = ‖u0‖2

L2 − μ ≤ ‖u0‖2
L2 − δ,

and we are done.
Remark 6. In dimensions n ≥ 2 with the additional assumption of radial symme-

try on the initial data, the solution of the equivalent L2-critical Schrödinger equation
satisfies the conclusion of Theorem 3 with z(t) ≡ 0.

We define the “modified energy” for the system (16) as

E(Iu)(t) =
1

2

∫
|Iux(t)|2dx− 1

6

∫
|Iu(t)|6dx.

This “energy” functional is not conserved, but we can show that its time derivative
decays with respect to a large parameter N . The next proposition quantifies the
increament of this functional on [0, δ].

Proposition 4. Let u be an H1 solution of (2). Then

E(Iu)(δ) − E(Iu)(0) = Im

(∫ δ

0

∫
Iūxx

(
I(|u|4u) − Iu|Iu|4

)
dxdt

)

+ Im

(∫ δ

0

∫
I(|u|4u)

(
I(|u|4u) − Iu|Iu|4

)
dxdt

)
.

Proof. The derivative of the “modified energy” is

dE

dt
(Iu) = Im

(∫
Iūxx

(
I(|u|4u) − Iu|Iu|4

)
dx

)

+ Im

(∫
I(|u|4u)

(
I(|u|4u) − Iu|Iu|4

)
dx

)
.

But then Proposition 4 follows immediately by applying the fundamental theorem of
calculus.

By the previous formal identity we can deduce the desired decay of the “modified
energy.”

Proposition 5. For any Schwartz function u we have that

E(Iu)(δ) − E(Iu)(0) � δ
1
4−N− 3

2+‖Iu‖6

X
1,1/2+
δ

+ δ
1
2−N−2+‖Iu‖10

X
1,1/2+
δ

.

Proof. First we establish∣∣∣∣∣
∫ δ

0

∫
Iūxx

(
I(|u|4u) − Iu|Iu|4

)
dxdt

∣∣∣∣∣ � δ
1
4−N− 3

2+‖Iu‖6

X
1,1/2+
δ
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or, by Plancherel’s theorem, that∣∣∣∣∣
∫ δ

0

∫
Γ6

ξ2
1

〈ξ1〉

(
m(ξ2 + · · · + ξ6) −m(ξ2) · · ·m(ξ6)

m(ξ2) · · ·m(ξ6)

)
û(ξ1, t) · · · ˆ̄u(ξ6, t)dξdt

∣∣∣∣∣
� δ1/4−N− 3

2+‖u‖5
X1,1/2+‖u1‖X0,1/2+ ,(42)

where Γ6 denotes the hyperplane ξ1 + ξ2 + · · · + ξ6 = 0, and u1 is the function that
corresponds on the Fourier side to the frequency ξ1.

Remark 7.

1. Let us denote Ni ∼ |ξi| and Nmax ∼ |ξ|max, Nmed ∼ |ξ|med, where |ξ|max,
|ξ|med are the largest and second largest of the |ξi|. If all |ξi| � N , then the
big parenthesis above is zero and there is nothing to prove. Thus since the ξi
are related by ξ1 + ξ2 + · · · + ξ6 = 0, we have that |ξ|max ∼ |ξ|med � N. We
also write mi for m(ξi) and mij for m(ξi + ξj).

2. Our strategy from now on is to break all the functions into a sum of dyadic
constituents ψj , each with frequency support 〈ξ〉 ∼ 2j , j = 0, · · · . Then we
pull the absolute value of the symbols out of the integral, estimating it point-
wise. After bounding the multiplier, the remaining integrals involving the
pieces ψj are estimated by reversing Plancherel’s formula and using dual-
ity, Hölder’s inequality, and the Strichartz estimates. We can sum over all
the frequency pieces ψj as long as we always keep a factor N−ε

max inside the
summation.

3. Since in all of the estimates that we establish from now on, the right-hand side
is in terms of the Xs,b norms and the Xs,b spaces depend only on the absolute
value of the Fourier transform, we can assume without loss of generality that
the Fourier transform of all the functions in the estimates are real and positive.

4. Note also that
N2

1

〈N1〉 ≤ N1.

Since, as we mentioned before, our analyses do not rely upon the complex conju-
gate structure of the left-hand side, there is a symmetry under the interchange of the
indices and thus we can assume that

N2 ≥ N3 ≥ · · · ≥ N6.

Case 1. Let N � N2. Then

m(ξ2 + · · · + ξ6) −m(ξ2) · · ·m(ξ6)

m(ξ2) · · ·m(ξ6)
= 0

and there is nothing to prove.
Case 2. N2 � N � N3 ≥ · · · ≥ N6. This forces N1 ∼ N2 on Γ6. But then by the

mean value theorem we have∣∣∣m(ξ2 + · · · + ξ6) −m(ξ2) · · ·m(ξ6)

m(ξ2) · · ·m(ξ6)

∣∣∣ =
∣∣∣m(ξ2) −m(ξ1)

m(ξ2)

∣∣∣

�
∣∣∣∇m(ξ2) · (ξ3 + · · · + ξ6)

m(ξ2)

∣∣∣ � N3

N2
.

Now by undoing Plancherel’s theorem, using the Cauchy–Schwartz inequality,
applying the Strichartz estimates, and using Lemmas 2 and 3, we have that the left-
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hand side of (42) is

� N1N3

N2N
1/2
1

‖(D1/2u1)u3‖L2
tL

2
x
‖u2u4u5u6‖L2

tL
2
x

� N3

N
1/2
1

‖u1‖X0,1/2+
δ

‖u3‖X0,1/2+
δ

6∏
j=4

‖uj‖L∞
t L∞

x
‖u2‖L2

tL
2
x

� δ1/2− N3

N
1/2
1

3∏
j=1

‖uj‖X0,1/2+
δ

6∏
j=4

‖uj‖X1/2,1/2+
δ

,

where in the last inequality we also used (9) in its dyadic form. Comparing with (42)
we see that it is enough to have

δ1/2−N3(N4N5N6)
1/2

N
1/2
1

� δ1/4−N− 3
2+N−ε

maxN2 · · ·N6,

which is true. Note that in the process we summed the Littlewood–Paley pieces, using
the factor N−ε

max.
Case 3. N2 ≥ N3 � N . In this case we use the crude estimate

|1 − m1

m2 · · ·m6
| � m1

m2 · · ·m6
.

Since it is impossible to have N1 � Nmed = N2, we can divide this case into two
subcases.

(a) N1 ∼ N2 ≥ N3 � N . Now we start by comparing the different frequencies in
order to be able to apply Lemma 3. Note that m1 ∼ m2.

(i) Suppose first that N2 � N3. Without loss of generality we can assume that
N4 ≤ N . This is because in the case that one of the N4, N5, N5 is � N , the estimate
is even easier and the decay is greater. For the suspicious reader who might object to
the previous argument because of the presence of m4m5m6 in the denominator, we
comment that for Nj � N we have that

1

mjN
1/2
j

� 1

N1/2

and indeed we can get a better decay. From now on we will use this heuristic without
any comment. Thus we can apply Cauchy–Schwartz and Lemma 3, and the left-hand
side of (42) is

� N1

m3N
1/2
1

‖(D1/2u1)u3‖L2
tL

2
x
‖u2‖L2

tL
2
x
·

6∏
j=4

‖uj‖L∞
t L∞

x

� δ1/2− N1N
1/2
3

m3N
1/2
3 N

1/2
1

3∏
j=1

‖uj‖X0,1/2+
δ

·
6∏

j=4

‖uj‖X1/2,1/2+
δ

� δ1/2− N1N
1/2
3

N1/2N
1/2
1

3∏
j=1

‖uj‖X0,1/2+
δ

·
6∏

j=4

‖uj‖X1/2,1/2+
δ

.



1942 NIKOLAOS TZIRAKIS

Comparing with (42) we see that it is enough to have

δ1/2− N1N
1/2
3

N1/2N
1/2
1

� δ1/4−N− 3
2+N−ε

max(N4 · · ·N6)
1/2N2N3,

which is true.
(ii) Now assume that N2 ∼ N3 and by the comment in case (i) the worst case

is when N5, N6 ≤ N which we assume without loss of generality. In this case we
compare N3 with N4. In case that N3 ∼ N4, the estimate is easy since

N1m1

m2 · · ·m6
� N1N

1/2
3

m3m4N
1/2
3

� N1N
1/2
3

N1/2

and thus the left-hand side of (42) is

� N1N
1/2
3

N1/2

4∏
j=1

‖uj‖L4
tL

4
x
· ‖u5‖L∞

t L∞
x
‖u6‖L∞

t L∞
x

� δ1/2−N1N
1/2
3

N1/2

4∏
j=1

‖uj‖X0,1/2+
δ

· ‖u5‖X1/2,1/2+
δ

‖u6‖X1/2,1/2+
δ

.

Comparing with (42) it is enough to have

δ1/2−N1N
1/2
3 (N5N6)

1/2

N1/2
� δ1/4−N− 3

2+N−ε
maxN2 · · ·N6,

which is true. If N3 � N4 again without loss of generality we assume that N4 ≤ N
and we apply Lemma 3. Moreover,

∣∣∣ N1m1

m2 · · ·m6

∣∣∣ � N1N
1/2
3

m3N
1/2
3

� N1N
1/2
3

N1/2

and thus the left-hand side of (42) is

� N1N
1/2
3

N1/2N
1/2
1

‖(D1/2u1)u4‖L2
tL

2
x
‖u2u3‖L2

tL
2
x
‖u5‖L∞

t L∞
x
‖u6‖L∞

t L∞
x

� N1N
1/2
3

N1/2N
1/2
1

‖u1‖X0,1/2+
δ

‖u4‖X0,1/2+
δ

‖u2‖L6
tL

6
x
‖u3‖L3

tL
3
x
‖u5‖X1/2,1/2+

δ
‖u6‖X1/2,1/2+

δ

� δ1/4− N1N
1/2
3

N1/2N
1/2
1

4∏
j=1

‖uj‖X0,1/2+
δ

‖u5‖X1/2,1/2+
δ

‖u6‖X1/2,1/2+
δ

,

where we used Lemmas 2 and 3 and (7), (9), and (11). Comparing with (42) it is
enough to have

δ1/4−N1N
1/2
3 (N5N6)

1/2

N1/2N
1/2
1

� δ1/4−N− 3
2+N−ε

maxN2 · · ·N6,

which is true.



MASS CONCENTRATION FOR THE NLS IN ONE DIMENSION 1943

(b) N2 ∼ N3 � N and N2 � N1. Since N1 is in the numerator on the left-hand
side of (42), this case is easier than the previous and similar analysis gives the same
(or ever better) bounds as in (a). The details are omitted.

To conclude the proof of Proposition 5 it remains to show that∣∣∣∣∣
∫ δ

0

∫
I(|u|4u)

(
I(|u|4u) − Iu|Iu|4

)
dxdt

∣∣∣∣∣ � δ
1
2−N−2+‖Iu‖10

X
1,1/2+
δ

.

By Plancherel’s theorem,

∣∣∣∣∣
∫ δ

0

∫
Γ10

m12345{m678910 −m6 · · ·m10}û(ξ1, t) · · · ˆ̄u(ξ10, t)dξdt

∣∣∣∣∣ � δ
1
2N−2+‖Iu‖10

X
1,1/2+
δ

.

(43)

As we noted before, if Nmax � N , the multiplier is zero so we assume that

Nmax ∼ Nmed � N.

In addition since m(ξ) ≤ 1, we have that

|m12345{m678910 −m6 · · ·m10}| � C.

Finally the last pointwise estimate that we use is

1

mmaxNmax
� N−1,

which follows easily since Nmax � N . The left-hand side of (43) is

�
∫ δ

0

∫
Γ10

10∏
j=1

û(ξj , t)dξdt �
∫ δ

0

∫
Γ10

mmaxNmaxûmax ·mmedNmedûmed

mmaxNmaxmmedNmed
·

∏
j �=jmax,jmed

û(ξj , t)dξdt

� N−2+N−ε
max

∫ δ

0

∫
Γ10

D̂Iumax · D̂Iumed

∏
j �=jmax,jmed

û(ξj , t)dξdt.

Now reversing Plancherel’s theorem and using the estimates

‖u‖L6
tL

6
x

� ‖u‖
X

0,1/2+
δ

,

‖u‖L3
tL

3
x

� δ1/4−‖u‖
X

0,1/2+
δ

,

‖u‖
X

0,1/2+
δ

� ‖Iu‖
X

1,1/2+
δ

,

‖u‖
X

1/2,1/2+
δ

� ‖Iu‖
X

1,1/2+
δ

,

we get that the left-hand side of (43) is

� N−2+N−ε
max‖JIumax‖L6

tL
6
x
· ‖JIumed‖L6

tL
6
x
‖u‖2

L3
tL

3
x
‖u‖6

L∞
t L∞

x
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� δ1/2−N−2+N−ε
max‖JIu‖2

X
0,1/2
δ

‖u‖2

X
0,1/2
δ

‖u‖6

X
1/2,1/2
δ

� δ
1
2−N−2+‖Iu‖10

X
1,1/2+
δ

,

where in the process we sum the different Littlewood–Paley pieces, taking advantage
of the factor N−ε

max.
Now we are finally ready to prove Proposition 3.
Proof. When s = 1 we can choose N(T ) = +∞ and thus IN(T ) = 1 and the

proposition is true with p(s) = 0 since the energy is conserved and the kinetic energy
blows up as time approaches T �. Therefore we can fix 10/11 < s < 1 and take
T near T �. Now let N = N(T ) to be chosen later in the argument. Recall that
δ ∼ (Σ(T ))−4−ε gives the time of the local well-posedness. Thus if we divide the
interval [0, T ] into T

δ -subintervals of size ∼ δ, the local well-posedness result uniformly
applies. Moreover for any t in this subinterval we have that

‖I〈∇〉u(t)‖L2 = σ(t) ≤ Σ(T ).

The next step is to iterate the almost conservation of the energy. It is apparent that
after T

δ steps the growth of the modified energy is

E(Iu(T )) � E(Iu(0)) +
T �

δ
{δ 1

4−N− 3
2+Σ(T )6 + δ

1
2−N−2+Σ(T )10}

≤ N2(1−s)λ(0) +
T �

δ
{δ 1

4−N− 3
2+Σ(T )6 + δ

1
2−N−2+Σ(T )10}

� N2(1−s) + {δ− 3
4−N− 3

2+Σ(T )6 + δ−
1
2−N−2+Σ(T )10}

� N2(1−s) + N− 3
2+Σ(T )9+ + N−2+Σ(T )12+,

where in the third inequality we dismiss the irrelevant constants. Now if we switch
from Σ(T ) to Λ(T ) we have

E(Iu(T )) � N2(1−s) + N− 3
2+N9(1−s)+Λ(T )9+ + N−2+N12(1−s)+Λ(T )12+.

We know choose N = N(T ) so that

N2(1−s) ∼ N−2+N12(1−s)+Λ(T )12+,

N(T ) ∼ Λ(T )
12

10s−8+.

This establishes Proposition 3 with

p(s) =
2 · 12(1 − s)

10s− 8
< 2

which is true for s > 10/11. We emphasize that for 1 > s > 10/11 the second term in
the conservation of the modified energy formula produces a smaller correction.
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FREE BOUNDARY PROBLEMS FOR NONLINEAR WAVE
SYSTEMS: MACH STEMS FOR INTERACTING SHOCKS∗

SUNČICA ČANIĆ† , BARBARA LEE KEYFITZ‡ , AND EUN HEUI KIM§

Abstract. We study a family of two-dimensional Riemann problems for compressible flow
modeled by the nonlinear wave system. The initial constant states are separated by two jump
discontinuities, x = ±κay, which develop into two interacting shock waves. We consider shock
angles in a range where regular reflection is not possible. The solution is symmetric about the y-axis
and on each side of the y-axis consists of an incident shock, a reflected compression wave, and a
Mach stem. This has a clear analogy with the problem of shock reflection by a ramp. It is well
known that no triple point structure exists in which incident, reflected, and Mach stem shocks meet
at a point. In this paper, we model the reflected wave by a continuous function with a singularity in
the derivative. This fails to be a weak solution across the sonic line. We show that a solution to the
free boundary problem for the Mach stem exists, and we conjecture that the global solution can be
completed by the construction of a reflected shock, by a similar free boundary technique.

The point of our paper is the capability to deal analytically with a Mach stem by solving a
free boundary problem. The difficulties associated with the analysis of solutions containing Mach
stems include (1) loss of obliqueness in the derivative boundary condition corresponding to the jump
conditions across the Mach stem, and (2) loss of ellipticity at the formation point of the Mach stem.

We use barrier functions to show that for sufficiently large values of κa the subsonic solution is
continuous up to the sonic line at the Mach stem.

Key words. two-dimensional conservation laws, degenerate elliptic equations, free boundary
problems, self-similar solutions, Riemann problems
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1. Introduction. This paper marks another step in our program to solve two-
dimensional Riemann problems for hyperbolic conservation laws. Our first results
involved a method [6] for solving the free boundary problems which arise in the study
of small time-independent perturbations of steady transonic shocks in the small dis-
turbance equation. We extended this technique to analyze quasi-steady transonic
shocks that are not necessarily small perturbations of known solutions by focusing on
weak shock reflection by a wedge, modeled by the unsteady transonic small distur-
bance (UTSD) equation. We solved this problem in two stages: first, a case corre-
sponding to strong regular reflection in which the free boundary involved a strictly
elliptic subsonic state [3] and, second, the case of weak regular reflection, in which
proving existence of the free boundary was complicated by the failure of strict ellip-
ticity in the downstream state [4]. The use of a simplified equation was necessary, as
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our construction relied in an essential way on reducing the self-similar system to a
second-order equation with particular structure which changed type from hyperbolic
to elliptic across the sonic line. In [3, 4] we obtained an existence result in only a
finite neighborhood of the shock reflection point.

More recently, we have outlined a program for extending our results to a larger
class of equations, choosing for a model the nonlinear wave system [5]. This system
is a slightly more realistic simplification of the compressible Euler equations of gas
dynamics and hence is a better test case for the program. It offers the advantage of
being linearly well-posed in space and time (which the UTSD equation is not) and of
having a nonlinear acoustic-wave dependence similar to the gas dynamics equations.
It also has the convenient feature, just as the UTSD equations have, of reducing to a
second-order quasi-linear self-similar equation which, at the sonic line, changes type
from hyperbolic to elliptic. It has the additional feature, a more realistic prototype
for gas dynamics, of being coupled to a transport equation, so that the change of type
takes one from a hyperbolic to a mixed type system. The feature that makes the
system more tractable than gas dynamics is that the coupling is very weak: it comes
into play only at the point of reconstructing the solution in primitive variables.

As indicated in [5], a number of obstacles must be overcome before a theory for the
general Riemann solution, even for this simplified model, can be given. The present
result looks at a prototype for a Mach stem. We consider a problem characterized by
symmetry and otherwise simplified data. Our eventual goal is to cover all situations
which arise with general sectorially constant data. The innovations in this paper are
twofold:

1. We are able handle the entire Mach stem without cutoff functions.
2. We overcome the technical difficulty posed by the fact that at the foot of a

Mach stem the static boundary condition on the free boundary is no longer
a uniformly oblique derivative condition.

We prove existence of a solution in a case where the equation is sonic at the formation
point of the Mach stem. However, the correct modeling of the shock interaction is
limited to the Mach stem and interaction point itself; we have not attempted to
construct the reflected shock. Rather, we have replaced the reflected shock by a weak
shock at the sonic boundary, which does not give a weak solution in the neighborhood
of the sonic line. Although we have not completely solved the problem, we feel that
our result is a significant advance and that this approach will help in solving the full
problem. We explain this in section 5.

The analysis applies to the nonlinear wave system (NLWS), a reduction of the
inviscid system for compressible isentropic gas dynamics, obtained by neglecting the
inertial terms. The system is

ρt + mx + ny = 0,
mt + p(ρ)x = 0,
nt + p(ρ)y = 0.

(1.1)

We consider (1.1) with sectorially constant Riemann data consisting of two states
separated by discontinuities at x = ±κay for y ≥ 0 and with the states chosen so that
the one-dimensional Riemann problems at each discontinuity are solved by upward-
moving shocks and linear waves only. These determine the solution in the far field.
One expects to see a shock interaction consisting either of regular reflection or of Mach
reflection, depending on whether the angle between the incident shocks is small or
large (see [16]). The scenario we study here for Mach reflection places the formation
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Fig. 1.1. Sketch of global solution structure.

point of the Mach stem exactly at the sonic circle, and hence, since this system does
not admit triple points, the reflected wave has strength zero at this formation point.
This scenario thus requires that the angle between the incident shocks be large enough
that the shocks intersect the sonic circle before their extensions intersect each other.
Numerical simulations in [17] suggest that such a formation does indeed occur and
suggest, further, that the reflected shock is weak.

In this paper, we match a piecewise constant solution outside the sonic circle with
a solution of the self-similar equation inside the sonic circle, demanding continuity at
the circle. See Figure 1.1 for a sketch of such a solution. Our main result is the
existence of a solution to the subsonic problem. The composite function is not a weak
solution across the sonic circle. This leaves open the question of what is the actual
solution; it differs from the construction here and from the simulations. One possibility
is that the reflected wave is a weak, nearly circular shock, which has strength zero at
the formation point. Based on the successful construction of the Mach stem in this
paper, it may be possible to solve the complete problem by finding this reflected shock
as the solution of another free boundary problem. Another possibility is a cascade of
supersonic patches, as reported by Tesdall and Hunter for the UTSD equation [25].
We leave this for a future paper.

The techniques we use in this paper to prove global existence of a solution rely on
an application of the Schauder fixed point theorem, developed in [6, 3, 4]. A similar
approach was used by Chen and Feldman to prove stability of steady transonic shocks
for the full potential equation [8, 9]. Chen and Feldman use the potential formulation
of the equation to obtain a second-order operator. Both approaches prove existence of
a fixed point which solves the underlying free boundary problem. The main difference
lies in the compactness arguments used. Owing to the presence of the gradient of
the potential in the principal coefficient of the full potential operator, the mapping in
[8, 9] is not compact, but it is shown to operate on a compact space. Steady transonic
shock perturbation analyses, both in [6] and in [8, 9], examine small perturbations of
a uniform solution. A perturbation analysis of steady transonic shocks is also given
by Chen, Geng, and Li in [12]. Using partial hodograph transformations which map
the free boundary (shock) into a fixed boundary, combined with classical elliptic tech-
niques, [12] obtains stability results for perturbations of conical shocks attached to the
tip of a perturbed cone. Chen has used this same partial hodograph technique in a qua-
sisteady problem [11] and has also found an analytical solution for a linearized problem
corresponding to quasisteady regular reflection in the gas dynamics equations, [10].

The compressible Euler equations cannot, in general, be written in potential form
and self-similar reduction of the compressible Euler equations (see [5, 24, 26]) leads
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to a system related in structure to the model studied in the present paper. In this
connection, we mention also recent work by Zheng on diverging shocks in the pressure
gradient system, a type of nonlinear wave system, [27].

In section 2, we derive the second-order operator and derivative boundary condi-
tion at the shock for the nonlinear wave system, (1.1); give the technical statement of
our result, Theorem 2.3; set up the mapping to find the free boundary; and establish
some preliminary estimates. In section 3, using a regularized differential operator,
with εΔ added, we prove the existence of a fixed point corresponding to the free
boundary for the uniformly elliptic problem. The main point here is to deal with loss
of obliqueness in the derivative boundary condition. In section 4, we proceed to the
limit ε → 0. The novelty here is that a uniform upper barrier at the intersection of
the Mach stem with the sonic line cannot be found by standard barrier estimates. In
section 5, we explain the significance of the result in providing a first step in the con-
struction of Mach stems and other configurations where oblique derivative boundary
conditions can become degenerate and where shocks cross the sonic line.

2. Background on the nonlinear wave system. Our point of departure is
the compressible Euler system for isentropic flow in two space dimensions,

ρt + (uρ)x + (vρ)y = 0,
(uρ)t + (u2ρ + p)x + (uvρ)y = 0,
(vρ)t + (uvρ)x + (v2ρ + p)y = 0,

(2.1)

where ρ, u, and v are the density and the components of velocity, respectively, and
p = p(ρ) is the pressure. While we have in mind a power-law relation p(ρ) = Aργ ,
where γ > 1 is the ratio of specific heats, all that we require in this paper is p′ > 0 and
p′′ > 0. We recall that the local speed of sound is c and that c2 = dp/dρ. The nonlinear
wave system is a reduction of (2.1) obtained by neglecting the quadratic terms in u
and v. (We do not know if any physical situation is represented by this assumption.
However, it underlies the scaling for Stokes flow and was used by Pironneau [23]
in a case study of the shallow-water equations, which are modeled by (2.1) with
γ = 2.) In the resulting nonlinear wave system, (1.1), we work with the conserved
momentum variables (m,n) = (ρu, ρv). The NLWS (1.1) can be written as a second-
order nonlinear wave equation for the density and a transport equation for the specific
vorticity ω = nx −my:

ρtt = ∇(c2(ρ)∇ρ),
ωt = 0.

(2.2)

Since ω is stationary in this simplification of (2.1), then in any regions where the
initial data satisfy the irrotationality condition nx = my, the solutions, classical or
weak, satisfy the same condition.

Introducing self-similar coordinates ξ = x/t, η = y/t, we can write the system
(1.1) as

−ξρξ − ηρη + mξ + nη = 0,(2.3)

−ξmξ − ηmη + c2(ρ)ρξ = 0,(2.4)

−ξnξ − ηnη + c2(ρ)ρη = 0.(2.5)

In self-similar coordinates the nonlinear wave equation in (2.2), with its principal part
in divergence form, is

Q(ρ) ≡
(
(c2 − ξ2)ρξ − ξηρη

)
ξ
+
(
(c2 − η2)ρη − ξηρξ

)
η

+ ξρξ + ηρη = 0.(2.6)
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The equation is hyperbolic when c2(ρ) < ξ2 + η2, elliptic when c2(ρ) > ξ2 + η2, and
degenerate on the sonic circle c2(ρ) = ξ2 + η2.

It is because we can formulate the problem in terms of ρ that we can apply our
fixed point method to this equation.

2.1. Setting up the problem. We consider two-dimensional Riemann data
which are constant in sectors. Specifically, in this paper we look at data which cor-
respond to two symmetric converging shocks. This may alternatively be regarded as
the reflection of an oblique shock at a vertical wall. The data are constant in two
sectors bounded by {x = ±κay, y ≥ 0} and symmetric with respect to x = 0, as
shown in Figure 2.1. Let U denote the vector of conserved quantities, U = (ρ,m, n).
The Riemann data are

U(x, y, 0) =

{
U1 ≡ (ρ1, 0, 0), −κay < x < κay, y > 0,
U0 ≡ (ρ0, 0, n0) otherwise.

(2.7)

To obtain converging shocks in the far field, we choose ρ0 > ρ1 and determine n0,
depending on ρ1, ρ0, and κa, so that the one-dimensional wave between U0 and U1

at angle κa consists of a backward shock, S−
a , and a linear wave, la, with a state U1a

between them:

S−
a : {ξ = κaη + χ−

a }, la : {ξ = κaη}, U1a = (ρ0,m1a, n1a).(2.8)

Using the formula (6.1) in [5] these values are

χ−
a = −

√
1 + κ2

a

√
p(ρ0) − p(ρ1)

ρ0 − ρ1
;

m1a = −

√
(p(ρ0) − p(ρ1))(ρ0 − ρ1)

1 + κ2
a

; n1a = −κam1a;(2.9)

n0 =
1

κa

√
(1 + κ2

a)(p(ρ0) − p(ρ1))(ρ0 − ρ1).

By symmetry, the resolution of the discontinuity at x = −κay is

S+
b : {ξ = −κaη − χ−

a }, lb : {ξ = −κaη}, U1b = (ρ0,−m1a, n1a).

For the Riemann data (2.7), the sonic circle is important:

C0 ≡ {(ξ, η) : ξ2 + η2 = c20 ≡ c2(ρ0)}.(2.10)

We also define C1 ≡ {(ξ, η); ξ2 + η2 = c21 ≡ c2(ρ1)}.
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Several types of shock interaction seem possible in this model, depending on the
relative positions of the incident shock and the sonic circle. They are described in
more detail in [17]. For small κa, the shocks intersect at a point Ξc ≡ (0, ηc) =
S+
b ∩ S−

a = (0,−χ−
a /κa) on the η axis, and two symmetric downward-moving shocks

leave Ξc. For values of κa less than a critical value κR which depends on ρ0 and ρ1

one expects two solutions of this form, corresponding to “weak” and “strong” regular
reflection. For κa > κR, no solutions of this form exist. On the other hand, for κa

greater than a value κA (with κA > κR), one finds that ηc < c0, so Ξc is inside the
sonic circle C0, and the farfield shocks intersect C0 before reaching the symmetry axis.
In this case, it is appealing to believe that a solution like that shown in Figure 1.1
is possible: the subsonic flow interacts with the shocks, which bend to form a single
discontinuity; and the flow is continuous at C0 below the shock. This phenomenon
can be thought of as a perturbation of the uniform case κa = ∞.

In this paper, we prove the existence of a solution to the subsonic problem which
contains a Mach stem and is continuous up to the sonic line, for sufficiently large
values of κa; that is, κa > κ∗ > κA. In the remainder of the paper, we assume
κa > κA. The paper [17] gives a more detailed discussion of the regions. There, we
also give scenarios (without proof) for solutions in the intermediate range of κ where
neither regular reflection nor a solution with a weak reflected wave exists.

2.2. The shock evolution equation. At a shock, the Rankine–Hugoniot jump
conditions are satisfied across the line of discontinuity. A key element of our solution
method has been to rewrite the equations as a problem for a single variable—in this
case, ρ. With this goal, we reformulate the Rankine–Hugoniot conditions to obtain
two equations: an evolution equation for the shock curve—that is, a relation between
the slope of the curve, η′ = dη/dξ, and the variable ρ which appears in (2.6)—and
an oblique derivative boundary condition for ρ—that is, an equation linear in the
gradient of ρ with coefficients depending on (ξ, η), ρ, and η′. The second equation
then becomes a boundary condition for the differential equation (2.6), and we play
these two conditions against each other to obtain a mapping on approximate shock
positions.

We proceed to derive the jump conditions and formulate the shock evolution
equation using the Rankine–Hugoniot conditions.

Writing U ≡ (ρ,m, n) and Ξ = (ξ, η), system (2.3)–(2.5) can be put in conserva-
tion form:

∂ξF (U,Ξ) + ∂ηG(U, ξ) = −2U(2.11)

with

F ≡

⎛
⎝ m− ξρ

p(ρ) − ξm
−ξn

⎞
⎠ and G ≡

⎛
⎝ n− ηρ

−ηm
p(ρ) − ηn

⎞
⎠ .

Inside the sonic circle C0 = {ξ2 + η2 = c2(ρ0)}, the incident shock need no longer be
rectilinear. The state ahead of the shock, U1, is constant, but the state on the other
side, U , is subsonic and is not uniform. The Rankine–Hugoniot conditions along the
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line of discontinuity η = η(ξ) are, from (2.11),

dη

dξ
=

−η[ρ] + [n]

−ξ[ρ] + [m]
,(2.12)

dη

dξ
=

−η[m]

[p] − ξ[m]
,(2.13)

dη

dξ
=

[p] − η[n]

−ξ[n]
,(2.14)

where [f ] = f − f1 denotes a jump in the state f across the shock η(ξ). There are
three families of discontinuities; two are genuinely nonlinear, and one is linear (see
[5]). For nonlinear waves, [ρ] �= 0. Solving for [m] in (2.13) and for [n] in (2.14) yields

[m] =
−[p]η′

−η′ξ + η
, [n] =

[p]

−η′ξ + η
.(2.15)

A simple consequence of (2.15) is

[m] = −η′[n].(2.16)

Using (2.16) in (2.13) we obtain

η =
[p] − ξ[m]

[n]
,(2.17)

while equating the right sides of (2.12) and (2.13) and using (2.17) gives a relation

[p][ρ] = [m]2 + [n]2(2.18)

valid for states across a shock.
Using equations (2.15) in (2.12) we get an equation for η′ involving only the state

variable ρ:

([p] − ξ2[ρ])(η′)2 + 2ξη[ρ]η′ + [p] − η2[ρ] = 0.(2.19)

To streamline the discussion, we define a function

s(a, b) ≡

√
(p(a) − p(b))

(a− b)
;(2.20)

s is the speed of a one-dimensional shock between states with densities a and b.
Proposition 2.1. If p is a convex function of ρ, then s2 is an increasing function

of a for fixed b; s(b, b) ≡ lima→b s(a, b) = c(b); and s(a, b) < c(a) for a > b.
Proof. We have

d

da
s2 =

p′(a)

a− b
− p(a) − p(b)

(a− b)2
=

p′(a)(a− b) − (p(a) − p(b))

(a− b)2
.

Expanding p(b) = p(a) + p′(a)(b− a) + p′′(β)(b− a)2/2 for some β ∈ (a, b), we obtain
ds2/da = p′′(β)/2 > 0 if p is convex. As a → b, s2 → p′(b) = c2(b) and if a > b,

c2(a) − s2(a, b) =
p′(a)(a− b) − (p(a) − p(b))

a− b
> 0.
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For fixed b, we can write

a = s−1
b (η) when s(a, b) = η.(2.21)

Now, solving (2.19) for η′ in terms of ρ and writing s2 for [p]/[ρ] yields

dη

dξ
=

−ξη ±
√
s2(ξ2 + η2 − s2)

s2 − ξ2
.(2.22)

Since the subsonic region is symmetric with respect to ξ = 0, we solve the problem
in the half of the domain in the right half-plane, ξ ≥ 0, and impose a zero Neumann
boundary condition on ξ = 0. We may now specify the plus sign in (2.22) for the
shock curve Σ in the first quadrant, as we anticipate (and will prove) that the shock
slope is nonnegative. This gives the shock evolution equation

dη

dξ
=

−ξη +
√
s2(ξ2 + η2 − s2)

s2 − ξ2
=

η2 − s2

ξη +
√

s2(ξ2 + η2 − s2)
.(2.23)

The second expression is equivalent to the first, and so both are well defined provided

s2 ≤ ξ2 + η2.(2.24)

We will establish this condition in Proposition 2.5. We define Ξs ≡ (0, ηs) ≡ (0, η(0)),

the point at the foot of the shock, and observe that we want η′(0) =
√

η2 − s2/s to
equal zero, by symmetry, and so η2 = s2 at Ξs. Thus we require

ηs = η(0) = s(ρ, ρ1) =

√
p(ρ) − p(ρ1)

ρ− ρ1
.(2.25)

This can be interpreted as a condition which determines ρ(Ξs) in the subsonic region
at the base of the shock (the symmetry boundary).

We also define Ξ0 ≡ (ξ0, η0) = S−
a ∩ C0, the point where the incident shock S−

a

and the sonic circle C0 meet. Using (2.8) for S−
a and (2.10) for C0 we determine Ξ0:

ξ0 =
κa

√
c20 − s2

0 − s0√
1 + κ2

a

, η0 =
κas0 +

√
c20 − s2

0√
1 + κ2

a

,(2.26)

where s2
0 = (p(ρ0) − p(ρ1))/(ρ0 − ρ1). The initial condition for the shock position is

η(ξ0) = η0.

2.3. The oblique derivative boundary condition. We next use the Rankine–
Hugoniot conditions to formulate a boundary condition along the shock Σ = {(ξ, η(ξ))}.

Since vorticity is confined to the lines of discontinuity of the Riemann data (see
(2.2) and [5]), and these lie below the shock (see Figure 2.1), the vorticity is zero
along the shock:

mη − nξ = 0.(2.27)

Using this equation and (2.3)–(2.5), we express all the partial derivatives of m and n
in terms of the derivatives of ρ:

nξ = mη =
1

ξ2 + η2

(
η(c2 − ξ2)ρξ + ξ(c2 − η2)ρη

)
,(2.28)

mξ =
1

ξ2 + η2

(
ξ(c2 + η2)ρξ − η(c2 − η2)ρη

)
,(2.29)

nη =
1

ξ2 + η2

(
ξ(−c2 + ξ2)ρξ + η(c2 + ξ2)ρη

)
.(2.30)
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Differentiating (2.18) along Σ (′ = d/dξ = ∂ξ + η′∂η) we get

(c2(ρ)[ρ] + [p])(ρξ + η′ρη) = 2[m]m′ + 2[n]n′

= 2[n](−η′m′ + n′) = 2[n](−η′mξ + (1 − (η′)2)mη + η′nη),

where [m] = −η′[n] (equation (2.16)) is used in the second equality and mη = nξ

(equation (2.27)) in the last equality. We simplify the last expression, replacing
derivatives Dm and Dn by Dρ using (2.28), (2.29), (2.30), and

[n] =
[p]

−η′ξ + η
(2.31)

from (2.15), and finally we get

β · ∇ρ ≡ β1ρξ + β2ρη = 0,(2.32)

where β is a function of Ξ, ρ, and η′ with components

(2.33) β1 = (ξ2 + η2)(−η′ξ + η)(c2(ρ) + s2(ρ, ρ1))

− 2s2
{
−η′ξ(c2 + η2) + (1 − (η′)2)η(c2 − ξ2) + η′ξ(−c2 + ξ2)

}
and

(2.34) β2 = η′(ξ2 + η2)(−η′ξ + η)(c2(ρ) + s2(ρ, ρ1))

− 2s2
{
η′η(c2 − η2) + (1 − (η′)2)ξ(c2 − η2) + η′η(c2 + ξ2)

}
.

We now examine the obliqueness condition by comparing β with the inward nor-
mal to Ω at Σ, ν = (η′,−1). It turns out that the operator β · ∇ in (2.32) is oblique
at all points on the shock except the symmetry point. In fact, obliqueness holds
along any monotonic curve which satisfies the shock equation (2.23) at (ξ0, η0), that
is, η(ξ0) = η0 and η′(ξ0) = 1/κa, and for any subsonic function ρ. We prove the
following result.

Proposition 2.2. Let Σ = {(ξ, η(ξ))} be any curve which has positive slope on
(0, ξ0], lies inside the sonic circle C0, and at ξ = ξ0 satisfies (2.23) and η = η0; let
ν be its inward normal. Then for any function ρ(ξ, η) with c2(ρ) > ξ2 + η2, we have
β · ν > 0 on Σ for ξ ∈ (0, ξ0].

Proof. We calculate

β · ν = β1η
′ − β2

= − 2s2
{
−(η′)2ξ(c2 + η2) + η′(1 − (η′)2)η(c2 − ξ2) + (η′)2ξ(−c2 + ξ2)

−η′η(c2 − η2) − (1 − (η′)2)ξ(c2 − η2) − η′η(c2 + ξ2)
}

= 2s2(η′η + ξ)
{
(c2 − ξ2)(η′)2 + 2ξηη′ + c2 − η2

}
.

Now s2 = [p]/[ρ] �= 0, since c2(ρ) > ξ2 + η2 > c2(ρ1). Also, if η′ > 0 and ξ > 0 we
have η′η + ξ > 0; so to get obliqueness we need only verify that

(c2 − ξ2)(η′)2 + 2ξηη′ + c2 − η2 > 0.(2.35)

We first note that (2.35) holds at ξ = ξ0, since c2(ρ0) > s2(ρ0, ρ1) and (s2−ξ2)(η′)2 +
2ξηη′ + s2 − η2 = 0 (equation (2.19)) holds at (ξ0, η0).
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Fig. 2.2. Sketch of the domain.

Now, the left-hand side of (2.35) is a quadratic polynomial, P (η′), where P (Y ) =
(c2 − ξ2)Y 2 + 2ηξY + (c2 − η2), with coefficients depending smoothly on ξ, η, and
ρ. For any (ξ, η, ρ) with ξ2 + η2 < c2(ρ), P (Y ) has a fixed sign for all Y since
disc(P ) = c2

(
ξ2 + η2 − c2(ρ)

)
< 0. Thus, P has a fixed sign inside C0. Since

P (η′) > 0 at (ξ0, η0), then P > 0 on {(ξ, η(ξ)) | ξ ∈ [0, ξ0]}.
Thus obliqueness holds for ξ > 0. However, obliqueness fails at ξ = 0, where the

factor η′η + ξ vanishes because we impose the condition η′ = 0.

2.4. The free boundary problem. We can now give a technical statement of
the main result in this paper. The subsonic domain is bounded by the part of the
circle ξ2 +η2 = c2(ρ0) which lies below the shock and by the a priori unknown curved
transonic shock itself. Taking advantage of the symmetry, we solve the problem in
the right half of this domain, which we will call Ω in the remainder of the paper. We
define σ to be the closed segment of C0 bounding Ω and Σ0 to be the relatively open
segment of the η axis which forms the symmetry boundary. See Figure 2.2. The use
of a half-domain results in a technical issue at the bottom corner, where Σ0 meets
σ, which is easily dealt with by standard continuity arguments. In addition, the fact
that the upper boundary Σ is free means that Σ0 is also not defined a priori. This
matter of nomenclature we shall also ignore in the interest of simplicity.

We define Q to be the governing second-order quasi-linear operator in the domain
Ω, given in (2.6) (repeated indices are summed):

Qρ =
(
(c2(ρ) − ξ2)ρξ − ξηρη

)
ξ
+
(
(c2(ρ) − η2)ρη − ξηρξ

)
η

+ ξρξ + ηρη

≡ Di(aij(Ξ, ρ)Djρ) + bi(Ξ)Diρ = 0.(2.36)

In principle, we should modify Q so that it is elliptic in Ω for any value of ρ. However,
in Proposition 2.4, we immediately obtain a priori bounds which enable us to use the
original operator. We denote by M the quasi-linear oblique derivative boundary
operator on Σ = {(ξ, η(ξ))| ξ ∈ (0, ξ0)}:

Mρ ≡ β(Ξ, ρ, η′) · ∇ρ = 0.(2.37)

Here β is the vectorfield defined by (2.33) and (2.34). The second condition on the
free boundary is the shock evolution equation (2.23) for Σ:

dη

dξ
= f(Ξ, ρ) ≡ −ξη +

√
s2(ξ2 + η2 − s2)

s2 − ξ2
with η(ξ0) = η0.(2.38)
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Here s = s(ρ(ξ, η(ξ)), ρ1) is the function given by (2.20). On the fixed segments of
the boundary, Σ0 and σ, we impose Neumann and Dirichlet conditions, respectively:

ρξ = 0 on Σ0 ⊂ {ξ = 0}; ρ = ρ0 on σ ⊂ {ξ2 + η2 = c2(ρ0)}.(2.39)

At the Dirichlet boundary, the equation is degenerate elliptic, in a manner described
in our previous work, [1, 2, 7]. In particular, we expect that the solution will have an
algebraic singularity along this boundary segment.

Now, it is easy to see that the trivial solution ρ(ξ, η) ≡ ρ0 solves this problem,
with Σ simply the straight-line extension of the incoming shock S−

a , except at the
point where the shock meets the symmetry boundary. Thus, we must in addition
impose a one-point condition at this a priori unknown point, which we label Ξs. We
impose the condition that the curved shock is smooth for the full domain problem,
and hence that η′(0) = 0. As shown in section 2.2, this is equivalent to (2.25). We
may alternatively express this as a one-point Dirichlet condition at the corner Ξs by
solving ηs = s(ρ(0, ηs), ρ1), for ρ(Ξs), or, using the notation of equation (2.21),

ρ(Ξs) = s−1
ρ1

(ηs).(2.40)

We establish the following existence theorem.
Theorem 2.3. There is a value κ∗ such that for any Riemann data (2.7) with

κa > κ∗, the free boundary problem consisting of (2.36), (2.37), (2.38), (2.39), and
(2.40) has a classical solution ρ ∈ C2+α(Ω) ∩ C(Ω) which is twice continuously dif-
ferentiable up to Σ and Σ0 except at Ξs and Ξ0. The free boundary is of Hölder class
H2+α for some α which is determined by the Riemann data of the problem.

We prove this theorem using the fixed point argument we developed in our earlier
papers and in work with Lieberman [3, 4, 6] for the slightly simpler small disturbance
equations. The main technical difficulty which is new in this case is that the bound-
ary condition on the free boundary is no longer uniformly oblique. To be precise,
obliqueness fails at the point Ξs. On the other hand, because it is the nature of the
Mach stem to strengthen as it approaches the wall, we find that we can control the
quantity under the square root sign in (2.38). Thus our result is not restricted to
being local, as in [3] and [4], or perturbative, as in [6].

We formulate the fixed point argument in terms of the position of the free bound-
ary. We work with a regularized, uniformly elliptic, operator Qε = Q+εΔ and then, as
in [4], send the regularizing parameter, ε, to zero. The mapping on the free boundary
is obtained by solving a fixed boundary problem using the oblique derivative condition
on the shock boundary and then integrating the shock evolution equation to update
the position of the shock. However, unlike our problem in [4], obliqueness fails at the
corner Ξs representing the foot of the Mach stem. Following ideas outlined by Lieber-
man [20, 21], we establish local Schauder estimates at Ξs which are independent of the
obliqueness ratio (Theorem 3.5). In section 3.2 we apply these results to the nonlinear
regularized fixed boundary problem. The regularized free boundary problem is solved
in section 3.3, and results for the limit ε → 0 are obtained in section 4.

Before beginning the analysis, we establish that the equations above are well-
defined for the approximations we use. The following monotonicity result is used
throughout.

Proposition 2.4. For a given monotonic function η(ξ) forming the boundary Σ,
suppose that ρ ∈ C1(Ω ∪ Σ ∪ Σ0) ∩ C(Ω) is a solution of the boundary value problem
(2.36), (2.37), (2.39), and (2.40) with ρ ≥ ρ0. Then ρ(0, ηs) = ρmax is the maximum
value of ρ in Ω and ρ is monotonic on Σ.
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Proof. Since the operator Q in (2.36) has no undifferentiated terms, the classical
and Hopf maximum principles apply. That is, the local and absolute extrema of ρ
occur on the boundary ∂Ω (classical); and at any point on ∂Ω where ρ has a local
extremum, the normal derivative is nonzero (Hopf [15, p. 34]). On the Neumann and
oblique derivative boundaries, Σ0 and Σ, if ρ has an extremum along the boundary
then two linearly independent directional derivatives of ρ are zero, and so ∇ρ is zero
there, which is impossible, by the Hopf maximum principle. Thus there are no local
extrema in the interior of Σ0 or of Σ. There cannot be absolute extrema, either, and
hence ρmax = ρ(0, ηs) is the absolute maximum of ρ in Ω, and we obtain the bounds
ρ0 < ρ < ρmax in Ω from the classical maximum principle. And since in Ω we have
ξ2 + η2 < c2(ρ0) < c2(ρ), it follows that the solution is strictly subsonic in Ω.

To prove monotonicity, we argue by contradiction. Let us first examine the C1

function ρ restricted to Σ. This is now a function of a single variable, say, the first
component of a point Ξ = (ξ, η) on Σ. Without confusion, we can label this component
by the name of the point, we can order the points along Σ by this component, and we
can refer to intervals along Σ by the labels. Then lack of monotonicity means there
exist points Z1 and Z2 on Σ with Ξs < Z1 < Z2 < Ξ0 at which ρ(Z1) < ρ(Z2). We
immediately deduce that

1.

in (Ξs, Z2) ∃ C̃ with ρ(C̃) = min
[Ξs,Z2]

ρ;2.

in (C̃,Ξ0) ∃ D with ρ(D) = max
[C̃,Ξ0]

ρ.

We want to identify points C and D, C < D, on Σ such that the following three
properties hold:

(i) ρ(Ξs) ≥ ρ ≥ ρ(C) on [Ξs, C];
(ii) ρ(C) ≤ ρ ≤ ρ(D) on [C,D];
(iii) ρ(D) ≥ ρ ≥ ρ(Ξ0) on [D,Ξ0].

Now, property (ii) may not hold with C = C̃ because ρ(C̃) is the minimum value of
ρ only on the interval [Ξs, Z2], and we may have D > Z2. So, if there is a point in

(Z2, D) at which ρ < ρ(C̃), then we let C be a point at which ρ has its minimum value

in this interval; if there is no such point, then let C = C̃. Then all three properties
hold.

Now we look at the function ρ in the domain Ω. The idea is to partition Ω into
subdomains by two curves ΓC and ΓD from C and D, respectively, to points A and
B, respectively, on Σ0, in such a way that ρ(A) < ρ(B) and so that we can deduce
that there is a point m on Σ0 at which ρ reaches a minimum on either the domain ΩA

or the domain ΩB , thus violating the Hopf maximum principle, as stated in the first
paragraph of this proof. See Figure 2.3. It is of course sufficient to show that ρ(m) is
the minimum value of ρ on the boundary of ΩA or ΩB .

It would be simplest to find curves on which ρ is monotonic, but it is not clear
that such curves exist, or what properties they would have. Instead, we construct
Lipschitz curves on which ρ is monotonic on average. To be precise, we construct
curves on which, for a certain number μ,

ρ(A) ≤ ρ ≤ ρ(C) + μ on ΓC and ρ(A) < ρ(C);(2.41)

ρ(B) ≥ ρ ≥ ρ(D) − μ on ΓD and ρ(B) > ρ(D).(2.42)
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Fig. 2.3. Illustration of the proof of Proposition 2.4.

We begin by identifying some useful constants. Let

μ =
1

4
min{ρ(D) − ρ(C), ρ(Ξs) − ρ(D), ρ(C) − ρ(Ξ0)}.

Since ρ ∈ C(Ω), then ρ is uniformly continuous, and there is an ε > 0 such that
ρ(Ξ) ≤ ρ0 + μ if dist(Ξ, σ) < ε. Let Ωε = {Ξ ∈ Ω | dist(Ξ, σ) > ε}, and let
σε = {Ξ ∈ Ω | dist(Ξ, σ) = ε}. As we shall see, we can restrict our attention to
Ωε. The purpose of constructing this domain is to be able to bound |∇ρ|. Since
ρ ∈ C1(Ωε), we have |∇ρ| ≤ M there, say. (We could estimate M from Schauder
theory, but this is not important here.)

Now, on any ball of radius r, the oscillation of ρ is bounded by 2Mr, and we now
choose a radius, R = μ/(2M), so that

osc
BR∩Ωε

ρ ≤ μ.

Now we construct ΓD as follows. Consider a ball BR(D) centered at D. In BR(D)∩Ωε,
ρ(D) cannot be the maximum value of ρ (because D is not a point of local maximum
in Ω); hence there are points of ∂BR(D) ∩ Ωε where ρ > ρ(D). Let X1 be a point at
which ρ attains its maximum value in BR(D). The first segment of ΓD is a straight
line from D to X1. We have ρ(X1) > ρ(D), and on the segment, ρ(X) ≥ ρ(D) − μ
and ρ(X) < ρ(X1).

Now we continue inductively, forming a sequence of line segments with corners at
{Xi} (take D = X0), along which ρ ≥ ρ(D) − μ and such that ρ(X1) < ρ(X2) < · · · .
To show that we can do this, let

Ωj = Ωε\{∪j−1
0 BR(Xi)};

we have Xj ∈ ∂Ωj , and we consider BR(Xj). We note that ρ(Xj) is the largest value
of ρ on the part of BR(Xj) inside the complement of Ωj . However, ρ(Xj) is less than
the maximum value of ρ on BR(Xj), by the mean value property. Hence there is a

point Xj+1 ∈ ∂BR(Xj)∩Ωj at which ρ attains its maximum value in BR(Xj). Again,
along the straight line from Xj to Xj+1 we have ρ ≥ ρ(Xj) − μ > ρ(D) − μ.
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Now,

dist(Xi−1,Ωi) = R

and

Ωj ⊂ Ωj−1 ⊂ · · · ⊂ Ω1,

so

dist(Xi,Ωk) ≥ R

for k ≥ i + 1; and since Xk ∈ ∂Ωk, the estimate

dist(Xj+1, Xi) ≥ R ∀ i ≤ j

follows.
Hence dist(Xi, Xj) ≥ R for i �= j for all points in the sequence. But only a finite

number of balls with radius R and separated centers will fit in Ωε, so this process
must terminate after a finite number of steps when we reach a point XL = B ∈ ∂Ωε.
By construction, ΓD has the properties indicated in (2.42).

Similarly, we construct ΓC , with termination point A ∈ ∂Ωε.
Next we show that the points A and B lie on Σ0. First, the curves cannot

cross each other, because at every point on ΓD, ρ ≥ ρ(D) − μ > ρ(C) + μ, while at
every point on ΓC we have ρ < ρ(C) + μ. Also, ΓD cannot terminate at σε where
ρ ≤ ρ0 +μ < ρ(D). For the same reason, B cannot lie on Σ in the segments [D,Ξ0] or
[C,D] where ρ ≤ ρ(D). Finally, B cannot lie in the segment [Ξs, C] of Σ because this
would trap ΓC in a region where ρ ≥ ρ(C) (or, more simply, this would contradict
the fact that C is not a local minimum in Ω). Hence B ∈ Σ0.

Similarly, A cannot lie on Σ, where ρ ≥ ρ(C) in the interval [Ξs, D], and must lie
on Σ0, between B and Ξs.

Now we find our final contradiction. Since there is a point, A, in the interval
[Ξs, B] of Σ0 where ρ is smaller than its value at either endpoint, then there must be
a point m where ρ, restricted to the interval [Ξs, B] of Σ0 attains its minimum. We
recall that m cannot be a local minimum in Ω, and so it cannot be a minimum in Ω1 or
in Ω2. The relevant domain is Ω1 if m ∈ [Ξs, A]; otherwise it is Ω2. In particular, there
would have to be points on the boundary of the relevant domain at which ρ < ρ(m).
But the construction we have performed prevents this. To verify this, suppose first
that m ∈ [Ξs, A]. Then ρ ≥ ρ(m) on [Ξs, A]. In particular, ρ(m) ≤ ρ(A) ≤ ρ(X)
for X ∈ ΓC , and ρ(m) ≤ ρ(A) < ρ(C), by (2.41). In addition, ρ ≥ ρ(C) on the
top boundary, [Ξs, C] in Σ, of Ω1. Thus, we have a contradiction to the maximum
principle if m ∈ [Ξs, A].

But if m ∈ [A,B], then again there are no points on the interval [A,B] of Σ0 at
which ρ < ρ(m), and again ρ ≥ ρ(A) ≥ ρ(m) along ΓC . As before, ρ(C) > ρ(A) ≥
ρ(m). Now, ρ ≥ ρ(C) on the interval [C,D] of the top boundary, Σ, of Ω2, and
by (2.42) we have ρ ≥ ρ(D) − μ > ρ(C) along ΓD. Thus in this case also, ρ(m) is
the smallest value of ρ along the entire boundary of Ω2. This again contradicts the
maximum principle, as stated in the first paragraph of the proof.

We conclude that C and D do not exist, and hence that Z1 and Z2 do not exist,
and ρ is monotonic on Σ.

As a second basic result, we prove that the shock evolution equation can always be
integrated, defining the mapping whose fixed point is the free boundary. Beginning
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with a given curve η(ξ), assume we have solved the fixed boundary value problem
(2.36), (2.37), (2.39), and (2.40). We then produce a new approximate shock position
η̃(ξ) by integrating (2.38):

η̃(ξ) = η0 +

∫ ξ

ξ0

f(x, η(x), ρ(x, η(x))) dx,(2.43)

where f is defined in (2.38). Note that on the right side of (2.43) we evaluate all
quantities along the old shock position, η(ξ). We have the following proposition.

Proposition 2.5. Suppose that η is a monotone function and that ρ satisfies
the boundary value problem (2.36), (2.37), (2.39), and (2.40). Then η2 > s2 and
η2 + ξ2 > s2 for all ξ ∈ (0, ξ0) so the new curve η̃ is defined for all ξ ∈ [0, ξ0] and is
monotonic. Furthermore, η̃′(0) = 0.

Proof. Because ρ satisfies (2.40), we see that at ξ = 0 the quantity under the
square root sign in (2.38) is zero. Since η is monotonic, the quantity η2(ξ) is an
increasing function of ξ. We use Proposition 2.4 to conclude that s2 along Σ is a
decreasing function of ξ (since ρ decreases and s is a monotonic function of ρ). Hence
η2 − s2 is strictly positive when ξ > 0. In addition, this implies that ξ2 + η2 − s2 is
positive, and so the right-hand side of (2.43) is well defined (see the equivalent form
in (2.23)). In addition, (2.23) also shows that dη̃/dξ is positive as long as η2 − s2 > 0.
Finally, this derivative is zero at ξ = 0, where the right side of (2.38) vanishes.

We now define K = Kε, a closed, convex subset of a Hölder space H1+α1([0, ξ0]);
the value of α1 ∈ (0, 1) depends on the regularizing parameter ε and will be specified
later. The functions in K satisfy
(K1) η(ξ0) = η0, and η′(ξ0) = 1/κa, where ξ0 and η0 are defined in (2.26);
(K2) η′(0) = 0;
(K3) ηc ≤ η(ξ) ≤ η0; recall that ηc =

√
1 + κ2

as0/κa < η0 < c0 if κa > κA;

(K4) 0 ≤ η′ ≤
√
c20/s

2
0 − 1.

Then (2.43) defines a mapping on K:

J : η �→ η̃.(2.44)

The upper bound in (K4) is justified by the following proposition.
Proposition 2.6. If η(ξ) is a monotonic function with η(ξ0) = η0 and ρ a

solution to (2.36), (2.37), (2.39), and (2.40), then the function f given by (2.38) is
bounded above by

√
c20 − s2

0/s0 ≡ 1/κA.
Proof. By Proposition 2.4, s(ξ, η) is a decreasing function on η(ξ) with s2(0, η(0)) =

η2(0), and by Proposition 2.5, η ≥ s on η(ξ). For the function f defined by (2.38), a
calculation shows

∂f

∂ξ
= −

(η2 − s2)
(
sξ + η

√
ξ2 + η2 − s2

)
√
ξ2 + η2 − s2

(
ξη +

√
s2(ξ2 + η2 − s2)

)2 < 0,

∂f

∂η
=

ξ2 + η2√
ξ2 + η2 − s2

(
sη + ξ

√
ξ2 + η2 − s2

) > 0,

∂f

∂s2
= −

1
2η

2(ξ2 + η2 − s2) + 1
2s

2ξ2 + ξηs
√
ξ2 + η2 − s2(

ξη +
√

s2(ξ2 + η2 − s2)
)2 < 0,

Hence, f is largest when η has its maximum value η0, and ξ and s their minimum val-
ues, 0 and s0, respectively. This gives the stated upper bound, which is the reciprocal
of the limiting value κA, as calculated in [17].
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We also note the upper bound for the solution ρ of (2.36), (2.37), (2.39), and
(2.40) when η ∈ K. Since ηs ≤ η0 and s2 is monotonic, for given Riemann data
(ρ0, ρ1, κa), the value of ρmax in Proposition 2.4 is bounded above by ρM , where, from
(2.40),

ρM = s−1
ρ1

(η0).(2.45)

We will use this upper bound in the proofs.
We prove Theorem 2.3 in two stages. First, in section 3 we solve the regularized

free boundary value problem for Qε = Q + εΔ. In section 4, we consider the limit
ε → 0 and show that this limit yields a solution of (2.36)–(2.40).

3. The regularized problem. For a fixed ε ∈ (0, 1) we solve the free boundary
problem defined at the beginning of section 2.4, but with Q replaced by the regularized
operator Qε. The equation for ρ in the subsonic region is now

Qερ = Qρ + εΔρ = 0;(3.1)

the shock evolution equation remains the same,

η′ = f(ξ, η, ρ), η(ξ0) = η0;(3.2)

and the boundary conditions are, as before,

Mρ = β · ∇ρ = 0 on Σ ≡ {(ξ, η(ξ)); 0 < ξ < ξ0},(3.3)

ρ = ρ0 on σ; ρξ = 0 on Σ0,(3.4)

and

ρ(Ξs) = ρs ≡ s−1
ρ1

(ηs).(3.5)

The theorem we prove in this section is as follows. (See (3.7) for the spaces.)

Theorem 3.1. For each ε ∈ (0, 1), there exists a solution (ρε, ηε) ∈ H
(−γ)
1+α (Ωε)×

H1+α([0, ξ0]) to the regularized free boundary problem (3.1), (3.2), (3.3), (3.4), and
(3.5) such that

ρ0 < ρε ≤ ρs ≤ ρM and c2(ρε) > ξ2 + η2 in Ωε \ σ.(3.6)

Here, α, γ ∈ (0, 1) both depend on ε and on the Riemann data κa, ρ0, and ρ1. The
curve ηε(ξ), defining the position of the free boundary Σε, is in Kε; Ωε is bounded by
σ, Σ0, and Σε.

We prove Theorem 3.1 in the following steps (which take up the three subsections
of this section).

Step 1. First we show the existence of a solution to a linear problem with fixed
boundary Σ defined by η(ξ) ∈ K and establish Hölder and Schauder estimates at Σ.
For this, it is convenient to define a weighted Hölder space; see [15] for the general
definition of weighted Hölder spaces. Let V = {Ξ0} denote the corner point at which
Σ meets the degenerate boundary σ. Set Ω′ = Ω ∪ σ ∪ Σ0 \ V . We anticipate loss of
regularity at V , because of the mixed boundary condition and the degeneracy of the
operator Q at σ. At Ξs, we also find loss of regularity because of loss of obliqueness
of the operator M . The third corner, between Σ0 and σ, is an artifact of our decision
to work in a half-domain. Since it does not contribute to any loss of regularity, we
ignore it in the discussion. We define the corner region near Ξ0:

ΩV (δ) = {x ∈ Ω : dist(V, x) ≤ δ}.
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In [3, 4, 6], in which the derivative condition was uniformly oblique, the only loss of
regularity came from the corners. In the present problem, we overcome the loss of
obliqueness at a single point on Σ, but at a cost: the Schauder estimates are no longer
independent of the gradients of the coefficients, and hence we do not get a compact
mapping in the same spaces. In this paper, we therefore modify the weighted Hölder
spaces, as follows. We define a region which is close to Σ but does not contain the
corner Ξ0 by taking a covering of Σ with balls of radius δ centered at points on Σ
which are bounded away from Ξ0. Define Σ′′(δ) = {Ξ ∈ Σ | dist(Ξ,Ξ0) > δ} and

Σ(δ) =

⎧⎨
⎩x ∈ Ω ∩

⋃
Ξ∈Σ′′(δ)

Bδ(Ξ)

⎫⎬
⎭ ,

where Bδ(Ξ) is a ball of radius δ centered at Ξ. We then define

H(b)
a ≡

{
‖u‖(b)

a ≡ sup
δ>0

δa+b|u|a,Ω\{Σ(δ)∪ΩV (δ)} < ∞
}
.(3.7)

For the linear problem, we establish a priori Schauder and Hölder bounds at Σ, in
particular near the point where the data lose obliqueness; we use Hölder estimates
near V , and C2+α estimates locally in the rest of the domain. We prove existence
of a solution by regularizing the oblique boundary condition to be uniformly oblique,
then passing to the limit using the a priori bounds.

Step 2. Using the Hölder gradient bounds to the linear problem, we establish
existence results for the nonlinear fixed boundary problem, via the Schauder fixed
point theorem.

Step 3. We apply the Schauder fixed point theorem again to prove existence of a
solution to the nonlinear free boundary problem.

3.1. The regularized linear fixed boundary problem. Replace ρ in the
coefficients aij of (2.36) and βi of (2.33), (2.34) by a function w in a set W defined
with respect to a given boundary component Σ, and depending on given values Ξs

and ρs (see (3.5)), as follows.

Definition 3.2. The elements of W ⊂ H
(−γ1)
2 satisfy

(W1) ρ0 ≤ w ≤ ρM , w = ρ0 on σ, w(Ξs) = ρs, wξ = 0 on Σ0;

(W2) ‖w‖(−γ1)
2 ≤ K;

(W3) |w|α0,Ω′
loc

≤ K0.
The weighted Sobolev space is defined by (3.7); the values of γ1, α0 ∈ (0, 1) will

be specified following (3.29), as will the values of K and K0. The set W is clearly
closed, bounded, and convex.

The quasilinear equations (3.1) and (3.3) are now replaced by linear partial dif-
ferential and boundary equations (repeated indices are summed)

Lεu = Di(aij(Ξ, w)Dju) + εΔu + bi(Ξ)Diu = 0 in Ω,
Nu = βiDiu = βi(Ξ, w)Diu = 0 on Σ = {η = η(ξ)},(3.8)

with a given η ∈ K ⊂ H1+α1
and w ∈ W. Because of the bound (W1), Lε is uniformly

elliptic in Ω with ellipticity ratio depending on the Riemann data and on ε. In this
section, we demonstrate the key point that for a given function w ∈ W, the solution
u to the linear equations (3.8) with the remaining boundary conditions

u = ρ0 on σ, uξ = 0 on Σ0 and u(Ξs) = ρs,(3.9)
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satisfies Hölder and Schauder estimates in Ω′ and a uniform H1+p,Σ(d0) bound near
Σ for any p < min{γ1, α1}. This bound gives rise to enough compactness to establish
the existence of a solution to the quasilinear problem by applying the Schauder fixed
point theorem.

We first note L∞ a priori bounds for the solution u to the linear problem.

Proposition 3.3. The solution u to the linear problem (3.8), (3.9) satisfies

ρ0 < u ≤ ρs ≤ ρM in Ω ∪ Σ ∪ Σ0,(3.10)

where ρs = ρ(0, ηs) is defined in (3.5) and ρM , defined in (2.45), is independent of ε.
Moreover,

c2(u) > c2(ρ0) > ξ2 + η2 in Ω ∪ Σ ∪ Σ0.(3.11)

Proof. The linear problem is uniformly elliptic for ε > 0 and w ∈ W, so the
classical maximum principle applies, as well as the boundary considerations used in
the proof of Proposition 2.4.

Next, we state the Schauder estimates including the Dirichlet and fixed Neumann
boundaries, σ and Σ0, and the Hölder estimates at the corner, Ξ0.

Theorem 3.4. Assume that Σ is given by {(ξ, η(ξ))} with η ∈ K for some
α1 ∈ (0, 1) and that w is in W for given K, K0, α0, and γ1. Then there exist
γV , αΩ ∈ (0, 1) such that any solution u ∈ H2+αΩ,Ω′ ∩HγV ,ΩV (d0) to the linear problem
(3.8), (3.9) satisfies

|u|γ,ΩV (d0) ≤ C1|u|0(3.12)

for any γ ≤ γV and

|u|2+α,Ω′
loc

≤ C2|u|0(3.13)

for any α ≤ αΩ. The exponent γV depends on the Riemann data, and both αΩ and
γV depend on ε but are independent of α1 and γ1. The constant C1 is independent of
the bounds K and K0. The constant C2 is independent of K but depends on K0.

Proof. The proof is immediate. We refer to Theorem 1 of Lieberman [22] for the
corner estimate. Here γV depends on the angle between Σ and σ at V , a fixed value
that depends only on the Riemann data, and on the obliqueness ratio at V , which is
also fixed, as well as on the ellipticity ratio ε, but not on γ1, α1, K, or K0.

Standard interior and boundary Schauder estimates, for example, [15, p. 98], give
the local estimate (3.13). The constant C2 depends on ε, on the Hα norm of the
coefficients aij , and on the domain.

Because interior Schauder estimates can be applied once more, a solution in
H2+α,Ω′ is actually in C3(Ω).

Finally, we establish Hölder gradient estimates at Σ. It is at this point that we
need to derive basic estimates at the point Ξs where the boundary operator N is not
oblique. To avoid discussing the Neumann boundary separately at each step of this
proof, we reflect Ω across the ξ axis, without further comment; Ω includes Σ0 and we
let Σ stand for the full H1+α1 boundary in Theorem 3.5. The remaining assumptions
are the same as in Theorem 3.4.

Theorem 3.5. Assume that Σ is given by {(ξ, η(ξ))} with η ∈ K for some
α1 ∈ (0, 1) and that w is in W for given K, K0, α0, and γ1. Then, there exists a
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positive constant d0 such that for every d ≤ d0, any solution u ∈ C1(Ω ∪ Σ) ∪ C3(Ω)
to the linear problem (3.8), (3.9) satisfies

|u|1+p,Σ(d) ≤ C(ε, α1, γ1,K, d0)|u|0(3.14)

for any p < min{γ1, α1}.
Proof. Away from a neighborhood Bd0

(Ξs) of Ξs the boundary operator N in
(3.8) is oblique and thus we can apply known regularity theory, for example, [15,
Theorem 6.30], to get (3.14) in Σ(d0) \Bd0

(Ξs), with a constant C which depends on
ε, α1, Ω, d0, and K0. Hence we consider only estimates near Ξs in the remainder of
the proof.

For a given solution u to (3.8) and (3.9) we define

v =
u

1 + |Du|0
and z = Nv = βi(Ξ)Div.(3.15)

We construct a barrier function f for z on B ≡ Bd0(Ξs)∩Ω to get a Hölder estimate
for the gradient of the solution of (3.8), (3.9). Let ψ = z + f(ζ), where ζ is the
regularized distance function (from the boundary component Σ); see [18]. A smooth
approximation to d(Ξ) = dist(Σ,Ξ) is necessary since Σ has minimal regularity. The
regularized distance function has the properties 1 ≤ ζ/d ≤ 2, 0 < ζ0 ≤ |Dζ| ≤ ζD and
|D2ζ| ≤ ζDdα1−1. We let f(0) = 0 and we first construct the lower barrier, −f , by
finding a suitable positive, increasing function f such that ψ > 0. Note that, with f
positive, we get ψ ≥ z on ∂B. Where no confusion is likely, we let subscripts denote
partial derivatives and calculate

Diψ = βjDijv + DiβjDjv + f ′ζi,(3.16)

whence

βjDijv = Diψ − (DiβjDjv + f ′ζi).(3.17)

We also have

Dijψ = βkDijkv + DjβkDikv + DiβkDjkv + DijβkDkv + f ′ζij + f ′′ζiζj .(3.18)

In addition, since w satisfies (W2) with a given constant K, we get estimates on
the derivatives of aij . Using the definition of the weighted norms, we have (noting
|Dw| ≤ |w|1 and so on)

|D(aij)| ≤ |aij,x| + |aij,u||Dw| ≤ |aij,x| + |aij,u|‖w‖(−γ1)
1 dγ1−1 ≤ mdγ1−1,

|D2(aij)| ≤ |aij,x,x| + 2|aij,x,u||Dw| + |aij,u,u||Dw|2 + |aij,u||D2w|

≤ |aij,x,x| + 2|aij,x,u|‖w‖(−γ1)
1 dγ1−1 + |aij,u,u|(‖w‖(−γ1)

1 dγ1−1)2

+ |aij,u|‖w‖(−γ1)
2 dγ1−2

≤ m(dγ1−2 + d2γ1−2).

(3.19)

Here subscripts denote derivatives of aij with respect to the variables in Ξ (, x) and
with respect to w (, u). The symbol m = m(K) denotes a quantity which depends
on the structure of the derivatives of aij and the bound K on w. We absorb terms
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which are less singular as d → 0. We also get estimates on the derivatives of βi. Let
γ2 = min{γ1, α1}. Then

|Dβi| ≤ mdγ2−1, |D2βi| ≤ m(dγ2−2 + d2γ2−2),(3.20)

where m = m(K) > 0 depends on the structure of the derivatives of β. In deriving
this estimate, we use the fact that η′, η′′, and η′′′ are bounded by dα1 , dα1−1, and
dα1−2, respectively, as we can apply Lemma 2.8 of [14] to η(ξ) − η.

Since β2(Ξs, w) = 0 and β1(Ξs, w) �= 0, we can take 0 < d1 ≤ 1 small enough so
that for all 0 < d0 ≤ d1 and all w ∈ W we have β1(Ξ, w) �= 0 in Bd0

. Now we solve
the two equations in (3.17) along with Lv = 0, that is,

aijDijv = −(DjaijDiv + biDiv),(3.21)

as a linear system for the three derivatives Dijv. The assumption that β1 is bounded
away from zero, coupled with the ellipticity of L, gives a uniform bound c1(Λ, λ, |β|0)
on the inverse of the coefficient matrix of the linear system. Here we may let Λ and
λ be the eigenvalues of (aij) restricted to B. These are order one constants which
depend only on the Riemann data. Furthermore, we can estimate the right-hand sides
of (3.17) and (3.21) using (3.19) and (3.20). We get

|D2v| ≤ c1(Λ, λ, |β|0)
(
|Dψ| + (mdγ2−1 + |b|0)|Dv| + f ′ζD

)
.(3.22)

This bounds the second derivatives of v in terms of |Dψ|. Now we proceed to obtain
bounds for ψ. The idea is to find an elliptic operator for which ψ is a subsolution in B
and simultaneously to force ψ > 0 on ∂B, by choice of the function f . A second-order
operator for ψ involves third derivatives of v, so we estimate these. By using Lv = 0,
(3.22), (3.19), and (3.20) (recall that |Dv| ≤ 1), we get

aijDijkv = −
(
DkaijDijv + DjaijDikv + biDikv + DjkaijDiv + DkbiDiv

)
≤ (mdγ2−1 + |b|0)|D2v| + (mdγ2−2 + md2γ2−2 + |b|1)|Dv|
≤ c1(mdγ2−1 + |b|0)|Dψ| + c1(mdγ2−1 + |b|0)2

+ c1(mdγ2−1 + |b|0)f ′ζD + mdγ2−2 + md2γ2−2 + |b|1
≤ c2

{
(mdγ2−1 + 1)|Dψ| + (mdγ2−1 + 1)2

+ (mdγ2−1 + 1)f ′ + mdγ2−2 + md2γ2−2 + 1
}
,

where c2 = c2(Λ, λ, ρM , |β|0, |b|0, |b|1, ζD). Thus, using (3.18) and making the esti-
mates indicated, we have

aijDijψ ≤ c2|β|0
{
(mdγ2−1 + 1)|Dψ| + (mdγ2−1 + 1)2 + (mdγ2−1 + 1)f ′

+ mdγ2−2 + md2γ2−2 + 1
}

+ 2Λmdγ2−1c1
{
|Dψ| + mdγ2−1 + |b|0 + f ′ζD

}
+ Λm(dγ2−2 + d2γ2−2) + Λf ′|ζij | + f ′′aijζiζj

≤ c3
{
(mdγ2−1 + 1)|Dψ| + mdγ2−2 + (m2 + m)d2γ2−2

+ mdγ2−1(1 + f ′)
}

+ Λf ′|ζij | + f ′′aijζiζj .

Here c3 is a constant depending on the same parameters as c1 and c2, and terms which
are bounded as d → 0 have again been omitted. Now we define

L1ψ ≡ aijDijψ − c3(mdγ2−1 + 1)|Dψ|
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and we calculate

L1ψ ≤ c3
{
mdγ2−2 + (m2 + m)d2γ2−2 + mdγ2−1(1 + f ′)

}
+ ΛζDf ′dα1−1 + λf ′′ζ2

0 .

(3.23)

To obtain this estimate, we have assumed f ′′ < 0 and estimated

f ′′aijζiζj ≤ f ′′ min aijζiζj = f ′′λ|Dζ|2 ≤ f ′′λζ2
0 .

We have also used the property of regularized distance: |ζij | ≤ ζDdα1−1. We now
specify f(ζ) = f0ζ

p for any p < γ2, so that

f ′′ = f0p(p− 1)ζp−2 ≤ f0p(p− 1)dp−2 < 0,

and f ′dα1−1 ≤ 2p−1f0pd
p+α1−2. Finally, we choose f0 big enough and d2 ∈ (0, 1) small

enough to get L1ψ < 0 in Bd0 for every d0 ≤ d2. We now define d0 ≡ min{d1, d2}.
Additionally, since (3.14) holds near Σ, away from Ξs, and hence is valid on ∂B,

we can choose f0 larger if necessary so that ψ > 0 on ∂B. Therefore, by the maximum
principle, ψ > 0 in B. Thus, z > −f in B.

Similarly, f is an upper barrier for z. We now have an estimate for z. In addition
we have, since ψ = z + f ,

|ψ| ≤ c4(m
2 + 1)dp for d ≤ d0.

Since ψ = 0 on Σ, we can use Schauder estimates, applying [15, Lemma 6.20] or [14,
Lemma 7.1, Theorem 7.2], using the fact that ψ and −ψ are upper and lower solutions
of an operator L1 with a Dirichlet boundary condition and estimating the right side
of (3.23), to obtain

‖ψ‖(−p)
2+γ2

≤ C1

(
sup d−p|ψ| + |ψ|0 + |ψ|p,∂B

)
≤ c4(m

2 + 1) + c(m) = C(m).

The constant C1 depends only on λ and Λ (the ellipticity constants in B) and on γ2.
To obtain the second inequality in this expression, we have used the fact that |ψ|p,∂B
is bounded, with a bound which depends only on |ψ|0 and on Λ/λ. This follows from
ψ = 0 on Σ and from interior Schauder estimates for v, a solution to a linear problem,
on ∂B ∩ Ω. Finally, this leads to

|Dψ| ≤ ‖Dψ‖(1−p)
γ2+1 d

p−1 ≤ C(m)dp−1 for d < d0.(3.24)

We now use (3.24) in (3.22) and drop lower-order terms to get

|D2v| ≤ c1(|Dψ| + mdγ2−1 + f ′) ≤ c1(C(m)dp−1 + mdγ2−1 + f0pd
p−1) ≤ Cdp−1.

Now Hölder estimates on Dv follow by integrating the last inequality. More precisely,

|D2v| ≤ Cdp−1 implies that ‖Dv‖(−p)
1 ≤ C, and by [14, Lemma 2.1] we have

|Dv|p = ‖Dv‖(−p)
p ≤ C(p)‖Dv‖(−p)

1 ,

and therefore we get

|v|1+p ≤ C.(3.25)
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Finally, using the definition of v in (3.15), we apply the interpolation inequality, [15,
Lemma 6.32], with a small δ > 0 to get

|u|1+p ≤ C(1 + |Du|0) ≤ C(1 + δ|u|1+p + Cδ|u|0)(3.26)

and thus (3.14) holds. Therefore we get Hölder gradient estimates at Σ for the solution
u of (3.8).

Now we can establish existence of a solution to (3.8) and (3.9).
Theorem 3.6. Assume that Σ is given by {(ξ, η(ξ))} with η ∈ K for some

α1 ∈ (0, 1) and that w is in W for given K, K0, α0, and γ1. Then there exist
γV , αΩ ∈ (0, 1), and d0 > 0, where γV , αΩ, and d0 are independent of γ1 and α1,
such that a solution u ∈ H1+p,Σ(d) ∩H2+α,Ω′ ∩Hγ,ΩV (d0) for the linear problem (3.8)
and (3.9) exists for any α ≤ αΩ, p < min{γ1, α1}, γ ≤ γV , and d ≤ d0 and satisfies
(3.12), (3.13), and (3.14).

Proof. To show the existence of a solution u to (3.8) and (3.9), we approximate
the oblique derivative boundary condition on Σ. To be precise, noting that the unit
inward normal to Σ at Ξs is (0,−1), for 0 < δ < 1 we let βδ = β + (0,−δ) so that
βδ · ν = β · ν + δ ≥ δ > 0 at Ξs. Then, for sufficiently small δ, βδ is uniformly
oblique. The boundary condition is now discontinuous at the corner Ξs, where Σ
and Σ0 meet. Results from [21] and [19] imply that there exists a solution uδ to
Luδ = 0 in Ω, βδ · ∇uδ = 0 on Σ, and (3.9). Now we apply Theorems 3.4 and
3.5, which are independent of δ, to see that the sequence uδ is uniformly bounded in
H1+p,Σ(d0) ∩ H2+αΩ,Ω′ ∩ HγV ,ΩV (d0) for any p < min{γ1, α1}. Thus by the Arzela–
Ascoli theorem, there exists a subsequence converging uniformly to a function u.
Using the uniform bounds (3.12), (3.13), and (3.14), we conclude that the limiting
function solves the problem (3.8), (3.9).

3.2. The regularized nonlinear fixed boundary problem. This subsection
is devoted to proving the existence of solutions to the nonlinear problem (3.1) with a
fixed boundary. We again assume that an approximate shock boundary Σ is given by
a function η = η(ξ) ∈ K. We also are given the value ρs = s−1

ρ1
(η(0)). We prove the

following theorem.
Theorem 3.7. For each ε ∈ (0, 1), and for given η ∈ K ⊂ H1+α1 , there exists a

solution ρε ∈ H
(−γ)
2+α (Ωε) to (3.1), (3.3), (3.4), and (3.5) such that

ρ0 < ρε ≤ ρs ≤ ρM , and c2(ρε) > ξ2 + η2 in Ω
ε \ σ(3.27)

for some α(ε), γ(ε) ∈ (0, 1). Moreover, for some d0 > 0 the solution ρε satisfies

|ρε|γ,Σ(d0)∪ΩV (d0) ≤ K1,(3.28)

where γ and K1 depend on ε, γV and K but both are independent of α1.
Proof. We suppress the dependence on ε to simplify the notation.
Recall that K ⊂ H1+α1([0, ξ0]) is a closed convex set of functions satisfying the

additional conditions (K1) to (K4) given in section 2.4. For any function w in W
we define a mapping T : W ⊂ H

(−γ1)
2 → H

(−γ1)
2 by letting ρ = Tw be the solution

to the linear regularized fixed boundary problem, (3.8), (3.9) solved in Theorem 3.6.
Because w satisfies (W1), Lε is strictly elliptic, with ellipticity ratio depending on ε.

By Theorem 3.6, T maps W ⊂ H
(−γ1)
2 to a bounded set in H

(−γV )
2+α , where γV is the

value given by Theorem 3.6. Since γV is independent of γ1, we may take γ1 = γV /2

and then T (W) is precompact in H
(−γ1)
2 .
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To show T maps W into itself, we need to show that Tw satisfies (W1), (W2),
and (W3). Now, (W1) is immediate by Proposition 3.3 and the boundary conditions.

By applying interior and boundary Hölder estimates (see [15, Theorems 8.22 and
8.27]), we get the local estimate

|ρ|α∗,Ω′
1
≤ C0,(3.29)

where 0 < α∗ < 1 and C0 depend only on ε (the ellipticity ratio), the Riemann data,
and on d′ = dist(Ω′

1, ∂Ω′) with Ω′
1 ⊂ Ω′. Notice that, as in the remark following

Theorem 8.24 in [15, p. 202], the constant C0 is nondecreasing and the constant α∗
nonincreasing with respect to d′. Since Ω′ ⊂ Ω is bounded, we can find an upper
bound for C0 and a lower bound for α∗ depending only on the size of Ω and the
ellipticity ratio. Thus, if we define W with K0 = C0 and α0 = α∗, with C0 the upper
bound and α∗ the lower bound, then ρ = Tw satisfies (W3). Note that K0 and α∗
are independent of α1 and γV .

To verify (W2), we need to find a value K such that

sup
δ>0

δ2−γ1 |ρ|2,Ω\{Σ(δ)∪ΩV (δ)} < K,(3.30)

assuming ‖w‖−γ1

2 ≤ K. We start by noting that Theorem 3.5 implies the existence of a
positive constant d0 > 0 such that for every d ≤ d0, any solution u ∈ C1(Ω∪Σ)∪C3(Ω)
to the linear problem (3.8), (3.9) satisfies the Hölder gradient estimate (3.14), where
the constant C depends on K but is uniform in d ≤ d0. Based on this estimate, we
get a local bound for the weighted norm of ρ on Σ(d0) of the form

d2−γ1 |ρ|2 ≤ d1−γ1+pC(3.31)

which holds for all d < d0. Here C depends on K, α1, and γ1. To show (3.30) we
estimate the supremum by considering separately domains Ω \ {Σ(δ) ∪ ΩV (δ)} for
which δ > d̃, where d̃ ≤ d0 will be specified later, and domains for which δ ≤ d̃.

In domains of the first kind, Ω\{Σ(δ)∪ΩV (δ)} with δ > d̃, the solution is smooth
and its C2-norm bound is independent of K. More precisely, we can use the uniform
Hölder estimate (3.29) and bootstrap iteratively (see [15, Theorem 6.6]) to get the
local Schauder estimate

|ρ|2+αΩ,Ω′ ≤ C(K0).(3.32)

Notice that since the Hölder estimate (3.29) is independent of the distance between Ω′
1

and the boundary Σ, so is the Schauder estimate (3.32). The interpolation inequality
[15, Lemma 6.32] gives

|ρ|2,Ω′ ≤ c|ρ|0 + μ|ρ|2+α,Ω′ ≤ cρM + μC(K0)(3.33)

for any μ > 0 and c = c(μ). We fix μ = 1 and get

sup
δ>d̃

δ2−γ1 |ρ|2,Ω\{Σ(δ)∪ΩV (δ)} ≤ K ′,(3.34)

where K ′ depends on the size of the domain Ω, on C(K0), and on ρM but is indepen-
dent of the distance to Σ.

Next we study δ2−γ1 |ρ|2,Ω\{Σ(δ)∪ΩV (δ)} when δ ≤ d̃. We divide the subdomain

Ω \ {Σ(δ) ∪ ΩV (δ)} into two: the part for which δ > d̃ and the complement. Then



1970 S. ČANIĆ, B. L. KEYFITZ, AND E. H. KIM

the upper bound over the subdomain Ω \ {Σ(δ) ∪ ΩV (δ)} is equal to the larger of
the suprema over the two subdomains. The supremum over the subdomain for which
δ > d̃ has been calculated above. The supremum over the complement is calculated
using the estimates for the behavior of the solution near Σ, namely, estimate (3.31) and
the corner estimate (3.12). In (3.12), the constants C1 and γV are independent of K,
K0, and α1, while |ρ|0 is bounded by ρM from Proposition 3.10. By the interpolation
inequality [14, Lemma 2.1], since γ1 = γV /2 we have

|ρ|γ1,ΩV (dV ) ≤ CV |ρ|γV ,ΩV (dV ) ≤ CV C1ρM ,(3.35)

where CV = CV (γ1, γV ,ΩV (dV )), for some dV > 0. From here we get that

d2−γ1 |ρ|2 ≤ KV ∀d < dV ,

where KV is independent of K. Hence we can take K ≡ max{KV ,K
′}, using the

bound (3.34), and now K is independent of α1 and of d̃. Since KV and K ′ are
independent of d̃ we can change d̃ without affecting K. Therefore, we can choose
d̃ ≤ min{d0, dV }/2 in (3.31) small enough that d̃1−γ1+pC < K. Therefore, (3.30) is
satisfied and we have chosen parameters K, K0, and α0 defining W so that T maps
W into itself.

Now, by the Schauder fixed point theorem, there exists a fixed point ρ such that

Tρ = ρ ∈ H
(−γ1)
2 . Thus, ρ solves (3.1), (3.3), (3.4), and (3.5). By a bootstrap argu-

ment we get ρ ∈ H
(−γ1)
2+α for any α ≤ αΩ, the value given in Theorem 3.6. For reference,

we note that we have chosen γ1 = γV /2; the exponent γV ∈ (0, 1) depends on the
corner angle at Ξ0 and αΩ and γV depend on ε. The bounds on ρ in Proposition 3.3
give the first estimate in (3.27), and the second follows.

Finally, since T (W) ⊂ W is a bounded set in H
(−γ1)
2 , then by (W2) and by the

interpolation inequality [14, Lemma 2.1], any fixed point ρ satisfies (3.28) for any
γ ≤ γ1 = γV /2. Note that K1 and γ1 are independent of α1.

3.3. The regularized nonlinear free boundary problem. We now prove
existence of a solution to the regularized free boundary problem.

Proof of Theorem 3.1. Again, we suppress the ε dependence.
For each η ∈ K ⊂ H1+α1 , using the solution ρ of the nonlinear fixed boundary

problem (3.1), (3.3), (3.4), and (3.5) given by Theorem 3.7, we define the map J on
K, η̃ = Jη as in (2.44), by integrating (2.43):

η̃(ξ) = η0 +

∫ ξ

ξ0

f(x, η(x), ρ(x, η(x))) dx.(3.36)

First, we check that J maps K into itself. Property (K1) follows from (3.36). By
Proposition 2.5, property (K2) holds, while the upper and lower bounds in (K4) hold
by Proposition 2.6 and in turn imply (K3).

The Hölder class of ρ at Σ is given by the estimate (3.28), along with a bound on
the Hölder γ-norm, and from estimate (3.28) in the proof of Theorem 3.7 we saw that
we could choose γ = γV /2. Evaluating f(Ξ, ρ(Ξ)), we get a bound |f |γV /2 ≤ C(K1),
and thus |η̃|1+γV /2 ≤ C(K1). The constants here are simple functions of the Riemann
data and the structure of the pressure function. The important feature of the mapping
is that γV is independent of α1, the Hölder exponent of the space K. Thus, we
have J(K) ⊂ H1+γV /2; since properties (K1)–(K4) hold, we then have J(K) ⊂ K if
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α1 ≤ γV /2. Furthermore, J is compact if α1 < γV /2. We now take α1 = γV /3. By
standard arguments, the map J is continuous.

Therefore, J has a fixed point ηε ∈ H1+γV /3([0, ξ0]) by the Schauder fixed point
theorem. This gives a curve Σε on which (3.2) holds. Together with the corresponding
solution ρε from Theorem 3.7, this establishes the existence of a solution (ρε, ηε) ∈
H

(−γ)
2+α ×H1+α of the regularized free boundary problem (3.1), (3.2), (3.3), (3.4), and

(3.5) for sufficiently small γ(ε) and α(ε).

This completes the proof of Theorem 3.1.

4. The limiting solution. In this section we study the limiting solution, as
the elliptic regularization parameter ε tends to zero. We start with the regularized
solutions of (3.1), (3.2), (3.3), (3.4), and (3.5), whose existence is guaranteed by The-
orem 3.1. Denote by ρε a sequence of regularized solutions of the partial differential
equation.

Proposition 4.1. For each ε the constant function ρ0 is a lower barrier for ρε

and c2(ρ0) > ξ2 + η2 in Ωε \ σ.

Proof. For each ε we have ρε > ρ0, and by the monotonicity of c2 we get c2(ρε)
> c2(ρ0) > ξ2 + η2 in Ωε ∪ Σ0. The same inequality holds on Σε since (ξ, ηε(ξ))
lies inside C0. Thus c2(ρ0) > ξ2 + η(ξ)2 for ξ ∈ [0, ξ0) and ρ0 is a uniform lower
barrier.

The existence of a uniform lower bound ρ0 in ε allows us to apply standard local
compactness arguments (see, for example, [3, Lemma 4.2]) to get a limit ρ, locally,
in the interior of the domain. Here, the issue is ensuring ellipticity uniformly in ε in
compact subsets of Ω. We first show that the sequence of domains Ωε converges to a
domain Ω, as ε → 0.

Lemma 4.2. The sequence ηε has a convergent subsequence, whose limit η belongs
to Cγ([0, ξ0]) for all γ ∈ (0, 1). The limiting curve η is convex.

Proof. Theorem 3.1 gives the existence of a sequence (ρε, ηε) of solutions of the
regularized free boundary problems for which ηε belongs to the set Kε for each ε.
Now, ρ0 < ρε ≤ ρεs ≤ ρM , where ρM is independent of ε, and the property (K4)
of Kε, specified in section 2.4, immediately gives a C1 bound on ηε, uniformly in ε.
Thus by the Arzela–Ascoli theorem, ηε has a convergent subsequence, and the limit
η ∈ Cγ([0, ξ0]) for all γ ∈ (0, 1).

To see that η is convex we first show that ηε is convex for each ε > 0. Recall that
η′ = f(ξ, η(ξ), ρ(ξ, η(ξ))) and calculate η′′ = fξ + fηη

′ + fρρ
′. By observing that if ρ

were constant the shock would be a straight line, we get fξ + fηη
′ = 0. Therefore,

the sign of η′′ is determined entirely by the sign of fρ and ρ′. Since ρ is decreasing by
Proposition 2.4, this implies ρ′ ≤ 0. Furthermore, by Lemma 2.1 we have d(s2)/dρ ≥ 0
and by the proof of Proposition 2.6 we have fs2 < 0, so fρ = fs2(s

2)′ ≤ 0. This shows
that ηε is convex for each ε > 0, and so the limiting function is convex.

The limit value η(0) = lim ηε(0) is also established, and the corresponding subse-
quence of domains Ωε also has a limit, Ω.

In the remaining lemmas, without further comment, we carry out the limiting
argument using the convergent subsequence of ηε, which we again call ηε.

Lemma 4.3. The sequence ρε has a limit ρ ∈ C2+α′
(Ω) for some α′ > 0. The

limit ρ satisfies the quasi-linear degenerate elliptic equation (2.36). In addition, ρ0 <
ρ < ρM in Ω.

Proof. The proof is based on local compactness arguments and on uniform L∞

bounds for ρε: ρ0 < ρε < ρεs ≤ ρM , where ρM is independent of ε. The main ideas
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follow those used in [13, Theorem 1] and the proof is almost identical to the proof of
[4, Lemma 4.2]. We omit the details.

In the next lemma, we show that the limiting functions ρ and η satisfy both the
shock evolution equation (2.38) and the oblique derivative boundary condition (2.37),
Mρ = 0, on Σ.

Lemma 4.4. The limits η and ρ satisfy

η′ = f(ξ, η, ρ) and Mρ = β(η(ξ), ρ) · ∇ρ = 0 on Σ.(4.1)

Furthermore, η ∈ C2+α′
(0, ξ0) ∩ C1([0, ξ0)) and ρ ∈ C2+α′

(Ω ∪ Σ ∪ Σ0 \ Ξs) ∩ C(Ω ∪
Σ ∪ Σ0) for some α′ > 0. In addition, ρ satisfies ρ = ρs at Ξs = (0, η(0)), where
ρs = s−1

ρ1
(η(0)).

Proof. The proof is similar to that of [4, Lemma 4.3] except for the loss of uniform
obliqueness at Ξs. We omit the local arguments away from Ξs and concentrate on
dealing with the behavior of the solution near Ξs.

The arguments presented in the proof of [4, Lemma 4.3] imply ηε(ξ) → η(ξ) in

C2+α′

loc for ξ �= 0, and since the subsequence ρε converges to ρ in C1+α′

loc , we get

(ηε)′ = f(ξ, ηε, ρε) → f(ξ, η, ρ) ∀ξ �= 0,

thus η′ = f(ξ, η, ρ) for ξ �= 0. Furthermore, by continuity of β and ρ we have

0 = β(ηε, ρε) · ∇ρε(ξ, ηε(ξ)) → β(η, ρ) · ∇ρ(ξ, η(ξ)) ∀ξ �= 0,

and thus β(η, ρ) · ∇ρ = 0 on Σ \ {(0, η(0))}.
We now focus on the behavior of the solution at Ξs. By Lemma 4.2 we have

ηε → η in Cγ([0, ξ0]) for any 0 < γ < 1. Furthermore, by construction, for each ε > 0,

s2(ρεs, ρ1) = (ηε(0))2.

Therefore, as ε → 0, the right-hand side converges to η2(0); hence s2(ρεs, ρ1) → η2(0).
By continuity and monotonicity of s2 this implies that the sequence of numbers ρεs also
has a limit, R. Moreover, s2(R, ρ1) = η2(0). But, this equation defines ρs; therefore
R = ρs and we have shown that the sequence of traces of the functions ρε evaluated
at (0, ηε(0)) converges to ρs. We still have to show that ρ is continuous at Ξs, that
is, that limξ→0 ρ(ξ, η(ξ)) = ρs.

Since η′ε has a limit η′ = f(ξ, η(ξ), ρ(ξ, η(ξ))) in C1+α for ξ �= 0, and since for
each ε > 0 we have η′ε(0) = 0, then for any δ > 0 there exists an h0 �= 0 such that

|η′(h)| ≤ |η′(h) − η′ε(h)| + |η′ε(h)| ≤ δ

for 0 < h < h0, which implies continuity of η′ at ξ = 0 and η′(0) = 0. Thus

f(h, η(h), ρ(h, η(h))) = η′(h) → η′(0) = 0 = f(0, η(0), ρs) as h → 0.

This implies, among other things, that ρ(h, η(h)) → ρs and so ρ is continuous at Ξs,
ρ(Ξs) = ρs and the boundary condition (2.40) is satisfied.

The final task is to prove continuity of ρ up to the degenerate boundary σ. It is
here that we need an additional condition on the Riemann data.

Lemma 4.5. For Riemann data satisfying a bound κa > κ∗(ρ1, ρ0), the limit ρ
satisfies ρ = ρ0 on σ and ρ ∈ C(Ω).
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Fig. 4.1. A sketch of the corner barrier domain.

Proof. Continuity of solutions of Qρ = 0 up to a degenerate boundary was proved
as Corollary 3.3 in [7], at points where the degenerate boundary σ is convex, when the
problem satisfies a Dirichlet condition on the entire boundary, and the entire boundary
is degenerate. In [7], a pointwise upper barrier function ψ was constructed, uniformly
in ε, with ψ > ρε in Ω and ψ = ρε at Ξ ∈ σ. This proof can easily be adapted
to give a local barrier at every interior point of σ in our problem. Thus, to show
continuity everywhere on σ we need only to show continuity at Ξ0. We construct an
upper barrier ψ with ψ(Ξ0) = ρ0 so that ψ ≥ ρε in a fixed set Ω(h, a) (see Figure 4.1)
for all ε > 0. Since ρ0 is a lower barrier, we then have continuity at Ξ0.

It is convenient to work in polar coordinates (ξ, η) = (r cos θ, r sin θ). In this
coordinate system, the operator Qε becomes

Qερ =

(
c2(ρ) − r2 + ε

)
ρrr +

c2

r2
ρθθ + p′′(ρ)

(
ρ2
r +

1

r2
ρ2
θ

)
+

(
c2

r
− 2r

)
ρr.

To compare ψ and ρε we introduce an operator Qε
1(ρ

ε) which is partially linearized:

Qε
1(ρ

ε)u =

(
c2(u) − r2 + ε

)
urr +

c2(ρε)

r2
uθθ + p′′(ρε)

(
u2
r +

1

r2
u2
θ

)
+

(
c2(ρε)

r
− 2r

)
ur.

The barrier function has the form

ψ(r, θ) = ρ0 + A(c0 − r)b + B(θ1 − θ)2.(4.2)

Here θ1 is the angle subtended by Ξ0; A and B are constants to be determined and
the exponent b is a value, also to be determined, in (0, 1). The barrier is constructed
on a curvilinear quadrilateral, c0 ≥ r ≥ c0 − h, θ1 − a ≤ θ ≤ θε(r), where θε(r) is the
boundary Σε in polar coordinates and h and a are small numbers to be determined.
The use of a barrier function with a singular derivative is motivated by [7], following
[13]. In fact, we conjecture that the solution to the equation, in this case, does have a
square root singularity at C0 and that our value of b, which can be refined a posteriori
to be any number less than 1/2, is optimal.

Before evaluating Qε
1ψ, we write c2 = p′ and expand c2 − r2 as c2(ψ) − r2 =

c2(ψ) − c20 + c20 − r2 = (ψ − ρ0)p
′′(ρ) + c20 − r2, where ρ is a value in the range of ρε.

By assumption, p′′ is bounded above and below by positive numbers for ρ ∈ [ρ0, ρM ].
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We have

Qε
1(ρ

ε)ψ

=

(
p′′(ρ)

{
A(c0 − r)b + B(θ1 − θ)2

}
+ (c0 + r)(c0 − r) + ε

)
b(b− 1)A(c0 − r)b−2

+
c2(ρε)

r2
(2B) + p′′(ρε)

{(
Ab(c0 − r)b−1

)2
+

1

r2

(
2B(θ1 − θ)

)2}

+

(
c2(ρε)

r
− 2r

)
Ab(c0 − r)b−1.

The coefficient of (c0 − r)b−2, the most singular term as r → c0, is

p′′(ρ)(B(θ1 − θ)2 + ε)b(b− 1)A < 0.

The next most singular power is (c0 − r)2b−2, and its coefficient is

A2b

(
p′′(ρ)(b− 1) + p′′(ρ)b

)
≤ A2k0 < 0 if b <

min p′′

2 max p′′
,(4.3)

which we now assume. The next power is (c0 − r)b−1, whose coefficient is a bounded
multiple of A; the remaining terms are bounded and involve only powers of B. Once
we have fixed the lower limit, c0 −h, for r, and have chosen B, we can then choose A,
which appears quadratically in (4.3) with a negative coefficient, large enough to make
the entire expression negative. This is sufficient to guarantee that ψ − ρε does not
have a negative minimum in the interior of Ω(h, a) provided that ψ−ρε is nonnegative
on the boundary of Ω(h, a). For at a negative interior minimum, ∇ψ = ∇ρε, and

(4.4) 0 ≥ Qε
1(ρ

ε)ψ −Qε(ρε)

>
(
c2(ψ) − c2(ρε)

)
ψrr +

(
c2(ρε) − r2 + ε

)
(ψ − ρ)rr +

c2(ρε)

r2
(ψ − ρ)θθ.

However, ψ < ρε implies c2(ψ) − c2(ρ) < 0, while ψrr < 0 by the concavity of ψ in
r; in addition (ψ − ρ)rr and (ψ − ρ)θθ are nonnegative at the minimum, so the sum
of the three terms is positive. This contradiction establishes the conclusion that if
ψ ≥ ρε on the boundary of Ω(h, a), then ψ is an upper barrier for each ρε.

We now turn to establishing bounds for ψ on the sides of the quadrilateral. First,
on σ: ρε = ρ0 < ψ. We fix an angular interval by choosing some a > 0; then we can
choose B large enough that Ba2 > ρM . This gives ψ > ρε on the boundary θ = θ1−a
of Ω(h, a).

The appropriate condition on the oblique derivative boundary is more delicate.
We linearize the boundary condition, obtain an estimate of the form N1(ρ

ε)ψ ≤ 0,
and use the Hopf maximum principle to show that ψ − ρε is positive on Σε. Getting
the estimate N1(ρ

ε)ψ ≤ 0 is rendered difficult by the fact that the part of ∇ψ which
becomes singular near Ξ0 is not the normal derivative (over which we have some
control because the problem is oblique near Ξ0) but the derivative in the direction r.

We can obtain the bound we need, at least as long as κa is large enough. To
see this, we compute the derivative of ψ along Σε, using the linearized operator
N1(ρ

ε) = β(ρε) · ∇. To focus on the singular part, we write β(ρε) · ∇ in terms of its
radial and angular components,

N1ψ = βrψr + βθψθ,
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where

βr = β · (cos θ, sin θ) =
1

r
(β1ξ + β2η),

and we have an analogous expression for βθ. Now a calculation gives

β1ξ + β2η = (η − η′ξ)(ξ + η′η)
(
r2(c2 + 3s2) − 4c2s2

)
.(4.5)

The first two factors are uniformly positive near Ξ0, and if ρM is sufficiently close
to ρ0, then we claim there exists an interval [c0 − h, c0] in which β1ξ + β2η has a
positive lower bound, for there will be a value h > 0 such that the expression in (4.5)
is positive for r > c0 − h as long as 4c2s2/(c2 + 3s2) < c20 for all values in the range
of ρ. Since the left side of this expression is monotone increasing in ρ, it is sufficient
to impose the restriction on c2(ρM ) and s2(ρM ). The condition obviously holds for
ρ = ρ0, and so it certainly holds for ρM sufficiently close to ρ0. Furthermore, for large
κa, ρM = ρ0 + O(1/κa), by a calculation given in [17]. That is, for κa large enough
we have β1ξ + β2η ≥ C > 0 in (4.5). Estimates on κ∗ are given in [17].

We now complete the calculation of

N1(ρ
ε)ψ = −βrA(c0 − r)b−1 − 2βθB(θ1 − θ)

by choosing A large enough that N1ψ ≤ 0 on Σε. We also ensure ψ − ρε > 0 at
r = c0 − h, by increasing A again if necessary, so that Ahb > ρM .

Finally, we confirm that the inequality N1(ρ
ε)ψ < 0 precludes negative values of

ψ−ρε on Σε. If there are negative values, then there is a negative minimum, at which
the tangential derivative of ψ − ρε vanishes, so we have

0 ≥ N1(ψ − ρε) = βt(ψ − ρε)t + βn(ψ − ρε)n = βn(ψ − ρε)n,

where the superscripts mark the tangential and (inward) normal components of β, and
the subscripts the derivatives of ψ−ρε. Since βn > 0, this implies that (ψ−ρε)n ≤ 0.
However, we can write L(ψ− ρε) ≤ 0 at such a point for a suitable linear operator L,
and thus the Hopf maximum principle requires that (ψ − ρε)n > 0, a contradiction.
Thus we conclude that ψ−ρε ≥ 0 on the entire boundary of Ω(h, a). By the argument
following the inequality (4.4), this establishes ψ as an upper barrier. We note that
this construction depends on ε only through the location of the curve Σ = Σε and
that A, B, b, h, and a are independent of ε. Thus, since the domains Ωε converge, it
follows that ψ is a barrier for all ρε for sufficiently small ε.

Thus the solution ρ is continuous up to the degenerate boundary.
Continuity of ρ at Ξ0 allows a strengthening of Lemma 4.4, as follows.
Corollary 4.6. The free boundary η is smooth up to the degenerate boundary,

namely, η ∈ C1[0, ξ0].
Proof of Theorem 2.3. Lemmas 4.2, 4.3, 4.4, and 4.5 show that there exists a

solution pair (ρ, η) ∈ C2+α′
(Ω \ {σ ∪ Ξs)} ∩ C(Ω) × C2+α′

(0, ξ0) satisfying (2.36),
(2.37), (2.38), (2.39), and (2.40). This completes the proof of Theorem 2.3.

5. Conclusions. Theorem 2.3 has constructed a solution ρ of the differential
equation (2.36) in Ω; combining this function with the piecewise constant solution far
from the origin, we obtain a function which is piecewise constant in the supersonic
region, continuous across the degenerate boundary σ, and consistent with the derived
form of the Rankine–Hugoniot conditions across the Mach stem. To recover the
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momentum components, m and n, we could in principle integrate equations (2.4) and
(2.5), which can be written as transport equations in the radial variable r,

∂m

∂r
=

1

r
c2(ρ)ρξ,

∂n

∂r
=

1

r
c2(ρ)ρη,(5.1)

and integrated from the boundary of the subsonic region toward the origin. We note
that the sonic boundary can be written r = r0(θ) and the boundary conditions for m
and n are of the form m(r0(θ), θ) = m0(θ), where m0 is piecewise continuous on σ
and is determined from the Rankine–Hugoniot relation (2.15) on Σ; the component
n is treated exactly the same way.

At σ and at Ξs, where we have proved only that ρ is continuous, equations (5.1),
may not be meaningful. Elsewhere, m and n have the same regularity as ρ, except
that discontinuities in m and n on the line ξ = κaη may persist all the way in to the
origin. In addition, the behavior of c2ρη/r in (5.1) at the origin causes a logarithmic
singularity in n (but not in m: c2ρξ/r remains bounded since ρξ(0, 0) = 0).

Remark. There is some evidence of the unbounded behavior near the origin in the
numerical simulations in [17]. This may presage difficulties in extending these results
to the gas dynamics equations.

We argue heuristically that there is a difficulty at σ. Because of the construction,
(ρ,m, n) is a weak solution of the system (1.1), or equivalently of the self-similar form
(2.3)–(2.5), except possibly at the sonic boundary. It can be checked that the system
(1.1) and the second-order equation (2.6), Q(ρ) = 0, are equivalent for weak solutions
(that is, they conserve the same quantities). We can write (2.6) in the form divA = S,
with

A = (pξ − ξ2ρξ − ξηρη + ξρ, pη − η2ρη − ξηρξ + ηρ),

and S = −2ρ. The usual multiplication by a smooth test function φ supported on
a compact set D containing a segment of the degenerate boundary σ, followed by
integration by parts, gives the weak form of the equation which must be satisfied
for any weak solution in which ∇ρ is integrable (as is the case for our constructed
function). Integrating by parts in the opposite sense on each side of Γ ≡ σ ∩D yields
the condition ∫

Γ

φ[A · ν] ds = 0,

where [ ] denotes the jump in the quantity and ν is the normal to σ. Since this must
hold for all choices of D and φ, it holds pointwise. Furthermore, since the normal
direction is the radial direction at σ, this means we need the function ρ inside Ω to
satisfy

lim
r→r0

r
(
c2(ρ) − r2

0

)
ρr = 0.(5.2)

We observe that for a linear wave equation, c2 is constant and r0 = c, and so this
equation holds. However, for the function we constructed in Theorem 2.3 we have
only the estimate ρ− ρ0 < A(r0 − r)β with β < 1/2 (see Lemma 4.5 and [7]) and this
is not strong enough to give the limit (5.2). In fact, we have calculated, in [2] and
[5], that the the behavior of solutions near a degenerate boundary like σ is exactly
a square root singularity (β = 1/2), and so the function we have constructed fails to
give a weak solution in the neighborhood of σ.
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[3] S. Čanić, B. L. Keyfitz, and E. H. Kim, Free boundary problems for the unsteady transonic
small disturbance equation: Transonic regular reflection, Methods Appl. Anal., 7 (2000),
pp. 313–336.
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CONVERGENCE OF AN ALGORITHM FOR THE ANISOTROPIC
AND CRYSTALLINE MEAN CURVATURE FLOW∗
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Abstract. We give a simple proof of convergence of the anisotropic variant of a well-known
algorithm for mean curvature motion, introduced in 1992 by Merriman, Bence, and Osher. The
algorithm consists in alternating the resolution of the (anisotropic) heat equation, with initial datum
the characteristic function of the evolving set, and a thresholding at level 1/2.
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1. Introduction: The algorithm. More than ten years ago, Merriman, Bence,
and Osher [26] proposed the following algorithm for the computation of the motion by
mean curvature of a surface. Given a closed set E ⊂ R

N , they let ThE = {u(·, h) ≥
1/2}, where u solves the following heat equation:

(1)

{
∂u

∂t
(x, t) = Δu(x, t) , t > 0, x ∈ R

N ,

u(·, 0) = χE (t = 0) .

Then, they let Eh(t) = T
[t/h]
h E (with [t/h] the integer part of t/h), and conjectured

that ∂Eh(t) converges to ∂E(t), as h → 0, where ∂E(t) is the (generalized) evolution
by mean curvature starting from ∂E.

The proof of convergence of this scheme was established by Evans [17] and Barles
and Georgelin [2]. Other proofs were given by Ishii [22] and Cao [12], where the evo-
lution in (1) was replaced by the convolution of χE with a more general symmetric
kernel. This was generalized by Ishii, Pires, and Souganidis [23] to the case of the
convolution with an arbitrary kernel (with some growth assumptions). This approach
was also studied by Ruuth and Merriman [29] (see also [28]). Vivier [34] and Leoni [25]
have considered other generalizations with (1) replaced with a time and space depen-
dent anisotropic heat equation with a lower order term. The space dependence is an
additional difficulty and it is not clear how what we will present could be adapted
to such situations; on the other hand, in the two latter papers, “only” the case of
Riemannian anisotropies is considered, in contrast to what we will study here.

We propose here to study the generalization of this algorithm to the so-called
anisotropic and crystalline curvature motion, as defined in [21, 33, 32, 31]. We fol-
low the definition in [10]: we consider (φ, φ◦) a pair of mutually polar convex 1-
homogeneous functions in R

N (i.e., φ◦(ξ) = supφ(η)≤1 ξ · η, φ(η) = supφ◦(ξ)≤1 ξ · η;
see [27]). These are assumed to be locally finite, and, to simplify, even. The pair
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‡Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa, Italy (novaga@

dm.unipi.it).

1978



CONVERGENCE OF AN ALGORITHM 1979

(φ, φ◦) will be referred as the anisotropy. The local finiteness implies that there is a
constant c > 1 such that

c−1|η| ≤ φ(η) ≤ c|η| and c−1|ξ| ≤ φ◦(ξ) ≤ c|ξ|

for any η and ξ in R
N . We refer to [9, 10] for the main properties of φ and φ◦.

Being convex and 1-homogeneous, φ◦ (and φ) is also subadditive, so that the
function (x, y) �→ φ(x − y) defines a distance—the “φ-distance.” For E ⊂ R

N and
x ∈ R

N , we denote by distφ(x,E) := infy∈E φ(x− y) the φ-distance of x to the set E,
and by

dφE(x) := distφ(x,E) − distφ(x,RN \ E)

the signed φ-distance to ∂E, negative in the interior of E and positive outside its
closure. One easily checks that

|dφE(x) − dφE(y)| ≤ φ(x− y) ≤ c|x− y|

for any x, y ∈ R
N , so that dφE is differentiable a.e. in R

N . The former inequality

shows moreover that ∇dφE(x) · h ≤ φ(h) for any h ∈ R
N if x is a point of differ-

entiability; hence φ◦(∇dφE(x)) ≤ 1. If φ and φ◦ are smooth, one shows quite easily

that dφE is differentiable at each point x which has a unique φ-projection y ∈ ∂E

(solving miny∈∂E φ(x − y)). In this case, ∇dφE(x) is given by ∇φ((x − y)/dφE(x)), so

that φ◦(∇dφE(x)) = 1. If φ, φ◦ are just Lipschitz-continuous, one still shows that

φ◦(∇dφE(x)) = 1 a.e. in R
N ; see [9, 10] for details.

A Cahn–Hoffman vector field nφ is a vector field on ∂E such that nφ(x) ∈
∂φ◦(νE(x)) = ∂φ◦(∇dφE(x)) a.e. on ∂E, where ∂φ◦ is the (0-homogeneous) subgradi-
ent of φ◦ (see [27, 16]) and νE is the (Euclidean) exterior normal to ∂E. If such a
field is given in a neighborhood of ∂E, then it is characterized by

φ◦(nφ(x)) = 1 and nφ(x) · ∇dφE(x) = 1 a.e.

This follows from Euler’s identity, since φ◦ is 1-homogeneous. In this case, κφ = divnφ

is a φ-curvature of ∂E. The φ-curvature flow is then an evolution E(t) such that at
each time, the velocity of ∂E(t) is given by

(2) V = −κφ nφ ,

where nφ is a Cahn–Hoffman vector field and κφ is the associated curvature. If φ, φ◦

are smooth (e.g., in C2(Ω\{0})), then nφ, κφ are uniquely defined, whereas if φ, φ◦ are
merely Lipschitz (when, for instance, the Wulff shape {φ ≤ 1} is a convex polytope),
then nφ can be nonunique and the anisotropy is called crystalline [33, 9].

As easily shown by formal asymptotic expansion, the natural anisotropic gener-
alization of the Merriman–Bence–Osher algorithm is as follows. Given E a closed set
with compact boundary in R

N , we let Th(E) = {x : u(x, h) ≥ 1/2}, where u(x, t) is
the solution of

(3)

⎧⎨
⎩

∂u

∂t
(x, t) ∈ div

(
φ◦(∇u)∂φ◦(∇u)

)
(x, t) , t > 0, x ∈ R

N ,

u(·, 0) = χE (t = 0) .
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The function u(x, t) is well defined and unique by classical results on contraction
semigroups [11]: if E is compact, it corresponds to the flow in L2(RN ) of the subdif-
ferential of the functional u �→

∫
RN φ◦(∇u)2/2 dx if u ∈ H1(RN ), and +∞ otherwise.

On the other hand, if R
N \ E is compact, one defines u by simply letting u = 1 + v,

where v solves the same equation with initial data χE − 1.

We are interested in the limit of the discrete evolutions t �→ Eh(t) = T
[t/h]
h E,

as h → 0. Our main result is a result of consistency with suitable “regular” evolu-
tions: it states that if there exists a regular evolution starting from E in the sense
of our Definition 2.1 (which is a variant of a definition first introduced in [9] and
includes smooth evolutions when the anisotropy is smooth), then Eh(t) converges to
this evolution. This consistency result, together with the monotonicity of the scheme
(E ⊆ F ⇒ ThE ⊆ ThF , as follows from the comparison principle for (3)), yields
convergence also to all generalized solutions defined (in the smooth case) using bar-
riers [7, 8] or, equivalently, viscosity solutions [14, 15, 4, 5, 3], as long as these are
unique. Also, it yields the convergence of the scheme to crystalline evolutions, when
the initial set is convex. Existence and uniqueness of such (regular and generalized)
evolutions are established, in the convex case, in [6].

Another important consequence of our consistency result is a comparision princi-
ple for the regular evolutions of Definition 2.1, which follows from the monotonicity
of the scheme. It gives an alternative proof of uniqueness for the convex crystalline
evolutions studied in [6] (the original proof is based on [9]).

We observe that evolutions similar to (2) might also be obtained by convolution
with appropriate kernels as studied by Ishii, Pires, and Souganidis [23]. However,
a complete characterization of these motions in dimension higher than 2 is still not
known (see [29, 30] in two dimensions).

Our evolution is also different from the evolutions considered by Leoni [25] (or
Vivier [34]); in her paper, the heat equation (1) is replaced with an equation of the
form ut = A(x, t) : D2u + H(x, t,Du). The resulting surface motion is a variant of
the mean curvature motion, with an (x, t) dependent velocity which is a function of
a Riemannian curvature (depending on A) plus a lower order forcing term.

It would be interesting to prove a similar consistency result for the variational
variant of (3), which is somehow simpler to solve numerically (in the truly nonlinear
anisotropic cases): for E ⊂ R

N bounded, one would define ThE = {uh ≥ 1/2}, where
uh is the solution of (with Ω � E bounded or Ω = R

N )

(4) min
u∈H1(Ω)

∫
Ω

φ◦(∇u(x))2 +
1

h
(u(x) − χE(x))2 dx .

Although it is likely that this variant produces the same evolution as the original
scheme (it is true in the isotropic case, since uh is given by the convolution of χE

with a radially symmetric kernel), we could not extend our proof in all cases to this
new scheme.

Our proof follows the same idea as our recent proof of consistency [13] for (a gen-
eralization of) the variational algorithm of Almgren, Taylor, and Wang [1]. However,
we have just learned that Goto, Ishii, and Ogawa [20, 24] have recently given a new
proof of the convergence of the Merriman–Bence–Osher algorithm, in the isotropic
case, which is very similar to the proof we give here.

2. The consistency result and some consequences. If E ⊂ R
N we say that

E satisfies the interior rWφ-condition if and only if for any x ∈ ∂E there exist y ∈ E
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with φ(x− y) = r and φ(x′ − y) ≥ r for any x′ ∈ R
N \E. We say that E satisfies the

exterior rWφ-condition if R
N \ E satisfies the interior rWφ-condition.

We will show a consistency result with regular evolutions of (2), in the sense of
the following definition.

Definition 2.1. We say that t �→ E(t) is an rWφ-regular φ-curvature flow on
[t0, t1], t0 < t1, if and only if

(i) for any t ∈ [t0, t1], E(t) satisfies the interior and exterior rWφ-conditions;
(ii) there exists a bounded and relatively open neighborhood A of

⋃
t0≤t≤t1

∂E(t)×
{t} in R

N × [t0, t1] such that d(x, t) := dφE(t)(x) is Lipschitz in A;

(iii) there exists a vector field n : A → R
N with n ∈ ∂φ◦(∇d) a.e. in A, and

divn ∈ L∞(A); and
(iv) there exists c > 0 such that |∂d/∂t− divn| ≤ c|d| a.e. in A.

This definition, up to the additional requirement that E(t) satisfies an interior
and exterior rWφ-condition, is due to Bellettini and Novaga [9, Def. 2.2].

Such evolutions are known to exist if φ, φ◦, and ∂E are smooth enough (for
instance, in C3,α(RN \ {0}) [1]), or for any φ, φ◦, when the initial set E is convex
and satisfies an interior rWφ-condition (exterior is always true in the case of convex
sets) [6]. They also exist in the purely crystalline case, i.e., when both φ and φ◦ are
piecewise linear in dimension N = 2 [18, 19, 31] (see section 4 for an example).

Our main theorem states that the anisotropic Merriman–Bence–Osher scheme is
consistent with such evolutions.

Theorem 2.2. Let E be a regular flow in the sense of Definition 2.1, on a time

interval [t0, t1]. Then, for any t and τ with t0 ≤ t < t+ τ ≤ t1, ∂T
[τ/h]
h E(t) converges

to ∂E(t + τ) in the Hausdorff sense, as h → 0.

The following corollary, also shown in [9], is obvious.

Corollary 2.3. Let E, F be two flows in the sense of Definition 2.1, on [t0, t1],
and assume E(t0) ⊆ F (t0). Then E(t) ⊆ F (t) for all t ∈ [t0, t1]. In particular, if
E(t0) = F (t0), then E(t) = F (t) for all t ∈ [t0, t1].

The next corollary follows, with a standard proof (see [4, 5]), from the monotonic-
ity and consistency of the scheme.

Corollary 2.4. Assume E ⊂ R
N is a closed set with compact boundary such

that the generalized φ-curvature flow E(t), starting from E, is uniquely defined on a
time interval [0, T ) (e.g., φ, φ◦ ∈ C2(RN \ {0}), and no fattening occurs [14]). Then

∂T
[t/h]
h E(t) → ∂E(t) in the Hausdorff sense for any t < T , as h → 0. The same

conclusion holds for any φ, φ◦ if E is convex, by the uniqueness result in [6].

Let us observe that this result follows easily from Theorem 2.2 when evolutions
according to Definition 2.1 are known to exist. If not (e.g., if φ, φ◦ are merely C2),
this is still true; however, the proof relies on a comparison with appropriate strict
super- and subsolutions, defined according to obvious modifications of Definition 2.1
(as in [13]).

Remark 1. In case φ, φ◦ are not even, Theorem 2.2 still holds, but (i) the signed

distance to the interface dφE(t)(x) must be defined, in Definition 2.1, in a nonsymmetric

way, and (ii) the term ∂φ◦(∇u) in (3) must be replaced with −∂φ◦(−∇u) (since ∇u
has a reverse orientation with respect to the outer normal to the set E).

3. Proof of Theorem 2.2. The proof of Theorem 2.2 is divided into several
steps. The idea is to build appropriate sub- and supersolutions to (3), by means of
the function d(x, t), and to compare ThE(t) with E(t + h).
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These barriers will be built by means of the function γ : R × [0,+∞) → [0, 1],
which solves the heat equation

(5)

⎧⎨
⎩

∂γ

∂τ
(ξ, τ) =

∂2γ

∂ξ2
(ξ, τ) , ξ ∈ R , τ > 0 ,

γ(ξ, 0) = Y (ξ) , ξ ∈ R (τ = 0) ,

where Y = χ[0,+∞) is the Heaviside function. It is well known that γ is given by

γ(ξ, τ) =
1

2
√
πτ

∫ ξ

−∞
e−

s2

4τ ds .

In particular, one readily sees that it is self-similar: indeed, the change of variables
s′ = s/

√
τ yields

γ(ξ, τ) =
1

2
√
π

∫ ξ√
τ

−∞
e−

s′2
4 ds′ = γ

(
ξ√
τ
, 1

)
=: γ1

(
ξ√
τ

)
.

We first show the following (obvious) result.
Lemma 3.1. For any ε > 0, there exists τ0 > 0 such that if 0 ≤ τ ≤ τ0, then

γ(ε, τ) ≥ 1 − τ .
Proof. We just need to observe that τ �→ γ(ε, τ) is C1 with derivative 0 at 0. This

derivative is indeed given by (−ε/τ3/2)γ′
1(ε/

√
τ) = (−ε/τ3/2) exp(−ε2/(4τ)). There

exists τ0 such that it is in [−1, 0] for τ ≤ τ0; hence γ(ε, τ) ≥ γ(ε, 0) − τ if τ ∈ [0, τ0],
which shows the lemma.

Let us now consider E, r > 0, t0 ≤ t1, A, and the functions d(x, t), n(x, t), as
in Definition 2.1. Possibly reducing r, we can assume that {|d| ≤ r} ⊂ A. Let us fix
t ∈ [t0, t1), δ ∈ [0, r/2] and let F = {d(·, t) ≤ δ}. Let u be the solution of

(6)

⎧⎨
⎩

∂u

∂τ
(x, τ) ∈ div

(
φ◦(∇u)∂φ◦(∇u)

)
(x, τ) , τ > 0, x ∈ R

N ,

u(·, 0) = χF = Y (−d(·, t) + δ) (τ = 0) .

We first show the following result.
Lemma 3.2. For any ε ∈ (0, r/2), there exists τ0 > 0 (independent of δ) such

that τ ≤ τ0 yields u(x, τ) ≤ τ for any x such that d(x, t) − δ = ε.
Proof. Let us fix x0 ∈ R

N \ F with d(x0, t) − δ = ε. Since E(t) satisfies the
exterior rWφ-condition, the function (d(·, t) − δ) is, outside F , equal to distφ(·, F ).
Hence, letting W = {x : φ(x− x0) < ε}, one sees that W ∩ F = ∅. We deduce that
χF ≤ 1 − χW in R

N , so that u(·, τ) ≤ 1 − w(·, τ), where w is the solution of⎧⎨
⎩

∂w

∂τ
(x, τ) ∈ div

(
φ◦(∇w)∂φ◦(∇w)

)
(x, τ) , τ > 0, x ∈ R

N ,

w(·, 0) = χW (τ = 0) .

This solution is explicitly given by w(x, τ) = U(φ(x− x0)/ε, τ/ε
2), where U(|x|, τ) =

Ũ(x, τ) and Ũ is the (radial) solution of the heat equation ∂Ũ/∂t = ΔŨ with initial
datum χB1 , the characteristic function of the unit ball in R

N . It is well known that

Ũ(x, τ) =
1

√
4πτ

N

∫
{|y|≤1}

exp

(
−|x− y|2

4τ

)
dy
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so that

U(|x|, τ) =
1

√
4πτ

N

∫
{|y|≤1}

exp

(
− (|x| − y1)

2 +
∑N

i=2 y
2
i

4τ

)
dy .

Using arguments similar to the proof of the previous lemma (based on the fact that
U is smooth near (ξ, τ) = 0, 0 and ∂U/∂t(0, 0) = 0), one sees that there exists τ0 > 0
such that if τ ≤ τ0, U(0, τ) ≥ 1 − ε2τ ; hence w(0, τ) ≥ 1 − τ if τ ≤ τ ′0 = ε2τ0. We
deduce that u(x0, τ) ≤ τ if τ ≤ τ ′0, depending only on ε. This shows the lemma.

Let us fix ε < r/4 and let us look for a supersolution of (6) on a time interval
[0, h], h small, of the form

v(x, τ) = γ
(
−d(x, t + τ) + δ + c ετ, τ

)
+ h ,

in B =
⋃

0≤τ≤h{x : d(x, t) − δ ≤ ε , d(x, t + τ) − δ ≥ −ε} × {τ}, where the constant
ε will be made precise later on. We observe that since the speed of the motion is
bounded at any time for τ small enough, if h is small enough (depending only on
r, ε), B remains inside {(x, τ) ∈ R

N × [0, h] : δ − ε ≤ d(x, t + τ) ≤ δ + 2ε}, and
(0, t) + B ⊂ A.

At τ = 0, v(x, 0) = Y (−d(x, t) + δ) + h is strictly larger than χF (x) = u(x, 0).
If 0 ≤ τ ≤ h and d(x, t) − δ = ε, by Lemma 3.2 we have u(x, τ) ≤ τ ≤ h ≤ v(x, τ),
provided h is small enough. If, on the other hand, d(x, t + τ) − δ = −ε, then by
Lemma 3.1, still for h small enough, v(x, τ) = γ(−d(x, t + τ) + δ + c ετ, τ) + h ≥
γ(ε, τ) + h ≥ 1 − τ + h; hence v(x, τ) ≥ 1 ≥ u(x, τ). We find that v ≥ u on
{(x, τ) ∈ ∂B : τ < h}, which is the parabolic boundary of B (and, in fact, our proof
even shows that v ≥ u in a neighborhood of this boundary).

Hence, to get that v is a supersolution of (6) in B, one has to show that ∂v/∂τ ≥
divZ for some field Z ∈ φ◦(∇v)∂φ◦(∇v) inside B.

One has, a.e. in B,

(7)
∂v

∂τ
(x, τ) =

(
−∂d

∂t
(x, t + τ) + c ε

)
∂γ

∂ξ
(−d(x, t + τ) + δ + c ετ, τ)

+
∂γ

∂τ
(−d(x, t + τ) + δ + c ετ, τ) ,

whereas

∇v(x, τ) = −∂γ

∂ξ
(−d(x, t + τ) + δ + c ετ, τ)∇d(x, t + τ) .

Using the assumption that φ◦ is even, we see that φ◦(∇v) = ∂γ/∂ξ (since φ◦(∇d) =
1 a.e. in R

N ) and that ∂φ◦(∇v) = −∂φ◦(∇d) (since ∂γ/∂ξ > 0 and ∂φ◦ is 0-
homogeneous and odd). Let now

Z(x, τ) = −∂γ

∂ξ
(−d(x, t + τ) + δ + c ετ, τ)n(x, t + τ) = φ◦(∇v(x, τ))(−n(x, t + τ)).

Since (by assumption) n(x, t + τ) ∈ ∂φ◦(∇d(x, t + τ)) = −∂φ◦(∇v(x, τ)) for a.e. x
in R

N and any τ ∈ (0, h), one has Z(x, τ) ∈ φ◦(∇v)∂φ◦(∇v)(x, τ). Since φ◦ is 1-
homogeneous, Euler’s identity yields ∇d · n = φ◦(∇d) = 1 as soon as n ∈ ∂φ◦(∇d).
We deduce
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(8) divZ(x, τ) = −div

[
∂γ

∂ξ
(−d(x, t + τ) + δ + c ετ, τ)n(x, t + τ)

]

=
∂2γ

∂ξ2
(−d(x, t + τ) + δ + c ετ, τ)

− ∂γ

∂ξ
(−d(x, t + τ) + δ + c ετ, τ)(divn(x, t + τ)) .

Since we have ∂d/∂t ≤ divn + c|d| in B, we deduce using (7) and (8) that

∂v

∂τ
(x, τ) ≥ divZ(x, τ) − ∂2γ

∂ξ2
(−d(x, t + τ) + δ + c ετ, τ)

+ c(ε−|d(x, t+τ)|)∂γ
∂ξ

(−d(x, t+τ)+δ+c ετ, τ) +
∂γ

∂τ
(−d(x, t+τ)+δ+c ετ, τ) .

Now, γ satisfies the heat equation, so that if |d(x, t + τ)| ≤ ε a.e. in B, we get

(9)
∂v

∂τ
(x, τ) ≥ divZ(x, τ) .

We choose ε = δ + 2ε so that |d(x, t + τ)| ≤ ε a.e. in B and (9) holds. By standard
comparison results on parabolic equations (see [11]), we deduce that v(x, h) ≥ u(x, h).
In particular, we have shown that there exists h0 > 0 (depending only on r, ε) such
that if h < h0,

ThF =

{
u(·, h) ≥ 1

2

}
⊂

{
v(·, h) ≥ 1

2

}

=

{
x ∈ R

N : d(x, t + h) ≤ δ + c εh− [γ(·, h)]−1

(
1

2
− h

)}
.

Since γ1(0) = 1/2, γ′
1(0) = 1/(2

√
π), we have γ−1

1 (1/2 − h) = −2
√
πh + o(h). Now,

γ(ξ, h) = γ1(ξ/
√
h), so that [γ(·, h)]−1 =

√
hγ−1

1 . We find that [γ(·, h)]−1(1/2 − h) =
(−2

√
πh + o(h))

√
h. Hence, possibly reducing h0, one gets that if h < h0, then

[γ(·, h)]−1(1/2 − h) ≥ −4h3/2. Recalling that ε = δ + 2ε, we find that if h < h0,

ThF ⊂
{
x ∈ R

N : d(x, t + h) ≤ [δ + (c(δ + 2ε) + 4
√
h)h]

}
.

Now, we deduce that (ε ∈ (0, r/4) being fixed) if t ∈ [t0, t1), h ≤ h0, and k ≥ 1
with t + kh ≤ t1, one has

T k
h (E(t)) ⊂

{
x ∈ R

N : d(x, t + kh) ≤ δk
}

with δ0 = 0 and δk = δk−1 + (c(δk−1 + 2ε) + 4
√
h)h, as long as δk−1 ≤ r/2. By

induction, we find

δk =
(
(1 + ch)k − 1

)(
2ε +

4
√
h

c

)
.

In particular, if τ > 0 is fixed, with t+τ ≤ t1, and k = [τ/h], we see that limh→0 δk =
2ε(ecτ − 1). If ε < r/4 is chosen small enough (less than (r/4)/(ecτ − 1)), we see that
for h > 0 small enough, δ[τ/h] ≤ r/2.

We now recall that any sequence of sets in R
N with equibounded boundaries has

a subsequence that converges in the Hausdorff sense to a closed set. If E′ is the

Hausdorff limit of a converging subsequence of T
[τ/h]
h E(t), as h → 0, we deduce that

E′ ⊆ {d(·, t + τ) ≤ 2ε(ecτ − 1)}. Since this must be true for all ε > 0 small enough,
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one sees that E′ ⊆ E(t + τ). On the other hand, a symmetric argument (based
on subsolutions of the equation) will yield that if R

N \ E′′ is the Hausdorff limit of

a converging subsequence of (RN \ T
[τ/h]
h E(t))h>0, then R

N \ E′′ ⊆ RN \ E(t + τ);
that is, int(E(t + τ)) ⊆ E′′. Without loss of generality, one can choose the same
subsequence in both limits above: in this case, one can show that E′′ ⊂ E′, and

E′ \ E′′ is the Hausdorff limit of ∂T
[τ/h]
h E(t) (which might differ from ∂E′ or ∂E′′).

Since int(E(t + τ)) ⊆ E′′ ⊂ E′ ⊆ E(t + τ), we see that E′′ = int(E(t + τ)), E′ =
E(t + τ), E′ \ E′′ = ∂E(t + τ), and by uniqueness of this Hausdorff limit we deduce
Theorem 2.2.

4. A numerical example. The algorithm is quite easy to implement numeri-
cally. Of course, there is some difficulty in computing precisely the solution of (3) in
strongly anisotropic or crystalline cases, especially when the subgradient ∂φ◦ is mul-
tivalued. We experimented with an implicit method, based on iterative resolutions
of the variational problem (4). More precisely, we approximate u(·, h) with wn(x),
where h = nh′, n is a fixed (small) integer, w0 = χE , and for i = 0, . . . , n − 1, wi+1

solves (in a domain Ω “large” with respect to E)

min
w∈H1(Ω)

∫
Ω

φ◦(∇w(x))2 +
1

h′ (w(x) − wi(x))2 dx .

To solve this minimization problem in the crystalline case, we discretize (here, on a bi-
dimensional finite differences grid) and solve the dual problem (see, for instance, [16])

min
ξ∈L2(Ω;RN )

∫
Ω

φ(ξ(x))2 + h′((wi(x)/h′) − div ξ(x))2 dx ,

using a conjugate-gradient method. Then, wi+1 = wi − h′div ξ. The thresholding at
level 1/2 is replaced by a “soft thresholding” wn(x) �→ min{1,max{1/2 + σ(wn(x) −
1/2), 0}}, where σ is adapted to the spatial discretization step, in order to keep a
precision slightly higher than the grid’s. In the example shown in Figure 1, the Wulff
shape {φ ≤ 1} is a hexagon.

Fig. 1. Evolutions at times t = 0, 5, 25, 60, 400, 800.
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DISSIPATIVE SYMMETRIZERS OF HYPERBOLIC PROBLEMS
AND THEIR APPLICATIONS TO SHOCK WAVES AND

CHARACTERISTIC DISCONTINUITIES∗

YURI TRAKHININ†

Abstract. By introducing the notations of dissipative and strictly dissipative p-symmetrizers
of initial-boundary-value problems for linear hyperbolic systems we formalize the dissipative inte-
grals technique [A. Blokhin, Yu. Trakhinin, in Handbook of Mathematical Fluid Dynamics, Vol.
1, North-Holland, Amsterdam, 2002, pp. 545–652] applied earlier to shock waves and characteristic
discontinuities for various concrete systems of conservation laws. This enables us to prove the local
in time existence of shock-front solutions of an abstract symmetric system of hyperbolic conservation
laws, provided that the corresponding constant coefficients linearized problem has a strictly dissi-
pative p-symmetrizer. Our result does not, in particular, require the fulfillment of Majda’s block
structure condition. A p-symmetrizer is, in some sense, a “secondary” Friedrichs symmetrizer for
the symmetric system for the vector of p-derivatives of unknown functions, and the structure of
p-symmetrizer takes into account (if applicable) the set of divergent constraints for the original sys-
tem. After applying a p-symmetrizer, which is in general a set of matrices and vectors, the boundary
conditions for a resulting symmetric system are dissipative (or strictly dissipative). We give con-
crete examples of p-symmetrizers. Our main examples are strictly dissipative 2-symmetrizers for
shock waves in gas dynamics and magnetohydrodynamics. A general procedure for constructing a
p-symmetrizer does not however exist. But, if it was somehow constructed, then we do not need to
test the Lopatinski condition that is often connected with insuperable technical difficulties. As an
illustration, we refer to the author’s recent result [Yu. Trakhinin, Arch. Ration. Mech. Anal., 177
(2005), pp. 331–366] for compressible current-vortex sheets for which the construction of a dissipative
0-symmetrizer has first enabled the finding of sufficient conditions for their weak linearized stability.

Key words. symmetric hyperbolic systems, dissipative boundary conditions, multidimensional
conservation laws, shock waves
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1. Introduction: Initial-boundary-value problems for quasi-linear hy-
perbolic systems. Consider a system of N conservation laws

∂tP0(U) +

n∑
j=1

∂jPj(U) = 0,(1.1)

where Pα = Pα(U) = (Pα
1 , . . . ,Pα

N ), U = U(t,x) = (u1, . . . , uN ), x = (x1, . . . , xn)
∈ R

n, ∂t := ∂/∂t, ∂j := ∂/∂xj . With the notation

div a :=

n∑
j=1

∂ja
j (a = a(t,x) = (a1, . . . , an) is a vector)

system (1.1) in componentwise form reads

∂tP0
i (U) + divPi(U) = 0, i = 1, N,
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where Pi = Pi(U) = (P1
i , . . . ,Pn

i ). Assuming that the flux functions Pα
i are smooth

enough (in practice, they are usually C∞), one can rewrite (1.1) as the quasi-linear
system

B0(U)Ut +

n∑
j=1

Bj(U)Uxj
= 0,(1.2)

with Bα = (∂Pα/∂U).
We will assume that system (1.1) may be supplemented (but not necessarily) by

a set of K divergent constraints

div Ψj(U) = 0, j = 1,K,(1.3)

where Ψj = Ψj(U) = (Ψ1
j , . . . ,Ψ

n
j ). For example, for the system of gas dynamics

one has no divergent constraints at all, whereas the system of magnetohydrodynamics
(MHD) is supplemented by the sole (K = 1) divergent constraint divH = 0 (see, e.g.,
[28]). We also refer, for instance, to Landau’s equations of superfluid [29] (see also
[11]) which are supplemented by the tree divergent constrains ∇× vs = 0 (vs is the
superfluid velocity [29, 11]).

Assumption 1.1. The divergent constraints (1.3) are the restrictions on the
initial data for system (1.1). That is, if (1.3) are satisfied initially, they hold for all
t > 0.

Remark 1.1. Assumption 1.1 is quite natural because it holds for all the physically
relevant models: MHD, Landau’s equations of superfluid, etc. (see, e.g., [11] for
further examples). In practice, (1.3)|t>0 is proved by applying the operator div to
appropriate subsystems of (1.1) and taking into account (1.3)|t=0. Of course, applying
div requires n ≤ N . The last assumption will be also made for other reasons (see
section 3).

Sometimes, by an appropriate choice of the vector of unknowns U a concrete sys-
tem of conservation laws can be written in the nonconservative form (1.2) with sym-
metric matrices Bα. For example, the systems of gas dynamics and MHD are written
as symmetric systems for the vectors of unknowns U = (p,v, S) and U = (p,v,H, S),
respectively. At the same time, it is not always possible to guess an appropriate vector
U for which a system of conservation laws, (1.1), can be rewritten as a symmetric
quasi-linear system. But, as was first shown by Godunov [23, 24], system (1.1) can be
always symmetrized if we know, a priori, an additional conservation law (“entropy”
conservation)

∂tΦ
0(U) + div Φ(U) = 0,

with Φ = Φ(U) = (Φ1, . . . ,Φn), which holds on smooth solutions of (1.1). That is,
one can find an invertible change of unknowns U → Q such that the system

A0(Q)Qt +

n∑
j=1

Aj(Q)Qxj = 0(1.4)

is symmetric: Aα = (Aα)∗, where

Aα =

(
∂Pα

∂Q

)
= Bα(U(Q))

(
∂U

∂Q

)
,
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i.e., Aα = BαJ
−1, with J = J(Q) = (∂Q/∂U). It should be noted that if system

(1.1) is accompanied by a set of divergent constraints (1.3), then these constrains
should be generically taken into account under Godunov’s symmetrization. For the
process of symmetrization itself we refer to [13] and references therein (note that, in
particular, Q = (∂Φ0/∂P0)).

It is worth noting that the symmetric system (1.4) can be rewritten as a quasi-
linear system for the original vector of unknowns U that is again symmetric. Indeed,
(1.4) clearly implies the system

A0(U)Ut +

n∑
j=1

Aj(U)Uxj = 0,(1.5)

where the matrices Aα = Aα(U) := J∗AαJ = J∗Bα are symmetric. Thus, the matrix

S = S(U) = J∗ =

(
∂Q

∂U

)∗

is the one (called Friedrichs symmetrizer) that symmetrizes system (1.2):

Aα = SBα = A∗
α.

Recall that the quasi-linear symmetric system (1.5) is symmetric hyperbolic in the
sense of Friedrichs [22] if A0(U) > 0 (or A0(U) < 0 if we multiply (1.5) by −1).

The main requirement for the local in time well-posedness of the Cauchy problem
for a quasi-linear system of conservation laws is the hyperbolicity condition that is
easily verified for symmetric systems. The local existence theorem for the Cauchy
problem for symmetric hyperbolic systems was independently proved by Vol’pert and
Khudyaev [47], Lax [30], and Kato [26] (see also [34]). In contrast with the Cauchy
problem, the conditions for well-posedness of initial-boundary-value problems for hy-
perbolic systems, in the generic case, cannot be easily found even for linearized prob-
lems with constant coefficients.

1.1. Standard boundary conditions. Let us first consider quasi-linear initial-
boundary-value problems with standard boundary conditions [40]:

L(U)U = 0 in [0, T ] × R
n
+,(1.6a)

M(t,x′,U)U = 0 on [0, T ] × {x1 = 0} × R
n−1,(1.6b)

U|t=0 = U0 in R
n
+,(1.6c)

where L = L(U) = A0(U)∂t +
∑n

j=1 Aj(U)∂j , and system (1.6a) is supposed to
be symmetric hyperbolic, and the matrix M is a d × N matrix. Here and below
R

n
± = {x1 ≷ 0, x′ ∈ R

n−1}, x′ = (x2, . . . , xn). Without loss of generality we consider
the problem in a half-space because the case of a smooth bounded domain Ω is reduced,
in some sense, to problem (1.6) by a finite partition of unity subordinated to an open
covering of Ω.

To prove a local (in time) existence theorem for problem (1.6) we should consider
the following linear problem associated to (1.6):

L(Û)U = f in [0, T ] × R
n
+,(1.7a)

M(t,x′, Û)U = g on [0, T ] × {x1 = 0} × R
n−1,(1.7b)

U|t=0 = U0 in R
n
+,(1.7c)

where Û is a given vector-function. Here we introduce the source terms f(t,x) and
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g(t,x′) to make the interior equations and the boundary conditions inhomogeneous
(this is needed to attack the nonlinear problem).

Recall that the boundary conditions (1.7b) are called dissipative if

−(A1U,U)|x1=0 ≥ 0 ∀ U ∈ kerM,(1.8)

where −A1 = −A1(Û) is the boundary matrix, M = M(t,x′, Û). They are strictly
dissipative if there exist a fixed constant γ > 0 such that

−(A1U,U)|x1=0 ≥ γ|V|2 ∀ U ∈ kerM,(1.9)

where V is the “noncharacteristic part” of the trace U|x1=0, i.e., the projection of
U|x1=0 orthogonal to kerA1|x1=0 (V = U for the case of noncharacteristic boundary,
i.e., when detA1|x1=0 �= 0). Recall also that the boundary conditions (1.7b) are called
maximally dissipative if they are dissipative and

dim kerM = # nonpositive eigenvalues of A1|x1=0 counting multiplicity(1.10)

(we use the definition from [39]). Property (1.10) means that the hyperbolic system
(1.7a) has the correct number of boundary conditions in (1.7b), i.e.,

d = # positive eigenvalues of A1|x1=0 counting multiplicity.

In the following we always assume that the number of boundary conditions is correct
and we therefore drop the word “maximally” when speaking about dissipative or
strictly dissipative boundary conditions.

For the inhomogenous boundary conditions (1.7b) inequality (1.9) implies that
there exists a fixed constant δ > 0 such that

−(A1U,U)|x1=0 ≥ δ|V|2 − δ−1|g|2(1.11)

for all U satisfying (1.7b). To deduce inequality (1.11) from (1.9) it needs to reduce
system (1.7a) to the form [35], A0Wt +

∑n
j=1 AjWxj

= . . . , where U = T W, Aα =
T ∗AαT , A1 = diag(D1,−D2, 0), Di > 0, (A1W,W) = (D1W1,W1)−(D2W2,W2),
and the boundary conditions (1.7b) are supposed to be rewritten in the form W1 =
SW2 + g̃. Analogous simple arguments show that the dissipativity hypothesis (1.8)
implies that there is a matrix B = B(t,x′) such that

−(A1U,U)|x1=0 ≥ (Bg,V) − γ|g|2(1.12)

for all U satisfying (1.7b), where γ is a constant, the matrix B can be, in principle,
explicitly written out (it depends on T , etc.).

If the boundary conditions (1.6b) are linear, i.e., M = M(t,x′), then the boundary
conditions for the associated linear problem (1.7) can be considered to be homogenous
(g=0) and the dissipativity hypothesis (1.8) is quite enough to prove a local existence
theorem for problem (1.6) by standard fixed-point argument. In this case, for the
linear problem (1.7) the basic estimate following from assumption (1.8) reads [40]

‖U(t)‖L2(Rn
+

) ≤ C
{
‖U0‖L2(Rn

+
) + ‖f‖L2([0,T ]×Rn

+
)

}
,

where C = C(T ) is a positive constant independent of the initial data and the source
terms. For linear boundary conditions on a noncharacteristic boundary the local W s

2 -
existence theorem for problem (1.6) was proved by Schochet [41] (see Appendix A



1992 YURI TRAKHININ

of [41]), where s ≥ [n/2] + 2 as for the Cauchy problem [47, 30, 26]. The case of
characteristic boundary was considered by Secchi [42] (he has proved a local existence
theorem in anisotropic weighted Sobolev spaces [42]).

However, if the boundary conditions in (1.6b) are nonlinear, i.e., M depends on
U, then one has to consider inhomogenous boundary conditions in the linear problem
(1.7) (even if the original conditions (1.6b) were homogenous). The usual way (see,
e.g., [40]) to deal with inhomogenous boundary conditions suggests to subtract from
the solution a more regular function satisfying the boundary conditions, and reduce
problem (1.7) to one with homogenous boundary conditions. But, such a way leads to
the loss of “1/2 derivative” from g (see [40]). That is, the dissipativity hypothesis is
already not enough to achieve a nonlinear local existence result by standard iterations.

At the same time, when the boundary conditions in (1.6b) are nonlinear, but
conditions (1.7b) are strictly dissipative, using inequality (1.11), we can easily deduce
the basic a priori estimate (with no loss of derivatives)

‖U(t)‖L2(Rn
+

) ≤ C
{
‖U0‖L2(Rn

+
) + ‖f‖L2([0,T ]×Rn

+
) + ‖g‖L2([0,T ]×Rn−1)

}
(1.13)

and its higher order counterparts (see Appendix A in [43]). This enables one to prove
a local existence theorem for problem (1.6) by standard fixed-point argument. The
proof for the general problem (1.6) has not been written out somewhere, but we can
refer to [43] for a concrete example of problem (1.6). Note that the well-posedness of
the linear problem (1.7) with g �= 0 was proved in Appendix A of [43].

That is, when conditions (1.7b) are inhomogenous but strictly dissipative, an
unpleasant loss of derivatives is avoided by a direct approach to the original problem
(1.7) with inhomogenous boundary conditions (for problem (1.7) this was done in
Appendix A of [43]; see also section 4 for shock waves). If, however, conditions (1.7b)
are just dissipative (but not strictly dissipative), such a direct approach to the linear
problem (1.7) only enables us to obtain the a priori estimate with the loss of one
derivative from g:

‖U(t)‖W 1
2 (Rn

+
) ≤ C

{
‖U0‖W 1

2 (Rn
+

) + ‖f‖W 1
2 ([0,T ]×Rn

+
) + ‖g‖W 2

2 ([0,T ]×Rn−1)

}
.(1.14)

Here we suppose that the boundary is noncharacteristic. For the case of characteristic
boundary the counterpart of (1.14) indicates a loss of control on derivatives in the nor-
mal direction [39, 42, 16]. To deduce estimate (1.14) we should differentiate problem
(1.7) with respect to t and x′. Then, we take into account inequality (1.12) and inte-
grate by parts the boundary integral (see section 3 for the case of Rankine–Hugoniot
boundary conditions).

Remark 1.2. For the case of linearized Rankine–Hugoniot boundary conditions a
priori estimates with loss of derivatives were proved for shock waves and characteristic
discontinuities by Coulombel [17], Coulombel and Secchi [19], and the author [45]
(in [45] the a priori estimates are formally with no loss of derivatives because the
boundary conditions were supposed to be homogenous). For the case of standard
boundary conditions, cf. (1.7b), the a priori estimate (1.14) is a basic estimate, and
it is not difficult to obtain an estimate for higher order derivatives. But, of course,
it will be also with the loss of one derivative from g. This precludes one from using
fixed-point argument to prove a local existence theorem. It seems that the only way
to overcome the difficulty connected with the loss of derivatives phenomenon is the
employment of the Nash–Moser technique (for hyperbolic problems see [2, 31, 21]).
Recently, the Nash–Moser method was successfully used by Coulombel and Secchi
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[20] for two-dimensional (2D) compressible vortex sheets as well as for weakly stable
shock waves (see also preparatory results in this direction in [17, 18, 19]). There is
also a great hope to achieve a nonlinear local existence result for current-vortex sheets
[45] by using Nash–Moser iterations.

If the boundary conditions (1.7b) are not dissipative, this does not, of course,
mean that problem (1.7) is ill-posed. An alternative to the energy method was first
suggested by Kreiss [27] for the strictly hyperbolic case. Kreiss has proved that
problem (1.7) with constant (“frozen”) coefficients obeys an a priori L2,η-estimate
with no loss of derivatives if and only if the boundary conditions satisfy the uniform
Lopatinski condition [27] (‖ · ‖L2,η = ‖e−ηt(·)‖L2 , and η > 0 is sufficiently large).
This estimate follows from a symmetrizer construction (Kreiss symmetrizer) and is
carried over variable coefficients by using pseudodifferential calculus. That is, the
uniform Lopatinski condition is the sharp algebraic criterion of strong well-posedness
(well-posedness “with no loss of derivatives”).

Later Kreiss’ symmetrizer analysis was extended by Agranovich [1], Majda and
Osher [35], and Majda [32] to hyperbolic systems satisfying a so-called block struc-
ture condition, which holds in particular for hyperbolic symmetrizable systems with
constant multiplicities [1, 36]. In [32] Majda extends the Kreiss theory to the case of
Rankine–Hugoniot boundary conditions. Majda’s approach has been then improved
by Métivier [37] by using paradifferential calculus of Bony (see also discussion in sec-
tion 4). And recently Métivier and Zumbrun [38] have extended the Kreiss–Majda
theory to a class of hyperbolic symmetrizable systems with characteristics of variable
multiplicities. These systems at points of variable multiplicity should satisfy some
conditions [38] which hold in particular for the MHD system. Thus, if the symmetric
hyperbolic system (1.6a) meets either the Agronovich–Majda–Osher block structure
condition [1, 35] or the conditions of Métivier and Zumbrun [38], then the linear
problem (1.7) is strongly well-posed, provided that the boundary conditions (1.7b)
satisfy the uniform Lopatinski condition. In this case a local existence theorem for
the nonlinear problem (1.6) can be proved by analogy with the proofs in [33, 37].

At the same time, it should be noted that in practice the algebraic criterion given
by the Lopatinski condition often cannot be tested analytically. Sometimes one suc-
ceeds to check it numerically (see [44]), but, frequently, numerical calculations can
give only a very rough description of the condition for weak/strong well-posedness
because either the domain of parameters for the constant coefficients linearized prob-
lem is unbounded or the number of these parameters is too big. Usually this happens
for the case of Rankine–Hugoniot boundary conditions (see below), i.e., for shock
waves or characteristic discontinuities. For example, such a situation takes place for
compressible current-vortex sheets [45]. In this connection, there is no sense to reject
at once the energy method as soon as the boundary conditions are not dissipative.
The main purpose of the present paper is to formalize the so-called dissipative in-
tegrals technique (see [13]), which is a kind of “higher order” extension of the usual
energy method. Especially, this technique turned out to be effective for shock waves
in various hyperbolic models: gas dynamics, Landau’s equations of superfluid, MHD,
radiation hydrodynamics, etc. (see [13] and references therein). Let us now go on to
the case of Rankine–Hugoniot boundary conditions.

1.2. Rankine–Hugoniot boundary conditions. Consider system (1.1) in the
whole space R

n. Let

Γ(t) = {x1 − f(t,x′) = 0}



1994 YURI TRAKHININ

be a smooth hypersurface in [0, T ] × R
n. We assume that Γ(t) is a surface of strong

discontinuity for solutions of (1.1). Let U(t,x) be a classical solution of (1.1) on
either side of Γ. As is known, U is a weak solution of (1.1) if and only if the Rankine–
Hugoniot jump conditions hold at each point of Γ:

ft[P0(U)] +

n∑
k=2

fxk
[Pk(U)] − [P1(U)] = 0,(1.15)

where [a] = a+ − a− = a|x1−f(t,x′)=+0 − a|x1−f(t,x′)=−0.
It should be noted that the initial-boundary-value problem for system (1.5) in

the domains Ω±(t) := {x1 ≷ f(t,x′)} with the boundary conditions (1.15) on the
hypersurface Γ(t) is a free-boundary-value problem. Indeed, the function f(t,x′)
defining Γ is one of the unknowns of problem (1.5), (1.15) with the corresponding
initial data

f |t=0 = f0 in R
n−1, U|t=0 = U0 in Ω+(0) ∪ Ω−(0).(1.16)

To work in fixed domains instead of the domains Ω±(t) we make the following
change of variables:

t̃ = t, x̃1 = x1 − f(t,x′), x̃′ = x′.

Then, Ũ(t̃, x̃) := U(t,x) is a smooth vector-function for x̃ ∈ R
n
±, and the initial-

boundary-value problem (1.5), (1.15), (1.16) is reduced to the following problem (we
omit tildes to simplify the notation):

L(U,F)U = 0 in [0, T ] × (Rn
+ ∪ R

n
−),(1.17a)

B(U+,U−)F − [P1(U)] = 0 on [0, T ] × {x1 = 0} × R
n−1,(1.17b)

U|t=0 = U0 in R
n
+ ∪ R

n
−, f |t=0 = f0 in R

n−1.(1.17c)

Here

L = L(U,F) = A0(U)∂t + Aν(U,F)∂1 +

n∑
k=2

Ak(U)∂k,

F = F(t,x′) = (ft,F
′), F′ = F′(t,x′) = ∇x′f, ∇x′ = (∂2, . . . , ∂n),

Aν = Aν(U,F) =

n∑
α=0

ναAα = A1(U) − ftA0(U) −
n∑

k=2

fxk
Ak(U),

ν = (ν0, . . . , νn) = (−ft,N) and N = (1,−F′) are, respectively, the space-time and
space normal vectors to Γ(t). The matrix B = B(U+,U−) is of order N × n and
determined from the relation

B(U+,U−)F = ft[P0(U)] +

n∑
k=2

fxk
[Pk(U)], U± := U|x1=±0.

After straightening of variables above the divergent constraints (1.3) take the
form

div ψj(U,F′) = 0 in [0, T ] × (Rn
+ ∪ R

n
−), j = 1,K,(1.18)
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where ψj = ψj(U,F′) = ((Ψj ,N),Ψ2
j , . . . ,Ψ

n
j ). Moreover, solutions of problem

(1.17) should satisfy the jump conditions

[(Ψj(U),N)] = 0 on [0, T ] × {x1 = 0} × R
n−1, j = 1,K,(1.19)

coming from (1.3). At the same time, taking into account Assumption 1.1 and Remark
1.1, it is natural to make the following assumption that should be true for all the
physically relevant models.

Assumption 1.2. The divergent constraints (1.18) are the restrictions on the ini-
tial data (1.17c), i.e., if (1.18) are satisfied initially, they hold for all t > 0. Equations
(1.17b) and (1.19) form a system of N independent boundary conditions.

To clarify Assumption 1.2 we can refer, for example, to MHD. Namely, in MHD
the jump condition ft[(H,N)] = 0 contained in the corresponding main system,
(1.17b), is implied by the equation [(H,N)] = 0 coming from the divergent con-
straint div H = 0. That is, in MHD the number of independent Rankine–Hugoniot
boundary conditions is equal to the number of conservation laws.

To prove the existence of solutions with a surface of strong discontinuity Γ(t) for
the system of hyperbolic conservation laws (1.1) one needs to reply to the following
question: does there exist a solution (U, f) to problem (1.17) at least locally in time?
The necessary (but not sufficient) condition for this is that the hyperbolic problem
(1.17) has the correct number of boundary conditions in (1.17b). In this connection,
it should be noted that, in contrast with the standard boundary conditions (1.6b),
one of the conditions in (1.17b) is needed for determining the function f(t,x′). For
noncharacteristic discontinuities, i.e., shock waves, the plane x1 = 0 is not a charac-
teristic boundary for system (1.17). That is, the boundary matrix Aν is nonsingular
at x1 = 0: detA±

ν �= 0, where A±
ν = Aν |x1=±0. As is known, for shock waves the

correct number of Rankine–Hugoniot boundary conditions is guaranteed by the Lax
shock conditions. They can be conveniently written in terms of the eigenvalues of the
boundary matrix Aν :

λk(A
+
ν ) < 0 < λk(A

−
ν ), λk−1(A

−
ν ) < 0 < λk+1(A

+
ν ),(1.20)

where λi(A
±
ν ) (i = 1, N , λ1 ≤ . . . ≤ λN ) are the eigenvalues of the matrices A±

ν and
k is a fixed integer number, 1 ≤ k ≤ N (an associated shock wave is called k-shock),
λ0 := −∞, λN+1 := +∞.

Let (Û(t,x), f̂(t,x′)) be a given vector-function, where Û is supposed to be
smooth for x ∈ R

n
±. Then the linearization of (1.17) results in the following variable

coefficients problem for determining small perturbations (δU, δf) (below we drop δ):

L(Û, F̂)U + ĈU =
{
L(Û, F̂)f

}
Ûx1 in [0, T ] × (Rn

+ ∪ R
n
−),(1.21a)

B(Û+, Û−)F −
[
S−1(Û)Aν(Û, F̂)U

]
= 0 on [0, T ] × {x1 = 0} × R

n−1,(1.21b)

and the initial data for the perturbation (U, f) coincide with (1.17c). Here, F̂ =

(f̂t, F̂
′), F̂′ = ∇x′ f̂ , the matrix Ĉ = Ĉ(Û, Ût,∇Û, F̂) is determined as follows:

ĈU = (U,∇uA0(Û))Ût + (U,∇uAν(Û, F̂))Ûx1
+

n∑
k=2

(U,∇uAk(Û))Ûxk
,

(U,∇u) :=
∑N

i=1 ui∂/∂ui. Recall that S(U) is the Friedrichs symmetrizer mentioned
above, i.e., S−1Aν = Bν , where Bν =

∑n
α=0 ναBα. Problem (1.21a), (1.17c) is the
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genuine linearization of (1.17) in the sense that we keep all the lower order terms in
(1.21a).

It should be noted that the differential operator in system (1.21a) is a first order
operator in f . This fact can give some trouble in the application of the energy method
to (1.21a). To avoid this difficulty we make the change of unknowns (see [2])

Ū = U − fÛx1
.(1.22)

In terms of the “good unknown” (1.22) problem (1.21a) takes the form

L(Û, F̂)Ū + ĈŪ + f∂1{L(Û, F̂)Û} = 0 in [0, T ] × (Rn
+ ∪ R

n
−),(1.23a)

B(Û+, Û−)F −
[
S−1(Û)Aν(Û, F̂)Ū

]
= −f

[
S−1(Û)Aν(Û, F̂)Ûx1

]
on [0, T ] × {x1 = 0} × R

n−1.
(1.23b)

Actually, to prove a local existence theorem for the nonlinear problem (1.17) with
strictly dissipative boundary conditions or having a strictly dissipative p-symmetrizer
(see section 2), it is not necessary to consider the genuine linearization (1.21a). It is
enough to keep only the principal part of the linearized equations, i.e., one can drop the
lower order terms in (1.23). At the same time, for the case when the loss of derivatives
takes place it needs to perform genuine linearization (“to find a differential”) for the
purpose of a possible use of the Nash–Moser method (see discussion in Remark 1.2).
The linearized equations associated to (1.17a), (1.17b) and obtained by dropping the
lower order terms in (1.23) read:

L(Û, F̂)U = f in [0, T ] × (Rn
+ ∪ R

n
−),(1.24a)

B(Û+, Û−)F −
[
S−1(Û)Aν(Û, F̂)U

]
= g on [0, T ] × {x1 = 0} × R

n−1.(1.24b)

Here we introduce the source terms f(t,x) and g(t,x′), where f(t,x) = f±(t,x) for
x ∈ R

n
±.

For problem (1.24) the definitions of dissipative and strictly dissipative boundary
conditions are analogous to those in (1.12) and (1.11). In particular, the homogenous
boundary conditions (1.24b) (g = 0) are dissipative if −[(AνU,U)]|x1=0 ≥ 0 for all U
satisfying (1.24b). Assuming that the front can be eliminated, i.e., the vector-function
F can be expressed through U+, U−, and g (see section 3 for more details), for shock
waves the counterparts of estimates (1.14) and (1.13) are the following:

‖f‖W 1
2 ([0,T ]×Rn−1) +

∑
±

‖U(t)‖W 1
2 (Rn

±) ≤ C

{
‖f0‖W 1

2 (Rn−1)

+
∑
±

{
‖U0‖W 1

2 (Rn
±) + ‖f±‖W 1

2 ([0,T ]×Rn
±)

}
+ ‖g‖W 2

2 ([0,T ]×Rn−1)

}(1.25)

(for dissipative boundary conditions),

‖f‖W 1
2 ([0,T ]×Rn−1) +

∑
±

‖U(t)‖L2(Rn
±) ≤ C

{
‖f0‖W 1

2 (Rn−1)

+
∑
±

{
‖U0‖L2(Rn

±) + ‖f±‖L2([0,T ]×Rn
±)

}
+ ‖g‖L2([0,T ]×Rn−1)

}(1.26)

(for strictly dissipative boundary conditions).
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Since the original nonlinear problem (1.17) is a reduced free-boundary-value prob-
lem, we should gain the “additional derivative” for the front perturbation f (cf. (1.26))
to use then fixed-point argument. In this sense the a priori estimate (1.25) indicates
the loss of one derivative not only from the source term g but also from the front f .
At the same time, Rankine–Hugoniot boundary conditions are usually not dissipative
(not to mention strict dissipativity). Nevertheless, the energy method can be still
applied to problem (1.17) under certain circumstances. The main idea is to obtain
from the linearized problem a problem for higher order derivatives of U so that this
problem has dissipative (or strictly dissipative) boundary conditions. Such an idea
was first realized by Blokhin [7, 9] for shock waves in gas dynamics. In the next section
we formalize this idea by introducing the notations of dissipative and strictly dissi-
pative p-symmetrizers and give concrete examples of p-symmetrizers. In section 3 we
consider the case of constant coefficients and deduce a priori estimates for Lax shock
waves whose linearized problems have a p-symmetrizer. In section 4 we carry these
estimates over variable coefficients and outline the proof of the local existence theorem
for the original nonlinear problem (1.17), provided that the corresponding constant
coefficients linearized problem has a strictly dissipative p-symmetrizer. For all the
linear results obtained earlier by the dissipative integrals technique for shock waves in
various concrete models (see [13] and references therein) this enables one to conclude
the local existence of shock-front solutions of the corresponding nonlinear systems.
Eventually, in section 5 we make concluding remarks and discuss open problems.

2. Dissipative p-symmetrizers: Definition and examples. We introduce
the notations of dissipative and strictly dissipative p-symmetrizers for linear hyper-
bolic initial-boundary-value problems with constant coefficients. We give the defini-
tion of these notations for the case of Rankine–Hugoniot boundary conditions. The
corresponding definition for the earthier case of standard boundary conditions (cf.
(1.6b)) is given analogously and does not need a separate treatment.

The constant coefficients linearized problem for planar discontinuities is of decisive
importance for the subsequent variable coefficients and nonlinear analysis. For planar
discontinuities f̂(t,x′) is a linear function:

f̂(t,x′) = σt + (σ′,x′), σ = (σ,σ′) ∈ R
n.(2.1)

For the case of a piecewise constant solution,

Û =

{
Û+, x1 > σt + (σ′,x′),

Û−, x1 < σt + (σ′,x′),

equations (1.24) have constant (“frozen”) coefficients:

L(Û±,σ)U = f± for x ∈ R
n
±,(2.2a)

B̂F −
[
Ŝ−1ÂνU

]
= g for x1 = 0,(2.2b)

where B̂ = B(Û+, Û−), Ŝ± = S(Û±), Â±
ν = Aν(Û

±,σ), Â±
α = Aα(Û±) are constant

coefficients matrices, and
[
Ŝ−1ÂνU

]
= (Ŝ+)−1Â+

ν U+ − (Ŝ−)−1Â−
ν U−, etc.

Assumption 2.1. The functions Ψi
j(U) in (1.3) are linear.

Assumption 2.1 is satisfied for most examples of constrained hyperbolic systems
we know. At the same time, this assumption is made only for simplicity of arguments
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below and can be easily removed. Assuming the linearity of Ψi
j(U), the linearized

constraints (1.18) after the change of unknowns (1.22) (below we drop the bars) read:

div ψj = 0, x ∈ R
n
±, j = 1,K,(2.3)

where ψj = ψj(U, F̂′) = ((Ψj , N̂),Ψ2
j , . . . ,Ψ

n
j ), N̂ = (1,−F̂′). For the case of

constant coefficients (2.2), N̂ = (1,−σ′).

2.1. The main definition. Given a nonnegative integer number p, we introduce
the notation

Wp := (∂α1

U, . . . , ∂αd

U),

with

d = Cp
n+p, |αi| = p, i = 1, d, αi �= αj for i �= j,

where ∂α := ∂α0
t ∂α1

1 · · · ∂αn
n , α = (α0, . . . , αn). In particular, W0 = U, W1 =

(Ut,Ux1
, . . . ,Uxn), W2 = (Utt,Utx1 , . . . ,Uxn−1xn

,Uxnxn
). Below we will usually

omit the index p, i.e., W := Wp.
Differentiating systems (2.2a) (if p �= 0) and taking into account relations (2.3),

one gets

P±L̃(Û±,σ)W +

K∑
j=1

∑
|α|=p

R±
j,αdiv

(
ψj(∂

αU,σ′)
)

= P±f̃±, x ∈ R
n
±,(2.4)

where

L̃(Û±,σ) = Id ⊗ L(Û±,σ), f̃± = (∂α1

f±, . . . , ∂αd

f±),

R±
j,α = Rj,α(Û±,σ) and P± = P (Û±,σ) are, respectively, vectors and nonsingular

matrices of order Nd. Here and below the subscript in Ij indicates the order of the
unit matrix Ij = I (sometimes we omit it). Systems (2.4) can be rewritten as follows:

L(Û±,σ)W = F±, x ∈ R
n
±,(2.5)

where

L = L(Û±,σ) = Â±
0 ∂t +

n∑
j=1

Â±
j ∂j , F± = F±(Û±,σ) = P±f̃±,

and Â±
i = Ai(Û

±,σ), i = 0, n, are matrices of order Nd (their explicit form is
determined from (2.4)).

Systems (2.5) are a kind of “secondary higher order” symmetrization of the sym-

metric systems (2.2a) if the matrices Â±
i are again symmetric. Moreover, to make

these matrices symmetric when writing out (2.5) one can take into account the trivial
relations like

∂i∂jU = ∂j∂iU, ∂i∂j∂kU = ∂j∂i∂kU = . . . = ∂k∂j∂iU, etc.,

which follow from the smoothness hypothesis (in R
n
±). Clearly, systems (2.5) are

not uniquely written out. It follows that a corresponding p-symmetrizer (see the
definition below) is not uniquely determined and, in principle, the problem can have
different p-symmetrizers. It is however quite natural and does not, of course, imply
the nonuniqueness of solutions to the problem.
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The boundary conditions for systems (2.5) are obtained by the tangential differ-
entiation (with respect to t and x′) of conditions (2.2b), and, furthermore, systems
(2.4) themselves differentiated p − 1 times and considered at x1 = 0 can be used as
boundary conditions. Unfortunately, the boundary conditions are difficult to present
in a concrete form, but it is clear that the right-hand parts in them depend on ∂α

t,x′g,

with |α| = p, and ∂βf±|x1=±0, with |β| = p − 1, where ∂α
t,x′ := ∂α0

t ∂α2
2 · · · ∂αn

n ,
α = (α0, α2, . . . , αn). The corresponding vector of right-hand parts formed by ∂α

t,x′g

and ∂βf±|x1=±0 is below denoted by G.
We are now in a position to give the definition of the (strictly) dissipative p-

symmetrizer.
Definition 2.1. The set of matrices and vectors

S = S(Û+, Û−,σ) :=
{
P+, P−,

{
R+

j,α

}
j=1,K,|α|=p

,
{
R−

j,α

}
j=1,K,|α|=p

}
(S := {P+, P−} if system (1.1) has no divergent constraints) is called the dissipative

p-symmetrizer of problem (2.2) if the matrices Â±
i in (2.5) are symmetric and there

is an open subset D of the state space G ⊂ R
N ×R

N ×R
n, a constant matrix B, and

a constant γ such that

Â+
0 > 0, Â−

0 > 0,(2.6)

and (cf. (1.12))

−
[
(Â1W,W)

]∣∣
x1=0

≥ (BG,W̃) − γ|G|2(2.7)

for all (Û+, Û−,σ) ∈ D and all W satisfying the boundary conditions for systems

(2.5), where W̃ = (W̃+,W̃−) and W̃± is the projection of W± orthogonal to kerÂ±
1

(for shock waves W̃± = W± = W|x1=±0).
The set S is called the strictly dissipative p-symmetrizer of problem (2.2) if it is

a dissipative p-symmetrizer of this problem and there is a fixed constant δ > 0 such
that

−
[
(Â1W,W)

]∣∣
x1=0

≥ δ|W̃|2 − δ−1|G|2.(2.8)

Remark 2.1. For 1-shocks Â−
ν > 0 (cf. (1.20)) and, therefore, the strictly dissi-

pative p-symmetrizer can be taken in the form

S =
{
P+, γI,

{
R+

j,α

}
j=1,K,|α|=p

, 0, . . . , 0
}
,

where the constant γ > 0 is large enough, P+, R+
j,α are such that the matrices Â+

α

are symmetric, Â+
0 > 0, and the relaxed condition (2.8),

−(Â+
1 W,W)|x1=+0 ≥ δ|W+|2 − δ−1

{
|G|2 + |W−|2

}
,

is fulfilled. Thanks to the choice of γ and the condition Â−
1 = γ(Id ⊗ Â−

ν ) > 0, the
last inequality implies (2.8) with an appropriate (and different) δ. That is, systems
(2.5) are symmetric hyperbolic and the boundary conditions for them are strictly
dissipative (cf. (1.11)).

Remark 2.2. The definition of the p-symmetrizer for the case of standard bound-
ary conditions is analogous to Definition 2.1. Note only that for problem (1.7) (with
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“frozen” coefficients) the p-symmetrizer has the form S =
{
P, {Rj,α}j=1,K,|α|=p

}
,

where P is a nonsingular matrix of order NCp
n+p, etc.

We now give some concrete examples of dissipative and strictly dissipative p-
symmetrizers. Without loss of generality we will consider homogenous interior equa-
tions and homogenous boundary conditions.

2.2. Example 1: The wave equation. Consider the initial-boundary-value
problem in the half-plane R

2
+ for the 2D wave equation:

utt = ux1x1
+ ux2x2 for x1 > 0,(2.9a)

ut + aux1 + bux2 = 0 for x1 = 0,(2.9b)

where a and b are real constants. As is known, the boundary conditions (2.9b) satisfy
the uniform Lopatinski condition in the half-strip

|b| < 1, a < 0.(2.10)

Problem (2.9) is easily reduced in the following problem for a symmetric hyper-
bolic system for the vector U = (u1, u2, u3) = (ut, ux1

, ux2
):

Ut + A1Ux1 + A2Ux2 = 0 for x1 > 0,(2.11a)

MU = 0 for x1 = 0,(2.11b)

with

A1 =

⎛
⎝ 0 −1 0

−1 0 0
0 0 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 −1

0 0 0
−1 0 0

⎞
⎠ , M =

(
1 a b

)
.

In terms of the components of the vector U the trivial relation ux1x2 = ux2x1 satisfied
by classical solutions of (2.9) reads:

div Ψ(U) = 0, Ψ = (u3,−u2).(2.12)

Let us now forget about the connection between problems (2.9) and (2.11) (it is only
important that for (2.11) the uniform Lopatinski condition is also given by (2.10)).
Then (2.12) should be considered as a divergent constraint for the initial data for
(2.11). Indeed, one can easily show that if (2.12) is satisfied initially, it holds for
solutions of (2.11a) for all t > 0.

We now prove that (2.11) has a strictly dissipative 0-symmetrizer which can be
taken in the form S = {P,R}, with

P =

⎛
⎝ p1 p2 p3

p2 p1 0
p3 0 p1

⎞
⎠ , R =

⎛
⎝ 0

−p3

p2

⎞
⎠ , pi ∈ R,

and the parameter domain D (see Definition 2.1 and Remark 2.2) coincides with the
the domain of fulfillment of the uniform Lopatinski condition, (2.10). Indeed, applying
S to (2.11), (2.12) leads to the system

PUt + PA1Ux1 + PA2Ux2 + Rdiv Ψ = A0Ut + A1Ux1 + A2Ux2 = 0,(2.13)
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where A0 = P > 0 if p1 > 0 and p2
1 − p2

2 − p2
3 > 0. Also,

A1 =

⎛
⎝ −p2 −p1 0

−p1 −p2 −p3

0 −p3 p2

⎞
⎠ , A2 =

⎛
⎝ −p3 0 −p1

0 p3 −p2

−p1 −p2 −p3

⎞
⎠ .

Note that A0 = T ∗{I2 ⊗H}T (A0 > 0 if H > 0),

A1 = T ∗
{(

0 1
1 0

)
⊗H

}
T , A2 = T ∗

{(
1 0
0 −1

)
⊗H

}
T ,

T =
1√
2

⎛
⎜⎜⎝

1 0 −1
0 −1 0
0 −1 0
1 0 1

⎞
⎟⎟⎠ , H =

(
p1 − p3 −p2

−p2 p1 + p3

)
.

Omitting calculations, one has

−(A1U,U)|x1=0 = − ({S∗H + HS}V2,V2) |x1=0,(2.14)

where

V = T U =

(
V1

V2

)
, V1|x1=0 = SV2|x1=0, S =

⎛
⎝ 2a

1 − b

b + 1

b− 1
1 0

⎞
⎠ .

All the eigenvalues of the matrix S lie in the left half-plane (�λi(S) < 0), provided
that the uniform Lopatinski condition (2.10) holds. In this case the Lyapunov matrix
equation [5]

S∗H + HS = −G(2.15)

has a unique solution H for any symmetric matrix G, and if G > 0, then H = H∗ > 0.
Assuming that G = G∗ > 0 and taking into account the relation V = T U and the
boundary conditions V1|x1=0 = SV2|x1=0, we have

−(A1U,U)|x1=0 = (GV2,V2) |x1=0 ≥ δ|U|x1=0|2,

where δ > 0 is a constant depending on the norms of the matrices G, S, and T . Thus,
S is the strictly dissipative 0-symmetrizer.

Remark 2.3. The constants p1, p2, and p3 are found explicitly from (2.15) through
the elements of the matrix G = {gij}i,j=1,2. In particular,

p2 = −g22
1 − b

2(1 + b)
< 0

(g22 > 0 since G > 0). The condition p2 �= 0 and the inequality p2
1−p2

2−p2
3 > 0 imply

that detA1 �= 0, i.e., the boundary x1 = 0 is noncharacteristic for system (2.13). This
could seem strange because for system (2.11a) the boundary is characteristic, but
systems (2.11a) and (2.13) are equivalent (since detP �= 0). This is, however, quite
natural because we should take into account the divergent constraint (2.12). Indeed,
with condition (2.12) problem (2.11) has not a so-called loss of control on derivatives
in the normal direction. Namely, the x1-derivative of the “characteristic part” u3

of U is estimated from (2.12). That is, problem (2.11) being formally a hyperbolic
problem with characteristic boundary has the features of noncharacteristic problems.
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Remark 2.4. The symmetrization of the multidimensional wave equation [8, 10]
(n ≥ 3) with strictly dissipative boundary conditions can be formalized in terms of
the construction of a strictly dissipative 0-symmetrizer as well. In particular, for the
case n = 3 the matrix P has the form

P =

⎛
⎜⎜⎝

p1 p2 p3 p4

p2 p1 0 0
p3 0 p1 0
p4 0 0 p1

⎞
⎟⎟⎠ , pi ∈ R, p2

1 − p2
2 − p2

3 − p2
4 > 0.

We refer also to [13] where such a 0-symmetrizer for the 3D wave equation is used for
constructing a strictly dissipative 2-symmetrizer for relativistic gas dynamical shock
waves. For simplicity, in Examples 3 and 4 below we consider the 2D case for shock
waves in gas dynamics and MHD, and the structure of 2-symmetrizers for them is
based on a symmetrization of the 2D wave equation which is different from (2.13).
For the 3D case for gas dynamical and MHD shock waves we refer to [8, 10, 14] (see
also further discussion in the end of section 2).

2.3. Example 2: Compressible current-vortex sheets. For tangential dis-
continuities (current-vortex sheets) in MHD of ideal compressible fluid, the constant
coefficients linearized problem has the form of problem (2.2) (see [45]) with

Â±
0 = diag

(
1

ρ̂±(ĉ±)2
, ρ̂±, ρ̂±, ρ̂±, 1, 1, 1, 1

)
,

Â±
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

1 0 0 0 0 Ĥ±
2 Ĥ±

3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 Ĥ±
2 0 0 0 0 0 0

0 Ĥ±
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Â±
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̂±2
ρ̂±(ĉ±)2

0 1 0 0 0 0 0

0 ρ̂±v̂±2 0 0 −Ĥ±
2 0 0 0

1 0 ρ̂±v̂±2 0 0 0 Ĥ±
3 0

0 0 0 ρ̂±v̂±2 0 0 −Ĥ±
2 0

0 −Ĥ±
2 0 0 v̂±2 0 0 0

0 0 0 0 0 v̂±2 0 0

0 0 Ĥ3 −Ĥ±
2 0 0 v̂±2 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Â±
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̂±3
ρ̂±(ĉ±)2

0 0 1 0 0 0 0

0 ρ̂±v̂±3 0 0 −Ĥ±
3 0 0 0

0 0 ρ̂±v̂±3 0 0 −Ĥ±
3 0 0

1 0 0 ρ̂±v̂±3 0 Ĥ±
2 0 0

0 −Ĥ±
3 0 0 v̂±3 0 0 0

0 0 −Ĥ±
3 Ĥ±

2 0 v̂±3 0 0
0 0 0 0 0 0 v̂±3 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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U = (p,v,H, S), Û± = (p̂±, 0, v̂±2 , v̂±3 , 0, Ĥ±
2 , Ĥ±

3 , Ŝ±), and the boundary conditions

ft = v±1 − v̂±2 fx2 − v̂±3 fx3 , [q] = 0,(2.16a)

H±
1 = Ĥ±

2 fx2 + Ĥ±
3 fx3

(2.16b)

at x1 = 0. Here q = p + (Ĥ±,H) for x ∈ R
3
±, Ĥ± = (0, Ĥ±

2 , Ĥ±
3 ), p̂± = p(ρ̂±, Ŝ±),

(ĉ±)2 = pρ(ρ̂
±, Ŝ±) > 0, and p = p(ρ, S) is the state equation of gas, ρ̂± > 0 is the

unperturbed density for x1 ≷ 0, etc. (see [45]). As in [45], without loss of generality

we suppose that σ = 0 (see (2.1)), i.e., Â±
ν = Â±

1 and consider the homogenous
problem (f± = 0 and g = 0).

Remark 2.5. Since det Â±
1 = 0, the boundary x1 = 0 is characteristic, i.e.,

current-vortex sheet is a characteristic discontinuity. For shock waves the correct
number of boundary conditions is guaranteed by the Lax conditions (1.20). For the
general case, the number of boundary conditions should be equal to

1 +
∑
±

# positive eigenvalues of ±A±
ν counting multiplicity.

That is, for current-vortex sheets the correct number of boundary conditions is three.
At first sight, problem (2.2a), (2.16) is overdetermined. On the other hand, one can
show that for the original nonlinear problem the boundary conditions (H±,N) = 0
(see [45]) can be regarded as the restrictions only on the initial data. This was shown
in [46] for the case of incompressible MHD, but this proposition can be easily proved
for compressible current-vortex sheets as well. Of course, this fact can be analogously
(and easier) proved for the linear problem. That is, for problem (2.2a), (2.16) the
boundary conditions (2.16b) are just the restrictions on the initial data.

Unlike, for example, MHD shock waves or Alfvén discontinuities [13, 44], for
current-vortex sheets the Lopatinski determinant can be explicitly written out. At
the same time, it is reduced to an algebraic equation of the tenth degree depending
on seven dimensionless parameters and one more inner parameter determining the
wave vector (see [45]). Moreover, the squaring was applied under the reduction of
the Lopatinski determinant to this algebraic equation and, therefore, it can introduce
spurious roots. For all these reasons both the analytical analysis and the full numer-
ical study of the Lopatinski determinant are unacceptable for finding the Lopatinski
condition. Although, one can analytically show that the uniform Lopatinski condi-
tion is never satisfied for problem (2.2a), (2.16), i.e., planar current-vortex sheets can
be either violently unstable or weakly (neutrally) stable (see [45]). The alternative
energy method suggested in [45] has first enabled one to find sufficient conditions for
their weak stability.

The method in [45] can be now described in terms of the notation of dissipative
symmetrizer. In fact, in [45] the dissipative 0-symmetrizer S = {P+, P−,R+,R−}
was suggested for problem (2.2a), (2.16), where P± = P (Û±), R± = λ(Û±)R(Û±),

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
λH1

ρc2
λH2

ρc2
λH3

ρc2
0 0 0 0

λH1ρ 1 0 0 −ρλ 0 0 0
λH2ρ 0 1 0 0 −ρλ 0 0
λH3ρ 0 0 1 0 0 −ρλ 0

0 −λ 0 0 1 0 0 0
0 0 −λ 0 0 1 0 0
0 0 0 −λ 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, R = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
H1

H2

H3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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λ = λ(U) is a function, and the constants λ± = λ(Û±) are chosen below. Actually,
the application of {P,R} to the original nonlinear MHD system gives a new symmetric
form [45] of the MHD equations with the hyperbolicity condition, A0(U) = PA0 > 0,

ρλ2 <
1

1 + c2A/c
2
,(2.17)

where cA = |H|/√ρ (see [45]).
Note that for current sheets, i.e., for the case when [v̂] = 0 (v̂± = (0, v̂±2 , v̂±3 )) the

boundary conditions (2.16) are dissipative:

[
(Â1U,U)

]∣∣
x1=0

= 2q+[v1] = 2q+
(
[v̂′],∇x′f

)
= 0,

where v̂′± = (v̂±2 , v̂±3 ). That is, for current sheets one has the identical 0-symmetrizer

S = {I, 0, I, 0} (λ± = 0). Suppose now that [v̂] �= 0 and Ĥ+ × Ĥ− �= 0 (for the

particular case Ĥ+ × Ĥ− = 0 we refer to [45]). The matrices Â±
1 (cf. (2.5)) have the

form

Â±
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 −λ± 0 0 0

1 0 0 0 0 Ĥ±
2 Ĥ±

3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−λ± 0 0 0 0 −λ±Ĥ±
2 −λ±Ĥ±

3 0

0 Ĥ±
2 0 0 −λ±Ĥ±

2 0 0 0

0 Ĥ±
3 0 0 −λ±Ĥ±

3 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, by virtue of (2.16),

[
(Â1U,U)

]∣∣
x1=0

= 2q+[v1 − λH1] = 2q+
(
[v̂′ − λĤ′],∇x′f

)
,

where Ĥ′± = (Ĥ±
2 , Ĥ±

3 ).

The constants λ± are chosen so that [v̂′ − λĤ′] = 0:

λ± = − |[v̂]| sinϕ∓

|Ĥ±| sin(ϕ+ − ϕ−)
, cosϕ± =

([v̂], Ĥ±)

|[v̂]| |Ĥ±|
.

For such λ± the boundary conditions for system (2.5) are dissipative and, therefore,

S is the dissipative (but not strictly dissipative) 0-symmetrizer, provided that Â±
0 =

A0(Û
±) > 0. In view of (2.17), the last conditions for the chosen λ± read:

|[v̂]| < | sin(ϕ+ − ϕ−)|min

{
γ+

| sinϕ−| ,
γ−

| sinϕ+|

}
,(2.18)

where γ± = ĉ±ĉ±A/
(
(ĉ±)2 + (ĉ±A)2

)1/2
. Inequality (2.18) represents the sufficient con-

dition for the neutral stability of compressible current-vortex sheets. This condition
is of importance for various astrophysical applications such as, for example, the he-
liopause model [4]. As was shown in [45, 46], in the incompressibility limit inequality
(2.18) describes exactly half of the parameter domain of neutral stability.
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2.4. Example 3: Gas dynamical shock waves. The system of gas dynamics
is an unconstrained hyperbolic system, and gas dynamical shock waves are known
to be 1-shocks. Therefore, while constructing a strictly dissipative symmetrizer one
can suppose that P− = γI (see Remark 2.1) and, clearly, R±

j,α = 0. Keeping in

mind the observation about P−, without loss of generality the perturbation ahead
the planar 1-shock can be assumed to be equal to zero: U = 0 for x1 < 0. That
is, for gas dynamical shocks the constant coefficients linearized problem (see (2.2))
is formulated in the half-space R

n
+ and the strictly dissipative p-symmetrizer for it is

just a matrix: S = P+.
For the 2D case (n = 2) and in dimensionless values the constant coefficients

linearized problem for gas dynamical shock waves has the form of (2.2) with U|x1<0 =

0 and Â+
0 = diag(1,M2,M2, 1),

Â+
ν = Â+

1 =

⎛
⎜⎜⎝

1 1 0 0
1 M2 0 0
0 0 M2 0
0 0 0 1

⎞
⎟⎟⎠ , Â+

2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠

(without loss of generality σ = 0, f± = 0, and g = 0). Here M = v̂+
1 /ĉ+ is the

Mach number behind the shock (in view of the Lax shock conditions, M < 1), Û± =

(p̂±, v̂±1 , 0, Ŝ±), (ĉ±)2 = (ρ2Eρ)ρ(ρ̂
±, Ŝ±) > 0, and E = E(ρ, S) is the state equation

of gas, etc. (see, e.g., [13]). The vector U = (p, v1, v2, S) is the vector of perturbations

in dimensionless values [13] and Â+
α = D(Û+)∗Aα(Û+)D(Û+), where D(Û+) is a

diagonal matrix reducing system (2.2a)|x1>0 to a dimensionless form.
The boundary conditions in a dimensionless form and after eliminating the func-

tion f(t, x2) read [13]:

v1 + b1p = 0, (v2)t = b2px2 , S = b3p,(2.19)

where

b1 =
a + 1

2M2
, b2 =

(a− 1)R

2M2
, b3 = 1 − a

M2
, a =

h−R + 1

h/M2 −R + 1
,

R = ρ̂+/ρ̂−, h = (2ES/(ρEρS))(ρ̂+, Ŝ+). As is known (see [13, 34] and references
therein), the boundary conditions (2.19) satisfy the uniform Lopatinski condition,
i.e., planar gas dynamical shock waves are uniformly stable if and only if

M2(R + 1) − 1

M2(R− 1) + 1
< a < 1.(2.20)

The energy method enabling one to deduce an a priori estimate with no loss of
derivatives for (2.2a), (2.19), provided that the uniform Lopatinski condition (2.20)
holds, was suggested by Blokhin [6]. We now formalize this method by writing out
a strictly dissipative 2-symmetrizer for this problem (for the 3D case we refer to [13]
and references therein). The construction of this symmetrizer is based on a certain
symmetrization of the wave equation for the pressure perturbation p implied by the
acoustics system:

∂̃2
t p− ∂̃2

1p− ∂̃2
2p = 0,(2.21)
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where

∂̃t =
M

b2
∂t, ∂̃1 = ∂1 −

M2

b2
∂t, ∂̃2 =

1

b
∂2, b =

√
1 −M2 ∈ R+.

Using the boundary conditions (2.19) and the acoustics system itself, one can obtain
the following boundary condition for (2.21):

M2(1 + b1)ptt − b2ptx1 + M2b2px2x2 = 0, x1 = 0.(2.22)

Problem (2.21), (2.22) is “symmetrized” as follows (see [13] for details):

B0Yt + B1Yx1 + B2Yx2 = 0 for x1 > 0,(2.23)

MY = 0 for x1 = 0,(2.24)

where

Y =

⎛
⎝ Y1

Y2

Y3

⎞
⎠ , Y1 = ∂̃t

⎛
⎝ ∂̃tp

∂̃1p

∂̃2p

⎞
⎠ , Yi = ∂̃i−1

⎛
⎝ ∂̃tp

∂̃1p

∂̃2p

⎞
⎠ , i = 2, 3,

B0 =
M

b2
T ∗

{(
1 −M

−M 1

)
⊗H

}
T , B1 = T ∗

{(
0 1
1 0

)
⊗H

}
T ,

B2 =
1

b
T ∗

{(
1 0
0 −1

)
⊗H

}
T , T =

1√
2

⎛
⎜⎜⎝

1 0 −1
0 −1 0
0 −1 0
1 0 1

⎞
⎟⎟⎠⊗I3,

H =

(
P1 − P3 −P2 − P4

−P2 + P4 P1 + P3

)
, M =

(
M1 M2 M3

)
,

M1 =

⎛
⎝ 1 2 0

0 0 0
0 1 0

⎞
⎠ , M2 =

⎛
⎝ −2 −1 0

0 0 −1
0 −Mb1 0

⎞
⎠ , M3 =

⎛
⎝ 0 0 −1

0 1 0

0 0 −b0

⎞
⎠ ,

Pk (k = 1, 3) are arbitrary symmetric matrices of order 3, P4 is an arbitrary antisym-
metric matrix of order 3, and b0 = Mb1 + (M3b2/b

2).
Referring for detailed arguments to [13], one gets (cf. (2.14))

−(B1Y,Y)|x1=0 = − ({S∗H + HS}V2,V2) |x1=0,

where

V = T Y =

(
V1

V2

)
, V1|x1=0 = SV2|x1=0, S =

(
S1 −S2

I3 0

)
,

S1 = 2(M1 −M3)
−1M2, S2 = (M1 −M3)

−1(M1 + M3).

One can show that all the eigenvalues of the matrix S lie strictly in the left half-plane
(�λi(S) < 0, i = 1, 6) if and only if the uniform Lopatinski condition (2.20) holds. In
this case the Lyapunov matrix equation in the form of (2.15) has the unique solution
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H = H∗ > 0 for any symmetric and positive definite matrix G. Moreover, since
H > 0, the matrix B0 > 0. The assumption G > 0 yields

−(B1Y,Y)|x1=0 = (GV2,V2) |x1=0 ≥ C1|X+|2,

where

X = (ptt, ptx1 , ptx2 , px1x1 , px1x2 , px2x2), X+ = X|x1=0, Y = KX,

K is a 9 × 6 matrix which can be explicitly written out, and C1 = C1(G) > 0 is
a constant depending on the norm of the matrix G (as well as on the norms of the
matrices S, T , and K).

In fact, we have constructed the strictly dissipative 1-symmetrizer for the sub-
problem, (2.21), (2.22), for the vector (pt, px1

, px2
). We are now ready to describe

the strictly dissipative 2-symmetrizer for the whole problem, (2.2a), (2.19). It has the
form

S = P+ = I24 + N ∗K∗B0KN
(
I6 ⊗ (Â+

0 )−1
)
,

where N is the projector of W = W2 = (Utt,Utx1 , . . . ,Ux2x2) on X, i.e., X = NW.

It is clear that Â+
0 = P+(I6⊗Â+

0 ) > 0. Indeed, (Â+
0 W,W) = ((I6⊗Â+

0 )W,W)+
(B0Y,Y) > 0 for all W �= 0. Concerning condition (2.8), one has

−(Â+
1 W,W)|x1=0 = −((I6 ⊗ Â+

1 )W,W)|x1=0 − (B1Y,Y)|x1=0.

Using the boundary conditions (2.19) and the acoustics system it is not difficult to
show that W|x1=0 = BX|x1=0, where B is a 24 × 6 matrix with elements depending

on the coefficients of (2.19) and the matrices Â+
α . Therefore, there exists a positive

constant C2 such that

−((I6 ⊗ Â+
1 )W,W)|x1=0 ≥ −C2|X+|2.

Analogous arguments show that |X+|2 ≥ C3|W+|2 with a constant C3 > 0. On the
other hand, by an appropriate choice of the matrix G (i.e., the choice of matrices Pi)
one can achieve that C1 − C2 > 0. Hence,

−(Â+
1 W,W)|x1=0 ≥ (C1 − C2)|X+|2 ≥ δ|W+|2,

where δ = (C1 −C2)C3 > 0. Thus, S is indeed the strictly dissipative 2-symmetrizer.

2.5. Example 4: Fast MHD shock waves. As gas dynamical shock waves,
fast MHD shock waves are also 1-shocks (see, e.g., [13]). That is, the constant coef-
ficient linearized problem for fast MHD shocks in 2D (for 3D see [14]) and in dimen-
sionless values has the form of the problem for gas dynamical shock waves formulated
above, with Â+

0 = diag(1,M2,M2, 1, 1, 1),

Â+
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
1 M2 0 0 h2 0
0 0 M2 0 −h1 0
0 0 0 1 0 0
0 h2 −h1 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Â+
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 −h2 0 0
1 0 0 h1 0 0
0 −h2 h1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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Û± = (p̂±, v̂±1 , v̂±2 , Ĥ±
1 , Ĥ±

2 , Ŝ±), v̂+
2 = 0, hi = Ĥ+

i /(ĉ
√
ρ̂), U = (p, v1, v2, H1, H2, S),

etc. (see [12, 13]). The boundary conditions read

v1 + b1p = q1fx2
, ft = b2p + q2fx2

, v2 = b3fx2
+ q3p,

H2 = h2b0ft − h2v1 + h1v2, H1 = h2b0fx2
, S = b4p + q4fx2

,
(2.25)

where the coefficients bi are explicitly written out in [12, 13] for the case of a polytropic
gas and a weak magnetic field, q =

√
h2

1 + h2
2 � 1 (for the general case, q ∈ (0,+∞),

see [44]), the coefficients qi = O(q2) for q � 1, and b0 = 1 − (Ĥ−
2 /Ĥ+

2 ) ∈ (0, 1) (for

parallel shocks, Ĥ±
2 = 0, b0 := 0).

The energy method suggested in [12] is based on the fact that the magnetoacous-
tics system implies the wave equation with an additional “magnetic” term:

∂̃2
t p− ∂̃2

1p− ∂̃2
2p +

q

b2
�Q = 0(2.26)

(notations are the same as in (2.21)), where Q = (b,H), H = (H1, H2), and b =
(−h1/q, h2/q) (|b| = 1). Then, the counterpart of system (2.23) reads

B0Yt + B1Yx1 + B2Yx2 +
q

b2

⎛
⎝ P1

P2

P3

⎞
⎠�Q = 0 for x1 > 0,(2.27)

where Q = (∂̃tQ, ∂̃1Q, ∂̃2Q). Moreover, for the function p we can obtain a counterpart
of the boundary condition (2.22) (see [12, 14]) which implies (2.24) with the matrices
Mi being slightly different from the corresponding matrices in gas dynamics for the
case q � 1 (the norms of the differences are of order O(q2)).

The crucial role in deducing the a priori estimate [12] for (2.2a), (2.25) is played
by the important fact that the term⎛

⎝Y,

⎛
⎝ P1

P2

P3

⎞
⎠�Q

⎞
⎠ =

3∑
i=1

(Yi, Pi�Q)

can be represented in a divergent form,

3∑
i=1

(Yi, Pi�Q) = (R0W,W)t + (R1W,W)x1 + (R2W,W)x2 ,(2.28)

where W = W2, and the quadratic forms (RαW,W) are explicitly written out in
[12, 13] (if necessary, the symmetric matrices Rα of order 36 can be written out as
well). While obtaining representation (2.28) the divergent constraint divH = 0 and
the magnetoacoustics system itself were essentially used.

The strictly dissipative 2-symmetrizer for fast MHD shock waves has the form

S =
{
P+, {R+

1,α}|α|=2

}
,

with

P+ = I36 + N ∗K∗B0KN
(
I6 ⊗ (Â+

0 )−1
)

+ P+
0 , {R+

1,α}|α|=2 = {R1, . . . ,R6}.

Here N is the projector of W on X, the matrices K and B0 and the vector X are the
same as for gas dynamical shocks, the matrix P+

0 and the vectors Ri, which are of
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order O(q) for q � 1, can be explicitly written out by analyzing representation (2.28).
Moreover,

(Â+
0 W,W) = ((I6 ⊗ Â+

0 )W,W) + (B0Y,Y) +
2q

b2
(R0W,W),

−(Â+
1 W,W)|x1=0 = −

((
I6 ⊗ Â+

1 +
2q

b2
R0

)
W,W

) ∣∣∣∣∣
x1=0

−(B1Y,Y)|x1=0.

It is clear that for H > 0 and q � 1 the matrix Â+
0 > 0. For the case of a weak

magnetic field (q � 1) and a polytropic gas, one can show that all the eigenvalues of

the matrix S lie strictly in the left half-plane. That is, −(Â+
1 W,W)|x1=0 ≥ δ|W+|2,

where the constant δ > 0 for q � 1 (see [12, 13] for more details). Thus, S is indeed
the strictly dissipative 2-symmetrizer of (2.2a), (2.25) for the case of a weak magnetic
field and a polytropic gas. Concerning the case of a general equation of state, the
same is true if we require the fulfillment of (2.20) that is in fact the uniform Lopatinski
condition for fast MHD shocks for q � 1.

Remark 2.6. In principle, for the general case, q ∈ (0,+∞), we can try to find

the conditions for Û± guaranteeing the fulfillment of the requirements Â+
0 > 0 and

−B∗Â+
1 B > 0, where W+ = BX+. Then, S is the strictly dissipative 2-symmetrizer,

provided that these conditions hold. However, rather cumbersome calculations should
be unfortunately performed to find the mentioned conditions. At the same time, if
they are possible to be found at least numerically, for fixed parameters Û±, then it is
interesting to compare them with the uniform stability domain for fast MHD shock
waves. This domain was found in [44] by numerical testing of the uniform Lopatinski
condition with the help of an algorithm suggested for 1-shocks.

2.6. Further examples. For gas dynamical shock waves we have presented a
strictly dissipative 2-symmetrizer for the 2D case. For the 3D case the structure of
the 2-symmetrizer is different, but the process of construction of this symmetrizer is
also based on using a symmetrization of the wave equation. The same structure has
the strictly dissipative 2-symmetrizer for shock waves in relativistic gas dynamics (see
[13]) and in nonrelativistic radiation hydrodynamics [3]. For shock waves in relativistic
radiation hydrodynamics [15] the structure of the strictly dissipative 2-symmetrizer
is a little bit more complicated; however, it refers to a symmetrization of the wave
equation as well.

It is interesting to note that, for instance, the system of Landau’s equations of
superfluid [29] is a constrained hyperbolic system, but the relations ∇ × vs = 0 are
not used under the construction of the strictly dissipative 2-symmetrizer for shock
waves in this model (see [11] and references therein), i.e., R±

j,α = 0. Unfortunately,
there is not a general method to construct a (strictly) dissipative p-symmetrizer. For
most concrete examples p = 2 and they are based on using different symmetrizations
of the wave equation. So, Definition 2.1 was given for p ≥ 0, but we will privately
suppose that p = 0 or p = 1 or p = 2 (actually, we do not know examples with p ≥ 3).
Moreover, for the physical cases n = 2 and n = 3 (2D and 3D) the existence of a
strictly dissipative p-symmetrizer with p ≥ 3 implies a weaker local existence theorem
for the nonlinear problem (in the generic case, for a symmetrizer with p ≥ [n/2] + 2
one obtains a weaker nonlinear result, see section 4).

Observe that in [10] also a strictly dissipative 1-symmetrizer was in fact con-
structed for gas dynamical shock waves. But in this case the domain D (see Definition
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2.1) is only a subdomain of the whole domain of the uniform Lopatinski condition. Al-
though, it should be noted that for nonlinear analysis (see section 4) a 1-symmetrizer
has no advantages in comparison with a 2-symmetrizer.

3. The constant coefficients linear analysis. In the rest of the paper we con-
sider shock waves and only make certain remarks concerning the case of characteristic
discontinuities.

Assumption 3.1. For the boundary conditions (2.2b), rank B̂ = n, i.e., the

vectors [P0(Û)], [Pk(Û)], k = 2, n, are linearly independent.
It follows from Assumption 3.1 that n ≤ N and there is a nonsingular matrix

M = M(Û+, Û−) of order N such that

MB̂ =

(
In
0

)
.

Let

M =

(
MI

MII

)
,

where MI and MII are matrices of order n×N and (N −n)×N , respectively. Then
the boundary conditions (2.2b) can be divided into the two groups

F = MI
[
Ŝ−1ÂνU

]
+ MIg, x1 = 0,(3.1)

−MII
[
Ŝ−1ÂνU

]
= MIIg, x1 = 0.(3.2)

Note that by cross differentiation one can, in principle, eliminate the front f from
relations (3.1). Such a procedure results in first order boundary conditions (see, e.g.,
(2.19)).

Assumption 3.1 is quite natural because, as was proved in [37], it is fulfilled
for uniformly stable shock waves, i.e., when (2.2) satisfies the uniform Lopatinski
condition. Moreover, as was shown in [17], Assumption 3.1 is also fulfilled for weakly
stable shocks under some additional supposition. At the same time, for example,
for gas dynamical and MHD shock waves Assumption 3.1 is always satisfied if only
R = ρ̂+/ρ̂− �= 1.

Theorem 3.1. Suppose the Lax shock conditions (1.20) and all the assumptions
above are fulfilled. Suppose also that (2.2) has a strictly dissipative p-symmetrizer.
Then, the a priori estimate∑

±

{
|||U(t)|||Wp

2 (Rn
±) + ‖U±‖Wp

2 ([0,T ]×Rn−1)

}
+ ‖f‖Wp+1

2 ([0,T ]×Rn−1)

≤ C

{∑
±

{
‖f±‖Wp

2 ([0,T ]×Rn
±) + |||U0|||Wp

2 (Rn
±)

}

+‖g‖Wp
2 ([0,T ]×Rn−1) + ‖f0‖Wp+1

2 (Rn−1)

}(3.3)

holds for any t ∈ (0, T ). Here T is a positive constant, C = C(T ) is a positive constant
independent of the initial data and the source terms,

|||(·)(t)|||2Wk
2

:=

k∑
j=0

‖∂j
t (·)(t)‖2

Wk−j
2

.
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If (2.2) has a dissipative (but not strictly dissipative) p-symmetrizer, the following
weaker a priori estimate holds∑

±

{
|||U(t)|||W r

2 (Rn
±) + ‖U±‖W r−1

2 ([0,T ]×Rn−1)

}
+ ‖f‖W r

2 ([0,T ]×Rn−1)

≤ C

{∑
±

{
‖f±‖W r

2 ([0,T ]×Rn
±) + |||U0|||W r

2 (Rn
±)

}

+‖g‖W r+1
2 ([0,T ]×Rn−1) + ‖f0‖W r

2 (Rn−1)

}
,

(3.4)

where r = 1 for p = 0 and r = p for p ≥ 1.
Proof. We will not prove estimate (3.3) in detail since arguments to do this are

quite standard. By virtue of (2.6), (2.8), it follows from (2.5) that

I1(t) +

∫ t

0

∫
Rn−1

(
|W+|2 + |W−|2

)
dx′dt

≤ C1

{
I1(0) + J(T ) +

∫ t

0

I1(s)ds

}
,

(3.5)

where

I1(t) =
∑
±

‖W(t)‖2
L2(Rn

±), J(T ) = ‖g‖2
Wp

2 ([0,T ]×Rn−1) +
∑
±

‖f±‖2
Wp

2 ([0,T ]×Rn
±).

Here and below Ci = Ci(Û
+, Û−,σ), i = 1, 2, 3, . . . , appearing under the analysis of

(2.2) are positive constants.
If p �= 0, we use the elementary inequality

I0(t) ≤ I0(0) +

∫ t

0

I(s)ds(3.6)

coming from the trivial identity

d

dt
I0(t) = 2

∑
±

∫
Rn

±

(Y,Yt) dt,

where I(t) = I0(t) + I1(t), Y = (W0, . . . ,Wp−1), p ≥ 1,

I0(t) =
∑
±

|||U(t)|||2
Wp−1

2 (Rn
±)
.

Inequalities (3.5) and (3.6) yield

I(t) ≤ C1

{
I(0) + J(T ) +

∫ t

0

I(s)ds

}
.

Applying Gronwall’s lemma, one gets

I(t) ≤ C2(I(0) + J(T )), 0 ≤ t ≤ T.(3.7)

From trace’s property one has∫ t

0

∫
Rn−1

(
|Y+|2 + |Y−|2

)
dx′dt ≤

∫ t

0

I(s)ds.(3.8)
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Adding up (3.5) and (3.8) and taking into account estimate (3.7), we obtain∑
±

‖U±‖2
Wp

2 ([0,T ]×Rn−1) ≤ C3(I(0) + J(T )).(3.9)

Using (3.9), the boundary conditions (3.1), and an elementary inequality for f like
that in (3.6) for U, we estimate the front perturbation f :

‖f‖2
Wp+1

2 ([0,T ]×Rn−1)
≤ C4

{
I(0) + J(T ) + ‖f0‖2

Wp+1
2 (Rn−1)

}
.(3.10)

Estimates (3.7), (3.9), and (3.10) imply the desired a priori estimate (3.3).
Let us now assume (2.2) has a dissipative (but not strictly dissipative) p-symmet-

rizer. If p = 0 we differentiate system (2.5) with respect to t and x′ and obtain a
symmetric hyperbolic system for the vector (Ut,Ux2 , . . . ,Uxn). Using this system
for the case p = 0 or system (2.5) for p ≥ 1 and taking into account (2.6) and (2.7),
we obtain the inequality

I1(t) +

∫ t

0

∫
Rn−1

(B̂G, Z̃)dx′dt ≤ C4

{
I1(0) + J(T ) +

∫ t

0

I1(s)ds

}
,(3.11)

where B̂ is a constant matrix, Z̃ = (Z+,Z−), Z = (∂tWr−1, ∂2Wr−1, . . . , ∂nWr−1)
(r = 1 for p = 0 and r = p for p ≥ 1). Other notations are the same as in (3.5), but
for the case of 0-symmetrizer W := W1, p = 1 in J , and the vector G is formed by
∂α
t,x′g (|α| = 1) and f±|x1=±0. While obtaining (3.11) we used the relations

Ux1 = −(Â±
ν )−1Â±

0 Ut −
n∑

k=2

(Â±
ν )−1Â±

k Uxk
+ (Â±

ν )−1f±, x ∈ R
n
±

(recall that we consider shock waves and, therefore, det Â±
ν �= 0).

To estimate the boundary integral in the left-hand side of inequality (3.11) we
carry out standard manipulations with derivatives. For example, with the terms like
u+
x2
g and u+

x2
h+ appearing in this integral we proceed as follows:∫

Rn−1

u+
x2
g dx′ = −

∫
Rn−1

u+gx2
dx′,∫

Rn−1

u+
x2
h+ dx′ = −

∫
Rn

+

(ux2h)x1 dx =

∫
Rn

+

(ux1hx2 − ux2hx1) dx,

where u = ∂αuj , h = ∂βfk, g = ∂γ
t,x′gk, |α| = |β| = r − 1, |γ| = r, and gk and fk are,

respectively, components of the vectors g and f+. Analogous standard arguments
were also applied in [45] to treat lower order terms in the boundary integral for
the variable coefficients linearized problem for current-vortex sheets. Observe that
while estimating integrals like

∫ t

0

∫
Rn−1 u

+
t h

+ dx′dt we should be more careful because
terms in the form ∂t{· · ·} do not disappear under the integration over the domain
[0, t]× (Rn

+∪R
n
−) (for corresponding simple arguments see [45]). As a result, omitting

details, from (3.11) we deduce estimate (3.4).
Remark 3.1. Using

Ut = −(Â±
0 )−1Â±

ν Ux1 −
n∑

k=2

(Â±
0 )−1Â±

k Uxk
+ (Â±

0 )−1f±, x ∈ R
n
±,
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one can reduce estimates (3.3) and (3.4) to those with the norms ‖(·)(t)‖ instead of
the norms |||(·)(t)||| .

Corollary 3.2. If the symmetric hyperbolic system (1.5) meets either the block
structure condition [1, 35] or the conditions of Métivier and Zumbrun [38] and problem
(2.2) for the case of Lax shocks has a strictly dissipative p-symmetrizer, then in the
parameter domain D the boundary conditions (2.2b) satisfy the uniform Lopatinski
condition.

Proof. First of all, following arguments like those used in [34] for strictly dissi-
pative boundary value problems, one can easily obtain an analogue of estimate (3.3)
when the exponentially weighted W s

2,η-norms (with s = p and s = p + 1) are used
instead of the usual Sobolev norms, where

‖ · ‖W s
2,η

:=
∑
|α|≤s

ηs−|α|‖e−ηt∂α(·)‖L2
.

For the case when system (1.5) satisfies the block structure condition [1, 35, 32], it
was proved in [32] (see also [37]) that such an estimate (with s = 0 and s = 1) holds
for problem (2.2) if and only if this problem meets the uniform Lopatinski condition.
This result was recently extended by Métivier and Zumbrun to the case of variable
multiplicities provided that some additional conditions [38] hold. It is clear that the
L2,η-estimate (with the W 1

2,η-norm for f) implies W s
2,η-estimates (see [37]). Hence,

the boundary conditions (2.2b) satisfy the uniform Lopatinski condition.
Remark 3.2. If the linear problem (2.2) meets the uniform Lopatinski condition

and the symmetric hyperbolic system (1.5) satisfies either the block structure condi-
tion [1, 35] or the conditions of Métivier and Zumbrun [38], then the solution to (2.2)
obeys an a priori L2-estimate [32, 37]. That is, if p > 0, the result of Theorem 3.1 ob-
tained for the linearized problem by the energy method is weaker than that in [32, 37]
obtained by Kreiss’ symmetrizer analysis in the sense that in estimate (3.3) we require
more regularity for U. However, if p < [n/2] + 2, for the original nonlinear problem
the energy method gives the same result (see Theorem 4.1) as the technique used in
[32, 37]. Since p < [n/2] + 2 for all the known concrete examples of p-symmetrizers,
we will suppose that this condition is satisfied.

Remark 3.3. In [45] the a priori estimates for the linearized problem for current-
vortex sheets were written out for the case of the homogenous problem (f± = 0 and
g = 0). For the case of the nonhomogenous problem (2.2a), (2.16) (with the source
term g in (2.16)), the a priori estimate

∑
±

{
|||U(t)|||

W̃ 1
2 (R3

±)
+ ‖V±‖L2([0,T ]×R2)

}
+ ‖f‖W 1

2 ([0,T ]×R2)

≤ C

{∑
±

{
‖f±‖W 1

2 ([0,T ]×R3
±) + |||U0|||W̃ 1

2 (R3
±)

}

+‖g‖W 2
2 ([0,T ]×R2) + ‖f0‖W 1

2 (Rn−1)

}

can be deduced, provided that the sufficient neutral stability condition (2.18) holds.
Here V (= (q, v1, H1), see [45]) is the “noncharacteristic part” of U,

|||U(t)|||2
W̃ s

2 (Rn
±)

= |||V(t)|||2W s
2 (Rn

±) +
∑
|α|≤s

‖(∂α
t,x′U)(t)‖2

L2(Rn
±).
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For the general case of characteristic discontinuities, if we require that in (3.1)

MI
[
Ŝ−1ÂνU

]
= M1V

+ + M2V
−(3.12)

with corresponding matrices Mi, i.e., the vector-function F can be expressed by the
“noncharacteristic parts” V± of the traces U±, then in the counterparts of estimates
(3.3) and (3.4) the W̃ s

2 (Rn
±)-norms are used instead of the W s

2 (Rn
±)-norms, and we

can control only the “noncharacteristic” traces V±. If assumption (3.12) does not
hold, we have weaker a priori estimates. For example, this is so for current-vortex
sheets if Ĥ+ × Ĥ− = 0. For this case, the a priori estimate indicates already the loss
of two derivatives from the front f (see [45]).

4. Local existence of shock-front solutions. The local existence theorem for
the nonlinear problem (1.17) has been first proved by Blokhin [7, 9] for uniformly sta-
ble gas dynamical shock waves by the direct energy method. Recall that the linearized
constant coefficients problem for them has a strictly dissipative 2-symmetrizer (see
section 2). The functional setting in the theorem from [7, 9] (see also [13]) is provided
by the usual Sobolev spaces W s

2 , where s ≥ 3. The analogous theorem, but in the
exponentially weighted Sobolev spaces W s

2,η, where s is large enough, was proved by
Majda [33] for Lax shocks by Kreiss’ symmetrizer technique [27] and using pseudo-
differential calculus, provided that the symmetric hyperbolic system satisfies the block
structure condition [1, 35, 32].

Recently, the theorem from [33] (see also [34]) was considerably improved by
Métivier in [37], where the nonlinear local existence theorem was formulated in the
form of Blokhin’s theorem from [7, 9, 13] (see below). Actually, the theorem proved
in [37] is valid for shock waves for which the linearized problem admits constructing
Kreiss’ symmetrizer. That is, the class of hyperbolic symmetrizable systems covered
by this theorem is wider than that of systems satisfying the block structure condi-
tion. Moreover, taking into account the recent result in [38] mentioned above, the
local existence theorem from [37] (see also [7, 9, 13]) takes place for the hyperbolic
symmetrizable systems satisfying either the block structure condition or Métivier and
Zumbrun’s conditions [38]. That is, for Lax shock waves for which the assumption of
Corollary 3.2 is fulfilled we have the following theorem (cf. [7, 9, 13, 37]).

Theorem 4.1. Let that the linearized constant coefficients problem (2.2) has a
strictly dissipative p-symmetrizer. Suppose the initial data (1.17c) satisfy the hyper-
bolicity condition A0 > 0 (for x ∈ R

n
±), the Lax shock conditions (1.20), and the

compatibility conditions (see [37]). Suppose also that (U0|x1>0,U0|x1<0, f0) ∈ D for
all x ∈ R

n
± (see Definition 2.1). Then, for all

(U0, f0) ∈
{
W s

2 (Rn
+) ∩W s

2 (Rn
−)

}
×W s+1

2 (Rn−1),

where s ≥ [n/2] + 2 , there is a sufficiently short time T > 0 such that (1.17) has a
unique solution

(U, f) ∈ Zs
T =

{
Xs([0, T ],Rn

+) ∩Xs([0, T ],Rn
−)

}
×W s+1

2 ([0, T ] × R
n−1),

where

Xk([0, T ],Rn
±) :=

k⋂
j=0

Cj([0, T ],W k−j
2 (Rn

±))

with the norm ‖ · ‖Xk
= max

t∈[0,T ]
|||(·)(t)|||Wk

2
.
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It seems that for most physical examples of hyperbolic symmetrizable systems
either the block structure condition or the “nonglancing” condition of Métivier and
Zumbrun [38] is satisfied. Moreover, we still do not know any concrete example of
a strictly dissipative p-symmetrizer for a hyperbolic system for which both of these
conditions are violated. Therefore, in view of Corollary 3.2, construction of a strictly
dissipative p-symmetrizer can be considered as an indirect test of the uniform Lopatin-
ski condition. That is, as soon as such a symmetrizer is found, we have Theorem 4.1.
In the light of this, there is now no practical sense for proving Theorem 4.1 directly
by the energy method (as was earlier done in [7, 9, 10] for gas dynamical shocks), i.e.,
without referring to [37, 38] and Corollary 3.2.

We connect further perspectives of the method of p-symmetrizers with “nonstan-
dard” problems, in particular, for characteristic discontinuities for which the structure
of the Lopatinski determinant cannot be analyzed for technical reasons (see discussion
in section 5). At the same time, to demonstrate how the energy method works for
Lax shock waves for the case of variable coefficients and for the original nonlinear
problem, we now outline the proof of Theorem 4.1. The main attention will be given
to the deduction of an a priori estimate for the variable coefficients linearized problem
(1.24), (1.17c). After that, to show the existence of solutions to (1.24), (1.17c) we
comment how to go back from the system for p-derivatives with strictly dissipative
boundary conditions to the original problem (1.24), (1.17c). At last, the proof of
the existence of solutions to the nonlinear problem (1.17) follows from a fixed-point
argument and we sketch it in the end of this section.

In the following we suppose that p < [n/2]+2 (see Remark 3.2). We just observe
that if we prove Theorem 4.1 by the energy method, then for the case p ≥ [n/2] + 2
we have to assume that s ≥ max{[n/2] + 2, p + 1}. We underline once more that we
do not know concrete examples of p-symmetrizers with p ≥ [n/2] + 2.

We first analyze the variable coefficients linear problem (1.24). We introduce the
norm of (u(t,x), ϕ(t,x′)) ∈ R

N × R:

N k
T (u, ϕ) :=

∑
±

{
‖u‖Xk([0,T ],Rn

±) + ‖u±‖Wk
2 ([0,T ]×Rn−1)

}
+ ‖ϕ‖Wk+1

2 ([0,T ]×Rn−1),

where k is a nonnegative integer number. Fix an integer s ≥ [n/2] + 2 and consider

(Û, f̂) ∈ Zs
T with a time T > 0. Assume that there is a constant M > 0 such that

N s
T (Û, f̂) ≤ M.(4.1)

Theorem 4.2. Given an integer m ≥ p, suppose that problem (1.24) with “frozen”
coefficients

(Û|x1>0, Û|x1<0, F̂) = (Û+, Û−,σ)

has a strictly dissipative p-symmetrizer (p < [n/2] + 2) and (Û, f̂) ∈ Zs
T , with s =

max{m, [n/2] + 2}. Suppose also that the Lax shock conditions (1.20) and inequality
(4.1) are fulfilled. Then, the following a priori estimate holds for the initial-boundary-
value problem (1.24), (1.17c):

Nm
T (U, f) ≤ C(T,M)

{∑
±

{
‖f±‖Wm

2 ([0,T ]×Rn
±) + |||U0|||Wm

2 (Rn
±)

}

+‖g‖Wm
2 ([0,T ]×Rn−1) + ‖f0‖Wm+1

2 (Rn−1)

}
.

(4.2)
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Here and below C = C(T,M), Ci = Ci(T,M), i = 1, 2, 3, . . ., are positive constants
independent of the data and depending on T and M .

Proof. The methods for deducing the a priori estimate (4.2) are standard and
based on the application of the Gagliardo–Nirenberg inequalities (see, e.g., [34])

‖∂αu‖L2p(Ω) ≤ ck‖u‖1−1/p
L∞(Ω)‖u‖

1/p

Wk
2 (Ω)

,
1

p
=

|α|
k
,(4.3)

‖∂αu‖Lp(Ω) ≤ ck‖u‖1−r
L2(Ω)‖u‖

r
Wk

2 (Ω),
|α|
k

< r < 1,
1

p
=

1

2
+

|α| − rk

dim Ω
,(4.4)

where ck > 0 is a constant, 2 < p < ∞. The domain Ω can be, for example, R
n, R

n
±,

[0, T ] × R
n
±, or [0, T ] × R

n−1 (in general, Ω is a Lipschitz domain).
Inequalities (4.3) and (4.4) imply a number of calculus inequalities (see, e.g.,

[47, 34]). In particular, using (4.3) and (4.4), one can obtain the inequality

‖uv‖Wk
2 (Ω) ≤ ck‖u‖W q

2 (Ω)‖v‖Wk
2 (Ω), q = max

{[n
2

]
+ 1, k

}
(4.5)

(here dim Ω = n). In Appendix B of [41] the following generalization of the last
inequality was proved:

|||(uv)(t)|||Wk
2 (Ω) ≤ ck|||u(t)|||W q

2 (Ω)|||v(t)|||Wk
2 (Ω),(4.6)

where Ω is a space domain (e.g., Ω = R
n
±). It is clear that the analogous inequality

holds when x1 is fixed instead of t:

〈〈〈uv(x1)〉〉〉k ≤ ck〈〈〈u(x1)〉〉〉q 〈〈〈v(x1)〉〉〉k,(4.7)

where

〈〈〈(·)(x1)〉〉〉k :=

k∑
j=0

‖∂j
1(·)(x1)‖2

Wk−j
2 ([0,T ]×Rn−1)

.

One can also get the more special inequality

‖(∂α1u1 · · · ∂αlul)(∂
β
t,x′v)(x1)‖L2([0,T ]×Rn−1)

≤ ck‖v(x1)‖Wk
2 ([0,T ]×Rn−1)

l∏
i=1

〈〈〈ui(x1)〉〉〉q,
(4.8)

where |α1|+ · · ·+ |αl|+ |β| = k. To prove (4.8) we should follow arguments analogous
to those from Appendix B of [41], and the proof is based mainly on the application
of (4.4).

Let us obtain the system satisfied by the vector Wβ = ∂β
t,x′W, with |β| ≤ m− p.

It follows from (1.24a) that

L(Û, F̂)(∂αi

∂β
t,x′U) = f±iβ if x ∈ R

n
±,(4.9)

where

f±iβ = ∂αi

∂β
t,x′f

± − [∂αi

∂β
t,x′ , L(Û, F̂)]U.
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Here and below we use the notation of commutator: [a, b]c := a(bc) − b(ac). From
systems (4.9) with i = 1, d we construct the system for Wβ (cf. (2.4), (2.5)):

L(Û, F̂)Wβ = F±
β , x ∈ R

n
± ,(4.10)

where

L = L(Û, F̂) = A0(Û, F̂)∂t +

n∑
j=1

Aj(Û, F̂)∂j , f̃±β = (f±1β , . . . , f
±
dβ),

F±
β = P (Û, F̂)f̃±β −

K∑
j=1

∑
|α|=p

Rj,α(Û, F̂)
[
∂α∂β

t,x′ , N̂
]
∂1Ψj(U),

the matrices P (Û, F̂) and the vectors Rj,α(Û, F̂) form the strictly dissipative p-
symmetrizer S if we “freeze” their coefficients, and the matrices Ai (i = 0, n) with
“frozen” coefficients are the same as in (2.5).

For system (4.10) with variable coefficients, the counterpart of condition (2.8) is

−
[
(A1(Û, F̂)Wβ ,Wβ)

]∣∣
x1=0

≥ δ
(
|W+

β |2 + |W−
β |2

)
− δ−1g2,(4.11)

where g2 is a sum of terms in the form

|Gk(Û
+, Û−, F̂)∂α

t,x′g|2, |Gl(Û
+, Û−, F̂)∂γf±|x1=±0|2,

|Gl0(Û
+, Û−, F̂)∂γU±|2, and |Gl0(Û

+, Û−, F̂)∂γ
t,x′F|2,

with

Gi(Û
+, Û−, F̂) = ∂α1 û+

i1
· · · ∂αj û+

ij
∂αj+1 û−

ij+1
· · · ∂αr û−

ir

×∂
αr+1

t,x′ F̂ir+1
· · · ∂αq

t,x′ F̂iqH(Û+, Û−, F̂),

|α1| + . . . + |αq| = i , 0 ≤ q ≤ 2N + n,

k + |α| ≤ m, l + |γ| ≤ m− 1, l0 + |γ| ≤ m, |γ| ≤ m− 1

(for constant coefficients, cf. (2.8), k = l = 0 and there are no lower order terms,

i.e., Gl0 ≡ 0). Here F̂ij is a component of the vector F̂ (F̂ij = f̂t or F̂ij = f̂xk
),

H(Û+, Û−, F̂) is a matrix which elements are determined by the elements of the
matrices A0, Aν , and Ak (k = 2, n) and their derivatives up to order m with respect
to U and F.

Since arguments below are standard we are quite brief in the rest of the proof.
In view of (4.11), using arguments as in (3.6), (3.8) and applying energy methods to
(4.10), we deduce the inequality

Itan(t) +

∫ t

0

Itr
tan(s)ds ≤ C1(T,M)

{
I(0) + J(t) +

∫ t

0

I(s)ds

}
,(4.12)
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where

Itan(t) =
∑
±

⎧⎨
⎩|||U(t)|||2Wp

2 (Rn
±) +

∑
|β|≤m−p

‖Wβ‖2
L2(Rn

±)

⎫⎬
⎭ ,

Itr
tan(t) =

∑
±

⎧⎨
⎩

p∑
j=0

|||∂j
1U

±(t)|||2
Wp−j

2 (Rn−1)
+

∑
|β|≤m−p

‖W±
β ‖2

L2(Rn−1)

⎫⎬
⎭ ,

∂j
1U

± := ∂j
1U|x1=±0, I(t) =

∑
±

|||U(t)|||2Wm
2 (Rn

±),

J(t) = ‖g‖2
L2([0,t]×Rn−1) +

∑
±

∑
|β|≤m−p

‖F±
β ‖2

L2([0,t]×Rn).

The commutator [∂αi

∂β
t,x′ , L(Û, F̂)]U is a sum of terms Gk(Û, F̂)∂αU, where Gk

are determined as Gi above (but not on the boundary), k + |α| ≤ m + 1, k ≥ 1, and
|α| ≥ 1. Since k ≥ 1 and |α| ≥ 1, applying (4.6) with k = m−1 and using elementary
inequalities like ∑

|α1|+...+|αl|≤k

‖∂α1v1 · · · ∂αlvl‖L2 ≤ const‖v1 · · · vl‖Wk
2
,

one estimates the commutator

∑
±

∥∥ [∂αi

∂β
t,x′ , L(Û, F̂)]U

∥∥2

L2([0,t]×Rn−1)
≤ C2(T,M)

∫ t

0

I(s)ds.

Then, estimating analogously other terms in F±
β , one gets

∑
±

∑
|β|≤m−p

‖F±
β ‖2

L2([0,t]×Rn−1) ≤ C3(T,M)

{∑
±

‖f±‖2
Wm

2 ([0,T ]×Rn
±) +

∫ t

0

I(s)ds

}
.

To estimate the L2-norm of g we use inequality (4.7) at x1 = ±0 and trace’s
property. As a result, one has

‖g‖2
L2([0,t]×Rn−1) ≤ C4(T,M)

{
‖g‖2

Wm
2 ([0,T ]×Rn−1)

+
∑
±

‖f±‖2
Wm

2 ([0,T ]×Rn
±) +

∫ t

0

(
I(s) + ‖F(s)‖2

Wm−1
2 (Rn−1)

)
ds

}
.

Expressing F by U± and g ((3.1) for variable coefficients is applied) and using trace’s
property, from (4.12) one obtains

Itan(t) +

∫ t

0

Itr
tan(s)ds ≤ C5(T,M)

{
I(0) + J1(T ) +

∫ t

0

I(s)ds

}
,(4.13)

where

J1(T ) = ‖g‖2
Wm

2 ([0,T ]×Rn−1) +
∑
±

‖f±‖2
Wm

2 ([0,T ]×Rn
±).
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Applying energy methods to systems for the vectors ∂αU with |α| ≤ m and
reasoning as above one can easily obtain the inequality

I(t) −
∫ t

0

Itr(s)ds ≤ C6(T,M)

{
I(0) + J1(T ) +

∫ t

0

I(s)ds

}
,(4.14)

where

Itr(t) =
∑
±

m∑
j=0

|||∂j
1U

±(t)|||2
Wm−j

2 (Rn−1)
.

To get an inequality for I(t) when “+” stands in (4.14) instead of “−”, we use the
great advantage that the boundary conditions are strictly dissipative and, therefore,
one has the positive integral in the left-hand side of inequality (4.13). We should now

estimate the “full trace”
∫ t

0
Itr(s)ds by

∫ t

0
Itr
tan(s)ds.

Using the equations

Ux1 |x1=±0 = A−1
ν (Û, F̂)

{
f± −A0(Û)Ut −

n∑
k=2

Ak(Û)Uxk

}∣∣∣∣∣
x1=±0

,

one has that ∂αU± with |α| = m is a sum of terms Gk(Û
±, F̂)∂β

t,x′U± and Gl(Û
±, F̂)

×∂γf±|x1=±0, where k + |β| ≤ m and l + |γ| ≤ m − 1. Applying to these terms
inequalities (4.8) and (4.7) (at x1 = ±0), respectively, one gets the desired estimate

∫ t

0

Itr(s)ds ≤ C7(T,M)

∫ t

0

Itr
tan(s)ds.(4.15)

Summing up (4.13) multiplied by 2C7 with (4.14) and using (4.15), we obtain

I(t) +

∫ t

0

Itr(s)ds ≤ C8(T,M)

{
I(0) + J1(T ) +

∫ t

0

I(s)ds

}
,(4.16)

where C8 = C6 + 2C5C7.
Throwing away the positive integral in the left-hand side of (4.16) and applying

Gronwall’s lemma yield

I(t) ≤ C9(T,M)
(
I(0) + J1(T )

)
, 0 ≤ t ≤ T.(4.17)

It follows from (4.16) and (4.17) that∑
±

‖U±‖2
Wm

2 ([0,T ]×Rn−1) ≤ C10(T,M)
(
I(0) + J1(T )

)
.(4.18)

At last, using the boundary conditions (3.1) (for variable coefficients) and applying
(4.5) with Ω = [0, T ] × R

n−1 and k = m, we get from (4.18) that

‖f‖2
Wm+1

2 ([0,T ]×Rn−1)
≤ C11(T,M)

{
I(0) + J1(T ) + ‖f0‖2

Wm+1
2 (Rn−1)

}
.(4.19)

Estimates (4.17)–(4.19) imply (4.2).
Remark 4.1. In [7, 9, 10], the estimate in the form of (4.2) was obtained for gas

dynamical shock waves by an accurate use of various Sobolev’s imbedding theorems.
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Unlike [7, 9, 10], the proof of Theorem 4.2 above relies on the Gagliardo–Nirenberg in-
equalities and is, therefore, closer to arguments of Metivier [37]. But, if Ω = [0, T ]×R

n
±

or Ω = [0, T ]×R
n−1 the constants in (4.3), (4.4) blow up as T → 0. This unpleasant

fact can prevent the proof of existence for the nonlinear problem. To overcome this
difficulty it was suggested in [37] to use some substitutes of the Gagliardo–Nirenberg
inequalities for which the constants are uniform with respect to T as T → 0 (we do
not want to go into details and just refer to [37]). Using such substitutes allows one
to prove some modifications of inequalities (4.5)–(4.8) which now include norms of
u(0) and v(0) (see [37]). Further arguments in the proof of Theorem 4.2 remain valid
(with little modification), and the constant C(T,M) in (4.2) is uniform with respect
to T as T → 0.

Consider the system

L̃(Û, F̂)Y + C(Û, F̂)Y = f̃±p−1,(4.20a)

L(Û, F̂)W = F±, x ∈ R
n
±,(4.20b)

where Y = (U,W1, . . . ,Wp−1), system (4.20a) is formed by (1.24a) and systems
obtained by the differentiation of (1.24a) with respect to t and x; the matrix C

can be explicitly written out, f̃±p−1 = (∂α1

f±, . . . , ∂αd0
f±), d0 = Cp−1

n+p−1, etc. (see
section 2); system (4.20b) coincides with (4.10) for |β| = 0. We supplement system
(4.20) with the boundary conditions (1.24b). All other boundary conditions follow
from (1.24b) and system (4.20) itself at x1 = 0.

System (4.20a) is equivalently rewritten as

A0(Û)Yt ∓ Yx1 +

n∑
k=2

Ak(Û)Yxk
+ C±(Û, F̂)W = f̃±p−1, x ∈ R

n
±,(4.21)

where C±W = CY+(Aν±I)Yx1 . The boundary matrix for system (4.21), (4.20b) is
diag(−I, Aν) for x1 > 0 and diag(I, Aν) for x1 < 0. Clearly, the boundary conditions
for system (4.21), (4.20b) are strictly dissipative (see (4.11) for |β| = 0).

Thus, system (4.21), (4.20b), that is equivalent to (4.20), has strictly dissipative
boundary conditions. The initial-boundary-value problem for system (4.21), (4.20b)
differs from one studied in Appendix A of [43] only by the presence of the unknown
function f in the boundary conditions. The compatibility conditions for (1.24) can
be written by analogy with those for standard boundary conditions in [40, 43]. The
existence of a smooth solution (U,W1, . . . ,Wp−1,W) ∈ Wm−p

2 to the problem for
system (4.21), (4.20b) is proved exactly in the same manner as in Appendix A of [43]
for linear hyperbolic problems with strictly dissipative boundary conditions. More-
over, the component U of this solution satisfies the original problem (1.24). Note also
that in [10] the existence of smooth solutions to the linearized problem for gas dynam-
ical shock waves was proved by approximation by grid functions. Such an approach
suggested by Godunov [25] for linear hyperbolic problems with strictly dissipative
boundary conditions and applied by Blokhin [10] to gas dynamical shock waves can
also be used for general Lax shocks under consideration. So, we have the following
existence theorem.
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Theorem 4.3. Let that all the assumptions of Theorem 4.2 are satisfied. Then,
for all the data

U0 ∈ Wm
2 (Rn

+) ∩Wm
2 (Rn

−), f0 ∈ Wm+1
2 (Rn−1),

f± ∈ Wm
2 ([0, T ] × R

n
±) , g ∈ Wm

2 ([0, T ] × R
n−1)

satisfying the compatibility conditions up to order m − 1, the initial-boundary-value
problem (1.24), (1.17c) has a unique solution (U, f) ∈ Zm

T that obeys the a priori
estimate (4.2).

Sketch of the proof of Theorem 4.1. The proof follows from a fixed-point argument
and we are quite brief here. For a time T > 0, a constant M > 0, and an integer
s ≥ [n/2] + 2, we define

K =
{

(Û, f̂) ∈ Zs
T

∣∣ N s
T (Û, f̂) ≤ M, Û(0,x) = U0(x), f̂(0,x′) = f0(x

′) ,

(U0, f0) ∈
{⋂

± W s
2 (Rn

±)
}
×W s+1

2 (Rn−1) is compatible to order s− 1
}
.

We do not specify here the compatibility conditions and just refer to [37].

Consider now the mapping Λ : (Û, f̂) → (U, f), where (U, f) satisfies the initial-
boundary-value problem (1.24), (1.17c) with f± ≡ 0 and

g =
[
P1(Û)

]
−

[
S−1(Û)Aν(Û, F̂)Û

]
.

Actually, with such a choice of g the linear conditions in (1.24b) are Newton’s approxi-
mation of the nonlinear boundary conditions (1.17b) (see discussion in [34]). Theorem
4.3 guarantees the existence of (U, f) ∈ Zs

T . Moreover, it follows from estimate (4.2)
that Λ(K) ⊂ K for appropriate choices of T and M (see Remark 4.1).

Consider (Ûi, f̂ i) ∈ K and let (U, f) = Λ(Ûi, f̂ i), i = 1, 2. For the differences
U1 − U2 and f1 − f2 we obtain problem (1.24) with the trivial initial data, the

coefficients (Û, f̂) = (Û1, f̂1),

f± =
(
L(Û2, F̂2) − L(Û1, F̂1)

)
U2, x ∈ R

n
±,

and a corresponding g (it can be easily written down as well). Applying estimate
(4.2) with m = s − 1 to this problem and using the mean-value theorem for f± and
g, one gets

N s−1
T (U1 − U2, f1 − f2) ≤ δN s−1

T (Û1 − Û2, f̂1 − f̂2),

where the positive constant δ = δ(T,M) < 1 for T sufficiently small (we do not
describe in detail the choice of T and M and just refer to standard arguments, for
example, in [34] for the Cauchy problem or in [41, 42] for initial-boundary-value
problems).

That is, the mapping Λ is a contraction in the low norm N s−1
T . Hence, there

exists a unique fixed point (U, f) = (Û, f̂) ∈ K which solves (1.17).

5. Concluding remarks. By introducing the notations of dissipative and strict-
ly dissipative p-symmetrizers we have formalized the energy method applied earlier
to strong discontinuities for concrete hyperbolic systems of conservation laws. We
have proved that if the constant coefficients linearized problem for Lax shocks has
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a strictly dissipative p-symmetrizer, then under natural assumptions this implies the
local in time existence of shock-front solutions of the original nonlinear system. This
result recovers Blokhin’s local existence theorem for gas dynamical shock waves [7, 9]
and enables one to conclude the local existence of shock-front solutions for various
concrete models (MHD [12], radiation hydrodynamics [3, 15], Landau’s equations
of superfluid [11], etc.) for which a priori estimates with no loss of derivatives for
constant coefficients linearized problems were earlier deduced by the energy method.

It seems that the result of Theorem 4.1 could be extended, under appropriate as-
sumptions, to the case of characteristic discontinuities. Note, however, that we do not
know any concrete example of a characteristic discontinuity for which one can con-
struct a strictly dissipative p-symmetrizer. Evidently, this is because all the known
characteristic discontinuities (vortex sheets, current-vortex sheets, Alfvén discontinu-
ities, etc.) can be only neutrally stable, i.e., the uniform Lopatinski condition is never
satisfied for them.

With regard to the case where the loss of derivatives phenomenon takes place,
i.e., when we are able to construct only a dissipative (but not strictly dissipative) p-
symmetrizer, a theorem for the variable coefficients linearized problem like Theorem
4.3 could be proved both for Lax shocks and characteristic discontinuities. In the
generic case, for characteristic discontinuities the functional setting is provided by the
anisotropic weighted Sobolev spaces Hs

∗ (see [42] and references therein). Concerning
the proof of a local existence theorem, it seems that the only way to overcome difficul-
ties connected with the loss of derivatives phenomenon is the use of the Nash–Moser
method (see discussion in Remark 1.2). Note that the existence of a dissipative (but
not strictly dissipative) p-symmetrizer implies the fulfillment of the (weak) Lopatinski
condition, i.e., the weak stability of a corresponding strong discontinuity. In partic-
ular, the existence of a dissipative p-symmetrizer for a planar Lax shock implies the
weak stability of this shock wave and, in view of the recent result of Coulombel and
Secchi [20] (see Remark 1.2), the nonlinear existence of nonplanar shock waves that
are close to the planar shock under consideration.

Unfortunately, there is not a general procedure to construct a p-symmetrizer.
At the same time, if it was somehow constructed, we do not need to examine the
Lopatinski condition, which is often untestable analytically (numerical testing is usu-
ally not so simple either). The requirements for a set S to be a (strictly) dissipative
p-symmetrizer suggest sufficient or, sometimes, necessary and sufficient conditions
for the fulfillment of the (uniform) Lopatinski condition. In this connection, the
best example for illustration is the construction of the dissipative 0-symmetrizer for
current-vortex sheets [45] that first enabled the finding of wide sufficient conditions
for their neutral stability (i.e., sufficient conditions of the macroscopic stability of the
heliopause [4]).

For Lax shock waves, the construction of a strictly dissipative p-symmetrizer can
be interpreted as an indirect test of the uniform Lopatinski condition and, referring
then to [37, 38], we have at once the local existence theorem for the nonlinear problem.
However, to construct Kreiss’ symmetrizer for the case of characteristic discontinuities
it is necessary to know not only that the Lopatinski condition is satisfied but also how
it is satisfied, i.e., to know a detailed structure of the Lopatinski determinant (see
[19]). For example, for current-vortex sheets [45] we know sufficient conditions for the
fulfillment of the Lopatinski condition, but the structure of the Lopatinski determinant
cannot be analyzed because of insuperable technical difficulties. That is, the only way
to achieve a nonlinear result is to follow the energy method in the variable coefficients
and nonlinear analysis as well. In the light of this, we think that future perspectives of
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the method of p-symmetrizers are connected with “nonstandard” problems for which
either Kreiss’ symmetrizer technique does not work for technical reasons or the general
theory is still not developed (as, for example, for nonhyperbolic problems appearing
for incompressible fluids; see [46]).
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SURFACTANT SPREADING ON THIN VISCOUS FILMS:
NONNEGATIVE SOLUTIONS OF A COUPLED DEGENERATE

SYSTEM∗
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Abstract. We consider the Navier–Stokes system for an incompressible fluid coupled with a
convection-diffusion equation for surfactant molecules on the free surface. The lubrication approx-
imation leads to a coupled system of parabolic equations, consisting of a degenerate fourth-order
equation for the film height and a second-order equation for the surfactant concentration. A proof
based on energy estimates shows the existence of global weak solutions which in addition fulfill an
integral inequality (entropy condition) which ensures positivity properties for the solution.

Key words. partial differential equations, degenerate parabolic equation, thin liquid film,
surfactant spreading, free surface, fluid interface.

AMS subject classifications. 35K55, 35K65, 35K35, 76A20, 76D08

DOI. 10.1137/040617017

1. Introduction. The aim of this paper is to prove the existence of nonnegative,
weak solutions of the following system of coupled nonlinear, degenerate parabolic
partial differential equations

ht +

(
1

3
h3 hxxx +

1

2
h2 σ(Γ)x

)
x

= 0,(1.1)

Γt +

(
1

2
h2 Γhxxx + hΓσ(Γ)x

)
x

= D Γxx(1.2)

with suitable initial and boundary conditions. The above system appears in the
lubrication theory for thin films on which surfactant molecules diffuse (see [BG88],
[DeG94], [GG90], [JG92], [MT99], [WJ01]). In (1.1)–(1.2) the function h describes
the height of the film and Γ is the concentration of the surfactants. The monotone
decreasing function σ models that the surfactant molecules lower the surface ten-
sion. The first equation follows from mass conservation for the fluid and the term in
brackets is the total horizontal velocity. The second equation is a convection-diffusion
equation describing mass balance for the surfactants. The term in brackets in (1.2)
is the horizontal velocity on top of the film times Γ and hence this term accounts
for transport of Γ induced by the velocity field. We will discuss these issues in more
detail in section 2.

The analysis for (1.1)–(1.2) is difficult due to the fact that the system degenerates
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as h tends to zero. Equation (1.1) with σ = constant is the thin film equation

ht +

(
1

3
h3 hxxx

)
x

= 0(1.3)

which has been studied by many authors (see [BF90], [B96], [BBD95], [BMS99],
[BP96], [DG01], [DGG98], [EG96], [G03], [O98] and the references therein). Due
to the fact that the equation is of fourth order and since no maximum principle is
valid, it is difficult to analyze the thin film equation. For example, it is not clear how
to show nonnegativity of solutions. For the thin film equation (1.3) a priori estimates
follow from the identity

d

dt

∫
Ω

1

2
h2
x +

∫
Ω

1

3
h3 h2

xxx = 0(1.4)

which holds under appropriate boundary conditions. But also further integral esti-
mates, of which

d

dt

∫
Ω

G(h) +
1

3

∫
Ω

hh2
xx = 0(1.5)

with G′′(h) = h−2 is the easiest example, hold and give further a priori estimates
(see [BF90], [BBD95], [BP96], [DGG98] for details). By now many deep results such
as nonnegativity of solutions, finite speed of propagation, results on the long time
behavior of solutions, waiting time behavior and regularity results have been shown
by using global and local versions of the above-mentioned a priori estimates (see
[BF90], [BBD95], [B96], [DGG98]). The mathematical analysis of the system (1.1)–
(1.2) is even more involved. Renardy ([R1-96], [R2-96], [R97]) studied this system and
variants of it. He showed local existence results and studied shock profiles in certain
singular perturbed variants of (1.1)–(1.2). Barrett, Garcke and Nürnberg [BGN03]
studied and analyzed a finite element method for (1.1)–(1.2) and they present several
numerical simulations showing an extreme thinning of the film due to convection
resulting from surface tension gradients. We also refer to Grün, Lenz and Rumpf
[GLR02] for numerical simulations based on a finite volume method.

In this paper we will show global existence of weak solutions to (1.1)–(1.2). Fun-
damental for our approach is a proper generalization of the energy identity (1.4) to the
case of surfactants. This is not straightforward and, therefore, we will reconsider the
derivation for (1.1)–(1.2) from the full free boundary problem for the Navier–Stokes
equations. In particular we will derive an energy inequality for the full problem and
taking the scaling of the lubrication approximation into account we can derive an en-
ergy estimate for (1.1)–(1.2). This part of the paper is formal and will be presented in
section 2. The formally derived energy estimates will then be used in sections 3 and 4
to derive rigorous a priori estimates which are basic ingredients of the existence theory
for (1.1)–(1.2). Generalization of the integral identities (“entropy” identities) for the
thin film equation in general do not seem to hold for (1.1)–(1.2). But in section 4 we
will show that at least one of the “entropy” estimates still can be generalized to (1.1)–
(1.2) and this will allow us to show that solutions to positive initial data can only
become zero on a set of measure zero. This shows that the influence of surfactants
does not lead to dead cores, i.e., sets with positive measure on which h becomes zero.
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2. The models. The motion of an incompressible viscous fluid on a bounded
solid substrate is governed by the Navier–Stokes equations

ρ0

{
ut + (u · ∇)u

}
= μΔu −∇p,(2.1)

div u = 0,(2.2)

where u = (u1, u2, u3) is the velocity field, p the pressure and ρ0 the constant density.
We assume that the fluid does not penetrate the substrate given by {(x, y, z) ∈ R

3|z =
0} and that there is no flux across the lateral boundary. We also impose no-slip
boundary conditions for the velocity, i.e.,

u,z=0 = 0.(2.3)

We assume that the evolving free surface (i.e., the fluid/air interface) Ct is given as the
graph of a smooth time-dependent height function h = h(t, x, y) on a spatial domain
Ω ⊂ R

2, i.e.,

Ct = {(x, y, z)
∣∣ (x, y) ∈ Ω, z = h(t, x, y)}.(2.4)

At the interface (briefly abbreviated as {z = h}) a kinematic boundary condition
dictates that the normal component of the liquid velocity balances the speed of the
interface (the convective time-derivative dh

dt of h), i.e.,

u3,z=h =
dh

dt
= ht + u1 hx + u2 hy.(2.5)

In order to balance the shear stress tensor

T (u, p) := −p Id +μ
(
∇u + ∇uT

)
of the fluid we look at its normal and tangential component separately. The normal
stress exhibits a jump equal to the surface tension times the curvature (later referred
to as normal stress condition):

ν · Tν = σκ,(2.6)

where ν is the outer unit normal and κ is the sum of the principal curvatures of the
interface at a given point on Ct.

For the description of the tangential shear stress on the interface it becomes im-
portant to clarify the role of the surface tension dependence on the surfactant concen-
tration Γ more explicitly. A result of the surface agency of the surfactant monolayer
is that the surface concentration gradient of surfactant molecules opposes the sur-
face tension gradient. To restore the disturbed equilibrium at the surface (caused by
inhomogeneously distributed surfactants), the tangential part of the surface tension
gradient balances the tangential component of the shear stress Tν, i.e.,

τ · Tν = ∂τ σ(Γ)(2.7)

for all tangents τ , where ∂τ denotes the gradient in direction of the tangent vector τ .
This effect is known as the (solutal) Marangoni effect.
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2.1. Mass balance for the surfactant concentration. We now derive the
evolution equation for the surfactant concentration by looking at the mass balance
for the surfactant on subsets C ′

t ⊂ Ct. Let

C ′ =
⋃

t∈[t1,t2]

{t} × C ′
t and C =

⋃
t∈[t1,t2]

{t} × Ct

be a smooth three-dimensional surface with boundary ∂C ′, such that C ′
t ⊂ R

2 are
smooth two-dimensional surfaces with boundary ∂C ′

t. Let Γ be the concentration of
the surfactant which is a function on C. Then the mass balance on C ′ reads as follows:

d

dt

(∫
C′

t

Γ dS2

)
= −

∫
∂C′

t

(
Γutan −D∇sΓ

)
· n∂C′

t
dS1 +

∫
∂C′

t

Γ v∂C′
t
dS1.(2.8)

Here utan is the tangential component of the velocity, i.e.,

utan := u − (u · ν)ν,

where ν ∈ R
3 is the normal to the interface C ′

t. Furthermore, ∇sΓ denotes the surface
gradient of Γ on Ct. The vector n∂C′

t
is the outer unit normal to ∂C ′

t, i.e., n∂C′
t

lies in
the tangent space to C ′

t and is perpendicular to ∂C ′
t. The quantity v∂C′

t
is the normal

boundary velocity of ∂C ′
t as a subcurve of C ′

t, i.e., v∂C′
t

describes the local decrease
or increase of the surface area of C ′

t due to the tangential velocity of the boundary
∂C ′

t. To compute v∂C′
t

at a point x ∈ ∂C ′
t let y(s) ∈ ∂C ′

t be such that y(t) = x. Then
y′(t) denotes the velocity of the curve y. Any motion tangential to ∂C ′

t does not lead
to an increase of area, i.e., only the component

v∂C′
t
:= y′(t) · n∂C′

t

changes the surface area of C ′
t.

Let us briefly discuss what the two terms on the right-hand side of (2.8) describe.
The first integral describes changes of mass due to convective transport by the velocity
u and diffusional transport where D > 0 is the diffusion coefficient. The second
integral takes into account the change of surfactant on C ′

t due to the fact that the
surface C ′

t increases or decreases. Our goal is now to derive a pointwise identity for
the surfactant concentration from the balance law (2.8). To reformulate (2.8) we need
the transport theorem (for a proof see the appendix)

d

dt

(∫
C′

t

Γ dS2

)
=

∫
C′

t

[
∂(1,vν)Γ − Γ(vν · κν)

]
dS2 +

∫
∂C′

t

Γ v∂C′
t
dS1.(2.9)

In the above ∂(1,vν) Γ denotes the partial derivative of Γ in the direction (1,vν). Here
vν is the uniquely determined vector lying in the tangent space to C ′

t such that (1,vν)
is tangent to C ′. The quantity vν is the normal velocity vector and ∂(1,vν) Γ is the
normal time-derivative in the notation of Gurtin [Gur93]. Furthermore κν is the mean
curvature vector, i.e., κν has the direction of the normal ν and its length is equal to
the sum of the principal curvatures. Combining (2.8) and (2.9) and using the Gauss
theorem for the first integral on the right-hand side of (2.8) we obtain

0 =

∫
C′

t

[
∂(1,vν) Γ − Γ(vν · κν) + ∇s · (Γutan −D∇sΓ)

]
dS2.(2.10)
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Since C ′
t is arbitrary we obtain

∂(1,vν)Γ − Γ(vν · κν) + ∇s · (Γutan −D∇sΓ) = 0(2.11)

pointwise on C ′. A simple computation shows

vν =
ht

1 + |∇h|2 (−∇h, 1) =
ht√

1 + |∇h|2
ν,

where the normal ν is given by

ν =
1√

1 + |∇h|2
(−∇h, 1).

Hence we obtain from (2.5) that u · ν = vν · ν and therefore

vν · κν = u · κν = (u · ν)κ.

As a result (2.11) can be rewritten as

∂(1,vν)
Γ − Γ(u · ν)κ + ∇s · (Γutan −D∇sΓ) = 0.(2.12)

Using u = utan + (u · ν)ν and the fact that ∇s(Γu · ν) · ν = 0 we obtain using the
following sign convention for the curvature κ = −∇s · ν the identity

∇s · (Γu) = ∇s · (Γutan) − Γ(u · ν)κ

and finally (2.12) takes the form

∂(1,vν)
Γ + ∇s · (Γu) = DΔsΓ.(2.13)

2.2. Energy for the free surface problem. Assuming constant tempera-
ture, a fundamental equation of chemical thermodynamics relates the concentration-
dependent surface tension σ to the free energy g(Γ) and the chemical potential g′(Γ)
(see [V00]), where both functions depend on the surfactant concentration Γ:

σ(Γ) = g(Γ) − Γ g′(Γ).(2.14)

Convexity of the free energy implies a monotone decrease of surface tension for non-
negative concentration, which is consistent with the surface agency of the surfactant
molecules we described before.

The total energy decomposes into the kinetic energy of the flow and the free
energy of the surface:

E(t) =

∫
Ωt

ρ0

2
u2(t, ·) dV 3 +

∫
Ct

g(Γ(t, ·)) dS2,(2.15)

where Ωt :=
{
(x, y, z) ∈ R

3
∣∣ (x, y) ∈ Ω, 0 < z < h(t, x, y)

}
is the domain occupied by

the liquid. A careful computation (see appendix 5.2) reveals the dissipation of the
total energy:

d

dt
E(t) = −

∫
Ωt

∇u : T dV 3 −D

∫
Ct

g′′(Γ) |∇sΓ|2dS2.(2.16)
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Here the imposed boundary conditions (2.3), (2.5), (2.6) and (2.7), a no-slip boundary
condition at the lateral boundary and a 90◦ angle condition at points where the
free surface intersects the lateral boundary have been used. To avoid additional
boundary contributions we choose a 90◦ angle condition. In a more general situation
the free energy has to be supplemented by terms representing the surface energy of
the boundary. The importance of (2.16) for the analysis lies in the fact that with
integration over a bounded time interval [0, T ] a priori estimates for u,Γ and their
spatial gradients result.

2.3. Lubrication approximation. As our subsequent analysis will be restricted
to two spatial dimensions (x, z) we state the following derivation in the two-dimensional
setting and introduce the variable u = (u,w) where u represents the horizontal veloc-
ity in the direction of x and w the vertical velocity in the direction of z.

Scalings appropriate for a lubrication approximation of surfactant driven thin
films (see [GG90]) are

x̂ =
1

L
x, ẑ =

1

H
z, t̂ =

εU

H
t,

û =
1

U
u, ŵ =

1

εU
w, ĥ =

1

H
h, Γ̂ =

1

Γm
Γ,

where L represents the typical horizontal length scale, H the typical film height, U the
typical horizontal velocity and Γm the critical surfactant concentration. Considering
thin films we assume that the parameter

ε =
H

L

is small. We also need to scale the pressure and the surface energy density and in this
context the scaling

p̂ =
H

S
p and σ̂ =

1

S

(
σ − σm

)
(2.17)

has been chosen (see [GG90], [JG92]). Here S is the spreading coefficient, i.e., the
surface tension difference at the surfactant monolayer edge and σm the surface tension
of the saturated surface. Defining the typical horizontal velocity as

U =
εS

μ
,

with μ being the dynamic viscosity of the fluid, ensures that the Marangoni force
at the free surface remains as a dominant force in the tangential stress boundary
condition.

Lubrication theory now gives

p(t, x, z) = −S hxx(t, x),(2.18)

u(t, x, z) = z uz(t, x, h(t, x)) + px(t, x, z)

(
1

2
z2 − h(t, x) z

)
,(2.19)

where

uz(t, x, h(t, x)) = σ(Γ(t, x))x
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and S denotes the rescaled capillary constant. The incompressibility of the flow and
the evolution equation for Γ imply to leading order

ht = −∂x

(∫ h(t,x)

0

u(t, x, z) dz

)
,(2.20)

Γt = −∂x

(
Γ(t, x)u(t, x, h(t, x))

)
+ DΓxx(2.21)

(see [GG90] for details). Using the representation of u in (2.19) we get the system
(1.1)–(1.2) which we are going to analyze in what follows. Furthermore we take the
scaling of the lubrication approximation to approximate the energy inequality (2.16)
which gives

d

dt

∫
Ω

(
S
2
h2
x + g(Γ)

)
+

∫
Ω

∫ h(t,x)

0

u2
z + D

∫
Ω

g′′(Γ) Γ2
x = 0,(2.22)

where D denotes the rescaled diffusion constant. Making use of the representation
(2.19) we obtain

d

dt

∫
Ω

(
S
2
h2
x + g(Γ)

)
+

∫
Ω

h

{
(σ(Γ)x)2 + S hhxxx σ(Γ)x +

1

3
h2 |Shxxx|2

}

+ D
∫

Ω

g′′(Γ) Γ2
x = 0.(2.23)

We remark that the second term in brackets is positive since the middle term can be
absorbed by the first and the third term using Young’s inequality. As a result the
above identity gives a priori estimates for h and Γ. These estimates will be crucial
for the analysis presented in the following sections.

We observe that through lubrication approximation the complexity of the free
boundary problem is reduced—compensated by higher-order spatial derivatives for h.

3. Existence of weak solutions. We are interested in solutions of the system
of nonlinear partial differential equations we derived in section 2.3, namely,

ht + ∂x

(
a2(h)σ(Γ)x + a3(h)hxxx

)
= 0 in ΩT ,(3.1)

Γt + ∂x

(
Γ a1(h)σ(Γ)x + Γ a2(h)hxxx

)
= D Γxx in ΩT ,(3.2)

where we impose the no-flux and initial boundary conditions

hx = hxxx = Γx = 0 on (0, T ) × ∂Ω ,(3.3)

h(0, ·) = h0 in Ω ,(3.4)

Γ(0, ·) = Γ0 in Ω.(3.5)

In sections 3 and 4 the set Ω will always be assumed to be a bounded interval. For
later use we introduce the coefficient functions ai for i = 1, 2, 3, which will be such
that the special case ai(s) = 1

i s
i for s ≥ 0 leads to (1.1)–(1.2). It turns out that

solutions of appropriate regularity exist in a weak sense. This result is formulated
in the following theorem. Before we state the result we need to formulate certain
assumptions on the coefficients. In detail we assume:
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(A1) The functions ai : R → R
+
0 are continuous for i = 1, 2, 3 and ai(s) = 0 if

s ≤ 0.
(A2) For A : R → Mat2,2(R

+
0 ) there exist d1, d3 ∈ C(R,R+

0 ) with di(s) = 0 <=>
s ≤ 0 such that

A : s �→
(

a3(s) a2(s)
a2(s) a1(s)

)

has the property

ξT A(s) ξ ≥ d3(s) ξ
2
1 + d1(s) ξ

2
2

for all ξ = (ξ1, ξ2)
T ∈ R

2.
(A3) There exist k, l > 0 such that for all s ∈ R

a2(s) ≤ C sk
√
d1(s) and a3(s) ≤ C sk

√
d3(s),

a2(s) ≤ C sl
√
d3(s) and a1(s) ≤ C sl

√
d1(s).

(A4) The function g lies in C2,1
loc (R) where C2,1

loc (R) is the space of functions with
locally Lipschitz continuous second derivatives.

(A5) There exists a cg > 0 such that g′′(s) ≥ cg for all s ∈ R.
(A6) There exists a Cg > 0 such that g′′(s) ≤ Cg(|s|r + 1) for all s ∈ R and with

r ∈ (0, 2).
(A7) The functions σ and g are related by σ(s) = g(s) − sg′(s).
(A8) The diffusion coefficient D is positive.

The above assumptions do not allow for an affine linear relation between σ and Γ
which is often assumed in applications. In the following 〈·, ·〉 denotes the dual product
between a linear functional and a point in the corresponding normed space.

Theorem 3.1. Let the initial data fulfill h0 ≥ 0, h0 ∈ H1,2(Ω), Γ0 ∈ L2(Ω) and
g′(Γ0) ∈ L2(Ω). Assume also that (A1)–(A8) hold. Then there exists a weak solution
(h,Γ) of problem (3.1)–(3.5) such that

∫ T

0

〈ht, ζ〉 −
∫

ΩT

a2(h)σ(Γ)x ζx −
∫

ΩT \Ω0
T

Sa3(h)hxxx ζx = 0,(3.6)

∫ T

0

〈Γt, ζ〉 −
∫

ΩT

Γ a1(h)σ(Γ)x ζx −
∫

ΩT \Ω0
T

SΓ a2(h)hxxx ζx + D
∫

ΩT

Γx ζx = 0

(3.7)

for all ζ ∈ L3
(
0, T ;H2,2(Ω)

)
with ζx = 0 on (0, T ) × ∂Ω and

Ω0
T := {(t, x) ∈ ΩT ; h(t, x) = 0}.

The solutions h and Γ have the following regularity properties

h ∈ L2
(
0, T ;H1,2(Ω)

)
∩H1,2

(
0, T ; (H1,2(Ω))∗

)
∩ C

1
8 ,

1
2 (ΩT ),

Γ ∈ L∞(0, T ;L2(Ω)
)
∩ L2

(
0, T ;H1,2(Ω)

)
∩H1, 32

(
0, T ; (H1,3(Ω))∗

)
∩ L6(ΩT ),

and the initial conditions for h and Γ are attained in the sense of traces in the
spaces H1,2(0, T ; (H1,2(Ω))∗) and H1, 32 (0, T ; (H1,3(Ω))∗), respectively. Furthermore
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h ∈ L2
(
0, T ;H3,2(Ω\{h < δ})

)
for all δ > 0, h3hxxx ∈ L2(Ω \ Ω0

T ) and in addition it
holds h ≥ 0 almost everywhere.

To prove the above theorem we are following a two-step approach: First we reg-
ularize the degeneracy which is apparent for h = 0. For this purpose we approximate
the equation for h by a family of nondegenerate equations

hδ
t + ∂x

(
a2(h

δ)σ(Γδ)x + [a3(h
δ) + δ]Shδ

xxx

)
= 0,

where δ > 0. The surfactant concentration Γδ is still subject to the nondegenerate
equation

Γδ
t + ∂x

(
Γδ a1(h

δ)σ(Γδ)x + Γδ a2(h
δ)Shδ

xxx

)
= D Γδ

xx

as we assume D > 0. On the boundary (0, T )×∂Ω we impose again no-flux conditions
that are

hδ
x = hδ

xxx = Γδ
x = 0(3.8)

and for t = 0 we require the same initial data as for the degenerate problem

hδ(0, ·) = h0 in Ω,

Γδ(0, ·) = Γ0 in Ω.

In a second step we use a Galerkin approximation which transforms the system of
partial differential equations into a system of ordinary differential equations. As basis
functions for the finite dimensional space Ek we select an L2-orthonormal basis of
eigenfunctions φ0 = const, φ1, φ2, . . . of −∂xx with zero Neumann boundary condi-
tions belonging to eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · . The usual approach would
be to make an ansatz for h and Γ in En = span(φ0, . . . , φn), but in this case it turned
out that it is necessary to reformulate the equation for Γ in terms of the chemical
potential g′(Γ) and to set up a Galerkin ansatz for g′(Γ) instead or Γ. With the help of
this transformation we are able to establish the necessary a priori estimates to prove
global existence of Galerkin solutions.

Since g′ ∈ C1(R) and g′′ > 0 there exists W := (g′)−1 with

(W ′ ◦ g′)(s) =
1

g′′(s)
,

so that we can easily transform (3.2) into an equation for v := g′(Γ) using that
σ(Γ)x = −W (v) vx :

∂t W (v) − ∂x
(
W 2(v) a1(h) vx

)
+ ∂x

(
W (v) a2(h)Shxxx

)
= DW (v)xx.(3.9)

Due to the approximating properties of the eigenfunctions φk there exist sequences
(βkn)n∈N and (γkn)n∈N for h0 ∈ H1,2(Ω) and g′(Γ0) ∈ L2(Ω) such that

h0n =

n∑
k=0

βknφk with h0n → h0 in H1,2(Ω),

v0n =

n∑
k=0

γknφk with v0n → v0 := g′(Γ0) in L2(Ω).
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Furthermore we make a Galerkin ansatz for hδ(t) and vδ(t) = g′(Γδ(t)) of the form

hδ
n(t) =

n∑
k=0

bδkn(t)φk for all t ∈]0, T [ with hδ
n(0) = h0n,

vδn(t) =

n∑
k=0

cδkn(t)φk for all t ∈]0, T [ with vδn(0) = v0n,

where according to (3.1) and (3.9) the functions bδkn(t) and cδkn(t) are subject to the
following Galerkin equations which have to hold for j = 0, . . . , n:

d

dt

(
hδ
n(t), φj

)
+
(
a2(h

δ
n(t))W (vδn(t))vδn,x(t), φ′

j

)(3.10)

−
(
a3(h

δ
n(t))Shδ

n,xxx(t) + δShδ
n,xxx(t), φ′

j

)
= 0,

d

dt

(
W (vδn(t)), φj

)
+
(
W 2(vδn(t)) a1(h

δ
n(t)) vδn,x(t), φ′

j

)(3.11)

−
(
W (vδn(t)) a2(h

δ
n(t))Shδ

n,xxx(t) −DW ′(vδn(t))vδn,x(t), φ′
j

)
= 0,

where (·, ·) denotes the L2-scalar product.
Proof. The first step to take is to prove the existence of local solutions of the

Galerkin equations (3.10)–(3.11).
In the second step we derive a priori estimates which allow us to extend the

local solutions established in the first step towards global solutions of the Galerkin
equations.

As the Galerkin equations are an approximation to the nondegenerate system
of partial differential equations we establish in the third step the convergence of the
Galerkin method.

Generalizing ideas of Bernis and Friedman [BF90] we can show in the final fourth
step that solutions of the nondegenerate system converge to solutions of the degenerate
system.

3.1. Local existence of solutions to the Galerkin system. To make use of
standard theory for systems of ordinary equations we have to work out the structure
of (3.10)–(3.11). Since we can write

d

dt

(
W (vδn(t)), φj

)
=
[
B(cδn(t))

d

dt
cδn(t)

]
j
,

where B(cδn(t)) =
[
Bjk(c

δ
n(t))

]
j,k

is the matrix

Bjk(c
δ
n(t)) :=

∫
Ω

W ′(vδn(t, x))φk(x)φj(x) dx

and cδn(t) is the vector (cδnk(t))0≤k≤n, we simply have to make sure that B(cδn(t)) is
symmetric and positive definite and therefore invertible. For ξ = (ξ0, . . . , ξn) ∈ R

n+1

we obtain

∑
j,k

ξjBjk(c
δ
n(t))ξk =

∫
Ω

W ′(vδn(t, x))

⎛
⎝∑

j

ξjφj(x)

⎞
⎠

2

dx.
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Since W ′ > 0 and the eigenfunctions φj are linear independent we obtain that B(cδn(t))
is positive definite and we can multiply (3.11) with B−1(cδn(t)). As a result we have
to solve a system of first-order ordinary differential equations of the following type:
for given initial data βn, γn ∈ R

n+1 and for any value of δ > 0 we look for functions
bδn, c

δ
n : [0, T ] → R

n+1 which satisfy the equations

d

dt

(
bδn, c

δ
n

)
(t) = F

(
t, (bδn(t), cδn(t))

)T
,(3.12) (

bδn, c
δ
n

)
(0) =

(
βn, γn

)
,(3.13)

where

F : [0, T ] × R
2(n+1) → R

2(n+1),

(t, y1, y2) �→
[

(f1(y1, y2),Φ
′)(

f2(y1, y2), B
−1(cδn(t)) Φ′)

]

with Φ = (φ0, . . . , φn), and

f2(y1, y2) := −W 2(y2 · Φ) a1(y1 · Φ) y2 · Φ′ + SW (y2 · Φ) a2(y1 · Φ) y1 · Φ′′′

− DW ′(y2 · Φ) y2 · Φ′,

f1(y1, y2) := −a2

(
y1 · Φ

)
W (y2 · Φ) y2 · Φ′ + S a3

(
y1 · Φ

)
y1 · Φ′′′ + δS y1 · Φ′′′.

By assumptions (A1)–(A3) the right-hand side F satisfies a local Lipschitz condition
with respect to y. Therefore by the Picard–Lindelöf theorem a unique local solution
of the initial value problem (3.12),(3.13) exists.

3.2. Global existence of solutions for the Galerkin system. In this section
we will use a priori estimates in order to extend the local solution to a global solution.
Since φ′′

k is a multiple of φk we can plug in pδn(t) = −Shδ
n,xx(t) as a test function in

(3.10) and vδn(t) as test function in (3.11) and get:

S
( d

dt
hδ
n,x(t), hδ

n,x(t)
)
−
(
a2(h

δ
n(t))W (vδn(t))vδn,x(t),Shδ

n,xxx(t)
)(3.14)

+
(
a3(h

δ
n(t))Shδ

n,xxx(t) + δShδ
n,xxx(t),Shδ

n,xxx(t)
)

= 0,

( d

dt
W (vδn(t)), vδn(t)

)
+
(
W 2(vδn(t)) a1(h

δ
n(t)) vδn,x(t), vδn,x(t)

)(3.15)

−
(
W (vδn(t)) a2(h

δ
n(t))Shδ

n,xxx(t) −DW ′(vδn(t))vδn,x(t), vδn,x(t)
)

= 0.

Defining

Γδ
n := (g′)−1(vδn)

we can recalculate

W ′(vδn) vδn,t v
δ
n = Γδ

n,t g
′(Γδ

n) = ∂t g(Γ
δ
n),

W (vδn) vδn,x = −σ(Γδ
n)x and W ′(vδn) |vδn,x|2 = g′′(Γδ

n) |Γδ
n,x|2.
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Using these formulas we receive by adding (3.14) and (3.15):

d

dt

{
S
2

∥∥∥hδ
n,x(t)

∥∥∥2
L2(Ω)

+
∥∥∥g(Γδ

n(t))
∥∥∥
L1(Ω)

}(3.16)

+

∫
Ω

{
a3(h

δ
n(t))

∣∣Shδ
n,xxx(t)

∣∣2 + 2a2(h
δ
n(t))Shδ

n,xxx(t)σ(Γδ
n(t))x

+ a1(h
δ
n(t))

∣∣σ(Γδ
n(t))x

∣∣2}+ δ
∥∥∥Shδ

n,xxx(t)
∥∥∥2
L2(Ω)

+ D
∥∥∥√g′′(Γδ

n(t)) Γδ
n,x(t)

∥∥∥2
L2(Ω)

= 0.

Assumption (A2) guarantees that the integral in the second and third line of (3.16)
is nonnegative, so that by integration of (3.16) over [0, T ] we get for any given 0 <
T < ∞:

S
2

n∑
k=1

(
bδkn(T )

)2
λk +

∫
Ω

g(W (cδn(T ) · Φ)) ≤ C(βn, γn).(3.17)

Taking φ0 = 1 in (3.10) gives in addition that bδ0n is bounded and we can deduce
that the bδn are a priori bounded. The assumption (A6) implies that g ◦W (s) → ∞
if s → ∞ and hence we obtain that cδn is bounded and therefore the solution (bδn, c

δ
n)

can be extended globally. As a conclusion we have shown that the Galerkin equations
have global solutions

hδ
n, Γδ

n ∈ C1
(
0, T ;C∞(Ω)

)
.

3.3. Convergence of the Galerkin method. Let ζ ∈ L3
(
0, T ;H2,2(Ω)

)
be

arbitrarily chosen with ζx = 0 on (0, T ) × ∂Ω. Then there exist functions ζn(t, ·) =
Pnζ(t, ·) ∈ span{φ0, . . . , φn} such that for n → ∞: ζn(t, ·) → ζ(t, ·) in H1,3(Ω) for
almost all t ∈ [0, T ]. Using the convergence theorem of Lebesgue we finally get

ζn → ζ in L3
(
0, T ;H1,3(Ω)

)
for n → ∞.

Plugging ζn into the Galerkin equations (3.10)–(3.11) we have to show that in the
following weak formulation we can pass to the limit for n → ∞:

∫ T

0

〈hδ
n,t(t), ζn(t)〉 −

∫
ΩT

a2(h
δ
n)σ(Γδ

n)x ζn,x(3.18)

−
∫

ΩT

a3(h
δ
n)Shδ

n,xxxζn,x − δ

∫
ΩT

Shδ
n,xxxζn,x = 0,

∫ T

0

〈Γδ
n,t(t), ζn(t)〉 −

∫
ΩT

Γδ
n a1(h

δ
n)σ(Γδ

n)x ζn,x(3.19)

−
∫

ΩT

Γδ
n a2(h

δ
n)Shδ

n,xxxζn,x + D
∫

ΩT

Γδ
n,xζn,x = 0.

To ensure convergence we have to establish appropriate convergence properties for
the integrands involved. Exploiting (3.16) together with assumption (A2) and the
convergence properties of the initial data (L2-convergence of

(
hδ
n,x(0)

)
n∈N

→ h0,x
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and L1-convergence of
(
g(Γδ

n(0))
)
n∈N

→ g(Γ0)) we can deduce the following:

(
hδ
n,x

)
n∈N

is uniformly bounded in L∞(0, T ;L2(Ω)),(3.20) (
g(Γδ

n)
)
n∈N

is uniformly bounded in L∞(0, T ;L1(Ω)),(3.21) (
(g′′(Γδ

n))
1
2 Γδ

n,x

)
n∈N

is uniformly bounded in L2(0, T ;L2(Ω)),(3.22) (
(d3(h

δ
n))

1
2hδ

n,xxx

)
n∈N

is uniformly bounded in L2(0, T ;L2(Ω)),(3.23) (
(d1(h

δ
n))

1
2 σ(Γδ

n)x

)
n∈N

is uniformly bounded in L2(0, T ;L2(Ω)),(3.24)

√
δ
(
hδ
n,xxx

)
n∈N

is uniformly bounded in L2(0, T ;L2(Ω)).(3.25)

Choosing ζn ≡ 1 in (3.18) gives that d
dt

∫
Ω
hδ
n = 0 and hence the mean value of hn is

controlled. This fact, (3.20) and the Sobolev embedding theorem lead to

∃C > 0 ∀n ∈ N ∀ δ > 0 ess sup
t∈[0,T ]

‖hδ
n(t)‖L∞(Ω) ≤ C.

Using (3.21)–(3.22) together with (A4)–(A5) we are able to establish uniform bounds
for Γδ

n with respect to n and δ as follows:

(Γδ
n)n∈N is uniformly bounded in L∞(0, T ;L2(Ω)

)
,

(Γδ
n)n∈N is uniformly bounded in L2

(
0, T ;H1,2(Ω)

)
.

Applying an embedding theorem for parabolic function spaces (see, e.g., [DiB93])
these results can be combined to:

(Γδ
n)n∈N is uniformly bounded in L4(0, T ;L∞(Ω)) ∩ L6(ΩT ).

Finally using (3.23)–(3.24), assumption (A3) and the previous statements allow us to
prove that

Iδ
n := a2(h

δ
n)σ(Γδ

n)x + a3(h
δ
n)Shδ

n,xxx + δShδ
n,xxx is bounded uniformly in L2(ΩT ),

J δ
n := Γδ

n a1(h
δ
n)σ(Γδ

n)x + Γδ
n a2(h

δ
n)Shδ

n,xxx −D Γδ
n,x is bounded uniformly in L

3
2 (ΩT ),

and therefore we obtain

(hδ
n,t)n∈N is uniformly bounded in L2(0, T ; (H1,2(Ω))∗),

(Γδ
n,t)n∈N is uniformly bounded in L

3
2 (0, T ; (H1,3(Ω))∗).

To demonstrate the convergence of (3.18)–(3.19) we list the following. Since (hδ
n)n∈N

is uniformly bounded in C
1
8 ,

1
2 (ΩT ) (Hölder-continuity of hδ

n(t, x) with respect to
t ∈ [0, T ] and x ∈ Ω, see [BF90]) we conclude that a subsequence of (hδ

n)n∈N con-
verges uniformly to hδ for n → ∞. This implies together with the reflexivity of
L2(0, T ; (H1,2(Ω))∗) that ∂th

δ
n

∗
⇀ ∂t h

δ in L2
(
0, T ; (H1,2(Ω))∗

)
. By Poincaré’s lemma

we can prove that the boundedness of (hδ
n,xxx)n∈N in L2(ΩT ) implies for all δ the

convergence hδ
n ⇀ hδ in L2(0, T ;H3,2(Ω)). We remark that we sometimes choose

subsequences but keep the original index of the sequence.
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The convergence results for (Γδ
n)n∈N are not as good as for (hδ

n)n∈N . Using the
compactness lemma of Aubin–Lions (see [LIO69]) we get strong convergence of Γδ

n →
Γδ in L2(0, T ;Lq(Ω)) for all q ∈ [1,∞). Besides we have the weak convergence of

(∂t Γδ
n)n∈N to ∂t Γδ in L

3
2 (0, T ; (H1,3(Ω))∗) and the strong convergence of Γδ

n → Γδ in
Lq(ΩT ) for all q ∈ [2, 6) using the boundedness of (Γδ

n)n∈N in L6(ΩT ) together with
an interpolation estimate for Lp norms (see [E98]).

In order to get a convergence result for g′(Γδ
n) we make use of (A4) and (A6):

By Lebesgue’s theorem and the strong convergence of (Γδ
n)n∈N in Lq(ΩT ) we first

conclude the convergence of (g′′(Γδ
n))n∈N to g′′(Γδ) in L3(ΩT ). By an interpolation

estimate for Lp-norms this can be extended to g′′(Γδ
n) → g′′(Γδ) in Lq(ΩT ) for all

q ∈ [3, 6
r ), r ∈ (0, 2). Combining this with the weak convergence Γδ

n,x ⇀ Γδ
x in L2(ΩT )

we therefore get (g′′(Γδ
n))

1
2 Γδ

n,x ⇀ (g′′(Γδ))
1
2 Γδ

x in L2(ΩT ) for n → ∞. Since σ(Γδ
n)x

decomposes into σ(Γδ
n)x = −Γδ

n(g′′(Γδ
n))

1
2 ·(g′′(Γδ

n))
1
2 Γδ

n,x we can prove that σ(Γδ
n)x ⇀

σ(Γδ)x in Ls(ΩT ) for s ∈ [ 23 ,
6

4+r ).
Applying these convergence results to (3.18)–(3.19) we get that the Galerkin

solutions (hδ
n,Γ

δ
n) converge for any fixed δ > 0 to a weak solution (hδ,Γδ) of the

nondegenerate problem

∫ T

0

〈hδ
t , φ〉 −

∫
ΩT

a2(h
δ)σ(Γδ)xφx −

∫
ΩT

a3(h
δ)Shδ

xxxφx − δ

∫
ΩT

Shδ
xxxφx = 0,

(3.26)

∫ T

0

〈Γδ
t , φ〉 −

∫
ΩT

Γδa1(h
δ)σ(Γδ)xφx − S

∫
ΩT

Γδa2(h
δ)hδ

xxxφx + D
∫

ΩT

Γδ
xφx = 0.

(3.27)

3.4. Existence of weak solutions of the degenerate problem. When we
take the limit δ → 0 we lose control over hδ

xxx in L2(Ωt). Therefore, similar to as in
[BF90], we introduce the sets ΩT \Ω0

T with

Ω0
T := {(t, x) ∈ ΩT ; h(t, x) = 0}

on which convergence of the terms involving third derivatives of hδ holds. This is due
to the fact that hδ

xxx ⇀ hxxx in L2(ΩT \Ωη
T ) with Ωη

T := {(t, x) ∈ ΩT ; |h(t, x)| ≤ η}
and since∫

Ωη
T

|a3(h
δ)Shδ

xxxφx| ≤ C‖hδ‖kL∞(Ωη
T ) ‖d3(h

δ)
1
2Shδ

xxx

∥∥
L2(ΩT )

‖φx‖L2(ΩT )(3.28)

≤ Cηk,∫
Ωη

T

|Γδa2(h
δ)Shδ

xxxφx| ≤ C‖hδ‖lL∞(Ωη
T )‖Γδd3(h

δ)
1
2Shδ

xxx

∥∥
L

3
2 (ΩT )

‖φx‖L3(ΩT )(3.29)

≤ Cηl,

where we made use of (A3) and the bounds (3.20)–(3.23), which are uniform with
respect to δ. In particular using the bound (3.23) we obtain the integrability of
h3hxxxχΩ\Ω0

T
.

Those terms in (3.26)–(3.27) in which hδ
xxx does not occur are not affected and we

can pass to the limit for δ → 0 in the same way as in section 3.3. Since δ‖hδ
xxx‖2

L2(ΩT )

is uniformly bounded (see (3.25)) we conclude furthermore

δ

∫
ΩT

|hδ
xxx φx| ≤ δ‖hδ

xxx‖L2(ΩT ) · ‖φx‖L2(ΩT ) → 0 for δ → 0.
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In the remaining terms involving hδ
xxx we can pass to the limit as in [BF90] using the

estimates (3.28) and (3.29). Taking h− := min{h, 0} as a test function in (3.6) gives
h ≥ 0 almost everywhere (see [Yin92] or the discussion in [BGN03]).

Remark. In the proof of Theorem 3.1 it was not necessary to require Γ0 ≥ 0. But
physically relevant initial data for the density Γ0 are nonnegative. In this case one
would expect the solutions Γ to be nonnegative as well. Unfortunately the available
methods are not sufficient to show nonnegativity of Γ under the above assumptions.
Testing (3.7) by min(Γ, 0) is not possible since the coefficients are not smooth enough.
For example, the term a2(h)hxxxχΩ\Ω0

T
is only in L2(ΩT ) and more regularity is

needed to proceed (see, e.g., Ladyzenskaya et al. [LSU68, Chapter III, section 7,
assumption (7.1)]).

4. Nonnegativity. Numerical simulations (see [BGN03]) indicate that surfac-
tants can lead to a dramatic thinning of films. In this section we will show that
solutions to (1.1)–(1.2) which have positive initial data with respect to h will remain
positive besides a set of zero Lebesgue measure. This shows that surfactants do not
lead to a rupture of the film on large sets. For in h positive initial data we will
generate strictly positive solutions of an approximation problem. In analogy to the
single thin film equation we are looking for a functional G(h) such that we can derive
further estimates from the identity

d

dt

∫
Ω

G(h) =

∫
Ω

G′(h)ht =
1

2

∫
Ω

G′′(h)hx h
2σ(Γ)x +

S
3

∫
Ω

G′′(h)hx h
3hxxx.(4.1)

Making the ansatz G′′(h) = hα for any α > 0 a formal computation leads to

d

dt

∫
Ω

G(h) =
1

2

∫
Ω

h2+α hx σ(Γ)x − S (3 + α)

3

∫
Ω

h2+α h2
x hxx − S

3

∫
Ω

h3+αh2
xx,

which suggests to take α = −2. For this choice the first term on the right-hand side
is bounded which follows from the a priori estimates we derived in section 3 and the
second term vanishes due to the Neumann boundary condition for h. After integration
over [0, T ] we therefore receive formally the entropy equation:∫

Ω

G(h(T, ·)) +
S
3

∫
ΩT

hh2
xx =

1

2

∫
ΩT

hx σ(Γ)x +

∫
Ω

G(h(0, ·)).

4.1. Approximation by positive solutions. Starting with the boundary prob-
lem

ht + ∂x

[
a2(h)σ(Γ)x + a3(h)Shxxx

]
= 0 in ΩT ,

Γt + ∂x

[
Γ a1(h)σ(Γ)x + Γ a2(h)Shxxx −D Γx

]
= 0 in ΩT ,

hx = hxxx = Γx = 0 on (0, T ) × ∂Ω,

h(0, ·) = h0 in Ω,

Γ(0, ·) = Γ0 in Ω,

we will follow an idea by [BF90] and regularize the coefficient functions ai(s) and lift
the initial data h0 such that the entropy equation can be derived rigorously and the
existence proof for weak solutions can be imitated. Both requirements are fulfilled by
choosing the regularization

aεi(s) =
sn+i

sn + εs3
for i ∈ {1, 2, 3}.(4.2)
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We see that for any fixed ε > 0, i ∈ {1, 2, 3} and n > 3:

aεi(s)

sn+i−3
= O(1) for s → 0 and

sn

sn + εs3
= O(1) for s → ∞.

As a consequence the matrix Aε(s) := sn

sn+ε s3 A(s) of the regularized coefficients fulfills

the requirements of Theorem 3.1 as long as A(s) =
(
a3(s) a2(s)
a2(s) a1(s)

)
does. Furthermore

we lift the initial data for h with εθ, 0 < θ < 1
n−3 , so that they become strictly positive

and formulate the approximation problem P ε as follows:

hε
t + ∂x

[
aε2(h

ε)σ(Γε)x + aε3(h
ε)Shε

xxx

]
= 0 in ΩT ,(4.3)

Γε
t + ∂x

[
Γε aε1(h

ε)σ(Γε)x + Γε aε2(h
ε)Shε

xxx

]
= D Γε

xx in ΩT ,(4.4)

hε
x = hε

xxx = Γε
x = 0 on (0, T ) × ∂Ω,(4.5)

hε(0, ·) = hε
0 := h0 + εθ in Ω,(4.6)

Γε(0, ·) = Γ0 in Ω.(4.7)

For this system we can state the following theorem.
Theorem 4.1 (existence of positive approximative solutions). Let the assump-

tions of Theorem 3.1 hold and assume in addition that aε1, a
ε
2, a

ε
3 are given by (4.2)

with n ≥ 5. Then there exist for all ε > 0 functions (hε,Γε) with hε > 0 in ΩT and

hε ∈ H1,2
(
0, T ; (H1,2(Ω))∗

)
∩ L2

(
0, T ;H3,2(Ω)

)
∩ C

1
8 ,

1
2 (ΩT ),

Γε ∈ H1, 32
(
0, T ; (H1,3(Ω))∗

)
∩ L∞(0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1,2(Ω)

)
,

which attain the initial data and are such that for all ζ ∈ L3(0, T ;H1,3) equations
(4.3)–(4.5) are fulfilled in the following weak sense:

∫ T

0

〈hε
t(t), ζ(t)〉 dt−

∫
ΩT

aε2(h
ε)σ(Γε)x ζx − S

∫
ΩT

aε3(h
ε)hε

xxxζx = 0,

(4.8)

∫ T

0

〈Γε
t(t), ζ(t)〉 dt−

∫
ΩT

Γεaε1(h
ε)σ(Γε)x ζx − S

∫
ΩT

Γεaε2(h
ε)hε

xxxζx = −D
∫

ΩT

Γε
xζx.

(4.9)

Proof. For the existence part we can imitate the proof of existence of solutions to
(3.1)–(3.2). We receive functions (hε,Γε) such that for all ζ ∈ L3(0, T ;H1,3):∫ T

0

〈hε
t(t), ζ(t)〉 dt−

∫
ΩT

aε2(h
ε)∗ σ(Γε)x ζx −

∫
ΩT \Ωε,0

T

aε3(h
ε)∗ Shε

xxxζx = 0,

∫ T

0

〈Γε
t(t), ζ(t)〉 dt−

∫
ΩT

Γεaε1(h
ε)∗ σ(Γε)x ζx −

∫
ΩT \Ωε,0

T

Γεaε2(h
ε)∗ Shε

xxxζx = −D
∫

ΩT

Γε
xζx

with Ωε,0
T := {(t, x) ∈ ΩT ; hε(t, x) = 0} and aεi(s)

∗ := aεi(s)χ{s>0}. We already know
that hε ≥ 0 for all t ∈ [0, T ] and almost all x ∈ Ω. We now want to show that the set
Ωε,0

T is empty. Since (hε)ε>0 is uniformly bounded in C0(ΩT ) there exists an A > 0
such that maxhε ≤ A for all ε and we define

gε(s) = −
∫ A

s

r

aε3(r)
dr ≤ 0 and Gε(s) = −

∫ A

s

gε(r) dr ≥ 0.(4.10)
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Then G′
ε(s) = gε(s) and

g′ε(s) = G′′
ε (s) =

s

aε3(s)
=

sn+1 + εs4

sn+3
.

More precisely we obtain

gε(s) := −
(

1

s
+

εs2−n

n− 2

)
+ cε

and

Gε(s) := log
1

s
+

εs3−n

(n− 3)(n− 2)
+ cεs + dε

with constants cε and dε that depend on A. We remark that cε and dε are uniformly
in ε bounded.

Since hε
0 is strictly positive and since hε is continuous we conclude that there

exists a time t∗ such that hε is strictly positive on [0, t∗]. On this time interval the
system (4.8)–(4.9) is strictly parabolic. Therefore parabolic regularity implies that
h is smooth on this time interval. Hence the following computations are justified.
Choosing gε(h

ε) as test function for (4.3) leads to

∫
Ω

Gε(h
ε(t∗, ·)) − S

∫
Ωt∗

hεhε
xh

ε
xxx =

∫
Ω

Gε(h
ε(0, ·)) +

∫
Ωt∗

hε aε2(h
ε)

aε3(h
ε)

hε
x σ(Γε)x.

Using the boundary condition (4.5) the second term reduces to

−
∫

Ωt∗

hεhε
xh

ε
xxx =

1

3

∫
Ωt∗

∂x (hε
x)3︸ ︷︷ ︸

=0

+

∫
Ωt∗

hε(hε
xx)2

and we get ∫
Ω

Gε(h
ε(t∗, ·)) +

∫
Ωt∗

hε(hε
xx)2 =

∫
Ω

Gε(h
ε
0) +

∫
Ωt∗

hε
x σ(Γε)x.(4.11)

Since hε
x σ(Γε)x is uniformly in ε bounded in L1(ΩT ) we have to check the first term

on the right-hand side. By definition we know that∫
Ω

Gε(h
ε
0) =

∫
Ω

ε(hε
0)

3−n

(n− 3)(n− 2)
+

∫
Ω

G0(h
ε
0).

Since hε
0 is bounded away from zero we conclude from the above that for all t ∈ [0, t∗]∫

Ω

Gε(h
ε(t, ·)) ≤ C(ε).(4.12)

Let’s assume t∗ < T and let t0 ∈ (t∗, T ] be the first time such that hε(t0, x0) = 0 for
x0 ∈ Ω. Let (tn)n∈N be a sequence tn ↗ t0 for n → ∞. We then conclude

hε(tn, ·) → hε(t0, ·) uniformly in Ω for n → ∞.(4.13)
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To prove that the entropy is still bounded in t0 we apply Fatou’s lemma. Since
Gε(h

ε(tn, ·)) is bounded from below uniformly with respect to n we get∫
Ω

lim inf
n→∞

Gε(h
ε(tn, ·)) ≤ lim inf

n→∞

∫
Ω

Gε(h
ε(tn, ·)) ≤ C.(4.14)

This leads to the following contradiction: Using the Hölder-regularity of hε we con-
clude that for all x ∈ Ω,

hε(t0, x) ≤ C|x− x0|
1
2

which gives for n > 3 ∫
Ω

[hε(t0, x)]3−n ≥ C

∫
Ω

|x− x0|
3−n

2 .(4.15)

The right-hand side in (4.15) is unbounded since n−3
2 ≥ 1 for n ≥ 5 and this contra-

dicts the facts (4.13) and (4.14). Hence we can conclude that hε are strictly positive
for all times t ∈ [0, T ].

4.2. Convergence of the regularized problem. In this subsection we show
that initial data with a positive height possess solutions to (1.1)–(1.2) which do not
form dead cores, i.e., regimes with zero height cannot have positive measure.

Theorem 4.2. Let the assumptions of Theorem 3.1 hold with ai(s) = 1
i s

i and
suppose

h0 ≥ 0 and

∫
Ω

| log h0| < ∞.(4.16)

Then there exists a solution of (1.1)–(1.2) which fulfills all properties required in The-
orem 3.1 and in addition:

(i) h ≥ 0 a.e. in ΩT and L1
(
{x ∈ Ω

∣∣h(t, x) = 0}
)

= 0 for all t ≥ 0,
(ii) there exists a constant 0 < C < ∞ such that for all t ∈ [0, T ]∫

Ω

| log h(t, ·)| ≤ C.

Proof. We again will make use of the energy estimates and therefore use −S hε
xx

as test function for (4.3) and g′(Γε) as test function for (4.4). From

S
2

∫
Ω

(hε
x(T, ·))2 +

∫
Ω

g(Γε(T, ·)) + D
∫

ΩT

g′′(Γε)(Γε
x)2

+

∫
ΩT

dε3(h
ε)(Shε

xxx)2 +

∫
ΩT

dε1(h
ε)(σ(Γε)x)2 ≤ S

2

∫
Ω

(hε
x(0, ·))2 +

∫
Ω

g(Γε(0, ·)),

we then deduce in the same way as in the existence proof of weak solutions for (3.1)–
(3.2) the necessary convergence results for ε → 0 which enable us to show that weak
solutions of (4.3)–(4.7) converge to weak solutions of (3.1)–(3.5). For the evidence of
this we take a closer look at one of the terms of interest:∫

ΩT

Γε aε2(h
ε)hε

xxx ζx =

∫
ΩT

Γε ãε2(h
ε) (hε)

3
2hε

xxx ζx,
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where

ãε2(h
ε) = (hε)−

3
2 aε2(h

ε) =
(hε)n

(hε)n + ε(hε)3
(hε)

1
2 → h

1
2 pointwise for ε → 0.

Since (hε)ε>0 is uniformly bounded in C
1
8 ,

1
2 (ΩT ), the sequence (ãε2(h

ε)ζx)ε>0 converges

strongly to h
1
2 ζx in L3(ΩT ) for ε → 0. Hence we conclude with the uniformly bound-

edness of Γε (hε)
3
2hε

xxx in L
3
2 (ΩT ) and the weak convergence of (hε

xxx)ε in L2(ΩT \Ω0
T )

that

lim
ε→0

∫
ΩT

Γε aε2(h
ε)hε

xxx ζx =

∫
ΩT \Ω0

T

Γ a2(h)hxxx ζx.

We now like to establish the nonnegativity result using the entropy inequality as a
crucial tool. Since hε → h uniformly and hε > 0 we obtain h ≥ 0. Now we assume
that there exists a t0 ∈ (0, T ) such that

L1(Et0) > 0 for Et0 := {x ∈ Ω
∣∣h(t0, x) = 0}.

Using the uniform convergence of hε there exists a w(ε) with hε(t0, x) < w(ε) for all
x ∈ Et0 such that for all x ∈ Et0 and arbitrary η > 0 with w(ε) < η,

Gε(h
ε(t0, x)) ≥ −

∫ A

w(ε)

gε(s)ds ≥ −
∫ A

η

gε(s)ds.

Since the last integral converges to −
∫ A
η

g0(s) for ε → 0 and since −
∫ A
η

g0(s) ≥ c log 1
η

we obtain

lim sup
ε→0

∫
Ω

Gε(h
ε(t0, x)) ≥ c log

1

η
L(Et0) → ∞ for η → 0 .

We now plan to derive a contradiction by showing that the left-hand side in the above
inequality is bounded. Considering (4.11) and taking into account that hε

xσ(Γε) is
uniformly in ε bounded in the L1(ΩT ) topology we only need to control

∫
Ω
Gε(h

ε
0).

To obtain this we first observe that for n < 3

ε(h0 + εθ)3−n ≤ ε1+θ(3−n) → 0 for ε → 0 .

This holds because we defined θ such that 0 < θ < 1
n−3 . Then boundedness of∫

Ω
Gε(h

ε
0) uniformly in ε follows from (4.16). As a conclusion the set of points where

h = 0 is of Lebesgue measure zero which proves the first statement (i). The second
statement (ii) we conclude from the pointwise convergence

Gε(h
ε(t, x)) → G0(h(t, x)) for ε → 0

in combination with (4.12) and Fatou’s lemma:∫
Ω

lim inf
ε→0

Gε(h
ε(t, x)) ≤ lim inf

ε→0

∫
Ω

Gε(h
ε(t, x)) ≤ C,

since G0(s) = log 1
s .
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5. Appendix.

5.1. Transport identity. In this appendix we prove the transport theorem
(2.9). The proof is based on the following identity which is the Gauss theorem applied
to the vector field Γ 1√

1+v2
ν

(1,vν):

∫
C′

∇C′ ·
(

Γ
1√

1 + v2
ν

(1,vν)

)
dS3 =

∫
∂C′

Γ
1√

1 + v2
ν

(1,vν) · n∂C′dS2,(5.1)

where n∂C′ is the outer unit normal to ∂C ′. First we compute the divergence under
the integral on the left-hand side. Taking an orthonormal basis {t1, t2, t3} of the
tangent space to C ′ the divergence of a vector field F is defined as

∇C′ · F =

3∑
i=1

(∂ti F ) · ti.

Choosing t1 = (0, τ 1), t2 = (0, τ 2), t3 = 1√
1+v2

ν

(1,vν) with (τ 1, τ 2) being an or-

thonormal basis of the tangent space to C ′
t and vν being such that vν ·τ i = 0 (i = 1, 2)

we obtain

∇C′ ·
(

1√
1 + v2

ν

(1,vν)

)
=

2∑
i=1

1√
1 + v2

ν

∂ti(1,vν) · ti

+

(
∂t3

1√
1 + v2

ν

)
(1 + v2

ν)

+
1√

1 + v2
ν

(
∂t3(1,vν)

)
· (1,vν),

where we used that τ 1, τ 2 and vν are orthogonal. A straightforward computation
shows that the last two terms cancel and we obtain (using the fact vν = αν for the
scalar normal velocity α) that

∇C′ ·
(

1√
1 + vν2

(1,vν)

)
=

α√
1 + v2

ν

2∑
i=1

(∂τ i ν) · τ i

= − 1√
1 + vν2

vν · κν ,

where we set κν = κν with κ = −
∑2

i=1(∂τ iν) · τ i. Altogether we obtain

∇C′ ·
(

Γ
1√

1 + v2
ν

(1,vν)

)
= ∇C′Γ · 1√

1 + v2
ν

(1,vν) − Γ
1√

1 + v2
ν

vν · κν .

Computing the surface element with the help of the above basis {t1, t2, t3} one obtains
that for a function f on C ′,

∫
C′

fdS3 =

∫ t2

t1

∫
C′

t

f
√

1 + v2
ν dS2 dt.
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Hence we obtain

∫
C′

∇C′ ·
(

Γ
1√

1 + v2
ν

(1,vν)

)
=

∫ t2

t1

∫
C′

t

(
∂(1,vν)Γ − Γ (vν · κν)

)
dS2 dt.(5.2)

It remains to compute the right-hand side in (5.1). Using the identity

C ′ =
⋃

t∈[t1,t2]

{t} × C ′
t

we see that ∂C ′ contains three parts: top, bottom and lateral boundary. For the top
and similarly for the bottom (with a different sign) we obtain n∂C′ = 1√

1+v2
ν

(1,vν).
Hence ∫

∂C′∩C′
t2

Γ
1√

1 + v2
ν

(1,vν) · n∂C′ dS2 =

∫
C′

t2

Γ dS2(5.3)

and a similar formula holds for t1 with the different sign on the right-hand side. It
remains to compute the integral on the lateral surface. We need to identify n∂C′ on
the lateral boundary. n∂C′ has to be normal to ∂C ′ and tangential to C ′. Now we
choose an orthogonal system (0, τ 1), (0, τ 2) and (1,vν) such that τ 2 is tangential to
∂C ′

t. Hence we can choose without loss of generality

τ 1 = n∂C′
t
.

Claim. (1,vν) + (0, v∂C′
t
n∂C′

t
) is tangential to ∂C ′.

Proof. Assume (t, x) ∈ ∂C ′. Choose a curve (s, y(s)) ∈ ∂C ′ such that (t, y(t)) =
(t, x). Hence (1, y′(t)) is tangential to ∂C ′. Since (1, y′(t)) lies in the tangent space to
C ′, we have

(1, y′(t)) = (1,vν) + α(0, τ 1) + β(0, τ 2).

We defined v∂C′
t
= y′(t) ·n∂C′

t
and hence, since τ 1 · τ 2 = 0, we obtain v∂C′

t
= α. This

implies that

(1,vν) + (0, v∂C′
t
n∂C′

t
)

is tangential to ∂C ′.
Now we need to find numbers a and b such that

n∂C′ = a(0, τ 1) + b(1,vν)

is perpendicular to (1,vν + v∂C′
t
n∂C′

t
) and normal. A simple computation shows

b = −
v∂C′

t√
1 + v2

ν + v2
∂C′

t

√
1 + v2

ν

and hence

1√
1 + v2

ν

(1,vν) · n∂C′ = −
v∂C′

t√
1 + v2

ν + v2
∂C′

t

.
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As a result

∫
∂C′\(C′

t2

⋃
C′

t1
)

Γ
1√

1 + v2
ν

(1,vν) · n∂C′ dS2 = −
∫
∂C′\(C′

t2

⋃
C′

t1
)

v∂C′
t

Γ√
1 + v2

ν + v2
∂C′

t

dS2.

Using (0, τ 1) and n∂C′ to compute the area element we obtain

−
∫
∂C′\(C′

t2

⋃
C′

t1
)

v∂C′
t

Γ√
1 + v2

ν + v2
∂C′

t

dS2 = −
∫ t2

t1

∫
∂C′

t

v∂C′
t
ΓdS1 dt.(5.4)

Combining (5.1), (5.2), (5.3) and (5.4) gives

∫
C′

t2

Γ dS2 −
∫
C′

t1

Γ dS2 =

∫ t2

t1

∫
C′

t

(
∂(1,vν)Γ − Γ (vν · κν)

)
dS2 dt +

∫ t2

t1

∫
∂C′

t

Γ v∂C′
t
dS1dt.

Differentiating with respect to t2 now gives (2.9).

5.2. Energy identity. In this subsection we show the energy inequality (2.16).
Using transport theorems (see, e.g., (2.9)) we obtain

d

dt
E(t) =

∫
Ωt

ρ0 u · ut dV
3 +

∫
∂Ωt

ρ0

2
u2(vν · ν) dS2

+

∫
Ct

(
∂(1,vν) g(Γ) − g(Γ)(vν · κν)

)
dS2 +

∫
∂Ct

g(Γ) v∂C′
t
dS1.

The 90◦ angle condition at the outer boundary implies that the last term vanishes.
Using the equations (2.1)–(2.2) for u and (2.11) for Γ and noticing that ∇ · T =
−∇p + μΔu we obtain

d

dt
E(t) =

∫
Ωt

(
− ρ0 u · (u · ∇)u + (∇ · T ) · u

)
dV 3 +

∫
Ct

ρ0

2
u2(vν · ν)dS2

+

∫
Ct

g′(Γ)
(
Γ(vν · κν) −∇s ·

(
Γutan −D∇sΓ

))
dS2 −

∫
Ct

g(Γ) (vν · κν)dS2.

Taking into account that ∇ · u = 0, u · (u · ∇)u = 1
2u · ∇|u|2 and u = utan + (u · ν)ν

on Ct and using the boundary conditions (2.6) and (2.7) we obtain after integration
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by parts

d

dt
E(t) = −

∫
Ωt

T : ∇u dV 3 −
∫
Ct

ρ0

2
u2 (vν − u) · ν dS2 +

∫
Ct

utan · ∇s σ(Γ)dS2

+

∫
Ct

(u · ν)σ(Γ)κ dS2

+

∫
Ct

g′(Γ)Γ(vν · κν) dS2 + g′′(Γ)Γutan · ∇sΓ dS2 −D

∫
Ct

g′′(Γ)|∇sΓ|2 dS2

−
∫
Ct

g(Γ)(vν · κν) dS2

= −
∫

Ωt

T : ∇u dV 3 +

∫
Ct

utan · ∇sΓ
(
Γ g′′(Γ) − σ′(Γ)

)
dS2

+

∫
Ct

(u · ν)κ
(
σ(Γ) + g′(Γ)Γ − g(Γ)

)
dS2 −D

∫
Ct

g′′(Γ)|∇sΓ|2 dS2

= −
∫

Ωt

T : ∇u dV 3 −D

∫
Ct

g′′(Γ)|∇sΓ|2 dS2,

where we used (2.14) and the facts vν · ν = u · ν and vν · κν = κu · ν.
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